From b9a4b6948e221b8e4fcd62ed69dd5713e0b8fbf7 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Tue, 13 Nov 2007 08:35:38 +0000 Subject: src/algebra/ 2007-11-13 Gabriel Dos Reis * Makefile.pamphlet (SYNTAX.NRLIB/code.$(FASLEXT)): New rule. (axiom_algebra_layer_14): Include SYNTAX.o. * syntax.spad: New algebra file. * domain.spad (Domain$reify): New. src/share/ 2007-11-13 Gabriel Dos Reis * algebra/browse.daase: Update. * algebra/category.daase: Likewise. * algebra/compress.daase: Likewise. * algebra/interp.daase: Likewise. --- NEWS | 7 +- configure | 18 +- configure.ac | 2 +- configure.ac.pamphlet | 2 +- src/algebra/ChangeLog | 7 + src/algebra/Makefile.in | 6 +- src/algebra/Makefile.pamphlet | 6 +- src/algebra/domain.spad | 13 +- src/algebra/syntax.spad | 121 + src/interp/ChangeLog | 5 + src/interp/i-funsel.boot | 1 - src/share/ChangeLog | 7 + src/share/algebra/browse.daase | 4058 ++++++++-------- src/share/algebra/category.daase | 5030 +++++++++---------- src/share/algebra/compress.daase | 4 +- src/share/algebra/interp.daase | 9636 +++++++++++++++++++------------------ src/share/algebra/operation.daase | 5913 +++++++++++------------ 17 files changed, 12522 insertions(+), 12314 deletions(-) create mode 100644 src/algebra/syntax.spad diff --git a/NEWS b/NEWS index 5b7350ca..0355c099 100644 --- a/NEWS +++ b/NEWS @@ -1,4 +1,9 @@ - × OpenAxiom now supports collections of domains. + × OpenAxiom now has a domain domain for representing the abstract + syntax tree of Spad and Boot programs. + + × OpenAxiom now supports collections of domains. More generally, + it is now possible define and call functions with arguments + that are of domain type. × OpenAxiom no longer uses global setting of the environment variable AXIOM. Now, OpenAxiom's AXIOMsys can be invoked with diff --git a/configure b/configure index b25d2881..492b3f53 100755 --- a/configure +++ b/configure @@ -1,6 +1,6 @@ #! /bin/sh # Guess values for system-dependent variables and create Makefiles. -# Generated by GNU Autoconf 2.60 for OpenAxiom 1.1.0-2007-11-10. +# Generated by GNU Autoconf 2.60 for OpenAxiom 1.1.0-2007-11-13. # # Report bugs to . # @@ -713,8 +713,8 @@ SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='OpenAxiom' PACKAGE_TARNAME='openaxiom' -PACKAGE_VERSION='1.1.0-2007-11-10' -PACKAGE_STRING='OpenAxiom 1.1.0-2007-11-10' +PACKAGE_VERSION='1.1.0-2007-11-13' +PACKAGE_STRING='OpenAxiom 1.1.0-2007-11-13' PACKAGE_BUGREPORT='open-axiom-bugs@lists.sf.net' ac_unique_file="src/Makefile.pamphlet" @@ -1388,7 +1388,7 @@ if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF -\`configure' configures OpenAxiom 1.1.0-2007-11-10 to adapt to many kinds of systems. +\`configure' configures OpenAxiom 1.1.0-2007-11-13 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... @@ -1458,7 +1458,7 @@ fi if test -n "$ac_init_help"; then case $ac_init_help in - short | recursive ) echo "Configuration of OpenAxiom 1.1.0-2007-11-10:";; + short | recursive ) echo "Configuration of OpenAxiom 1.1.0-2007-11-13:";; esac cat <<\_ACEOF @@ -1562,7 +1562,7 @@ fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF -OpenAxiom configure 1.1.0-2007-11-10 +OpenAxiom configure 1.1.0-2007-11-13 generated by GNU Autoconf 2.60 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, @@ -1576,7 +1576,7 @@ cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. -It was created by OpenAxiom $as_me 1.1.0-2007-11-10, which was +It was created by OpenAxiom $as_me 1.1.0-2007-11-13, which was generated by GNU Autoconf 2.60. Invocation command line was $ $0 $@ @@ -25198,7 +25198,7 @@ exec 6>&1 # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" -This file was extended by OpenAxiom $as_me 1.1.0-2007-11-10, which was +This file was extended by OpenAxiom $as_me 1.1.0-2007-11-13, which was generated by GNU Autoconf 2.60. Invocation command line was CONFIG_FILES = $CONFIG_FILES @@ -25247,7 +25247,7 @@ Report bugs to ." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF ac_cs_version="\\ -OpenAxiom config.status 1.1.0-2007-11-10 +OpenAxiom config.status 1.1.0-2007-11-13 configured by $0, generated by GNU Autoconf 2.60, with options \\"`echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\" diff --git a/configure.ac b/configure.ac index 7ef24cfd..bb1d3c65 100644 --- a/configure.ac +++ b/configure.ac @@ -1,6 +1,6 @@ sinclude(config/open-axiom.m4) sinclude(config/aclocal.m4) -AC_INIT([OpenAxiom], [1.1.0-2007-11-10], +AC_INIT([OpenAxiom], [1.1.0-2007-11-13], [open-axiom-bugs@lists.sf.net]) AC_CONFIG_AUX_DIR(config) diff --git a/configure.ac.pamphlet b/configure.ac.pamphlet index 4019cf00..7190f8f3 100644 --- a/configure.ac.pamphlet +++ b/configure.ac.pamphlet @@ -1010,7 +1010,7 @@ information: <>= sinclude(config/open-axiom.m4) sinclude(config/aclocal.m4) -AC_INIT([OpenAxiom], [1.1.0-2007-11-11], +AC_INIT([OpenAxiom], [1.1.0-2007-11-13], [open-axiom-bugs@lists.sf.net]) @ diff --git a/src/algebra/ChangeLog b/src/algebra/ChangeLog index e0ed5d53..84881e17 100644 --- a/src/algebra/ChangeLog +++ b/src/algebra/ChangeLog @@ -1,3 +1,10 @@ +2007-11-13 Gabriel Dos Reis + + * Makefile.pamphlet (SYNTAX.NRLIB/code.$(FASLEXT)): New rule. + (axiom_algebra_layer_14): Include SYNTAX.o. + * syntax.spad: New algebra file. + * domain.spad (Domain$reify): New. + 2007-11-12 Gabriel Dos Reis * mappkg.spad.pamphlet: Through use "import" for importing packages. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index f3bf33bc..5f81b593 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -648,7 +648,7 @@ axiom_algebra_layer_14 = \ TWOFACT.o UNIFACT.o UP.o UPCDEN.o \ UPDECOMP.o UPDIVP.o UPMP.o UPOLYC2.o \ UPXSCAT.o UPSQFREE.o VIEWDEF.o VIEW2D.o \ - VOID.o WEIER.o WP.o + VOID.o WEIER.o WP.o SYNTAX.o axiom_algebra_layer_14_nrlibs = \ $(axiom_algebra_layer_14:.$(OBJEXT)=.NRLIB/code.$(OBJEXT)) @@ -900,6 +900,10 @@ $(builddir)/%.tex: $(srcdir)/%.pamphlet $(axiom_build_texdir)/diagrams.tex: $(axiom_src_docdir)/diagrams.tex $(INSTALL_DATA) $< $@ +SYNTAX.NRLIB/code.$(FASLEXT): syntax.spad + @ rm -rf $*.NRLIB + echo ")co $(srcdir)/syntax.spad" | ${INTERPSYS} + DOMAIN.NRLIB/code.$(FASLEXT): domain.spad @ rm -rf $*.NRLIB echo ")co $(srcdir)/domain.spad" | ${INTERPSYS} diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 45e3ed77..0dfaba40 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -776,7 +776,7 @@ axiom_algebra_layer_14 = \ TWOFACT.o UNIFACT.o UP.o UPCDEN.o \ UPDECOMP.o UPDIVP.o UPMP.o UPOLYC2.o \ UPXSCAT.o UPSQFREE.o VIEWDEF.o VIEW2D.o \ - VOID.o WEIER.o WP.o + VOID.o WEIER.o WP.o SYNTAX.o axiom_algebra_layer_14_nrlibs = \ $(axiom_algebra_layer_14:.$(OBJEXT)=.NRLIB/code.$(OBJEXT)) @@ -1853,6 +1853,10 @@ $(axiom_build_texdir)/diagrams.tex: $(axiom_src_docdir)/diagrams.tex <> <> +SYNTAX.NRLIB/code.$(FASLEXT): syntax.spad + @ rm -rf $*.NRLIB + echo ")co $(srcdir)/syntax.spad" | ${INTERPSYS} + DOMAIN.NRLIB/code.$(FASLEXT): domain.spad @ rm -rf $*.NRLIB echo ")co $(srcdir)/domain.spad" | ${INTERPSYS} diff --git a/src/algebra/domain.spad b/src/algebra/domain.spad index dec41cc2..1739efdc 100644 --- a/src/algebra/domain.spad +++ b/src/algebra/domain.spad @@ -33,13 +33,18 @@ )abbrev domain DOMAIN Domain ++ Author: Gabriel Dos Reis ++ Date Create: October 18, 2007. -++ Date Last Updated: October 18, 2007. -++ Basic Operations: -++ Related Constructors: Type, OutputForm +++ Date Last Updated: November 13, 2007. +++ Basic Operations: coerce, reify +++ Related Constructors: Type, Syntax, OutputForm ++ Also See: Type Domain(): Public == Private where - Public ==> CoercibleTo(OutputForm) + Public ==> CoercibleTo(OutputForm) with + reify: % -> Syntax + ++ reify(d) returns the abstract syntax for the domain `x'. Private ==> add coerce x == outputDomainConstructor(x)$Lisp + reify x == + convert(devaluate(x)$Lisp)$Syntax + diff --git a/src/algebra/syntax.spad b/src/algebra/syntax.spad new file mode 100644 index 00000000..383e1b59 --- /dev/null +++ b/src/algebra/syntax.spad @@ -0,0 +1,121 @@ +--Copyright (C) 2007, Gabriel Dos Reis. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical Algorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + +)abbrev domain SYNTAX Syntax +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Updated: November 12, 2007 +++ Description: This domain provides a simple, general, and arguably +++ complete representation of Spad programs as objects of a term algebra +++ built from ground terms of type boolean, integers, foats, symbols, +++ and strings. This domain differs from InputForm in that it represents +++ any entity from a Spad program, not just expressions. +++ Related Constructors: Boolean, Integer, Float, symbol, String, SExpression. +++ See Also: SExpression. +++ Fixme: Provide direct support for boolean values, arbritrary +++ precision float point values. +Syntax(): Public == Private where + Public ==> CoercibleTo(OutputForm) with + convert: % -> SExpression + ++ convert(s) returns the s-expression representation of a syntax. + + convert: SExpression -> % + ++ convert(s) converts an s-expression to syntax. + + convert: Integer -> % + ++ convert(i) injects the integer value `i' into the syntax domain + + convert: DoubleFloat -> % + ++ convert(f) injects the float value `f' into the syntax domain + + convert: Symbol -> % + ++ convert(s) injects the symbol `s' into the syntax domain. + + convert: String -> % + ++ convert(s) injects the string value `s' into the syntax domain + + buildSyntax: (Symbol, List %) -> % + ++ buildSyntax(op, [a1, ..., an]) builds a syntax object for op(a1,...,an). + + getOperator: % -> Union(Integer, DoubleFloat, Symbol, String, %) + ++ getOperator(x) returns the operator, or tag, of the syntax `x'. + ++ The return value is itself a syntax if `x' really is an + ++ application of a function symbol as opposed to being an + ++ atomic ground term. + + + getOperands: % -> List % + ++ getOperands(x) returns the list of operands to the operator in `x'. + + Private ==> SExpression add + rep(x: %): SExpression == + x pretend SExpression + + per(x: SExpression): % == + x pretend % + + convert(x: %): SExpression == + rep x + + convert(x: SExpression): % == + per x + + convert(i: Integer): % == + per convert(i)$SExpression + + convert(f: DoubleFloat): % == + per convert(f)$SExpression + + convert(s: Symbol): % == + per convert(s)$SExpression + + convert(s: String): % == + per convert(s)$SExpression + + buildSyntax(s: Symbol, l: List %): % == + -- ??? ideally we should have overloaded operator `per' that convert + -- from list of syntax to syntax. But the compiler is at the + -- moment defective for non-exported operations. + cons(convert(s)$%, l) pretend % + + getOperator x == + s := rep x + symbol? s => symbol s + integer? s => integer s + float? s => float s + string? s => string s + convert(car s) + + getOperands x == + s := rep x + atom? s => [] + [per t for t in destruct cdr s] diff --git a/src/interp/ChangeLog b/src/interp/ChangeLog index ec02013e..5fe8e6a5 100644 --- a/src/interp/ChangeLog +++ b/src/interp/ChangeLog @@ -1,3 +1,8 @@ +2007-11-13 Gabriel Dos Reis + + * i-funsel.boot (selectMms): Don't reject modemaps involving + Domain. + 2007-11-11 Gabriel Dos Reis * Makefile.pamphlet (nrunfast.$(FASLEXT)): New rule. diff --git a/src/interp/i-funsel.boot b/src/interp/i-funsel.boot index ee1202fd..63301045 100644 --- a/src/interp/i-funsel.boot +++ b/src/interp/i-funsel.boot @@ -87,7 +87,6 @@ selectMms(op,args,$declaredMode) == types1 := getOpArgTypes(n,args) numArgs := #args member('(SubDomain (Domain)),types1) => NIL - member('(Domain),types1) => NIL member($EmptyMode,types1) => NIL tar := getTarget op diff --git a/src/share/ChangeLog b/src/share/ChangeLog index 5b1fc53c..62b8f8fc 100644 --- a/src/share/ChangeLog +++ b/src/share/ChangeLog @@ -1,3 +1,10 @@ +2007-11-13 Gabriel Dos Reis + + * algebra/browse.daase: Update. + * algebra/category.daase: Likewise. + * algebra/compress.daase: Likewise. + * algebra/interp.daase: Likewise. + 2007-08-14 Gabriel Dos Reis * doc/msgs/s2-us.msgs: Consistently use OpenAxiom. diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index a9fb9d53..1ed6dd1a 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2135125 . 3269429133) +(2204743 . 3403927923) (-18 A S) -NIL +((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) -NIL -((-4168 . T) (-4167 . T) (-2951 . T)) +((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,31 +46,31 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4164 . T) (-4162 . T) (-4161 . T) ((-4169 "*") . T) (-4160 . T) (-4165 . T) (-4159 . T) (-2951 . T)) +((-4177 . T) (-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4173 . T) (-4178 . T) (-4172 . T) (-3353 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) NIL NIL -(-31 R -2958) +(-31 R -1696) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501))))) +((|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (-32 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4167))) +((|HasAttribute| |#1| (QUOTE -4180))) (-33) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-2951 . T)) +((-3353 . T)) NIL (-34) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) NIL NIL (-35 |Key| |Entry|) -((|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4167 . T) (-4168 . T) (-2951 . T)) +((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) +((-4180 . T) (-4181 . T) (-3353 . T)) NIL (-36 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -78,69 +78,69 @@ NIL NIL (-37 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4161 . T) (-4162 . T) (-4164 . T)) +((-4174 . T) (-4175 . T) (-4177 . T)) NIL (-38 UP) -((|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) +((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-39 -2958 UP UPUP -3121) +(-39 -1696 UP UPUP -1734) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4160 |has| (-375 |#2|) (-331)) (-4165 |has| (-375 |#2|) (-331)) (-4159 |has| (-375 |#2|) (-331)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-375 |#2|) (QUOTE (-132))) (|HasCategory| (-375 |#2|) (QUOTE (-134))) (|HasCategory| (-375 |#2|) (QUOTE (-318))) (|HasCategory| (-375 |#2|) (QUOTE (-331))) (-1405 (|HasCategory| (-375 |#2|) (QUOTE (-331))) (|HasCategory| (-375 |#2|) (QUOTE (-318)))) (|HasCategory| (-375 |#2|) (QUOTE (-336))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-336))) (-1405 (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-318))))) (-12 (|HasCategory| (-375 |#2|) (QUOTE (-206))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-375 |#2|) (QUOTE (-206))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (|HasCategory| (-375 |#2|) (QUOTE (-318))))) -(-40 R -2958) +((-4173 |has| (-377 |#2|) (-333)) (-4178 |has| (-377 |#2|) (-333)) (-4172 |has| (-377 |#2|) (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3807 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3807 (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) +(-40 R -1696) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -389) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -400) (|devaluate| |#1|))))) (-41 OV E P) -((|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) +((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL NIL (-42 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-276)))) +((|HasCategory| |#1| (QUOTE (-278)))) (-43 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4164 |has| |#1| (-508)) (-4162 . T) (-4161 . T)) -((|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) +((-4177 |has| |#1| (-509)) (-4175 . T) (-4174 . T)) +((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-44 |Key| |Entry|) -NIL -((-4167 . T) (-4168 . T)) -((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-777))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-777)))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))))) +((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) +((-4180 . T) (-4181 . T)) +((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-3807 (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))))) (-45 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331)))) +((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-46 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T)) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T)) NIL (-47) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| $ (QUOTE (-959))) (|HasCategory| $ (LIST (QUOTE -950) (QUOTE (-501))))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517))))) (-48) ((|constructor| (NIL "This domain implements anonymous functions"))) NIL NIL (-49 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4164 . T)) +((-4177 . T)) NIL -(-50) -((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) +(-50 S) +((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) NIL NIL -(-51 S) -((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) +(-51) +((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) NIL NIL (-52 R M P) ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-53 |Base| R -2958) +(-53 |Base| R -1696) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -150,144 +150,144 @@ NIL NIL (-55 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4167 . T) (-4168 . T) (-2951 . T)) +((-4180 . T) (-4181 . T) (-3353 . T)) NIL -(-56 S) -((|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-57 A B) +(-56 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL +(-57 S) +((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))) (-58 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) -(-59 -3986) -((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-60 -3986) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) +(-59 -1207) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-61 -3986) +(-60 -1207) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-62 -3986) +(-61 -1207) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -3986) +(-62 -1207) +((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +NIL +NIL +(-63 -1207) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3986) +(-64 -1207) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3986) +(-65 -1207) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3986) +(-66 -1207) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -3986) +(-67 -1207) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-68 -3986) +(-68 -1207) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3986) +(-69 -1207) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-70 -3986) +(-70 -1207) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-71 -3986) +(-71 -1207) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-72 -3986) +(-72 -1207) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-73 -3986) -((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-74 |nameOne| |nameTwo| |nameThree|) +(-73 |nameOne| |nameTwo| |nameThree|) ((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 |nameOne| |nameTwo| |nameThree|) +(-74 |nameOne| |nameTwo| |nameThree|) ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-76 -3986) +(-75 -1207) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -3986) +(-76 -1207) +((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +NIL +NIL +(-77 -1207) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3986) +(-78 -1207) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -3986) +(-79 -1207) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3986) -((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) -NIL -NIL -(-81 -3986) +(-80 -1207) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -3986) +(-81 -1207) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3986) +(-82 -1207) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3986) +(-83 -1207) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3986) -((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) +(-84 -1207) +((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3986) +(-85 -1207) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3986) +(-86 -1207) +((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) +NIL +NIL +(-87 -1207) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-88 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-331)))) +((|HasCategory| |#1| (QUOTE (-333)))) (-89 S) -((|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) +((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (-90 S) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL @@ -297,16 +297,16 @@ NIL NIL NIL (-92) -((|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4167 . T)) +((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) +((-4180 . T)) NIL (-93) -((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} imples \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4167 . T) ((-4169 "*") . T) (-4168 . T) (-4164 . T) (-4162 . T) (-4161 . T) (-4160 . T) (-4165 . T) (-4159 . T) (-4158 . T) (-4157 . T) (-4156 . T) (-4155 . T) (-4163 . T) (-4166 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4154 . T)) +((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) +((-4180 . T) ((-4182 "*") . T) (-4181 . T) (-4177 . T) (-4175 . T) (-4174 . T) (-4173 . T) (-4178 . T) (-4172 . T) (-4171 . T) (-4170 . T) (-4169 . T) (-4168 . T) (-4176 . T) (-4179 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4167 . T)) NIL (-94 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4164 . T)) +((-4177 . T)) NIL (-95 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -321,105 +321,105 @@ NIL NIL NIL (-98 S) -((|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) +((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (-99 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4169 "*")))) +((|HasAttribute| |#1| (QUOTE (-4182 "*")))) (-100) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4167 . T)) +((-4180 . T)) NIL (-101 A S) -((|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) +((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) NIL NIL (-102 S) -((|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4168 . T) (-2951 . T)) +((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) +((-4181 . T) (-3353 . T)) NIL (-103) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-501) (QUOTE (-830))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-501) (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-134))) (|HasCategory| (-501) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-501) (QUOTE (-933))) (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-1046))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-501) (QUOTE (-206))) (|HasCategory| (-501) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-501) (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -278) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -256) (QUOTE (-501)) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-276))) (|HasCategory| (-501) (QUOTE (-500))) (|HasCategory| (-501) (QUOTE (-777))) (-1405 (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (QUOTE (-777)))) (|HasCategory| (-501) (LIST (QUOTE -577) (QUOTE (-501)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (|HasCategory| (-501) (QUOTE (-132))))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132))))) (-104) ((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f,{} i)} sets the current byte-position to \\spad{i}.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f}.")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL (-105) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4168 . T) (-4167 . T)) -((|HasCategory| (-107) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-107) (QUOTE (-777))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| (-107) (QUOTE (-1001))) (-12 (|HasCategory| (-107) (LIST (QUOTE -278) (QUOTE (-107)))) (|HasCategory| (-107) (QUOTE (-1001))))) +((-4181 . T) (-4180 . T)) +((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1003))) (-12 (|HasCategory| (-107) (QUOTE (-1003))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107)))))) (-106 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4162 . T) (-4161 . T)) +((-4175 . T) (-4174 . T)) NIL (-107) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|implies| (($ $ $) "\\spad{implies(a,{}b)} returns the logical implication of Boolean \\spad{a} and \\spad{b}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical inclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of Boolean \\spad{a} and \\spad{b}.")) (|not| (($ $) "\\spad{not n} returns the negation of \\spad{n}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-108) -((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1} and \\spad{op2} should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) +(-108 A) +((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL +((|HasCategory| |#1| (QUOTE (-779)))) +(-109) +((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL -(-109 A) -((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-777)))) -(-110 -2958 UP) +(-110 -1696 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-111 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL (-112 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-111 |#1|) (QUOTE (-830))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-134))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-111 |#1|) (QUOTE (-933))) (|HasCategory| (-111 |#1|) (QUOTE (-750))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-111 |#1|) (QUOTE (-1046))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-111 |#1|) (QUOTE (-206))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -278) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -256) (LIST (QUOTE -111) (|devaluate| |#1|)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (QUOTE (-276))) (|HasCategory| (-111 |#1|) (QUOTE (-500))) (|HasCategory| (-111 |#1|) (QUOTE (-777))) (-1405 (|HasCategory| (-111 |#1|) (QUOTE (-750))) (|HasCategory| (-111 |#1|) (QUOTE (-777)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-830)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-111 |#1|) (QUOTE (-831))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-134))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-111 |#1|) (QUOTE (-937))) (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-1049))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-207))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -111) (|devaluate| |#1|)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (QUOTE (-278))) (|HasCategory| (-111 |#1|) (QUOTE (-502))) (|HasCategory| (-111 |#1|) (QUOTE (-779))) (-3807 (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-831)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))))) (-113 A S) -((|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) +((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4168))) +((|HasAttribute| |#1| (QUOTE -4181))) (-114 S) -((|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-2951 . T)) +((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) +((-3353 . T)) NIL (-115 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL (-116 S) -((|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) +((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (-117 S) -((|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) +((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-118) -((|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4168 . T) (-4167 . T) (-2951 . T)) +((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL (-119 A S) -((|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) +((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL (-120 S) -((|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4167 . T) (-4168 . T) (-2951 . T)) +((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) +((-4180 . T) (-4181 . T) (-3353 . T)) NIL (-121 S) -((|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) +((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (-122 S) -((|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) +((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (-123) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL @@ -430,20 +430,20 @@ NIL NIL (-125) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4169 "*") . T)) +(((-4182 "*") . T)) NIL -(-126 |minix| -2742 R) -((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) +(-126 |minix| -2806 S T$) +((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-127 |minix| -2742 S T$) -((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) +(-127 |minix| -2806 R) +((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL (-128) -((|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4167 . T) (-4157 . T) (-4168 . T)) -((|HasCategory| (-131) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-131) (QUOTE (-336))) (|HasCategory| (-131) (QUOTE (-777))) (|HasCategory| (-131) (QUOTE (-1001))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-336)))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001)))))) +((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) +((-4180 . T) (-4170 . T) (-4181 . T)) +((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3807 (-12 (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))))) (-129 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -453,12 +453,12 @@ NIL NIL NIL (-131) -((|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|Integer|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|Integer|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) +((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|Integer|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|Integer|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL (-132) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4164 . T)) +((-4177 . T)) NIL (-133 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -466,27 +466,27 @@ NIL NIL (-134) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4164 . T)) +((-4177 . T)) NIL -(-135 -2958 UP UPUP) +(-135 -1696 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL (-136 R CR) -((|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) +((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL (-137 A S) -((|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) +((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasAttribute| |#1| (QUOTE -4167))) +((|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasAttribute| |#1| (QUOTE -4180))) (-138 S) -((|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-2951 . T)) +((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) +((-3353 . T)) NIL (-139 |n| K Q) -((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]} (\\spad{1<=i1} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) +((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL (-182) -NIL +((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL (-183) -NIL +((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL (-184) -NIL +((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL (-185) -NIL +((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL (-186) @@ -677,30 +677,30 @@ NIL NIL NIL (-187) -NIL +((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL (-188) -NIL +((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL (-189 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-190 -2958 UP UPUP R) +(-190 -1696 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-191 -2958 FP) +(-191 -1696 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-192) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-501) (QUOTE (-830))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-501) (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-134))) (|HasCategory| (-501) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-501) (QUOTE (-933))) (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-1046))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-501) (QUOTE (-206))) (|HasCategory| (-501) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-501) (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -278) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -256) (QUOTE (-501)) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-276))) (|HasCategory| (-501) (QUOTE (-500))) (|HasCategory| (-501) (QUOTE (-777))) (-1405 (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (QUOTE (-777)))) (|HasCategory| (-501) (LIST (QUOTE -577) (QUOTE (-501)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (|HasCategory| (-501) (QUOTE (-132))))) -(-193 R -2958) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132))))) +(-193 R -1696) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -713,3924 +713,3940 @@ NIL NIL NIL (-196 S) -((|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) +((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (-197 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4164 . T)) +((-4177 . T)) NIL -(-198 R -2958) +(-198 R -1696) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-199) -((|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2391 . T) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) +((-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL (-200) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-201 A S) -NIL +(-201 R) +((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4182 "*"))) (|HasCategory| |#1| (QUOTE (-333)))) +(-202 A S) +((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-202 S) +(-203 S) +((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) +((-4181 . T) (-3353 . T)) NIL -((-4168 . T) (-2951 . T)) -NIL -(-203 S R) +(-204 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206)))) -(-204 R) +((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207)))) +(-205 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4164 . T)) +((-4177 . T)) NIL -(-205 S) +(-206 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-206) +(-207) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4164 . T)) +((-4177 . T)) NIL -(-207 A S) -((|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) +(-208 A S) +((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4167))) -(-208 S) -((|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4168 . T) (-2951 . T)) +((|HasAttribute| |#1| (QUOTE -4180))) +(-209 S) +((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) +((-4181 . T) (-3353 . T)) NIL -(-209) +(-210) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-210 S -2742 R) -((* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -NIL -((|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775))) (|HasAttribute| |#3| (QUOTE -4164)) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-657))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-959))) (|HasCategory| |#3| (QUOTE (-1001)))) -(-211 -2742 R) -((* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4161 |has| |#2| (-959)) (-4162 |has| |#2| (-959)) (-4164 |has| |#2| (-6 -4164)) ((-4169 "*") |has| |#2| (-156)) (-4167 . T) (-2951 . T)) +(-211 S -2806 R) +((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -(-212 -2742 R) +((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasAttribute| |#3| (QUOTE -4177)) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1003)))) +(-212 -2806 R) +((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) +((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T) (-3353 . T)) NIL -((-4161 |has| |#2| (-959)) (-4162 |has| |#2| (-959)) (-4164 |has| |#2| (-6 -4164)) ((-4169 "*") |has| |#2| (-156)) (-4167 . T)) -((|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (-1405 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775)))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-657))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasAttribute| |#2| (QUOTE -4164)) (|HasCategory| |#2| (QUOTE (-123))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-25))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))))) -(-213 -2742 A B) -((|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) +(-213 -2806 A B) +((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-214) +(-214 -2806 R) +((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) +((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T)) +((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3807 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4177)) (|HasCategory| |#2| (QUOTE (-123))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))))) +(-215) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-215 S) +(-216 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-216) +(-217) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4160 . T) (-4161 . T) (-4162 . T) (-4164 . T)) -NIL -(-217 S) -((|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-2951 . T)) +((-4173 . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL (-218 S) +((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) +((-3353 . T)) +NIL +(-219 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-219 M) -((|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))) +(-220 M) +((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-220 |vl| R) -((|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4169 "*") |has| |#2| (-156)) (-4160 |has| |#2| (-508)) (-4165 |has| |#2| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-221 |n| R M S) -((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4164 -1405 (-1280 (|has| |#4| (-959)) (|has| |#4| (-206))) (-1280 (|has| |#4| (-959)) (|has| |#4| (-820 (-1070)))) (|has| |#4| (-6 -4164)) (-1280 (|has| |#4| (-959)) (|has| |#4| (-577 (-501))))) (-4161 |has| |#4| (-959)) (-4162 |has| |#4| (-959)) ((-4169 "*") |has| |#4| (-156)) (-4167 . T)) -((|HasCategory| |#4| (QUOTE (-331))) (|HasCategory| |#4| (QUOTE (-959))) (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (QUOTE (-775))) (-1405 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (QUOTE (-775)))) (|HasCategory| |#4| (QUOTE (-156))) (-1405 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-331))) (|HasCategory| |#4| (QUOTE (-959)))) (-1405 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-331)))) (-1405 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-959)))) (|HasCategory| |#4| (QUOTE (-336))) (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-206))) (-1405 (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-206))) (|HasCategory| |#4| (QUOTE (-959)))) (|HasCategory| |#4| (QUOTE (-1001))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| |#4| (QUOTE (-657))) (-12 (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (QUOTE (-206))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-206)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-331)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-336)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-775)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-206)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-331)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-336)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-775)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-1001))))) (-1405 (|HasAttribute| |#4| (QUOTE -4164)) (-12 (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (QUOTE (-206))) (|HasCategory| |#4| (QUOTE (-959))))) (|HasCategory| |#4| (QUOTE (-123))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-206)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-331)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-336)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-775)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))))) -(-222 |n| R S) -((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4164 -1405 (-1280 (|has| |#3| (-959)) (|has| |#3| (-206))) (-1280 (|has| |#3| (-959)) (|has| |#3| (-820 (-1070)))) (|has| |#3| (-6 -4164)) (-1280 (|has| |#3| (-959)) (|has| |#3| (-577 (-501))))) (-4161 |has| |#3| (-959)) (-4162 |has| |#3| (-959)) ((-4169 "*") |has| |#3| (-156)) (-4167 . T)) -((|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775))) (-1405 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775)))) (|HasCategory| |#3| (QUOTE (-156))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959)))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-331)))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-206))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| |#3| (QUOTE (-1001))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| |#3| (QUOTE (-657))) (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-1001))))) (-1405 (|HasAttribute| |#3| (QUOTE -4164)) (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-959))))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001)))))) -(-223 A R S V E) -((|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) +(-221 |vl| R) +((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) +(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132))))) +(-222) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: October 18,{} 2007. Basic Operations: Related Constructors: Type,{} OutputForm Also See: Type"))) NIL -((|HasCategory| |#2| (QUOTE (-206)))) -(-224 R S V E) -((|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) NIL -(-225 S) -((|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4167 . T) (-4168 . T) (-2951 . T)) +(-223 |n| R M S) +((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) +((-4177 -3807 (-4035 (|has| |#4| (-961)) (|has| |#4| (-207))) (-4035 (|has| |#4| (-961)) (|has| |#4| (-822 (-1073)))) (|has| |#4| (-6 -4177)) (-4035 (|has| |#4| (-961)) (|has| |#4| (-579 (-517))))) (-4174 |has| |#4| (-961)) (-4175 |has| |#4| (-961)) ((-4182 "*") |has| |#4| (-156)) (-4180 . T)) +((|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777))) (-3807 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777)))) (|HasCategory| |#4| (QUOTE (-156))) (-3807 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-961)))) (-3807 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333)))) (-3807 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#4| (QUOTE (-207))) (-3807 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#4| (QUOTE (-659))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3807 (|HasCategory| |#4| (QUOTE (-961))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1003)))) (-3807 (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-207)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-333)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-338)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-725)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-777)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1003))))) (-3807 (|HasAttribute| |#4| (QUOTE -4177)) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#4| (QUOTE (-123))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-3807 (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073))))))) +(-224 |n| R S) +((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) +((-4177 -3807 (-4035 (|has| |#3| (-961)) (|has| |#3| (-207))) (-4035 (|has| |#3| (-961)) (|has| |#3| (-822 (-1073)))) (|has| |#3| (-6 -4177)) (-4035 (|has| |#3| (-961)) (|has| |#3| (-579 (-517))))) (-4174 |has| |#3| (-961)) (-4175 |has| |#3| (-961)) ((-4182 "*") |has| |#3| (-156)) (-4180 . T)) +((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3807 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-207))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3807 (|HasCategory| |#3| (QUOTE (-961))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003)))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003))))) (-3807 (|HasAttribute| |#3| (QUOTE -4177)) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3807 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))))) +(-225 A R S V E) +((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -(-226 |Ex|) -((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) +((|HasCategory| |#2| (QUOTE (-207)))) +(-226 R S V E) +((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) NIL +(-227 S) +((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) +((-4180 . T) (-4181 . T) (-3353 . T)) NIL -(-227) +(-228) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-228 R |Ex|) +(-229 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-229) +(-230) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-230 R) +(-231 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-231) -((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) -NIL -NIL -(-232) -((|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) +(-232 |Ex|) +((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL (-233) -((|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) -NIL -NIL -(-234 S) -((|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) +((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-235 R S V) +(-234) +((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#3| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#3| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#3| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#3| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-236 A S) -((|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL +(-235 S) +((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL -(-237 S) -((|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL +(-236) +((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL -(-238) -((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL +(-237 R S V) +((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#3| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-238 A S) +((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL -(-239) NIL +(-239 S) +((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL (-240) -NIL +((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL (-241) -NIL +((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL (-242) -NIL +((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL (-243) -NIL +((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL (-244) -NIL +((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL (-245) -NIL +((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL (-246) +((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) +NIL +NIL +(-247) +((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) +NIL +NIL +(-248) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-247 R -2958) +(-249 R -1696) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-248 R -2958) +(-250 R -1696) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-249 |Coef| UTS ULS) +(-251 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-331)))) -(-250 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-333)))) +(-252 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-331)))) -(-251 A S) -((|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) +((|HasCategory| |#1| (QUOTE (-333)))) +(-253 A S) +((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001)))) -(-252 S) -((|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4168 . T) (-2951 . T)) +((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003)))) +(-254 S) +((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) +((-4181 . T) (-3353 . T)) NIL -(-253 S) +(-255 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-254) +(-256) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-255 |Coef| UTS) +(-257 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-256 S |Index|) -((|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) +(-258 S |Index|) +((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-257 S |Dom| |Im|) -((|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) +(-259 S |Dom| |Im|) +((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4168))) -(-258 |Dom| |Im|) -((|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) +((|HasAttribute| |#1| (QUOTE -4181))) +(-260 |Dom| |Im|) +((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-259 S R |Mod| -3220 -3216 |exactQuo|) +(-261 S R |Mod| -3271 -3237 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-260) +(-262) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4160 . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-261 R) +(-263 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-262 S) -((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4164 -1405 (|has| |#1| (-959)) (|has| |#1| (-440))) (-4161 |has| |#1| (-959)) (-4162 |has| |#1| (-959))) -((|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-267))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-440)))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-657))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-657)))) (|HasCategory| |#1| (QUOTE (-1012))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-21))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-657)))) (|HasCategory| |#1| (QUOTE (-25))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-1001))))) -(-263 S R) +(-264 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-264 |Key| |Entry|) +(-265 S) +((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) +((-4177 -3807 (|has| |#1| (-961)) (|has| |#1| (-442))) (-4174 |has| |#1| (-961)) (-4175 |has| |#1| (-961))) +((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-273))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442)))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-659))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-1015))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-25))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1003))))) +(-266 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001))))) -(-265) +((-4180 . T) (-4181 . T)) +((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))))) +(-267) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-266 S) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) +(-268 -1696 S) +((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) -(-267) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL +(-269 E -1696) +((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL -(-268 -2958 S) -((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL +(-270 A B) +((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL -(-269 E -2958) -((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL +(-271) +((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL -(-270) -((|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL +(-272 S) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -(-271 A B) -((|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) +((|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-961)))) +(-273) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-272) -((|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) +(-274 R1) +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-273 R1) -((|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) +(-275 R1 R2) +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-274 R1 R2) -((|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping \\spad{f:R1} \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) +(-276) +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-275 S) +(-277 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-276) +(-278) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-277 S R) +(-279 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-278 R) +(-280 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-279 -2958) +(-281 -1696) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-280) +(-282) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-281 R FE |var| |cen|) +(-283 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-933))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-750))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-1046))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-206))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -1136) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -278) (LIST (QUOTE -1136) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -256) (LIST (QUOTE -1136) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1136) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-276))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-500))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-777))) (-1405 (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-750))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-777)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-830)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-132))))) -(-282 R) -((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4164 -1405 (-1280 (|has| |#1| (-959)) (|has| |#1| (-577 (-501)))) (-12 (|has| |#1| (-508)) (-1405 (-1280 (|has| |#1| (-959)) (|has| |#1| (-577 (-501)))) (|has| |#1| (-959)) (|has| |#1| (-440)))) (|has| |#1| (-959)) (|has| |#1| (-440))) (-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) ((-4169 "*") |has| |#1| (-508)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-508)) (-4159 |has| |#1| (-508))) -((|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-959))) (-1405 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-959)))) (-12 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-21))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-21)))) (|HasCategory| |#1| (QUOTE (-25))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-25)))) (|HasCategory| |#1| (QUOTE (-1012))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-1012)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-1012)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))))) (|HasCategory| $ (QUOTE (-959))) (|HasCategory| $ (LIST (QUOTE -950) (QUOTE (-501))))) -(-283 R S) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-1049))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-207))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -258) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-278))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-502))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-779))) (-3807 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-779)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| $ (QUOTE (-132)))) (-3807 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| $ (QUOTE (-132)))))) +(-284 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-284 R FE) +(-285 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-285 R -2958) +(-286 R) +((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) +((-4177 -3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-12 (|has| |#1| (-509)) (-3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (|has| |#1| (-961)) (|has| |#1| (-442)))) (|has| |#1| (-961)) (|has| |#1| (-442))) (-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) ((-4182 "*") |has| |#1| (-509)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-509)) (-4172 |has| |#1| (-509))) +((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-961))) (-3807 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-1015))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-1015)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1015)))) (-3807 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517))))) +(-287 R -1696) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-286) +(-288) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-287 FE |var| |cen|) +(-289 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|))))) (|HasCategory| (-375 (-501)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|))))))) -(-288 M) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|))))))) +(-290 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-289 E OV R P) +(-291 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-290 S) +(-292 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4162 . T) (-4161 . T)) -((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| (-501) (QUOTE (-722)))) -(-291 S E) -((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\spad{\\^}\\spad{e1} ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) +((-4175 . T) (-4174 . T)) +((|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-724)))) +(-293 S E) +((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-292 S) +(-294 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-701) (QUOTE (-722)))) -(-293 S R E) +((|HasCategory| (-703) (QUOTE (-724)))) +(-295 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156)))) -(-294 R E) +((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156)))) +(-296 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T)) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-295 S) +(-297 S) +((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))) +(-298 S -1696) +((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-296 S -2958) -((|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) +((|HasCategory| |#2| (QUOTE (-338)))) +(-299 -1696) +((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -((|HasCategory| |#2| (QUOTE (-336)))) -(-297 -2958) -((|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -NIL -(-298) +(-300) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) NIL NIL -(-299 E) +(-301 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-300) -((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables \\spad{I1},{} \\spad{I2},{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} \\spad{I1} and \\spad{I2}")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) -NIL -NIL -(-301 -2958 UP UPUP R) -((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) +(-302) +((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-302 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-303 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-303 S -2958 UP UPUP R) +(-304 S -1696 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-304 -2958 UP UPUP R) +(-305 -1696 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-305 S R) +(-306 -1696 UP UPUP R) +((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) +NIL +NIL +(-307 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -256) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-306 R) +((|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-308 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-307 |basicSymbols| |subscriptedSymbols| R) -((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-346)))) (|HasCategory| $ (QUOTE (-959))) (|HasCategory| $ (LIST (QUOTE -950) (QUOTE (-501))))) -(-308 |p| |n|) -((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-826 |#1|) (QUOTE (-134))) (|HasCategory| (-826 |#1|) (QUOTE (-336))) (|HasCategory| (-826 |#1|) (QUOTE (-132))) (-1405 (|HasCategory| (-826 |#1|) (QUOTE (-132))) (|HasCategory| (-826 |#1|) (QUOTE (-336))))) -(-309 S -2958 UP UPUP) -((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) +(-309 |basicSymbols| |subscriptedSymbols| R) +((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) +((-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-349)))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517))))) +(-310 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL -((|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-331)))) -(-310 -2958 UP UPUP) -((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4160 |has| (-375 |#2|) (-331)) (-4165 |has| (-375 |#2|) (-331)) (-4159 |has| (-375 |#2|) (-331)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) NIL -(-311 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) -((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) +(-311 S -1696 UP UPUP) +((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL +((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-333)))) +(-312 -1696 UP UPUP) +((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) +((-4173 |has| (-377 |#2|) (-333)) (-4178 |has| (-377 |#2|) (-333)) (-4172 |has| (-377 |#2|) (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-312 |p| |extdeg|) +(-313 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-826 |#1|) (QUOTE (-134))) (|HasCategory| (-826 |#1|) (QUOTE (-336))) (|HasCategory| (-826 |#1|) (QUOTE (-132))) (-1405 (|HasCategory| (-826 |#1|) (QUOTE (-132))) (|HasCategory| (-826 |#1|) (QUOTE (-336))))) -(-313 GF |defpol|) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338))))) +(-314 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336))))) -(-314 GF |extdeg|) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) +(-315 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336))))) -(-315 GF) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) +(-316 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-316 F1 GF F2) +(-317 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-317 S) -((|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) +(-318 S) +((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-318) -((|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +(-319) +((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-319 R UP -2958) +(-320 R UP -1696) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-320 |p| |extdeg|) +(-321 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-826 |#1|) (QUOTE (-134))) (|HasCategory| (-826 |#1|) (QUOTE (-336))) (|HasCategory| (-826 |#1|) (QUOTE (-132))) (-1405 (|HasCategory| (-826 |#1|) (QUOTE (-132))) (|HasCategory| (-826 |#1|) (QUOTE (-336))))) -(-321 GF |uni|) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338))))) +(-322 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336))))) -(-322 GF |extdeg|) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) +(-323 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336))))) -(-323 GF |defpol|) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) +(-324 |p| |n|) +((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338))))) +(-325 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336))))) -(-324 GF) -((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) +(-326 -1696 GF) +((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-325 -2958 GF) -((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) +(-327 GF) +((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-326 -2958 FP FPP) -((|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) +(-328 -1696 FP FPP) +((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-327 GF |n|) +(-329 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336))))) -(-328 R |ls|) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) +(-330 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-329 S) +(-331 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4164 . T)) +((-4177 . T)) NIL -(-330 S) +(-332 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-331) +(-333) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-332 S) -((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) +(-334 |Name| S) +((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-333 |Name| S) -((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) +(-335 S) +((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-334 S R) +(-336 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-508)))) -(-335 R) +((|HasCategory| |#2| (QUOTE (-509)))) +(-337 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4164 |has| |#1| (-508)) (-4162 . T) (-4161 . T)) +((-4177 |has| |#1| (-509)) (-4175 . T) (-4174 . T)) NIL -(-336) +(-338) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-337 S R UP) +(-339 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-331)))) -(-338 R UP) +((|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-333)))) +(-340 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4161 . T) (-4162 . T) (-4164 . T)) +((-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-339 A S) -((|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) +(-341 S A R B) +((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL -((|HasAttribute| |#1| (QUOTE -4168)) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001)))) -(-340 S) -((|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4167 . T) (-2951 . T)) NIL -(-341 S A R B) -((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) +(-342 A S) +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL +((|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003)))) +(-343 S) +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) +((-4180 . T) (-3353 . T)) NIL -(-342 |VarSet| R) +(-344 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4162 . T) (-4161 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4175 . T) (-4174 . T)) NIL -(-343 S V) +(-345 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-344 S R) +(-346 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) -(-345 R) +((|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) +(-347 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4164 . T)) +((-4177 . T)) NIL -(-346) -((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4150 . T) (-4158 . T) (-2391 . T) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +(-348 |Par|) +((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL -(-347 |Par|) -((|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL +(-349) +((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) +((-4163 . T) (-4171 . T) (-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-348 |Par|) -((|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) +(-350 |Par|) +((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-349 R S) -((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4162 . T) (-4161 . T)) -((|HasCategory| |#1| (QUOTE (-156)))) -(-350 R S) +(-351 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4162 . T) (-4161 . T)) +((-4175 . T) (-4174 . T)) ((|HasCategory| |#1| (QUOTE (-156)))) -(-351) -((|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2951 . T)) -NIL (-352 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4162 . T) (-4161 . T)) +((-4175 . T) (-4174 . T)) NIL (-353) -((|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2951 . T)) +((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) +((-3353 . T)) NIL -(-354 S) -((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) +(-354) +((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) +((-3353 . T)) NIL -((|HasCategory| |#1| (QUOTE (-777)))) -(-355) +(-355 R S) +((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) +((-4175 . T) (-4174 . T)) +((|HasCategory| |#1| (QUOTE (-156)))) +(-356 S) +((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((|HasCategory| |#1| (QUOTE (-779)))) +(-357) +((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-356) +(-358) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-357) +(-359) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) NIL NIL -(-358 |n| |class| R) +(-360 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4162 . T) (-4161 . T)) +((-4175 . T) (-4174 . T)) NIL -(-359) +(-361) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-360 -2958 UP UPUP R) +(-362 -1696 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-361) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) +(-363 S) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-362 S) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) +(-364) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL -(-363) -((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) +(-365) +((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) +((-3353 . T)) NIL +(-366) +((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) +((-3353 . T)) NIL -(-364) -((|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-2951 . T)) +(-367) +((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL -(-365) -((|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2951 . T)) NIL -(-366 -3986 |returnType| |arguments| |symbols|) +(-368 -1207 |returnType| |arguments| |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-367 -2958 UP) -((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) +(-369 -1696 UP) +((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-368 R) +(-370 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-2951 . T)) +((-3353 . T)) NIL -(-369 S) -((|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) +(-371 S) +((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-370) -((|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +(-372) +((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-371 S) -((|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) +(-373 S) +((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4150)) (|HasAttribute| |#1| (QUOTE -4158))) -(-372) -((|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2391 . T) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((|HasAttribute| |#1| (QUOTE -4163)) (|HasAttribute| |#1| (QUOTE -4171))) +(-374) +((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) +((-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-373 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -278) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -256) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -256) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-1108))))) -(-374 R S) +(-375 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-375 S) -((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4154 -12 (|has| |#1| (-6 -4165)) (|has| |#1| (-419)) (|has| |#1| (-6 -4154))) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -256) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-500))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751)))) (-12 (|HasAttribute| |#1| (QUOTE -4165)) (|HasAttribute| |#1| (QUOTE -4154)) (|HasCategory| |#1| (QUOTE (-419)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751))))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-777)))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751))))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751))))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))))) (-376 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-377 S R UP) +(-377 S) +((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) +((-4167 -12 (|has| |#1| (-6 -4178)) (|has| |#1| (-421)) (|has| |#1| (-6 -4167))) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-502))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasAttribute| |#1| (QUOTE -4178)) (|HasAttribute| |#1| (QUOTE -4167)) (|HasCategory| |#1| (QUOTE (-421)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-378 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-378 R UP) +(-379 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4161 . T) (-4162 . T) (-4164 . T)) +((-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-379 A S) +(-380 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) -(-380 S) +((|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) +(-381 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-381 R -2958 UP A) -((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4164 . T)) -NIL (-382 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-383 R -2958 UP A |ibasis|) +(-383 R -1696 UP A) +((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) +((-4177 . T)) +NIL +(-384 R -1696 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -950) (|devaluate| |#2|)))) -(-384 AR R AS S) -((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) +((|HasCategory| |#4| (LIST (QUOTE -952) (|devaluate| |#2|)))) +(-385 AR R AS S) +((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-385 S R) +(-386 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-331)))) -(-386 R) +((|HasCategory| |#2| (QUOTE (-333)))) +(-387 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4164 |has| |#1| (-508)) (-4162 . T) (-4161 . T)) +((-4177 |has| |#1| (-509)) (-4175 . T) (-4174 . T)) NIL -(-387 R) +(-388 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -258) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-1112))))) +(-389 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-388 S R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +(-390 R FE |x| |cen|) +((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-440))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) -(-389 R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4164 -1405 (|has| |#1| (-959)) (|has| |#1| (-440))) (-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) ((-4169 "*") |has| |#1| (-508)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-508)) (-4159 |has| |#1| (-508)) (-2951 . T)) NIL -(-390 R A S B) +(-391 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-391 R FE |x| |cen|) -((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) -NIL -NIL (-392 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-393 A S) -((|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) +(-393 S A R B) +((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL -((|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-336)))) -(-394 S) -((|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4167 . T) (-4157 . T) (-4168 . T) (-2951 . T)) NIL -(-395 S A R B) -((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) +(-394 A S) +((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL +((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338)))) +(-395 S) +((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) +((-4180 . T) (-4170 . T) (-4181 . T) (-3353 . T)) NIL -(-396 R -2958) +(-396 R -1696) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-397 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4154 -12 (|has| |#1| (-6 -4154)) (|has| |#2| (-6 -4154))) (-4161 . T) (-4162 . T) (-4164 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4154)) (|HasAttribute| |#2| (QUOTE -4154)))) -(-398 R -2958) +((-4167 -12 (|has| |#1| (-6 -4167)) (|has| |#2| (-6 -4167))) (-4174 . T) (-4175 . T) (-4177 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4167)) (|HasAttribute| |#2| (QUOTE -4167)))) +(-398 R -1696) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-399 R -2958) +(-399 S R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +NIL +((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) +(-400 R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +((-4177 -3807 (|has| |#1| (-961)) (|has| |#1| (-442))) (-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) ((-4182 "*") |has| |#1| (-509)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-509)) (-4172 |has| |#1| (-509)) (-3353 . T)) +NIL +(-401 R -1696) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-400 R -2958) -((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) +(-402 R -1696) +((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-401 R -2958) +(-403 R -1696) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-402) +(-404) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-403 R -2958 UP) +(-405 R -1696 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-47))))) -(-404) -((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) +((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-47))))) +(-406) +((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-405) -((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) +(-407) +((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL -(-406 |f|) +(-408 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-407) -((|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2951 . T)) +(-409) +((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) +((-3353 . T)) NIL -(-408) -((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2951 . T)) +(-410) +((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) +((-3353 . T)) NIL -(-409 UP) +(-411 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-410 R UP -2958) +(-412 R UP -1696) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-411 R UP) +(-413 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-412 R) +(-414 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-372)))) -(-413) +((|HasCategory| |#1| (QUOTE (-374)))) +(-415) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-414 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) -NIL -((|HasCategory| |#1| (QUOTE (-331)))) -(-415 |Dom| |Expon| |VarSet| |Dpol|) +(-416 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-416 |Dom| |Expon| |VarSet| |Dpol|) +(-417 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-417 |Dom| |Expon| |VarSet| |Dpol|) +(-418 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-418 S) +(-419 |Dom| |Expon| |VarSet| |Dpol|) +((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) +NIL +((|HasCategory| |#1| (QUOTE (-333)))) +(-420 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-419) +(-421) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-420 R |n| |ls| |gamma|) +(-422 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4164 |has| (-375 (-866 |#1|)) (-508)) (-4162 . T) (-4161 . T)) -((|HasCategory| (-375 (-866 |#1|)) (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| (-375 (-866 |#1|)) (QUOTE (-508)))) -(-421 |vl| R E) +((-4177 |has| (-377 (-874 |#1|)) (-509)) (-4175 . T) (-4174 . T)) +((|HasCategory| (-377 (-874 |#1|)) (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-377 (-874 |#1|)) (QUOTE (-509)))) +(-423 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4169 "*") |has| |#2| (-156)) (-4160 |has| |#2| (-508)) (-4165 |has| |#2| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-422 R BP) +(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132))))) +(-424 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-423 OV E S R P) +(-425 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-424 E OV R P) +(-426 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-425 R) +(-427 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-426 R FE) +(-428 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-427 RP TP) +(-429 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-428 |vl| R IS E |ff| P) +(-430 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4162 . T) (-4161 . T)) +((-4175 . T) (-4174 . T)) NIL -(-429 E V R P Q) +(-431 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-430 R E |VarSet| P) +(-432 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#4| (QUOTE (-1001))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508)))) -(-431 S R E) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509)))) +(-433 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-432 R E) +(-434 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-433) -((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) +(-435) +((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-434) +(-436) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-435) -((|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) +(-437) +((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-436 S R E) +(-438 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-437 R E) +(-439 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-438 |lv| -2958 R) +(-440 |lv| -1696 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-439 S) +(-441 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-440) +(-442) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4164 . T)) +((-4177 . T)) NIL -(-441 |Coef| |var| |cen|) +(-443 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|))))) (|HasCategory| (-375 (-501)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|))))))) -(-442 |Key| |Entry| |Tbl| |dent|) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|))))))) +(-444 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4168 . T)) -((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001))))) -(-443 R E V P) +((-4181 . T)) +((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003))))) +(-445 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#4| (QUOTE (-1001))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#3| (QUOTE (-336)))) -(-444) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338)))) +(-446) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-445 |Key| |Entry| |hashfn|) +(-447 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001))))) -(-446) +((-4180 . T) (-4181 . T)) +((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))))) +(-448) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-447 |vl| R) -((|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4169 "*") |has| |#2| (-156)) (-4160 |has| |#2| (-508)) (-4165 |has| |#2| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-448 -2742 S) +(-449 |vl| R) +((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) +(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132))))) +(-450 -2806 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4161 |has| |#2| (-959)) (-4162 |has| |#2| (-959)) (-4164 |has| |#2| (-6 -4164)) ((-4169 "*") |has| |#2| (-156)) (-4167 . T)) -((|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (-1405 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775)))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-657))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasAttribute| |#2| (QUOTE -4164)) (|HasCategory| |#2| (QUOTE (-123))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-25))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))))) -(-449 S) -((|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) -(-450 -2958 UP UPUP R) +((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T)) +((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3807 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4177)) (|HasCategory| |#2| (QUOTE (-123))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))))) +(-451 S) +((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) +(-452 -1696 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-451 BP) +(-453 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-452) +(-454) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-501) (QUOTE (-830))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-501) (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-134))) (|HasCategory| (-501) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-501) (QUOTE (-933))) (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-1046))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-501) (QUOTE (-206))) (|HasCategory| (-501) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-501) (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -278) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -256) (QUOTE (-501)) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-276))) (|HasCategory| (-501) (QUOTE (-500))) (|HasCategory| (-501) (QUOTE (-777))) (-1405 (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (QUOTE (-777)))) (|HasCategory| (-501) (LIST (QUOTE -577) (QUOTE (-501)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (|HasCategory| (-501) (QUOTE (-132))))) -(-453 A S) -((|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132))))) +(-455 A S) +((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4167)) (|HasAttribute| |#1| (QUOTE -4168)) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) -(-454 S) -((|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-2951 . T)) +((|HasAttribute| |#1| (QUOTE -4180)) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) +(-456 S) +((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) +((-3353 . T)) NIL -(-455 S) +(-457 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-456) +(-458) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-457 -2958 UP |AlExt| |AlPol|) -((|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) +(-459 -1696 UP |AlExt| |AlPol|) +((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-458) +(-460) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| $ (QUOTE (-959))) (|HasCategory| $ (LIST (QUOTE -950) (QUOTE (-501))))) -(-459 S |mn|) -((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-460 R |mnRow| |mnCol|) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517))))) +(-461 S |mn|) +((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))) +(-462 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) -(-461 K R UP) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) +(-463 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-462 R UP -2958) +(-464 R UP -1696) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-463 |mn|) +(-465 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4168 . T) (-4167 . T)) -((|HasCategory| (-107) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-107) (QUOTE (-777))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| (-107) (QUOTE (-1001))) (-12 (|HasCategory| (-107) (LIST (QUOTE -278) (QUOTE (-107)))) (|HasCategory| (-107) (QUOTE (-1001))))) -(-464 K R UP L) +((-4181 . T) (-4180 . T)) +((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1003))) (-12 (|HasCategory| (-107) (QUOTE (-1003))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107)))))) +(-466 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-465) +(-467) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-466 R Q A B) +(-468 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-467 -2958 |Expon| |VarSet| |DPoly|) +(-469 -1696 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -556) (QUOTE (-1070))))) -(-468 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-1073))))) +(-470 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-469 A S) +(-471 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-470 A S) +(-472 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-471 A S) +(-473 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-472 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) -NIL -NIL -(-473 A S) +(-474 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-474 A S) +(-475 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-475 S A B) +(-476 A S) +((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) +NIL +NIL +(-477 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-476 A B) +(-478 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-477 S E |un|) +(-479 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-722)))) -(-478 S |mn|) -((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified \\spad{SMW} \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-479 |p| |n|) +((|HasCategory| |#2| (QUOTE (-724)))) +(-480 S |mn|) +((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))) +(-481 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-528 |#1|) (QUOTE (-134))) (|HasCategory| (-528 |#1|) (QUOTE (-336))) (|HasCategory| (-528 |#1|) (QUOTE (-132))) (-1405 (|HasCategory| (-528 |#1|) (QUOTE (-132))) (|HasCategory| (-528 |#1|) (QUOTE (-336))))) -(-480 R |mnRow| |mnCol| |Row| |Col|) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-530 |#1|) (QUOTE (-134))) (|HasCategory| (-530 |#1|) (QUOTE (-338))) (|HasCategory| (-530 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-530 |#1|) (QUOTE (-132))) (|HasCategory| (-530 |#1|) (QUOTE (-338))))) +(-482 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) -(-481 S |mn|) -NIL -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-482 R |Row| |Col| M) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) +(-483 S |mn|) +((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) +(-484 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4168))) -(-483 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4181))) +(-485 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4168))) -(-484 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4181))) +(-486 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-508))) (|HasAttribute| |#1| (QUOTE (-4169 "*"))) (|HasCategory| |#1| (QUOTE (-331)))) -(-485 GF) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4182 "*"))) (|HasCategory| |#1| (QUOTE (-333)))) +(-487 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-486 R) +(-488 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-487 |Varset|) +(-489 |Varset|) ((|constructor| (NIL "converts entire exponents to OutputForm"))) NIL NIL -(-488 K -2958 |Par|) -((|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) +(-490 K -1696 |Par|) +((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-489) +(-491) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-490) -((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) +(-492 R) +((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-491 R) -((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) +(-493) +((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-492 |Coef| UTS) +(-494 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-493 K -2958 |Par|) -((|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) +(-495 K -1696 |Par|) +((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-494 R BP |pMod| |nextMod|) +(-496 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-495 OV E R P) -((|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) +(-497 OV E R P) +((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-496 K UP |Coef| UTS) +(-498 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-497 |Coef| UTS) +(-499 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-498 R UP) +(-500 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-499 S) +(-501 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-500) +(-502) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4165 . T) (-4166 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -NIL -(-501) -((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4149 . T) (-4155 . T) (-4159 . T) (-4154 . T) (-4165 . T) (-4166 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-502 |Key| |Entry| |addDom|) +(-503 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001))))) -(-503 R -2958) +((-4180 . T) (-4181 . T)) +((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))))) +(-504 R -1696) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-504 R0 -2958 UP UPUP R) +(-505 R0 -1696 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-505) +(-506) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-506 R) -((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category is an implementation of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2391 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +(-507 R) +((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) +((-3383 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-507 S) +(-508 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-508) +(-509) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-509 R -2958) +(-510 R -1696) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-510 I) +(-511 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-511) -((|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) +(-512) +((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-512 R -2958 L) +(-513 R -1696 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|)))) -(-513) -((|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(u1,{}m1,{}u2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = u1 mod m1} and \\spad{w = u2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) +(-514) +((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-514 -2958 UP UPUP R) +(-515 -1696 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-515 -2958 UP) +(-516 -1696 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-516) +(-517) +((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) +((-4162 . T) (-4168 . T) (-4172 . T) (-4167 . T) (-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +NIL +(-518) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-517 R -2958 L) +(-519 R -1696 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|)))) -(-518 R -2958) +(-520 R -1696) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-568))))) -(-519 -2958 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-569))))) +(-521 -1696 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-520 S) +(-522 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-521 -2958) +(-523 -1696) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-522 R) +(-524 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2391 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-3383 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-523) +(-525) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-524 R -2958) +(-526 R -1696) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-254)))) (|HasCategory| |#1| (QUOTE (-508)))) -(-525 -2958 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-256))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073))))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-256)))) (|HasCategory| |#1| (QUOTE (-509)))) +(-527 -1696 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-526 R -2958) +(-528 R -1696) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-527 |p| |unBalanced?|) +(-529 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-528 |p|) +(-530 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-336)))) -(-529) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338)))) +(-531) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-530 -2958) -((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4162 . T) (-4161 . T)) -((|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-1070))))) -(-531 E -2958) -((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) +(-532 R -1696) +((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-532 R -2958) -((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) +(-533 E -1696) +((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-533 I) +(-534 -1696) +((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) +((-4175 . T) (-4174 . T)) +((|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-1073))))) +(-535 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-534 GF) +(-536 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-535 R) +(-537 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-134)))) -(-536) +(-538) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-537 R E V P TS) +(-539 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-538 |mn|) -((|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4168 . T) (-4167 . T)) -((|HasCategory| (-131) (QUOTE (-1001))) (|HasCategory| (-131) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-131) (QUOTE (-777))) (-1405 (|HasCategory| (-131) (QUOTE (-777))) (|HasCategory| (-131) (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-777)))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001)))))) -(-539 E V R P) +(-540 |mn|) +((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) +((-4181 . T) (-4180 . T)) +((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-3807 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003)))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3807 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))))) +(-541 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-540 |Coef|) +(-542 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|))))) (|HasCategory| (-501) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070))))))) -(-541 |Coef|) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073))))))) +(-543 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4162 |has| |#1| (-508)) (-4161 |has| |#1| (-508)) ((-4169 "*") |has| |#1| (-508)) (-4160 |has| |#1| (-508)) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-508)))) -(-542 A B) +((-4175 |has| |#1| (-509)) (-4174 |has| |#1| (-509)) ((-4182 "*") |has| |#1| (-509)) (-4173 |has| |#1| (-509)) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-509)))) +(-544 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-543 A B C) +(-545 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-544 R -2958 FG) +(-546 R -1696 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-545 S) +(-547 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-546 R |mn|) +(-548 R |mn|) +((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))) +(-549 S |Index| |Entry|) +((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#1| (QUOTE (-959))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-959)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-547 S |Index| |Entry|) -((|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) +((|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-779))) (|HasAttribute| |#1| (QUOTE -4180)) (|HasCategory| |#3| (QUOTE (-1003)))) +(-550 |Index| |Entry|) +((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) +((-3353 . T)) NIL -((|HasAttribute| |#1| (QUOTE -4168)) (|HasCategory| |#2| (QUOTE (-777))) (|HasAttribute| |#1| (QUOTE -4167)) (|HasCategory| |#3| (QUOTE (-1001)))) -(-548 |Index| |Entry|) -((|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-2951 . T)) -NIL -(-549 R A) +(-551 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4164 -1405 (-1280 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))) (-4162 . T) (-4161 . T)) -((|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|)))))) -(-550 |Entry|) +((-4177 -3807 (-4035 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4175 . T) (-4174 . T)) +((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))))) +(-552 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-1053) (QUOTE (-777))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (QUOTE (-1053))) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (QUOTE (-1001))))) -(-551 S |Key| |Entry|) -((|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -NIL +((-4180 . T) (-4181 . T)) +((|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| (-1056) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1056))) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#1|))))))) +(-553 S |Key| |Entry|) +((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL -(-552 |Key| |Entry|) -((|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4168 . T) (-2951 . T)) NIL -(-553 S) -((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) +(-554 |Key| |Entry|) +((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) +((-4181 . T) (-3353 . T)) NIL -((|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) -(-554 R S) +(-555 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-555 S) +(-556 S) +((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) +NIL +((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) +(-557 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-556 S) +(-558 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-557 -2958 UP) +(-559 -1696 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-558 A R S) -((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-775)))) -(-559 S R) +(-560 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-560 R) +(-561 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4164 . T)) +((-4177 . T)) NIL -(-561 R -2958) +(-562 A R S) +((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-777)))) +(-563 R -1696) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-562 R UP) +(-564 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4162 . T) (-4161 . T) ((-4169 "*") . T) (-4160 . T) (-4164 . T)) -((|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501))))) -(-563 R E V P TS ST) +((-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4173 . T) (-4177 . T)) +((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) +(-565 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-564 OV E Z P) +(-566 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-565 |VarSet| R |Order|) +(-567 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4164 . T)) +((-4177 . T)) NIL -(-566 R |ls|) +(-568 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-567 R -2958) -((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) +(-569) +((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-568) -((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) +(-570 R -1696) +((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-569 |lv| -2958) +(-571 |lv| -1696) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-570) +(-572) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4168 . T)) -((|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-1053) (QUOTE (-777))) (|HasCategory| (-50) (QUOTE (-1001))) (-12 (|HasCategory| (-50) (LIST (QUOTE -278) (QUOTE (-50)))) (|HasCategory| (-50) (QUOTE (-1001)))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (QUOTE (-1053))) (LIST (QUOTE |:|) (QUOTE -2922) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (QUOTE (-1001)))) (-1405 (|HasCategory| (-50) (QUOTE (-1001))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (QUOTE (-1001))))) -(-571 R A) -((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4164 -1405 (-1280 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))) (-4162 . T) (-4161 . T)) -((|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|)))))) -(-572 S R) +((-4181 . T)) +((|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1056) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1056))) (LIST (QUOTE |:|) (QUOTE -1257) (QUOTE (-51))))))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003))))) +(-573 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-331)))) -(-573 R) +((|HasCategory| |#2| (QUOTE (-333)))) +(-574 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4162 . T) (-4161 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4175 . T) (-4174 . T)) NIL -(-574 R FE) +(-575 R A) +((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) +((-4177 -3807 (-4035 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4175 . T) (-4174 . T)) +((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))))) +(-576 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-575 R) +(-577 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-576 S R) +(-578 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-331))) (-3031 (|HasCategory| |#1| (QUOTE (-331))))) -(-577 R) +((|HasCategory| |#1| (QUOTE (-333))) (-2630 (|HasCategory| |#1| (QUOTE (-333))))) +(-579 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4164 . T)) +((-4177 . T)) NIL -(-578 S) -((|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-579 A B) -((|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) +(-580 A B) +((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-580 A B) -((|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) +(-581 A B) +((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-581 A B C) -((|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) +(-582 A B C) +((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-582 S) +(-583 S) +((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) +(-584 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) -(-583 R) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) +(-585 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-584 S E |un|) +(-586 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-585 A S) -((|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) +(-587 A S) +((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4168))) -(-586 S) -((|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-2951 . T)) +((|HasAttribute| |#1| (QUOTE -4181))) +(-588 S) +((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) +((-3353 . T)) NIL -(-587 M R S) -((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4162 . T) (-4161 . T)) -((|HasCategory| |#1| (QUOTE (-721)))) -(-588 R -2958 L) +(-589 R -1696 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-589 A -1331) -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-331)))) (-590 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-331)))) +((-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333)))) (-591 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-331)))) +((-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333)))) (-592 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-331)))) +((|HasCategory| |#2| (QUOTE (-333)))) (-593 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4161 . T) (-4162 . T) (-4164 . T)) +((-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-594 -2958 UP) +(-594 -1696 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-595 A L) +(-595 A -2252) +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) +((-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333)))) +(-596 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-596 S) +(-597 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-597) +(-598) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-598 R) +(-599 M R S) +((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4175 . T) (-4174 . T)) +((|HasCategory| |#1| (QUOTE (-723)))) +(-600 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-599 |VarSet| R) +(-601 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4162 . T) (-4161 . T)) -((|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-156)))) -(-600 A S) -((|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4175 . T) (-4174 . T)) +((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-156)))) +(-602 A S) +((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-601 S) -((|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4168 . T) (-4167 . T) (-2951 . T)) +(-603 S) +((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL -(-602 -2958 |Row| |Col| M) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-604 -1696) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-603 -2958) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-605 -1696 |Row| |Col| M) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-604 R E OV P) +(-606 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-605 |n| R) +(-607 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4164 . T) (-4167 . T) (-4161 . T) (-4162 . T)) -((|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (|HasAttribute| |#2| (QUOTE (-4169 "*"))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-508))) (-1405 (|HasAttribute| |#2| (QUOTE (-4169 "*"))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001))))) (|HasCategory| |#2| (QUOTE (-156)))) -(-606 |VarSet|) -((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) +((-4177 . T) (-4180 . T) (-4174 . T) (-4175 . T)) +((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))) (-3807 (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#2| (QUOTE (-156)))) +(-608 |VarSet|) +((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-607 A S) +(-609 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-608 S) +(-610 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-2951 . T)) +((-3353 . T)) NIL -(-609 R) +(-611 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-959))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-959)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-610 |VarSet|) +((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))) +(-612 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-611 A) +(-613 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-612 A C) +(-614 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-613 A B C) +(-615 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-614 A) +(-616 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-615 A C) +(-617 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-616 A B C) +(-618 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-617 S R |Row| |Col|) -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then \\spad{x(i,{}j)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i,{}j)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -NIL -((|HasAttribute| |#2| (QUOTE (-4169 "*"))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-508)))) -(-618 R |Row| |Col|) -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then \\spad{x(i,{}j)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i,{}j)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4167 . T) (-4168 . T) (-2951 . T)) -NIL (-619 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-620 R |Row| |Col| M) +(-620 S R |Row| |Col|) +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then \\spad{x(i,{}j)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i,{}j)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) +NIL +((|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509)))) +(-621 R |Row| |Col|) +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then \\spad{x(i,{}j)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i,{}j)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) +((-4180 . T) (-4181 . T) (-3353 . T)) +NIL +(-622 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-508)))) -(-621 R) +((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509)))) +(-623 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-508))) (|HasAttribute| |#1| (QUOTE (-4169 "*"))) (|HasCategory| |#1| (QUOTE (-331))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-622 R) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4182 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))) +(-624 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-623 S -2958 FLAF FLAS) -((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row \\spad{ku+1},{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) +(-625 S -1696 FLAF FLAS) +((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-624 R Q) +(-626 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-625) +(-627) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4160 . T) (-4165 |has| (-630) (-331)) (-4159 |has| (-630) (-331)) (-1976 . T) (-4166 |has| (-630) (-6 -4166)) (-4163 |has| (-630) (-6 -4163)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-630) (QUOTE (-134))) (|HasCategory| (-630) (QUOTE (-132))) (|HasCategory| (-630) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-630) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-630) (QUOTE (-336))) (|HasCategory| (-630) (QUOTE (-331))) (|HasCategory| (-630) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-630) (QUOTE (-206))) (|HasCategory| (-630) (QUOTE (-318))) (-1405 (|HasCategory| (-630) (QUOTE (-331))) (|HasCategory| (-630) (QUOTE (-318)))) (|HasCategory| (-630) (LIST (QUOTE -256) (QUOTE (-630)) (QUOTE (-630)))) (|HasCategory| (-630) (LIST (QUOTE -278) (QUOTE (-630)))) (|HasCategory| (-630) (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE (-630)))) (|HasCategory| (-630) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-630) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-630) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-630) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-630) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-630) (QUOTE (-933))) (|HasCategory| (-630) (QUOTE (-1090))) (-12 (|HasCategory| (-630) (QUOTE (-916))) (|HasCategory| (-630) (QUOTE (-1090)))) (|HasCategory| (-630) (QUOTE (-500))) (|HasCategory| (-630) (QUOTE (-967))) (-12 (|HasCategory| (-630) (QUOTE (-967))) (|HasCategory| (-630) (QUOTE (-1090)))) (-1405 (|HasCategory| (-630) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-630) (QUOTE (-331)))) (|HasCategory| (-630) (QUOTE (-276))) (-1405 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-331))) (|HasCategory| (-630) (QUOTE (-318)))) (|HasCategory| (-630) (QUOTE (-830))) (-12 (|HasCategory| (-630) (QUOTE (-206))) (|HasCategory| (-630) (QUOTE (-331)))) (-12 (|HasCategory| (-630) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-630) (QUOTE (-331)))) (|HasCategory| (-630) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-630) (QUOTE (-777))) (|HasCategory| (-630) (QUOTE (-508))) (|HasAttribute| (-630) (QUOTE -4166)) (|HasAttribute| (-630) (QUOTE -4163)) (-12 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (|HasCategory| (-630) (QUOTE (-331))) (-12 (|HasCategory| (-630) (QUOTE (-318))) (|HasCategory| (-630) (QUOTE (-830))))) (-1405 (-12 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (-12 (|HasCategory| (-630) (QUOTE (-331))) (|HasCategory| (-630) (QUOTE (-830)))) (-12 (|HasCategory| (-630) (QUOTE (-318))) (|HasCategory| (-630) (QUOTE (-830))))) (-1405 (-12 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (|HasCategory| (-630) (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (|HasCategory| (-630) (QUOTE (-508)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (|HasCategory| (-630) (QUOTE (-132)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (|HasCategory| (-630) (QUOTE (-318))))) -(-626 S) -((|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4168 . T) (-2951 . T)) +((-4173 . T) (-4178 |has| (-632) (-333)) (-4172 |has| (-632) (-333)) (-3392 . T) (-4179 |has| (-632) (-6 -4179)) (-4176 |has| (-632) (-6 -4176)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-632) (QUOTE (-134))) (|HasCategory| (-632) (QUOTE (-132))) (|HasCategory| (-632) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-338))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-319))) (-3807 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (LIST (QUOTE -258) (QUOTE (-632)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -280) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-632) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-632) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-632) (QUOTE (-937))) (|HasCategory| (-632) (QUOTE (-1094))) (-12 (|HasCategory| (-632) (QUOTE (-918))) (|HasCategory| (-632) (QUOTE (-1094)))) (|HasCategory| (-632) (QUOTE (-502))) (|HasCategory| (-632) (QUOTE (-970))) (-12 (|HasCategory| (-632) (QUOTE (-970))) (|HasCategory| (-632) (QUOTE (-1094)))) (-3807 (|HasCategory| (-632) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (QUOTE (-278))) (-3807 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (QUOTE (-831))) (-12 (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-333)))) (-12 (|HasCategory| (-632) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-779))) (|HasCategory| (-632) (QUOTE (-509))) (|HasAttribute| (-632) (QUOTE -4179)) (|HasAttribute| (-632) (QUOTE -4176)) (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-333))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-831))))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (-12 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-831)))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-831))))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-509)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-132)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-319))))) +(-628 S) +((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) +((-4181 . T) (-3353 . T)) NIL -(-627 U) +(-629 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-628) +(-630) ((|constructor| (NIL "\\indented{1}{} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-629 OV E -2958 PG) +(-631 OV E -1696 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-630) +(-632) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2391 . T) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-631 R) +(-633 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-632) +(-634) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4166 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4179 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-633 S D1 D2 I) +(-635 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-634 S) +(-636 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-635 S) +(-637 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-636 S) +(-638 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-637 S T$) -((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) +(-639 S T$) +((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-638 S -3584 I) +(-640 S -2731 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-639 E OV R P) +(-641 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-640 R) +(-642 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\^= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4161 . T) (-4162 . T) (-4164 . T)) +((-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-641 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-643 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-642 R |Mod| -3220 -3216 |exactQuo|) +(-644 R |Mod| -3271 -3237 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-643 R |Rep|) +(-645 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4163 |has| |#1| (-331)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-318))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-644 IS E |ff|) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-319))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-646 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-645 R M) -((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) (-4164 . T)) +(-647 R M) +((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) +((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T)) ((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134)))) -(-646 R |Mod| -3220 -3216 |exactQuo|) +(-648 R |Mod| -3271 -3237 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4164 . T)) +((-4177 . T)) NIL -(-647 S R) +(-649 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-648 R) +(-650 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4162 . T) (-4161 . T)) +((-4175 . T) (-4174 . T)) NIL -(-649 -2958) +(-651 -1696) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4164 . T)) +((-4177 . T)) NIL -(-650 S) +(-652 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-651) +(-653) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-652 S) +(-654 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-653) +(-655) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-654 S R UP) +(-656 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-336)))) -(-655 R UP) +((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338)))) +(-657 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4160 |has| |#1| (-331)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 |has| |#1| (-333)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-656 S) +(-658 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-657) +(-659) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-658 -2958 UP) +(-660 -1696 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-659 |VarSet| E1 E2 R S PR PS) +(-661 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-660 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-662 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-661 E OV R PPR) +(-663 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-662 |vl| R) +(-664 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4169 "*") |has| |#2| (-156)) (-4160 |has| |#2| (-508)) (-4165 |has| |#2| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-663 E OV R PRF) +(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132))))) +(-665 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-664 E OV R P) +(-666 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-665 R S M) -((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) +(-667 R S M) +((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-666 R M) +(-668 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) (-4164 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-777)))) -(-667 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4167 . T) (-4157 . T) (-4168 . T)) -((|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) -(-668 S) -NIL -((-4157 . T) (-4168 . T) (-2951 . T)) +((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-779)))) +(-669 S) +((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) +((-4170 . T) (-4181 . T) (-3353 . T)) NIL -(-669) +(-670 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-4180 . T) (-4170 . T) (-4181 . T)) +((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) +(-671) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-670 S) +(-672 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-671 |Coef| |Var|) +(-673 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4162 . T) (-4161 . T) (-4164 . T)) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4175 . T) (-4174 . T) (-4177 . T)) NIL -(-672 OV E R P) -((|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) +(-674 OV E R P) +((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-673 E OV R P) +(-675 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-674 S R) +(-676 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-675 R) +(-677 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4162 . T) (-4161 . T)) -NIL -(-676) -((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{\\spad{manpageXXc02}}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) -NIL -NIL -(-677) -((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{\\spad{manpageXXc05}}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) -NIL +((-4175 . T) (-4174 . T)) NIL (-678) -((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{\\spad{manpageXXc06}}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) +((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL (-679) -((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{\\spad{manpageXXd01}}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) +((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL (-680) -((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{\\spad{manpageXXd02}}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains \\spad{Asp12} and \\spad{Asp33} are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) +((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL (-681) -((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{\\spad{manpageXXd03}}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) +((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL (-682) -((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{\\spad{manpageXXe01}}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) +((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL (-683) -((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{\\spad{manpageXXe02}}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) +((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL (-684) -((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{\\spad{manpageXXe04}}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) +((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL (-685) -((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{\\spad{manpageXXf01}}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) +((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL (-686) -((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{\\spad{manpageXXf02}}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) +((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL (-687) -((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{\\spad{manpageXXf04}}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) +((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL (-688) -((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{\\spad{manpageXXf07}}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) +((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL (-689) -((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) +((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL (-690) -((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) +((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-691 S) -((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) +(-691) +((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL (-692) -((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) +((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL (-693 S) -((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) +((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL (-694) +((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) +NIL +NIL +(-695 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-695 |Par|) -((|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) +(-696) +((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) +NIL NIL +(-697 |Par|) +((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL -(-696 -2958) +NIL +(-698 -1696) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-697 P -2958) +(-699 P -1696) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-698 UP -2958) +(-700 UP -1696) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-699) +(-701) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-700 R) +(-702 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-701) +(-703) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4169 "*") . T)) +(((-4182 "*") . T)) NIL -(-702 R -2958) +(-704 R -1696) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-703) -((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) +(-705 S) +((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-704 S) -((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) +(-706) +((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-705 R |PolR| E |PolE|) -((|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) +(-707 R |PolR| E |PolE|) +((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-706 R E V P TS) -((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) +(-708 R E V P TS) +((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-707 -2958 |ExtF| |SUEx| |ExtP| |n|) +(-709 -1696 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-708 BP E OV R P) +(-710 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-709 |Par|) -((|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) +(-711 |Par|) +((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-710 R |VarSet|) +(-712 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070))))) (|HasCategory| |#1| (QUOTE (-331))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))) (-3031 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))) (-3031 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-3031 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-501)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))) (-3031 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-3031 (|HasCategory| |#1| (QUOTE (-500))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))) (-3031 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-501))))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-711 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4163 |has| |#1| (-331)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-712 R S) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073))))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (QUOTE (-502)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517))))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-517))))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-713 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-713 R) +(-714 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-715 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) -(-714 R E V P) -((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4168 . T) (-4167 . T) (-2951 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) +(-716 R E V P) +((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL -(-715 S) +(-717 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-508))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-777)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-156)))) -(-716) +((|HasCategory| |#1| (QUOTE (-509))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-156)))) +(-718) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-717) +(-719) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-718) -((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) +(-720) +((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-719) +(-721) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-720 |Curve|) +(-722 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-721) +(-723) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-722) +(-724) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-723) +(-725) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-724) +(-726) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-725 S R) +(-727) +((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) +NIL +NIL +(-728 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-500))) (|HasCategory| |#2| (QUOTE (-967))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-336)))) -(-726 R) +((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338)))) +(-729 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4161 . T) (-4162 . T) (-4164 . T)) +((-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-727) -((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) +(-730 -3807 R OS S) +((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-728 R) +(-731 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -256) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-967))) (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| (-910 |#1|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-910 |#1|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (|HasCategory| (-910 |#1|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (-1405 (|HasCategory| (-910 |#1|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))))) -(-729 -1405 R OS S) -((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) -NIL -NIL -(-730) +((-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3807 (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) +(-732) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-731 R -2958 L) +(-733 R -1696 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-732 R -2958) +(-734 R -1696) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-733) -((|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) +(-735) +((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-734 R -2958) +(-736 R -1696) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-735) +(-737) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-736 -2958 UP UPUP R) +(-738 -1696 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-737 -2958 UP L LQ) +(-739 -1696 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-738) +(-740) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-739 -2958 UP L LQ) +(-741 -1696 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-740 -2958 UP) +(-742 -1696 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-741 -2958 L UP A LO) +(-743 -1696 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-742 -2958 UP) +(-744 -1696 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-743 -2958 LO) +(-745 -1696 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-744 -2958 LODO) +(-746 -1696 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-745 -2742 S |f|) +(-747 -2806 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4161 |has| |#2| (-959)) (-4162 |has| |#2| (-959)) (-4164 |has| |#2| (-6 -4164)) ((-4169 "*") |has| |#2| (-156)) (-4167 . T)) -((|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (-1405 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775)))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-657))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasAttribute| |#2| (QUOTE -4164)) (|HasCategory| |#2| (QUOTE (-123))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-25))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))))) -(-746 R) -NIL -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-748 (-1070)) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-748 (-1070)) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-748 (-1070)) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-748 (-1070)) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-748 (-1070)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-747 |Kernels| R |var|) +((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T)) +((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3807 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4177)) (|HasCategory| |#2| (QUOTE (-123))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))))) +(-748 R) +((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-749 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4169 "*") |has| |#2| (-331)) (-4160 |has| |#2| (-331)) (-4165 |has| |#2| (-331)) (-4159 |has| |#2| (-331)) (-4164 . T) (-4162 . T) (-4161 . T)) -((|HasCategory| |#2| (QUOTE (-331)))) -(-748 S) +(((-4182 "*") |has| |#2| (-333)) (-4173 |has| |#2| (-333)) (-4178 |has| |#2| (-333)) (-4172 |has| |#2| (-333)) (-4177 . T) (-4175 . T) (-4174 . T)) +((|HasCategory| |#2| (QUOTE (-333)))) +(-750 S) +((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -NIL -(-749 S) +(-751 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-750) -((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -NIL -(-751) -((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) -NIL -NIL (-752) -((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) -NIL +((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL (-753) -((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) +((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL (-754) -((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) +((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL (-755) -((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) +((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL (-756) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-757 R) +(-757) +((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) +NIL +NIL +(-758 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-758 P R) +(-759 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-206)))) -(-759) +((-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-207)))) +(-760) +((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) +NIL +NIL +(-761) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-760 S) -((|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4167 . T) (-4157 . T) (-4168 . T) (-2951 . T)) +(-762 S) +((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) +((-4180 . T) (-4170 . T) (-4181 . T) (-3353 . T)) NIL -(-761) +(-763) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-762 R) -((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4164 |has| |#1| (-775))) -((|HasCategory| |#1| (QUOTE (-775))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-500))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-775)))) (|HasCategory| |#1| (QUOTE (-21))) (-1405 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-775))))) -(-763 R S) +(-764 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-764 R) +(-765 R) +((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) +((-4177 |has| |#1| (-777))) +((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3807 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777))))) +(-766 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) (-4164 . T)) +((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T)) ((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134)))) -(-765) +(-767) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-766) +(-768) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-767) +(-769) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-768) +(-770) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-769 R) -((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4164 |has| |#1| (-775))) -((|HasCategory| |#1| (QUOTE (-775))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-500))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-775)))) (|HasCategory| |#1| (QUOTE (-21))) (-1405 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-775))))) -(-770 R S) +(-771 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-771) +(-772 R) +((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) +((-4177 |has| |#1| (-777))) +((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3807 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777))))) +(-773) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-772 -2742 S) +(-774 -2806 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-773) +(-775) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-774 S) +(-776 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-775) +(-777) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4164 . T)) +((-4177 . T)) NIL -(-776 S) +(-778 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a a= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-777) +(-779) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a a= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-778 S R) +(-780 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156)))) -(-779 R) +((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156)))) +(-781 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4161 . T) (-4162 . T) (-4164 . T)) +((-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-780 R C) +(-782 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) -(-781 R |sigma| -2808) +((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) +(-783 R |sigma| -1330) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-331)))) -(-782 |x| R |sigma| -2808) +((-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333)))) +(-784 |x| R |sigma| -1330) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-331)))) -(-783 R) +((-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-333)))) +(-785 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) -(-784) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) +(-786) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-785) -((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) +(-787) +((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f ^= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-786) -((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f ^= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) +(-788) +((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-787 |VariableList|) +(-789 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-788 R |vl| |wl| |wtlevel|) +(-790 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331)))) -(-789 R PS UP) +((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) +(-791 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-790 R |x| |pt|) +(-792 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-791 |p|) -((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -NIL -(-792 |p|) +(-793 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-793 |p|) +(-794 |p|) +((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +NIL +(-795 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-791 |#1|) (QUOTE (-830))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-791 |#1|) (QUOTE (-132))) (|HasCategory| (-791 |#1|) (QUOTE (-134))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-791 |#1|) (QUOTE (-933))) (|HasCategory| (-791 |#1|) (QUOTE (-750))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-791 |#1|) (QUOTE (-1046))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-791 |#1|) (QUOTE (-206))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -791) (|devaluate| |#1|)))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -278) (LIST (QUOTE -791) (|devaluate| |#1|)))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -256) (LIST (QUOTE -791) (|devaluate| |#1|)) (LIST (QUOTE -791) (|devaluate| |#1|)))) (|HasCategory| (-791 |#1|) (QUOTE (-276))) (|HasCategory| (-791 |#1|) (QUOTE (-500))) (|HasCategory| (-791 |#1|) (QUOTE (-777))) (-1405 (|HasCategory| (-791 |#1|) (QUOTE (-750))) (|HasCategory| (-791 |#1|) (QUOTE (-777)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-791 |#1|) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-791 |#1|) (QUOTE (-830)))) (|HasCategory| (-791 |#1|) (QUOTE (-132))))) -(-794 |p| PADIC) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-794 |#1|) (QUOTE (-831))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-794 |#1|) (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-134))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-794 |#1|) (QUOTE (-937))) (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-1049))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-207))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -794) (|devaluate| |#1|)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (QUOTE (-278))) (|HasCategory| (-794 |#1|) (QUOTE (-502))) (|HasCategory| (-794 |#1|) (QUOTE (-779))) (-3807 (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-831)))) (|HasCategory| (-794 |#1|) (QUOTE (-132))))) +(-796 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -256) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (QUOTE (-500))) (|HasCategory| |#2| (QUOTE (-777))) (-1405 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-795) -((|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-779))) (-3807 (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132))))) +(-797) +((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-796) +(-798) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-797 CF1 CF2) +(-799 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-798 |ComponentFunction|) +(-800 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-799 CF1 CF2) +(-801 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-800 |ComponentFunction|) +(-802 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-801 CF1 CF2) +(-803 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-802 |ComponentFunction|) +(-804 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-803) +(-805) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-804 R) +(-806 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-805 R S L) +(-807 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-806 S) +(-808 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-807 |Base| |Subject| |Pat|) +(-809 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070)))) (-12 (-3031 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070))))) (-3031 (|HasCategory| |#2| (QUOTE (-959))))) (-12 (|HasCategory| |#2| (QUOTE (-959))) (-3031 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070))))))) -(-808 R S) -((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) -NIL +((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))) (-12 (-2630 (|HasCategory| |#2| (QUOTE (-961)))) (-2630 (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (-2630 (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073))))))) +(-810 R A B) +((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL -(-809 R A B) -((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL -NIL -(-810 R) -((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) +(-811 R S) +((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-811 R -3584) +(-812 R -2731) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-812 R S) +(-813 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-813 |VarSet|) +(-814 R) +((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) +NIL +NIL +(-815 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-814 UP R) +(-816 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-815) +(-817) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-816 UP -2958) +(-818 UP -1696) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-817) +(-819) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-818) +(-820) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-819 A S) +(-821 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-820 S) +(-822 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4164 . T)) +((-4177 . T)) NIL -(-821 S) -((|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) +(-823 S) +((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) -(-822 S) -((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}."))) -((-4164 . T)) -((|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-777))))) -(-823 |n| R) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) +(-824 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ^= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-824 S) +(-825 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4164 . T)) +((-4177 . T)) NIL -(-825 S) +(-826 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-826 |p|) -((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-336)))) -(-827 R E |VarSet| S) +(-827 S) +((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) +((-4177 . T)) +((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779))))) +(-828 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-828 R S) +(-829 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-829 S) +(-830 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-132)))) -(-830) +(-831) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-831 R0 -2958 UP UPUP R) +(-832 |p|) +((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338)))) +(-833 R0 -1696 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-832 UP UPUP R) +(-834 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-833 UP UPUP) +(-835 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-834 R) +(-836 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-835 R) +(-837 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-836 E OV R P) +(-838 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-837) +(-839) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-838 -2958) +(-840 -1696) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-839) -((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4169 "*") . T)) -NIL -(-840 R) +(-841 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-841) +(-842) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -NIL -(-842 |xx| -2958) -((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL +(-843) +((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) +(((-4182 "*") . T)) NIL -(-843 -2958 P) +(-844 -1696 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-844 R |Var| |Expon| GR) -((|constructor| (NIL "Author: William Sit,{} spring 89")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) +(-845 |xx| -1696) +((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-845) -((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) +(-846 R |Var| |Expon| GR) +((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-846 S) -((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) +(-847 S) +((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-847) +(-848) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-848) -((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) +(-849) +((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-849) -((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) +(-850) +((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-850 R -2958) +(-851 R -1696) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-851 S A B) +(-852) +((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) +NIL +NIL +(-853 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-852 S R -2958) +(-854 S R -1696) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-853 I) +(-855 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-854 S E) +(-856 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-855 S R L) +(-857 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-856 S E V R P) +(-858 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -806) (|devaluate| |#1|)))) -(-857 -3584) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) +((|HasCategory| |#3| (LIST (QUOTE -808) (|devaluate| |#1|)))) +(-859 R -1696 -2731) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-858 R -2958 -3584) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) +(-860 -2731) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-859 S R Q) +(-861 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-860 S) +(-862 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-861 S R P) +(-863 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-862) -((|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) +(-864) +((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-863 R) -NIL -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#1| (QUOTE (-959))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-959)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-864 |lv| R) +(-865 R) +((|constructor| (NIL "This domain implements points in coordinate space"))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))) +(-866 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-865 |TheField| |ThePols|) +(-867 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-775)))) -(-866 R) -((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-1070) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-1070) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-1070) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-1070) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-1070) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-867 R S) +((|HasCategory| |#1| (QUOTE (-777)))) +(-868 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-868 |x| R) +(-869 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-869 S R E |VarSet|) +(-870 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-830))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#4| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#4| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#4| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-777)))) -(-870 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-831))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#4| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779)))) +(-871 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) NIL -(-871 E V R P -2958) +(-872 E V R P -1696) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-872 E |Vars| R P S) +(-873 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-873 E V R P -2958) +(-874 R) +((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-875 E V R P -1696) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-419)))) -(-874) +((|HasCategory| |#3| (QUOTE (-421)))) +(-876) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-875 R E) -((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-123)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165))) -(-876 R L) +(-877 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-877 S) -((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) (-878 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-879) +(-879 S) +((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) +(-880) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-880 -2958) -((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) +(-881 -1696) +((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-881 I) -((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) +(-882 I) +((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-882) +(-883) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-883 A B) +(-884 R E) +((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-123)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178))) +(-885 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4164 -12 (|has| |#2| (-440)) (|has| |#1| (-440)))) -((-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#2| (QUOTE (-440)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#2| (QUOTE (-657)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#2| (QUOTE (-440)))) (-12 (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#2| (QUOTE (-657))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#2| (QUOTE (-440)))) (-12 (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#2| (QUOTE (-657)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-12 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-777)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-777)))))) -(-884 S) -((|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4167 . T) (-4168 . T) (-2951 . T)) +((-4177 -12 (|has| |#2| (-442)) (|has| |#1| (-442)))) +((-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))))) +(-886 S) +((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) +((-4180 . T) (-4181 . T) (-3353 . T)) NIL -(-885 R |polR|) -((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) +(-887 R |polR|) +((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-419)))) -(-886) +((|HasCategory| |#1| (QUOTE (-421)))) +(-888) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-887 S |Coef| |Expon| |Var|) +(-889 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-888 |Coef| |Expon| |Var|) +(-890 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T)) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-889) +(-891) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-890 S R E |VarSet| P) +(-892 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-508)))) -(-891 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-509)))) +(-893 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4167 . T) (-2951 . T)) +((-4180 . T) (-3353 . T)) NIL -(-892 R E V P) -((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) +(-894 R E V P) +((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-276)))) (|HasCategory| |#1| (QUOTE (-419)))) -(-893 K) +((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-421)))) +(-895 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-894 |VarSet| E RC P) +(-896 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-895 R) -((|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4168 . T) (-4167 . T) (-2951 . T)) +(-897 R) +((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL -(-896 R1 R2) -((|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) +(-898 R1 R2) +((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-897 R) -((|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) +(-899 R) +((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-898 K) +(-900 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-899 R E OV PPR) +(-901 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-900 K R UP -2958) +(-902 K R UP -1696) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-901 R |Var| |Expon| |Dpoly|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) -NIL -((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-276))))) -(-902 |vl| |nv|) +(-903 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-903 R E V P TS) -((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) -NIL +(-904 R |Var| |Expon| |Dpoly|) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -(-904) -((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) +((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-278))))) +(-905 R E V P TS) +((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-905 A S) -((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) +(-906) +((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL -((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-500))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1046)))) -(-906 S) -((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-2951 . T) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) NIL (-907 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-908 |n| K) +(-908 A S) +((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) +NIL +((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1049)))) +(-909 S) +((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) +((-3353 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +NIL +(-910 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-909 S) -((|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4167 . T) (-4168 . T) (-2951 . T)) +(-911 S) +((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) +((-4180 . T) (-4181 . T) (-3353 . T)) NIL -(-910 R) -((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4160 |has| |#1| (-260)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-260))) (-1405 (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -256) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-967))) (|HasCategory| |#1| (QUOTE (-500))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331))))) -(-911 S R) +(-912 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-500))) (|HasCategory| |#2| (QUOTE (-967))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-260)))) -(-912 R) +((|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-262)))) +(-913 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4160 |has| |#1| (-260)) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 |has| |#1| (-262)) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-913 QR R QS S) +(-914 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-914 S) -((|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) -(-915 S) -((** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) +(-915 R) +((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) +((-4173 |has| |#1| (-262)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-262))) (-3807 (|HasCategory| |#1| (QUOTE (-262))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-502))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))))) +(-916 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) +(-917 S) +((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-916) -((** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) +(-918) +((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-917 -2958 UP UPUP |radicnd| |n|) +(-919 -1696 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4160 |has| (-375 |#2|) (-331)) (-4165 |has| (-375 |#2|) (-331)) (-4159 |has| (-375 |#2|) (-331)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-375 |#2|) (QUOTE (-132))) (|HasCategory| (-375 |#2|) (QUOTE (-134))) (|HasCategory| (-375 |#2|) (QUOTE (-318))) (|HasCategory| (-375 |#2|) (QUOTE (-331))) (-1405 (|HasCategory| (-375 |#2|) (QUOTE (-331))) (|HasCategory| (-375 |#2|) (QUOTE (-318)))) (|HasCategory| (-375 |#2|) (QUOTE (-336))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-336))) (-1405 (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-318))))) (-12 (|HasCategory| (-375 |#2|) (QUOTE (-206))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-375 |#2|) (QUOTE (-206))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (|HasCategory| (-375 |#2|) (QUOTE (-318))))) -(-918 |bb|) +((-4173 |has| (-377 |#2|) (-333)) (-4178 |has| (-377 |#2|) (-333)) (-4172 |has| (-377 |#2|) (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3807 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3807 (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) +(-920 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-501) (QUOTE (-830))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-501) (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-134))) (|HasCategory| (-501) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-501) (QUOTE (-933))) (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-1046))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-501) (QUOTE (-206))) (|HasCategory| (-501) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-501) (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -278) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -256) (QUOTE (-501)) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-276))) (|HasCategory| (-501) (QUOTE (-500))) (|HasCategory| (-501) (QUOTE (-777))) (-1405 (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (QUOTE (-777)))) (|HasCategory| (-501) (LIST (QUOTE -577) (QUOTE (-501)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (|HasCategory| (-501) (QUOTE (-132))))) -(-919) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132))))) +(-921) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-920) +(-922) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-921 RP) +(-923 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-922 S) +(-924 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-923 A S) -((|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) +(-925 A S) +((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4168)) (|HasCategory| |#2| (QUOTE (-1001)))) -(-924 S) -((|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-2951 . T)) +((|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-1003)))) +(-926 S) +((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) +((-3353 . T)) NIL -(-925 S) +(-927 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-926) +(-928) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4160 . T) (-4165 . T) (-4159 . T) (-4162 . T) (-4161 . T) ((-4169 "*") . T) (-4164 . T)) +((-4173 . T) (-4178 . T) (-4172 . T) (-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4177 . T)) NIL -(-927 R -2958) +(-929 R -1696) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-928 R -2958) +(-930 R -1696) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-929 -2958 UP) +(-931 -1696 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-930 -2958 UP) +(-932 -1696 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-931 S) +(-933 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-932 F1 UP UPUP R F2) +(-934 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-933) -NIL -NIL -NIL -(-934 |Pol|) +(-935 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-935 |Pol|) +(-936 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-936) +(-937) +((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) +NIL +NIL +(-938) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-937 |TheField|) +(-939 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4160 . T) (-4165 . T) (-4159 . T) (-4162 . T) (-4161 . T) ((-4169 "*") . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-375 (-501)) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-375 (-501)) (LIST (QUOTE -950) (QUOTE (-501)))) (-1405 (|HasCategory| (-375 (-501)) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))))) -(-938 -2958 L) +((-4173 . T) (-4178 . T) (-4172 . T) (-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (QUOTE (-517)))) (-3807 (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) +(-940 -1696 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-939 S) +(-941 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1001)))) -(-940 R E V P) +((|HasCategory| |#1| (QUOTE (-1003)))) +(-942 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#4| (QUOTE (-1001))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#3| (QUOTE (-336)))) -(-941) -((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338)))) +(-943 R) +((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL +((|HasAttribute| |#1| (QUOTE (-4182 "*")))) +(-944 R) +((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -(-942 R) -((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) +((|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-278)))) +(-945 S) +((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL -((|HasAttribute| |#1| (QUOTE (-4169 "*")))) -(-943 R) -((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((|HasCategory| |#1| (QUOTE (-331))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-276)))) -(-944 S) -((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) +(-946) +((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-945 S) +(-947 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-946 S) +(-948 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-947 -2958 |Expon| |VarSet| |FPol| |LFPol|) +(-949 -1696 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +(((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-948) +(-950) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4167 . T) (-4168 . T)) -((|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2922) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001)))) (|HasCategory| (-1070) (QUOTE (-777))) (|HasCategory| (-50) (QUOTE (-1001))) (-1405 (|HasCategory| (-50) (QUOTE (-1001))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001)))) (-12 (|HasCategory| (-50) (LIST (QUOTE -278) (QUOTE (-50)))) (|HasCategory| (-50) (QUOTE (-1001))))) -(-949 A S) +((-4180 . T) (-4181 . T)) +((|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -1257) (QUOTE (-51))))))) (|HasCategory| (-1073) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51)))))) +(-951 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-950 S) +(-952 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-951 Q R) +(-953 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-952 R) -((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) -NIL -NIL -(-953) +(-954) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-954 UP) -((|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) +(-955 UP) +((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-955 R) +(-956 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-956 R |ls|) +(-957 R) +((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) +NIL +NIL +(-958 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4168 . T) (-4167 . T)) -((|HasCategory| (-710 |#1| (-787 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-710 |#1| (-787 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-710 |#1| (-787 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -710) (|devaluate| |#1|) (LIST (QUOTE -787) (|devaluate| |#2|))))) (|HasCategory| (-710 |#1| (-787 |#2|)) (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| (-787 |#2|) (QUOTE (-336)))) -(-957) +((-4181 . T) (-4180 . T)) +((|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1003))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -712) (|devaluate| |#1|) (LIST (QUOTE -789) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-789 |#2|) (QUOTE (-338)))) +(-959) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-958 S) +(-960 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-959) +(-961) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4164 . T)) +((-4177 . T)) +NIL +(-962 |xx| -1696) +((|constructor| (NIL "This package exports rational interpolation algorithms"))) +NIL NIL -(-960 S |m| |n| R |Row| |Col|) +(-963 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-276))) (|HasCategory| |#4| (QUOTE (-331))) (|HasCategory| |#4| (QUOTE (-508))) (|HasCategory| |#4| (QUOTE (-156)))) -(-961 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-278))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-509))) (|HasCategory| |#4| (QUOTE (-156)))) +(-964 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4167 . T) (-2951 . T) (-4162 . T) (-4161 . T)) +((-4180 . T) (-3353 . T) (-4175 . T) (-4174 . T)) NIL -(-962 |m| |n| R) +(-965 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4167 . T) (-4162 . T) (-4161 . T)) -((|HasCategory| |#3| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-1001))) (|HasCategory| |#3| (QUOTE (-276))) (|HasCategory| |#3| (QUOTE (-508))) (|HasCategory| |#3| (QUOTE (-156))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001)))))) -(-963 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4180 . T) (-4175 . T) (-4174 . T)) +((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (QUOTE (-278))) (|HasCategory| |#3| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-156))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3807 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))))) +(-966 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-964 R) +(-967 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-965) +(-968) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-966 S) -((|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) +(-969 S) +((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-967) -((|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +(-970) +((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-968 |TheField| |ThePolDom|) +(-971 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-969) +(-972) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4155 . T) (-4159 . T) (-4154 . T) (-4165 . T) (-4166 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4168 . T) (-4172 . T) (-4167 . T) (-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-970) -((|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4167 . T) (-4168 . T)) -((|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2922) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001)))) (|HasCategory| (-1070) (QUOTE (-777))) (|HasCategory| (-50) (QUOTE (-1001))) (-1405 (|HasCategory| (-50) (QUOTE (-1001))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001)))) (-12 (|HasCategory| (-50) (LIST (QUOTE -278) (QUOTE (-50)))) (|HasCategory| (-50) (QUOTE (-1001))))) -(-971 S R E V) -((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) +(-973) +((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) +((-4180 . T) (-4181 . T)) +((|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -1257) (QUOTE (-51))))))) (|HasCategory| (-1073) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51)))))) +(-974 S R E V) +((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-500))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-1070))))) -(-972 R E V) -((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) +((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-1073))))) +(-975 R E V) +((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) NIL -(-973 S |TheField| |ThePols|) -((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common access functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) +(-976 S |TheField| |ThePols|) +((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-974 |TheField| |ThePols|) -((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common access functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) +(-977 |TheField| |ThePols|) +((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-975 R E V P TS) +(-978 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-976 S R E V P) +(-979 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-977 R E V P) +(-980 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4168 . T) (-4167 . T) (-2951 . T)) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL -(-978 R E V P TS) -((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) +(-981 R E V P TS) +((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-979 |Base| R -2958) -((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) +(-982 |f|) +((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-980 |f|) -((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) +(-983 |Base| R -1696) +((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-981 |Base| R -2958) +(-984 |Base| R -1696) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-982 R |ls|) +(-985 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-983 R UP M) -((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4160 |has| |#1| (-331)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-318))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-318))))) -(-984 UP SAE UPA) -((|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) +(-986 UP SAE UPA) +((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-985 UP SAE UPA) -((|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) +(-987 R UP M) +((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) +((-4173 |has| |#1| (-333)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-319))))) +(-988 UP SAE UPA) +((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-986) +(-989) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-987 S) +(-990 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-988 R) +(-991 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-989 R) -NIL -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-990 (-1070)) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-990 (-1070)) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-990 (-1070)) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-990 (-1070)) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-990 (-1070)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-990 S) -NIL -NIL +(-992 R) +((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-993 S) +((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL -(-991 S) -((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-775))) (|HasCategory| |#1| (QUOTE (-1001)))) -(-992 R S) +(-994 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-775)))) -(-993 S) -((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) -NIL -((|HasCategory| |#1| (QUOTE (-1001)))) -(-994 R S) +((|HasCategory| |#1| (QUOTE (-777)))) +(-995 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-995 S) +(-996 S) +((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) +NIL +((|HasCategory| |#1| (QUOTE (-1003)))) +(-997 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-2951 . T)) +((-3353 . T)) +NIL +(-998 S) +((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -(-996 S L) +((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1003)))) +(-999 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-2951 . T)) +((-3353 . T)) NIL -(-997 S) -((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4167 . T) (-4157 . T) (-4168 . T)) -((|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-998 A S) -((|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) +(-1000 A S) +((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-999 S) -((|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4157 . T) (-2951 . T)) +(-1001 S) +((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) +((-4170 . T) (-3353 . T)) NIL -(-1000 S) +(-1002 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1001) +(-1003) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1002 |m| |n|) -((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) +(-1004 |m| |n|) +((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1003) -((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) +(-1005 S) +((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) +((-4180 . T) (-4170 . T) (-4181 . T)) +((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))) +(-1006 |Str| |Sym| |Int| |Flt| |Expr|) +((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1004 |Str| |Sym| |Int| |Flt| |Expr|) -((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns \\spad{a1}.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) +(-1007) +((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1005 |Str| |Sym| |Int| |Flt| |Expr|) +(-1008 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1006 R FS) +(-1009 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1007 R E V P TS) -((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) +(-1010 R E V P TS) +((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1008 R E V P TS) -((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) +(-1011 R E V P TS) +((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1009 R E V P) +(-1012 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4168 . T) (-4167 . T) (-2951 . T)) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL -(-1010) +(-1013) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1011 S) +(-1014 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1012) +(-1015) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1013 |dimtot| |dim1| S) -((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4161 |has| |#3| (-959)) (-4162 |has| |#3| (-959)) (-4164 |has| |#3| (-6 -4164)) ((-4169 "*") |has| |#3| (-156)) (-4167 . T)) -((|HasCategory| |#3| (QUOTE (-1001))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775))) (-1405 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775)))) (|HasCategory| |#3| (QUOTE (-156))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959)))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-331)))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-206))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959)))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| |#3| (QUOTE (-657))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-1001)))) (|HasAttribute| |#3| (QUOTE -4164)) (|HasCategory| |#3| (QUOTE (-123))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| |#3| (QUOTE (-25))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775))) (|HasCategory| |#3| (QUOTE (-959))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001)))))) -(-1014 R |x|) -((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and \\spad{c_}{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and \\spad{c_}{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) +(-1016 |dimtot| |dim1| S) +((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) +((-4174 |has| |#3| (-961)) (-4175 |has| |#3| (-961)) (-4177 |has| |#3| (-6 -4177)) ((-4182 "*") |has| |#3| (-156)) (-4180 . T)) +((|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3807 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-207))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#3| (QUOTE (-961))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003)))) (|HasAttribute| |#3| (QUOTE -4177)) (|HasCategory| |#3| (QUOTE (-123))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-25))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1003)))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3807 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))))) +(-1017 R |x|) +((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-419)))) -(-1015 R -2958) +((|HasCategory| |#1| (QUOTE (-421)))) +(-1018 R -1696) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1016 R) +(-1019 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1017) +(-1020) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1018) +(-1021) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4155 . T) (-4159 . T) (-4154 . T) (-4165 . T) (-4166 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4168 . T) (-4172 . T) (-4167 . T) (-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-1019 S) -((|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4167 . T) (-4168 . T) (-2951 . T)) +(-1022 S) +((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) +((-4180 . T) (-4181 . T) (-3353 . T)) NIL -(-1020 S |ndim| R |Row| |Col|) +(-1023 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-331))) (|HasAttribute| |#3| (QUOTE (-4169 "*"))) (|HasCategory| |#3| (QUOTE (-156)))) -(-1021 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-333))) (|HasAttribute| |#3| (QUOTE (-4182 "*"))) (|HasCategory| |#3| (QUOTE (-156)))) +(-1024 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-2951 . T) (-4167 . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-3353 . T) (-4180 . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-1022 R |Row| |Col| M) +(-1025 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1023 R |VarSet|) +(-1026 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-1024 |Coef| |Var| SMP) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-1027 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-508))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-331)))) -(-1025 R E V P) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333)))) +(-1028 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4168 . T) (-4167 . T) (-2951 . T)) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL -(-1026 UP -2958) +(-1029 UP -1696) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1027 R) +(-1030 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1028 R) -((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) +(-1031 R) +((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1029 R) +(-1032 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1030 S A) +(-1033 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-777)))) -(-1031 R) +((|HasCategory| |#1| (QUOTE (-779)))) +(-1034 R) +((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL +(-1035 R) +((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL -(-1032 R) -((|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL -NIL -(-1033) +(-1036) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1034) +(-1037) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1035 V C) -((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) +(-1038 V C) +((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1036 V C) +(-1039 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| (-1035 |#1| |#2|) (QUOTE (-1001))) (-12 (|HasCategory| (-1035 |#1| |#2|) (LIST (QUOTE -278) (LIST (QUOTE -1035) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1035 |#1| |#2|) (QUOTE (-1001))))) -(-1037 |ndim| R) +((-4180 . T) (-4181 . T)) +((|HasCategory| (-1038 |#1| |#2|) (QUOTE (-1003))) (-12 (|HasCategory| (-1038 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1038) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1038 |#1| |#2|) (QUOTE (-1003))))) +(-1040 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}."))) -((-4164 . T) (-4156 |has| |#2| (-6 (-4169 "*"))) (-4167 . T) (-4161 . T) (-4162 . T)) -((|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (|HasAttribute| |#2| (QUOTE (-4169 "*"))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-331))) (-1405 (|HasAttribute| |#2| (QUOTE (-4169 "*"))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001))))) (|HasCategory| |#2| (QUOTE (-156)))) -(-1038 S) -((|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) +((-4177 . T) (-4169 |has| |#2| (-6 (-4182 "*"))) (-4180 . T) (-4174 . T) (-4175 . T)) +((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#2| (QUOTE (-156)))) +(-1041 S) +((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1039) -((|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4168 . T) (-4167 . T) (-2951 . T)) +(-1042) +((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL -(-1040 R E V P TS) +(-1043 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1041 R E V P) +(-1044 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#4| (QUOTE (-1001))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#3| (QUOTE (-336)))) -(-1042 S) -((|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) -(-1043 A S) -((|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338)))) +(-1045 S) +((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) +((-4180 . T) (-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) +(-1046 A S) +((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1044 S) -((|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-2951 . T)) +(-1047 S) +((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) +((-3353 . T)) NIL -(-1045 |Key| |Ent| |dent|) +(-1048 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4168 . T)) -((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001))))) -(-1046) +((-4181 . T)) +((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003))))) +(-1049) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1047 |Coef|) +(-1050 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1048 S) -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4168 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-501) (QUOTE (-777)))) -(-1049 S) +(-1051 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1050 A B) +(-1052 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1051 A B C) +(-1053 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1052) -((|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4168 . T) (-4167 . T) (-2951 . T)) +(-1054 S) +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) +((-4181 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-779)))) +(-1055) +((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL -(-1053) +(-1056) NIL -((-4168 . T) (-4167 . T)) -((|HasCategory| (-131) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-131) (QUOTE (-777))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| (-131) (QUOTE (-1001))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-777)))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001)))))) -(-1054 |Entry|) +((-4181 . T) (-4180 . T)) +((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3807 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))))) +(-1057 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4167 . T) (-4168 . T)) -((|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (QUOTE (-1053))) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (QUOTE (-1001)))) (|HasCategory| (-1053) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001))) (-1405 (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-1001)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) -(-1055 A) +((-4180 . T) (-4181 . T)) +((|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1056))) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#1|)))))) (|HasCategory| (-1056) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) +(-1058 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b = sum(i+j=k,{}a)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) -(-1056 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) +(-1059 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1057 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +(-1060 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1058 R UP) +(-1061 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-276)))) -(-1059 |n| R) -((|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) +((|HasCategory| |#1| (QUOTE (-278)))) +(-1062 |n| R) +((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1060 S1 S2) +(-1063 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1061 |Coef| |var| |cen|) +(-1064 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4169 "*") -1405 (-1280 (|has| |#1| (-331)) (|has| (-1068 |#1| |#2| |#3|) (-750))) (|has| |#1| (-156)) (-1280 (|has| |#1| (-331)) (|has| (-1068 |#1| |#2| |#3|) (-830)))) (-4160 -1405 (-1280 (|has| |#1| (-331)) (|has| (-1068 |#1| |#2| |#3|) (-750))) (|has| |#1| (-508)) (-1280 (|has| |#1| (-331)) (|has| (-1068 |#1| |#2| |#3|) (-830)))) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| (-501) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-134)))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|)))))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-206))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|))))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -256) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-132)))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -256) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-1062 R -2958) -((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) +(((-4182 "*") -3807 (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-831)))) (-4173 -3807 (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-831)))) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-1065 R -1696) +((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1063 R) +(-1066 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1064 R) -((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4163 |has| |#1| (-331)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-1065 R S) +(-1067 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1066 E OV R P) +(-1068 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1067 |Coef| |var| |cen|) +(-1069 R) +((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-1070 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|))))) (|HasCategory| (-375 (-501)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|))))))) -(-1068 |Coef| |var| |cen|) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|))))))) +(-1071 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-701)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-701)) (|devaluate| |#1|))))) (|HasCategory| (-701) (QUOTE (-1012))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-701))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-701))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|))))))) -(-1069) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1015))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|))))))) +(-1072) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1083) +(-1087) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1084) -((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) +(-1088 S) +((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1085 S) -((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) +(-1089) +((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1086) +(-1090) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1087 R) +(-1091 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1088) -((|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) +(-1092) +((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1089 S) +(-1093 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1090) +(-1094) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1091 S) -((|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))) -(-1092 S) +(-1095 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) +(-1096 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1093) +(-1097) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1094 R -2958) +(-1098 R -1696) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1095 R |Row| |Col| M) +(-1099 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1096 R -2958) +(-1100 R -1696) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -806) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -806) (|devaluate| |#1|))))) -(-1097 |Coef|) -((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-508))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-331)))) -(-1098 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -808) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -808) (|devaluate| |#1|))))) +(-1101 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-336)))) -(-1099 R E V P) +((|HasCategory| |#4| (QUOTE (-338)))) +(-1102 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4168 . T) (-4167 . T) (-2951 . T)) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL -(-1100 |Curve|) +(-1103 |Coef|) +((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333)))) +(-1104 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1101) +(-1105) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1102 S) +(-1106 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1001)))) -(-1103 -2958) +((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))) +(-1107 -1696) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1104) +(-1108) ((|constructor| (NIL "The fundamental Type."))) -((-2951 . T)) +((-3353 . T)) NIL -(-1105 S) +(-1109 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-777)))) -(-1106) +((|HasCategory| |#1| (QUOTE (-779)))) +(-1110) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1107 S) +(-1111 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1108) +(-1112) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-1109 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4169 "*") -1405 (-1280 (|has| |#1| (-331)) (|has| (-1139 |#1| |#2| |#3|) (-750))) (|has| |#1| (-156)) (-1280 (|has| |#1| (-331)) (|has| (-1139 |#1| |#2| |#3|) (-830)))) (-4160 -1405 (-1280 (|has| |#1| (-331)) (|has| (-1139 |#1| |#2| |#3|) (-750))) (|has| |#1| (-508)) (-1280 (|has| |#1| (-331)) (|has| (-1139 |#1| |#2| |#3|) (-830)))) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| (-501) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-134)))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|)))))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-206))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|))))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -256) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-132)))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -256) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-1110 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1113 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1111 |Coef|) +(-1114 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-1112 S |Coef| UTS) +(-1115 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-331)))) -(-1113 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-333)))) +(-1116 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-2951 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-3353 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-1114 |Coef| UTS) +(-1117 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| (-501) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-134))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|))))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-933)))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-750)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -256) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-777)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-750)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-777))))) (|HasCategory| |#2| (QUOTE (-830))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-500)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-276)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-132))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -256) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-750)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-933)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-1046))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-132)))))) -(-1115 ZP) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-134))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-937)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))))) (|HasCategory| |#2| (QUOTE (-831))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132)))))) +(-1118 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) +(((-4182 "*") -3807 (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-831)))) (-4173 -3807 (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-831)))) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132))))) +(-1119 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1116 S) -((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) -NIL -((|HasCategory| |#1| (QUOTE (-775))) (|HasCategory| |#1| (QUOTE (-1001)))) -(-1117 R S) +(-1120 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-775)))) -(-1118 |x| R) -((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4169 "*") |has| |#2| (-156)) (-4160 |has| |#2| (-508)) (-4163 |has| |#2| (-331)) (-4165 |has| |#2| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| |#2| (QUOTE (-206))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-1119 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-777)))) +(-1121 S) +((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) +NIL +((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1003)))) +(-1122 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1120 R Q UP) +(-1123 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1121 R UP) +(-1124 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1122 R UP) +(-1125 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1123 R U) +(-1126 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1124 S R) -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) +(-1127 |x| R) +((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) +(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4176 |has| |#2| (-333)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132))))) +(-1128 R PR S PS) +((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-1046)))) -(-1125 R) -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4163 |has| |#1| (-331)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T)) NIL -(-1126 R PR S PS) -((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) +(-1129 S R) +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL +((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-1049)))) +(-1130 R) +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T)) NIL -(-1127 S |Coef| |Expon|) +(-1131 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1012))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3691) (LIST (|devaluate| |#2|) (QUOTE (-1070)))))) -(-1128 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1015))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2256) (LIST (|devaluate| |#2|) (QUOTE (-1073)))))) +(-1132 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T)) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-1129 RC P) +(-1133 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1130 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|))))) (|HasCategory| (-375 (-501)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|))))))) -(-1131 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1134 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1132 |Coef|) +(-1135 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-1133 S |Coef| ULS) +(-1136 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1134 |Coef| ULS) +(-1137 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-1135 |Coef| ULS) +(-1138 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|))))) (|HasCategory| (-375 (-501)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|))))))) -(-1136 R FE |var| |cen|) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|))))))) +(-1139 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|))))))) +(-1140 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4169 "*") |has| (-1130 |#2| |#3| |#4|) (-156)) (-4160 |has| (-1130 |#2| |#3| |#4|) (-508)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| (-1130 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-156))) (|HasCategory| (-1130 |#2| |#3| |#4|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-1130 |#2| |#3| |#4|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-331))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-419))) (-1405 (|HasCategory| (-1130 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-1130 |#2| |#3| |#4|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-508)))) -(-1137 A S) -((|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) +(((-4182 "*") |has| (-1139 |#2| |#3| |#4|) (-156)) (-4173 |has| (-1139 |#2| |#3| |#4|) (-509)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-156))) (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-333))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-421))) (-3807 (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-509)))) +(-1141 A S) +((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4168))) -(-1138 S) -((|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-2951 . T)) +((|HasAttribute| |#1| (QUOTE -4181))) +(-1142 S) +((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) +((-3353 . T)) NIL -(-1139 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-701)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-701)) (|devaluate| |#1|))))) (|HasCategory| (-701) (QUOTE (-1012))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-701))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-701))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|))))))) -(-1140 |Coef1| |Coef2| UTS1 UTS2) +(-1143 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1141 S |Coef|) +(-1144 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-879))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasSignature| |#2| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3188) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1070))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331)))) -(-1142 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasSignature| |#2| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4151) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1073))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) +(-1145 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T)) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-1143 |Coef| UTS) +(-1146 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) +(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1015))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|))))))) +(-1147 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y=f(y,{}y',{}..,{}y)} such that \\spad{y(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1144 -2958 UP L UTS) +(-1148 -1696 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-508)))) -(-1145 |sym|) +((|HasCategory| |#1| (QUOTE (-509)))) +(-1149 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1146 S R) -((|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -NIL -((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-657))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1147 R) -((|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4168 . T) (-4167 . T) (-2951 . T)) +(-1150 S R) +((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -(-1148 R) -((|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#1| (QUOTE (-959))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-959)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))) -(-1149 A B) -((|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) +((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1151 R) +((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) +((-4181 . T) (-4180 . T) (-3353 . T)) NIL +(-1152 A B) +((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL -(-1150) -((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL -NIL -(-1151) -((|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) +(-1153 R) +((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) +(-1154) +((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1152) +(-1155) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1153) +(-1156) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1154) +(-1157) +((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) +NIL +NIL +(-1158) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1155 A S) +(-1159 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1156 S) +(-1160 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4162 . T) (-4161 . T)) +((-4175 . T) (-4174 . T)) NIL -(-1157 R) -((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) +(-1161 R) +((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1158 K R UP -2958) +(-1162 K R UP -1696) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1159 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1163 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331)))) -(-1160 R E V P) -((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4168 . T) (-4167 . T)) -((|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#4| (QUOTE (-1001))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#3| (QUOTE (-336)))) -(-1161 R) +((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) +(-1164 R E V P) +((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) +((-4181 . T) (-4180 . T)) +((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338)))) +(-1165 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4161 . T) (-4162 . T) (-4164 . T)) +((-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-1162 |vl| R) +(-1166 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4164 . T) (-4160 |has| |#2| (-6 -4160)) (-4162 . T) (-4161 . T)) -((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4160))) -(-1163 R |VarSet| XPOLY) +((-4177 . T) (-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T)) +((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4173))) +(-1167 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1164 S -2958) -((|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) +(-1168 |vl| R) +((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) +((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T)) NIL -((|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134)))) -(-1165 -2958) -((|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +(-1169 S -1696) +((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -(-1166 |vl| R) -((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4160 |has| |#2| (-6 -4160)) (-4162 . T) (-4161 . T) (-4164 . T)) +((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134)))) +(-1170 -1696) +((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) +((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL -(-1167 |VarSet| R) +(-1171 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4160 |has| |#2| (-6 -4160)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -648) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasAttribute| |#2| (QUOTE -4160))) -(-1168 R) -((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4160 |has| |#1| (-6 -4160)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasAttribute| |#1| (QUOTE -4160))) -(-1169 |vl| R) +((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -650) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasAttribute| |#2| (QUOTE -4173))) +(-1172 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4160 |has| |#2| (-6 -4160)) (-4162 . T) (-4161 . T) (-4164 . T)) +((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T)) NIL -(-1170 R E) +(-1173 R) +((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) +((-4173 |has| |#1| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#1| (QUOTE (-156))) (|HasAttribute| |#1| (QUOTE -4173))) +(-1174 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4164 . T) (-4165 |has| |#1| (-6 -4165)) (-4160 |has| |#1| (-6 -4160)) (-4162 . T) (-4161 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasAttribute| |#1| (QUOTE -4164)) (|HasAttribute| |#1| (QUOTE -4165)) (|HasAttribute| |#1| (QUOTE -4160))) -(-1171 |VarSet| R) +((-4177 . T) (-4178 |has| |#1| (-6 -4178)) (-4173 |has| |#1| (-6 -4173)) (-4175 . T) (-4174 . T)) +((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasAttribute| |#1| (QUOTE -4177)) (|HasAttribute| |#1| (QUOTE -4178)) (|HasAttribute| |#1| (QUOTE -4173))) +(-1175 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4160 |has| |#2| (-6 -4160)) (-4162 . T) (-4161 . T) (-4164 . T)) -((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4160))) -(-1172 A) +((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T)) +((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4173))) +(-1176 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1173 R |ls| |ls2|) +(-1177 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1174 R) +(-1178 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1175 |p|) +(-1179 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T)) +(((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T)) NIL NIL NIL @@ -4652,4 +4668,4 @@ NIL NIL NIL NIL -((-1180 NIL 2135105 2135110 2135115 2135120) (-3 NIL 2135085 2135090 2135095 2135100) (-2 NIL 2135065 2135070 2135075 2135080) (-1 NIL 2135045 2135050 2135055 2135060) (0 NIL 2135025 2135030 2135035 2135040) (-1175 "ZMOD.spad" 2134834 2134847 2134963 2135020) (-1174 "ZLINDEP.spad" 2133878 2133889 2134824 2134829) (-1173 "ZDSOLVE.spad" 2123727 2123749 2133868 2133873) (-1172 "YSTREAM.spad" 2123220 2123231 2123717 2123722) (-1171 "XRPOLY.spad" 2122440 2122460 2123076 2123145) (-1170 "XPR.spad" 2120169 2120182 2122158 2122257) (-1169 "XPOLYC.spad" 2119486 2119502 2120095 2120164) (-1168 "XPOLY.spad" 2119041 2119052 2119342 2119411) (-1167 "XPBWPOLY.spad" 2117478 2117498 2118821 2118890) (-1166 "XFALG.spad" 2114502 2114518 2117404 2117473) (-1165 "XF.spad" 2113070 2113085 2114404 2114497) (-1164 "XF.spad" 2111618 2111635 2112954 2112959) (-1163 "XEXPPKG.spad" 2110869 2110895 2111608 2111613) (-1162 "XDPOLY.spad" 2110483 2110499 2110725 2110794) (-1161 "XALG.spad" 2110081 2110092 2110439 2110478) (-1160 "WUTSET.spad" 2105968 2105985 2109783 2109810) (-1159 "WP.spad" 2104982 2105026 2105826 2105893) (-1158 "WFFINTBS.spad" 2102545 2102567 2104972 2104977) (-1157 "WEIER.spad" 2100751 2100762 2102535 2102540) (-1156 "VSPACE.spad" 2100424 2100435 2100719 2100746) (-1155 "VSPACE.spad" 2100117 2100130 2100414 2100419) (-1154 "VOID.spad" 2099707 2099716 2100107 2100112) (-1153 "VIEWDEF.spad" 2094904 2094913 2099697 2099702) (-1152 "VIEW3D.spad" 2078739 2078748 2094894 2094899) (-1151 "VIEW2D.spad" 2066560 2066569 2078729 2078734) (-1150 "VIEW.spad" 2064182 2064191 2066550 2066555) (-1149 "VECTOR2.spad" 2063137 2063150 2064172 2064177) (-1148 "VECTOR.spad" 2062182 2062193 2062288 2062315) (-1147 "VECTCAT.spad" 2060509 2060520 2062138 2062177) (-1146 "VECTCAT.spad" 2058657 2058670 2060288 2060293) (-1145 "VARIABLE.spad" 2058437 2058452 2058647 2058652) (-1144 "UTSODETL.spad" 2057730 2057754 2058393 2058398) (-1143 "UTSODE.spad" 2055918 2055938 2057720 2057725) (-1142 "UTSCAT.spad" 2053369 2053385 2055816 2055913) (-1141 "UTSCAT.spad" 2050464 2050482 2052913 2052918) (-1140 "UTS2.spad" 2050057 2050092 2050454 2050459) (-1139 "UTS.spad" 2044846 2044874 2048524 2048621) (-1138 "URAGG.spad" 2040016 2040027 2044826 2044841) (-1137 "URAGG.spad" 2035160 2035173 2039972 2039977) (-1136 "UPXSSING.spad" 2032806 2032832 2034244 2034377) (-1135 "UPXSCONS.spad" 2030563 2030583 2030938 2031087) (-1134 "UPXSCCA.spad" 2029021 2029041 2030409 2030558) (-1133 "UPXSCCA.spad" 2027621 2027643 2029011 2029016) (-1132 "UPXSCAT.spad" 2026202 2026218 2027467 2027616) (-1131 "UPXS2.spad" 2025743 2025796 2026192 2026197) (-1130 "UPXS.spad" 2022770 2022798 2023875 2024024) (-1129 "UPSQFREE.spad" 2021182 2021196 2022760 2022765) (-1128 "UPSCAT.spad" 2018775 2018799 2021080 2021177) (-1127 "UPSCAT.spad" 2016074 2016100 2018381 2018386) (-1126 "UPOLYC2.spad" 2015543 2015562 2016064 2016069) (-1125 "UPOLYC.spad" 2010521 2010532 2015385 2015538) (-1124 "UPOLYC.spad" 2005391 2005404 2010257 2010262) (-1123 "UPMP.spad" 2004281 2004294 2005381 2005386) (-1122 "UPDIVP.spad" 2003844 2003858 2004271 2004276) (-1121 "UPDECOMP.spad" 2002081 2002095 2003834 2003839) (-1120 "UPCDEN.spad" 2001288 2001304 2002071 2002076) (-1119 "UP2.spad" 2000650 2000671 2001278 2001283) (-1118 "UP.spad" 1997700 1997715 1998208 1998361) (-1117 "UNISEG2.spad" 1997193 1997206 1997656 1997661) (-1116 "UNISEG.spad" 1996546 1996557 1997112 1997117) (-1115 "UNIFACT.spad" 1995647 1995659 1996536 1996541) (-1114 "ULSCONS.spad" 1989690 1989710 1990062 1990211) (-1113 "ULSCCAT.spad" 1987287 1987307 1989510 1989685) (-1112 "ULSCCAT.spad" 1985018 1985040 1987243 1987248) (-1111 "ULSCAT.spad" 1983234 1983250 1984864 1985013) (-1110 "ULS2.spad" 1982746 1982799 1983224 1983229) (-1109 "ULS.spad" 1973305 1973333 1974398 1974827) (-1108 "UFD.spad" 1972370 1972379 1973231 1973300) (-1107 "UFD.spad" 1971497 1971508 1972360 1972365) (-1106 "UDVO.spad" 1970344 1970353 1971487 1971492) (-1105 "UDPO.spad" 1967771 1967782 1970300 1970305) (-1104 "TYPE.spad" 1967693 1967702 1967751 1967766) (-1103 "TWOFACT.spad" 1966343 1966358 1967683 1967688) (-1102 "TUPLE.spad" 1965785 1965796 1966298 1966303) (-1101 "TUBETOOL.spad" 1962622 1962631 1965775 1965780) (-1100 "TUBE.spad" 1961263 1961280 1962612 1962617) (-1099 "TSETCAT.spad" 1948378 1948395 1961219 1961258) (-1098 "TSETCAT.spad" 1935491 1935510 1948334 1948339) (-1097 "TS.spad" 1934080 1934096 1935056 1935153) (-1096 "TRMANIP.spad" 1928446 1928463 1933786 1933791) (-1095 "TRIMAT.spad" 1927405 1927430 1928436 1928441) (-1094 "TRIGMNIP.spad" 1925922 1925939 1927395 1927400) (-1093 "TRIGCAT.spad" 1925434 1925443 1925912 1925917) (-1092 "TRIGCAT.spad" 1924944 1924955 1925424 1925429) (-1091 "TREE.spad" 1923920 1923931 1924774 1924801) (-1090 "TRANFUN.spad" 1923751 1923760 1923910 1923915) (-1089 "TRANFUN.spad" 1923580 1923591 1923741 1923746) (-1088 "TOPSP.spad" 1923346 1923355 1923570 1923575) (-1087 "TOOLSIGN.spad" 1923009 1923020 1923336 1923341) (-1086 "TEXTFILE.spad" 1921566 1921575 1922999 1923004) (-1085 "TEX1.spad" 1921122 1921133 1921556 1921561) (-1084 "TEX.spad" 1918139 1918148 1921112 1921117) (-1083 "TEMUTL.spad" 1917694 1917703 1918129 1918134) (-1082 "TBCMPPK.spad" 1915787 1915810 1917684 1917689) (-1081 "TBAGG.spad" 1914950 1914973 1915755 1915782) (-1080 "TBAGG.spad" 1914133 1914158 1914940 1914945) (-1079 "TANEXP.spad" 1913509 1913520 1914123 1914128) (-1078 "TABLEAU.spad" 1912990 1913001 1913499 1913504) (-1077 "TABLE.spad" 1911963 1911986 1912233 1912260) (-1076 "TABLBUMP.spad" 1908714 1908725 1911953 1911958) (-1075 "SYSSOLP.spad" 1906187 1906198 1908704 1908709) (-1074 "SYMTAB.spad" 1904243 1904252 1906177 1906182) (-1073 "SYMS.spad" 1900228 1900237 1904233 1904238) (-1072 "SYMPOLY.spad" 1899238 1899249 1899320 1899447) (-1071 "SYMFUNC.spad" 1898713 1898724 1899228 1899233) (-1070 "SYMBOL.spad" 1896041 1896050 1898703 1898708) (-1069 "SWITCH.spad" 1892798 1892807 1896031 1896036) (-1068 "SUTS.spad" 1889697 1889725 1891265 1891362) (-1067 "SUPXS.spad" 1886711 1886739 1887829 1887978) (-1066 "SUPFRACF.spad" 1885816 1885834 1886701 1886706) (-1065 "SUP2.spad" 1885206 1885219 1885806 1885811) (-1064 "SUP.spad" 1881983 1881994 1882764 1882917) (-1063 "SUMRF.spad" 1880949 1880960 1881973 1881978) (-1062 "SUMFS.spad" 1880574 1880591 1880939 1880944) (-1061 "SULS.spad" 1871120 1871148 1872226 1872655) (-1060 "SUCH.spad" 1870800 1870815 1871110 1871115) (-1059 "SUBSPACE.spad" 1862858 1862873 1870790 1870795) (-1058 "SUBRESP.spad" 1862018 1862032 1862814 1862819) (-1057 "STTFNC.spad" 1858486 1858502 1862008 1862013) (-1056 "STTF.spad" 1854585 1854601 1858476 1858481) (-1055 "STTAYLOR.spad" 1846983 1846994 1854466 1854471) (-1054 "STRTBL.spad" 1846062 1846079 1846211 1846238) (-1053 "STRING.spad" 1845529 1845538 1845543 1845570) (-1052 "STRICAT.spad" 1845364 1845373 1845485 1845524) (-1051 "STREAM3.spad" 1844909 1844924 1845354 1845359) (-1050 "STREAM2.spad" 1843977 1843990 1844899 1844904) (-1049 "STREAM1.spad" 1843681 1843692 1843967 1843972) (-1048 "STREAM.spad" 1840672 1840683 1843429 1843444) (-1047 "STINPROD.spad" 1839578 1839594 1840662 1840667) (-1046 "STEP.spad" 1838779 1838788 1839568 1839573) (-1045 "STBL.spad" 1837867 1837895 1838034 1838049) (-1044 "STAGG.spad" 1837322 1837333 1837847 1837862) (-1043 "STAGG.spad" 1836785 1836798 1837312 1837317) (-1042 "STACK.spad" 1836421 1836432 1836615 1836642) (-1041 "SREGSET.spad" 1834181 1834198 1836123 1836150) (-1040 "SRDCMPK.spad" 1832726 1832746 1834171 1834176) (-1039 "SRAGG.spad" 1827932 1827941 1832682 1832721) (-1038 "SRAGG.spad" 1823170 1823181 1827922 1827927) (-1037 "SQMATRIX.spad" 1820852 1820870 1821760 1821847) (-1036 "SPLTREE.spad" 1815719 1815732 1820603 1820630) (-1035 "SPLNODE.spad" 1812259 1812272 1815709 1815714) (-1034 "SPFCAT.spad" 1811036 1811045 1812249 1812254) (-1033 "SPECOUT.spad" 1809586 1809595 1811026 1811031) (-1032 "SPACEC.spad" 1793761 1793772 1809576 1809581) (-1031 "SPACE3.spad" 1793735 1793746 1793751 1793756) (-1030 "SORTPAK.spad" 1793280 1793293 1793691 1793696) (-1029 "SOLVETRA.spad" 1791037 1791048 1793270 1793275) (-1028 "SOLVESER.spad" 1789485 1789496 1791027 1791032) (-1027 "SOLVERAD.spad" 1785495 1785506 1789475 1789480) (-1026 "SOLVEFOR.spad" 1783915 1783933 1785485 1785490) (-1025 "SNTSCAT.spad" 1783503 1783520 1783871 1783910) (-1024 "SMTS.spad" 1781763 1781789 1783068 1783165) (-1023 "SMP.spad" 1779205 1779225 1779595 1779722) (-1022 "SMITH.spad" 1778048 1778073 1779195 1779200) (-1021 "SMATCAT.spad" 1776146 1776176 1777980 1778043) (-1020 "SMATCAT.spad" 1774188 1774220 1776024 1776029) (-1019 "SKAGG.spad" 1773236 1773247 1774144 1774183) (-1018 "SINT.spad" 1771544 1771553 1773102 1773231) (-1017 "SIMPAN.spad" 1771272 1771281 1771534 1771539) (-1016 "SIGNRF.spad" 1770380 1770391 1771262 1771267) (-1015 "SIGNEF.spad" 1769649 1769666 1770370 1770375) (-1014 "SHP.spad" 1767519 1767534 1769605 1769610) (-1013 "SHDP.spad" 1759617 1759644 1760134 1760263) (-1012 "SGROUP.spad" 1759083 1759092 1759607 1759612) (-1011 "SGROUP.spad" 1758547 1758558 1759073 1759078) (-1010 "SGCF.spad" 1751428 1751437 1758537 1758542) (-1009 "SFRTCAT.spad" 1750344 1750361 1751384 1751423) (-1008 "SFRGCD.spad" 1749399 1749419 1750334 1750339) (-1007 "SFQCMPK.spad" 1744020 1744040 1749389 1749394) (-1006 "SFORT.spad" 1743455 1743469 1744010 1744015) (-1005 "SEXOF.spad" 1743298 1743338 1743445 1743450) (-1004 "SEXCAT.spad" 1740386 1740426 1743288 1743293) (-1003 "SEX.spad" 1740278 1740287 1740376 1740381) (-1002 "SETMN.spad" 1738696 1738713 1740268 1740273) (-1001 "SETCAT.spad" 1738181 1738190 1738686 1738691) (-1000 "SETCAT.spad" 1737664 1737675 1738171 1738176) (-999 "SETAGG.spad" 1734531 1734541 1737632 1737659) (-998 "SETAGG.spad" 1731418 1731430 1734521 1734526) (-997 "SET.spad" 1729775 1729785 1730895 1730934) (-996 "SEGXCAT.spad" 1728888 1728900 1729755 1729770) (-995 "SEGCAT.spad" 1727708 1727718 1728868 1728883) (-994 "SEGBIND2.spad" 1727405 1727417 1727698 1727703) (-993 "SEGBIND.spad" 1726478 1726488 1727360 1727365) (-992 "SEG2.spad" 1725904 1725916 1726434 1726439) (-991 "SEG.spad" 1725718 1725728 1725823 1725828) (-990 "SDVAR.spad" 1725693 1725703 1725708 1725713) (-989 "SDPOL.spad" 1723367 1723377 1723382 1723509) (-988 "SCPKG.spad" 1721447 1721457 1723357 1723362) (-987 "SCACHE.spad" 1720130 1720140 1721437 1721442) (-986 "SAOS.spad" 1720003 1720011 1720120 1720125) (-985 "SAERFFC.spad" 1719869 1719888 1719993 1719998) (-984 "SAEFACT.spad" 1719735 1719754 1719859 1719864) (-983 "SAE.spad" 1717914 1717929 1718524 1718659) (-982 "RURPK.spad" 1715556 1715571 1717904 1717909) (-981 "RULESET.spad" 1714998 1715021 1715546 1715551) (-980 "RULECOLD.spad" 1714851 1714863 1714988 1714993) (-979 "RULE.spad" 1713056 1713079 1714841 1714846) (-978 "RSETGCD.spad" 1709427 1709446 1713046 1713051) (-977 "RSETCAT.spad" 1699200 1699216 1709383 1709422) (-976 "RSETCAT.spad" 1689005 1689023 1699190 1699195) (-975 "RSDCMPK.spad" 1687458 1687477 1688995 1689000) (-974 "RRCC.spad" 1685842 1685871 1687448 1687453) (-973 "RRCC.spad" 1684224 1684255 1685832 1685837) (-972 "RPOLCAT.spad" 1663545 1663559 1684092 1684219) (-971 "RPOLCAT.spad" 1642581 1642597 1663130 1663135) (-970 "ROUTINE.spad" 1639165 1639173 1641810 1641837) (-969 "ROMAN.spad" 1638398 1638406 1639031 1639160) (-968 "ROIRC.spad" 1637479 1637510 1638388 1638393) (-967 "RNS.spad" 1636697 1636705 1637381 1637474) (-966 "RNS.spad" 1636001 1636011 1636687 1636692) (-965 "RNG.spad" 1635737 1635745 1635991 1635996) (-964 "RMODULE.spad" 1635376 1635386 1635727 1635732) (-963 "RMCAT2.spad" 1634785 1634841 1635366 1635371) (-962 "RMATRIX.spad" 1633521 1633539 1634008 1634047) (-961 "RMATCAT.spad" 1629043 1629073 1633465 1633516) (-960 "RMATCAT.spad" 1624467 1624499 1628891 1628896) (-959 "RING.spad" 1623825 1623833 1624447 1624462) (-958 "RING.spad" 1623191 1623201 1623815 1623820) (-957 "RIDIST.spad" 1622576 1622584 1623181 1623186) (-956 "RGCHAIN.spad" 1621231 1621246 1622136 1622163) (-955 "RFFACTOR.spad" 1620694 1620704 1621221 1621226) (-954 "RFFACT.spad" 1620568 1620579 1620684 1620689) (-953 "RFDIST.spad" 1619557 1619565 1620558 1620563) (-952 "RF.spad" 1617172 1617182 1619547 1619552) (-951 "RETSOL.spad" 1616590 1616602 1617162 1617167) (-950 "RETRACT.spad" 1615940 1615950 1616580 1616585) (-949 "RETRACT.spad" 1615288 1615300 1615930 1615935) (-948 "RESULT.spad" 1613931 1613939 1614517 1614544) (-947 "RESRING.spad" 1613279 1613325 1613869 1613926) (-946 "RESLATC.spad" 1612604 1612614 1613269 1613274) (-945 "REPSQ.spad" 1612334 1612344 1612594 1612599) (-944 "REPDB.spad" 1612040 1612050 1612324 1612329) (-943 "REP2.spad" 1601605 1601615 1611882 1611887) (-942 "REP1.spad" 1595588 1595598 1601555 1601560) (-941 "REP.spad" 1593141 1593149 1595578 1595583) (-940 "REGSET.spad" 1590995 1591011 1592843 1592870) (-939 "REF.spad" 1590325 1590335 1590950 1590955) (-938 "REDORDER.spad" 1589502 1589518 1590315 1590320) (-937 "RECLOS.spad" 1588292 1588311 1588995 1589088) (-936 "REALSOLV.spad" 1587425 1587433 1588282 1588287) (-935 "REAL0Q.spad" 1584708 1584722 1587415 1587420) (-934 "REAL0.spad" 1581537 1581551 1584698 1584703) (-933 "REAL.spad" 1581514 1581522 1581527 1581532) (-932 "RDIV.spad" 1581166 1581190 1581504 1581509) (-931 "RDIST.spad" 1580730 1580740 1581156 1581161) (-930 "RDETRS.spad" 1579527 1579544 1580720 1580725) (-929 "RDETR.spad" 1577635 1577652 1579517 1579522) (-928 "RDEEFS.spad" 1576709 1576725 1577625 1577630) (-927 "RDEEF.spad" 1575706 1575722 1576699 1576704) (-926 "RCFIELD.spad" 1572890 1572898 1575608 1575701) (-925 "RCFIELD.spad" 1570160 1570170 1572880 1572885) (-924 "RCAGG.spad" 1568529 1568539 1570140 1570155) (-923 "RCAGG.spad" 1566835 1566847 1568448 1568453) (-922 "RATRET.spad" 1566196 1566206 1566825 1566830) (-921 "RATFACT.spad" 1565889 1565900 1566186 1566191) (-920 "RANDSRC.spad" 1565209 1565217 1565879 1565884) (-919 "RADUTIL.spad" 1564964 1564972 1565199 1565204) (-918 "RADIX.spad" 1561757 1561770 1563434 1563527) (-917 "RADFF.spad" 1560174 1560210 1560292 1560448) (-916 "RADCAT.spad" 1559857 1559865 1560164 1560169) (-915 "RADCAT.spad" 1559538 1559548 1559847 1559852) (-914 "QUEUE.spad" 1559166 1559176 1559368 1559395) (-913 "QUATCT2.spad" 1558785 1558803 1559156 1559161) (-912 "QUATCAT.spad" 1556950 1556960 1558715 1558780) (-911 "QUATCAT.spad" 1554867 1554879 1556634 1556639) (-910 "QUAT.spad" 1553453 1553463 1553795 1553860) (-909 "QUAGG.spad" 1552367 1552377 1553409 1553448) (-908 "QFORM.spad" 1551830 1551844 1552357 1552362) (-907 "QFCAT2.spad" 1551521 1551537 1551820 1551825) (-906 "QFCAT.spad" 1550212 1550222 1551411 1551516) (-905 "QFCAT.spad" 1548509 1548521 1549710 1549715) (-904 "QEQUAT.spad" 1548066 1548074 1548499 1548504) (-903 "QCMPACK.spad" 1542797 1542816 1548056 1548061) (-902 "QALGSET2.spad" 1540793 1540811 1542787 1542792) (-901 "QALGSET.spad" 1536868 1536900 1540707 1540712) (-900 "PWFFINTB.spad" 1534178 1534199 1536858 1536863) (-899 "PUSHVAR.spad" 1533507 1533526 1534168 1534173) (-898 "PTRANFN.spad" 1529633 1529643 1533497 1533502) (-897 "PTPACK.spad" 1526773 1526783 1529623 1529628) (-896 "PTFUNC2.spad" 1526646 1526660 1526763 1526768) (-895 "PTCAT.spad" 1525927 1525937 1526602 1526641) (-894 "PSQFR.spad" 1525234 1525258 1525917 1525922) (-893 "PSEUDLIN.spad" 1524092 1524102 1525224 1525229) (-892 "PSETPK.spad" 1509493 1509509 1523970 1523975) (-891 "PSETCAT.spad" 1503401 1503424 1509461 1509488) (-890 "PSETCAT.spad" 1497295 1497320 1503357 1503362) (-889 "PSCURVE.spad" 1496278 1496286 1497285 1497290) (-888 "PSCAT.spad" 1495045 1495074 1496176 1496273) (-887 "PSCAT.spad" 1493902 1493933 1495035 1495040) (-886 "PRTITION.spad" 1492745 1492753 1493892 1493897) (-885 "PRS.spad" 1482211 1482228 1492701 1492706) (-884 "PRQAGG.spad" 1481765 1481775 1482167 1482206) (-883 "PRODUCT.spad" 1479445 1479457 1479731 1479786) (-882 "PRINT.spad" 1479197 1479205 1479435 1479440) (-881 "PRIMES.spad" 1477440 1477450 1479187 1479192) (-880 "PRIMELT.spad" 1475413 1475427 1477430 1477435) (-879 "PRIMCAT.spad" 1475036 1475044 1475403 1475408) (-878 "PRIMARR2.spad" 1473759 1473771 1475026 1475031) (-877 "PRIMARR.spad" 1472987 1472997 1473165 1473192) (-876 "PREASSOC.spad" 1472359 1472371 1472977 1472982) (-875 "PR.spad" 1470748 1470760 1471453 1471580) (-874 "PPCURVE.spad" 1469885 1469893 1470738 1470743) (-873 "POLYROOT.spad" 1468657 1468679 1469841 1469846) (-872 "POLYLIFT.spad" 1467918 1467941 1468647 1468652) (-871 "POLYCATQ.spad" 1466020 1466042 1467908 1467913) (-870 "POLYCAT.spad" 1459426 1459447 1465888 1466015) (-869 "POLYCAT.spad" 1452134 1452157 1458598 1458603) (-868 "POLY2UP.spad" 1451582 1451596 1452124 1452129) (-867 "POLY2.spad" 1451177 1451189 1451572 1451577) (-866 "POLY.spad" 1448477 1448487 1448994 1449121) (-865 "POLUTIL.spad" 1447418 1447447 1448433 1448438) (-864 "POLTOPOL.spad" 1446166 1446181 1447408 1447413) (-863 "POINT.spad" 1445302 1445312 1445317 1445344) (-862 "PNTHEORY.spad" 1442079 1442087 1445292 1445297) (-861 "PMTOOLS.spad" 1440836 1440850 1442069 1442074) (-860 "PMSYM.spad" 1440381 1440391 1440826 1440831) (-859 "PMQFCAT.spad" 1439968 1439982 1440371 1440376) (-858 "PMPREDFS.spad" 1439412 1439434 1439958 1439963) (-857 "PMPRED.spad" 1438881 1438895 1439402 1439407) (-856 "PMPLCAT.spad" 1437951 1437969 1438813 1438818) (-855 "PMLSAGG.spad" 1437532 1437546 1437941 1437946) (-854 "PMKERNEL.spad" 1437099 1437111 1437522 1437527) (-853 "PMINS.spad" 1436675 1436685 1437089 1437094) (-852 "PMFS.spad" 1436248 1436266 1436665 1436670) (-851 "PMDOWN.spad" 1435534 1435548 1436238 1436243) (-850 "PMASSFS.spad" 1434503 1434519 1435524 1435529) (-849 "PMASS.spad" 1433515 1433523 1434493 1434498) (-848 "PLOTTOOL.spad" 1433295 1433303 1433505 1433510) (-847 "PLOT3D.spad" 1429715 1429723 1433285 1433290) (-846 "PLOT1.spad" 1428848 1428858 1429705 1429710) (-845 "PLOT.spad" 1423679 1423687 1428838 1428843) (-844 "PLEQN.spad" 1411360 1411387 1423669 1423674) (-843 "PINTERPA.spad" 1411142 1411158 1411350 1411355) (-842 "PINTERP.spad" 1410758 1410777 1411132 1411137) (-841 "PID.spad" 1409714 1409722 1410684 1410753) (-840 "PICOERCE.spad" 1409371 1409381 1409704 1409709) (-839 "PI.spad" 1408978 1408986 1409345 1409366) (-838 "PGROEB.spad" 1407575 1407589 1408968 1408973) (-837 "PGE.spad" 1398828 1398836 1407565 1407570) (-836 "PGCD.spad" 1397710 1397727 1398818 1398823) (-835 "PFRPAC.spad" 1396853 1396863 1397700 1397705) (-834 "PFR.spad" 1393510 1393520 1396755 1396848) (-833 "PFOTOOLS.spad" 1392768 1392784 1393500 1393505) (-832 "PFOQ.spad" 1392138 1392156 1392758 1392763) (-831 "PFO.spad" 1391557 1391584 1392128 1392133) (-830 "PFECAT.spad" 1389223 1389231 1391483 1391552) (-829 "PFECAT.spad" 1386917 1386927 1389179 1389184) (-828 "PFBRU.spad" 1384787 1384799 1386907 1386912) (-827 "PFBR.spad" 1382325 1382348 1384777 1384782) (-826 "PF.spad" 1381899 1381911 1382130 1382223) (-825 "PERMGRP.spad" 1376635 1376645 1381889 1381894) (-824 "PERMCAT.spad" 1375187 1375197 1376615 1376630) (-823 "PERMAN.spad" 1373719 1373733 1375177 1375182) (-822 "PERM.spad" 1369662 1369672 1373549 1373564) (-821 "PENDTREE.spad" 1369323 1369333 1369514 1369519) (-820 "PDRING.spad" 1367814 1367824 1369303 1369318) (-819 "PDRING.spad" 1366313 1366325 1367804 1367809) (-818 "PDEPROB.spad" 1365270 1365278 1366303 1366308) (-817 "PDEPACK.spad" 1359272 1359280 1365260 1365265) (-816 "PDECOMP.spad" 1358734 1358751 1359262 1359267) (-815 "PDECAT.spad" 1357088 1357096 1358724 1358729) (-814 "PCOMP.spad" 1356939 1356952 1357078 1357083) (-813 "PBWLB.spad" 1355521 1355538 1356929 1356934) (-812 "PATTERN2.spad" 1355257 1355269 1355511 1355516) (-811 "PATTERN1.spad" 1353559 1353575 1355247 1355252) (-810 "PATTERN.spad" 1347990 1348000 1353549 1353554) (-809 "PATRES2.spad" 1347644 1347658 1347980 1347985) (-808 "PATRES.spad" 1345183 1345195 1347634 1347639) (-807 "PATMATCH.spad" 1343345 1343376 1344896 1344901) (-806 "PATMAB.spad" 1342770 1342780 1343335 1343340) (-805 "PATLRES.spad" 1341854 1341868 1342760 1342765) (-804 "PATAB.spad" 1341618 1341628 1341844 1341849) (-803 "PARTPERM.spad" 1338980 1338988 1341608 1341613) (-802 "PARSURF.spad" 1338408 1338436 1338970 1338975) (-801 "PARSU2.spad" 1338203 1338219 1338398 1338403) (-800 "PARSCURV.spad" 1337631 1337659 1338193 1338198) (-799 "PARSC2.spad" 1337420 1337436 1337621 1337626) (-798 "PARPCURV.spad" 1336878 1336906 1337410 1337415) (-797 "PARPC2.spad" 1336667 1336683 1336868 1336873) (-796 "PAN2EXPR.spad" 1336079 1336087 1336657 1336662) (-795 "PALETTE.spad" 1335135 1335143 1336069 1336074) (-794 "PADICRC.spad" 1332468 1332486 1333643 1333736) (-793 "PADICRAT.spad" 1330486 1330498 1330707 1330800) (-792 "PADICCT.spad" 1329027 1329039 1330412 1330481) (-791 "PADIC.spad" 1328722 1328734 1328953 1329022) (-790 "PADEPAC.spad" 1327401 1327420 1328712 1328717) (-789 "PADE.spad" 1326141 1326157 1327391 1327396) (-788 "OWP.spad" 1325125 1325155 1325999 1326066) (-787 "OVAR.spad" 1324906 1324929 1325115 1325120) (-786 "OUTFORM.spad" 1314320 1314328 1324896 1324901) (-785 "OUT.spad" 1313404 1313412 1314310 1314315) (-784 "OSI.spad" 1312879 1312887 1313394 1313399) (-783 "ORTHPOL.spad" 1311340 1311350 1312796 1312801) (-782 "OREUP.spad" 1310700 1310728 1311022 1311061) (-781 "ORESUP.spad" 1310001 1310025 1310382 1310421) (-780 "OREPCTO.spad" 1307820 1307832 1309921 1309926) (-779 "OREPCAT.spad" 1301877 1301887 1307776 1307815) (-778 "OREPCAT.spad" 1295824 1295836 1301725 1301730) (-777 "ORDSET.spad" 1294990 1294998 1295814 1295819) (-776 "ORDSET.spad" 1294154 1294164 1294980 1294985) (-775 "ORDRING.spad" 1293544 1293552 1294134 1294149) (-774 "ORDRING.spad" 1292942 1292952 1293534 1293539) (-773 "ORDMON.spad" 1292797 1292805 1292932 1292937) (-772 "ORDFUNS.spad" 1291923 1291939 1292787 1292792) (-771 "ORDFIN.spad" 1291857 1291865 1291913 1291918) (-770 "ORDCOMP2.spad" 1291142 1291154 1291847 1291852) (-769 "ORDCOMP.spad" 1289610 1289620 1290692 1290721) (-768 "OPTPROB.spad" 1288190 1288198 1289600 1289605) (-767 "OPTPACK.spad" 1280575 1280583 1288180 1288185) (-766 "OPTCAT.spad" 1278250 1278258 1280565 1280570) (-765 "OPQUERY.spad" 1277799 1277807 1278240 1278245) (-764 "OP.spad" 1277541 1277551 1277621 1277688) (-763 "ONECOMP2.spad" 1276959 1276971 1277531 1277536) (-762 "ONECOMP.spad" 1275707 1275717 1276509 1276538) (-761 "OMSERVER.spad" 1274709 1274717 1275697 1275702) (-760 "OMSAGG.spad" 1274540 1274550 1274653 1274704) (-759 "OMPKG.spad" 1273152 1273160 1274530 1274535) (-758 "OMLO.spad" 1272577 1272589 1273038 1273077) (-757 "OMEXPR.spad" 1272411 1272421 1272567 1272572) (-756 "OMERRK.spad" 1271445 1271453 1272401 1272406) (-755 "OMERR.spad" 1270988 1270996 1271435 1271440) (-754 "OMENC.spad" 1270332 1270340 1270978 1270983) (-753 "OMDEV.spad" 1264621 1264629 1270322 1270327) (-752 "OMCONN.spad" 1264030 1264038 1264611 1264616) (-751 "OM.spad" 1262995 1263003 1264020 1264025) (-750 "OINTDOM.spad" 1262758 1262766 1262921 1262990) (-749 "OFMONOID.spad" 1258945 1258955 1262748 1262753) (-748 "ODVAR.spad" 1258920 1258930 1258935 1258940) (-747 "ODR.spad" 1258368 1258394 1258732 1258881) (-746 "ODPOL.spad" 1256042 1256052 1256057 1256184) (-745 "ODP.spad" 1248284 1248304 1248657 1248786) (-744 "ODETOOLS.spad" 1246867 1246886 1248274 1248279) (-743 "ODESYS.spad" 1244517 1244534 1246857 1246862) (-742 "ODERTRIC.spad" 1240458 1240475 1244474 1244479) (-741 "ODERED.spad" 1239845 1239869 1240448 1240453) (-740 "ODERAT.spad" 1237396 1237413 1239835 1239840) (-739 "ODEPRRIC.spad" 1234287 1234309 1237386 1237391) (-738 "ODEPROB.spad" 1233486 1233494 1234277 1234282) (-737 "ODEPRIM.spad" 1230760 1230782 1233476 1233481) (-736 "ODEPAL.spad" 1230136 1230160 1230750 1230755) (-735 "ODEPACK.spad" 1216738 1216746 1230126 1230131) (-734 "ODEINT.spad" 1216169 1216185 1216728 1216733) (-733 "ODEIFTBL.spad" 1213730 1213738 1216159 1216164) (-732 "ODEEF.spad" 1209097 1209113 1213720 1213725) (-731 "ODECONST.spad" 1208616 1208634 1209087 1209092) (-730 "ODECAT.spad" 1207212 1207220 1208606 1208611) (-729 "OCTCT2.spad" 1206848 1206869 1207202 1207207) (-728 "OCT.spad" 1204995 1205005 1205711 1205750) (-727 "OCAMON.spad" 1204843 1204851 1204985 1204990) (-726 "OC.spad" 1202617 1202627 1204799 1204838) (-725 "OC.spad" 1200117 1200129 1202301 1202306) (-724 "OASGP.spad" 1199932 1199940 1200107 1200112) (-723 "OAMONS.spad" 1199452 1199460 1199922 1199927) (-722 "OAMON.spad" 1199313 1199321 1199442 1199447) (-721 "OAGROUP.spad" 1199175 1199183 1199303 1199308) (-720 "NUMTUBE.spad" 1198762 1198778 1199165 1199170) (-719 "NUMQUAD.spad" 1186624 1186632 1198752 1198757) (-718 "NUMODE.spad" 1177752 1177760 1186614 1186619) (-717 "NUMINT.spad" 1175310 1175318 1177742 1177747) (-716 "NUMFMT.spad" 1174150 1174158 1175300 1175305) (-715 "NUMERIC.spad" 1166223 1166233 1173956 1173961) (-714 "NTSCAT.spad" 1164705 1164721 1166179 1166218) (-713 "NTPOLFN.spad" 1164250 1164260 1164622 1164627) (-712 "NSUP2.spad" 1163642 1163654 1164240 1164245) (-711 "NSUP.spad" 1156628 1156638 1161200 1161353) (-710 "NSMP.spad" 1152827 1152846 1153135 1153262) (-709 "NREP.spad" 1151450 1151464 1152817 1152822) (-708 "NPCOEF.spad" 1150696 1150716 1151440 1151445) (-707 "NORMRETR.spad" 1150294 1150333 1150686 1150691) (-706 "NORMPK.spad" 1148188 1148207 1150284 1150289) (-705 "NORMMA.spad" 1148009 1148035 1148178 1148183) (-704 "NONE1.spad" 1147685 1147695 1147999 1148004) (-703 "NONE.spad" 1147426 1147434 1147675 1147680) (-702 "NODE1.spad" 1146895 1146911 1147416 1147421) (-701 "NNI.spad" 1145782 1145790 1146869 1146890) (-700 "NLINSOL.spad" 1144404 1144414 1145772 1145777) (-699 "NIPROB.spad" 1142887 1142895 1144394 1144399) (-698 "NFINTBAS.spad" 1140347 1140364 1142877 1142882) (-697 "NCODIV.spad" 1138545 1138561 1140337 1140342) (-696 "NCNTFRAC.spad" 1138187 1138201 1138535 1138540) (-695 "NCEP.spad" 1136635 1136649 1138177 1138182) (-694 "NASRING.spad" 1136231 1136239 1136625 1136630) (-693 "NASRING.spad" 1135825 1135835 1136221 1136226) (-692 "NARNG.spad" 1135161 1135169 1135815 1135820) (-691 "NARNG.spad" 1134495 1134505 1135151 1135156) (-690 "NAGSP.spad" 1133568 1133576 1134485 1134490) (-689 "NAGS.spad" 1123093 1123101 1133558 1133563) (-688 "NAGF07.spad" 1121478 1121486 1123083 1123088) (-687 "NAGF04.spad" 1115702 1115710 1121468 1121473) (-686 "NAGF02.spad" 1109503 1109511 1115692 1115697) (-685 "NAGF01.spad" 1105098 1105106 1109493 1109498) (-684 "NAGE04.spad" 1098550 1098558 1105088 1105093) (-683 "NAGE02.spad" 1088884 1088892 1098540 1098545) (-682 "NAGE01.spad" 1084760 1084768 1088874 1088879) (-681 "NAGD03.spad" 1082672 1082680 1084750 1084755) (-680 "NAGD02.spad" 1075179 1075187 1082662 1082667) (-679 "NAGD01.spad" 1069284 1069292 1075169 1075174) (-678 "NAGC06.spad" 1065063 1065071 1069274 1069279) (-677 "NAGC05.spad" 1063524 1063532 1065053 1065058) (-676 "NAGC02.spad" 1062771 1062779 1063514 1063519) (-675 "NAALG.spad" 1062306 1062316 1062739 1062766) (-674 "NAALG.spad" 1061861 1061873 1062296 1062301) (-673 "MULTSQFR.spad" 1058819 1058836 1061851 1061856) (-672 "MULTFACT.spad" 1058385 1058402 1058809 1058814) (-671 "MTSCAT.spad" 1056419 1056440 1058283 1058380) (-670 "MTHING.spad" 1056076 1056086 1056409 1056414) (-669 "MSYSCMD.spad" 1055510 1055518 1056066 1056071) (-668 "MSETAGG.spad" 1055451 1055461 1055466 1055505) (-667 "MSET.spad" 1053449 1053459 1055213 1055252) (-666 "MRING.spad" 1050420 1050432 1053157 1053224) (-665 "MRF2.spad" 1049980 1049994 1050410 1050415) (-664 "MRATFAC.spad" 1049526 1049543 1049970 1049975) (-663 "MPRFF.spad" 1047556 1047575 1049516 1049521) (-662 "MPOLY.spad" 1044994 1045009 1045353 1045480) (-661 "MPCPF.spad" 1044258 1044277 1044984 1044989) (-660 "MPC3.spad" 1044073 1044113 1044248 1044253) (-659 "MPC2.spad" 1043715 1043748 1044063 1044068) (-658 "MONOTOOL.spad" 1042050 1042067 1043705 1043710) (-657 "MONOID.spad" 1041224 1041232 1042040 1042045) (-656 "MONOID.spad" 1040396 1040406 1041214 1041219) (-655 "MONOGEN.spad" 1039142 1039155 1040256 1040391) (-654 "MONOGEN.spad" 1037910 1037925 1039026 1039031) (-653 "MONADWU.spad" 1035924 1035932 1037900 1037905) (-652 "MONADWU.spad" 1033936 1033946 1035914 1035919) (-651 "MONAD.spad" 1033080 1033088 1033926 1033931) (-650 "MONAD.spad" 1032222 1032232 1033070 1033075) (-649 "MOEBIUS.spad" 1030908 1030922 1032202 1032217) (-648 "MODULE.spad" 1030778 1030788 1030876 1030903) (-647 "MODULE.spad" 1030668 1030680 1030768 1030773) (-646 "MODRING.spad" 1029999 1030038 1030648 1030663) (-645 "MODOP.spad" 1028650 1028662 1029821 1029888) (-644 "MODMONOM.spad" 1028182 1028200 1028640 1028645) (-643 "MODMON.spad" 1024892 1024908 1025668 1025821) (-642 "MODFIELD.spad" 1024250 1024289 1024794 1024887) (-641 "MMAP.spad" 1023990 1024024 1024240 1024245) (-640 "MLO.spad" 1022417 1022427 1023946 1023985) (-639 "MLIFT.spad" 1020989 1021006 1022407 1022412) (-638 "MKUCFUNC.spad" 1020522 1020540 1020979 1020984) (-637 "MKRECORD.spad" 1020108 1020121 1020512 1020517) (-636 "MKFUNC.spad" 1019489 1019499 1020098 1020103) (-635 "MKFLCFN.spad" 1018445 1018455 1019479 1019484) (-634 "MKCHSET.spad" 1018221 1018231 1018435 1018440) (-633 "MKBCFUNC.spad" 1017706 1017724 1018211 1018216) (-632 "MINT.spad" 1017145 1017153 1017608 1017701) (-631 "MHROWRED.spad" 1015646 1015656 1017135 1017140) (-630 "MFLOAT.spad" 1014091 1014099 1015536 1015641) (-629 "MFINFACT.spad" 1013491 1013513 1014081 1014086) (-628 "MESH.spad" 1011223 1011231 1013481 1013486) (-627 "MDDFACT.spad" 1009416 1009426 1011213 1011218) (-626 "MDAGG.spad" 1008905 1008915 1009384 1009411) (-625 "MCMPLX.spad" 1004885 1004893 1005499 1005700) (-624 "MCDEN.spad" 1004093 1004105 1004875 1004880) (-623 "MCALCFN.spad" 1001171 1001197 1004083 1004088) (-622 "MATSTOR.spad" 998447 998457 1001161 1001166) (-621 "MATRIX.spad" 997374 997384 997858 997885) (-620 "MATLIN.spad" 994700 994724 997258 997263) (-619 "MATCAT2.spad" 993968 994016 994690 994695) (-618 "MATCAT.spad" 985541 985563 993924 993963) (-617 "MATCAT.spad" 976998 977022 985383 985388) (-616 "MAPPKG3.spad" 975897 975911 976988 976993) (-615 "MAPPKG2.spad" 975231 975243 975887 975892) (-614 "MAPPKG1.spad" 974049 974059 975221 975226) (-613 "MAPHACK3.spad" 973857 973871 974039 974044) (-612 "MAPHACK2.spad" 973622 973634 973847 973852) (-611 "MAPHACK1.spad" 973252 973262 973612 973617) (-610 "MAGMA.spad" 971042 971059 973242 973247) (-609 "M3D.spad" 968963 968973 970645 970650) (-608 "LZSTAGG.spad" 966181 966191 968943 968958) (-607 "LZSTAGG.spad" 963407 963419 966171 966176) (-606 "LWORD.spad" 960104 960121 963397 963402) (-605 "LSQM.spad" 958388 958402 958786 958837) (-604 "LSPP.spad" 957921 957938 958378 958383) (-603 "LSMP1.spad" 955725 955739 957911 957916) (-602 "LSMP.spad" 954565 954593 955715 955720) (-601 "LSAGG.spad" 954427 954437 954521 954560) (-600 "LSAGG.spad" 954321 954333 954417 954422) (-599 "LPOLY.spad" 953275 953294 954177 954246) (-598 "LPEFRAC.spad" 952532 952542 953265 953270) (-597 "LOGIC.spad" 952134 952142 952522 952527) (-596 "LOGIC.spad" 951734 951744 952124 952129) (-595 "LODOOPS.spad" 950652 950664 951724 951729) (-594 "LODOF.spad" 949696 949713 950609 950614) (-593 "LODOCAT.spad" 948354 948364 949652 949691) (-592 "LODOCAT.spad" 947010 947022 948310 948315) (-591 "LODO2.spad" 946285 946297 946692 946731) (-590 "LODO1.spad" 945687 945697 945967 946006) (-589 "LODO.spad" 945073 945089 945369 945408) (-588 "LODEEF.spad" 943845 943863 945063 945068) (-587 "LO.spad" 943246 943260 943779 943806) (-586 "LNAGG.spad" 939678 939688 943226 943241) (-585 "LNAGG.spad" 936084 936096 939634 939639) (-584 "LMOPS.spad" 932820 932837 936074 936079) (-583 "LMODULE.spad" 932462 932472 932810 932815) (-582 "LMDICT.spad" 931968 931978 932236 932263) (-581 "LIST3.spad" 931427 931441 931958 931963) (-580 "LIST2MAP.spad" 928743 928755 931417 931422) (-579 "LIST2.spad" 927549 927561 928733 928738) (-578 "LIST.spad" 925797 925807 926919 926946) (-577 "LINEXP.spad" 925229 925239 925777 925792) (-576 "LINDEP.spad" 924006 924018 925141 925146) (-575 "LIMITRF.spad" 921920 921930 923996 924001) (-574 "LIMITPS.spad" 920803 920816 921910 921915) (-573 "LIECAT.spad" 920279 920289 920729 920798) (-572 "LIECAT.spad" 919783 919795 920235 920240) (-571 "LIE.spad" 917797 917809 919073 919218) (-570 "LIB.spad" 916427 916435 917038 917053) (-569 "LGROBP.spad" 913780 913799 916417 916422) (-568 "LFCAT.spad" 912799 912807 913770 913775) (-567 "LF.spad" 911718 911734 912789 912794) (-566 "LEXTRIPK.spad" 907221 907236 911708 911713) (-565 "LEXP.spad" 905224 905251 907201 907216) (-564 "LEADCDET.spad" 903608 903625 905214 905219) (-563 "LAZM3PK.spad" 902312 902334 903598 903603) (-562 "LAUPOL.spad" 901003 901016 901907 901976) (-561 "LAPLACE.spad" 900576 900592 900993 900998) (-560 "LALG.spad" 900352 900362 900556 900571) (-559 "LALG.spad" 900136 900148 900342 900347) (-558 "LA.spad" 899576 899590 900058 900097) (-557 "KOVACIC.spad" 898289 898306 899566 899571) (-556 "KONVERT.spad" 898011 898021 898279 898284) (-555 "KOERCE.spad" 897748 897758 898001 898006) (-554 "KERNEL2.spad" 897451 897463 897738 897743) (-553 "KERNEL.spad" 895986 895996 897235 897240) (-552 "KDAGG.spad" 895203 895225 895954 895981) (-551 "KDAGG.spad" 894440 894464 895193 895198) (-550 "KAFILE.spad" 893552 893568 893787 893814) (-549 "JORDAN.spad" 891379 891391 892842 892987) (-548 "IXAGG.spad" 889768 889792 891359 891374) (-547 "IXAGG.spad" 888022 888048 889615 889620) (-546 "IVECTOR.spad" 887153 887168 887173 887200) (-545 "ITUPLE.spad" 886298 886308 887143 887148) (-544 "ITRIGMNP.spad" 885109 885128 886288 886293) (-543 "ITFUN3.spad" 884603 884617 885099 885104) (-542 "ITFUN2.spad" 884333 884345 884593 884598) (-541 "ITAYLOR.spad" 882125 882140 884169 884294) (-540 "ISUPS.spad" 874536 874551 881099 881196) (-539 "ISUMP.spad" 874033 874049 874526 874531) (-538 "ISTRING.spad" 873328 873341 873429 873456) (-537 "IRURPK.spad" 872041 872060 873318 873323) (-536 "IRSN.spad" 870001 870009 872031 872036) (-535 "IRRF2F.spad" 868476 868486 869957 869962) (-534 "IRREDFFX.spad" 868077 868088 868466 868471) (-533 "IROOT.spad" 866408 866418 868067 868072) (-532 "IR2F.spad" 865608 865624 866398 866403) (-531 "IR2.spad" 864628 864644 865598 865603) (-530 "IR.spad" 862418 862432 864484 864511) (-529 "IPRNTPK.spad" 862178 862186 862408 862413) (-528 "IPF.spad" 861743 861755 861983 862076) (-527 "IPADIC.spad" 861504 861530 861669 861738) (-526 "INVLAPLA.spad" 861149 861165 861494 861499) (-525 "INTTR.spad" 854395 854412 861139 861144) (-524 "INTTOOLS.spad" 852107 852123 853970 853975) (-523 "INTSLPE.spad" 851413 851421 852097 852102) (-522 "INTRVL.spad" 850979 850989 851327 851408) (-521 "INTRF.spad" 849343 849357 850969 850974) (-520 "INTRET.spad" 848775 848785 849333 849338) (-519 "INTRAT.spad" 847450 847467 848765 848770) (-518 "INTPM.spad" 845813 845829 847093 847098) (-517 "INTPAF.spad" 843581 843599 845745 845750) (-516 "INTPACK.spad" 833891 833899 843571 843576) (-515 "INTHERTR.spad" 833157 833174 833881 833886) (-514 "INTHERAL.spad" 832823 832847 833147 833152) (-513 "INTHEORY.spad" 829334 829342 832813 832818) (-512 "INTG0.spad" 822797 822815 829266 829271) (-511 "INTFTBL.spad" 816862 816870 822787 822792) (-510 "INTFACT.spad" 815921 815931 816852 816857) (-509 "INTEF.spad" 814236 814252 815911 815916) (-508 "INTDOM.spad" 812851 812859 814162 814231) (-507 "INTDOM.spad" 811528 811538 812841 812846) (-506 "INTCAT.spad" 809771 809781 811442 811523) (-505 "INTBIT.spad" 809274 809282 809761 809766) (-504 "INTALG.spad" 808456 808483 809264 809269) (-503 "INTAF.spad" 807948 807964 808446 808451) (-502 "INTABL.spad" 807028 807059 807191 807218) (-501 "INT.spad" 806389 806397 806882 807023) (-500 "INS.spad" 803785 803793 806291 806384) (-499 "INS.spad" 801267 801277 803775 803780) (-498 "INPSIGN.spad" 800701 800714 801257 801262) (-497 "INPRODPF.spad" 799767 799786 800691 800696) (-496 "INPRODFF.spad" 798825 798849 799757 799762) (-495 "INNMFACT.spad" 798084 798101 798815 798820) (-494 "INMODGCD.spad" 797568 797598 798074 798079) (-493 "INFSP.spad" 796470 796492 797558 797563) (-492 "INFPROD0.spad" 795520 795539 796460 796465) (-491 "INFORM1.spad" 795145 795155 795510 795515) (-490 "INFORM.spad" 792413 792421 795135 795140) (-489 "INFINITY.spad" 791965 791973 792403 792408) (-488 "INEP.spad" 790685 790707 791955 791960) (-487 "INDE.spad" 790591 790608 790675 790680) (-486 "INCRMAPS.spad" 790012 790022 790581 790586) (-485 "INBFF.spad" 785782 785793 790002 790007) (-484 "IMATRIX.spad" 784950 784976 785462 785489) (-483 "IMATQF.spad" 784044 784088 784906 784911) (-482 "IMATLIN.spad" 782649 782673 784000 784005) (-481 "ILIST.spad" 782035 782050 782055 782082) (-480 "IIARRAY2.spad" 781646 781684 781865 781892) (-479 "IFF.spad" 781056 781072 781327 781420) (-478 "IFARRAY.spad" 778750 778765 780462 780489) (-477 "IFAMON.spad" 778612 778629 778706 778711) (-476 "IEVALAB.spad" 778001 778013 778602 778607) (-475 "IEVALAB.spad" 777388 777402 777991 777996) (-474 "IDPOAMS.spad" 777144 777156 777378 777383) (-473 "IDPOAM.spad" 776864 776876 777134 777139) (-472 "IDPO.spad" 776662 776674 776854 776859) (-471 "IDPC.spad" 775596 775608 776652 776657) (-470 "IDPAM.spad" 775341 775353 775586 775591) (-469 "IDPAG.spad" 775088 775100 775331 775336) (-468 "IDECOMP.spad" 772325 772343 775078 775083) (-467 "IDEAL.spad" 767248 767287 772260 772265) (-466 "ICDEN.spad" 766399 766415 767238 767243) (-465 "ICARD.spad" 765588 765596 766389 766394) (-464 "IBPTOOLS.spad" 764181 764198 765578 765583) (-463 "IBITS.spad" 763438 763451 763875 763902) (-462 "IBATOOL.spad" 760313 760332 763428 763433) (-461 "IBACHIN.spad" 758800 758815 760303 760308) (-460 "IARRAY2.spad" 758011 758037 758630 758657) (-459 "IARRAY1.spad" 757271 757286 757417 757444) (-458 "IAN.spad" 755486 755494 757089 757182) (-457 "IALGFACT.spad" 755245 755278 755476 755481) (-456 "HYPCAT.spad" 754669 754677 755235 755240) (-455 "HYPCAT.spad" 754091 754101 754659 754664) (-454 "HOAGG.spad" 751782 751792 754071 754086) (-453 "HOAGG.spad" 749314 749326 751605 751610) (-452 "HEXADEC.spad" 747186 747194 747784 747877) (-451 "HEUGCD.spad" 746201 746212 747176 747181) (-450 "HELLFDIV.spad" 745791 745815 746191 746196) (-449 "HEAP.spad" 745491 745501 745621 745648) (-448 "HDP.spad" 737729 737745 738106 738235) (-447 "HDMP.spad" 735327 735342 735526 735653) (-446 "HB.spad" 733564 733572 735317 735322) (-445 "HASHTBL.spad" 732596 732627 732807 732834) (-444 "HACKPI.spad" 732079 732087 732498 732591) (-443 "GTSET.spad" 731074 731090 731781 731808) (-442 "GSTBL.spad" 730155 730190 730329 730344) (-441 "GSERIES.spad" 727322 727349 728287 728436) (-440 "GROUP.spad" 726496 726504 727302 727317) (-439 "GROUP.spad" 725678 725688 726486 726491) (-438 "GROEBSOL.spad" 724166 724187 725668 725673) (-437 "GRMOD.spad" 722737 722749 724156 724161) (-436 "GRMOD.spad" 721306 721320 722727 722732) (-435 "GRIMAGE.spad" 714040 714048 721296 721301) (-434 "GRDEF.spad" 712419 712427 714030 714035) (-433 "GRAY.spad" 710882 710890 712409 712414) (-432 "GRALG.spad" 709929 709941 710872 710877) (-431 "GRALG.spad" 708974 708988 709919 709924) (-430 "GPOLSET.spad" 708484 708507 708712 708739) (-429 "GOSPER.spad" 707749 707767 708474 708479) (-428 "GMODPOL.spad" 706887 706914 707717 707744) (-427 "GHENSEL.spad" 705956 705970 706877 706882) (-426 "GENUPS.spad" 702057 702070 705946 705951) (-425 "GENUFACT.spad" 701634 701644 702047 702052) (-424 "GENPGCD.spad" 701218 701235 701624 701629) (-423 "GENMFACT.spad" 700670 700689 701208 701213) (-422 "GENEEZ.spad" 698609 698622 700660 700665) (-421 "GDMP.spad" 695630 695647 696406 696533) (-420 "GCNAALG.spad" 689525 689552 695424 695491) (-419 "GCDDOM.spad" 688697 688705 689451 689520) (-418 "GCDDOM.spad" 687931 687941 688687 688692) (-417 "GBINTERN.spad" 683951 683989 687921 687926) (-416 "GBF.spad" 679708 679746 683941 683946) (-415 "GBEUCLID.spad" 677582 677620 679698 679703) (-414 "GB.spad" 675100 675138 677538 677543) (-413 "GAUSSFAC.spad" 674397 674405 675090 675095) (-412 "GALUTIL.spad" 672719 672729 674353 674358) (-411 "GALPOLYU.spad" 671165 671178 672709 672714) (-410 "GALFACTU.spad" 669330 669349 671155 671160) (-409 "GALFACT.spad" 659463 659474 669320 669325) (-408 "FVFUN.spad" 656645 656653 659443 659458) (-407 "FVC.spad" 655924 655932 656625 656640) (-406 "FUNCTION.spad" 655773 655785 655914 655919) (-405 "FTEM.spad" 654936 654944 655763 655768) (-404 "FT.spad" 653148 653156 654926 654931) (-403 "FSUPFACT.spad" 652049 652068 653085 653090) (-402 "FST.spad" 650135 650143 652039 652044) (-401 "FSRED.spad" 649613 649629 650125 650130) (-400 "FSPRMELT.spad" 648421 648437 649570 649575) (-399 "FSPECF.spad" 646498 646514 648411 648416) (-398 "FSINT.spad" 646156 646172 646488 646493) (-397 "FSERIES.spad" 645343 645355 645976 646075) (-396 "FSCINT.spad" 644656 644672 645333 645338) (-395 "FSAGG2.spad" 643347 643363 644646 644651) (-394 "FSAGG.spad" 642673 642683 643291 643342) (-393 "FSAGG.spad" 641973 641985 642593 642598) (-392 "FS2UPS.spad" 636362 636396 641963 641968) (-391 "FS2EXPXP.spad" 635485 635508 636352 636357) (-390 "FS2.spad" 635130 635146 635475 635480) (-389 "FS.spad" 629165 629175 634894 635125) (-388 "FS.spad" 622991 623003 628722 628727) (-387 "FRUTIL.spad" 621933 621943 622981 622986) (-386 "FRNAALG.spad" 617020 617030 621875 621928) (-385 "FRNAALG.spad" 612119 612131 616976 616981) (-384 "FRNAAF2.spad" 611565 611583 612109 612114) (-383 "FRMOD.spad" 610960 610990 611497 611502) (-382 "FRIDEAL2.spad" 610562 610594 610950 610955) (-381 "FRIDEAL.spad" 609757 609778 610542 610557) (-380 "FRETRCT.spad" 609268 609278 609747 609752) (-379 "FRETRCT.spad" 608647 608659 609128 609133) (-378 "FRAMALG.spad" 606975 606988 608603 608642) (-377 "FRAMALG.spad" 605335 605350 606965 606970) (-376 "FRAC2.spad" 604938 604950 605325 605330) (-375 "FRAC.spad" 602041 602051 602444 602617) (-374 "FR2.spad" 601375 601387 602031 602036) (-373 "FR.spad" 595072 595082 600402 600471) (-372 "FPS.spad" 592925 592933 594962 595067) (-371 "FPS.spad" 590806 590816 592845 592850) (-370 "FPC.spad" 590108 590116 590708 590801) (-369 "FPC.spad" 589496 589506 590098 590103) (-368 "FPATMAB.spad" 589248 589258 589476 589491) (-367 "FPARFRAC.spad" 587713 587730 589238 589243) (-366 "FORTRAN.spad" 586213 586262 587703 587708) (-365 "FORTFN.spad" 583527 583535 586193 586208) (-364 "FORTCAT.spad" 583360 583368 583507 583522) (-363 "FORT.spad" 582289 582297 583350 583355) (-362 "FORMULA1.spad" 581768 581778 582279 582284) (-361 "FORMULA.spad" 579106 579114 581758 581763) (-360 "FORDER.spad" 578797 578821 579096 579101) (-359 "FOP.spad" 577998 578006 578787 578792) (-358 "FNLA.spad" 577422 577444 577966 577993) (-357 "FNCAT.spad" 575750 575758 577412 577417) (-356 "FNAME.spad" 575642 575650 575740 575745) (-355 "FMTC.spad" 575555 575563 575568 575637) (-354 "FMONOID.spad" 572610 572620 575511 575516) (-353 "FMFUN.spad" 569792 569800 572590 572605) (-352 "FMCAT.spad" 567446 567464 569760 569787) (-351 "FMC.spad" 566725 566733 567426 567441) (-350 "FM1.spad" 566082 566094 566659 566686) (-349 "FM.spad" 565777 565789 566016 566043) (-348 "FLOATRP.spad" 563836 563850 565767 565772) (-347 "FLOATCP.spad" 561630 561644 563826 563831) (-346 "FLOAT.spad" 554794 554802 561496 561625) (-345 "FLINEXP.spad" 554506 554516 554774 554789) (-344 "FLINEXP.spad" 554172 554184 554442 554447) (-343 "FLASORT.spad" 553492 553504 554162 554167) (-342 "FLALG.spad" 551138 551157 553418 553487) (-341 "FLAGG2.spad" 549811 549827 551128 551133) (-340 "FLAGG.spad" 547081 547091 549779 549806) (-339 "FLAGG.spad" 544264 544276 546964 546969) (-338 "FINRALG.spad" 542293 542306 544220 544259) (-337 "FINRALG.spad" 540248 540263 542177 542182) (-336 "FINITE.spad" 539400 539408 540238 540243) (-335 "FINAALG.spad" 528381 528391 539342 539395) (-334 "FINAALG.spad" 517374 517386 528337 528342) (-333 "FILECAT.spad" 515892 515909 517364 517369) (-332 "FILE.spad" 515475 515485 515882 515887) (-331 "FIELD.spad" 514881 514889 515377 515470) (-330 "FIELD.spad" 514373 514383 514871 514876) (-329 "FGROUP.spad" 512982 512992 514353 514368) (-328 "FGLMICPK.spad" 511769 511784 512972 512977) (-327 "FFX.spad" 511144 511159 511485 511578) (-326 "FFSLPE.spad" 510751 510772 511134 511139) (-325 "FFPOLY2.spad" 509803 509820 510741 510746) (-324 "FFPOLY.spad" 501055 501066 509793 509798) (-323 "FFP.spad" 500452 500472 500771 500864) (-322 "FFNBX.spad" 498964 498984 500168 500261) (-321 "FFNBP.spad" 497477 497494 498680 498773) (-320 "FFNB.spad" 495942 495963 497158 497251) (-319 "FFINTBAS.spad" 493356 493375 495932 495937) (-318 "FFIELDC.spad" 491008 491016 493258 493351) (-317 "FFIELDC.spad" 488746 488756 490998 491003) (-316 "FFHOM.spad" 487494 487511 488736 488741) (-315 "FFF.spad" 484929 484940 487484 487489) (-314 "FFCGX.spad" 483776 483796 484645 484738) (-313 "FFCGP.spad" 482665 482685 483492 483585) (-312 "FFCG.spad" 481457 481478 482346 482439) (-311 "FFCAT2.spad" 481202 481242 481447 481452) (-310 "FFCAT.spad" 474095 474117 481041 481197) (-309 "FFCAT.spad" 467067 467091 474015 474020) (-308 "FF.spad" 466515 466531 466748 466841) (-307 "FEXPR.spad" 458220 458266 466275 466314) (-306 "FEVALAB.spad" 457926 457936 458210 458215) (-305 "FEVALAB.spad" 457417 457429 457703 457708) (-304 "FDIVCAT.spad" 455459 455483 457407 457412) (-303 "FDIVCAT.spad" 453499 453525 455449 455454) (-302 "FDIV2.spad" 453153 453193 453489 453494) (-301 "FDIV.spad" 452595 452619 453143 453148) (-300 "FCPAK1.spad" 451116 451124 452585 452590) (-299 "FCOMP.spad" 450495 450505 451106 451111) (-298 "FC.spad" 440320 440328 450485 450490) (-297 "FAXF.spad" 434811 434825 440222 440315) (-296 "FAXF.spad" 429354 429370 434767 434772) (-295 "FARRAY.spad" 428745 428755 428760 428787) (-294 "FAMR.spad" 426865 426877 428643 428740) (-293 "FAMR.spad" 424969 424983 426749 426754) (-292 "FAMONOID.spad" 424619 424629 424923 424928) (-291 "FAMONC.spad" 422825 422837 424609 424614) (-290 "FAGROUP.spad" 422431 422441 422721 422748) (-289 "FACUTIL.spad" 420627 420644 422421 422426) (-288 "FACTFUNC.spad" 419803 419813 420617 420622) (-287 "EXPUPXS.spad" 416636 416659 417935 418084) (-286 "EXPRTUBE.spad" 413864 413872 416626 416631) (-285 "EXPRODE.spad" 410736 410752 413854 413859) (-284 "EXPR2UPS.spad" 406828 406841 410726 410731) (-283 "EXPR2.spad" 406531 406543 406818 406823) (-282 "EXPR.spad" 401833 401843 402547 402950) (-281 "EXPEXPAN.spad" 398774 398799 399408 399501) (-280 "EXIT.spad" 398445 398453 398764 398769) (-279 "EVALCYC.spad" 397903 397917 398435 398440) (-278 "EVALAB.spad" 397467 397477 397893 397898) (-277 "EVALAB.spad" 397029 397041 397457 397462) (-276 "EUCDOM.spad" 394571 394579 396955 397024) (-275 "EUCDOM.spad" 392175 392185 394561 394566) (-274 "ESTOOLS2.spad" 391937 391951 392165 392170) (-273 "ESTOOLS1.spad" 391791 391802 391927 391932) (-272 "ESTOOLS.spad" 383778 383786 391781 391786) (-271 "ESCONT1.spad" 383626 383638 383768 383773) (-270 "ESCONT.spad" 380563 380571 383616 383621) (-269 "ES2.spad" 380058 380074 380553 380558) (-268 "ES1.spad" 379624 379640 380048 380053) (-267 "ES.spad" 372171 372179 379614 379619) (-266 "ES.spad" 364626 364636 372071 372076) (-265 "ERROR.spad" 361947 361955 364616 364621) (-264 "EQTBL.spad" 360981 361003 361190 361217) (-263 "EQ2.spad" 360697 360709 360971 360976) (-262 "EQ.spad" 355565 355575 358380 358489) (-261 "EP.spad" 351879 351889 355555 355560) (-260 "ENTIRER.spad" 351547 351555 351823 351874) (-259 "EMR.spad" 350748 350789 351473 351542) (-258 "ELTAGG.spad" 349369 349388 350738 350743) (-257 "ELTAGG.spad" 347954 347975 349325 349330) (-256 "ELTAB.spad" 347735 347753 347944 347949) (-255 "ELFUTS.spad" 347114 347133 347725 347730) (-254 "ELEMFUN.spad" 346803 346811 347104 347109) (-253 "ELEMFUN.spad" 346490 346500 346793 346798) (-252 "ELAGG.spad" 344846 344856 346458 346485) (-251 "ELAGG.spad" 343151 343163 344765 344770) (-250 "EFUPXS.spad" 339927 339957 343107 343112) (-249 "EFULS.spad" 336763 336786 339883 339888) (-248 "EFSTRUC.spad" 334718 334734 336753 336758) (-247 "EF.spad" 329484 329500 334708 334713) (-246 "EAB.spad" 327760 327768 329474 329479) (-245 "E04UCFA.spad" 327737 327745 327750 327755) (-244 "E04NAFA.spad" 327714 327722 327727 327732) (-243 "E04MBFA.spad" 327691 327699 327704 327709) (-242 "E04JAFA.spad" 327668 327676 327681 327686) (-241 "E04GCFA.spad" 327645 327653 327658 327663) (-240 "E04FDFA.spad" 327622 327630 327635 327640) (-239 "E04DGFA.spad" 327599 327607 327612 327617) (-238 "E04AGNT.spad" 323441 323449 327589 327594) (-237 "DVARCAT.spad" 322505 322515 323431 323436) (-236 "DVARCAT.spad" 321567 321579 322495 322500) (-235 "DSMP.spad" 319287 319301 319306 319433) (-234 "DROPT1.spad" 319004 319014 319277 319282) (-233 "DROPT0.spad" 313885 313893 318994 318999) (-232 "DROPT.spad" 307942 307950 313875 313880) (-231 "DRAWPT.spad" 306097 306105 307932 307937) (-230 "DRAWHACK.spad" 305405 305415 306087 306092) (-229 "DRAWCX.spad" 302847 302855 305395 305400) (-228 "DRAWCURV.spad" 302384 302399 302837 302842) (-227 "DRAWCFUN.spad" 291556 291564 302374 302379) (-226 "DRAW.spad" 284156 284169 291546 291551) (-225 "DQAGG.spad" 282509 282519 284112 284151) (-224 "DPOLCAT.spad" 279189 279205 282377 282504) (-223 "DPOLCAT.spad" 275955 275973 279145 279150) (-222 "DPMO.spad" 269998 270014 270136 270432) (-221 "DPMM.spad" 264054 264072 264179 264475) (-220 "DMP.spad" 261652 261667 261851 261978) (-219 "DLP.spad" 261137 261147 261642 261647) (-218 "DLIST.spad" 259772 259782 260543 260570) (-217 "DLAGG.spad" 258397 258407 259752 259767) (-216 "DIVRING.spad" 257844 257852 258341 258392) (-215 "DIVRING.spad" 257335 257345 257834 257839) (-214 "DISPLAY.spad" 255515 255523 257325 257330) (-213 "DIRPROD2.spad" 254664 254682 255505 255510) (-212 "DIRPROD.spad" 247258 247274 247279 247408) (-211 "DIRPCAT.spad" 246365 246381 247112 247253) (-210 "DIRPCAT.spad" 245212 245230 245961 245966) (-209 "DIOSP.spad" 244037 244045 245202 245207) (-208 "DIOPS.spad" 243158 243168 244005 244032) (-207 "DIOPS.spad" 242265 242277 243114 243119) (-206 "DIFRING.spad" 241557 241565 242245 242260) (-205 "DIFRING.spad" 240857 240867 241547 241552) (-204 "DIFEXT.spad" 240016 240026 240837 240852) (-203 "DIFEXT.spad" 239092 239104 239915 239920) (-202 "DIAGG.spad" 239045 239055 239060 239087) (-201 "DIAGG.spad" 239018 239030 239035 239040) (-200 "DFSFUN.spad" 232426 232434 239008 239013) (-199 "DFLOAT.spad" 231028 231036 232316 232421) (-198 "DFINTTLS.spad" 229237 229253 231018 231023) (-197 "DERHAM.spad" 227147 227179 229217 229232) (-196 "DEQUEUE.spad" 226752 226762 226977 227004) (-195 "DEGRED.spad" 226367 226381 226742 226747) (-194 "DEFINTRF.spad" 223892 223902 226357 226362) (-193 "DEFINTEF.spad" 222388 222404 223882 223887) (-192 "DECIMAL.spad" 220272 220280 220858 220951) (-191 "DDFACT.spad" 218071 218088 220262 220267) (-190 "DBLRESP.spad" 217669 217693 218061 218066) (-189 "DBASE.spad" 216241 216251 217659 217664) (-188 "D03FAFA.spad" 216218 216226 216231 216236) (-187 "D03EEFA.spad" 216195 216203 216208 216213) (-186 "D03AGNT.spad" 215275 215283 216185 216190) (-185 "D02EJFA.spad" 215252 215260 215265 215270) (-184 "D02CJFA.spad" 215229 215237 215242 215247) (-183 "D02BHFA.spad" 215206 215214 215219 215224) (-182 "D02BBFA.spad" 215183 215191 215196 215201) (-181 "D02AGNT.spad" 210129 210137 215173 215178) (-180 "D01WGTS.spad" 208775 208783 210119 210124) (-179 "D01TRNS.spad" 208752 208760 208765 208770) (-178 "D01GBFA.spad" 208729 208737 208742 208747) (-177 "D01FCFA.spad" 208706 208714 208719 208724) (-176 "D01ASFA.spad" 208683 208691 208696 208701) (-175 "D01AQFA.spad" 208660 208668 208673 208678) (-174 "D01APFA.spad" 208637 208645 208650 208655) (-173 "D01ANFA.spad" 208614 208622 208627 208632) (-172 "D01AMFA.spad" 208591 208599 208604 208609) (-171 "D01ALFA.spad" 208568 208576 208581 208586) (-170 "D01AKFA.spad" 208545 208553 208558 208563) (-169 "D01AJFA.spad" 208522 208530 208535 208540) (-168 "D01AGNT.spad" 204991 204999 208512 208517) (-167 "CYCLOTOM.spad" 204497 204505 204981 204986) (-166 "CYCLES.spad" 201329 201337 204487 204492) (-165 "CVMP.spad" 200746 200756 201319 201324) (-164 "CTRIGMNP.spad" 199236 199252 200736 200741) (-163 "CSTTOOLS.spad" 198479 198492 199226 199231) (-162 "CRFP.spad" 192183 192196 198469 198474) (-161 "CRAPACK.spad" 191226 191236 192173 192178) (-160 "CPMATCH.spad" 190820 190835 191151 191156) (-159 "CPIMA.spad" 190525 190544 190810 190815) (-158 "COORDSYS.spad" 185418 185428 190515 190520) (-157 "CONTFRAC.spad" 181030 181040 185320 185413) (-156 "COMRING.spad" 180704 180712 180968 181025) (-155 "COMPPROP.spad" 180302 180310 180694 180699) (-154 "COMPLPAT.spad" 180158 180173 180292 180297) (-153 "COMPLEX2.spad" 179985 179997 180148 180153) (-152 "COMPLEX.spad" 174247 174257 174262 174523) (-151 "COMPFACT.spad" 174099 174113 174237 174242) (-150 "COMPCAT.spad" 172260 172270 173821 174094) (-149 "COMPCAT.spad" 170128 170140 171691 171696) (-148 "COMMUPC.spad" 169874 169892 170118 170123) (-147 "COMMONOP.spad" 169407 169415 169864 169869) (-146 "COMM.spad" 169216 169224 169397 169402) (-145 "COMBOPC.spad" 168121 168129 169206 169211) (-144 "COMBINAT.spad" 166866 166876 168111 168116) (-143 "COMBF.spad" 164234 164250 166856 166861) (-142 "COLOR.spad" 163200 163208 164224 164229) (-141 "CMPLXRT.spad" 162909 162926 163190 163195) (-140 "CLIP.spad" 159001 159009 162899 162904) (-139 "CLIF.spad" 157640 157656 158957 158996) (-138 "CLAGG.spad" 154574 154584 157620 157635) (-137 "CLAGG.spad" 151389 151401 154437 154442) (-136 "CINTSLPE.spad" 150857 150870 151379 151384) (-135 "CHVAR.spad" 148935 148957 150847 150852) (-134 "CHARZ.spad" 148850 148858 148915 148930) (-133 "CHARPOL.spad" 148358 148368 148840 148845) (-132 "CHARNZ.spad" 148111 148119 148338 148353) (-131 "CHAR.spad" 146077 146085 148101 148106) (-130 "CFCAT.spad" 145393 145401 146067 146072) (-129 "CDEN.spad" 144551 144565 145383 145388) (-128 "CCLASS.spad" 142866 142874 144020 144059) (-127 "CARTEN2.spad" 142252 142279 142856 142861) (-126 "CARTEN.spad" 137355 137379 142242 142247) (-125 "CARD.spad" 134644 134652 137329 137350) (-124 "CACHSET.spad" 134266 134274 134634 134639) (-123 "CABMON.spad" 133819 133827 134256 134261) (-122 "BTREE.spad" 133361 133371 133649 133676) (-121 "BTOURN.spad" 132902 132912 133191 133218) (-120 "BTCAT.spad" 132514 132524 132858 132897) (-119 "BTCAT.spad" 132158 132170 132504 132509) (-118 "BTAGG.spad" 131290 131298 132114 132153) (-117 "BTAGG.spad" 130454 130464 131280 131285) (-116 "BSTREE.spad" 129713 129723 130284 130311) (-115 "BRILL.spad" 127908 127919 129703 129708) (-114 "BRAGG.spad" 126979 126989 127888 127903) (-113 "BRAGG.spad" 126024 126036 126935 126940) (-112 "BPADICRT.spad" 124008 124020 124263 124356) (-111 "BPADIC.spad" 123672 123684 123934 124003) (-110 "BOUNDZRO.spad" 123328 123345 123662 123667) (-109 "BOP1.spad" 120706 120716 123284 123289) (-108 "BOP.spad" 116122 116130 120696 120701) (-107 "BOOLEAN.spad" 114980 114988 116112 116117) (-106 "BMODULE.spad" 114692 114704 114948 114975) (-105 "BITS.spad" 114169 114177 114386 114413) (-104 "BINFILE.spad" 113512 113520 114159 114164) (-103 "BINARY.spad" 111405 111413 111982 112075) (-102 "BGAGG.spad" 110835 110845 111373 111400) (-101 "BGAGG.spad" 110285 110297 110825 110830) (-100 "BFUNCT.spad" 109849 109857 110265 110280) (-99 "BEZOUT.spad" 108984 109010 109799 109804) (-98 "BBTREE.spad" 106397 106406 108814 108841) (-97 "BASTYPE.spad" 106070 106077 106387 106392) (-96 "BASTYPE.spad" 105741 105750 106060 106065) (-95 "BALFACT.spad" 105181 105193 105731 105736) (-94 "AUTOMOR.spad" 104628 104637 105161 105176) (-93 "ATTREG.spad" 101348 101355 104380 104623) (-92 "ATTRBUT.spad" 98431 98438 101328 101343) (-91 "ATRIG.spad" 97901 97908 98421 98426) (-90 "ATRIG.spad" 97369 97378 97891 97896) (-89 "ASTACK.spad" 96990 96999 97199 97226) (-88 "ASSOCEQ.spad" 95790 95801 96946 96951) (-87 "ASP9.spad" 94871 94884 95780 95785) (-86 "ASP80.spad" 94193 94206 94861 94866) (-85 "ASP8.spad" 93236 93249 94183 94188) (-84 "ASP78.spad" 92687 92700 93226 93231) (-83 "ASP77.spad" 92056 92069 92677 92682) (-82 "ASP74.spad" 91148 91161 92046 92051) (-81 "ASP73.spad" 90419 90432 91138 91143) (-80 "ASP7.spad" 89579 89592 90409 90414) (-79 "ASP6.spad" 88211 88224 89569 89574) (-78 "ASP55.spad" 86720 86733 88201 88206) (-77 "ASP50.spad" 84537 84550 86710 86715) (-76 "ASP49.spad" 83536 83549 84527 84532) (-75 "ASP42.spad" 81943 81982 83526 83531) (-74 "ASP41.spad" 80522 80561 81933 81938) (-73 "ASP4.spad" 79817 79830 80512 80517) (-72 "ASP35.spad" 78805 78818 79807 79812) (-71 "ASP34.spad" 78106 78119 78795 78800) (-70 "ASP33.spad" 77666 77679 78096 78101) (-69 "ASP31.spad" 76806 76819 77656 77661) (-68 "ASP30.spad" 75698 75711 76796 76801) (-67 "ASP29.spad" 75164 75177 75688 75693) (-66 "ASP28.spad" 66437 66450 75154 75159) (-65 "ASP27.spad" 65334 65347 66427 66432) (-64 "ASP24.spad" 64421 64434 65324 65329) (-63 "ASP20.spad" 63637 63650 64411 64416) (-62 "ASP19.spad" 58323 58336 63627 63632) (-61 "ASP12.spad" 57737 57750 58313 58318) (-60 "ASP10.spad" 57008 57021 57727 57732) (-59 "ASP1.spad" 56389 56402 56998 57003) (-58 "ARRAY2.spad" 55972 55981 56219 56246) (-57 "ARRAY12.spad" 54641 54652 55962 55967) (-56 "ARRAY1.spad" 53776 53785 54047 54074) (-55 "ARR2CAT.spad" 49426 49447 53732 53771) (-54 "ARR2CAT.spad" 45108 45131 49416 49421) (-53 "APPRULE.spad" 44352 44374 45098 45103) (-52 "APPLYORE.spad" 43967 43980 44342 44347) (-51 "ANY1.spad" 43038 43047 43957 43962) (-50 "ANY.spad" 41380 41387 43028 43033) (-49 "ANTISYM.spad" 39819 39835 41360 41375) (-48 "ANON.spad" 39732 39739 39809 39814) (-47 "AN.spad" 38035 38042 39550 39643) (-46 "AMR.spad" 36214 36225 37933 38030) (-45 "AMR.spad" 34230 34243 35951 35956) (-44 "ALIST.spad" 32598 32619 32624 32651) (-43 "ALGSC.spad" 31721 31747 32470 32523) (-42 "ALGPKG.spad" 27430 27441 31677 31682) (-41 "ALGMFACT.spad" 26848 26862 27420 27425) (-40 "ALGMANIP.spad" 24269 24284 26646 26651) (-39 "ALGFF.spad" 22587 22614 22804 22960) (-38 "ALGFACT.spad" 21814 21824 22577 22582) (-37 "ALGEBRA.spad" 21545 21554 21770 21809) (-36 "ALGEBRA.spad" 21308 21319 21535 21540) (-35 "ALAGG.spad" 20992 21013 21264 21303) (-34 "AHYP.spad" 20373 20380 20982 20987) (-33 "AGG.spad" 18672 18679 20353 20368) (-32 "AGG.spad" 16945 16954 18628 18633) (-31 "AF.spad" 15371 15386 16881 16886) (-30 "ACPLOT.spad" 13942 13949 15361 15366) (-29 "ACFS.spad" 11681 11690 13832 13937) (-28 "ACFS.spad" 9518 9529 11671 11676) (-27 "ACF.spad" 6120 6127 9420 9513) (-26 "ACF.spad" 2808 2817 6110 6115) (-25 "ABELSG.spad" 2349 2356 2798 2803) (-24 "ABELSG.spad" 1888 1897 2339 2344) (-23 "ABELMON.spad" 1431 1438 1878 1883) (-22 "ABELMON.spad" 972 981 1421 1426) (-21 "ABELGRP.spad" 544 551 962 967) (-20 "ABELGRP.spad" 114 123 534 539) (-19 "A1AGG.spad" 56 65 70 109) (-18 "A1AGG.spad" 30 41 46 51)) \ No newline at end of file +((-1184 NIL 2204723 2204728 2204733 2204738) (-3 NIL 2204703 2204708 2204713 2204718) (-2 NIL 2204683 2204688 2204693 2204698) (-1 NIL 2204663 2204668 2204673 2204678) (0 NIL 2204643 2204648 2204653 2204658) (-1179 "ZMOD.spad" 2204452 2204465 2204581 2204638) (-1178 "ZLINDEP.spad" 2203496 2203507 2204442 2204447) (-1177 "ZDSOLVE.spad" 2193345 2193367 2203486 2203491) (-1176 "YSTREAM.spad" 2192838 2192849 2193335 2193340) (-1175 "XRPOLY.spad" 2192058 2192078 2192694 2192763) (-1174 "XPR.spad" 2189787 2189800 2191776 2191875) (-1173 "XPOLY.spad" 2189342 2189353 2189643 2189712) (-1172 "XPOLYC.spad" 2188659 2188675 2189268 2189337) (-1171 "XPBWPOLY.spad" 2187096 2187116 2188439 2188508) (-1170 "XF.spad" 2185557 2185572 2186998 2187091) (-1169 "XF.spad" 2183998 2184015 2185441 2185446) (-1168 "XFALG.spad" 2181022 2181038 2183924 2183993) (-1167 "XEXPPKG.spad" 2180273 2180299 2181012 2181017) (-1166 "XDPOLY.spad" 2179887 2179903 2180129 2180198) (-1165 "XALG.spad" 2179485 2179496 2179843 2179882) (-1164 "WUTSET.spad" 2175380 2175397 2179187 2179214) (-1163 "WP.spad" 2174394 2174438 2175238 2175305) (-1162 "WFFINTBS.spad" 2171957 2171979 2174384 2174389) (-1161 "WEIER.spad" 2170171 2170182 2171947 2171952) (-1160 "VSPACE.spad" 2169844 2169855 2170139 2170166) (-1159 "VSPACE.spad" 2169537 2169550 2169834 2169839) (-1158 "VOID.spad" 2169127 2169136 2169527 2169532) (-1157 "VIEW.spad" 2166749 2166758 2169117 2169122) (-1156 "VIEWDEF.spad" 2161946 2161955 2166739 2166744) (-1155 "VIEW3D.spad" 2145781 2145790 2161936 2161941) (-1154 "VIEW2D.spad" 2133518 2133527 2145771 2145776) (-1153 "VECTOR.spad" 2132195 2132206 2132446 2132473) (-1152 "VECTOR2.spad" 2130822 2130835 2132185 2132190) (-1151 "VECTCAT.spad" 2128710 2128721 2130778 2130817) (-1150 "VECTCAT.spad" 2126419 2126432 2128489 2128494) (-1149 "VARIABLE.spad" 2126199 2126214 2126409 2126414) (-1148 "UTSODETL.spad" 2125492 2125516 2126155 2126160) (-1147 "UTSODE.spad" 2123680 2123700 2125482 2125487) (-1146 "UTS.spad" 2118469 2118497 2122147 2122244) (-1145 "UTSCAT.spad" 2115920 2115936 2118367 2118464) (-1144 "UTSCAT.spad" 2113015 2113033 2115464 2115469) (-1143 "UTS2.spad" 2112608 2112643 2113005 2113010) (-1142 "URAGG.spad" 2107230 2107241 2112588 2112603) (-1141 "URAGG.spad" 2101826 2101839 2107186 2107191) (-1140 "UPXSSING.spad" 2099472 2099498 2100910 2101043) (-1139 "UPXS.spad" 2096499 2096527 2097604 2097753) (-1138 "UPXSCONS.spad" 2094256 2094276 2094631 2094780) (-1137 "UPXSCCA.spad" 2092714 2092734 2094102 2094251) (-1136 "UPXSCCA.spad" 2091314 2091336 2092704 2092709) (-1135 "UPXSCAT.spad" 2089895 2089911 2091160 2091309) (-1134 "UPXS2.spad" 2089436 2089489 2089885 2089890) (-1133 "UPSQFREE.spad" 2087848 2087862 2089426 2089431) (-1132 "UPSCAT.spad" 2085441 2085465 2087746 2087843) (-1131 "UPSCAT.spad" 2082740 2082766 2085047 2085052) (-1130 "UPOLYC.spad" 2077718 2077729 2082582 2082735) (-1129 "UPOLYC.spad" 2072588 2072601 2077454 2077459) (-1128 "UPOLYC2.spad" 2072057 2072076 2072578 2072583) (-1127 "UP.spad" 2069107 2069122 2069615 2069768) (-1126 "UPMP.spad" 2067997 2068010 2069097 2069102) (-1125 "UPDIVP.spad" 2067560 2067574 2067987 2067992) (-1124 "UPDECOMP.spad" 2065797 2065811 2067550 2067555) (-1123 "UPCDEN.spad" 2065004 2065020 2065787 2065792) (-1122 "UP2.spad" 2064366 2064387 2064994 2064999) (-1121 "UNISEG.spad" 2063719 2063730 2064285 2064290) (-1120 "UNISEG2.spad" 2063212 2063225 2063675 2063680) (-1119 "UNIFACT.spad" 2062313 2062325 2063202 2063207) (-1118 "ULS.spad" 2052872 2052900 2053965 2054394) (-1117 "ULSCONS.spad" 2046915 2046935 2047287 2047436) (-1116 "ULSCCAT.spad" 2044512 2044532 2046735 2046910) (-1115 "ULSCCAT.spad" 2042243 2042265 2044468 2044473) (-1114 "ULSCAT.spad" 2040459 2040475 2042089 2042238) (-1113 "ULS2.spad" 2039971 2040024 2040449 2040454) (-1112 "UFD.spad" 2039036 2039045 2039897 2039966) (-1111 "UFD.spad" 2038163 2038174 2039026 2039031) (-1110 "UDVO.spad" 2037010 2037019 2038153 2038158) (-1109 "UDPO.spad" 2034437 2034448 2036966 2036971) (-1108 "TYPE.spad" 2034359 2034368 2034417 2034432) (-1107 "TWOFACT.spad" 2033009 2033024 2034349 2034354) (-1106 "TUPLE.spad" 2032395 2032406 2032908 2032913) (-1105 "TUBETOOL.spad" 2029232 2029241 2032385 2032390) (-1104 "TUBE.spad" 2027873 2027890 2029222 2029227) (-1103 "TS.spad" 2026462 2026478 2027438 2027535) (-1102 "TSETCAT.spad" 2013577 2013594 2026418 2026457) (-1101 "TSETCAT.spad" 2000690 2000709 2013533 2013538) (-1100 "TRMANIP.spad" 1995056 1995073 2000396 2000401) (-1099 "TRIMAT.spad" 1994015 1994040 1995046 1995051) (-1098 "TRIGMNIP.spad" 1992532 1992549 1994005 1994010) (-1097 "TRIGCAT.spad" 1992044 1992053 1992522 1992527) (-1096 "TRIGCAT.spad" 1991554 1991565 1992034 1992039) (-1095 "TREE.spad" 1990348 1990359 1991384 1991411) (-1094 "TRANFUN.spad" 1990179 1990188 1990338 1990343) (-1093 "TRANFUN.spad" 1990008 1990019 1990169 1990174) (-1092 "TOPSP.spad" 1989682 1989691 1989998 1990003) (-1091 "TOOLSIGN.spad" 1989345 1989356 1989672 1989677) (-1090 "TEXTFILE.spad" 1987902 1987911 1989335 1989340) (-1089 "TEX.spad" 1984919 1984928 1987892 1987897) (-1088 "TEX1.spad" 1984475 1984486 1984909 1984914) (-1087 "TEMUTL.spad" 1984030 1984039 1984465 1984470) (-1086 "TBCMPPK.spad" 1982123 1982146 1984020 1984025) (-1085 "TBAGG.spad" 1981147 1981170 1982091 1982118) (-1084 "TBAGG.spad" 1980191 1980216 1981137 1981142) (-1083 "TANEXP.spad" 1979567 1979578 1980181 1980186) (-1082 "TABLE.spad" 1978540 1978563 1978810 1978837) (-1081 "TABLEAU.spad" 1978021 1978032 1978530 1978535) (-1080 "TABLBUMP.spad" 1974804 1974815 1978011 1978016) (-1079 "SYSSOLP.spad" 1972277 1972288 1974794 1974799) (-1078 "syntax.spad" 1970748 1970757 1972267 1972272) (-1077 "SYMTAB.spad" 1968804 1968813 1970738 1970743) (-1076 "SYMS.spad" 1964789 1964798 1968794 1968799) (-1075 "SYMPOLY.spad" 1963799 1963810 1963881 1964008) (-1074 "SYMFUNC.spad" 1963274 1963285 1963789 1963794) (-1073 "SYMBOL.spad" 1960610 1960619 1963264 1963269) (-1072 "SWITCH.spad" 1957367 1957376 1960600 1960605) (-1071 "SUTS.spad" 1954266 1954294 1955834 1955931) (-1070 "SUPXS.spad" 1951280 1951308 1952398 1952547) (-1069 "SUP.spad" 1948057 1948068 1948838 1948991) (-1068 "SUPFRACF.spad" 1947162 1947180 1948047 1948052) (-1067 "SUP2.spad" 1946552 1946565 1947152 1947157) (-1066 "SUMRF.spad" 1945518 1945529 1946542 1946547) (-1065 "SUMFS.spad" 1945151 1945168 1945508 1945513) (-1064 "SULS.spad" 1935697 1935725 1936803 1937232) (-1063 "SUCH.spad" 1935377 1935392 1935687 1935692) (-1062 "SUBSPACE.spad" 1927384 1927399 1935367 1935372) (-1061 "SUBRESP.spad" 1926544 1926558 1927340 1927345) (-1060 "STTF.spad" 1922643 1922659 1926534 1926539) (-1059 "STTFNC.spad" 1919111 1919127 1922633 1922638) (-1058 "STTAYLOR.spad" 1911509 1911520 1918992 1918997) (-1057 "STRTBL.spad" 1910588 1910605 1910737 1910764) (-1056 "STRING.spad" 1910055 1910064 1910069 1910096) (-1055 "STRICAT.spad" 1909831 1909840 1910011 1910050) (-1054 "STREAM.spad" 1906822 1906833 1909579 1909594) (-1053 "STREAM3.spad" 1906367 1906382 1906812 1906817) (-1052 "STREAM2.spad" 1905435 1905448 1906357 1906362) (-1051 "STREAM1.spad" 1905139 1905150 1905425 1905430) (-1050 "STINPROD.spad" 1904045 1904061 1905129 1905134) (-1049 "STEP.spad" 1903246 1903255 1904035 1904040) (-1048 "STBL.spad" 1902334 1902362 1902501 1902516) (-1047 "STAGG.spad" 1901399 1901410 1902314 1902329) (-1046 "STAGG.spad" 1900472 1900485 1901389 1901394) (-1045 "STACK.spad" 1900046 1900057 1900302 1900329) (-1044 "SREGSET.spad" 1897806 1897823 1899748 1899775) (-1043 "SRDCMPK.spad" 1896351 1896371 1897796 1897801) (-1042 "SRAGG.spad" 1891436 1891445 1896307 1896346) (-1041 "SRAGG.spad" 1886553 1886564 1891426 1891431) (-1040 "SQMATRIX.spad" 1884235 1884253 1885143 1885230) (-1039 "SPLTREE.spad" 1879102 1879115 1883986 1884013) (-1038 "SPLNODE.spad" 1875690 1875703 1879092 1879097) (-1037 "SPFCAT.spad" 1874467 1874476 1875680 1875685) (-1036 "SPECOUT.spad" 1873017 1873026 1874457 1874462) (-1035 "SPACEC.spad" 1857030 1857041 1873007 1873012) (-1034 "SPACE3.spad" 1856806 1856817 1857020 1857025) (-1033 "SORTPAK.spad" 1856351 1856364 1856762 1856767) (-1032 "SOLVETRA.spad" 1854108 1854119 1856341 1856346) (-1031 "SOLVESER.spad" 1852628 1852639 1854098 1854103) (-1030 "SOLVERAD.spad" 1848638 1848649 1852618 1852623) (-1029 "SOLVEFOR.spad" 1847058 1847076 1848628 1848633) (-1028 "SNTSCAT.spad" 1846646 1846663 1847014 1847053) (-1027 "SMTS.spad" 1844906 1844932 1846211 1846308) (-1026 "SMP.spad" 1842348 1842368 1842738 1842865) (-1025 "SMITH.spad" 1841191 1841216 1842338 1842343) (-1024 "SMATCAT.spad" 1839289 1839319 1841123 1841186) (-1023 "SMATCAT.spad" 1837331 1837363 1839167 1839172) (-1022 "SKAGG.spad" 1836280 1836291 1837287 1837326) (-1021 "SINT.spad" 1834588 1834597 1836146 1836275) (-1020 "SIMPAN.spad" 1834316 1834325 1834578 1834583) (-1019 "SIGNRF.spad" 1833424 1833435 1834306 1834311) (-1018 "SIGNEF.spad" 1832693 1832710 1833414 1833419) (-1017 "SHP.spad" 1830611 1830626 1832649 1832654) (-1016 "SHDP.spad" 1822717 1822744 1823226 1823355) (-1015 "SGROUP.spad" 1822183 1822192 1822707 1822712) (-1014 "SGROUP.spad" 1821647 1821658 1822173 1822178) (-1013 "SGCF.spad" 1814528 1814537 1821637 1821642) (-1012 "SFRTCAT.spad" 1813444 1813461 1814484 1814523) (-1011 "SFRGCD.spad" 1812507 1812527 1813434 1813439) (-1010 "SFQCMPK.spad" 1807144 1807164 1812497 1812502) (-1009 "SFORT.spad" 1806579 1806593 1807134 1807139) (-1008 "SEXOF.spad" 1806422 1806462 1806569 1806574) (-1007 "SEX.spad" 1806314 1806323 1806412 1806417) (-1006 "SEXCAT.spad" 1803418 1803458 1806304 1806309) (-1005 "SET.spad" 1801774 1801785 1802895 1802934) (-1004 "SETMN.spad" 1800208 1800225 1801764 1801769) (-1003 "SETCAT.spad" 1799693 1799702 1800198 1800203) (-1002 "SETCAT.spad" 1799176 1799187 1799683 1799688) (-1001 "SETAGG.spad" 1795699 1795710 1799144 1799171) (-1000 "SETAGG.spad" 1792242 1792255 1795689 1795694) (-999 "SEGXCAT.spad" 1791355 1791367 1792222 1792237) (-998 "SEG.spad" 1791169 1791179 1791274 1791279) (-997 "SEGCAT.spad" 1789989 1789999 1791149 1791164) (-996 "SEGBIND.spad" 1789062 1789072 1789944 1789949) (-995 "SEGBIND2.spad" 1788759 1788771 1789052 1789057) (-994 "SEG2.spad" 1788185 1788197 1788715 1788720) (-993 "SDVAR.spad" 1787462 1787472 1788175 1788180) (-992 "SDPOL.spad" 1784861 1784871 1785151 1785278) (-991 "SCPKG.spad" 1782941 1782951 1784851 1784856) (-990 "SCACHE.spad" 1781624 1781634 1782931 1782936) (-989 "SAOS.spad" 1781497 1781505 1781614 1781619) (-988 "SAERFFC.spad" 1781211 1781230 1781487 1781492) (-987 "SAE.spad" 1779390 1779405 1780000 1780135) (-986 "SAEFACT.spad" 1779092 1779111 1779380 1779385) (-985 "RURPK.spad" 1776734 1776749 1779082 1779087) (-984 "RULESET.spad" 1776176 1776199 1776724 1776729) (-983 "RULE.spad" 1774381 1774404 1776166 1776171) (-982 "RULECOLD.spad" 1774234 1774246 1774371 1774376) (-981 "RSETGCD.spad" 1770613 1770632 1774224 1774229) (-980 "RSETCAT.spad" 1760386 1760402 1770569 1770608) (-979 "RSETCAT.spad" 1750191 1750209 1760376 1760381) (-978 "RSDCMPK.spad" 1748644 1748663 1750181 1750186) (-977 "RRCC.spad" 1747029 1747058 1748634 1748639) (-976 "RRCC.spad" 1745412 1745443 1747019 1747024) (-975 "RPOLCAT.spad" 1724773 1724787 1745280 1745407) (-974 "RPOLCAT.spad" 1703849 1703865 1724358 1724363) (-973 "ROUTINE.spad" 1700295 1700303 1703078 1703105) (-972 "ROMAN.spad" 1699528 1699536 1700161 1700290) (-971 "ROIRC.spad" 1698609 1698640 1699518 1699523) (-970 "RNS.spad" 1697513 1697521 1698511 1698604) (-969 "RNS.spad" 1696503 1696513 1697503 1697508) (-968 "RNG.spad" 1696239 1696247 1696493 1696498) (-967 "RMODULE.spad" 1695878 1695888 1696229 1696234) (-966 "RMCAT2.spad" 1695287 1695343 1695868 1695873) (-965 "RMATRIX.spad" 1694023 1694041 1694510 1694549) (-964 "RMATCAT.spad" 1689545 1689575 1693967 1694018) (-963 "RMATCAT.spad" 1684969 1685001 1689393 1689398) (-962 "RINTERP.spad" 1684858 1684877 1684959 1684964) (-961 "RING.spad" 1684216 1684224 1684838 1684853) (-960 "RING.spad" 1683582 1683592 1684206 1684211) (-959 "RIDIST.spad" 1682967 1682975 1683572 1683577) (-958 "RGCHAIN.spad" 1681622 1681637 1682527 1682554) (-957 "RF.spad" 1679237 1679247 1681612 1681617) (-956 "RFFACTOR.spad" 1678700 1678710 1679227 1679232) (-955 "RFFACT.spad" 1678436 1678447 1678690 1678695) (-954 "RFDIST.spad" 1677425 1677433 1678426 1678431) (-953 "RETSOL.spad" 1676843 1676855 1677415 1677420) (-952 "RETRACT.spad" 1676193 1676203 1676833 1676838) (-951 "RETRACT.spad" 1675541 1675553 1676183 1676188) (-950 "RESULT.spad" 1674184 1674192 1674770 1674797) (-949 "RESRING.spad" 1673532 1673578 1674122 1674179) (-948 "RESLATC.spad" 1672857 1672867 1673522 1673527) (-947 "REPSQ.spad" 1672587 1672597 1672847 1672852) (-946 "REP.spad" 1670140 1670148 1672577 1672582) (-945 "REPDB.spad" 1669846 1669856 1670130 1670135) (-944 "REP2.spad" 1659419 1659429 1669688 1669693) (-943 "REP1.spad" 1653410 1653420 1659369 1659374) (-942 "REGSET.spad" 1651264 1651280 1653112 1653139) (-941 "REF.spad" 1650594 1650604 1651219 1651224) (-940 "REDORDER.spad" 1649771 1649787 1650584 1650589) (-939 "RECLOS.spad" 1648561 1648580 1649264 1649357) (-938 "REALSOLV.spad" 1647694 1647702 1648551 1648556) (-937 "REAL.spad" 1647567 1647575 1647684 1647689) (-936 "REAL0Q.spad" 1644850 1644864 1647557 1647562) (-935 "REAL0.spad" 1641679 1641693 1644840 1644845) (-934 "RDIV.spad" 1641331 1641355 1641669 1641674) (-933 "RDIST.spad" 1640895 1640905 1641321 1641326) (-932 "RDETRS.spad" 1639692 1639709 1640885 1640890) (-931 "RDETR.spad" 1637800 1637817 1639682 1639687) (-930 "RDEEFS.spad" 1636874 1636890 1637790 1637795) (-929 "RDEEF.spad" 1635871 1635887 1636864 1636869) (-928 "RCFIELD.spad" 1633055 1633063 1635773 1635866) (-927 "RCFIELD.spad" 1630325 1630335 1633045 1633050) (-926 "RCAGG.spad" 1628228 1628238 1630305 1630320) (-925 "RCAGG.spad" 1626068 1626080 1628147 1628152) (-924 "RATRET.spad" 1625429 1625439 1626058 1626063) (-923 "RATFACT.spad" 1625122 1625133 1625419 1625424) (-922 "RANDSRC.spad" 1624442 1624450 1625112 1625117) (-921 "RADUTIL.spad" 1624197 1624205 1624432 1624437) (-920 "RADIX.spad" 1620990 1621003 1622667 1622760) (-919 "RADFF.spad" 1619407 1619443 1619525 1619681) (-918 "RADCAT.spad" 1619001 1619009 1619397 1619402) (-917 "RADCAT.spad" 1618593 1618603 1618991 1618996) (-916 "QUEUE.spad" 1618159 1618169 1618423 1618450) (-915 "QUAT.spad" 1616745 1616755 1617087 1617152) (-914 "QUATCT2.spad" 1616364 1616382 1616735 1616740) (-913 "QUATCAT.spad" 1614529 1614539 1616294 1616359) (-912 "QUATCAT.spad" 1612446 1612458 1614213 1614218) (-911 "QUAGG.spad" 1611260 1611270 1612402 1612441) (-910 "QFORM.spad" 1610723 1610737 1611250 1611255) (-909 "QFCAT.spad" 1609414 1609424 1610613 1610718) (-908 "QFCAT.spad" 1607711 1607723 1608912 1608917) (-907 "QFCAT2.spad" 1607402 1607418 1607701 1607706) (-906 "QEQUAT.spad" 1606959 1606967 1607392 1607397) (-905 "QCMPACK.spad" 1601706 1601725 1606949 1606954) (-904 "QALGSET.spad" 1597781 1597813 1601620 1601625) (-903 "QALGSET2.spad" 1595777 1595795 1597771 1597776) (-902 "PWFFINTB.spad" 1593087 1593108 1595767 1595772) (-901 "PUSHVAR.spad" 1592416 1592435 1593077 1593082) (-900 "PTRANFN.spad" 1588542 1588552 1592406 1592411) (-899 "PTPACK.spad" 1585630 1585640 1588532 1588537) (-898 "PTFUNC2.spad" 1585451 1585465 1585620 1585625) (-897 "PTCAT.spad" 1584533 1584543 1585407 1585446) (-896 "PSQFR.spad" 1583840 1583864 1584523 1584528) (-895 "PSEUDLIN.spad" 1582698 1582708 1583830 1583835) (-894 "PSETPK.spad" 1568131 1568147 1582576 1582581) (-893 "PSETCAT.spad" 1562039 1562062 1568099 1568126) (-892 "PSETCAT.spad" 1555933 1555958 1561995 1562000) (-891 "PSCURVE.spad" 1554916 1554924 1555923 1555928) (-890 "PSCAT.spad" 1553683 1553712 1554814 1554911) (-889 "PSCAT.spad" 1552540 1552571 1553673 1553678) (-888 "PRTITION.spad" 1551383 1551391 1552530 1552535) (-887 "PRS.spad" 1540945 1540962 1551339 1551344) (-886 "PRQAGG.spad" 1540364 1540374 1540901 1540940) (-885 "PRODUCT.spad" 1538044 1538056 1538330 1538385) (-884 "PR.spad" 1536433 1536445 1537138 1537265) (-883 "PRINT.spad" 1536185 1536193 1536423 1536428) (-882 "PRIMES.spad" 1534436 1534446 1536175 1536180) (-881 "PRIMELT.spad" 1532417 1532431 1534426 1534431) (-880 "PRIMCAT.spad" 1532040 1532048 1532407 1532412) (-879 "PRIMARR.spad" 1531045 1531055 1531223 1531250) (-878 "PRIMARR2.spad" 1529768 1529780 1531035 1531040) (-877 "PREASSOC.spad" 1529140 1529152 1529758 1529763) (-876 "PPCURVE.spad" 1528277 1528285 1529130 1529135) (-875 "POLYROOT.spad" 1527049 1527071 1528233 1528238) (-874 "POLY.spad" 1524349 1524359 1524866 1524993) (-873 "POLYLIFT.spad" 1523610 1523633 1524339 1524344) (-872 "POLYCATQ.spad" 1521712 1521734 1523600 1523605) (-871 "POLYCAT.spad" 1515118 1515139 1521580 1521707) (-870 "POLYCAT.spad" 1507826 1507849 1514290 1514295) (-869 "POLY2UP.spad" 1507274 1507288 1507816 1507821) (-868 "POLY2.spad" 1506869 1506881 1507264 1507269) (-867 "POLUTIL.spad" 1505810 1505839 1506825 1506830) (-866 "POLTOPOL.spad" 1504558 1504573 1505800 1505805) (-865 "POINT.spad" 1503622 1503632 1503709 1503736) (-864 "PNTHEORY.spad" 1500288 1500296 1503612 1503617) (-863 "PMTOOLS.spad" 1499045 1499059 1500278 1500283) (-862 "PMSYM.spad" 1498590 1498600 1499035 1499040) (-861 "PMQFCAT.spad" 1498177 1498191 1498580 1498585) (-860 "PMPRED.spad" 1497646 1497660 1498167 1498172) (-859 "PMPREDFS.spad" 1497090 1497112 1497636 1497641) (-858 "PMPLCAT.spad" 1496160 1496178 1497022 1497027) (-857 "PMLSAGG.spad" 1495741 1495755 1496150 1496155) (-856 "PMKERNEL.spad" 1495308 1495320 1495731 1495736) (-855 "PMINS.spad" 1494884 1494894 1495298 1495303) (-854 "PMFS.spad" 1494457 1494475 1494874 1494879) (-853 "PMDOWN.spad" 1493743 1493757 1494447 1494452) (-852 "PMASS.spad" 1492755 1492763 1493733 1493738) (-851 "PMASSFS.spad" 1491724 1491740 1492745 1492750) (-850 "PLOTTOOL.spad" 1491504 1491512 1491714 1491719) (-849 "PLOT.spad" 1486335 1486343 1491494 1491499) (-848 "PLOT3D.spad" 1482755 1482763 1486325 1486330) (-847 "PLOT1.spad" 1481896 1481906 1482745 1482750) (-846 "PLEQN.spad" 1469112 1469139 1481886 1481891) (-845 "PINTERP.spad" 1468728 1468747 1469102 1469107) (-844 "PINTERPA.spad" 1468510 1468526 1468718 1468723) (-843 "PI.spad" 1468117 1468125 1468484 1468505) (-842 "PID.spad" 1467073 1467081 1468043 1468112) (-841 "PICOERCE.spad" 1466730 1466740 1467063 1467068) (-840 "PGROEB.spad" 1465327 1465341 1466720 1466725) (-839 "PGE.spad" 1456580 1456588 1465317 1465322) (-838 "PGCD.spad" 1455462 1455479 1456570 1456575) (-837 "PFRPAC.spad" 1454605 1454615 1455452 1455457) (-836 "PFR.spad" 1451262 1451272 1454507 1454600) (-835 "PFOTOOLS.spad" 1450520 1450536 1451252 1451257) (-834 "PFOQ.spad" 1449890 1449908 1450510 1450515) (-833 "PFO.spad" 1449309 1449336 1449880 1449885) (-832 "PF.spad" 1448883 1448895 1449114 1449207) (-831 "PFECAT.spad" 1446549 1446557 1448809 1448878) (-830 "PFECAT.spad" 1444243 1444253 1446505 1446510) (-829 "PFBRU.spad" 1442113 1442125 1444233 1444238) (-828 "PFBR.spad" 1439651 1439674 1442103 1442108) (-827 "PERM.spad" 1435332 1435342 1439481 1439496) (-826 "PERMGRP.spad" 1430068 1430078 1435322 1435327) (-825 "PERMCAT.spad" 1428620 1428630 1430048 1430063) (-824 "PERMAN.spad" 1427152 1427166 1428610 1428615) (-823 "PENDTREE.spad" 1426648 1426658 1427004 1427009) (-822 "PDRING.spad" 1425139 1425149 1426628 1426643) (-821 "PDRING.spad" 1423638 1423650 1425129 1425134) (-820 "PDEPROB.spad" 1422595 1422603 1423628 1423633) (-819 "PDEPACK.spad" 1416597 1416605 1422585 1422590) (-818 "PDECOMP.spad" 1416059 1416076 1416587 1416592) (-817 "PDECAT.spad" 1414413 1414421 1416049 1416054) (-816 "PCOMP.spad" 1414264 1414277 1414403 1414408) (-815 "PBWLB.spad" 1412846 1412863 1414254 1414259) (-814 "PATTERN.spad" 1407277 1407287 1412836 1412841) (-813 "PATTERN2.spad" 1407013 1407025 1407267 1407272) (-812 "PATTERN1.spad" 1405315 1405331 1407003 1407008) (-811 "PATRES.spad" 1402862 1402874 1405305 1405310) (-810 "PATRES2.spad" 1402524 1402538 1402852 1402857) (-809 "PATMATCH.spad" 1400686 1400717 1402237 1402242) (-808 "PATMAB.spad" 1400111 1400121 1400676 1400681) (-807 "PATLRES.spad" 1399195 1399209 1400101 1400106) (-806 "PATAB.spad" 1398959 1398969 1399185 1399190) (-805 "PARTPERM.spad" 1396321 1396329 1398949 1398954) (-804 "PARSURF.spad" 1395749 1395777 1396311 1396316) (-803 "PARSU2.spad" 1395544 1395560 1395739 1395744) (-802 "PARSCURV.spad" 1394972 1395000 1395534 1395539) (-801 "PARSC2.spad" 1394761 1394777 1394962 1394967) (-800 "PARPCURV.spad" 1394219 1394247 1394751 1394756) (-799 "PARPC2.spad" 1394008 1394024 1394209 1394214) (-798 "PAN2EXPR.spad" 1393420 1393428 1393998 1394003) (-797 "PALETTE.spad" 1392390 1392398 1393410 1393415) (-796 "PADICRC.spad" 1389723 1389741 1390898 1390991) (-795 "PADICRAT.spad" 1387741 1387753 1387962 1388055) (-794 "PADIC.spad" 1387436 1387448 1387667 1387736) (-793 "PADICCT.spad" 1385977 1385989 1387362 1387431) (-792 "PADEPAC.spad" 1384656 1384675 1385967 1385972) (-791 "PADE.spad" 1383396 1383412 1384646 1384651) (-790 "OWP.spad" 1382380 1382410 1383254 1383321) (-789 "OVAR.spad" 1382161 1382184 1382370 1382375) (-788 "OUT.spad" 1381245 1381253 1382151 1382156) (-787 "OUTFORM.spad" 1370659 1370667 1381235 1381240) (-786 "OSI.spad" 1370134 1370142 1370649 1370654) (-785 "ORTHPOL.spad" 1368595 1368605 1370051 1370056) (-784 "OREUP.spad" 1367955 1367983 1368277 1368316) (-783 "ORESUP.spad" 1367256 1367280 1367637 1367676) (-782 "OREPCTO.spad" 1365075 1365087 1367176 1367181) (-781 "OREPCAT.spad" 1359132 1359142 1365031 1365070) (-780 "OREPCAT.spad" 1353079 1353091 1358980 1358985) (-779 "ORDSET.spad" 1352245 1352253 1353069 1353074) (-778 "ORDSET.spad" 1351409 1351419 1352235 1352240) (-777 "ORDRING.spad" 1350799 1350807 1351389 1351404) (-776 "ORDRING.spad" 1350197 1350207 1350789 1350794) (-775 "ORDMON.spad" 1350052 1350060 1350187 1350192) (-774 "ORDFUNS.spad" 1349178 1349194 1350042 1350047) (-773 "ORDFIN.spad" 1349112 1349120 1349168 1349173) (-772 "ORDCOMP.spad" 1347580 1347590 1348662 1348691) (-771 "ORDCOMP2.spad" 1346865 1346877 1347570 1347575) (-770 "OPTPROB.spad" 1345445 1345453 1346855 1346860) (-769 "OPTPACK.spad" 1337830 1337838 1345435 1345440) (-768 "OPTCAT.spad" 1335505 1335513 1337820 1337825) (-767 "OPQUERY.spad" 1335054 1335062 1335495 1335500) (-766 "OP.spad" 1334796 1334806 1334876 1334943) (-765 "ONECOMP.spad" 1333544 1333554 1334346 1334375) (-764 "ONECOMP2.spad" 1332962 1332974 1333534 1333539) (-763 "OMSERVER.spad" 1331964 1331972 1332952 1332957) (-762 "OMSAGG.spad" 1331740 1331750 1331908 1331959) (-761 "OMPKG.spad" 1330352 1330360 1331730 1331735) (-760 "OM.spad" 1329317 1329325 1330342 1330347) (-759 "OMLO.spad" 1328742 1328754 1329203 1329242) (-758 "OMEXPR.spad" 1328576 1328586 1328732 1328737) (-757 "OMERR.spad" 1328119 1328127 1328566 1328571) (-756 "OMERRK.spad" 1327153 1327161 1328109 1328114) (-755 "OMENC.spad" 1326497 1326505 1327143 1327148) (-754 "OMDEV.spad" 1320786 1320794 1326487 1326492) (-753 "OMCONN.spad" 1320195 1320203 1320776 1320781) (-752 "OINTDOM.spad" 1319958 1319966 1320121 1320190) (-751 "OFMONOID.spad" 1316145 1316155 1319948 1319953) (-750 "ODVAR.spad" 1315406 1315416 1316135 1316140) (-749 "ODR.spad" 1314854 1314880 1315218 1315367) (-748 "ODPOL.spad" 1312203 1312213 1312543 1312670) (-747 "ODP.spad" 1304445 1304465 1304818 1304947) (-746 "ODETOOLS.spad" 1303028 1303047 1304435 1304440) (-745 "ODESYS.spad" 1300678 1300695 1303018 1303023) (-744 "ODERTRIC.spad" 1296619 1296636 1300635 1300640) (-743 "ODERED.spad" 1296006 1296030 1296609 1296614) (-742 "ODERAT.spad" 1293557 1293574 1295996 1296001) (-741 "ODEPRRIC.spad" 1290448 1290470 1293547 1293552) (-740 "ODEPROB.spad" 1289647 1289655 1290438 1290443) (-739 "ODEPRIM.spad" 1286921 1286943 1289637 1289642) (-738 "ODEPAL.spad" 1286297 1286321 1286911 1286916) (-737 "ODEPACK.spad" 1272899 1272907 1286287 1286292) (-736 "ODEINT.spad" 1272330 1272346 1272889 1272894) (-735 "ODEIFTBL.spad" 1269725 1269733 1272320 1272325) (-734 "ODEEF.spad" 1265092 1265108 1269715 1269720) (-733 "ODECONST.spad" 1264611 1264629 1265082 1265087) (-732 "ODECAT.spad" 1263207 1263215 1264601 1264606) (-731 "OCT.spad" 1261354 1261364 1262070 1262109) (-730 "OCTCT2.spad" 1260998 1261019 1261344 1261349) (-729 "OC.spad" 1258772 1258782 1260954 1260993) (-728 "OC.spad" 1256272 1256284 1258456 1258461) (-727 "OCAMON.spad" 1256120 1256128 1256262 1256267) (-726 "OASGP.spad" 1255935 1255943 1256110 1256115) (-725 "OAMONS.spad" 1255455 1255463 1255925 1255930) (-724 "OAMON.spad" 1255316 1255324 1255445 1255450) (-723 "OAGROUP.spad" 1255178 1255186 1255306 1255311) (-722 "NUMTUBE.spad" 1254765 1254781 1255168 1255173) (-721 "NUMQUAD.spad" 1242627 1242635 1254755 1254760) (-720 "NUMODE.spad" 1233763 1233771 1242617 1242622) (-719 "NUMINT.spad" 1231321 1231329 1233753 1233758) (-718 "NUMFMT.spad" 1230161 1230169 1231311 1231316) (-717 "NUMERIC.spad" 1222234 1222244 1229967 1229972) (-716 "NTSCAT.spad" 1220724 1220740 1222190 1222229) (-715 "NTPOLFN.spad" 1220269 1220279 1220641 1220646) (-714 "NSUP.spad" 1213287 1213297 1217827 1217980) (-713 "NSUP2.spad" 1212679 1212691 1213277 1213282) (-712 "NSMP.spad" 1208878 1208897 1209186 1209313) (-711 "NREP.spad" 1207250 1207264 1208868 1208873) (-710 "NPCOEF.spad" 1206496 1206516 1207240 1207245) (-709 "NORMRETR.spad" 1206094 1206133 1206486 1206491) (-708 "NORMPK.spad" 1203996 1204015 1206084 1206089) (-707 "NORMMA.spad" 1203684 1203710 1203986 1203991) (-706 "NONE.spad" 1203425 1203433 1203674 1203679) (-705 "NONE1.spad" 1203101 1203111 1203415 1203420) (-704 "NODE1.spad" 1202570 1202586 1203091 1203096) (-703 "NNI.spad" 1201457 1201465 1202544 1202565) (-702 "NLINSOL.spad" 1200079 1200089 1201447 1201452) (-701 "NIPROB.spad" 1198562 1198570 1200069 1200074) (-700 "NFINTBAS.spad" 1196022 1196039 1198552 1198557) (-699 "NCODIV.spad" 1194220 1194236 1196012 1196017) (-698 "NCNTFRAC.spad" 1193862 1193876 1194210 1194215) (-697 "NCEP.spad" 1192022 1192036 1193852 1193857) (-696 "NASRING.spad" 1191618 1191626 1192012 1192017) (-695 "NASRING.spad" 1191212 1191222 1191608 1191613) (-694 "NARNG.spad" 1190556 1190564 1191202 1191207) (-693 "NARNG.spad" 1189898 1189908 1190546 1190551) (-692 "NAGSP.spad" 1188971 1188979 1189888 1189893) (-691 "NAGS.spad" 1178496 1178504 1188961 1188966) (-690 "NAGF07.spad" 1176889 1176897 1178486 1178491) (-689 "NAGF04.spad" 1171121 1171129 1176879 1176884) (-688 "NAGF02.spad" 1164930 1164938 1171111 1171116) (-687 "NAGF01.spad" 1160533 1160541 1164920 1164925) (-686 "NAGE04.spad" 1153993 1154001 1160523 1160528) (-685 "NAGE02.spad" 1144335 1144343 1153983 1153988) (-684 "NAGE01.spad" 1140219 1140227 1144325 1144330) (-683 "NAGD03.spad" 1138139 1138147 1140209 1140214) (-682 "NAGD02.spad" 1130670 1130678 1138129 1138134) (-681 "NAGD01.spad" 1124783 1124791 1130660 1130665) (-680 "NAGC06.spad" 1120570 1120578 1124773 1124778) (-679 "NAGC05.spad" 1119039 1119047 1120560 1120565) (-678 "NAGC02.spad" 1118294 1118302 1119029 1119034) (-677 "NAALG.spad" 1117829 1117839 1118262 1118289) (-676 "NAALG.spad" 1117384 1117396 1117819 1117824) (-675 "MULTSQFR.spad" 1114342 1114359 1117374 1117379) (-674 "MULTFACT.spad" 1113725 1113742 1114332 1114337) (-673 "MTSCAT.spad" 1111759 1111780 1113623 1113720) (-672 "MTHING.spad" 1111416 1111426 1111749 1111754) (-671 "MSYSCMD.spad" 1110850 1110858 1111406 1111411) (-670 "MSET.spad" 1108848 1108858 1110612 1110651) (-669 "MSETAGG.spad" 1108681 1108691 1108804 1108843) (-668 "MRING.spad" 1105652 1105664 1108389 1108456) (-667 "MRF2.spad" 1105220 1105234 1105642 1105647) (-666 "MRATFAC.spad" 1104766 1104783 1105210 1105215) (-665 "MPRFF.spad" 1102796 1102815 1104756 1104761) (-664 "MPOLY.spad" 1100234 1100249 1100593 1100720) (-663 "MPCPF.spad" 1099498 1099517 1100224 1100229) (-662 "MPC3.spad" 1099313 1099353 1099488 1099493) (-661 "MPC2.spad" 1098955 1098988 1099303 1099308) (-660 "MONOTOOL.spad" 1097290 1097307 1098945 1098950) (-659 "MONOID.spad" 1096464 1096472 1097280 1097285) (-658 "MONOID.spad" 1095636 1095646 1096454 1096459) (-657 "MONOGEN.spad" 1094382 1094395 1095496 1095631) (-656 "MONOGEN.spad" 1093150 1093165 1094266 1094271) (-655 "MONADWU.spad" 1091164 1091172 1093140 1093145) (-654 "MONADWU.spad" 1089176 1089186 1091154 1091159) (-653 "MONAD.spad" 1088320 1088328 1089166 1089171) (-652 "MONAD.spad" 1087462 1087472 1088310 1088315) (-651 "MOEBIUS.spad" 1086148 1086162 1087442 1087457) (-650 "MODULE.spad" 1086018 1086028 1086116 1086143) (-649 "MODULE.spad" 1085908 1085920 1086008 1086013) (-648 "MODRING.spad" 1085239 1085278 1085888 1085903) (-647 "MODOP.spad" 1083898 1083910 1085061 1085128) (-646 "MODMONOM.spad" 1083430 1083448 1083888 1083893) (-645 "MODMON.spad" 1080140 1080156 1080916 1081069) (-644 "MODFIELD.spad" 1079498 1079537 1080042 1080135) (-643 "MMAP.spad" 1079238 1079272 1079488 1079493) (-642 "MLO.spad" 1077665 1077675 1079194 1079233) (-641 "MLIFT.spad" 1076237 1076254 1077655 1077660) (-640 "MKUCFUNC.spad" 1075770 1075788 1076227 1076232) (-639 "MKRECORD.spad" 1075372 1075385 1075760 1075765) (-638 "MKFUNC.spad" 1074753 1074763 1075362 1075367) (-637 "MKFLCFN.spad" 1073709 1073719 1074743 1074748) (-636 "MKCHSET.spad" 1073485 1073495 1073699 1073704) (-635 "MKBCFUNC.spad" 1072970 1072988 1073475 1073480) (-634 "MINT.spad" 1072409 1072417 1072872 1072965) (-633 "MHROWRED.spad" 1070910 1070920 1072399 1072404) (-632 "MFLOAT.spad" 1069355 1069363 1070800 1070905) (-631 "MFINFACT.spad" 1068755 1068777 1069345 1069350) (-630 "MESH.spad" 1066487 1066495 1068745 1068750) (-629 "MDDFACT.spad" 1064680 1064690 1066477 1066482) (-628 "MDAGG.spad" 1063955 1063965 1064648 1064675) (-627 "MCMPLX.spad" 1059935 1059943 1060549 1060750) (-626 "MCDEN.spad" 1059143 1059155 1059925 1059930) (-625 "MCALCFN.spad" 1056245 1056271 1059133 1059138) (-624 "MATSTOR.spad" 1053521 1053531 1056235 1056240) (-623 "MATRIX.spad" 1052448 1052458 1052932 1052959) (-622 "MATLIN.spad" 1049774 1049798 1052332 1052337) (-621 "MATCAT.spad" 1041347 1041369 1049730 1049769) (-620 "MATCAT.spad" 1032804 1032828 1041189 1041194) (-619 "MATCAT2.spad" 1032072 1032120 1032794 1032799) (-618 "MAPPKG3.spad" 1030971 1030985 1032062 1032067) (-617 "MAPPKG2.spad" 1030305 1030317 1030961 1030966) (-616 "MAPPKG1.spad" 1029123 1029133 1030295 1030300) (-615 "MAPHACK3.spad" 1028931 1028945 1029113 1029118) (-614 "MAPHACK2.spad" 1028696 1028708 1028921 1028926) (-613 "MAPHACK1.spad" 1028326 1028336 1028686 1028691) (-612 "MAGMA.spad" 1026116 1026133 1028316 1028321) (-611 "M3D.spad" 1024037 1024047 1025719 1025724) (-610 "LZSTAGG.spad" 1021255 1021265 1024017 1024032) (-609 "LZSTAGG.spad" 1018481 1018493 1021245 1021250) (-608 "LWORD.spad" 1015186 1015203 1018471 1018476) (-607 "LSQM.spad" 1013470 1013484 1013868 1013919) (-606 "LSPP.spad" 1013003 1013020 1013460 1013465) (-605 "LSMP.spad" 1011843 1011871 1012993 1012998) (-604 "LSMP1.spad" 1009647 1009661 1011833 1011838) (-603 "LSAGG.spad" 1009304 1009314 1009603 1009642) (-602 "LSAGG.spad" 1008993 1009005 1009294 1009299) (-601 "LPOLY.spad" 1007947 1007966 1008849 1008918) (-600 "LPEFRAC.spad" 1007204 1007214 1007937 1007942) (-599 "LO.spad" 1006605 1006619 1007138 1007165) (-598 "LOGIC.spad" 1006207 1006215 1006595 1006600) (-597 "LOGIC.spad" 1005807 1005817 1006197 1006202) (-596 "LODOOPS.spad" 1004725 1004737 1005797 1005802) (-595 "LODO.spad" 1004111 1004127 1004407 1004446) (-594 "LODOF.spad" 1003155 1003172 1004068 1004073) (-593 "LODOCAT.spad" 1001813 1001823 1003111 1003150) (-592 "LODOCAT.spad" 1000469 1000481 1001769 1001774) (-591 "LODO2.spad" 999744 999756 1000151 1000190) (-590 "LODO1.spad" 999146 999156 999426 999465) (-589 "LODEEF.spad" 997918 997936 999136 999141) (-588 "LNAGG.spad" 993710 993720 997898 997913) (-587 "LNAGG.spad" 989476 989488 993666 993671) (-586 "LMOPS.spad" 986212 986229 989466 989471) (-585 "LMODULE.spad" 985854 985864 986202 986207) (-584 "LMDICT.spad" 985360 985370 985628 985655) (-583 "LIST.spad" 983078 983088 984507 984534) (-582 "LIST3.spad" 982369 982383 983068 983073) (-581 "LIST2.spad" 981009 981021 982359 982364) (-580 "LIST2MAP.spad" 977886 977898 980999 981004) (-579 "LINEXP.spad" 977318 977328 977866 977881) (-578 "LINDEP.spad" 976095 976107 977230 977235) (-577 "LIMITRF.spad" 974009 974019 976085 976090) (-576 "LIMITPS.spad" 972892 972905 973999 974004) (-575 "LIE.spad" 970906 970918 972182 972327) (-574 "LIECAT.spad" 970382 970392 970832 970901) (-573 "LIECAT.spad" 969886 969898 970338 970343) (-572 "LIB.spad" 968516 968524 969127 969142) (-571 "LGROBP.spad" 965869 965888 968506 968511) (-570 "LF.spad" 964788 964804 965859 965864) (-569 "LFCAT.spad" 963807 963815 964778 964783) (-568 "LEXTRIPK.spad" 959310 959325 963797 963802) (-567 "LEXP.spad" 957313 957340 959290 959305) (-566 "LEADCDET.spad" 955697 955714 957303 957308) (-565 "LAZM3PK.spad" 954401 954423 955687 955692) (-564 "LAUPOL.spad" 953092 953105 953996 954065) (-563 "LAPLACE.spad" 952665 952681 953082 953087) (-562 "LA.spad" 952105 952119 952587 952626) (-561 "LALG.spad" 951881 951891 952085 952100) (-560 "LALG.spad" 951665 951677 951871 951876) (-559 "KOVACIC.spad" 950378 950395 951655 951660) (-558 "KONVERT.spad" 950100 950110 950368 950373) (-557 "KOERCE.spad" 949837 949847 950090 950095) (-556 "KERNEL.spad" 948372 948382 949621 949626) (-555 "KERNEL2.spad" 948075 948087 948362 948367) (-554 "KDAGG.spad" 947166 947188 948043 948070) (-553 "KDAGG.spad" 946277 946301 947156 947161) (-552 "KAFILE.spad" 945389 945405 945624 945651) (-551 "JORDAN.spad" 943216 943228 944679 944824) (-550 "IXAGG.spad" 941329 941353 943196 943211) (-549 "IXAGG.spad" 939307 939333 941176 941181) (-548 "IVECTOR.spad" 938303 938318 938458 938485) (-547 "ITUPLE.spad" 937448 937458 938293 938298) (-546 "ITRIGMNP.spad" 936259 936278 937438 937443) (-545 "ITFUN3.spad" 935753 935767 936249 936254) (-544 "ITFUN2.spad" 935483 935495 935743 935748) (-543 "ITAYLOR.spad" 933275 933290 935319 935444) (-542 "ISUPS.spad" 925686 925701 932249 932346) (-541 "ISUMP.spad" 925183 925199 925676 925681) (-540 "ISTRING.spad" 924186 924199 924352 924379) (-539 "IRURPK.spad" 922899 922918 924176 924181) (-538 "IRSN.spad" 920859 920867 922889 922894) (-537 "IRRF2F.spad" 919334 919344 920815 920820) (-536 "IRREDFFX.spad" 918935 918946 919324 919329) (-535 "IROOT.spad" 917266 917276 918925 918930) (-534 "IR.spad" 915056 915070 917122 917149) (-533 "IR2.spad" 914076 914092 915046 915051) (-532 "IR2F.spad" 913276 913292 914066 914071) (-531 "IPRNTPK.spad" 913036 913044 913266 913271) (-530 "IPF.spad" 912601 912613 912841 912934) (-529 "IPADIC.spad" 912362 912388 912527 912596) (-528 "INVLAPLA.spad" 912007 912023 912352 912357) (-527 "INTTR.spad" 905253 905270 911997 912002) (-526 "INTTOOLS.spad" 902965 902981 904828 904833) (-525 "INTSLPE.spad" 902271 902279 902955 902960) (-524 "INTRVL.spad" 901837 901847 902185 902266) (-523 "INTRF.spad" 900201 900215 901827 901832) (-522 "INTRET.spad" 899633 899643 900191 900196) (-521 "INTRAT.spad" 898308 898325 899623 899628) (-520 "INTPM.spad" 896671 896687 897951 897956) (-519 "INTPAF.spad" 894439 894457 896603 896608) (-518 "INTPACK.spad" 884749 884757 894429 894434) (-517 "INT.spad" 884110 884118 884603 884744) (-516 "INTHERTR.spad" 883376 883393 884100 884105) (-515 "INTHERAL.spad" 883042 883066 883366 883371) (-514 "INTHEORY.spad" 879455 879463 883032 883037) (-513 "INTG0.spad" 872918 872936 879387 879392) (-512 "INTFTBL.spad" 866947 866955 872908 872913) (-511 "INTFACT.spad" 866006 866016 866937 866942) (-510 "INTEF.spad" 864321 864337 865996 866001) (-509 "INTDOM.spad" 862936 862944 864247 864316) (-508 "INTDOM.spad" 861613 861623 862926 862931) (-507 "INTCAT.spad" 859866 859876 861527 861608) (-506 "INTBIT.spad" 859369 859377 859856 859861) (-505 "INTALG.spad" 858551 858578 859359 859364) (-504 "INTAF.spad" 858043 858059 858541 858546) (-503 "INTABL.spad" 857123 857154 857286 857313) (-502 "INS.spad" 854519 854527 857025 857118) (-501 "INS.spad" 852001 852011 854509 854514) (-500 "INPSIGN.spad" 851435 851448 851991 851996) (-499 "INPRODPF.spad" 850501 850520 851425 851430) (-498 "INPRODFF.spad" 849559 849583 850491 850496) (-497 "INNMFACT.spad" 848530 848547 849549 849554) (-496 "INMODGCD.spad" 848014 848044 848520 848525) (-495 "INFSP.spad" 846299 846321 848004 848009) (-494 "INFPROD0.spad" 845349 845368 846289 846294) (-493 "INFORM.spad" 842617 842625 845339 845344) (-492 "INFORM1.spad" 842242 842252 842607 842612) (-491 "INFINITY.spad" 841794 841802 842232 842237) (-490 "INEP.spad" 840326 840348 841784 841789) (-489 "INDE.spad" 840232 840249 840316 840321) (-488 "INCRMAPS.spad" 839653 839663 840222 840227) (-487 "INBFF.spad" 835423 835434 839643 839648) (-486 "IMATRIX.spad" 834591 834617 835103 835130) (-485 "IMATQF.spad" 833685 833729 834547 834552) (-484 "IMATLIN.spad" 832290 832314 833641 833646) (-483 "ILIST.spad" 830946 830961 831473 831500) (-482 "IIARRAY2.spad" 830557 830595 830776 830803) (-481 "IFF.spad" 829967 829983 830238 830331) (-480 "IFARRAY.spad" 827677 827692 829373 829400) (-479 "IFAMON.spad" 827539 827556 827633 827638) (-478 "IEVALAB.spad" 826928 826940 827529 827534) (-477 "IEVALAB.spad" 826315 826329 826918 826923) (-476 "IDPO.spad" 826113 826125 826305 826310) (-475 "IDPOAMS.spad" 825869 825881 826103 826108) (-474 "IDPOAM.spad" 825589 825601 825859 825864) (-473 "IDPC.spad" 824523 824535 825579 825584) (-472 "IDPAM.spad" 824268 824280 824513 824518) (-471 "IDPAG.spad" 824015 824027 824258 824263) (-470 "IDECOMP.spad" 821252 821270 824005 824010) (-469 "IDEAL.spad" 816175 816214 821187 821192) (-468 "ICDEN.spad" 815326 815342 816165 816170) (-467 "ICARD.spad" 814515 814523 815316 815321) (-466 "IBPTOOLS.spad" 813108 813125 814505 814510) (-465 "IBITS.spad" 812365 812378 812802 812829) (-464 "IBATOOL.spad" 809240 809259 812355 812360) (-463 "IBACHIN.spad" 807727 807742 809230 809235) (-462 "IARRAY2.spad" 806938 806964 807557 807584) (-461 "IARRAY1.spad" 806206 806221 806344 806371) (-460 "IAN.spad" 804421 804429 806024 806117) (-459 "IALGFACT.spad" 804022 804055 804411 804416) (-458 "HYPCAT.spad" 803446 803454 804012 804017) (-457 "HYPCAT.spad" 802868 802878 803436 803441) (-456 "HOAGG.spad" 800126 800136 802848 802863) (-455 "HOAGG.spad" 797169 797181 799893 799898) (-454 "HEXADEC.spad" 795041 795049 795639 795732) (-453 "HEUGCD.spad" 794056 794067 795031 795036) (-452 "HELLFDIV.spad" 793646 793670 794046 794051) (-451 "HEAP.spad" 793261 793271 793476 793503) (-450 "HDP.spad" 785499 785515 785876 786005) (-449 "HDMP.spad" 782678 782693 783296 783423) (-448 "HB.spad" 780915 780923 782668 782673) (-447 "HASHTBL.spad" 779947 779978 780158 780185) (-446 "HACKPI.spad" 779430 779438 779849 779942) (-445 "GTSET.spad" 778425 778441 779132 779159) (-444 "GSTBL.spad" 777506 777541 777680 777695) (-443 "GSERIES.spad" 774673 774700 775638 775787) (-442 "GROUP.spad" 773847 773855 774653 774668) (-441 "GROUP.spad" 773029 773039 773837 773842) (-440 "GROEBSOL.spad" 771517 771538 773019 773024) (-439 "GRMOD.spad" 770088 770100 771507 771512) (-438 "GRMOD.spad" 768657 768671 770078 770083) (-437 "GRIMAGE.spad" 761262 761270 768647 768652) (-436 "GRDEF.spad" 759641 759649 761252 761257) (-435 "GRAY.spad" 758100 758108 759631 759636) (-434 "GRALG.spad" 757147 757159 758090 758095) (-433 "GRALG.spad" 756192 756206 757137 757142) (-432 "GPOLSET.spad" 755702 755725 755930 755957) (-431 "GOSPER.spad" 754967 754985 755692 755697) (-430 "GMODPOL.spad" 754105 754132 754935 754962) (-429 "GHENSEL.spad" 753174 753188 754095 754100) (-428 "GENUPS.spad" 749275 749288 753164 753169) (-427 "GENUFACT.spad" 748852 748862 749265 749270) (-426 "GENPGCD.spad" 748436 748453 748842 748847) (-425 "GENMFACT.spad" 747888 747907 748426 748431) (-424 "GENEEZ.spad" 745827 745840 747878 747883) (-423 "GDMP.spad" 742848 742865 743624 743751) (-422 "GCNAALG.spad" 736743 736770 742642 742709) (-421 "GCDDOM.spad" 735915 735923 736669 736738) (-420 "GCDDOM.spad" 735149 735159 735905 735910) (-419 "GB.spad" 732667 732705 735105 735110) (-418 "GBINTERN.spad" 728687 728725 732657 732662) (-417 "GBF.spad" 724444 724482 728677 728682) (-416 "GBEUCLID.spad" 722318 722356 724434 724439) (-415 "GAUSSFAC.spad" 721615 721623 722308 722313) (-414 "GALUTIL.spad" 719937 719947 721571 721576) (-413 "GALPOLYU.spad" 718383 718396 719927 719932) (-412 "GALFACTU.spad" 716548 716567 718373 718378) (-411 "GALFACT.spad" 706681 706692 716538 716543) (-410 "FVFUN.spad" 703694 703702 706661 706676) (-409 "FVC.spad" 702736 702744 703674 703689) (-408 "FUNCTION.spad" 702585 702597 702726 702731) (-407 "FT.spad" 700797 700805 702575 702580) (-406 "FTEM.spad" 699960 699968 700787 700792) (-405 "FSUPFACT.spad" 698861 698880 699897 699902) (-404 "FST.spad" 696947 696955 698851 698856) (-403 "FSRED.spad" 696425 696441 696937 696942) (-402 "FSPRMELT.spad" 695249 695265 696382 696387) (-401 "FSPECF.spad" 693326 693342 695239 695244) (-400 "FS.spad" 687377 687387 693090 693321) (-399 "FS.spad" 681219 681231 686934 686939) (-398 "FSINT.spad" 680877 680893 681209 681214) (-397 "FSERIES.spad" 680064 680076 680697 680796) (-396 "FSCINT.spad" 679377 679393 680054 680059) (-395 "FSAGG.spad" 678482 678492 679321 679372) (-394 "FSAGG.spad" 677561 677573 678402 678407) (-393 "FSAGG2.spad" 676260 676276 677551 677556) (-392 "FS2UPS.spad" 670649 670683 676250 676255) (-391 "FS2.spad" 670294 670310 670639 670644) (-390 "FS2EXPXP.spad" 669417 669440 670284 670289) (-389 "FRUTIL.spad" 668359 668369 669407 669412) (-388 "FR.spad" 662056 662066 667386 667455) (-387 "FRNAALG.spad" 657143 657153 661998 662051) (-386 "FRNAALG.spad" 652242 652254 657099 657104) (-385 "FRNAAF2.spad" 651696 651714 652232 652237) (-384 "FRMOD.spad" 651091 651121 651628 651633) (-383 "FRIDEAL.spad" 650286 650307 651071 651086) (-382 "FRIDEAL2.spad" 649888 649920 650276 650281) (-381 "FRETRCT.spad" 649399 649409 649878 649883) (-380 "FRETRCT.spad" 648778 648790 649259 649264) (-379 "FRAMALG.spad" 647106 647119 648734 648773) (-378 "FRAMALG.spad" 645466 645481 647096 647101) (-377 "FRAC.spad" 642569 642579 642972 643145) (-376 "FRAC2.spad" 642172 642184 642559 642564) (-375 "FR2.spad" 641506 641518 642162 642167) (-374 "FPS.spad" 638315 638323 641396 641501) (-373 "FPS.spad" 635152 635162 638235 638240) (-372 "FPC.spad" 634194 634202 635054 635147) (-371 "FPC.spad" 633322 633332 634184 634189) (-370 "FPATMAB.spad" 633074 633084 633302 633317) (-369 "FPARFRAC.spad" 631547 631564 633064 633069) (-368 "FORTRAN.spad" 630047 630096 631537 631542) (-367 "FORT.spad" 628976 628984 630037 630042) (-366 "FORTFN.spad" 626136 626144 628956 628971) (-365 "FORTCAT.spad" 625810 625818 626116 626131) (-364 "FORMULA.spad" 623148 623156 625800 625805) (-363 "FORMULA1.spad" 622627 622637 623138 623143) (-362 "FORDER.spad" 622318 622342 622617 622622) (-361 "FOP.spad" 621519 621527 622308 622313) (-360 "FNLA.spad" 620943 620965 621487 621514) (-359 "FNCAT.spad" 619271 619279 620933 620938) (-358 "FNAME.spad" 619163 619171 619261 619266) (-357 "FMTC.spad" 618961 618969 619089 619158) (-356 "FMONOID.spad" 616016 616026 618917 618922) (-355 "FM.spad" 615711 615723 615950 615977) (-354 "FMFUN.spad" 612731 612739 615691 615706) (-353 "FMC.spad" 611773 611781 612711 612726) (-352 "FMCAT.spad" 609427 609445 611741 611768) (-351 "FM1.spad" 608784 608796 609361 609388) (-350 "FLOATRP.spad" 606505 606519 608774 608779) (-349 "FLOAT.spad" 599669 599677 606371 606500) (-348 "FLOATCP.spad" 597086 597100 599659 599664) (-347 "FLINEXP.spad" 596798 596808 597066 597081) (-346 "FLINEXP.spad" 596464 596476 596734 596739) (-345 "FLASORT.spad" 595784 595796 596454 596459) (-344 "FLALG.spad" 593430 593449 595710 595779) (-343 "FLAGG.spad" 590436 590446 593398 593425) (-342 "FLAGG.spad" 587355 587367 590319 590324) (-341 "FLAGG2.spad" 586036 586052 587345 587350) (-340 "FINRALG.spad" 584065 584078 585992 586031) (-339 "FINRALG.spad" 582020 582035 583949 583954) (-338 "FINITE.spad" 581172 581180 582010 582015) (-337 "FINAALG.spad" 570153 570163 581114 581167) (-336 "FINAALG.spad" 559146 559158 570109 570114) (-335 "FILE.spad" 558729 558739 559136 559141) (-334 "FILECAT.spad" 557247 557264 558719 558724) (-333 "FIELD.spad" 556653 556661 557149 557242) (-332 "FIELD.spad" 556145 556155 556643 556648) (-331 "FGROUP.spad" 554754 554764 556125 556140) (-330 "FGLMICPK.spad" 553541 553556 554744 554749) (-329 "FFX.spad" 552916 552931 553257 553350) (-328 "FFSLPE.spad" 552405 552426 552906 552911) (-327 "FFPOLY.spad" 543657 543668 552395 552400) (-326 "FFPOLY2.spad" 542717 542734 543647 543652) (-325 "FFP.spad" 542114 542134 542433 542526) (-324 "FF.spad" 541562 541578 541795 541888) (-323 "FFNBX.spad" 540074 540094 541278 541371) (-322 "FFNBP.spad" 538587 538604 539790 539883) (-321 "FFNB.spad" 537052 537073 538268 538361) (-320 "FFINTBAS.spad" 534466 534485 537042 537047) (-319 "FFIELDC.spad" 532041 532049 534368 534461) (-318 "FFIELDC.spad" 529702 529712 532031 532036) (-317 "FFHOM.spad" 528450 528467 529692 529697) (-316 "FFF.spad" 525885 525896 528440 528445) (-315 "FFCGX.spad" 524732 524752 525601 525694) (-314 "FFCGP.spad" 523621 523641 524448 524541) (-313 "FFCG.spad" 522413 522434 523302 523395) (-312 "FFCAT.spad" 515314 515336 522252 522408) (-311 "FFCAT.spad" 508294 508318 515234 515239) (-310 "FFCAT2.spad" 508039 508079 508284 508289) (-309 "FEXPR.spad" 499752 499798 507799 507838) (-308 "FEVALAB.spad" 499458 499468 499742 499747) (-307 "FEVALAB.spad" 498949 498961 499235 499240) (-306 "FDIV.spad" 498391 498415 498939 498944) (-305 "FDIVCAT.spad" 496433 496457 498381 498386) (-304 "FDIVCAT.spad" 494473 494499 496423 496428) (-303 "FDIV2.spad" 494127 494167 494463 494468) (-302 "FCPAK1.spad" 492680 492688 494117 494122) (-301 "FCOMP.spad" 492059 492069 492670 492675) (-300 "FC.spad" 481884 481892 492049 492054) (-299 "FAXF.spad" 474819 474833 481786 481879) (-298 "FAXF.spad" 467806 467822 474775 474780) (-297 "FARRAY.spad" 466175 466185 467212 467239) (-296 "FAMR.spad" 464295 464307 466073 466170) (-295 "FAMR.spad" 462399 462413 464179 464184) (-294 "FAMONOID.spad" 462049 462059 462353 462358) (-293 "FAMONC.spad" 460271 460283 462039 462044) (-292 "FAGROUP.spad" 459877 459887 460167 460194) (-291 "FACUTIL.spad" 458073 458090 459867 459872) (-290 "FACTFUNC.spad" 457249 457259 458063 458068) (-289 "EXPUPXS.spad" 454082 454105 455381 455530) (-288 "EXPRTUBE.spad" 451310 451318 454072 454077) (-287 "EXPRODE.spad" 448182 448198 451300 451305) (-286 "EXPR.spad" 443484 443494 444198 444601) (-285 "EXPR2UPS.spad" 439576 439589 443474 443479) (-284 "EXPR2.spad" 439279 439291 439566 439571) (-283 "EXPEXPAN.spad" 436220 436245 436854 436947) (-282 "EXIT.spad" 435891 435899 436210 436215) (-281 "EVALCYC.spad" 435349 435363 435881 435886) (-280 "EVALAB.spad" 434913 434923 435339 435344) (-279 "EVALAB.spad" 434475 434487 434903 434908) (-278 "EUCDOM.spad" 432017 432025 434401 434470) (-277 "EUCDOM.spad" 429621 429631 432007 432012) (-276 "ESTOOLS.spad" 421461 421469 429611 429616) (-275 "ESTOOLS2.spad" 421062 421076 421451 421456) (-274 "ESTOOLS1.spad" 420747 420758 421052 421057) (-273 "ES.spad" 413294 413302 420737 420742) (-272 "ES.spad" 405749 405759 413194 413199) (-271 "ESCONT.spad" 402522 402530 405739 405744) (-270 "ESCONT1.spad" 402271 402283 402512 402517) (-269 "ES2.spad" 401766 401782 402261 402266) (-268 "ES1.spad" 401332 401348 401756 401761) (-267 "ERROR.spad" 398653 398661 401322 401327) (-266 "EQTBL.spad" 397687 397709 397896 397923) (-265 "EQ.spad" 392571 392581 395370 395479) (-264 "EQ2.spad" 392287 392299 392561 392566) (-263 "EP.spad" 388601 388611 392277 392282) (-262 "ENTIRER.spad" 388269 388277 388545 388596) (-261 "EMR.spad" 387470 387511 388195 388264) (-260 "ELTAGG.spad" 385710 385729 387460 387465) (-259 "ELTAGG.spad" 383914 383935 385666 385671) (-258 "ELTAB.spad" 383361 383379 383904 383909) (-257 "ELFUTS.spad" 382740 382759 383351 383356) (-256 "ELEMFUN.spad" 382429 382437 382730 382735) (-255 "ELEMFUN.spad" 382116 382126 382419 382424) (-254 "ELAGG.spad" 380047 380057 382084 382111) (-253 "ELAGG.spad" 377927 377939 379966 379971) (-252 "EFUPXS.spad" 374703 374733 377883 377888) (-251 "EFULS.spad" 371539 371562 374659 374664) (-250 "EFSTRUC.spad" 369494 369510 371529 371534) (-249 "EF.spad" 364260 364276 369484 369489) (-248 "EAB.spad" 362536 362544 364250 364255) (-247 "E04UCFA.spad" 362072 362080 362526 362531) (-246 "E04NAFA.spad" 361649 361657 362062 362067) (-245 "E04MBFA.spad" 361229 361237 361639 361644) (-244 "E04JAFA.spad" 360765 360773 361219 361224) (-243 "E04GCFA.spad" 360301 360309 360755 360760) (-242 "E04FDFA.spad" 359837 359845 360291 360296) (-241 "E04DGFA.spad" 359373 359381 359827 359832) (-240 "E04AGNT.spad" 355215 355223 359363 359368) (-239 "DVARCAT.spad" 351900 351910 355205 355210) (-238 "DVARCAT.spad" 348583 348595 351890 351895) (-237 "DSMP.spad" 346017 346031 346322 346449) (-236 "DROPT.spad" 339962 339970 346007 346012) (-235 "DROPT1.spad" 339625 339635 339952 339957) (-234 "DROPT0.spad" 334452 334460 339615 339620) (-233 "DRAWPT.spad" 332607 332615 334442 334447) (-232 "DRAW.spad" 325207 325220 332597 332602) (-231 "DRAWHACK.spad" 324515 324525 325197 325202) (-230 "DRAWCX.spad" 321957 321965 324505 324510) (-229 "DRAWCURV.spad" 321494 321509 321947 321952) (-228 "DRAWCFUN.spad" 310666 310674 321484 321489) (-227 "DQAGG.spad" 308822 308832 310622 310661) (-226 "DPOLCAT.spad" 304163 304179 308690 308817) (-225 "DPOLCAT.spad" 299590 299608 304119 304124) (-224 "DPMO.spad" 293633 293649 293771 294067) (-223 "DPMM.spad" 287689 287707 287814 288110) (-222 "domain.spad" 287458 287466 287679 287684) (-221 "DMP.spad" 284683 284698 285255 285382) (-220 "DLP.spad" 284031 284041 284673 284678) (-219 "DLIST.spad" 282666 282676 283437 283464) (-218 "DLAGG.spad" 281067 281077 282646 282661) (-217 "DIVRING.spad" 280514 280522 281011 281062) (-216 "DIVRING.spad" 280005 280015 280504 280509) (-215 "DISPLAY.spad" 278185 278193 279995 280000) (-214 "DIRPROD.spad" 270160 270176 270800 270929) (-213 "DIRPROD2.spad" 268968 268986 270150 270155) (-212 "DIRPCAT.spad" 267900 267916 268822 268963) (-211 "DIRPCAT.spad" 266572 266590 267496 267501) (-210 "DIOSP.spad" 265397 265405 266562 266567) (-209 "DIOPS.spad" 264369 264379 265365 265392) (-208 "DIOPS.spad" 263327 263339 264325 264330) (-207 "DIFRING.spad" 262619 262627 263307 263322) (-206 "DIFRING.spad" 261919 261929 262609 262614) (-205 "DIFEXT.spad" 261078 261088 261899 261914) (-204 "DIFEXT.spad" 260154 260166 260977 260982) (-203 "DIAGG.spad" 259772 259782 260122 260149) (-202 "DIAGG.spad" 259410 259422 259762 259767) (-201 "DHMATRIX.spad" 257937 257947 259090 259117) (-200 "DFSFUN.spad" 251345 251353 257927 257932) (-199 "DFLOAT.spad" 247868 247876 251235 251340) (-198 "DFINTTLS.spad" 246077 246093 247858 247863) (-197 "DERHAM.spad" 243987 244019 246057 246072) (-196 "DEQUEUE.spad" 243528 243538 243817 243844) (-195 "DEGRED.spad" 243143 243157 243518 243523) (-194 "DEFINTRF.spad" 240668 240678 243133 243138) (-193 "DEFINTEF.spad" 239164 239180 240658 240663) (-192 "DECIMAL.spad" 237048 237056 237634 237727) (-191 "DDFACT.spad" 234847 234864 237038 237043) (-190 "DBLRESP.spad" 234445 234469 234837 234842) (-189 "DBASE.spad" 233017 233027 234435 234440) (-188 "D03FAFA.spad" 232845 232853 233007 233012) (-187 "D03EEFA.spad" 232665 232673 232835 232840) (-186 "D03AGNT.spad" 231745 231753 232655 232660) (-185 "D02EJFA.spad" 231207 231215 231735 231740) (-184 "D02CJFA.spad" 230685 230693 231197 231202) (-183 "D02BHFA.spad" 230175 230183 230675 230680) (-182 "D02BBFA.spad" 229665 229673 230165 230170) (-181 "D02AGNT.spad" 224469 224477 229655 229660) (-180 "D01WGTS.spad" 222788 222796 224459 224464) (-179 "D01TRNS.spad" 222765 222773 222778 222783) (-178 "D01GBFA.spad" 222287 222295 222755 222760) (-177 "D01FCFA.spad" 221809 221817 222277 222282) (-176 "D01ASFA.spad" 221277 221285 221799 221804) (-175 "D01AQFA.spad" 220723 220731 221267 221272) (-174 "D01APFA.spad" 220147 220155 220713 220718) (-173 "D01ANFA.spad" 219641 219649 220137 220142) (-172 "D01AMFA.spad" 219151 219159 219631 219636) (-171 "D01ALFA.spad" 218691 218699 219141 219146) (-170 "D01AKFA.spad" 218217 218225 218681 218686) (-169 "D01AJFA.spad" 217740 217748 218207 218212) (-168 "D01AGNT.spad" 213799 213807 217730 217735) (-167 "CYCLOTOM.spad" 213305 213313 213789 213794) (-166 "CYCLES.spad" 210137 210145 213295 213300) (-165 "CVMP.spad" 209554 209564 210127 210132) (-164 "CTRIGMNP.spad" 208044 208060 209544 209549) (-163 "CSTTOOLS.spad" 207287 207300 208034 208039) (-162 "CRFP.spad" 200991 201004 207277 207282) (-161 "CRAPACK.spad" 200034 200044 200981 200986) (-160 "CPMATCH.spad" 199534 199549 199959 199964) (-159 "CPIMA.spad" 199239 199258 199524 199529) (-158 "COORDSYS.spad" 194132 194142 199229 199234) (-157 "CONTFRAC.spad" 189744 189754 194034 194127) (-156 "COMRING.spad" 189418 189426 189682 189739) (-155 "COMPPROP.spad" 188932 188940 189408 189413) (-154 "COMPLPAT.spad" 188699 188714 188922 188927) (-153 "COMPLEX.spad" 182732 182742 182976 183237) (-152 "COMPLEX2.spad" 182445 182457 182722 182727) (-151 "COMPFACT.spad" 182047 182061 182435 182440) (-150 "COMPCAT.spad" 180103 180113 181769 182042) (-149 "COMPCAT.spad" 177866 177878 179534 179539) (-148 "COMMUPC.spad" 177612 177630 177856 177861) (-147 "COMMONOP.spad" 177145 177153 177602 177607) (-146 "COMM.spad" 176954 176962 177135 177140) (-145 "COMBOPC.spad" 175859 175867 176944 176949) (-144 "COMBINAT.spad" 174604 174614 175849 175854) (-143 "COMBF.spad" 171972 171988 174594 174599) (-142 "COLOR.spad" 170809 170817 171962 171967) (-141 "CMPLXRT.spad" 170518 170535 170799 170804) (-140 "CLIP.spad" 166610 166618 170508 170513) (-139 "CLIF.spad" 165249 165265 166566 166605) (-138 "CLAGG.spad" 161724 161734 165229 165244) (-137 "CLAGG.spad" 158080 158092 161587 161592) (-136 "CINTSLPE.spad" 157405 157418 158070 158075) (-135 "CHVAR.spad" 155483 155505 157395 157400) (-134 "CHARZ.spad" 155398 155406 155463 155478) (-133 "CHARPOL.spad" 154906 154916 155388 155393) (-132 "CHARNZ.spad" 154659 154667 154886 154901) (-131 "CHAR.spad" 152549 152557 154649 154654) (-130 "CFCAT.spad" 151865 151873 152539 152544) (-129 "CDEN.spad" 151023 151037 151855 151860) (-128 "CCLASS.spad" 149230 149238 150492 150531) (-127 "CARTEN.spad" 144333 144357 149220 149225) (-126 "CARTEN2.spad" 143719 143746 144323 144328) (-125 "CARD.spad" 141008 141016 143693 143714) (-124 "CACHSET.spad" 140630 140638 140998 141003) (-123 "CABMON.spad" 140183 140191 140620 140625) (-122 "BTREE.spad" 139475 139485 140013 140040) (-121 "BTOURN.spad" 138701 138711 139305 139332) (-120 "BTCAT.spad" 138077 138087 138657 138696) (-119 "BTCAT.spad" 137485 137497 138067 138072) (-118 "BTAGG.spad" 136501 136509 137441 137480) (-117 "BTAGG.spad" 135549 135559 136491 136496) (-116 "BSTREE.spad" 134507 134517 135379 135406) (-115 "BRILL.spad" 132702 132713 134497 134502) (-114 "BRAGG.spad" 131616 131626 132682 132697) (-113 "BRAGG.spad" 130504 130516 131572 131577) (-112 "BPADICRT.spad" 128488 128500 128743 128836) (-111 "BPADIC.spad" 128152 128164 128414 128483) (-110 "BOUNDZRO.spad" 127808 127825 128142 128147) (-109 "BOP.spad" 123272 123280 127798 127803) (-108 "BOP1.spad" 120658 120668 123228 123233) (-107 "BOOLEAN.spad" 119516 119524 120648 120653) (-106 "BMODULE.spad" 119228 119240 119484 119511) (-105 "BITS.spad" 118705 118713 118922 118949) (-104 "BINFILE.spad" 118048 118056 118695 118700) (-103 "BINARY.spad" 115941 115949 116518 116611) (-102 "BGAGG.spad" 115126 115136 115909 115936) (-101 "BGAGG.spad" 114331 114343 115116 115121) (-100 "BFUNCT.spad" 113895 113903 114311 114326) (-99 "BEZOUT.spad" 113030 113056 113845 113850) (-98 "BBTREE.spad" 110073 110082 112860 112887) (-97 "BASTYPE.spad" 109746 109753 110063 110068) (-96 "BASTYPE.spad" 109417 109426 109736 109741) (-95 "BALFACT.spad" 108857 108869 109407 109412) (-94 "AUTOMOR.spad" 108304 108313 108837 108852) (-93 "ATTREG.spad" 105023 105030 108056 108299) (-92 "ATTRBUT.spad" 101046 101053 105003 105018) (-91 "ATRIG.spad" 100516 100523 101036 101041) (-90 "ATRIG.spad" 99984 99993 100506 100511) (-89 "ASTACK.spad" 99540 99549 99814 99841) (-88 "ASSOCEQ.spad" 98340 98351 99496 99501) (-87 "ASP9.spad" 97421 97434 98330 98335) (-86 "ASP8.spad" 96464 96477 97411 97416) (-85 "ASP80.spad" 95786 95799 96454 96459) (-84 "ASP7.spad" 94946 94959 95776 95781) (-83 "ASP78.spad" 94397 94410 94936 94941) (-82 "ASP77.spad" 93766 93779 94387 94392) (-81 "ASP74.spad" 92858 92871 93756 93761) (-80 "ASP73.spad" 92129 92142 92848 92853) (-79 "ASP6.spad" 90761 90774 92119 92124) (-78 "ASP55.spad" 89270 89283 90751 90756) (-77 "ASP50.spad" 87087 87100 89260 89265) (-76 "ASP4.spad" 86382 86395 87077 87082) (-75 "ASP49.spad" 85381 85394 86372 86377) (-74 "ASP42.spad" 83788 83827 85371 85376) (-73 "ASP41.spad" 82367 82406 83778 83783) (-72 "ASP35.spad" 81355 81368 82357 82362) (-71 "ASP34.spad" 80656 80669 81345 81350) (-70 "ASP33.spad" 80216 80229 80646 80651) (-69 "ASP31.spad" 79356 79369 80206 80211) (-68 "ASP30.spad" 78248 78261 79346 79351) (-67 "ASP29.spad" 77714 77727 78238 78243) (-66 "ASP28.spad" 68987 69000 77704 77709) (-65 "ASP27.spad" 67884 67897 68977 68982) (-64 "ASP24.spad" 66971 66984 67874 67879) (-63 "ASP20.spad" 66187 66200 66961 66966) (-62 "ASP1.spad" 65568 65581 66177 66182) (-61 "ASP19.spad" 60254 60267 65558 65563) (-60 "ASP12.spad" 59668 59681 60244 60249) (-59 "ASP10.spad" 58939 58952 59658 59663) (-58 "ARRAY2.spad" 58522 58531 58769 58796) (-57 "ARRAY1.spad" 57580 57589 57928 57955) (-56 "ARRAY12.spad" 56249 56260 57570 57575) (-55 "ARR2CAT.spad" 51899 51920 56205 56244) (-54 "ARR2CAT.spad" 47581 47604 51889 51894) (-53 "APPRULE.spad" 46825 46847 47571 47576) (-52 "APPLYORE.spad" 46440 46453 46815 46820) (-51 "ANY.spad" 44782 44789 46430 46435) (-50 "ANY1.spad" 43853 43862 44772 44777) (-49 "ANTISYM.spad" 42292 42308 43833 43848) (-48 "ANON.spad" 42205 42212 42282 42287) (-47 "AN.spad" 40508 40515 42023 42116) (-46 "AMR.spad" 38687 38698 40406 40503) (-45 "AMR.spad" 36703 36716 38424 38429) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index dcaf25b4..8812be8f 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,1192 +1,1194 @@ -(142351 . 3269429149) -(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) +(143833 . 3403927931) +(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) (((|#2| |#2|) . T)) -((((-501)) . T)) -((($ $) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) ((|#2| |#2|) . T) (((-375 (-501)) (-375 (-501))) |has| |#2| (-37 (-375 (-501))))) +((((-517)) . T)) +((($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2| |#2|) . T) (((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) +((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) (((|#2|) . T)) -((($) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) ((|#2|) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501))))) -(|has| |#1| (-830)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((($) . T) (((-375 (-501))) . T)) +((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517))))) +(|has| |#1| (-831)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((($) . T) (((-377 (-517))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-131)) . T)) -((((-490)) . T) (((-1053)) . T) (((-199)) . T) (((-346)) . T) (((-810 (-346))) . T)) -(((|#1|) . T)) -((((-199)) . T) (((-786)) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1|) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-775))) -((($ $) . T) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1| |#1|) . T)) -(-1405 (|has| |#1| (-750)) (|has| |#1| (-777))) -((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T)) -((((-786)) . T)) -((((-786)) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -(|has| |#1| (-775)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +((((-493)) . T) (((-1056)) . T) (((-199)) . T) (((-349)) . T) (((-814 (-349))) . T)) +(((|#1|) . T)) +((((-199)) . T) (((-787)) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1|) . T)) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-777))) +((($ $) . T) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T)) +(-3807 (|has| |#1| (-752)) (|has| |#1| (-779))) +((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T)) +((((-787)) . T)) +((((-787)) . T)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +(|has| |#1| (-777)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (((|#1| |#2| |#3|) . T)) (((|#4|) . T)) -((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T)) -((((-786)) . T)) -((((-786)) |has| |#1| (-1001))) +((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) +((((-787)) . T)) +((((-787)) |has| |#1| (-1003))) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501))))) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(((|#2| (-448 (-3581 |#1|) (-701))) . T)) -(((|#1| (-487 (-1070))) . T)) -((((-791 |#1|) (-791 |#1|)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(|has| |#4| (-336)) -(|has| |#3| (-336)) -(((|#1|) . T)) -((((-791 |#1|)) . T) (((-375 (-501))) . T) (($) . T)) +(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517))))) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(((|#2| (-450 (-2296 |#1|) (-703))) . T)) +(((|#1| (-489 (-1073))) . T)) +((((-794 |#1|) (-794 |#1|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(|has| |#4| (-338)) +(|has| |#3| (-338)) +(((|#1|) . T)) +((((-794 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T)) (|has| |#1| (-132)) (|has| |#1| (-134)) -(|has| |#1| (-508)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -((($) . T)) -((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))) -((((-490)) |has| |#1| (-556 (-490)))) -((($) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-786)) . T)) -((((-786)) . T)) -((((-375 (-501))) . T) (($) . T)) -((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)) (($) . T) ((|#1|) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) . T)) -(((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) (($) . T)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) +(|has| |#1| (-509)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +((($) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003)))) +((((-493)) |has| |#1| (-558 (-493)))) +((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-787)) . T)) +((((-787)) . T)) +((((-377 (-517))) . T) (($) . T)) +((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T)) +(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) (((|#1| |#2|) . T)) -((((-786)) . T)) +((((-787)) . T)) (((|#1|) . T)) -((((-375 (-501)) (-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2| |#2|) . T) (($ $) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) +((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) (((|#1|) . T)) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) -((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -((((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) +((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))) ((($ $) . T)) (((|#2|) . T)) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T) (($) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))) ((($) . T)) -(|has| |#1| (-336)) +(|has| |#1| (-338)) (((|#1|) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-786)) . T)) -((((-786)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-787)) . T)) +((((-787)) . T)) (((|#1| |#2|) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959))) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959))) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961))) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961))) (((|#1| |#1|) . T)) -(|has| |#1| (-508)) -(((|#2| |#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-278 |#2|))) (((-1070) |#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-476 (-1070) |#2|)))) -((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-775))) -((($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(|has| |#1| (-1001)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(|has| |#1| (-1001)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(|has| |#1| (-775)) -((($) . T) (((-375 (-501))) . T)) -(((|#1|) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-318))) -(-1405 (|has| |#4| (-723)) (|has| |#4| (-775))) -(-1405 (|has| |#4| (-723)) (|has| |#4| (-775))) -(-1405 (|has| |#3| (-723)) (|has| |#3| (-775))) -(-1405 (|has| |#3| (-723)) (|has| |#3| (-775))) +(|has| |#1| (-509)) +(((|#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) (((-1073) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1073) |#2|)))) +((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-777))) +((($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(|has| |#1| (-1003)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(|has| |#1| (-1003)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(|has| |#1| (-777)) +((($) . T) (((-377 (-517))) . T)) +(((|#1|) . T)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-319))) +(-3807 (|has| |#4| (-725)) (|has| |#4| (-777))) +(-3807 (|has| |#4| (-725)) (|has| |#4| (-777))) +(-3807 (|has| |#3| (-725)) (|has| |#3| (-777))) +(-3807 (|has| |#3| (-725)) (|has| |#3| (-777))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1001)) -(|has| |#1| (-1001)) -(((|#1| (-1070) (-990 (-1070)) (-487 (-990 (-1070)))) . T)) -((((-501) |#1|) . T)) -((((-501)) . T)) -((((-501)) . T)) -((((-826 |#1|)) . T)) -(((|#1| (-487 |#2|)) . T)) -((((-501)) . T)) -((((-501)) . T)) -(((|#1|) . T)) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(((|#1| (-701)) . T)) -(|has| |#2| (-723)) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) -(|has| |#2| (-775)) +(|has| |#1| (-1003)) +(|has| |#1| (-1003)) +(((|#1| (-1073) (-993 (-1073)) (-489 (-993 (-1073)))) . T)) +((((-517) |#1|) . T)) +((((-517)) . T)) +((((-517)) . T)) +((((-832 |#1|)) . T)) +(((|#1| (-489 |#2|)) . T)) +((((-517)) . T)) +((((-517)) . T)) +(((|#1|) . T)) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(((|#1| (-703)) . T)) +(|has| |#2| (-725)) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) +(|has| |#2| (-777)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1053) |#1|) . T)) -((((-786)) |has| |#1| (-1001))) +((((-1056) |#1|) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) (((|#1|) . T)) -(((|#3| (-701)) . T)) +(((|#3| (-703)) . T)) (|has| |#1| (-134)) (|has| |#1| (-132)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) -(|has| |#1| (-1001)) -((((-375 (-501))) . T) (((-501)) . T)) -((((-1070) |#2|) |has| |#2| (-476 (-1070) |#2|)) ((|#2| |#2|) |has| |#2| (-278 |#2|))) -((((-375 (-501))) . T) (((-501)) . T)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) +(|has| |#1| (-1003)) +((((-377 (-517))) . T) (((-517)) . T)) +((((-1073) |#2|) |has| |#2| (-478 (-1073) |#2|)) ((|#2| |#2|) |has| |#2| (-280 |#2|))) +((((-377 (-517))) . T) (((-517)) . T)) (((|#1|) . T) (($) . T)) -((((-501)) . T)) -((((-501)) . T)) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) |has| |#1| (-156))) -((((-501)) . T)) -((((-501)) . T)) -((((-630) (-1064 (-630))) . T)) -((((-375 (-501))) . T) (($) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -((((-501) |#1|) . T)) -((($) . T) (((-501)) . T) (((-375 (-501))) . T)) -(((|#1|) . T)) -(|has| |#2| (-331)) +((((-517)) . T)) +((((-517)) . T)) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156))) +((((-517)) . T)) +((((-517)) . T)) +((((-632) (-1069 (-632))) . T)) +((((-377 (-517))) . T) (($) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +((((-517) |#1|) . T)) +((($) . T) (((-517)) . T) (((-377 (-517))) . T)) +(((|#1|) . T)) +(|has| |#2| (-333)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-786)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-1053) |#1|) . T)) +((((-787)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-1056) |#1|) . T)) (((|#3| |#3|) . T)) -((((-786)) . T)) -((((-786)) . T)) +((((-787)) . T)) +((((-787)) . T)) (((|#1| |#1|) . T)) -((((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#1|) . T)) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((($) -1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) ((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959)))) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-501) |#1|) . T)) -((((-786)) . T)) -((((-152 (-199))) |has| |#1| (-933)) (((-152 (-346))) |has| |#1| (-933)) (((-490)) |has| |#1| (-556 (-490))) (((-1064 |#1|)) . T) (((-810 (-501))) |has| |#1| (-556 (-810 (-501)))) (((-810 (-346))) |has| |#1| (-556 (-810 (-346))))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1|) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-775))) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-775))) -((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#2|) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508)))) -(|has| |#1| (-331)) -(-12 (|has| |#4| (-206)) (|has| |#4| (-959))) -(-12 (|has| |#3| (-206)) (|has| |#3| (-959))) -(-1405 (|has| |#4| (-156)) (|has| |#4| (-775)) (|has| |#4| (-959))) -(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) -((((-786)) . T)) -(((|#1|) . T)) -((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T)) -(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501)))) -(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T)) -(|has| |#1| (-508)) -(|has| |#1| (-508)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(((|#1|) . T)) -(|has| |#1| (-508)) -(|has| |#1| (-508)) -(|has| |#1| (-508)) -((((-630)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-916)) (|has| |#1| (-1090))) -(((|#2|) . T) (($) . T) (((-375 (-501))) . T)) -((($) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T)) -((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) . T)) -(((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) (($) . T)) -(((|#4| |#4|) -1405 (|has| |#4| (-156)) (|has| |#4| (-331)) (|has| |#4| (-959))) (($ $) |has| |#4| (-156))) -(((|#3| |#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959))) (($ $) |has| |#3| (-156))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-490)) |has| |#2| (-556 (-490))) (((-810 (-346))) |has| |#2| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#2| (-556 (-810 (-501))))) -((((-786)) . T)) +((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#1|) . T)) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961)))) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-517) |#1|) . T)) +((((-787)) . T)) +((((-153 (-199))) |has| |#1| (-937)) (((-153 (-349))) |has| |#1| (-937)) (((-493)) |has| |#1| (-558 (-493))) (((-1069 |#1|)) . T) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349))))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1|) . T)) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-777))) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-777))) +((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) +(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509)))) +(|has| |#1| (-333)) +(-12 (|has| |#4| (-207)) (|has| |#4| (-961))) +(-12 (|has| |#3| (-207)) (|has| |#3| (-961))) +(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961))) +(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) +((((-787)) . T)) +(((|#1|) . T)) +((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T)) +(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) +(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T)) +(|has| |#1| (-509)) +(|has| |#1| (-509)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(((|#1|) . T)) +(|has| |#1| (-509)) +(|has| |#1| (-509)) +(|has| |#1| (-509)) +((((-632)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-918)) (|has| |#1| (-1094))) +(((|#2|) . T) (($) . T) (((-377 (-517))) . T)) +((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T)) +((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T)) +(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T)) +(((|#4| |#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))) (($ $) |has| |#4| (-156))) +(((|#3| |#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($ $) |has| |#3| (-156))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517))))) +((((-787)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-786)) . T)) -((((-490)) |has| |#1| (-556 (-490))) (((-810 (-346))) |has| |#1| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#1| (-556 (-810 (-501))))) -((((-786)) . T)) -(((|#4|) -1405 (|has| |#4| (-156)) (|has| |#4| (-331)) (|has| |#4| (-959))) (($) |has| |#4| (-156))) -(((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959))) (($) |has| |#3| (-156))) -((((-786)) . T)) -((((-490)) . T) (((-501)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T)) -(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501))))) -((($) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T)) -((((-375 $) (-375 $)) |has| |#2| (-508)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-830)) -((((-1053) (-50)) . T)) -((((-501)) |has| (-375 |#2|) (-577 (-501))) (((-375 |#2|)) . T)) -((((-490)) . T) (((-199)) . T) (((-346)) . T) (((-810 (-346))) . T)) -((((-786)) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959))) +((((-787)) . T)) +((((-493)) |has| |#1| (-558 (-493))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517))))) +((((-787)) . T)) +(((|#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))) (($) |has| |#4| (-156))) +(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($) |has| |#3| (-156))) +((((-787)) . T)) +((((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T)) +(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517))))) +((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T)) +((((-377 $) (-377 $)) |has| |#2| (-509)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-831)) +((((-1056) (-51)) . T)) +((((-517)) |has| (-377 |#2|) (-579 (-517))) (((-377 |#2|)) . T)) +((((-493)) . T) (((-199)) . T) (((-349)) . T) (((-814 (-349))) . T)) +((((-787)) . T)) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961))) (((|#1|) |has| |#1| (-156))) -(((|#1| $) |has| |#1| (-256 |#1| |#1|))) -((((-786)) . T)) -((((-786)) . T)) -((((-375 (-501))) . T) (($) . T)) -((((-375 (-501))) . T) (($) . T)) -((((-786)) . T)) -(|has| |#1| (-777)) -(|has| |#1| (-1001)) -(((|#1|) . T)) -((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))) -((((-490)) |has| |#1| (-556 (-490)))) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) -((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(|has| |#1| (-206)) -((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#1| (-487 (-748 (-1070)))) . T)) -(((|#1| (-886)) . T)) -((((-791 |#1|) $) |has| (-791 |#1|) (-256 (-791 |#1|) (-791 |#1|)))) -((((-501) |#4|) . T)) -((((-501) |#3|) . T)) +(((|#1| $) |has| |#1| (-258 |#1| |#1|))) +((((-787)) . T)) +((((-787)) . T)) +((((-377 (-517))) . T) (($) . T)) +((((-377 (-517))) . T) (($) . T)) +((((-787)) . T)) +(|has| |#1| (-779)) +(|has| |#1| (-1003)) +(((|#1|) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003)))) +((((-493)) |has| |#1| (-558 (-493)))) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) +((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(|has| |#1| (-207)) +((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#1| (-489 (-750 (-1073)))) . T)) +(((|#1| (-888)) . T)) +((((-794 |#1|) $) |has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|)))) +((((-517) |#4|) . T)) +((((-517) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1046)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T)) -(|has| (-1136 |#1| |#2| |#3| |#4|) (-132)) -(|has| (-1136 |#1| |#2| |#3| |#4|) (-134)) +(|has| |#1| (-1049)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T)) +(|has| (-1140 |#1| |#2| |#3| |#4|) (-132)) +(|has| (-1140 |#1| |#2| |#3| |#4|) (-134)) (|has| |#1| (-132)) (|has| |#1| (-134)) (((|#1|) |has| |#1| (-156))) -((((-1070)) -12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) +((((-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (((|#2|) . T)) -(|has| |#1| (-1001)) -((((-1053) |#1|) . T)) +(|has| |#1| (-1003)) +((((-1056) |#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501)))) -(|has| |#2| (-336)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) +(|has| |#2| (-338)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-959))) -((((-786)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) +(((|#2|) |has| |#2| (-961))) +((((-787)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))))) -((((-501) |#1|) . T)) -((((-786)) . T)) -((((-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#2| (-556 (-490)))) (((-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346))))) (((-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) -((((-786)) . T)) -((((-786)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))))) +((((-517) |#1|) . T)) +((((-787)) . T)) +((((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349))))) (((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) +((((-787)) . T)) +((((-787)) . T)) ((($) . T)) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501))))) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517))))) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-786)) . T)) -((((-786)) . T)) -(|has| (-1130 |#2| |#3| |#4|) (-134)) -(|has| (-1130 |#2| |#3| |#4|) (-132)) -(((|#2|) |has| |#2| (-1001)) (((-501)) -12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (((-375 (-501))) -12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-787)) . T)) +((((-787)) . T)) +(|has| (-1139 |#2| |#3| |#4|) (-134)) +(|has| (-1139 |#2| |#3| |#4|) (-132)) +(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((|#1|) . T)) -(|has| |#1| (-1001)) +(|has| |#1| (-1003)) (((|#1|) . T)) (((|#1|) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959))) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961))) (((|#1|) . T)) -((((-501) |#1|) . T)) +((((-517) |#1|) . T)) (((|#2|) |has| |#2| (-156))) (((|#1|) |has| |#1| (-156))) (((|#1|) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-775))) -((((-786)) |has| |#1| (-1001))) -(-1405 (|has| |#1| (-440)) (|has| |#1| (-657)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)) (|has| |#1| (-1012))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-318))) -((((-826 |#1|)) . T)) -((((-375 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-501) |#1|))) -((((-375 (-501))) . T) (($) . T)) -(|has| |#1| (-777)) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-777))) +((((-787)) |has| |#1| (-1003))) +(-3807 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-319))) +((((-832 |#1|)) . T)) +((((-377 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-517) |#1|))) +((((-377 (-517))) . T) (($) . T)) +(|has| |#1| (-779)) (((|#1|) . T) (($) . T)) -((((-375 (-501))) . T) (($) . T)) +((((-377 (-517))) . T) (($) . T)) (((|#1|) . T)) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508))) -(|has| |#1| (-331)) -(-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))) -(|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) -(|has| |#1| (-331)) -(|has| |#1| (-15 * (|#1| (-701) |#1|))) -((((-501)) . T)) -((((-1037 |#2| (-375 (-866 |#1|)))) . T) (((-375 (-866 |#1|))) . T)) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) +(|has| |#1| (-333)) +(-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) +(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) +(|has| |#1| (-333)) +(|has| |#1| (-15 * (|#1| (-703) |#1|))) +((((-517)) . T)) +((((-1040 |#2| (-377 (-874 |#1|)))) . T) (((-377 (-874 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-156)) (($) . T)) -(((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) (($) . T)) -(((|#1|) . T)) -((((-501) |#1|) . T)) -(((|#2|) . T)) -(-1405 (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) -(((|#1|) . T)) -((((-1070)) -12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(-12 (|has| |#1| (-331)) (|has| |#2| (-750))) -(-1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318)) (|has| |#1| (-508))) -((((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508)))) -((($ $) |has| |#1| (-508))) -((((-630) (-1064 (-630))) . T)) -((((-786)) . T)) -((((-786)) . T) (((-1148 |#4|)) . T)) -((((-786)) . T) (((-1148 |#3|)) . T)) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508)))) -((($) |has| |#1| (-508))) -((((-786)) . T)) -((($) . T)) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331)))) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) . T)) -(((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331)))) -(((|#3|) |has| |#3| (-959))) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(|has| |#1| (-1001)) -(((|#2| (-749 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-331)) -((((-375 $) (-375 $)) |has| |#1| (-508)) (($ $) . T) ((|#1| |#1|) . T)) -((((-986) |#2|) . T) (((-986) $) . T) (($ $) . T)) -((((-826 |#1|)) . T)) +(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T)) +(((|#1|) . T)) +((((-517) |#1|) . T)) +(((|#2|) . T)) +(-3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) +(((|#1|) . T)) +((((-1073)) -12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) +(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) +((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509)))) +((($ $) |has| |#1| (-509))) +((((-632) (-1069 (-632))) . T)) +((((-787)) . T)) +((((-787)) . T) (((-1153 |#4|)) . T)) +((((-787)) . T) (((-1153 |#3|)) . T)) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509)))) +((($) |has| |#1| (-509))) +((((-787)) . T)) +((($) . T)) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T)) +(((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) +(((|#3|) |has| |#3| (-961))) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(|has| |#1| (-1003)) +(((|#2| (-751 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-333)) +((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T)) +((((-989) |#2|) . T) (((-989) $) . T) (($ $) . T)) +((((-832 |#1|)) . T)) ((((-131)) . T)) ((((-131)) . T)) -(((|#3|) |has| |#3| (-1001)) (((-501)) -12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001))) (((-375 (-501))) -12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001)))) -((((-786)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(((|#1|) . T)) -((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))) -((((-490)) |has| |#1| (-556 (-490)))) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T)) -(|has| |#1| (-331)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-775))) -((((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((|#1| |#1|) |has| |#1| (-278 |#1|))) -(|has| |#2| (-750)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-775)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -((((-786)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-490)) |has| |#1| (-556 (-490)))) +(((|#3|) |has| |#3| (-1003)) (((-517)) -12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (((-377 (-517))) -12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) +((((-787)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(((|#1|) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003)))) +((((-493)) |has| |#1| (-558 (-493)))) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T)) +(|has| |#1| (-333)) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-777))) +((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|))) +(|has| |#2| (-752)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-777)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +((((-787)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-493)) |has| |#1| (-558 (-493)))) (((|#1| |#2|) . T)) -((((-1070)) -12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) -((((-1053) |#1|) . T)) -(((|#1| |#2| |#3| (-487 |#3|)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -((((-786)) . T)) -(((|#1|) . T)) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -(|has| |#1| (-336)) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -((((-501)) . T)) -((((-501)) . T)) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -((((-786)) . T)) -((((-786)) . T)) -(-12 (|has| |#2| (-206)) (|has| |#2| (-959))) -((((-1070) (-791 |#1|)) |has| (-791 |#1|) (-476 (-1070) (-791 |#1|))) (((-791 |#1|) (-791 |#1|)) |has| (-791 |#1|) (-278 (-791 |#1|)))) -(((|#1|) . T)) -((((-501) |#4|) . T)) -((((-501) |#3|) . T)) -(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501)))) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) -((((-1136 |#1| |#2| |#3| |#4|)) . T)) -((((-375 (-501))) . T) (((-501)) . T)) -((((-786)) |has| |#1| (-1001))) +((((-1073)) -12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) +((((-1056) |#1|) . T)) +(((|#1| |#2| |#3| (-489 |#3|)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +((((-787)) . T)) +(((|#1|) . T)) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +(|has| |#1| (-338)) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +((((-517)) . T)) +((((-517)) . T)) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +((((-787)) . T)) +((((-787)) . T)) +(-12 (|has| |#2| (-207)) (|has| |#2| (-961))) +((((-1073) (-794 |#1|)) |has| (-794 |#1|) (-478 (-1073) (-794 |#1|))) (((-794 |#1|) (-794 |#1|)) |has| (-794 |#1|) (-280 (-794 |#1|)))) +(((|#1|) . T)) +((((-517) |#4|) . T)) +((((-517) |#3|) . T)) +(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) +((((-1140 |#1| |#2| |#3| |#4|)) . T)) +((((-377 (-517))) . T) (((-517)) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-501)) . T) (((-375 (-501))) . T)) -((((-501)) . T)) -((((-501)) . T)) -((($) . T) (((-501)) . T) (((-375 (-501))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) +((($) . T) (((-517)) . T) (((-377 (-517))) . T)) +((((-517)) . T)) +((((-517)) . T)) +((($) . T) (((-517)) . T) (((-377 (-517))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-501) (-501)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) -(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501))))) -(((|#1|) . T) (($) . T) (((-375 (-501))) . T)) -(((|#1|) |has| |#1| (-508))) -((((-501) |#4|) . T)) -((((-501) |#3|) . T)) -((((-786)) . T)) -((((-501)) . T) (((-375 (-501))) . T) (($) . T)) -((((-786)) . T)) -((((-501) |#1|) . T)) +((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) +(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517))))) +(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) +(((|#1|) |has| |#1| (-509))) +((((-517) |#4|) . T)) +((((-517) |#3|) . T)) +((((-787)) . T)) +((((-517)) . T) (((-377 (-517))) . T) (($) . T)) +((((-787)) . T)) +((((-517) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) (((-787 |#1|) $) . T) (((-787 |#1|) |#2|) . T)) +((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T)) ((($) . T)) -((($ $) . T) (((-1070) $) . T) (((-1070) |#1|) . T)) +((($ $) . T) (((-1073) $) . T) (((-1073) |#1|) . T)) (((|#2|) |has| |#2| (-156))) -((($) -1405 (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) ((|#2|) |has| |#2| (-156)) (((-375 (-501))) |has| |#2| (-37 (-375 (-501))))) -(((|#2| |#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($ $) |has| |#2| (-156))) +((($) -3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517))))) +(((|#2| |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156))) ((((-131)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-336)) (|has| |#2| (-336))) -((((-786)) . T)) -(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($) |has| |#2| (-156))) +(-12 (|has| |#1| (-338)) (|has| |#2| (-338))) +((((-787)) . T)) +(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156))) (((|#1|) . T)) -((((-786)) . T)) -(|has| |#1| (-1001)) +((((-787)) . T)) +(|has| |#1| (-1003)) (|has| $ (-134)) -((((-501) |#1|) . T)) -((($) -1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T)) -((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) -(|has| |#1| (-331)) -(-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))) -(|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) -(|has| |#1| (-331)) -(|has| |#1| (-15 * (|#1| (-701) |#1|))) -(((|#1|) . T)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -((((-786)) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -(((|#2| (-487 (-787 |#1|))) . T)) -((((-786)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1|) . T)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -((((-528 |#1|)) . T)) +((((-517) |#1|) . T)) +((($) -3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) +((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) +(|has| |#1| (-333)) +(-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) +(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) +(|has| |#1| (-333)) +(|has| |#1| (-15 * (|#1| (-703) |#1|))) +(((|#1|) . T)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +((((-787)) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +(((|#2| (-489 (-789 |#1|))) . T)) +((((-787)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1|) . T)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +((((-530 |#1|)) . T)) ((($) . T)) (((|#1|) . T) (($) . T)) -((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T)) +((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) (((|#4|) . T)) (((|#3|) . T)) -((((-791 |#1|)) . T) (($) . T) (((-375 (-501))) . T)) -((((-1070)) -12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) -(((|#1|) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-501) |#2|) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) +((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) +((((-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) +(((|#1|) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-517) |#2|) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508)))) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331)))) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#2|) |has| |#2| (-959))) -(|has| |#1| (-1001)) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508)))) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) . T)) -(((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331)))) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) +((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509)))) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#2|) |has| |#2| (-961))) +(|has| |#1| (-1003)) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509)))) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T)) +(((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) (((|#1|) |has| |#1| (-156)) (($) . T)) (((|#1|) . T)) -((((-375 (-501)) (-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2| |#2|) . T) (($ $) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) -((((-786)) . T)) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) +((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) +((((-787)) . T)) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))) -((((-986) |#1|) . T) (((-986) $) . T) (($ $) . T)) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T) (($) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) -((($) . T)) -(((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) (($) . T)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(((|#2|) |has| |#1| (-331))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1001)) (((-501)) -12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (((-375 (-501))) -12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) -((((-501) |#1|) . T)) -(((|#1| (-375 (-501))) . T)) -((((-375 |#2|) |#3|) . T)) -((((-375 (-501))) . T) (($) . T)) -((((-375 (-501))) . T) (($) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))) +((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T)) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) +((($) . T)) +(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(((|#2|) |has| |#1| (-333))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) +((((-517) |#1|) . T)) +(((|#1| (-377 (-517))) . T)) +((((-377 |#2|) |#3|) . T)) +((((-377 (-517))) . T) (($) . T)) +((((-377 (-517))) . T) (($) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-132)) (|has| |#1| (-134)) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) -((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-375 (-501))) . T) (($) . T)) -((((-375 (-501))) . T) (($) . T)) -((((-375 (-501))) . T) (($) . T)) -(((|#2| |#3| (-787 |#1|)) . T)) -((((-1070)) |has| |#2| (-820 (-1070)))) -(((|#1|) . T)) -(((|#1| (-487 |#2|) |#2|) . T)) -(((|#1| (-701) (-986)) . T)) -((((-375 (-501))) |has| |#2| (-331)) (($) . T)) -(((|#1| (-487 (-990 (-1070))) (-990 (-1070))) . T)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(((|#1|) . T)) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(|has| |#2| (-723)) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -(|has| |#2| (-775)) -((((-813 |#1|)) . T) (((-749 |#1|)) . T)) -((((-749 (-1070))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-578 (-501))) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-490)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T)) -(|has| |#1| (-206)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) +((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-377 (-517))) . T) (($) . T)) +((((-377 (-517))) . T) (($) . T)) +((((-377 (-517))) . T) (($) . T)) +(((|#2| |#3| (-789 |#1|)) . T)) +((((-1073)) |has| |#2| (-822 (-1073)))) +(((|#1|) . T)) +(((|#1| (-489 |#2|) |#2|) . T)) +(((|#1| (-703) (-989)) . T)) +((((-377 (-517))) |has| |#2| (-333)) (($) . T)) +(((|#1| (-489 (-993 (-1073))) (-993 (-1073))) . T)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(((|#1|) . T)) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(|has| |#2| (-725)) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +(|has| |#2| (-777)) +((((-815 |#1|)) . T) (((-751 |#1|)) . T)) +((((-751 (-1073))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-583 (-517))) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T)) +(|has| |#1| (-207)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-1139 |#1| |#2| |#3|) $) -12 (|has| (-1139 |#1| |#2| |#3|) (-256 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-1146 |#1| |#2| |#3|) $) -12 (|has| (-1146 |#1| |#2| |#3|) (-258 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1035 |#1| |#2|)) |has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) -(((|#2|) . T) (((-501)) |has| |#2| (-950 (-501))) (((-375 (-501))) |has| |#2| (-950 (-375 (-501))))) -(((|#3| |#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) -(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) +((((-1038 |#1| |#2|)) |has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) +(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517))))) +(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) +(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) (((|#2|) . T)) -((((-786)) -1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) (((-1148 |#2|)) . T)) +((((-787)) -3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1153 |#2|)) . T)) (((|#1|) |has| |#1| (-156))) -((((-501)) . T)) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-501) (-131)) . T)) -((($) -1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) ((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959)))) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959))) -(((|#1|) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959))) -(((|#2|) |has| |#1| (-331))) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +((((-517)) . T)) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-517) (-131)) . T)) +((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961)))) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961))) +(((|#1|) . T)) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961))) +(((|#2|) |has| |#1| (-333))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) |has| |#1| (-156))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1| (-487 (-1070)) (-1070)) . T)) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1| (-489 (-1073)) (-1073)) . T)) (((|#1|) . T) (($) . T)) (|has| |#4| (-156)) (|has| |#3| (-156)) -((((-375 (-866 |#1|)) (-375 (-866 |#1|))) . T)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(|has| |#1| (-1001)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(|has| |#1| (-1001)) -((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))) -((((-490)) |has| |#1| (-556 (-490)))) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) +((((-377 (-874 |#1|)) (-377 (-874 |#1|))) . T)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(|has| |#1| (-1003)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(|has| |#1| (-1003)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003)))) +((((-493)) |has| |#1| (-558 (-493)))) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) (((|#1| |#1|) |has| |#1| (-156))) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (((|#1|) . T)) -((((-375 (-866 |#1|))) . T)) +((((-377 (-874 |#1|))) . T)) (((|#1|) |has| |#1| (-156))) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -((((-786)) . T)) -((((-1136 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-959)) (((-501)) -12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +((((-787)) . T)) +((((-1140 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-961)) (((-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((|#1| |#2|) . T)) -(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) -(|has| |#3| (-723)) -(-1405 (|has| |#3| (-723)) (|has| |#3| (-775))) -(|has| |#3| (-775)) -((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#2|) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508)))) -(((|#2|) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -(((|#1| (-1048 |#1|)) |has| |#1| (-775))) -((((-501) |#2|) . T)) -(|has| |#1| (-1001)) -(((|#1|) . T)) -(-12 (|has| |#1| (-331)) (|has| |#2| (-1046))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(|has| |#1| (-1001)) -(((|#2|) . T)) -((((-490)) |has| |#2| (-556 (-490))) (((-810 (-346))) |has| |#2| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#2| (-556 (-810 (-501))))) -(((|#4|) -1405 (|has| |#4| (-156)) (|has| |#4| (-331)))) -(((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)))) -((((-786)) . T)) -(((|#1|) . T)) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-830))) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-830))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-830))) -((($ $) . T) (((-1070) $) |has| |#1| (-206)) (((-1070) |#1|) |has| |#1| (-206)) (((-748 (-1070)) |#1|) . T) (((-748 (-1070)) $) . T)) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-830))) -((((-501) |#2|) . T)) -((((-786)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((($) -1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) ((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959)))) -((((-501) |#1|) . T)) -(|has| (-375 |#2|) (-134)) -(|has| (-375 |#2|) (-132)) -(((|#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-278 |#2|)))) -(|has| |#1| (-37 (-375 (-501)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-375 (-501))) . T)) -((((-786)) . T)) -(|has| |#1| (-508)) -(|has| |#1| (-508)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-786)) . T)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T)) -(|has| |#1| (-37 (-375 (-501)))) -((((-356) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#2| (-1046)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -(((|#1|) . T)) -((((-356) (-1053)) . T)) -(|has| |#1| (-508)) +(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) +(|has| |#3| (-725)) +(-3807 (|has| |#3| (-725)) (|has| |#3| (-777))) +(|has| |#3| (-777)) +((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) +(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509)))) +(((|#2|) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +(((|#1| (-1054 |#1|)) |has| |#1| (-777))) +((((-517) |#2|) . T)) +(|has| |#1| (-1003)) +(((|#1|) . T)) +(-12 (|has| |#1| (-333)) (|has| |#2| (-1049))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(|has| |#1| (-1003)) +(((|#2|) . T)) +((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517))))) +(((|#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333)))) +(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)))) +((((-787)) . T)) +(((|#1|) . T)) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-831))) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-831))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831))) +((($ $) . T) (((-1073) $) |has| |#1| (-207)) (((-1073) |#1|) |has| |#1| (-207)) (((-750 (-1073)) |#1|) . T) (((-750 (-1073)) $) . T)) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-831))) +((((-517) |#2|) . T)) +((((-787)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((($) -3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) ((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961)))) +((((-517) |#1|) . T)) +(|has| (-377 |#2|) (-134)) +(|has| (-377 |#2|) (-132)) +(((|#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|)))) +(|has| |#1| (-37 (-377 (-517)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-377 (-517))) . T)) +((((-787)) . T)) +(|has| |#1| (-509)) +(|has| |#1| (-509)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-787)) . T)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T)) +(|has| |#1| (-37 (-377 (-517)))) +((((-358) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#2| (-1049)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +(((|#1|) . T)) +((((-358) (-1056)) . T)) +(|has| |#1| (-509)) ((((-111 |#1|)) . T)) -((((-501) |#1|) . T)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) +((((-517) |#1|) . T)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) (((|#2|) . T)) -((((-786)) . T)) -((((-749 |#1|)) . T)) +((((-787)) . T)) +((((-751 |#1|)) . T)) (((|#2|) |has| |#2| (-156))) -((((-1070) (-50)) . T)) +((((-1073) (-51)) . T)) (((|#1|) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-508)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-509)) (((|#1|) |has| |#1| (-156))) -((((-786)) . T)) -((((-490)) |has| |#1| (-556 (-490)))) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(((|#2|) |has| |#2| (-278 |#2|))) -((((-501) (-501)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) +((((-787)) . T)) +((((-493)) |has| |#1| (-558 (-493)))) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(((|#2|) |has| |#2| (-280 |#2|))) +((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1| (-1064 |#1|)) . T)) +(((|#1| (-1069 |#1|)) . T)) (|has| $ (-134)) (((|#2|) . T)) -((((-501) (-501)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) -((($) . T) (((-501)) . T) (((-375 (-501))) . T)) -(|has| |#2| (-336)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -((((-501)) . T) (((-375 (-501))) . T) (($) . T)) +((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) +((($) . T) (((-517)) . T) (((-377 (-517))) . T)) +(|has| |#2| (-338)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +((((-517)) . T) (((-377 (-517))) . T) (($) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-501)) . T) (((-375 (-501))) . T) (($) . T)) -((((-1068 |#1| |#2| |#3|) $) -12 (|has| (-1068 |#1| |#2| |#3|) (-256 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331))) (($ $) . T)) -((((-786)) . T)) -((((-786)) . T)) -((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T)) -((((-490)) |has| |#1| (-556 (-490)))) -((((-786)) |has| |#1| (-1001))) +((((-517)) . T) (((-377 (-517))) . T) (($) . T)) +((((-1071 |#1| |#2| |#3|) $) -12 (|has| (-1071 |#1| |#2| |#3|) (-258 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T)) +((((-787)) . T)) +((((-787)) . T)) +((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) +((((-493)) |has| |#1| (-558 (-493)))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) ((($ $) . T)) ((($ $) . T)) -((((-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) -12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331))) (((-1070) (-1139 |#1| |#2| |#3|)) -12 (|has| (-1139 |#1| |#2| |#3|) (-476 (-1070) (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) -((((-786)) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +((((-787)) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) -12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1073) (-1146 |#1| |#2| |#3|)) -12 (|has| (-1146 |#1| |#2| |#3|) (-478 (-1073) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-375 (-501))) . T) (((-501)) . T)) -((((-501) (-131)) . T)) +((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-377 (-517))) . T) (((-517)) . T)) +((((-517) (-131)) . T)) ((((-131)) . T)) (((|#1|) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959))) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961))) ((((-107)) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) ((((-107)) . T)) (((|#1|) . T)) -((((-490)) |has| |#1| (-556 (-490))) (((-199)) |has| |#1| (-933)) (((-346)) |has| |#1| (-933))) -((((-786)) . T)) -(|has| |#1| (-750)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(|has| |#1| (-777)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-508))) -(|has| |#1| (-508)) -(|has| |#1| (-830)) -(((|#1|) . T)) -(|has| |#1| (-1001)) -((((-786)) . T)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-508))) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -(((|#1| (-1148 |#1|) (-1148 |#1|)) . T)) -((((-501) (-131)) . T)) -((($) . T)) -(-1405 (|has| |#4| (-156)) (|has| |#4| (-775)) (|has| |#4| (-959))) -(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) -((((-786)) . T)) -(|has| |#1| (-1001)) -(((|#1| (-886)) . T)) +((((-493)) |has| |#1| (-558 (-493))) (((-199)) |has| |#1| (-937)) (((-349)) |has| |#1| (-937))) +((((-787)) . T)) +(|has| |#1| (-752)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(|has| |#1| (-779)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-509))) +(|has| |#1| (-509)) +(|has| |#1| (-831)) +(((|#1|) . T)) +(|has| |#1| (-1003)) +((((-787)) . T)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-509))) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +(((|#1| (-1153 |#1|) (-1153 |#1|)) . T)) +((((-517) (-131)) . T)) +((($) . T)) +(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961))) +(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) +((((-787)) . T)) +(|has| |#1| (-1003)) +(((|#1| (-888)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) -(-12 (|has| |#1| (-440)) (|has| |#2| (-440))) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) +(-12 (|has| |#1| (-442)) (|has| |#2| (-442))) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) (((|#1|) . T)) -(|has| |#2| (-723)) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) +(|has| |#2| (-725)) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(|has| |#2| (-775)) -(-12 (|has| |#1| (-723)) (|has| |#2| (-723))) -(-12 (|has| |#1| (-723)) (|has| |#2| (-723))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(|has| |#2| (-777)) +(-12 (|has| |#1| (-725)) (|has| |#2| (-725))) +(-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-156))) (((|#1|) |has| |#1| (-156))) -((((-786)) . T)) -(|has| |#1| (-318)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-375 (-501))) . T) (($) . T)) -((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) . T)) -(|has| |#1| (-751)) -((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T)) -(|has| |#1| (-1001)) -(((|#1| $) |has| |#1| (-256 |#1| |#1|))) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508))) -((($) |has| |#1| (-508))) -(((|#4|) |has| |#4| (-1001))) -(((|#3|) |has| |#3| (-1001))) -(|has| |#3| (-336)) -(((|#1|) . T) (((-786)) . T)) -((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508)))) -((((-786)) . T)) -((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) +((((-787)) . T)) +(|has| |#1| (-319)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-377 (-517))) . T) (($) . T)) +((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T)) +(|has| |#1| (-760)) +((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T)) +(|has| |#1| (-1003)) +(((|#1| $) |has| |#1| (-258 |#1| |#1|))) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) +((($) |has| |#1| (-509))) +(((|#4|) |has| |#4| (-1003))) +(((|#3|) |has| |#3| (-1003))) +(|has| |#3| (-338)) +(((|#1|) . T) (((-787)) . T)) +((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) +(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509)))) +((((-787)) . T)) +((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) (((|#2|) . T)) (((|#1| |#1|) |has| |#1| (-156))) (((|#1| |#2|) . T)) -(|has| |#2| (-331)) +(|has| |#2| (-333)) (((|#1|) . T)) (((|#1|) |has| |#1| (-156))) -((((-375 (-501))) . T) (((-501)) . T)) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) +((((-377 (-517))) . T) (((-517)) . T)) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) ((((-131)) . T)) (((|#1|) . T)) ((((-131)) . T)) -((($) -1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) ((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959)))) +((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961)))) ((((-131)) . T)) (((|#1| |#2| |#3|) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959))) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961))) (|has| $ (-134)) (|has| $ (-134)) -(|has| |#1| (-1001)) -((((-786)) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-440)) (|has| |#1| (-508)) (|has| |#1| (-959)) (|has| |#1| (-1012))) -((($ $) |has| |#1| (-256 $ $)) ((|#1| $) |has| |#1| (-256 |#1| |#1|))) -(((|#1| (-375 (-501))) . T)) -(((|#1|) . T)) -((((-1070)) . T)) -(|has| |#1| (-508)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -(|has| |#1| (-508)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -((((-786)) . T)) +(|has| |#1| (-1003)) +((((-787)) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-961)) (|has| |#1| (-1015))) +((($ $) |has| |#1| (-258 $ $)) ((|#1| $) |has| |#1| (-258 |#1| |#1|))) +(((|#1| (-377 (-517))) . T)) +(((|#1|) . T)) +((((-1073)) . T)) +(|has| |#1| (-509)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +(|has| |#1| (-509)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +((((-787)) . T)) (|has| |#2| (-132)) (|has| |#2| (-134)) (((|#2|) . T) (($) . T)) (|has| |#1| (-134)) (|has| |#1| (-132)) -(|has| |#4| (-775)) -(((|#2| (-212 (-3581 |#1|) (-701)) (-787 |#1|)) . T)) -(|has| |#3| (-775)) -(((|#1| (-487 |#3|) |#3|) . T)) +(|has| |#4| (-777)) +(((|#2| (-214 (-2296 |#1|) (-703)) (-789 |#1|)) . T)) +(|has| |#3| (-777)) +(((|#1| (-489 |#3|) |#3|) . T)) (|has| |#1| (-134)) (|has| |#1| (-132)) -((((-375 (-501)) (-375 (-501))) |has| |#2| (-331)) (($ $) . T)) -((((-791 |#1|)) . T)) +((((-377 (-517)) (-377 (-517))) |has| |#2| (-333)) (($ $) . T)) +((((-794 |#1|)) . T)) (|has| |#1| (-134)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) (|has| |#1| (-132)) -((((-375 (-501))) |has| |#2| (-331)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -(-1405 (|has| |#1| (-318)) (|has| |#1| (-336))) -((((-1037 |#2| |#1|)) . T) ((|#1|) . T)) +((((-377 (-517))) |has| |#2| (-333)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +(-3807 (|has| |#1| (-319)) (|has| |#1| (-338))) +((((-1040 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-156)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-206)) (|has| |#2| (-959))) -(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(-1405 (|has| |#3| (-723)) (|has| |#3| (-775))) -(-1405 (|has| |#3| (-723)) (|has| |#3| (-775))) -((((-786)) . T)) +(-12 (|has| |#2| (-207)) (|has| |#2| (-961))) +(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(-3807 (|has| |#3| (-725)) (|has| |#3| (-777))) +(-3807 (|has| |#3| (-725)) (|has| |#3| (-777))) +((((-787)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-630)) . T)) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(|has| |#1| (-508)) +((((-632)) . T)) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(|has| |#1| (-509)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1070) (-50)) . T)) -((((-786)) . T)) -((((-490)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T)) +((((-1073) (-51)) . T)) +((((-787)) . T)) +((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T)) (((|#1|) . T)) -((((-786)) . T)) -((((-490)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T)) -(((|#1| (-501)) . T)) -((((-786)) . T)) -((((-786)) . T)) +((((-787)) . T)) +((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T)) +(((|#1| (-517)) . T)) +((((-787)) . T)) +((((-787)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-375 (-501))) . T)) -(((|#3|) . T) (((-553 $)) . T)) +(((|#1| (-377 (-517))) . T)) +(((|#3|) . T) (((-556 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) ((($ $) . T) ((|#2| $) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -((((-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) -12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331))) (((-1070) (-1068 |#1| |#2| |#3|)) -12 (|has| (-1068 |#1| |#2| |#3|) (-476 (-1070) (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) -((((-501)) . T) (($) . T) (((-375 (-501))) . T)) -((((-786)) . T)) -((((-786)) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +((((-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) -12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1073) (-1071 |#1| |#2| |#3|)) -12 (|has| (-1071 |#1| |#2| |#3|) (-478 (-1073) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) +((((-517)) . T) (($) . T) (((-377 (-517))) . T)) +((((-787)) . T)) +((((-787)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))))) -((((-786)) . T)) +(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))))) +((((-787)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1070) (-50)) . T)) +((((-1073) (-51)) . T)) (((|#3|) . T)) -((($ $) . T) (((-787 |#1|) $) . T) (((-787 |#1|) |#2|) . T)) -(|has| |#1| (-751)) -(|has| |#1| (-1001)) -(((|#2| |#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($ $) |has| |#2| (-156))) -(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)))) -((((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($) |has| |#2| (-156))) -((((-701)) . T)) -((((-501)) . T)) -(|has| |#1| (-508)) -((((-786)) . T)) -(((|#1| (-375 (-501)) (-986)) . T)) +((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T)) +(|has| |#1| (-760)) +(|has| |#1| (-1003)) +(((|#2| |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156))) +(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)))) +((((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156))) +((((-703)) . T)) +((((-517)) . T)) +(|has| |#1| (-509)) +((((-787)) . T)) +(((|#1| (-377 (-517)) (-989)) . T)) (|has| |#1| (-132)) (((|#1|) . T)) -(|has| |#1| (-508)) -((((-501)) . T)) +(|has| |#1| (-509)) +((((-517)) . T)) ((((-111 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-134)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-508))) -((((-810 (-501))) . T) (((-810 (-346))) . T) (((-490)) . T) (((-1070)) . T)) -((((-786)) . T)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -((($) . T)) -((((-786)) . T)) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-509))) +((((-814 (-517))) . T) (((-814 (-349))) . T) (((-493)) . T) (((-1073)) . T)) +((((-787)) . T)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +((($) . T)) +((((-787)) . T)) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) (((|#2|) |has| |#2| (-156))) -((($) -1405 (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) ((|#2|) |has| |#2| (-156)) (((-375 (-501))) |has| |#2| (-37 (-375 (-501))))) -((((-791 |#1|)) . T)) -(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) -(-12 (|has| |#3| (-206)) (|has| |#3| (-959))) -(|has| |#2| (-1046)) -((((-50)) . T) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T)) +((($) -3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517))))) +((((-794 |#1|)) . T)) +(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) +(-12 (|has| |#3| (-207)) (|has| |#3| (-961))) +(|has| |#2| (-1049)) +((((-51)) . T) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T)) (((|#1| |#2|) . T)) -(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) -(((|#1| (-501) (-986)) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1| (-375 (-501)) (-986)) . T)) -((($) -1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T)) -((((-501) |#2|) . T)) +(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) +(((|#1| (-517) (-989)) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1| (-377 (-517)) (-989)) . T)) +((($) -3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) +((((-517) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-336)) -(-12 (|has| |#1| (-336)) (|has| |#2| (-336))) -((((-786)) . T)) -((((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((|#1| |#1|) |has| |#1| (-278 |#1|))) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) -(((|#1|) . T)) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508))) -((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508)))) -((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-786)) . T)) -(|has| |#1| (-318)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) -(|has| |#1| (-508)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-786)) . T)) +(|has| |#2| (-338)) +(-12 (|has| |#1| (-338)) (|has| |#2| (-338))) +((((-787)) . T)) +((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) +(((|#1|) . T)) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) +((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) +(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509)))) +((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-787)) . T)) +(|has| |#1| (-319)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) +(|has| |#1| (-509)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-787)) . T)) (((|#1| |#2|) . T)) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-830))) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-830))) -((((-375 (-501))) . T) (((-501)) . T)) -((((-501)) . T)) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) -((($) . T)) -((((-786)) . T)) -(((|#1|) . T)) -((((-791 |#1|)) . T) (($) . T) (((-375 (-501))) . T)) -((((-786)) . T)) -(((|#3| |#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959))) (($ $) |has| |#3| (-156))) -(|has| |#1| (-933)) -((((-786)) . T)) -(((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959))) (($) |has| |#3| (-156))) -((((-501) (-107)) . T)) -(((|#1|) |has| |#1| (-278 |#1|))) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -((((-1070) $) |has| |#1| (-476 (-1070) $)) (($ $) |has| |#1| (-278 $)) ((|#1| |#1|) |has| |#1| (-278 |#1|)) (((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|))) -((((-1070)) |has| |#1| (-820 (-1070)))) -(-1405 (-12 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318))) -((((-356) (-1018)) . T)) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-831))) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-831))) +((((-377 (-517))) . T) (((-517)) . T)) +((((-517)) . T)) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) +((($) . T)) +((((-787)) . T)) +(((|#1|) . T)) +((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) +((((-787)) . T)) +(((|#3| |#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($ $) |has| |#3| (-156))) +(|has| |#1| (-937)) +((((-787)) . T)) +(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($) |has| |#3| (-156))) +((((-517) (-107)) . T)) +(((|#1|) |has| |#1| (-280 |#1|))) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +((((-1073) $) |has| |#1| (-478 (-1073) $)) (($ $) |has| |#1| (-280 $)) ((|#1| |#1|) |has| |#1| (-280 |#1|)) (((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|))) +((((-1073)) |has| |#1| (-822 (-1073)))) +(-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319))) +((((-358) (-1021)) . T)) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) -((((-356) |#1|) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-318))) -(|has| |#1| (-1001)) -((((-786)) . T)) -((((-786)) . T)) -((((-826 |#1|)) . T)) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))) +((((-358) |#1|) . T)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-319))) +(|has| |#1| (-1003)) +((((-787)) . T)) +((((-787)) . T)) +((((-832 |#1|)) . T)) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))) (((|#1| |#2|) . T)) ((($) . T)) (((|#1| |#1|) . T)) -((((-791 |#1|)) |has| (-791 |#1|) (-278 (-791 |#1|)))) +((((-794 |#1|)) |has| (-794 |#1|) (-280 (-794 |#1|)))) (((|#1| |#2|) . T)) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) -(-12 (|has| |#1| (-723)) (|has| |#2| (-723))) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) +(-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (((|#1|) . T)) -(-12 (|has| |#1| (-723)) (|has| |#2| (-723))) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) +(-12 (|has| |#1| (-725)) (|has| |#2| (-725))) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(|has| |#1| (-1090)) -((((-501) (-501)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) -((((-375 (-501))) . T) (($) . T)) -(((|#4|) |has| |#4| (-959))) -(((|#3|) |has| |#3| (-959))) -(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -(|has| |#1| (-331)) -((((-501)) . T) (((-375 (-501))) . T) (($) . T)) -((($ $) . T) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1| |#1|) . T)) -(((|#1|) . T) (($) . T) (((-375 (-501))) . T)) -((((-786)) . T)) -((((-786)) . T)) -(((|#1|) . T) (($) . T) (((-375 (-501))) . T)) -(((|#1|) . T) (($) . T) (((-375 (-501))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-501) |#3|) . T)) -((((-786)) . T)) -((((-490)) |has| |#3| (-556 (-490)))) -((((-621 |#3|)) . T) (((-786)) . T)) +(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(|has| |#1| (-1094)) +((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) +((((-377 (-517))) . T) (($) . T)) +(((|#4|) |has| |#4| (-961))) +(((|#3|) |has| |#3| (-961))) +(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +(|has| |#1| (-333)) +((((-517)) . T) (((-377 (-517))) . T) (($) . T)) +((($ $) . T) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) +((((-787)) . T)) +((((-787)) . T)) +(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) +(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-517) |#3|) . T)) +((((-787)) . T)) +((((-493)) |has| |#3| (-558 (-493)))) +((((-623 |#3|)) . T) (((-787)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-775)) -(|has| |#1| (-775)) -((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-508))) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))))) -((($) . T)) -(|has| |#2| (-777)) -((($) . T)) -(((|#2|) |has| |#2| (-1001))) -((((-786)) -1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) (((-1148 |#2|)) . T)) (|has| |#1| (-777)) (|has| |#1| (-777)) -((((-1053) (-50)) . T)) +((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-509))) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))))) +((($) . T)) +(|has| |#2| (-779)) +((($) . T)) +(((|#2|) |has| |#2| (-1003))) +((((-787)) -3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1153 |#2|)) . T)) +(|has| |#1| (-779)) +(|has| |#1| (-779)) +((((-1056) (-51)) . T)) +(|has| |#1| (-779)) +((((-787)) . T)) +((((-517)) |has| (-377 |#2|) (-579 (-517))) (((-377 |#2|)) . T)) +((((-517) (-131)) . T)) +((((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#1| |#2|) . T)) +((((-377 (-517))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-787)) . T)) +((((-832 |#1|)) . T)) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) +(|has| |#1| (-777)) +(|has| |#1| (-333)) (|has| |#1| (-777)) -((((-786)) . T)) -((((-501)) |has| (-375 |#2|) (-577 (-501))) (((-375 |#2|)) . T)) -((((-501) (-131)) . T)) -((((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((|#1| |#2|) . T)) -((((-375 (-501))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-786)) . T)) -((((-826 |#1|)) . T)) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -(|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) -(|has| |#1| (-775)) -(|has| |#1| (-331)) -(|has| |#1| (-775)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-775)) -((((-1070)) |has| |#1| (-820 (-1070)))) -(((|#1| (-1070)) . T)) +(|has| |#1| (-777)) +((((-1073)) |has| |#1| (-822 (-1073)))) +(((|#1| (-1073)) . T)) +(((|#1| (-1153 |#1|) (-1153 |#1|)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -(|has| |#1| (-1001)) -(((|#1| (-1070) (-748 (-1070)) (-487 (-748 (-1070)))) . T)) -((((-375 (-866 |#1|))) . T)) -((((-490)) . T)) -((((-786)) . T)) +(|has| |#1| (-1003)) +(((|#1| (-1073) (-750 (-1073)) (-489 (-750 (-1073)))) . T)) +((((-377 (-874 |#1|))) . T)) +((((-493)) . T)) +((((-787)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) (((|#1|) |has| |#1| (-156))) -((((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((|#1| |#2|) . T)) +((((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-156))) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-490)) |has| |#1| (-556 (-490))) (((-810 (-346))) |has| |#1| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#1| (-556 (-810 (-501))))) -((((-786)) . T)) -(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(|has| |#2| (-775)) -(-12 (|has| |#2| (-206)) (|has| |#2| (-959))) -(|has| |#1| (-508)) -(|has| |#1| (-1046)) -((((-1053) |#1|) . T)) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) -((((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#1| |#1|) . T)) -((((-375 (-501))) |has| |#1| (-950 (-501))) (((-501)) |has| |#1| (-950 (-501))) (((-1070)) |has| |#1| (-950 (-1070))) ((|#1|) . T)) -((((-501) |#2|) . T)) -((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T)) -((((-501)) |has| |#1| (-806 (-501))) (((-346)) |has| |#1| (-806 (-346)))) -((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#1|) . T)) -(((|#1|) . T)) -((((-578 |#4|)) . T) (((-786)) . T)) -((((-490)) |has| |#4| (-556 (-490)))) -((((-490)) |has| |#4| (-556 (-490)))) -((((-786)) . T) (((-578 |#4|)) . T)) -((($) |has| |#1| (-775))) -(((|#1|) . T)) -((((-578 |#4|)) . T) (((-786)) . T)) -((((-490)) |has| |#4| (-556 (-490)))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1070)) |has| (-375 |#2|) (-820 (-1070)))) -(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-786)) -1405 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-336)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959)) (|has| |#3| (-1001))) (((-1148 |#3|)) . T)) -((((-501) |#2|) . T)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(((|#2| |#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($ $) |has| |#2| (-156))) -((((-786)) . T)) -((((-786)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((|#2|) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-1053) (-1070) (-501) (-199) (-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -((((-786)) . T)) -((((-501) (-107)) . T)) -(((|#1|) . T)) -((((-786)) . T)) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-493)) |has| |#1| (-558 (-493))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517))))) +((((-787)) . T)) +(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(|has| |#2| (-777)) +(-12 (|has| |#2| (-207)) (|has| |#2| (-961))) +(|has| |#1| (-509)) +(|has| |#1| (-1049)) +((((-1056) |#1|) . T)) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) +((((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T)) +((((-377 (-517))) |has| |#1| (-952 (-517))) (((-517)) |has| |#1| (-952 (-517))) (((-1073)) |has| |#1| (-952 (-1073))) ((|#1|) . T)) +((((-517) |#2|) . T)) +((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T)) +((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349)))) +((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T)) +(((|#1|) . T)) +((((-583 |#4|)) . T) (((-787)) . T)) +((((-493)) |has| |#4| (-558 (-493)))) +((((-493)) |has| |#4| (-558 (-493)))) +((((-787)) . T) (((-583 |#4|)) . T)) +((($) |has| |#1| (-777))) +(((|#1|) . T)) +((((-583 |#4|)) . T) (((-787)) . T)) +((((-493)) |has| |#4| (-558 (-493)))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1073)) |has| (-377 |#2|) (-822 (-1073)))) +(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-787)) -3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-557 (-787))) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003))) (((-1153 |#3|)) . T)) +((((-517) |#2|) . T)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(((|#2| |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156))) +((((-787)) . T)) +((((-787)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#2|) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-1056) (-1073) (-517) (-199) (-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +((((-787)) . T)) +((((-517) (-107)) . T)) +(((|#1|) . T)) +((((-787)) . T)) ((((-107)) . T)) ((((-107)) . T)) -((((-786)) . T)) -((((-786)) . T)) +((((-787)) . T)) +((((-787)) . T)) ((((-107)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -((((-786)) . T)) -((((-490)) |has| |#1| (-556 (-490)))) -((((-786)) |has| |#1| (-1001))) -(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($) |has| |#2| (-156))) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +((((-787)) . T)) +((((-493)) |has| |#1| (-558 (-493)))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156))) (|has| $ (-134)) -((((-375 |#2|)) . T)) -((((-375 (-501))) |has| (-375 |#2|) (-950 (-375 (-501)))) (((-501)) |has| (-375 |#2|) (-950 (-501))) (((-375 |#2|)) . T)) +((((-377 |#2|)) . T)) +((((-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) (((-517)) |has| (-377 |#2|) (-952 (-517))) (((-377 |#2|)) . T)) (((|#2| |#2|) . T)) (((|#4|) |has| |#4| (-156))) (|has| |#2| (-132)) @@ -1194,169 +1196,171 @@ (((|#3|) |has| |#3| (-156))) (|has| |#1| (-134)) (|has| |#1| (-132)) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) (|has| |#1| (-134)) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) (|has| |#1| (-134)) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) (|has| |#1| (-134)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-206)) -((((-1070) (-50)) . T)) -((((-786)) . T)) +(|has| |#2| (-207)) +((((-1073) (-51)) . T)) +((((-787)) . T)) (((|#1| |#1|) . T)) -((((-1070)) |has| |#2| (-820 (-1070)))) -((((-501) (-107)) . T)) -(|has| |#1| (-508)) +((((-1073)) |has| |#2| (-822 (-1073)))) +((((-517) (-107)) . T)) +(|has| |#1| (-509)) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) +(((|#1|) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) (((|#3|) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(((|#1|) . T)) -((((-786)) . T)) -((((-490)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-910 |#1|)) . T) ((|#1|) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-375 (-501))) . T) (((-375 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1064 |#1|)) . T)) -((((-501)) . T) (($) . T) (((-375 (-501))) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(((|#1|) . T)) +((((-787)) . T)) +((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-915 |#1|)) . T) ((|#1|) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1069 |#1|)) . T)) +((((-517)) . T) (($) . T) (((-377 (-517))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-777)) +(|has| |#1| (-779)) (((|#2|) . T)) -((((-501)) . T) (($) . T) (((-375 (-501))) . T)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T)) -((((-501) |#2|) . T)) -((((-786)) |has| |#1| (-1001))) +((((-517)) . T) (($) . T) (((-377 (-517))) . T)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T)) +((((-517) |#2|) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) (((|#2|) . T)) -((((-501) |#3|) . T)) +((((-517) |#3|) . T)) (((|#2|) . T)) -((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -((((-786)) . T)) -(|has| |#1| (-1001)) -(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) -(((|#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +((((-787)) . T)) +(|has| |#1| (-1003)) +(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) +(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (((|#2|) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#2| (-331)) -(((|#2|) . T) (((-501)) |has| |#2| (-950 (-501))) (((-375 (-501))) |has| |#2| (-950 (-375 (-501))))) +(|has| |#2| (-333)) +(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517))))) (((|#2|) . T)) -((((-1053) (-50)) . T)) +((((-1056) (-51)) . T)) (((|#2|) |has| |#2| (-156))) -((((-501) |#3|) . T)) -((((-501) (-131)) . T)) +((((-517) |#3|) . T)) +((((-517) (-131)) . T)) ((((-131)) . T)) -((((-786)) . T)) +((((-787)) . T)) ((((-107)) . T)) (|has| |#1| (-134)) (((|#1|) . T)) (|has| |#1| (-132)) ((($) . T)) -(|has| |#1| (-508)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +(|has| |#1| (-509)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501)))) -((((-786)) . T)) -((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T)) -((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T)) -((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T)) -((((-1053) (-50)) . T)) +(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) +((((-787)) . T)) +((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) +((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) +((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) +((((-1056) (-51)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (((|#1| |#2|) . T)) -((((-501) (-131)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) -((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(|has| |#1| (-777)) -(((|#2| (-701) (-986)) . T)) +((((-517) (-131)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) +((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(|has| |#1| (-779)) +(((|#2| (-703) (-989)) . T)) (((|#1| |#2|) . T)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-508))) -(|has| |#1| (-721)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-509))) +(|has| |#1| (-723)) (((|#1|) |has| |#1| (-156))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-1405 (|has| |#1| (-134)) (-12 (|has| |#1| (-331)) (|has| |#2| (-134)))) -(-1405 (|has| |#1| (-132)) (-12 (|has| |#1| (-331)) (|has| |#2| (-132)))) +(-3807 (|has| |#1| (-134)) (-12 (|has| |#1| (-333)) (|has| |#2| (-134)))) +(-3807 (|has| |#1| (-132)) (-12 (|has| |#1| (-333)) (|has| |#2| (-132)))) (((|#4|) . T)) (|has| |#1| (-132)) -((((-1053) |#1|) . T)) +((((-1056) |#1|) . T)) (|has| |#1| (-134)) (((|#1|) . T)) -((((-501)) . T)) -((((-786)) . T)) +((((-517)) . T)) +((((-787)) . T)) (((|#1| |#2|) . T)) -((((-786)) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +((((-787)) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (((|#3|) . T)) -((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331))) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(((|#1|) . T)) -((((-786)) |has| |#1| (-1001))) -((((-786)) |has| |#1| (-1001)) (((-877 |#1|)) . T)) -(|has| |#1| (-775)) -(|has| |#1| (-775)) -(|has| |#2| (-331)) +((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333))) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(((|#1|) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))) (((-879 |#1|)) . T)) +(|has| |#1| (-777)) +(|has| |#1| (-777)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(|has| |#2| (-333)) (((|#1|) |has| |#1| (-156))) -(((|#2|) |has| |#2| (-959))) -((((-1053) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) -(((|#2| (-813 |#1|)) . T)) -((($) . T)) -((((-356) (-1053)) . T)) -((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-786)) -1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) (((-1148 |#2|)) . T)) -((((-50)) . T) (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) . T)) -(((|#1|) . T)) -((((-786)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) +(((|#2|) |has| |#2| (-961))) +((((-1056) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) +(((|#2| (-815 |#1|)) . T)) +((($) . T)) +((((-358) (-1056)) . T)) +((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-787)) -3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1153 |#2|)) . T)) +((((-51)) . T) (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T)) +(((|#1|) . T)) +((((-787)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) ((((-131)) . T)) (|has| |#2| (-132)) (|has| |#2| (-134)) -(|has| |#1| (-440)) -(-1405 (|has| |#1| (-440)) (|has| |#1| (-657)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959))) -(|has| |#1| (-331)) -((((-786)) . T)) -(|has| |#1| (-37 (-375 (-501)))) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508))) -((($) |has| |#1| (-508))) -(|has| |#1| (-775)) -(|has| |#1| (-775)) -((((-786)) . T)) -((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508)))) -((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) +(|has| |#1| (-442)) +(-3807 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961))) +(|has| |#1| (-333)) +((((-787)) . T)) +(|has| |#1| (-37 (-377 (-517)))) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) +((($) |has| |#1| (-509))) +(|has| |#1| (-777)) +(|has| |#1| (-777)) +((((-787)) . T)) +((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) +(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509)))) +((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) (((|#1| |#2|) . T)) -((((-1070)) |has| |#1| (-820 (-1070)))) -((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T)) -((((-786)) . T)) -((((-786)) . T)) -(|has| |#1| (-1001)) -(((|#2| (-448 (-3581 |#1|) (-701)) (-787 |#1|)) . T)) -((((-375 (-501))) |has| |#2| (-331)) (($) |has| |#2| (-331))) -(((|#1| (-487 (-1070)) (-1070)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-786)) . T)) -((((-786)) . T)) +((((-1073)) |has| |#1| (-822 (-1073)))) +((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) +((((-787)) . T)) +((((-787)) . T)) +(|has| |#1| (-1003)) +(((|#2| (-450 (-2296 |#1|) (-703)) (-789 |#1|)) . T)) +((((-377 (-517))) |has| |#2| (-333)) (($) |has| |#2| (-333))) +(((|#1| (-489 (-1073)) (-1073)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-787)) . T)) +((((-787)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) @@ -1370,327 +1374,328 @@ (|has| |#1| (-134)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T)) -((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331))) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-1070) (-50)) . T)) +(((|#1|) . T) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T)) +((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333))) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-1073) (-51)) . T)) ((($ $) . T)) -(((|#1| (-501)) . T)) -((((-826 |#1|)) . T)) -(((|#1|) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-959))) (($) -1405 (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)))) -(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501))))) +(((|#1| (-517)) . T)) +((((-832 |#1|)) . T)) +(((|#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))) (($) -3807 (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))) +(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517))))) +(|has| |#1| (-779)) +(|has| |#1| (-779)) +((((-517) |#2|) . T)) +((((-517)) . T)) +((((-1146 |#1| |#2| |#3|)) -12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) +(|has| |#1| (-779)) +((((-623 |#2|)) . T) (((-787)) . T)) +(((|#1| |#2|) . T)) +((((-377 (-874 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) +(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) +(((|#1|) |has| |#1| (-156))) +(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) +(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)))) +(|has| |#2| (-779)) +(|has| |#1| (-779)) +(-3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-831))) +((($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +((((-517) |#2|) . T)) +(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)))) +(|has| |#1| (-319)) +(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) +((($) . T) (((-377 (-517))) . T)) +((((-517) (-107)) . T)) +(|has| |#1| (-752)) +(|has| |#1| (-752)) +(((|#1|) . T)) +(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319))) (|has| |#1| (-777)) (|has| |#1| (-777)) -((((-501) |#2|) . T)) -((((-501)) . T)) -((((-1139 |#1| |#2| |#3|)) -12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (|has| |#1| (-777)) -((((-621 |#2|)) . T) (((-786)) . T)) -(((|#1| |#2|) . T)) -((((-375 (-866 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) -(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) -(((|#1|) |has| |#1| (-156))) -(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) -(((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)))) -(|has| |#2| (-777)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +(|has| |#1| (-37 (-377 (-517)))) +((((-517)) . T) (($) . T) (((-377 (-517))) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-319))) +(|has| |#1| (-37 (-377 (-517)))) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-1073)) |has| |#1| (-822 (-1073))) (((-989)) . T)) +(((|#1|) . T)) (|has| |#1| (-777)) -(-1405 (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-830))) -((($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -((((-501) |#2|) . T)) -(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)))) -(|has| |#1| (-318)) -(((|#3| |#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) -((($) . T) (((-375 (-501))) . T)) -((((-501) (-107)) . T)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(((|#1|) . T)) -(-1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318))) -(|has| |#1| (-775)) -(|has| |#1| (-775)) -(|has| |#1| (-775)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -(|has| |#1| (-37 (-375 (-501)))) -((((-501)) . T) (($) . T) (((-375 (-501))) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-318))) -(|has| |#1| (-37 (-375 (-501)))) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-1070)) |has| |#1| (-820 (-1070))) (((-986)) . T)) -(((|#1|) . T)) -(|has| |#1| (-775)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(|has| |#1| (-1003)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#2| |#3| (-212 |#2| |#3|) (-212 |#1| |#3|)) . T)) +(((|#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-487 |#2|) |#2|) . T)) -((((-786)) . T)) -(((|#1| (-701) (-986)) . T)) +(((|#1| (-489 |#2|) |#2|) . T)) +((((-787)) . T)) +(((|#1| (-703) (-989)) . T)) (((|#3|) . T)) (((|#1|) . T)) ((((-131)) . T)) (((|#2|) |has| |#2| (-156))) -(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) +(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((|#1|) . T)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#3| (-156)) -(((|#4|) |has| |#4| (-331))) -(((|#3|) |has| |#3| (-331))) +(((|#4|) |has| |#4| (-333))) +(((|#3|) |has| |#3| (-333))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-331))) +(((|#2|) |has| |#1| (-333))) (((|#2|) . T)) -(((|#1| (-1064 |#1|)) . T)) -((((-986)) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501))))) -((($) . T) ((|#1|) . T) (((-375 (-501))) . T)) +(((|#1| (-1069 |#1|)) . T)) +((((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517))))) +((($) . T) ((|#1|) . T) (((-377 (-517))) . T)) (((|#2|) . T)) -((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331))) -((($) |has| |#1| (-775))) -(|has| |#1| (-830)) -((((-786)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333))) +((($) |has| |#1| (-777))) +(|has| |#1| (-831)) +((((-787)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))))) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-830))) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-830))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))))) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-831))) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-831))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) +(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)))) -(|has| |#1| (-777)) -(|has| |#1| (-508)) -((((-528 |#1|)) . T)) +(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)))) +(|has| |#1| (-779)) +(|has| |#1| (-509)) +((((-530 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-750))) (-12 (|has| |#1| (-331)) (|has| |#2| (-777)))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -((((-826 |#1|)) . T)) -(((|#1| (-459 |#1| |#3|) (-459 |#1| |#2|)) . T)) +(-3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-752))) (-12 (|has| |#1| (-333)) (|has| |#2| (-779)))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +((((-832 |#1|)) . T)) +(((|#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-701)) . T)) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508))) -((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508)))) -((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T)) -((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T)) -((((-606 |#1|)) . T)) +(((|#1| (-703)) . T)) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) +((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) +(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509)))) +((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T)) +((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) +((((-608 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-490)) . T)) -((((-786)) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-786)) . T)) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -(((|#2|) . T)) -(-1405 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-336)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959)) (|has| |#3| (-1001))) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) -((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T)) -(|has| |#1| (-1090)) -(|has| |#1| (-1090)) -(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) -(|has| |#1| (-1090)) -(|has| |#1| (-1090)) +((((-493)) . T)) +((((-787)) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-787)) . T)) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +(((|#2|) . T)) +(-3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003))) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) +((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T)) +(|has| |#1| (-1094)) +(|has| |#1| (-1094)) +(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) +(|has| |#1| (-1094)) +(|has| |#1| (-1094)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -((($ $) . T) (((-375 (-501)) (-375 (-501))) . T) (((-375 |#1|) (-375 |#1|)) . T) ((|#1| |#1|) . T)) -((((-501)) . T) (($) . T) (((-375 (-501))) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +((($ $) . T) (((-377 (-517)) (-377 (-517))) . T) (((-377 |#1|) (-377 |#1|)) . T) ((|#1| |#1|) . T)) +((((-517)) . T) (($) . T) (((-377 (-517))) . T)) (((|#3|) . T)) -((($) . T) (((-375 (-501))) . T) (((-375 |#1|)) . T) ((|#1|) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -((((-1053) (-50)) . T)) -(|has| |#1| (-1001)) -(-1405 (|has| |#2| (-750)) (|has| |#2| (-777))) -(((|#1|) . T)) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T)) +((($) . T) (((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +((((-1056) (-51)) . T)) +(|has| |#1| (-1003)) +(-3807 (|has| |#2| (-752)) (|has| |#2| (-779))) +(((|#1|) . T)) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) (((|#1|) |has| |#1| (-156)) (($) . T)) ((($) . T)) -((((-1068 |#1| |#2| |#3|)) -12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) -((((-786)) . T)) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -((($) . T)) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-786)) . T)) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-830))) -(|has| |#2| (-830)) -(|has| |#1| (-331)) -(((|#2|) |has| |#2| (-1001))) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) +((((-1071 |#1| |#2| |#3|)) -12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) +((((-787)) . T)) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +((($) . T)) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-787)) . T)) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-831))) +(|has| |#2| (-831)) +(|has| |#1| (-333)) +(((|#2|) |has| |#2| (-1003))) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((($) . T) ((|#2|) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-830))) -(|has| |#1| (-830)) -(|has| |#1| (-830)) -((((-490)) . T) (((-375 (-1064 (-501)))) . T) (((-199)) . T) (((-346)) . T)) -((((-346)) . T) (((-199)) . T) (((-786)) . T)) -(|has| |#1| (-830)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831))) +(|has| |#1| (-831)) +(|has| |#1| (-831)) +((((-493)) . T) (((-377 (-1069 (-517)))) . T) (((-199)) . T) (((-349)) . T)) +((((-349)) . T) (((-199)) . T) (((-787)) . T)) +(|has| |#1| (-831)) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) ((($ $) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) ((($ $) . T)) -((((-501) (-107)) . T)) +((((-517) (-107)) . T)) ((($) . T)) (((|#1|) . T)) -((((-501)) . T)) +((((-517)) . T)) ((((-107)) . T)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) -(|has| |#1| (-37 (-375 (-501)))) -(((|#1| (-501)) . T)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) +(|has| |#1| (-37 (-377 (-517)))) +(((|#1| (-517)) . T)) ((($) . T)) -(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501)))) -((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T)) +(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) +((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) (((|#1|) . T)) -((((-501)) . T)) +((((-517)) . T)) (((|#1| |#2|) . T)) -((((-1070)) |has| |#1| (-959))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) +((((-1073)) |has| |#1| (-961))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) (((|#1|) . T)) -((((-786)) . T)) -(((|#1| (-501)) . T)) -(((|#1| (-1139 |#1| |#2| |#3|)) . T)) +((((-787)) . T)) +(((|#1| (-517)) . T)) +(((|#1| (-1146 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-375 (-501))) . T)) -(((|#1| (-1109 |#1| |#2| |#3|)) . T)) -(((|#1| (-701)) . T)) +(((|#1| (-377 (-517))) . T)) +(((|#1| (-1118 |#1| |#2| |#3|)) . T)) +(((|#1| (-703)) . T)) (((|#1|) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-786)) . T)) -(|has| |#1| (-1001)) -((((-1053) |#1|) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-787)) . T)) +(|has| |#1| (-1003)) +((((-1056) |#1|) . T)) ((($) . T)) (|has| |#2| (-134)) (|has| |#2| (-132)) -(((|#1| (-487 (-748 (-1070))) (-748 (-1070))) . T)) -((((-1136 |#1| |#2| |#3| |#4|)) . T)) -((((-1136 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-959))) -((((-501) (-107)) . T)) -((((-786)) |has| |#1| (-1001))) +(((|#1| (-489 (-750 (-1073))) (-750 (-1073))) . T)) +((((-1140 |#1| |#2| |#3| |#4|)) . T)) +((((-1140 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-961))) +((((-517) (-107)) . T)) +((((-787)) |has| |#1| (-1003))) (|has| |#2| (-156)) -((((-501)) . T)) -(|has| |#2| (-775)) +((((-517)) . T)) +(|has| |#2| (-777)) (((|#1|) . T)) -((((-501)) . T)) -((((-786)) . T)) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-318))) -((((-786)) . T)) +((((-517)) . T)) +((((-787)) . T)) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-319))) +((((-787)) . T)) (|has| |#1| (-134)) (((|#3|) . T)) -(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) -((((-786)) . T)) -((((-1130 |#2| |#3| |#4|)) . T) (((-1136 |#1| |#2| |#3| |#4|)) . T)) -((((-786)) . T)) -((((-47)) -12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501)))) (((-553 $)) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) -1405 (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501)))) (|has| |#1| (-950 (-375 (-501))))) (((-375 (-866 |#1|))) |has| |#1| (-508)) (((-866 |#1|)) |has| |#1| (-959)) (((-1070)) . T)) +(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) +((((-787)) . T)) +((((-1139 |#2| |#3| |#4|)) . T) (((-1140 |#1| |#2| |#3| |#4|)) . T)) +((((-787)) . T)) +((((-47)) -12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (((-556 $)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) -3807 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))) (((-377 (-874 |#1|))) |has| |#1| (-509)) (((-874 |#1|)) |has| |#1| (-961)) (((-1073)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-701)) . T)) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-278 |#1|))) -((((-1136 |#1| |#2| |#3| |#4|)) . T)) -((((-501)) |has| |#1| (-806 (-501))) (((-346)) |has| |#1| (-806 (-346)))) +(((|#1| (-703)) . T)) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156))) +(((|#1|) |has| |#1| (-280 |#1|))) +((((-1140 |#1| |#2| |#3| |#4|)) . T)) +((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349)))) (((|#1|) . T)) -(|has| |#1| (-508)) +(|has| |#1| (-509)) (((|#1|) . T)) -((((-786)) . T)) -(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) +((((-787)) . T)) +(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) (((|#1|) |has| |#1| (-156))) -((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) +((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (((|#1|) . T)) -(((|#3|) |has| |#3| (-1001))) -(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)))) -((((-1130 |#2| |#3| |#4|)) . T)) +(((|#3|) |has| |#3| (-1003))) +(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)))) +((((-1139 |#2| |#3| |#4|)) . T)) ((((-107)) . T)) -(|has| |#1| (-750)) -(|has| |#1| (-750)) -(((|#1| (-501) (-986)) . T)) -((($) |has| |#1| (-278 $)) ((|#1|) |has| |#1| (-278 |#1|))) -(|has| |#1| (-775)) -(|has| |#1| (-775)) -(((|#1| (-501) (-986)) . T)) -(-1405 (|has| |#1| (-820 (-1070))) (|has| |#1| (-959))) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(((|#1| (-375 (-501)) (-986)) . T)) -(((|#1| (-701) (-986)) . T)) +(|has| |#1| (-752)) +(|has| |#1| (-752)) +(((|#1| (-517) (-989)) . T)) +((($) |has| |#1| (-280 $)) ((|#1|) |has| |#1| (-280 |#1|))) (|has| |#1| (-777)) -((((-826 |#1|) (-826 |#1|)) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) +(|has| |#1| (-777)) +(((|#1| (-517) (-989)) . T)) +(-3807 (|has| |#1| (-822 (-1073))) (|has| |#1| (-961))) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(((|#1| (-377 (-517)) (-989)) . T)) +(((|#1| (-703) (-989)) . T)) +(|has| |#1| (-779)) +((((-832 |#1|) (-832 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) (|has| |#2| (-132)) (|has| |#2| (-134)) (((|#2|) . T)) (|has| |#1| (-132)) (|has| |#1| (-134)) -(|has| |#1| (-1001)) -((((-826 |#1|)) . T) (($) . T) (((-375 (-501))) . T)) -(|has| |#1| (-1001)) +(|has| |#1| (-1003)) +((((-832 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) +(|has| |#1| (-1003)) (((|#1|) . T)) -(|has| |#1| (-1001)) -((((-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-577 (-501)))) ((|#2|) |has| |#1| (-331))) -(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) +(|has| |#1| (-1003)) +((((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((|#2|) |has| |#1| (-333))) +(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((|#2|) |has| |#2| (-156))) (((|#1|) |has| |#1| (-156))) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T)) -((((-786)) . T)) -(|has| |#3| (-775)) -((((-786)) . T)) -((((-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) . T)) -((((-786)) . T)) -(((|#1| |#1|) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-959)))) -(((|#1|) . T)) -((((-501)) . T)) -((((-501)) . T)) -(((|#1|) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-959)))) -(((|#2|) |has| |#2| (-331))) -((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-331))) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T)) +((((-787)) . T)) +(|has| |#3| (-777)) +((((-787)) . T)) +((((-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T)) +((((-787)) . T)) +(((|#1| |#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961)))) +(((|#1|) . T)) +((((-517)) . T)) +((((-517)) . T)) +(((|#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961)))) +(((|#2|) |has| |#2| (-333))) +((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-333))) +(|has| |#1| (-779)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))))) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-831))) +(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) +((((-787)) . T)) +((((-787)) . T)) +((((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T)) +((((-787)) . T)) +(|has| |#1| (-37 (-377 (-517)))) +((((-517)) . T) (($) . T) (((-377 (-517))) . T)) +((((-517)) . T) (($) . T) (((-377 (-517))) . T)) +(|has| |#1| (-207)) +(((|#1|) . T)) +(((|#1| (-517)) . T)) (|has| |#1| (-777)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))))) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-830))) -(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501)))) -((((-786)) . T)) -((((-786)) . T)) -((((-490)) . T) (((-501)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T)) -((((-786)) . T)) -(|has| |#1| (-37 (-375 (-501)))) -((((-501)) . T) (($) . T) (((-375 (-501))) . T)) -((((-501)) . T) (($) . T) (((-375 (-501))) . T)) -(|has| |#1| (-206)) -(((|#1|) . T)) -(((|#1| (-501)) . T)) -(|has| |#1| (-775)) -(((|#1| (-1068 |#1| |#2| |#3|)) . T)) +(((|#1| (-1071 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-375 (-501))) . T)) -(((|#1| (-1061 |#1| |#2| |#3|)) . T)) -(((|#1| (-701)) . T)) +(((|#1| (-377 (-517))) . T)) +(((|#1| (-1064 |#1| |#2| |#3|)) . T)) +(((|#1| (-703)) . T)) (((|#1|) . T)) -(((|#1| |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) . T)) +(((|#1| |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-132)) @@ -1699,1490 +1704,1495 @@ (|has| |#1| (-132)) (((|#1| |#2|) . T)) ((((-131)) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(((|#1|) . T)) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) -((((-786)) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-786)) |has| |#1| (-1001))) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -(|has| (-375 |#2|) (-206)) -(|has| |#1| (-830)) -(((|#2|) |has| |#2| (-959))) -(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) -(|has| |#1| (-331)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(((|#1|) . T)) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) +((((-787)) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +(|has| (-377 |#2|) (-207)) +(|has| |#1| (-831)) +(((|#2|) |has| |#2| (-961))) +(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) +(|has| |#1| (-333)) (((|#1|) |has| |#1| (-156))) (((|#1| |#1|) . T)) -((((-791 |#1|)) . T)) -((((-786)) . T)) +((((-794 |#1|)) . T)) +((((-787)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1001))) -(|has| |#2| (-777)) +(((|#2|) |has| |#2| (-1003))) +(|has| |#2| (-779)) (((|#1|) . T)) -((((-375 (-501))) . T) (((-501)) . T) (((-553 $)) . T)) +((((-377 (-517))) . T) (((-517)) . T) (((-556 $)) . T)) (((|#1|) . T)) -((((-786)) . T)) +((((-787)) . T)) ((($) . T)) -(|has| |#1| (-777)) -((((-786)) . T)) -(((|#1| (-487 |#2|) |#2|) . T)) -(((|#1| (-501) (-986)) . T)) -((((-826 |#1|)) . T)) -((((-786)) . T)) +(|has| |#1| (-779)) +((((-787)) . T)) +(((|#1| (-489 |#2|) |#2|) . T)) +(((|#1| (-517) (-989)) . T)) +((((-832 |#1|)) . T)) +((((-787)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-375 (-501)) (-986)) . T)) -(((|#1| (-701) (-986)) . T)) -((((-375 |#2|) (-375 |#2|)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) -(((|#1|) . T) (((-501)) -1405 (|has| (-375 (-501)) (-950 (-501))) (|has| |#1| (-950 (-501)))) (((-375 (-501))) . T)) -(((|#1| (-546 |#1| |#3|) (-546 |#1| |#2|)) . T)) +(((|#1| (-377 (-517)) (-989)) . T)) +(((|#1| (-703) (-989)) . T)) +((((-377 |#2|) (-377 |#2|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) +(((|#1|) . T) (((-517)) -3807 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))) (((-377 (-517))) . T)) +(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-156))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T)) -(|has| |#2| (-206)) -(((|#2| (-487 (-787 |#1|)) (-787 |#1|)) . T)) -((((-786)) . T)) -((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-786)) . T)) +((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) +(|has| |#2| (-207)) +(((|#2| (-489 (-789 |#1|)) (-789 |#1|)) . T)) +((((-787)) . T)) +((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-787)) . T)) (((|#1| |#3|) . T)) -((((-786)) . T)) +((((-787)) . T)) (((|#1|) |has| |#1| (-156))) -((((-630)) . T)) -((((-630)) . T)) +((((-632)) . T)) +((((-632)) . T)) (((|#2|) |has| |#2| (-156))) -(|has| |#2| (-775)) -((((-107)) |has| |#1| (-1001)) (((-786)) -1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-440)) (|has| |#1| (-657)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)) (|has| |#1| (-1012)) (|has| |#1| (-1001)))) +(|has| |#2| (-777)) +((((-107)) |has| |#1| (-1003)) (((-787)) -3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) . T)) -((((-786)) . T)) -((((-501) |#1|) . T)) -((((-630)) . T) (((-375 (-501))) . T) (((-501)) . T)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T)) +((((-787)) . T)) +((((-517) |#1|) . T)) +((((-632)) . T) (((-377 (-517))) . T) (((-517)) . T)) (((|#1| |#1|) |has| |#1| (-156))) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) -((((-346)) . T)) -((((-630)) . T)) -((((-375 (-501))) |has| |#2| (-331)) (($) |has| |#2| (-331))) +(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) +((((-349)) . T)) +((((-632)) . T)) +((((-377 (-517))) |has| |#2| (-333)) (($) |has| |#2| (-333))) (((|#1|) |has| |#1| (-156))) -((((-375 (-866 |#1|))) . T)) +((((-377 (-874 |#1|))) . T)) (((|#2| |#2|) . T)) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(((|#2|) . T)) -(|has| |#2| (-777)) -(((|#3|) |has| |#3| (-959))) -(|has| |#2| (-830)) -(|has| |#1| (-830)) -(|has| |#1| (-331)) -(|has| |#1| (-777)) -((((-1070)) |has| |#2| (-820 (-1070)))) -((((-786)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-375 (-501))) . T) (($) . T)) -(|has| |#1| (-440)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -(|has| |#1| (-331)) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-440)) (|has| |#1| (-508)) (|has| |#1| (-959)) (|has| |#1| (-1012))) -(|has| |#1| (-37 (-375 (-501)))) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(((|#2|) . T)) +(|has| |#2| (-779)) +(((|#3|) |has| |#3| (-961))) +(|has| |#2| (-831)) +(|has| |#1| (-831)) +(|has| |#1| (-333)) +(|has| |#1| (-779)) +((((-1073)) |has| |#2| (-822 (-1073)))) +((((-787)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-377 (-517))) . T) (($) . T)) +(|has| |#1| (-442)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +(|has| |#1| (-333)) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-961)) (|has| |#1| (-1015))) +(|has| |#1| (-37 (-377 (-517)))) ((((-111 |#1|)) . T)) ((((-111 |#1|)) . T)) -(|has| |#1| (-318)) +(|has| |#1| (-319)) ((((-131)) . T)) -(|has| |#1| (-37 (-375 (-501)))) -((($) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(((|#2|) . T) (((-786)) . T)) -(((|#2|) . T) (((-786)) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-777)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T)) +(|has| |#1| (-37 (-377 (-517)))) +((($) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(((|#2|) . T) (((-787)) . T)) +(((|#2|) . T) (((-787)) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-779)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-134)) (|has| |#1| (-132)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) ((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) ((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (((|#2|) . T)) (((|#3|) . T)) ((((-111 |#1|)) . T)) -(|has| |#1| (-336)) -(|has| |#1| (-777)) -(((|#2|) . T) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T)) +(|has| |#1| (-338)) +(|has| |#1| (-779)) +(((|#2|) . T) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T)) ((((-111 |#1|)) . T)) (((|#2|) |has| |#2| (-156))) (((|#1|) . T)) -((((-501)) . T)) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -((((-786)) . T)) -((((-786)) . T)) -((((-490)) |has| |#1| (-556 (-490))) (((-810 (-501))) |has| |#1| (-556 (-810 (-501)))) (((-810 (-346))) |has| |#1| (-556 (-810 (-346)))) (((-346)) |has| |#1| (-933)) (((-199)) |has| |#1| (-933))) -(((|#1|) |has| |#1| (-331))) -((((-786)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((($ $) . T) (((-553 $) $) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -((($) . T) (((-1136 |#1| |#2| |#3| |#4|)) . T) (((-375 (-501))) . T)) -((($) -1405 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-508))) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -((((-346)) . T) (((-501)) . T) (((-375 (-501))) . T)) -((((-578 (-710 |#1| (-787 |#2|)))) . T) (((-786)) . T)) -((((-490)) |has| (-710 |#1| (-787 |#2|)) (-556 (-490)))) -((((-346)) . T)) -(((|#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) -((((-786)) . T)) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-830))) -(((|#1|) . T)) -(|has| |#1| (-777)) -(|has| |#1| (-777)) -((((-786)) |has| |#1| (-1001))) -((((-490)) |has| |#1| (-556 (-490)))) -(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) -(|has| |#1| (-1001)) -((((-786)) . T)) -((((-375 (-501))) . T) (((-501)) . T) (((-553 $)) . T)) +((((-517)) . T)) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +((((-787)) . T)) +((((-787)) . T)) +((((-493)) |has| |#1| (-558 (-493))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-349)) |has| |#1| (-937)) (((-199)) |has| |#1| (-937))) +(((|#1|) |has| |#1| (-333))) +((((-787)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((($ $) . T) (((-556 $) $) . T)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +((($) . T) (((-1140 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T)) +((($) -3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509))) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +((((-349)) . T) (((-517)) . T) (((-377 (-517))) . T)) +((((-583 (-712 |#1| (-789 |#2|)))) . T) (((-787)) . T)) +((((-493)) |has| (-712 |#1| (-789 |#2|)) (-558 (-493)))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-349)) . T)) +(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) +((((-787)) . T)) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-831))) +(((|#1|) . T)) +(|has| |#1| (-779)) +(|has| |#1| (-779)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +((((-493)) |has| |#1| (-558 (-493)))) +(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) +(|has| |#1| (-1003)) +((((-787)) . T)) +((((-377 (-517))) . T) (((-517)) . T) (((-556 $)) . T)) (|has| |#1| (-132)) (|has| |#1| (-134)) -((((-501)) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -((((-1130 |#2| |#3| |#4|)) . T) (((-375 (-501))) |has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501)))) (($) . T)) -((((-501)) . T)) -(-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-134)) (|has| |#1| (-331))) (|has| |#1| (-134))) -(-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-132)) (|has| |#1| (-331))) (|has| |#1| (-132))) -(|has| |#1| (-331)) +((((-517)) . T)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +((((-1139 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))) (($) . T)) +((((-517)) . T)) +(|has| |#1| (-333)) +(-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134))) +(-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))) +(|has| |#1| (-333)) (|has| |#1| (-132)) (|has| |#1| (-134)) -(|has| |#1| (-331)) (|has| |#1| (-134)) (|has| |#1| (-132)) -(|has| |#1| (-206)) -(|has| |#1| (-331)) +(|has| |#1| (-207)) +(|has| |#1| (-333)) (((|#3|) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-501)) |has| |#2| (-577 (-501))) ((|#2|) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-517)) |has| |#2| (-579 (-517))) ((|#2|) . T)) (((|#2|) . T)) +(|has| |#1| (-1003)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501)))) +(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) (((|#3|) |has| |#3| (-156))) -(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) -((((-501)) . T)) -(((|#1| $) |has| |#1| (-256 |#1| |#1|))) -((((-375 (-501))) . T) (($) . T) (((-375 |#1|)) . T) ((|#1|) . T)) -((((-786)) . T)) +(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) +((((-517)) . T)) +(((|#1| $) |has| |#1| (-258 |#1| |#1|))) +((((-377 (-517))) . T) (($) . T) (((-377 |#1|)) . T) ((|#1|) . T)) +((((-787)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-260)) (|has| |#1| (-331))) (((-375 (-501)) (-375 (-501))) |has| |#1| (-331))) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T)) -((($) . T)) -((((-501) |#1|) . T)) -((((-1070)) |has| (-375 |#2|) (-820 (-1070)))) -(((|#1|) . T) (($) -1405 (|has| |#1| (-260)) (|has| |#1| (-331))) (((-375 (-501))) |has| |#1| (-331))) -((((-490)) |has| |#2| (-556 (-490)))) -((((-621 |#2|)) . T) (((-786)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) -(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) -((((-791 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(-1405 (|has| |#4| (-723)) (|has| |#4| (-775))) -(-1405 (|has| |#3| (-723)) (|has| |#3| (-775))) -((((-786)) . T)) -((((-786)) . T)) -(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) -(((|#2|) |has| |#2| (-959))) -(((|#1|) . T)) -((((-375 |#2|)) . T)) -(((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) -((((-501) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-501)) . T) (($) . T) (((-375 (-501))) . T)) -((((-375 (-501))) . T) (($) . T)) -((((-375 (-501))) . T) (($) . T)) -((((-375 (-501))) . T) (($) . T)) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-1108))) -((($) . T)) -((((-375 (-501))) |has| (-375 |#2|) (-950 (-375 (-501)))) (((-501)) |has| (-375 |#2|) (-950 (-501))) (((-375 |#2|)) . T)) -(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501)))) -(((|#1| (-701)) . T)) +(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517)) (-377 (-517))) |has| |#1| (-333))) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T)) +((($) . T)) +((((-517) |#1|) . T)) +((((-1073)) |has| (-377 |#2|) (-822 (-1073)))) +(((|#1|) . T) (($) -3807 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517))) |has| |#1| (-333))) +((((-493)) |has| |#2| (-558 (-493)))) +((((-623 |#2|)) . T) (((-787)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) +(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) +((((-794 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(-3807 (|has| |#4| (-725)) (|has| |#4| (-777))) +(-3807 (|has| |#3| (-725)) (|has| |#3| (-777))) +((((-787)) . T)) +((((-787)) . T)) +(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) +(((|#2|) |has| |#2| (-961))) +(((|#1|) . T)) +((((-377 |#2|)) . T)) +(((|#1|) . T)) +(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) +((((-517) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-517)) . T) (($) . T) (((-377 (-517))) . T)) +((((-377 (-517))) . T) (($) . T)) +((((-377 (-517))) . T) (($) . T)) +((((-377 (-517))) . T) (($) . T)) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-1112))) +((($) . T)) +((((-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) (((-517)) |has| (-377 |#2|) (-952 (-517))) (((-377 |#2|)) . T)) +(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) +(((|#1| (-703)) . T)) +(|has| |#1| (-779)) +(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) +((((-517)) . T)) +(|has| |#1| (-37 (-377 (-517)))) +((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (|has| |#1| (-777)) -(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501)))) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T)) -((((-501)) . T)) -(|has| |#1| (-37 (-375 (-501)))) -((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))))) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(|has| |#1| (-775)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-318)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-319)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) (((|#1| |#2|) . T)) ((((-131)) . T)) -((((-710 |#1| (-787 |#2|))) . T)) -((((-786)) |has| |#1| (-1001))) -(|has| |#1| (-1090)) -(((|#1|) . T)) -(-1405 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-336)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959)) (|has| |#3| (-1001))) -((((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|))) -(((|#2|) . T)) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-826 |#1|)) . T)) -((($) . T)) -((((-375 (-866 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-490)) |has| |#4| (-556 (-490)))) -((((-786)) . T) (((-578 |#4|)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-775)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))))) -(|has| |#1| (-1001)) -(|has| |#1| (-331)) +((((-712 |#1| (-789 |#2|))) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +(|has| |#1| (-1094)) +(((|#1|) . T)) +(-3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003))) +((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|))) +(((|#2|) . T)) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-832 |#1|)) . T)) +((($) . T)) +((((-377 (-874 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-493)) |has| |#4| (-558 (-493)))) +((((-787)) . T) (((-583 |#4|)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(((|#1|) . T)) (|has| |#1| (-777)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))))) +(|has| |#1| (-1003)) +(|has| |#1| (-333)) +(|has| |#1| (-779)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-375 (-501))) . T)) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) |has| |#1| (-156))) +((($) . T) (((-377 (-517))) . T)) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156))) (|has| |#1| (-132)) (|has| |#1| (-134)) -(-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-134)) (|has| |#1| (-331))) (|has| |#1| (-134))) -(-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-132)) (|has| |#1| (-331))) (|has| |#1| (-132))) +(-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134))) +(-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-134)) (|has| |#1| (-132)) -((((-786)) |has| |#1| (-1001))) -((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331))) -(|has| |#1| (-775)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333))) +(|has| |#1| (-777)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501)))) -((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T)) -((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T)) -(|has| |#1| (-1001)) -(((|#1|) . T) (($) . T) (((-375 (-501))) . T) (((-501)) . T)) +(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) +((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) +((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) +(|has| |#1| (-1003)) +(((|#1|) . T) (($) . T) (((-377 (-517))) . T) (((-517)) . T)) (|has| |#2| (-132)) (|has| |#2| (-134)) -((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T)) -(|has| |#1| (-1001)) +((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) +(|has| |#1| (-1003)) (((|#2|) |has| |#2| (-156))) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-331))) -((((-375 |#2|)) . T)) -((((-786)) . T)) -(((|#1|) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-490)) |has| |#1| (-556 (-490)))) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((|#1| |#1|) |has| |#1| (-278 |#1|))) -(((|#1|) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)))) -((((-282 |#1|)) . T)) -(((|#2|) |has| |#2| (-331))) -(((|#2|) . T)) -((((-375 (-501))) . T) (((-630)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) |has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|))))) -((((-787 |#1|)) . T)) +(((|#3|) |has| |#3| (-333))) +((((-377 |#2|)) . T)) +((((-787)) . T)) +(((|#1|) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-493)) |has| |#1| (-558 (-493)))) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|))) +(((|#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)))) +((((-286 |#1|)) . T)) +(((|#2|) |has| |#2| (-333))) +(((|#2|) . T)) +((((-377 (-517))) . T) (((-632)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|))))) +((((-789 |#1|)) . T)) (((|#2|) |has| |#2| (-156))) (((|#1|) |has| |#1| (-156))) (((|#2|) . T)) -((((-1070)) |has| |#1| (-820 (-1070))) (((-986)) . T)) -((((-1070)) |has| |#1| (-820 (-1070))) (((-990 (-1070))) . T)) -(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(|has| |#1| (-37 (-375 (-501)))) -(((|#4|) |has| |#4| (-959)) (((-501)) -12 (|has| |#4| (-577 (-501))) (|has| |#4| (-959)))) -(((|#3|) |has| |#3| (-959)) (((-501)) -12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959)))) +((((-1073)) |has| |#1| (-822 (-1073))) (((-989)) . T)) +((((-1073)) |has| |#1| (-822 (-1073))) (((-993 (-1073))) . T)) +(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(|has| |#1| (-37 (-377 (-517)))) +(((|#4|) |has| |#4| (-961)) (((-517)) -12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961)))) +(((|#3|) |has| |#3| (-961)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (|has| |#1| (-132)) (|has| |#1| (-134)) ((($ $) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-440)) (|has| |#1| (-657)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)) (|has| |#1| (-1012)) (|has| |#1| (-1001))) -(|has| |#1| (-508)) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003))) +(|has| |#1| (-509)) (((|#2|) . T)) -((((-501)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) +((((-517)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959))) -((((-528 |#1|)) . T)) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961))) +((((-530 |#1|)) . T)) ((($) . T)) -(((|#1| (-56 |#1|) (-56 |#1|)) . T)) +(((|#1| (-57 |#1|) (-57 |#1|)) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-786)) . T)) -(((|#2|) |has| |#2| (-6 (-4169 "*")))) +((((-787)) . T)) +(((|#2|) |has| |#2| (-6 (-4182 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-375 (-501))) |has| |#2| (-950 (-375 (-501)))) (((-501)) |has| |#2| (-950 (-501))) ((|#2|) . T) (((-787 |#1|)) . T)) -((($) . T) (((-111 |#1|)) . T) (((-375 (-501))) . T)) -((((-1023 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501))))) -((((-1064 |#1|)) . T) (((-986)) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501))))) -((((-1023 |#1| (-1070))) . T) (((-990 (-1070))) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-1070)) . T)) -(|has| |#1| (-1001)) +((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T)) +((($) . T) (((-111 |#1|)) . T) (((-377 (-517))) . T)) +((((-1026 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517))))) +((((-1069 |#1|)) . T) (((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517))))) +((((-1026 |#1| (-1073))) . T) (((-993 (-1073))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-1073)) . T)) +(|has| |#1| (-1003)) ((($) . T)) -(|has| |#1| (-1001)) -((((-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#2| (-806 (-501)))) (((-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#2| (-806 (-346))))) +(|has| |#1| (-1003)) +((((-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))) (((-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349))))) (((|#1| |#2|) . T)) -((((-1070) |#1|) . T)) +((((-1073) |#1|) . T)) (((|#4|) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-318))) -((((-1070) (-50)) . T)) -((((-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) . T)) -((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T)) -((((-786)) . T)) -(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) -((((-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-156)) (((-375 (-501)) (-375 (-501))) |has| |#1| (-508)) (($ $) |has| |#1| (-508))) -(((|#1|) . T) (($) . T) (((-375 (-501))) . T)) -(((|#1| $) |has| |#1| (-256 |#1| |#1|))) -((((-1136 |#1| |#2| |#3| |#4|)) . T) (((-375 (-501))) . T) (($) . T)) -(((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-508)) (($) |has| |#1| (-508))) -(|has| |#1| (-331)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-319))) +((((-1073) (-51)) . T)) +((((-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T)) +((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T)) +((((-787)) . T)) +(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) +((((-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-156)) (((-377 (-517)) (-377 (-517))) |has| |#1| (-509)) (($ $) |has| |#1| (-509))) +(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) +(((|#1| $) |has| |#1| (-258 |#1| |#1|))) +((((-1140 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T) (($) . T)) +(((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)) (($) |has| |#1| (-509))) +(|has| |#1| (-333)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-134)) (|has| |#1| (-132)) -((((-375 (-501))) . T) (($) . T)) -(((|#3|) |has| |#3| (-331))) -(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) -((((-1070)) . T)) +((((-377 (-517))) . T) (($) . T)) +(((|#3|) |has| |#3| (-333))) +(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) +((((-1073)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) +(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (((|#2| |#3|) . T)) -(-1405 (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -(((|#1| (-487 |#2|)) . T)) -(((|#1| (-701)) . T)) -(((|#1| (-487 (-990 (-1070)))) . T)) +(-3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +(((|#1| (-489 |#2|)) . T)) +(((|#1| (-703)) . T)) +(((|#1| (-489 (-993 (-1073)))) . T)) (((|#1|) |has| |#1| (-156))) (((|#1|) . T)) -(|has| |#2| (-830)) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) -((((-786)) . T)) -((($ $) . T) (((-1130 |#2| |#3| |#4|) (-1130 |#2| |#3| |#4|)) . T) (((-375 (-501)) (-375 (-501))) |has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501))))) -((((-826 |#1|)) . T)) -(-12 (|has| |#1| (-331)) (|has| |#2| (-750))) -((($) . T) (((-375 (-501))) . T)) +(|has| |#2| (-831)) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) +((((-787)) . T)) +((($ $) . T) (((-1139 |#2| |#3| |#4|) (-1139 |#2| |#3| |#4|)) . T) (((-377 (-517)) (-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517))))) +((((-832 |#1|)) . T)) +(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) +((($) . T) (((-377 (-517))) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-331)) -(-1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318)) (|has| |#1| (-508))) -(|has| |#1| (-331)) -((($) . T) (((-1130 |#2| |#3| |#4|)) . T) (((-375 (-501))) |has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501))))) +(|has| |#1| (-333)) +(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) +(|has| |#1| (-333)) +((($) . T) (((-1139 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517))))) (((|#1| |#2|) . T)) -((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331))) -(-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331)) (|has| |#1| (-318))) -(-1405 (|has| |#1| (-820 (-1070))) (|has| |#1| (-959))) -((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T)) +((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333))) +(-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333)) (|has| |#1| (-319))) +(-3807 (|has| |#1| (-822 (-1073))) (|has| |#1| (-961))) +((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-786)) . T)) -((((-786)) . T)) +((((-787)) . T)) +((((-787)) . T)) ((((-107)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T)) +((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|))) . T)) -(|has| |#2| (-331)) -(|has| |#1| (-777)) +(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T)) +(|has| |#2| (-333)) +(|has| |#1| (-779)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-786)) . T)) -(|has| |#1| (-1001)) +((((-787)) . T)) +(|has| |#1| (-1003)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-375 $) (-375 $)) |has| |#1| (-508)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-750)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-752)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-786)) . T)) -(((|#1| (-487 (-1070))) . T)) +((((-787)) . T)) +(((|#1| (-489 (-1073))) . T)) (((|#1|) |has| |#1| (-156))) -((((-786)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) -(((|#2|) -1405 (|has| |#2| (-6 (-4169 "*"))) (|has| |#2| (-156)))) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(|has| |#2| (-777)) -(|has| |#2| (-830)) -(|has| |#1| (-830)) +((((-787)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) +(((|#2|) -3807 (|has| |#2| (-6 (-4182 "*"))) (|has| |#2| (-156)))) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(|has| |#2| (-779)) +(|has| |#2| (-831)) +(|has| |#1| (-831)) (((|#2|) |has| |#2| (-156))) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331))) -((((-786)) . T)) -((((-786)) . T)) -((((-490)) . T) (((-501)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333))) +((((-787)) . T)) +((((-787)) . T)) +((((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T)) (((|#1|) . T)) -((((-786)) . T)) +((((-787)) . T)) (((|#1| |#2|) . T)) -(((|#1| (-375 (-501))) . T)) +(((|#1| (-377 (-517))) . T)) (((|#1|) . T)) -(-1405 (|has| |#1| (-260)) (|has| |#1| (-331))) +(-3807 (|has| |#1| (-262)) (|has| |#1| (-333))) ((((-131)) . T)) -((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T)) -(|has| |#1| (-775)) -((((-786)) . T)) -((((-786)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1| |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) . T)) +((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) +(|has| |#1| (-777)) +((((-787)) . T)) +((((-787)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1| |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-375 (-501))) . T) (($) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) +((((-377 (-517))) . T) (($) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-490)) |has| |#1| (-556 (-490))) (((-810 (-501))) |has| |#1| (-556 (-810 (-501)))) (((-810 (-346))) |has| |#1| (-556 (-810 (-346))))) -((((-1070) (-50)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-578 (-131))) . T) (((-1053)) . T)) -((((-786)) . T)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T)) -((((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((|#1| |#1|) |has| |#1| (-278 |#1|))) +((((-787)) . T)) +((((-787)) . T)) +((((-493)) |has| |#1| (-558 (-493))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349))))) +((((-1073) (-51)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-583 (-131))) . T) (((-1056)) . T)) +((((-787)) . T)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T)) +((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|))) +(|has| |#1| (-779)) +((((-787)) . T)) +((((-493)) |has| |#1| (-558 (-493)))) +((((-787)) . T)) +(((|#2|) |has| |#2| (-333))) +((((-787)) . T)) +((((-493)) |has| |#4| (-558 (-493)))) +((((-787)) . T) (((-583 |#4|)) . T)) +(((|#2|) . T)) +((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) +(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961))) +(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) +((((-1073) (-51)) . T)) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(|has| |#1| (-831)) +(|has| |#1| (-831)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-787)) . T)) +((((-517)) . T)) +((((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) +((((-377 (-517))) . T) (($) . T)) +(((|#1| (-377 (-517)) (-989)) . T)) +(|has| |#1| (-1003)) +(|has| |#1| (-509)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(|has| |#1| (-752)) +((((-832 |#1|) (-832 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +((((-377 |#2|)) . T)) (|has| |#1| (-777)) -((((-786)) . T)) -((((-490)) |has| |#1| (-556 (-490)))) -((((-786)) . T)) -(((|#2|) |has| |#2| (-331))) -((((-786)) . T)) -((((-490)) |has| |#4| (-556 (-490)))) -((((-786)) . T) (((-578 |#4|)) . T)) -(((|#2|) . T)) -((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T)) -(-1405 (|has| |#4| (-156)) (|has| |#4| (-775)) (|has| |#4| (-959))) -(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) -((((-1070) (-50)) . T)) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(|has| |#1| (-830)) -(|has| |#1| (-830)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-786)) . T)) -((((-501)) . T)) -((((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) -((((-375 (-501))) . T) (($) . T)) -(((|#1| (-375 (-501)) (-986)) . T)) -(|has| |#1| (-1001)) -(|has| |#1| (-508)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(|has| |#1| (-750)) -((((-826 |#1|) (-826 |#1|)) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -((((-375 |#2|)) . T)) -(|has| |#1| (-775)) -((((-786)) |has| |#1| (-1001))) -(((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) . T) (((-501) (-501)) . T) (($ $) . T)) -((((-826 |#1|)) . T) (($) . T) (((-375 (-501))) . T)) -(((|#2|) |has| |#2| (-959)) (((-501)) -12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) -(((|#1|) . T) (((-375 (-501))) . T) (((-501)) . T) (($) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +(((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) . T) (((-517) (-517)) . T) (($ $) . T)) +((((-832 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) +(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) +(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-134)) (|has| |#1| (-132)) (((|#2|) . T)) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T)) -((((-50)) . T) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T)) -(|has| |#1| (-318)) -((((-501)) . T)) -((((-786)) . T)) -((((-1136 |#1| |#2| |#3| |#4|) $) |has| (-1136 |#1| |#2| |#3| |#4|) (-256 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)))) -(|has| |#1| (-331)) -((((-986) |#1|) . T) (((-986) $) . T) (($ $) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-318))) -((((-375 (-501)) (-375 (-501))) . T) (((-630) (-630)) . T) (($ $) . T)) -((((-282 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-375 (-501))) |has| |#1| (-331))) -(|has| |#1| (-1001)) -(((|#1|) . T)) -(((|#1|) -1405 (|has| |#2| (-335 |#1|)) (|has| |#2| (-386 |#1|)))) -(((|#1|) -1405 (|has| |#2| (-335 |#1|)) (|has| |#2| (-386 |#1|)))) -(((|#2|) . T)) -((((-375 (-501))) . T) (((-630)) . T) (($) . T)) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T)) +(|has| |#1| (-319)) +((((-517)) . T)) +((((-787)) . T)) +((((-1140 |#1| |#2| |#3| |#4|) $) |has| (-1140 |#1| |#2| |#3| |#4|) (-258 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)))) +(|has| |#1| (-333)) +((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-319))) +((((-377 (-517)) (-377 (-517))) . T) (((-632) (-632)) . T) (($ $) . T)) +((((-286 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-377 (-517))) |has| |#1| (-333))) +(|has| |#1| (-1003)) +(((|#1|) . T)) +(((|#1|) -3807 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|)))) +(((|#1|) -3807 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|)))) +(((|#2|) . T)) +((((-377 (-517))) . T) (((-632)) . T) (($) . T)) (((|#3| |#3|) . T)) -(|has| |#2| (-206)) -((((-787 |#1|)) . T)) -((((-1070)) |has| |#1| (-820 (-1070))) ((|#3|) . T)) -(-12 (|has| |#1| (-331)) (|has| |#2| (-933))) -((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331))) -((((-786)) . T)) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -((((-375 (-501))) . T) (($) . T) (((-375 |#1|)) . T) ((|#1|) . T)) -((((-501)) . T)) -(|has| |#1| (-1001)) +(|has| |#2| (-207)) +((((-789 |#1|)) . T)) +((((-1073)) |has| |#1| (-822 (-1073))) ((|#3|) . T)) +(-12 (|has| |#1| (-333)) (|has| |#2| (-937))) +((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333))) +((((-787)) . T)) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +((((-377 (-517))) . T) (($) . T) (((-377 |#1|)) . T) ((|#1|) . T)) +((((-517)) . T)) +(|has| |#1| (-1003)) (((|#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -((((-501)) . T)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501)))) +((((-517)) . T)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-528 |#1|)) . T) (((-375 (-501))) . T) (($) . T)) -((($) . T) (((-375 (-501))) . T)) +((((-530 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) +((($) . T) (((-377 (-517))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1148 |#1|) (-1148 |#1|)) . T)) +(((|#1| (-1153 |#1|) (-1153 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-111 |#1|) (-111 |#1|)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) -((((-375 (-501))) |has| |#2| (-950 (-375 (-501)))) (((-501)) |has| |#2| (-950 (-501))) ((|#2|) . T) (((-787 |#1|)) . T)) -((((-1023 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((|#2|) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-111 |#1|) (-111 |#1|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) +((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T)) +((((-1026 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) -((((-606 |#1|)) . T)) -((($) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T)) -((((-111 |#1|)) . T) (((-375 (-501))) . T) (($) . T)) -((((-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#3| (-806 (-501)))) (((-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#3| (-806 (-346))))) +((((-608 |#1|)) . T)) +((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T)) +((((-111 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) +((((-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) (((-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) (($) . T)) +(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T)) ((((-131)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) +((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) (((|#1|) . T)) -(|has| |#2| (-830)) -(|has| |#1| (-830)) -(|has| |#1| (-830)) +(|has| |#2| (-831)) +(|has| |#1| (-831)) +(|has| |#1| (-831)) (((|#4|) . T)) -(|has| |#2| (-933)) +(|has| |#2| (-937)) ((($) . T)) -(|has| |#1| (-830)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) +(|has| |#1| (-831)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-331)) -((((-826 |#1|)) . T)) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -(-1405 (|has| |#1| (-336)) (|has| |#1| (-777))) -(((|#1|) . T)) -((((-786)) . T)) -((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) -((((-375 |#2|) |#3|) . T)) -((($) . T) (((-375 (-501))) . T)) -((((-701) |#1|) . T)) -(((|#2| (-212 (-3581 |#1|) (-701))) . T)) -(((|#1| (-487 |#3|)) . T)) -((((-375 (-501))) . T)) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -((((-786)) . T)) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))))) -(|has| |#1| (-830)) -(|has| |#2| (-331)) -(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959))) -((((-152 (-346))) . T) (((-199)) . T) (((-346)) . T)) -((((-786)) . T)) -(((|#1|) . T)) -((((-346)) . T) (((-501)) . T)) -((((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) +(|has| |#1| (-333)) +((((-832 |#1|)) . T)) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +(-3807 (|has| |#1| (-338)) (|has| |#1| (-779))) +(((|#1|) . T)) +((((-787)) . T)) +((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) +((((-377 |#2|) |#3|) . T)) +((($) . T) (((-377 (-517))) . T)) +((((-703) |#1|) . T)) +(((|#2| (-214 (-2296 |#1|) (-703))) . T)) +(((|#1| (-489 |#3|)) . T)) +((((-377 (-517))) . T)) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +((((-787)) . T)) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))))) +(|has| |#1| (-831)) +(|has| |#2| (-333)) +(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961))) +((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T)) +((((-787)) . T)) +(((|#1|) . T)) +((((-349)) . T) (((-517)) . T)) +((((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-786)) . T)) -(|has| |#1| (-508)) -((((-375 (-501))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(-1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318))) -(|has| |#1| (-37 (-375 (-501)))) -(-12 (|has| |#1| (-500)) (|has| |#1| (-751))) -((((-786)) . T)) -(|has| |#1| (-331)) -((((-1070)) -1405 (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))) (-12 (|has| |#1| (-331)) (|has| |#2| (-820 (-1070)))))) -(|has| |#1| (-331)) -((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) -((((-375 (-501))) . T) (($) . T)) -((($) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T)) -((((-501) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-331))) -(((|#2|) |has| |#1| (-331))) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) +((((-787)) . T)) +(|has| |#1| (-509)) +((((-377 (-517))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319))) +(|has| |#1| (-37 (-377 (-517)))) +(-12 (|has| |#1| (-502)) (|has| |#1| (-760))) +((((-787)) . T)) +((((-1073)) -3807 (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))) (-12 (|has| |#1| (-333)) (|has| |#2| (-822 (-1073)))))) +(|has| |#1| (-333)) +((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) +(|has| |#1| (-333)) +((((-377 (-517))) . T) (($) . T)) +((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T)) +((((-517) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-333))) +(((|#2|) |has| |#1| (-333))) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-156))) (((|#1|) . T)) -(((|#2|) . T) (((-1070)) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-1070)))) (((-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-501)))) (((-375 (-501))) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-501))))) +(((|#2|) . T) (((-1073)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-1073)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) (((-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517))))) (((|#2|) . T)) -((((-1070) (-1136 |#1| |#2| |#3| |#4|)) |has| (-1136 |#1| |#2| |#3| |#4|) (-476 (-1070) (-1136 |#1| |#2| |#3| |#4|))) (((-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) |has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|)))) -((((-553 $) $) . T) (($ $) . T)) -((((-152 (-199))) . T) (((-152 (-346))) . T) (((-1064 (-630))) . T) (((-810 (-346))) . T)) -((((-786)) . T)) -(|has| |#1| (-508)) -(|has| |#1| (-508)) -(|has| (-375 |#2|) (-206)) -(((|#1| (-375 (-501))) . T)) +((((-1073) (-1140 |#1| |#2| |#3| |#4|)) |has| (-1140 |#1| |#2| |#3| |#4|) (-478 (-1073) (-1140 |#1| |#2| |#3| |#4|))) (((-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) |has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) +((((-556 $) $) . T) (($ $) . T)) +((((-153 (-199))) . T) (((-153 (-349))) . T) (((-1069 (-632))) . T) (((-814 (-349))) . T)) +((((-787)) . T)) +(|has| |#1| (-509)) +(|has| |#1| (-509)) +(|has| (-377 |#2|) (-207)) +(((|#1| (-377 (-517))) . T)) ((($ $) . T)) -((((-1070)) |has| |#2| (-820 (-1070)))) -((($) . T)) -((((-786)) . T)) -((((-375 (-501))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -(|has| |#1| (-331)) -(((|#2|) |has| |#1| (-331))) -((((-346)) -12 (|has| |#1| (-331)) (|has| |#2| (-806 (-346)))) (((-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-806 (-501))))) -(|has| |#1| (-331)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -(|has| |#1| (-331)) -(|has| |#1| (-508)) -(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) +((((-1073)) |has| |#2| (-822 (-1073)))) +((($) . T)) +((((-787)) . T)) +((((-377 (-517))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#2|) |has| |#1| (-333))) +((((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-349)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-517))))) +(|has| |#1| (-333)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +(|has| |#1| (-333)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +(|has| |#1| (-333)) +(|has| |#1| (-509)) +(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (((|#3|) . T)) (((|#1|) . T)) -(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959))) +(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961))) (((|#2|) . T)) (((|#2|) . T)) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(|has| |#1| (-37 (-375 (-501)))) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(|has| |#1| (-37 (-377 (-517)))) (((|#1| |#2|) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) +(|has| |#1| (-37 (-377 (-517)))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) (|has| |#1| (-134)) -((((-1053) |#1|) . T)) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) +((((-1056) |#1|) . T)) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) (|has| |#1| (-134)) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-336))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-338))) (|has| |#1| (-134)) -((((-528 |#1|)) . T)) +((((-530 |#1|)) . T)) ((($) . T)) -((((-375 |#2|)) . T)) -(|has| |#1| (-508)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-318))) +((((-377 |#2|)) . T)) +(|has| |#1| (-509)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-319))) (|has| |#1| (-134)) -((((-786)) . T)) +((((-787)) . T)) ((($) . T)) -((((-375 (-501))) |has| |#2| (-950 (-501))) (((-501)) |has| |#2| (-950 (-501))) (((-1070)) |has| |#2| (-950 (-1070))) ((|#2|) . T)) -((((-375 |#2|) (-375 |#2|)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) -((((-1035 |#1| |#2|)) . T)) -(((|#1| (-501)) . T)) -(((|#1| (-375 (-501))) . T)) -((((-501)) |has| |#2| (-806 (-501))) (((-346)) |has| |#2| (-806 (-346)))) +((((-377 (-517))) |has| |#2| (-952 (-517))) (((-517)) |has| |#2| (-952 (-517))) (((-1073)) |has| |#2| (-952 (-1073))) ((|#2|) . T)) +((((-377 |#2|) (-377 |#2|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) +((((-1038 |#1| |#2|)) . T)) +(((|#1| (-517)) . T)) +(((|#1| (-377 (-517))) . T)) +((((-517)) |has| |#2| (-808 (-517))) (((-349)) |has| |#2| (-808 (-349)))) (((|#2|) . T)) -((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T)) +((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) ((((-107)) . T)) -(((|#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) . T)) -(((|#2|) . T)) -((((-786)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-1070) (-50)) . T)) -((((-375 |#2|)) . T)) -((((-786)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1001)) -(|has| |#1| (-721)) -(|has| |#1| (-721)) -((((-490)) |has| |#1| (-556 (-490)))) -((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))) -((((-108)) . T) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-199)) . T) (((-346)) . T) (((-810 (-346))) . T)) -((((-786)) . T)) -((((-1136 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-375 (-501))) . T)) -(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508)) (((-375 (-501))) |has| |#1| (-508))) -(((|#2|) . T)) -((((-786)) . T)) -((((-826 |#1|) (-826 |#1|)) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-826 |#1|)) . T) (($) . T) (((-375 (-501))) . T)) -(|has| |#1| (-331)) -(((|#2|) . T)) -((((-501)) . T)) -((((-501)) . T)) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) -((((-152 (-346))) . T) (((-199)) . T) (((-346)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-1053)) . T) (((-490)) . T) (((-501)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T)) -((((-786)) . T)) +(((|#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-787)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-1073) (-51)) . T)) +((((-377 |#2|)) . T)) +((((-787)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1003)) +(|has| |#1| (-723)) +(|has| |#1| (-723)) +((((-493)) |has| |#1| (-558 (-493)))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003)))) +((((-109)) . T) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-199)) . T) (((-349)) . T) (((-814 (-349))) . T)) +((((-787)) . T)) +((((-1140 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T)) +(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509))) +((((-787)) . T)) +(((|#2|) . T)) +((((-787)) . T)) +((((-832 |#1|) (-832 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-832 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) +(|has| |#1| (-333)) +(((|#2|) . T)) +((((-517)) . T)) +((((-517)) . T)) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) +((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-1056)) . T) (((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T)) +((((-787)) . T)) (|has| |#1| (-134)) (|has| |#1| (-132)) -((($) . T) (((-1130 |#2| |#3| |#4|)) |has| (-1130 |#2| |#3| |#4|) (-156)) (((-375 (-501))) |has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501))))) -(((|#1|) . T) (($) . T) (((-375 (-501))) . T)) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -((((-786)) |has| |#1| (-1001))) -((((-786)) |has| |#1| (-1001))) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-440)) (|has| |#1| (-657)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)) (|has| |#1| (-1012)) (|has| |#1| (-1001))) -(|has| |#1| (-1046)) -((((-501) |#1|) . T)) -(((|#1|) . T)) -((((-111 |#1|) $) |has| (-111 |#1|) (-256 (-111 |#1|) (-111 |#1|)))) +((($) . T) (((-1139 |#2| |#3| |#4|)) |has| (-1139 |#2| |#3| |#4|) (-156)) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517))))) +(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003))) +(|has| |#1| (-1049)) +((((-517) |#1|) . T)) +(((|#1|) . T)) +((((-111 |#1|) $) |has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|)))) (((|#1|) |has| |#1| (-156))) (((|#1|) . T)) -((((-108)) . T) ((|#1|) . T)) -((((-786)) . T)) +((((-109)) . T) ((|#1|) . T)) +((((-787)) . T)) (((|#1| |#2|) . T)) -((((-1070) |#1|) . T)) -(((|#1|) |has| |#1| (-278 |#1|))) -((((-501) |#1|) . T)) +((((-1073) |#1|) . T)) +(((|#1|) |has| |#1| (-280 |#1|))) +((((-517) |#1|) . T)) (((|#1|) . T)) -((((-501)) . T) (((-375 (-501))) . T)) +((((-517)) . T) (((-377 (-517))) . T)) (((|#1|) . T)) -(|has| |#1| (-508)) -((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -((((-346)) . T)) +(|has| |#1| (-509)) +((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +((((-349)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -(|has| |#1| (-508)) -(|has| |#1| (-1001)) -((((-710 |#1| (-787 |#2|))) |has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|))))) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +(|has| |#1| (-509)) +(|has| |#1| (-1003)) +((((-712 |#1| (-789 |#2|))) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|))))) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) (((|#1|) . T)) (((|#2| |#3|) . T)) -(|has| |#2| (-830)) +(|has| |#2| (-831)) (((|#1|) . T)) -(((|#1| (-487 |#2|)) . T)) -(((|#1| (-701)) . T)) -(|has| |#1| (-206)) -(((|#1| (-487 (-990 (-1070)))) . T)) -(|has| |#2| (-331)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) . T)) +(((|#1| (-489 |#2|)) . T)) +(((|#1| (-703)) . T)) +(|has| |#1| (-207)) +(((|#1| (-489 (-993 (-1073)))) . T)) +(|has| |#2| (-333)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-786)) . T)) -((((-786)) . T)) -(-1405 (|has| |#3| (-723)) (|has| |#3| (-775))) -((((-786)) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-787)) . T)) +((((-787)) . T)) +(-3807 (|has| |#3| (-725)) (|has| |#3| (-777))) +((((-787)) . T)) +((((-787)) . T)) (((|#1|) . T)) -((($ $) . T) (((-553 $) $) . T)) +((($ $) . T) (((-556 $) $) . T)) (((|#1|) . T)) -((((-501)) . T)) +((((-517)) . T)) (((|#3|) . T)) -((((-786)) . T)) -(-1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318))) -(-1405 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959))) -((((-528 |#1|) (-528 |#1|)) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -((($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) +((((-787)) . T)) +(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319))) +(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961))) +((((-530 |#1|) (-530 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +((($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) (((|#1|) |has| |#1| (-156))) -((((-528 |#1|)) . T) (($) . T) (((-375 (-501))) . T)) -((($) . T) (((-375 (-501))) . T)) -((($) . T) (((-375 (-501))) . T)) -(((|#2|) |has| |#2| (-6 (-4169 "*")))) +(((|#1| (-1153 |#1|) (-1153 |#1|)) . T)) +((((-530 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) +((($) . T) (((-377 (-517))) . T)) +((($) . T) (((-377 (-517))) . T)) +(((|#2|) |has| |#2| (-6 (-4182 "*")))) (((|#1|) . T)) (((|#1|) . T)) -((((-262 |#3|)) . T)) +((((-265 |#3|)) . T)) (((|#1|) . T)) -((((-375 (-501)) (-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2| |#2|) . T) (($ $) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) +((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) -((($) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (($) . T)) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#2|) . T)) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T) (($) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) +((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#2|) . T)) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-786)) . T)) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(|has| |#2| (-830)) -(|has| |#1| (-830)) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-787)) . T)) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(|has| |#2| (-831)) +(|has| |#1| (-831)) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) (((|#1|) . T)) -((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T)) +((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1001)) -(((|#1|) . T)) -((((-1070)) . T) ((|#1|) . T)) -((((-786)) . T)) -((((-786)) . T)) -(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) -((((-375 (-501)) (-375 (-501))) . T)) -((((-375 (-501))) . T)) -(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(((|#1|) . T)) -(((|#1|) . T)) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-775)) (|has| |#2| (-959))) -((((-490)) . T)) -((((-786)) . T)) -((((-1070)) |has| |#2| (-820 (-1070))) (((-986)) . T)) -((((-1130 |#2| |#3| |#4|)) . T)) -((((-826 |#1|)) . T)) -((($) . T) (((-375 (-501))) . T)) -(-12 (|has| |#1| (-331)) (|has| |#2| (-750))) -(-12 (|has| |#1| (-331)) (|has| |#2| (-750))) -(|has| |#1| (-1108)) -(((|#2|) . T)) -((($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -((((-1070)) |has| |#1| (-820 (-1070)))) -((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T)) -((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) . T)) -((((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508)))) -((($) . T) (((-375 (-501))) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (((-501)) . T) (($) . T)) -(((|#2|) |has| |#2| (-959)) (((-501)) -12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508)))) -(|has| |#1| (-508)) -(((|#1|) |has| |#1| (-331))) -((((-501)) . T)) -(|has| |#1| (-721)) -(|has| |#1| (-721)) -((((-1070) (-111 |#1|)) |has| (-111 |#1|) (-476 (-1070) (-111 |#1|))) (((-111 |#1|) (-111 |#1|)) |has| (-111 |#1|) (-278 (-111 |#1|)))) -(((|#2|) . T) (((-501)) |has| |#2| (-950 (-501))) (((-375 (-501))) |has| |#2| (-950 (-375 (-501))))) -((((-986)) . T) ((|#2|) . T) (((-501)) |has| |#2| (-950 (-501))) (((-375 (-501))) |has| |#2| (-950 (-375 (-501))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-501) (-701)) . T) ((|#3| (-701)) . T)) +(|has| |#1| (-1003)) +(((|#1|) . T)) +((((-1073)) . T) ((|#1|) . T)) +((((-787)) . T)) +((((-787)) . T)) +(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) +((((-377 (-517)) (-377 (-517))) . T)) +((((-377 (-517))) . T)) +(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(((|#1|) . T)) +(((|#1|) . T)) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961))) +((((-493)) . T)) +((((-787)) . T)) +((((-1073)) |has| |#2| (-822 (-1073))) (((-989)) . T)) +((((-1139 |#2| |#3| |#4|)) . T)) +((((-832 |#1|)) . T)) +((($) . T) (((-377 (-517))) . T)) +(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) +(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) +(|has| |#1| (-1112)) +(((|#2|) . T)) +((($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +((((-1073)) |has| |#1| (-822 (-1073)))) +((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) +((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T)) +((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509)))) +((($) . T) (((-377 (-517))) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T)) +(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509)))) +(|has| |#1| (-509)) +(((|#1|) |has| |#1| (-333))) +((((-517)) . T)) +(|has| |#1| (-723)) +(|has| |#1| (-723)) +((((-1073) (-111 |#1|)) |has| (-111 |#1|) (-478 (-1073) (-111 |#1|))) (((-111 |#1|) (-111 |#1|)) |has| (-111 |#1|) (-280 (-111 |#1|)))) +(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517))))) +((((-989)) . T) ((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-517) (-703)) . T) ((|#3| (-703)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-786)) . T)) -(|has| |#2| (-750)) -(|has| |#2| (-750)) -((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#2|) |has| |#1| (-331)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501))))) -((((-501)) |has| |#1| (-806 (-501))) (((-346)) |has| |#1| (-806 (-346)))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-787)) . T)) +(|has| |#2| (-752)) +(|has| |#2| (-752)) +((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517))))) +((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349)))) (((|#1|) . T)) -((((-791 |#1|)) . T)) -((((-791 |#1|)) . T)) -((((-375 (-501))) . T) (((-630)) . T) (($) . T)) -(|has| |#1| (-331)) -(-12 (|has| |#1| (-331)) (|has| |#2| (-830))) -(|has| |#1| (-331)) +((((-794 |#1|)) . T)) +((((-794 |#1|)) . T)) +(-12 (|has| |#1| (-333)) (|has| |#2| (-831))) +((((-377 (-517))) . T) (((-632)) . T) (($) . T)) +(|has| |#1| (-333)) +(|has| |#1| (-333)) (((|#1|) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) -(|has| |#1| (-331)) +(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) +(|has| |#1| (-333)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-787 |#1|)) . T)) +((((-789 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-701)) . T)) -((((-1070)) . T)) -((((-791 |#1|)) . T)) -(-1405 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959))) -(-1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-775)) (|has| |#3| (-959))) -((((-786)) . T)) +(((|#2| (-703)) . T)) +((((-1073)) . T)) +((((-794 |#1|)) . T)) +(-3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961))) +(-3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-777)) (|has| |#3| (-961))) +((((-787)) . T)) (((|#1|) . T)) -(-1405 (|has| |#2| (-723)) (|has| |#2| (-775))) -(-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))) -((((-791 |#1|)) . T)) +(-3807 (|has| |#2| (-725)) (|has| |#2| (-777))) +(-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))) +((((-794 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) -((($ $) . T) (((-553 $) $) . T)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) +((($ $) . T) (((-556 $) $) . T)) ((($) . T)) -((((-786)) . T)) -((((-501)) . T)) +((((-787)) . T)) +((((-517)) . T)) (((|#2|) . T)) -((((-786)) . T)) -(((|#1|) . T) (((-375 (-501))) |has| |#1| (-331))) -((((-786)) . T)) +((((-787)) . T)) +(((|#1|) . T) (((-377 (-517))) |has| |#1| (-333))) +((((-787)) . T)) (((|#1|) . T)) -((((-786)) . T)) -((($) . T) ((|#2|) . T) (((-375 (-501))) . T)) -(|has| |#1| (-1001)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +((((-787)) . T)) +((($) . T) ((|#2|) . T) (((-377 (-517))) . T)) +(|has| |#1| (-1003)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-786)) . T)) -(|has| |#2| (-830)) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T)) -((((-490)) |has| |#2| (-556 (-490))) (((-810 (-346))) |has| |#2| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#2| (-556 (-810 (-501))))) -((((-786)) . T)) -((((-786)) . T)) -(((|#3|) |has| |#3| (-959)) (((-501)) -12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959)))) -((((-1023 |#1| |#2|)) . T) (((-866 |#1|)) |has| |#2| (-556 (-1070))) (((-786)) . T)) -((((-866 |#1|)) |has| |#2| (-556 (-1070))) (((-1053)) -12 (|has| |#1| (-950 (-501))) (|has| |#2| (-556 (-1070)))) (((-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501))))) (((-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346))))) (((-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#2| (-556 (-490))))) -((((-1064 |#1|)) . T) (((-786)) . T)) -((((-786)) . T)) -((((-375 (-501))) |has| |#2| (-950 (-375 (-501)))) (((-501)) |has| |#2| (-950 (-501))) ((|#2|) . T) (((-787 |#1|)) . T)) -((((-111 |#1|)) . T) (($) . T) (((-375 (-501))) . T)) -((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T) (((-1070)) . T)) -((((-786)) . T)) -((((-501)) . T)) +((((-787)) . T)) +(|has| |#2| (-831)) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T)) +((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517))))) +((((-787)) . T)) +((((-787)) . T)) +(((|#3|) |has| |#3| (-961)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) +((((-1026 |#1| |#2|)) . T) (((-874 |#1|)) |has| |#2| (-558 (-1073))) (((-787)) . T)) +((((-874 |#1|)) |has| |#2| (-558 (-1073))) (((-1056)) -12 (|has| |#1| (-952 (-517))) (|has| |#2| (-558 (-1073)))) (((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517))))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493))))) +((((-1069 |#1|)) . T) (((-787)) . T)) +((((-787)) . T)) +((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T)) +((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) +((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T) (((-1073)) . T)) +((((-787)) . T)) +((((-517)) . T)) ((($) . T)) -((((-346)) |has| |#1| (-806 (-346))) (((-501)) |has| |#1| (-806 (-501)))) -((((-501)) . T)) +((((-349)) |has| |#1| (-808 (-349))) (((-517)) |has| |#1| (-808 (-517)))) +((((-517)) . T)) (((|#1|) . T)) -((((-786)) . T)) +((((-787)) . T)) (((|#1|) . T)) -((((-786)) . T)) +((((-787)) . T)) (((|#1|) |has| |#1| (-156)) (($) . T)) -((((-501)) . T) (((-375 (-501))) . T)) -(((|#1|) |has| |#1| (-278 |#1|))) -((((-786)) . T)) -((((-346)) . T)) +((((-517)) . T) (((-377 (-517))) . T)) +(((|#1|) |has| |#1| (-280 |#1|))) +((((-787)) . T)) +((((-349)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-786)) . T)) -((((-375 (-501))) . T) (($) . T)) -((((-375 |#2|) |#3|) . T)) +((((-787)) . T)) +((((-377 (-517))) . T) (($) . T)) +((((-377 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1001)) -(((|#2| (-448 (-3581 |#1|) (-701))) . T)) -((((-501) |#1|) . T)) +(|has| |#1| (-1003)) +(((|#2| (-450 (-2296 |#1|) (-703))) . T)) +((((-517) |#1|) . T)) (((|#2| |#2|) . T)) -(((|#1| (-487 (-1070))) . T)) -(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959))) -((((-501)) . T)) +(((|#1| (-489 (-1073))) . T)) +(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961))) +((((-517)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1070)) |has| |#1| (-820 (-1070))) (((-986)) . T)) -(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501)))) -(|has| |#1| (-508)) -((($) . T) (((-375 (-501))) . T)) +((((-1073)) |has| |#1| (-822 (-1073))) (((-989)) . T)) +(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) +(|has| |#1| (-509)) +((($) . T) (((-377 (-517))) . T)) ((($) . T)) ((($) . T)) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) (((|#1|) . T)) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-786)) . T)) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-787)) . T)) ((((-131)) . T)) -(((|#1|) . T) (((-375 (-501))) . T)) +(((|#1|) . T) (((-377 (-517))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-786)) . T)) +((((-787)) . T)) (((|#1|) . T)) -(|has| |#1| (-1046)) -(((|#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|))) . T)) +(|has| |#1| (-1049)) +(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T)) (((|#1|) . T)) -((((-375 $) (-375 $)) |has| |#1| (-508)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501))))) -((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T) ((|#2|) . T)) -((((-986)) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501))))) -((((-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#2| (-806 (-346)))) (((-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#2| (-806 (-501))))) -((((-1136 |#1| |#2| |#3| |#4|)) . T)) -((((-501) |#1|) . T)) +((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517))))) +((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T) ((|#2|) . T)) +((((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517))))) +((((-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349)))) (((-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517))))) +((((-1140 |#1| |#2| |#3| |#4|)) . T)) +((((-517) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-156)) (($) . T)) ((($) . T)) -((((-630)) . T)) -((((-710 |#1| (-787 |#2|))) . T)) -((($) . T)) -((((-375 (-501))) . T) (($) . T)) -(|has| |#1| (-1001)) -(|has| |#1| (-1001)) -(|has| |#2| (-331)) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -(|has| |#1| (-37 (-375 (-501)))) -((((-501)) . T)) -((((-1070)) -12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) -((((-1070)) -12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) -(((|#1|) . T)) -(|has| |#1| (-206)) -(((|#1| (-487 |#3|)) . T)) -(|has| |#1| (-336)) -(((|#2| (-212 (-3581 |#1|) (-701))) . T)) -(|has| |#1| (-336)) -(|has| |#1| (-336)) +((((-632)) . T)) +((((-712 |#1| (-789 |#2|))) . T)) +((($) . T)) +((((-377 (-517))) . T) (($) . T)) +(|has| |#1| (-1003)) +(|has| |#1| (-1003)) +(|has| |#2| (-333)) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +(|has| |#1| (-37 (-377 (-517)))) +((((-517)) . T)) +((((-1073)) -12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) +((((-1073)) -12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) +(((|#1|) . T)) +(|has| |#1| (-207)) +(((|#1| (-489 |#3|)) . T)) +(|has| |#1| (-338)) +(((|#2| (-214 (-2296 |#1|) (-703))) . T)) +(|has| |#1| (-338)) +(|has| |#1| (-338)) (((|#1|) . T) (($) . T)) -(((|#1| (-487 |#2|)) . T)) -(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(((|#1| (-701)) . T)) -(|has| |#1| (-508)) -(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-775)) (|has| |#2| (-959))) +(((|#1| (-489 |#2|)) . T)) +(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(((|#1| (-703)) . T)) +(|has| |#1| (-509)) +(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-786)) . T)) -(-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) -(-1405 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959))) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) +((((-787)) . T)) +(-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) +(-3807 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961))) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) (((|#1|) |has| |#1| (-156))) -(((|#4|) |has| |#4| (-959))) -(((|#3|) |has| |#3| (-959))) -(-12 (|has| |#1| (-331)) (|has| |#2| (-750))) -(-12 (|has| |#1| (-331)) (|has| |#2| (-750))) -((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))) -((((-490)) |has| |#1| (-556 (-490)))) -((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T)) -((($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -((((-786)) . T)) -((($) . T) (((-375 (-501))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1001)) (((-501)) -12 (|has| |#4| (-950 (-501))) (|has| |#4| (-1001))) (((-375 (-501))) -12 (|has| |#4| (-950 (-375 (-501)))) (|has| |#4| (-1001)))) -(((|#3|) |has| |#3| (-1001)) (((-501)) -12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001))) (((-375 (-501))) -12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001)))) -(|has| |#2| (-331)) -(((|#2|) |has| |#2| (-959)) (((-501)) -12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) -(((|#1|) . T)) -(|has| |#2| (-331)) -((((-375 (-501)) (-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2| |#2|) . T) (($ $) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) +(((|#4|) |has| |#4| (-961))) +(((|#3|) |has| |#3| (-961))) +(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) +(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003)))) +((((-493)) |has| |#1| (-558 (-493)))) +((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) +((($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +((((-787)) . T)) +((($) . T) (((-377 (-517))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1003)) (((-517)) -12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003))) (((-377 (-517))) -12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003)))) +(((|#3|) |has| |#3| (-1003)) (((-517)) -12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (((-377 (-517))) -12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) +(|has| |#2| (-333)) +(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) +(((|#1|) . T)) +(|has| |#2| (-333)) +((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) (((|#2| |#2|) . T)) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T) (($) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#1|) . T) (($) . T) (((-375 (-501))) . T)) -(((|#1|) . T) (($) . T) (((-375 (-501))) . T)) -(((|#1|) . T) (($) . T) (((-375 (-501))) . T)) -(((|#2|) . T)) -((($) . T)) -((((-786)) |has| |#1| (-1001))) -((((-1136 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-750)) -(|has| |#2| (-750)) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -(|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) -(|has| |#1| (-331)) -(((|#1|) |has| |#2| (-386 |#1|))) -(((|#1|) |has| |#2| (-386 |#1|))) -((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T)) -((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))) -((((-490)) |has| |#1| (-556 (-490)))) -((((-786)) . T)) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))))) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -((((-501) |#1|) . T)) -((((-501) |#1|) . T)) -((((-501) |#1|) . T)) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -((((-501) |#1|) . T)) -(((|#1|) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -((((-1070)) |has| |#1| (-820 (-1070))) (((-748 (-1070))) . T)) -(-1405 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959))) -((((-749 |#1|)) . T)) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) +(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) +(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) +(((|#2|) . T)) +((($) . T)) +((((-787)) |has| |#1| (-1003))) +((((-1140 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-752)) +(|has| |#2| (-752)) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) +(|has| |#1| (-333)) +(((|#1|) |has| |#2| (-387 |#1|))) +(((|#1|) |has| |#2| (-387 |#1|))) +((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003)))) +((((-493)) |has| |#1| (-558 (-493)))) +((((-787)) . T)) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))))) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +((((-517) |#1|) . T)) +((((-517) |#1|) . T)) +((((-517) |#1|) . T)) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +((((-517) |#1|) . T)) +(((|#1|) . T)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +((((-1073)) |has| |#1| (-822 (-1073))) (((-750 (-1073))) . T)) +(-3807 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961))) +((((-751 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-786)) . T)) -(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) +((((-787)) . T)) +(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) (((|#1| |#2|) . T)) -(|has| |#1| (-37 (-375 (-501)))) -((((-786)) . T)) -((((-1136 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-375 (-501))) . T)) -(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508)) (((-375 (-501))) |has| |#1| (-508))) -(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501)))) -(|has| |#1| (-331)) -(-1405 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (-12 (|has| |#1| (-331)) (|has| |#2| (-206)))) -(|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) -(|has| |#1| (-331)) -(((|#1|) . T)) -((((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#1| |#1|) . T)) -((((-501) |#1|) . T)) -((((-282 |#1|)) . T)) -((((-630) (-1064 (-630))) . T)) -((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#1|) . T)) +(|has| |#1| (-37 (-377 (-517)))) +((((-787)) . T)) +((((-1140 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T)) +(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509))) +(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) +(|has| |#1| (-333)) +(-3807 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (-12 (|has| |#1| (-333)) (|has| |#2| (-207)))) +(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) +(|has| |#1| (-333)) +(((|#1|) . T)) +((((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T)) +((((-517) |#1|) . T)) +((((-286 |#1|)) . T)) +((((-632) (-1069 (-632))) . T)) +((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-775)) -((($ $) . T) (((-787 |#1|) $) . T) (((-787 |#1|) |#2|) . T)) -((((-1023 |#1| (-1070))) . T) (((-748 (-1070))) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-1070)) . T)) +(|has| |#1| (-777)) +((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T)) +((((-1026 |#1| (-1073))) . T) (((-750 (-1073))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-1073)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -((((-986) |#1|) . T) (((-986) $) . T) (($ $) . T)) -((($ $) . T) (((-1070) $) |has| |#1| (-206)) (((-1070) |#1|) |has| |#1| (-206)) (((-990 (-1070)) |#1|) . T) (((-990 (-1070)) $) . T)) +((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T)) +((($ $) . T) (((-1073) $) |has| |#1| (-207)) (((-1073) |#1|) |has| |#1| (-207)) (((-993 (-1073)) |#1|) . T) (((-993 (-1073)) $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501))))) -(|has| |#2| (-830)) -((($) . T) (((-1130 |#2| |#3| |#4|)) |has| (-1130 |#2| |#3| |#4|) (-156)) (((-375 (-501))) |has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501))))) -((((-501) |#1|) . T)) -((((-1136 |#1| |#2| |#3| |#4|)) |has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|)))) +((($) . T) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517))))) +(|has| |#2| (-831)) +((($) . T) (((-1139 |#2| |#3| |#4|)) |has| (-1139 |#2| |#3| |#4|) (-156)) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517))))) +((((-517) |#1|) . T)) +((((-1140 |#1| |#2| |#3| |#4|)) |has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) ((($) . T)) (((|#1|) . T)) -((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#2| |#2|) |has| |#1| (-331)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331)))) -(|has| |#2| (-206)) +((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2| |#2|) |has| |#1| (-333)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) +(|has| |#2| (-207)) (|has| $ (-134)) -((((-786)) . T)) -((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T)) -((((-786)) . T)) -(|has| |#1| (-775)) -((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) -((((-375 |#2|) |#3|) . T)) -(((|#1|) . T)) -((((-786)) . T)) -(((|#2| (-606 |#1|)) . T)) -(-12 (|has| |#1| (-276)) (|has| |#1| (-830))) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +((((-787)) . T)) +((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) +((((-787)) . T)) +(|has| |#1| (-777)) +((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) +((((-377 |#2|) |#3|) . T)) +(((|#1|) . T)) +((((-787)) . T)) +(((|#2| (-608 |#1|)) . T)) +(-12 (|has| |#1| (-278)) (|has| |#1| (-831))) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (((|#4|) . T)) -(|has| |#1| (-508)) -((((-1070)) -1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) -((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#2|) |has| |#1| (-331)) ((|#1|) . T)) -((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) -(((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331)))) -((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) -(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) -((((-501) |#1|) . T)) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -(((|#1|) . T)) -(((|#1| (-487 (-748 (-1070)))) . T)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(((|#1|) . T)) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -(((|#1|) . T)) -(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) -((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331))) -((($) . T) (((-791 |#1|)) . T) (((-375 (-501))) . T)) -((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331))) -(|has| |#1| (-508)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-375 |#2|)) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-318))) -((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))) -((((-490)) |has| |#1| (-556 (-490)))) -((((-786)) |has| |#1| (-1001))) -((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))) -((((-490)) |has| |#1| (-556 (-490)))) -((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))) -((((-490)) |has| |#1| (-556 (-490)))) -((((-786)) |has| |#1| (-1001))) -(((|#1|) . T)) -(((|#2| |#2|) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T)) -((((-501)) . T)) -((((-786)) . T)) -(((|#2|) . T) (((-375 (-501))) . T) (($) . T)) -((((-528 |#1|)) . T) (((-375 (-501))) . T) (($) . T)) -((((-786)) . T)) -((((-375 (-501))) . T) (($) . T)) -((((-501) |#1|) . T)) -((((-786)) . T)) -((($ $) . T) (((-1070) $) . T)) -((((-1139 |#1| |#2| |#3|)) . T)) -((((-1139 |#1| |#2| |#3|)) . T) (((-1109 |#1| |#2| |#3|)) . T)) -(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|))) . T)) -((((-490)) |has| |#2| (-556 (-490))) (((-810 (-346))) |has| |#2| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#2| (-556 (-810 (-501))))) -((((-786)) . T)) -((((-786)) . T)) -((((-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#3| (-556 (-810 (-501))))) (((-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#3| (-556 (-810 (-346))))) (((-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#3| (-556 (-490))))) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -(((|#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) . T)) -((((-786)) . T)) -((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331))) -((((-1070)) . T) (((-786)) . T)) -(|has| |#1| (-331)) -((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))) +(|has| |#1| (-509)) +((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) ((|#1|) . T)) +((((-1073)) -3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) +(((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) +((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) +((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) +(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) +((((-517) |#1|) . T)) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +(((|#1|) . T)) +(((|#1| (-489 (-750 (-1073)))) . T)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(((|#1|) . T)) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +(((|#1|) . T)) +(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) +((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333))) +((($) . T) (((-794 |#1|)) . T) (((-377 (-517))) . T)) +((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333))) +(|has| |#1| (-509)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-377 |#2|)) . T)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-319))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003)))) +((((-493)) |has| |#1| (-558 (-493)))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003)))) +((((-493)) |has| |#1| (-558 (-493)))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003)))) +((((-493)) |has| |#1| (-558 (-493)))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T)) +((((-517)) . T)) +((((-787)) . T)) +(((|#2|) . T) (((-377 (-517))) . T) (($) . T)) +((((-530 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) +((((-787)) . T)) +((((-377 (-517))) . T) (($) . T)) +((((-517) |#1|) . T)) +((((-787)) . T)) +((($ $) . T) (((-1073) $) . T)) +((((-1146 |#1| |#2| |#3|)) . T)) +((((-1146 |#1| |#2| |#3|)) . T) (((-1118 |#1| |#2| |#3|)) . T)) +(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T)) +((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517))))) +((((-787)) . T)) +((((-787)) . T)) +((((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493))))) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +(((|#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T)) +((((-787)) . T)) +((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333))) +((((-1073)) . T) (((-787)) . T)) +(|has| |#1| (-333)) +((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T)) -((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -((((-1003)) . T)) -((((-786)) . T)) -((($) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T)) +((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T)) +((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-1007)) . T)) +((((-787)) . T)) +((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T)) ((($) . T)) -((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(|has| |#2| (-830)) -(|has| |#1| (-830)) +((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(|has| |#2| (-831)) +(|has| |#1| (-831)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-156))) -((((-630)) . T)) -((((-786)) |has| |#1| (-1001))) +((((-632)) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) (((|#1|) |has| |#1| (-156))) (((|#1|) |has| |#1| (-156))) -((((-375 (-501))) . T) (($) . T)) -(((|#1| (-501)) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-318))) -(|has| |#1| (-331)) -(|has| |#1| (-331)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-318))) -(-1405 (|has| |#1| (-156)) (|has| |#1| (-508))) -(((|#1| (-501)) . T)) -(((|#1| (-375 (-501))) . T)) -(((|#1| (-701)) . T)) -((((-375 (-501))) . T)) -(((|#1| (-487 |#2|) |#2|) . T)) -((((-501) |#1|) . T)) -((((-501) |#1|) . T)) -(|has| |#1| (-1001)) -((((-501) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-810 (-346))) . T) (((-810 (-501))) . T) (((-1070)) . T) (((-490)) . T)) -(((|#1|) . T)) -((((-786)) . T)) -(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959))) -(-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) -((((-501)) . T)) -((((-501)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) +((((-377 (-517))) . T) (($) . T)) +(((|#1| (-517)) . T)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-319))) +(|has| |#1| (-333)) +(|has| |#1| (-333)) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-319))) +(-3807 (|has| |#1| (-156)) (|has| |#1| (-509))) +(((|#1| (-517)) . T)) +(((|#1| (-377 (-517))) . T)) +(((|#1| (-703)) . T)) +((((-377 (-517))) . T)) +(((|#1| (-489 |#2|) |#2|) . T)) +((((-517) |#1|) . T)) +((((-517) |#1|) . T)) +(|has| |#1| (-1003)) +((((-517) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-814 (-349))) . T) (((-814 (-517))) . T) (((-1073)) . T) (((-493)) . T)) +(((|#1|) . T)) +((((-787)) . T)) +(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961))) +(-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) +((((-517)) . T)) +((((-517)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) -((((-1070)) -12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) -(-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))) +(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) +((((-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) +(-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) (|has| |#1| (-132)) (|has| |#1| (-134)) -(|has| |#1| (-331)) +(|has| |#1| (-333)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-206)) -((((-786)) . T)) -(((|#1| (-701) (-986)) . T)) -((((-501) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-501) |#1|) . T)) -((((-501) |#1|) . T)) +(|has| |#1| (-207)) +((((-787)) . T)) +(((|#1| (-703) (-989)) . T)) +((((-517) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-517) |#1|) . T)) +((((-517) |#1|) . T)) ((((-111 |#1|)) . T)) -((((-375 (-501))) . T) (((-501)) . T)) -(((|#2|) |has| |#2| (-959))) -((((-375 (-501))) . T) (($) . T)) -(((|#2|) . T)) -((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508))) -((((-501)) . T)) -((((-501)) . T)) -((((-1053) (-1070) (-501) (-199) (-786)) . T)) +((((-377 (-517))) . T) (((-517)) . T)) +(((|#2|) |has| |#2| (-961))) +((((-377 (-517))) . T) (($) . T)) +(((|#2|) . T)) +((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) +((((-517)) . T)) +((((-517)) . T)) +((((-1056) (-1073) (-517) (-199) (-787)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-1405 (|has| |#1| (-318)) (|has| |#1| (-336))) +(-3807 (|has| |#1| (-319)) (|has| |#1| (-338))) (((|#1| |#2|) . T)) ((($) . T) ((|#1|) . T)) -((((-786)) . T)) -((($) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501))))) -(((|#2|) |has| |#2| (-1001)) (((-501)) -12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (((-375 (-501))) -12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) -((((-490)) |has| |#1| (-556 (-490)))) -((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))) -((($) . T) (((-375 (-501))) . T)) -(|has| |#1| (-830)) -(|has| |#1| (-830)) -((((-199)) -12 (|has| |#1| (-331)) (|has| |#2| (-933))) (((-346)) -12 (|has| |#1| (-331)) (|has| |#2| (-933))) (((-810 (-346))) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-810 (-346))))) (((-810 (-501))) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-810 (-501))))) (((-490)) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-490))))) -((((-786)) . T)) -((((-786)) . T)) +((((-787)) . T)) +((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) +((((-493)) |has| |#1| (-558 (-493)))) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003)))) +((($) . T) (((-377 (-517))) . T)) +(|has| |#1| (-831)) +(|has| |#1| (-831)) +((((-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) (((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) (((-814 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-349))))) (((-814 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-517))))) (((-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493))))) +((((-787)) . T)) +((((-787)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-156))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-508))) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-775))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-509))) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-777))) (((|#2|) . T)) -(-1405 (|has| |#1| (-21)) (|has| |#1| (-775))) +(-3807 (|has| |#1| (-21)) (|has| |#1| (-777))) (((|#1|) |has| |#1| (-156))) (((|#1|) . T)) (((|#1|) . T)) -(|has| (-375 |#2|) (-134)) -((((-375 |#2|) |#3|) . T)) -((((-375 (-501))) . T) (($) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-331)) -((($ $) . T) (((-375 (-501)) (-375 (-501))) . T)) -(|has| (-375 |#2|) (-132)) -((((-630)) . T)) -(((|#1|) . T) (((-375 (-501))) . T) (((-501)) . T) (($) . T)) -((((-501) (-501)) . T)) -((($) . T) (((-375 (-501))) . T)) -(-1405 (|has| |#4| (-156)) (|has| |#4| (-775)) (|has| |#4| (-959))) -(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) -(|has| |#4| (-723)) -(-1405 (|has| |#4| (-723)) (|has| |#4| (-775))) -(|has| |#4| (-775)) -(|has| |#3| (-723)) -(-1405 (|has| |#3| (-723)) (|has| |#3| (-775))) -(|has| |#3| (-775)) -((((-501)) . T)) -(((|#2|) . T)) -((((-1070)) -1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) -((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) -((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) +(|has| (-377 |#2|) (-134)) +((((-377 |#2|) |#3|) . T)) +((((-377 (-517))) . T) (($) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-333)) +((($ $) . T) (((-377 (-517)) (-377 (-517))) . T)) +(|has| (-377 |#2|) (-132)) +((((-632)) . T)) +(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T)) +((((-517) (-517)) . T)) +((($) . T) (((-377 (-517))) . T)) +(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961))) +(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) +(|has| |#4| (-725)) +(-3807 (|has| |#4| (-725)) (|has| |#4| (-777))) +(|has| |#4| (-777)) +(|has| |#3| (-725)) +(-3807 (|has| |#3| (-725)) (|has| |#3| (-777))) +(|has| |#3| (-777)) +((((-517)) . T)) +(((|#2|) . T)) +((((-1073)) -3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) +((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) +((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-787 |#1|)) . T)) -((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331))) -((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331))) -((((-1035 |#1| |#2|)) . T)) -(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T)) -((($) . T)) -(|has| |#1| (-933)) -(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((((-786)) . T)) -((((-490)) |has| |#2| (-556 (-490))) (((-810 (-501))) |has| |#2| (-556 (-810 (-501)))) (((-810 (-346))) |has| |#2| (-556 (-810 (-346)))) (((-346)) |has| |#2| (-933)) (((-199)) |has| |#2| (-933))) -((((-1070) (-50)) . T)) -(|has| |#1| (-37 (-375 (-501)))) -(|has| |#1| (-37 (-375 (-501)))) +((((-789 |#1|)) . T)) +((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333))) +((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333))) +((((-1038 |#1| |#2|)) . T)) +(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T)) +((($) . T)) +(|has| |#1| (-937)) +(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((((-787)) . T)) +((((-493)) |has| |#2| (-558 (-493))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-349)) |has| |#2| (-937)) (((-199)) |has| |#2| (-937))) +((((-1073) (-51)) . T)) +(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-377 (-517)))) (((|#2|) . T)) ((($ $) . T)) -((((-375 (-501))) . T) (((-630)) . T) (($) . T)) -((((-1068 |#1| |#2| |#3|)) . T)) -((((-1068 |#1| |#2| |#3|)) . T) (((-1061 |#1| |#2| |#3|)) . T)) -((((-786)) . T)) -((((-786)) |has| |#1| (-1001))) -((((-501) |#1|) . T)) -((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331))) +((((-377 (-517))) . T) (((-632)) . T) (($) . T)) +((((-1071 |#1| |#2| |#3|)) . T)) +((((-1071 |#1| |#2| |#3|)) . T) (((-1064 |#1| |#2| |#3|)) . T)) +((((-787)) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +((((-517) |#1|) . T)) +((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-331)) -(((|#3|) . T) ((|#2|) . T) (($) -1405 (|has| |#4| (-156)) (|has| |#4| (-775)) (|has| |#4| (-959))) ((|#4|) -1405 (|has| |#4| (-156)) (|has| |#4| (-331)) (|has| |#4| (-959)))) -(((|#2|) . T) (($) -1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) ((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959)))) +(|has| |#2| (-333)) +(((|#3|) . T) ((|#2|) . T) (($) -3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961))) ((|#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961)))) +(((|#2|) . T) (($) -3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) ((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-331)) +(|has| |#1| (-333)) ((((-111 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-375 (-501))) |has| |#2| (-950 (-375 (-501)))) (((-501)) |has| |#2| (-950 (-501))) ((|#2|) . T) (((-787 |#1|)) . T)) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) +((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T)) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) (((|#1|) . T)) -((((-786)) |has| |#1| (-1001))) -((((-501) |#1|) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) +((((-517) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-331)) (|has| |#2| (-256 |#2| |#2|))) (($ $) . T)) +(((|#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-830))) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) -((((-786)) . T)) -((((-786)) . T)) -((((-786)) . T)) -(((|#1| (-487 |#2|)) . T)) -((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T)) -(((|#1| (-501)) . T)) -(((|#1| (-375 (-501))) . T)) -(((|#1| (-701)) . T)) -((((-111 |#1|)) . T) (($) . T) (((-375 (-501))) . T)) -(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) -(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) -((($) . T)) -(((|#2| (-487 (-787 |#1|))) . T)) -((((-501) |#1|) . T)) -(((|#2|) . T)) -(((|#2| (-701)) . T)) -((((-786)) |has| |#1| (-1001))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831))) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) +((((-787)) . T)) +((((-787)) . T)) +((((-787)) . T)) +(((|#1| (-489 |#2|)) . T)) +((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T)) +(((|#1| (-517)) . T)) +(((|#1| (-377 (-517))) . T)) +(((|#1| (-703)) . T)) +((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) +(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) +(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) +((($) . T)) +(((|#2| (-489 (-789 |#1|))) . T)) +((((-517) |#1|) . T)) +(((|#2|) . T)) +(((|#2| (-703)) . T)) +((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1053) |#1|) . T)) -((((-375 |#2|)) . T)) -((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -(|has| |#1| (-508)) -(|has| |#1| (-508)) +((((-1056) |#1|) . T)) +((((-377 |#2|)) . T)) +((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +(|has| |#1| (-509)) +(|has| |#1| (-509)) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#2| $) |has| |#2| (-256 |#2| |#2|))) -(((|#1| (-578 |#1|)) |has| |#1| (-775))) -(-1405 (|has| |#1| (-206)) (|has| |#1| (-318))) -(-1405 (|has| |#1| (-331)) (|has| |#1| (-318))) -(|has| |#1| (-1001)) -(((|#1|) . T)) -((((-375 (-501))) . T) (($) . T)) -((((-910 |#1|)) . T) ((|#1|) . T) (((-501)) -1405 (|has| (-910 |#1|) (-950 (-501))) (|has| |#1| (-950 (-501)))) (((-375 (-501))) -1405 (|has| (-910 |#1|) (-950 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -((((-1070)) |has| |#1| (-820 (-1070)))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) -(((|#1| (-546 |#1| |#3|) (-546 |#1| |#2|)) . T)) +(((|#2| $) |has| |#2| (-258 |#2| |#2|))) +(((|#1| (-583 |#1|)) |has| |#1| (-777))) +(-3807 (|has| |#1| (-207)) (|has| |#1| (-319))) +(-3807 (|has| |#1| (-333)) (|has| |#1| (-319))) +(|has| |#1| (-1003)) +(((|#1|) . T)) +((((-377 (-517))) . T) (($) . T)) +((((-915 |#1|)) . T) ((|#1|) . T) (((-517)) -3807 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517)))) (((-377 (-517))) -3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +((((-1073)) |has| |#1| (-822 (-1073)))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) +(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1035 |#1| |#2|) (-1035 |#1| |#2|)) |has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) -((((-111 |#1|)) |has| (-111 |#1|) (-278 (-111 |#1|)))) -(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001))) +((((-1038 |#1| |#2|) (-1038 |#1| |#2|)) |has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|)))) +(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) +((((-111 |#1|)) |has| (-111 |#1|) (-280 (-111 |#1|)))) +(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003))) ((($ $) . T)) -((($ $) . T) (((-787 |#1|) $) . T) (((-787 |#1|) |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-206)) ((|#2| |#1|) |has| |#1| (-206)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-587 . -1001) T) ((-235 . -476) 142242) ((-220 . -476) 142180) ((-522 . -106) 142165) ((-487 . -23) T) ((-218 . -1001) 142115) ((-112 . -278) 142059) ((-445 . -476) 141819) ((-625 . -97) T) ((-1036 . -476) 141727) ((-358 . -123) T) ((-1160 . -891) 141696) ((-546 . -454) 141680) ((-558 . -123) T) ((-749 . -773) T) ((-484 . -55) 141630) ((-56 . -476) 141563) ((-480 . -476) 141496) ((-373 . -820) 141455) ((-152 . -959) T) ((-478 . -476) 141388) ((-460 . -476) 141321) ((-459 . -476) 141254) ((-728 . -950) 141041) ((-630 . -37) 141006) ((-312 . -318) T) ((-991 . -995) 140990) ((-991 . -1001) 140968) ((-152 . -216) 140919) ((-152 . -206) 140870) ((-991 . -996) 140828) ((-794 . -256) 140786) ((-199 . -727) T) ((-199 . -722) T) ((-625 . -254) NIL) ((-1045 . -1081) 140765) ((-375 . -906) 140749) ((-632 . -21) T) ((-632 . -25) T) ((-1162 . -583) 140723) ((-282 . -145) 140702) ((-282 . -130) 140681) ((-1045 . -102) 140631) ((-125 . -25) T) ((-39 . -204) 140608) ((-111 . -21) T) ((-111 . -25) T) ((-550 . -258) 140584) ((-442 . -258) 140563) ((-1118 . -959) T) ((-782 . -959) T) ((-728 . -306) 140547) ((-112 . -1046) NIL) ((-89 . -555) 140514) ((-444 . -123) T) ((-538 . -1104) T) ((-1118 . -294) 140491) ((-522 . -959) T) ((-1118 . -206) T) ((-587 . -648) 140475) ((-877 . -258) 140452) ((-58 . -33) T) ((-969 . -727) T) ((-969 . -722) T) ((-746 . -657) T) ((-662 . -46) 140417) ((-562 . -37) 140404) ((-323 . -260) T) ((-321 . -260) T) ((-313 . -260) T) ((-235 . -260) 140335) ((-220 . -260) 140266) ((-937 . -97) T) ((-381 . -657) T) ((-112 . -37) 140211) ((-381 . -440) T) ((-308 . -97) T) ((-1097 . -965) T) ((-642 . -965) T) ((-1068 . -46) 140188) ((-1067 . -46) 140158) ((-1061 . -46) 140135) ((-948 . -138) 140081) ((-826 . -260) T) ((-1024 . -46) 140053) ((-625 . -278) NIL) ((-477 . -555) 140035) ((-473 . -555) 140017) ((-470 . -555) 139999) ((-295 . -1001) 139949) ((-643 . -419) 139880) ((-47 . -97) T) ((-1135 . -256) 139865) ((-1114 . -256) 139785) ((-578 . -601) 139769) ((-578 . -586) 139753) ((-307 . -21) T) ((-307 . -25) T) ((-39 . -318) NIL) ((-157 . -21) T) ((-157 . -25) T) ((-578 . -340) 139737) ((-546 . -256) 139714) ((-356 . -97) T) ((-1018 . -130) T) ((-121 . -555) 139681) ((-795 . -1001) T) ((-589 . -380) 139665) ((-645 . -555) 139647) ((-146 . -555) 139629) ((-142 . -555) 139611) ((-1162 . -657) T) ((-997 . -33) T) ((-793 . -727) NIL) ((-793 . -722) NIL) ((-784 . -777) T) ((-662 . -806) NIL) ((-1171 . -123) T) ((-350 . -123) T) ((-825 . -97) T) ((-662 . -950) 139489) ((-487 . -123) T) ((-989 . -380) 139473) ((-914 . -454) 139457) ((-112 . -368) 139434) ((-1061 . -1104) 139413) ((-711 . -380) 139397) ((-710 . -380) 139381) ((-863 . -33) T) ((-625 . -1046) NIL) ((-222 . -583) 139218) ((-221 . -583) 139042) ((-747 . -841) 139021) ((-421 . -380) 139005) ((-546 . -19) 138989) ((-1041 . -1099) 138958) ((-1061 . -806) NIL) ((-1061 . -804) 138910) ((-546 . -548) 138887) ((-1091 . -555) 138854) ((-1069 . -555) 138836) ((-61 . -364) T) ((-1067 . -950) 138771) ((-1061 . -950) 138737) ((-625 . -37) 138687) ((-441 . -256) 138672) ((-662 . -345) 138656) ((-589 . -965) T) ((-1135 . -916) 138622) ((-1114 . -916) 138588) ((-970 . -1081) 138563) ((-794 . -556) 138366) ((-794 . -555) 138348) ((-1077 . -454) 138285) ((-373 . -933) 138264) ((-47 . -278) 138251) ((-970 . -102) 138197) ((-445 . -454) 138134) ((-481 . -1104) T) ((-1036 . -454) 138105) ((-1061 . -306) 138057) ((-1061 . -345) 138009) ((-404 . -97) T) ((-989 . -965) T) ((-222 . -33) T) ((-221 . -33) T) ((-711 . -965) T) ((-710 . -965) T) ((-662 . -820) 137986) ((-421 . -965) T) ((-56 . -454) 137970) ((-947 . -964) 137944) ((-480 . -454) 137928) ((-478 . -454) 137912) ((-460 . -454) 137896) ((-459 . -454) 137880) ((-218 . -476) 137813) ((-947 . -106) 137780) ((-1068 . -820) 137693) ((-605 . -1012) T) ((-1067 . -820) 137599) ((-1061 . -820) 137432) ((-1024 . -820) 137416) ((-308 . -1046) T) ((-290 . -964) 137398) ((-222 . -721) 137377) ((-222 . -724) 137328) ((-222 . -723) 137307) ((-221 . -721) 137286) ((-221 . -724) 137237) ((-221 . -723) 137216) ((-49 . -965) T) ((-222 . -657) 137147) ((-221 . -657) 137078) ((-1097 . -1001) T) ((-605 . -23) T) ((-528 . -965) T) ((-479 . -965) T) ((-346 . -964) 137043) ((-290 . -106) 137018) ((-71 . -351) T) ((-71 . -364) T) ((-937 . -37) 136955) ((-625 . -368) 136937) ((-94 . -97) T) ((-642 . -1001) T) ((-917 . -132) 136909) ((-346 . -106) 136858) ((-287 . -1108) 136837) ((-441 . -916) 136803) ((-308 . -37) 136768) ((-39 . -338) 136740) ((-917 . -134) 136712) ((-122 . -120) 136696) ((-116 . -120) 136680) ((-764 . -964) 136650) ((-762 . -21) 136602) ((-758 . -964) 136586) ((-762 . -25) 136538) ((-287 . -508) 136489) ((-501 . -751) T) ((-212 . -1104) T) ((-764 . -106) 136454) ((-758 . -106) 136433) ((-1135 . -555) 136415) ((-1114 . -555) 136397) ((-1114 . -556) 136070) ((-1064 . -830) 136049) ((-1023 . -830) 136028) ((-47 . -37) 135993) ((-1168 . -1012) T) ((-546 . -555) 135932) ((-546 . -556) 135893) ((-1167 . -1012) T) ((-212 . -950) 135722) ((-1064 . -583) 135647) ((-1023 . -583) 135572) ((-649 . -555) 135554) ((-781 . -583) 135528) ((-1168 . -23) T) ((-1167 . -23) T) ((-947 . -959) T) ((-1077 . -256) 135507) ((-152 . -336) 135458) ((-918 . -1104) T) ((-43 . -23) T) ((-445 . -256) 135437) ((-530 . -1001) T) ((-1041 . -1009) 135406) ((-1003 . -1004) 135358) ((-358 . -21) T) ((-358 . -25) T) ((-139 . -1012) T) ((-1175 . -97) T) ((-918 . -804) 135340) ((-918 . -806) 135322) ((-1097 . -648) 135219) ((-562 . -204) 135203) ((-558 . -21) T) ((-259 . -508) T) ((-558 . -25) T) ((-1084 . -1001) T) ((-642 . -648) 135168) ((-212 . -345) 135138) ((-918 . -950) 135098) ((-346 . -959) T) ((-197 . -965) T) ((-112 . -204) 135075) ((-56 . -256) 135052) ((-139 . -23) T) ((-478 . -256) 135029) ((-295 . -476) 134962) ((-459 . -256) 134939) ((-346 . -216) T) ((-346 . -206) T) ((-764 . -959) T) ((-758 . -959) T) ((-643 . -870) 134909) ((-632 . -777) T) ((-441 . -555) 134891) ((-758 . -206) 134870) ((-125 . -777) T) ((-589 . -1001) T) ((-1077 . -548) 134849) ((-502 . -1081) 134828) ((-301 . -1001) T) ((-287 . -331) 134807) ((-375 . -134) 134786) ((-375 . -132) 134765) ((-883 . -1012) 134664) ((-212 . -820) 134597) ((-745 . -1012) 134528) ((-591 . -779) 134512) ((-445 . -548) 134491) ((-502 . -102) 134441) ((-918 . -345) 134423) ((-918 . -306) 134405) ((-92 . -1001) T) ((-883 . -23) 134216) ((-444 . -21) T) ((-444 . -25) T) ((-745 . -23) 134087) ((-1070 . -555) 134069) ((-56 . -19) 134053) ((-1070 . -556) 133975) ((-1064 . -657) T) ((-1023 . -657) T) ((-478 . -19) 133959) ((-459 . -19) 133943) ((-56 . -548) 133920) ((-989 . -1001) T) ((-821 . -97) 133898) ((-781 . -657) T) ((-711 . -1001) T) ((-478 . -548) 133875) ((-459 . -548) 133852) ((-710 . -1001) T) ((-710 . -972) 133819) ((-428 . -1001) T) ((-421 . -1001) T) ((-530 . -648) 133794) ((-584 . -1001) T) ((-918 . -820) NIL) ((-1139 . -46) 133771) ((-565 . -1012) T) ((-605 . -123) T) ((-1136 . -97) T) ((-1130 . -46) 133741) ((-1109 . -46) 133718) ((-1097 . -156) 133669) ((-983 . -1108) 133620) ((-246 . -1001) T) ((-84 . -408) T) ((-84 . -364) T) ((-1067 . -276) 133599) ((-1061 . -276) 133578) ((-49 . -1001) T) ((-983 . -508) 133529) ((-642 . -156) T) ((-540 . -46) 133506) ((-199 . -583) 133471) ((-528 . -1001) T) ((-479 . -1001) T) ((-327 . -1108) T) ((-322 . -1108) T) ((-314 . -1108) T) ((-452 . -750) T) ((-452 . -841) T) ((-287 . -1012) T) ((-103 . -1108) T) ((-307 . -777) T) ((-192 . -841) T) ((-192 . -750) T) ((-645 . -964) 133441) ((-327 . -508) T) ((-322 . -508) T) ((-314 . -508) T) ((-103 . -508) T) ((-589 . -648) 133411) ((-1061 . -933) NIL) ((-287 . -23) T) ((-65 . -1104) T) ((-914 . -555) 133378) ((-625 . -204) 133360) ((-645 . -106) 133325) ((-578 . -33) T) ((-218 . -454) 133309) ((-997 . -999) 133293) ((-155 . -1001) T) ((-866 . -830) 133272) ((-447 . -830) 133251) ((-1171 . -21) T) ((-1171 . -25) T) ((-1168 . -123) T) ((-1167 . -123) T) ((-989 . -648) 133100) ((-969 . -583) 133087) ((-866 . -583) 133012) ((-490 . -555) 132994) ((-490 . -556) 132975) ((-711 . -648) 132804) ((-710 . -648) 132653) ((-1160 . -97) T) ((-981 . -97) T) ((-350 . -25) T) ((-350 . -21) T) ((-447 . -583) 132578) ((-428 . -648) 132549) ((-421 . -648) 132398) ((-901 . -97) T) ((-667 . -97) T) ((-487 . -25) T) ((-1109 . -1104) 132377) ((-1145 . -555) 132343) ((-1109 . -806) NIL) ((-1109 . -804) 132295) ((-128 . -97) T) ((-43 . -123) T) ((-1077 . -556) NIL) ((-1077 . -555) 132277) ((-1037 . -1021) 132222) ((-312 . -965) T) ((-599 . -555) 132204) ((-259 . -1012) T) ((-323 . -555) 132186) ((-321 . -555) 132168) ((-313 . -555) 132150) ((-235 . -556) 131898) ((-235 . -555) 131880) ((-220 . -555) 131862) ((-220 . -556) 131723) ((-956 . -1099) 131652) ((-821 . -278) 131590) ((-1175 . -1046) T) ((-1130 . -950) 131525) ((-1109 . -950) 131491) ((-1097 . -476) 131458) ((-1036 . -555) 131440) ((-749 . -657) T) ((-546 . -258) 131417) ((-528 . -648) 131382) ((-445 . -556) NIL) ((-445 . -555) 131364) ((-479 . -648) 131309) ((-282 . -97) T) ((-281 . -97) T) ((-259 . -23) T) ((-139 . -123) T) ((-354 . -657) T) ((-794 . -964) 131261) ((-826 . -555) 131243) ((-826 . -556) 131225) ((-794 . -106) 131156) ((-126 . -97) T) ((-108 . -97) T) ((-643 . -1125) 131140) ((-645 . -959) T) ((-625 . -318) NIL) ((-480 . -555) 131107) ((-346 . -727) T) ((-197 . -1001) T) ((-346 . -722) T) ((-199 . -724) T) ((-199 . -721) T) ((-56 . -556) 131068) ((-56 . -555) 131007) ((-199 . -657) T) ((-478 . -556) 130968) ((-478 . -555) 130907) ((-460 . -555) 130874) ((-459 . -556) 130835) ((-459 . -555) 130774) ((-983 . -331) 130725) ((-39 . -380) 130702) ((-76 . -1104) T) ((-793 . -830) NIL) ((-327 . -297) 130686) ((-327 . -331) T) ((-322 . -297) 130670) ((-322 . -331) T) ((-314 . -297) 130654) ((-314 . -331) T) ((-282 . -254) 130633) ((-103 . -331) T) ((-68 . -1104) T) ((-1109 . -306) 130585) ((-793 . -583) 130530) ((-1109 . -345) 130482) ((-883 . -123) 130337) ((-745 . -123) 130208) ((-877 . -586) 130192) ((-989 . -156) 130103) ((-877 . -340) 130087) ((-969 . -724) T) ((-969 . -721) T) ((-711 . -156) 129978) ((-710 . -156) 129889) ((-746 . -46) 129851) ((-969 . -657) T) ((-295 . -454) 129835) ((-866 . -657) T) ((-421 . -156) 129746) ((-218 . -256) 129723) ((-447 . -657) T) ((-1160 . -278) 129661) ((-1139 . -820) 129574) ((-1135 . -964) 129409) ((-1130 . -820) 129315) ((-1114 . -964) 129123) ((-1109 . -820) 128956) ((-1097 . -260) 128935) ((-1041 . -138) 128919) ((-980 . -97) T) ((-845 . -874) T) ((-74 . -1104) T) ((-667 . -278) 128857) ((-152 . -830) 128810) ((-599 . -352) 128782) ((-30 . -874) T) ((-1 . -555) 128764) ((-1018 . -97) T) ((-983 . -23) T) ((-49 . -560) 128748) ((-983 . -1012) T) ((-917 . -378) 128720) ((-540 . -820) 128633) ((-406 . -97) T) ((-128 . -278) NIL) ((-794 . -959) T) ((-762 . -777) 128612) ((-79 . -1104) T) ((-642 . -260) T) ((-39 . -965) T) ((-528 . -156) T) ((-479 . -156) T) ((-474 . -555) 128594) ((-152 . -583) 128504) ((-469 . -555) 128486) ((-320 . -134) 128468) ((-320 . -132) T) ((-327 . -1012) T) ((-322 . -1012) T) ((-314 . -1012) T) ((-918 . -276) T) ((-834 . -276) T) ((-794 . -216) T) ((-103 . -1012) T) ((-794 . -206) 128447) ((-1135 . -106) 128261) ((-1114 . -106) 128043) ((-218 . -1138) 128027) ((-501 . -775) T) ((-327 . -23) T) ((-308 . -318) T) ((-282 . -278) 128014) ((-281 . -278) 127910) ((-322 . -23) T) ((-287 . -123) T) ((-314 . -23) T) ((-918 . -933) T) ((-103 . -23) T) ((-218 . -548) 127887) ((-1136 . -37) 127744) ((-1118 . -830) 127723) ((-107 . -1001) T) ((-948 . -97) T) ((-1118 . -583) 127648) ((-793 . -724) NIL) ((-782 . -583) 127622) ((-793 . -721) NIL) ((-746 . -806) NIL) ((-793 . -657) T) ((-989 . -476) 127487) ((-711 . -476) 127435) ((-710 . -476) 127387) ((-522 . -583) 127374) ((-746 . -950) 127204) ((-421 . -476) 127142) ((-356 . -357) T) ((-58 . -1104) T) ((-558 . -777) 127121) ((-463 . -597) T) ((-1041 . -891) 127090) ((-917 . -419) T) ((-630 . -775) T) ((-473 . -722) T) ((-441 . -964) 126925) ((-312 . -1001) T) ((-281 . -1046) NIL) ((-259 . -123) T) ((-361 . -1001) T) ((-625 . -338) 126892) ((-791 . -965) T) ((-197 . -560) 126869) ((-295 . -256) 126846) ((-441 . -106) 126660) ((-1135 . -959) T) ((-1114 . -959) T) ((-746 . -345) 126644) ((-152 . -657) T) ((-591 . -97) T) ((-1135 . -216) 126623) ((-1135 . -206) 126575) ((-1114 . -206) 126480) ((-1114 . -216) 126459) ((-917 . -370) NIL) ((-605 . -577) 126407) ((-282 . -37) 126317) ((-281 . -37) 126246) ((-67 . -555) 126228) ((-287 . -456) 126194) ((-1077 . -258) 126173) ((-1013 . -1012) 126104) ((-82 . -1104) T) ((-60 . -555) 126086) ((-445 . -258) 126065) ((-1162 . -950) 126042) ((-1059 . -1001) T) ((-1013 . -23) 125913) ((-746 . -820) 125849) ((-1118 . -657) T) ((-997 . -1104) T) ((-989 . -260) 125780) ((-813 . -97) T) ((-711 . -260) 125691) ((-295 . -19) 125675) ((-56 . -258) 125652) ((-710 . -260) 125583) ((-782 . -657) T) ((-112 . -775) NIL) ((-478 . -258) 125560) ((-295 . -548) 125537) ((-459 . -258) 125514) ((-421 . -260) 125445) ((-948 . -278) 125296) ((-522 . -657) T) ((-587 . -555) 125278) ((-218 . -556) 125239) ((-218 . -555) 125178) ((-1042 . -33) T) ((-863 . -1104) T) ((-312 . -648) 125123) ((-605 . -25) T) ((-605 . -21) T) ((-441 . -959) T) ((-571 . -386) 125088) ((-549 . -386) 125053) ((-1018 . -1046) T) ((-528 . -260) T) ((-479 . -260) T) ((-1130 . -276) 125032) ((-441 . -206) 124984) ((-441 . -216) 124963) ((-1109 . -276) 124942) ((-983 . -123) T) ((-794 . -727) 124921) ((-131 . -97) T) ((-39 . -1001) T) ((-794 . -722) 124900) ((-578 . -924) 124884) ((-527 . -965) T) ((-501 . -965) T) ((-458 . -965) T) ((-375 . -419) T) ((-327 . -123) T) ((-282 . -368) 124868) ((-281 . -368) 124829) ((-322 . -123) T) ((-314 . -123) T) ((-1109 . -933) NIL) ((-991 . -555) 124796) ((-103 . -123) T) ((-1018 . -37) 124783) ((-839 . -1001) T) ((-701 . -1001) T) ((-606 . -1001) T) ((-632 . -134) T) ((-111 . -134) T) ((-1168 . -21) T) ((-1168 . -25) T) ((-1167 . -21) T) ((-1167 . -25) T) ((-599 . -964) 124767) ((-487 . -777) T) ((-463 . -777) T) ((-323 . -964) 124719) ((-321 . -964) 124671) ((-313 . -964) 124623) ((-222 . -1104) T) ((-221 . -1104) T) ((-235 . -964) 124466) ((-220 . -964) 124309) ((-599 . -106) 124288) ((-323 . -106) 124219) ((-321 . -106) 124150) ((-313 . -106) 124081) ((-235 . -106) 123903) ((-220 . -106) 123725) ((-747 . -1108) 123704) ((-562 . -380) 123688) ((-43 . -21) T) ((-43 . -25) T) ((-745 . -577) 123596) ((-747 . -508) 123575) ((-222 . -950) 123404) ((-221 . -950) 123233) ((-121 . -114) 123217) ((-826 . -964) 123182) ((-630 . -965) T) ((-643 . -97) T) ((-312 . -156) T) ((-139 . -21) T) ((-139 . -25) T) ((-85 . -555) 123164) ((-826 . -106) 123113) ((-39 . -648) 123058) ((-791 . -1001) T) ((-295 . -556) 123019) ((-295 . -555) 122958) ((-1114 . -722) 122911) ((-1114 . -727) 122864) ((-222 . -345) 122834) ((-221 . -345) 122804) ((-591 . -37) 122774) ((-550 . -33) T) ((-448 . -1012) 122705) ((-442 . -33) T) ((-1013 . -123) 122576) ((-883 . -25) 122387) ((-795 . -555) 122369) ((-883 . -21) 122324) ((-745 . -21) 122235) ((-745 . -25) 122087) ((-562 . -965) T) ((-1072 . -508) 122066) ((-1064 . -46) 122043) ((-323 . -959) T) ((-321 . -959) T) ((-448 . -23) 121914) ((-313 . -959) T) ((-235 . -959) T) ((-220 . -959) T) ((-1023 . -46) 121886) ((-112 . -965) T) ((-947 . -583) 121860) ((-877 . -33) T) ((-323 . -206) 121839) ((-323 . -216) T) ((-321 . -206) 121818) ((-321 . -216) T) ((-220 . -294) 121775) ((-313 . -206) 121754) ((-313 . -216) T) ((-235 . -294) 121726) ((-235 . -206) 121705) ((-1048 . -138) 121689) ((-222 . -820) 121622) ((-221 . -820) 121555) ((-986 . -777) T) ((-1116 . -1104) T) ((-383 . -1012) T) ((-962 . -23) T) ((-826 . -959) T) ((-290 . -583) 121537) ((-937 . -775) T) ((-1097 . -916) 121503) ((-1067 . -841) 121482) ((-1061 . -841) 121461) ((-826 . -216) T) ((-747 . -331) 121440) ((-349 . -23) T) ((-122 . -1001) 121418) ((-116 . -1001) 121396) ((-826 . -206) T) ((-1061 . -750) NIL) ((-346 . -583) 121361) ((-791 . -648) 121348) ((-956 . -138) 121313) ((-39 . -156) T) ((-625 . -380) 121295) ((-643 . -278) 121282) ((-764 . -583) 121242) ((-758 . -583) 121216) ((-287 . -25) T) ((-287 . -21) T) ((-589 . -256) 121195) ((-527 . -1001) T) ((-501 . -1001) T) ((-458 . -1001) T) ((-218 . -258) 121172) ((-281 . -204) 121133) ((-1064 . -806) NIL) ((-1023 . -806) 120992) ((-1064 . -950) 120875) ((-1023 . -950) 120760) ((-781 . -950) 120658) ((-711 . -256) 120585) ((-747 . -1012) T) ((-947 . -657) T) ((-546 . -586) 120569) ((-956 . -891) 120498) ((-910 . -97) T) ((-747 . -23) T) ((-643 . -1046) 120476) ((-625 . -965) T) ((-546 . -340) 120460) ((-320 . -419) T) ((-312 . -260) T) ((-1151 . -1001) T) ((-367 . -97) T) ((-259 . -21) T) ((-259 . -25) T) ((-329 . -657) T) ((-630 . -1001) T) ((-329 . -440) T) ((-1097 . -555) 120442) ((-1064 . -345) 120426) ((-1023 . -345) 120410) ((-937 . -380) 120372) ((-128 . -202) 120354) ((-346 . -724) T) ((-346 . -721) T) ((-791 . -156) T) ((-346 . -657) T) ((-642 . -555) 120336) ((-643 . -37) 120165) ((-1148 . -1147) 120149) ((-320 . -370) T) ((-1148 . -1001) 120099) ((-527 . -648) 120086) ((-501 . -648) 120073) ((-458 . -648) 120038) ((-282 . -568) 120017) ((-764 . -657) T) ((-758 . -657) T) ((-578 . -1104) T) ((-983 . -577) 119965) ((-1064 . -820) 119909) ((-1023 . -820) 119893) ((-587 . -964) 119877) ((-103 . -577) 119859) ((-448 . -123) 119730) ((-1072 . -1012) T) ((-866 . -46) 119699) ((-562 . -1001) T) ((-587 . -106) 119678) ((-295 . -258) 119655) ((-447 . -46) 119612) ((-1072 . -23) T) ((-112 . -1001) T) ((-98 . -97) 119590) ((-1159 . -1012) T) ((-962 . -123) T) ((-937 . -965) T) ((-749 . -950) 119574) ((-917 . -655) 119546) ((-1159 . -23) T) ((-630 . -648) 119511) ((-530 . -555) 119493) ((-354 . -950) 119477) ((-308 . -965) T) ((-349 . -123) T) ((-292 . -950) 119461) ((-199 . -806) 119443) ((-918 . -841) T) ((-89 . -33) T) ((-918 . -750) T) ((-834 . -841) T) ((-452 . -1108) T) ((-1084 . -555) 119425) ((-1005 . -1001) T) ((-192 . -1108) T) ((-910 . -278) 119390) ((-199 . -950) 119350) ((-39 . -260) T) ((-983 . -21) T) ((-983 . -25) T) ((-1018 . -751) T) ((-452 . -508) T) ((-327 . -25) T) ((-192 . -508) T) ((-327 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-645 . -583) 119310) ((-314 . -25) T) ((-314 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -965) T) ((-527 . -156) T) ((-501 . -156) T) ((-458 . -156) T) ((-589 . -555) 119292) ((-667 . -668) 119276) ((-301 . -555) 119258) ((-66 . -351) T) ((-66 . -364) T) ((-997 . -102) 119242) ((-969 . -806) 119224) ((-866 . -806) 119149) ((-590 . -1012) T) ((-562 . -648) 119136) ((-447 . -806) NIL) ((-1041 . -97) T) ((-969 . -950) 119118) ((-92 . -555) 119100) ((-444 . -134) T) ((-866 . -950) 118982) ((-112 . -648) 118927) ((-590 . -23) T) ((-447 . -950) 118805) ((-989 . -556) NIL) ((-989 . -555) 118787) ((-711 . -556) NIL) ((-711 . -555) 118748) ((-710 . -556) 118383) ((-710 . -555) 118297) ((-1013 . -577) 118205) ((-428 . -555) 118187) ((-421 . -555) 118169) ((-421 . -556) 118030) ((-948 . -202) 117976) ((-121 . -33) T) ((-747 . -123) T) ((-794 . -830) 117955) ((-584 . -555) 117937) ((-323 . -1165) 117921) ((-321 . -1165) 117905) ((-313 . -1165) 117889) ((-122 . -476) 117822) ((-116 . -476) 117755) ((-474 . -722) T) ((-474 . -727) T) ((-473 . -724) T) ((-98 . -278) 117693) ((-196 . -97) 117671) ((-625 . -1001) T) ((-630 . -156) T) ((-794 . -583) 117623) ((-63 . -353) T) ((-246 . -555) 117605) ((-63 . -364) T) ((-866 . -345) 117589) ((-791 . -260) T) ((-49 . -555) 117571) ((-910 . -37) 117519) ((-528 . -555) 117501) ((-447 . -345) 117485) ((-528 . -556) 117467) ((-479 . -555) 117449) ((-826 . -1165) 117436) ((-793 . -1104) T) ((-632 . -419) T) ((-458 . -476) 117402) ((-452 . -331) T) ((-323 . -336) 117381) ((-321 . -336) 117360) ((-313 . -336) 117339) ((-192 . -331) T) ((-645 . -657) T) ((-111 . -419) T) ((-1170 . -1161) 117323) ((-793 . -804) 117300) ((-793 . -806) NIL) ((-883 . -777) 117199) ((-745 . -777) 117150) ((-591 . -593) 117134) ((-1091 . -33) T) ((-155 . -555) 117116) ((-1013 . -21) 117027) ((-1013 . -25) 116879) ((-793 . -950) 116856) ((-866 . -820) 116837) ((-1118 . -46) 116814) ((-826 . -336) T) ((-56 . -586) 116798) ((-478 . -586) 116782) ((-447 . -820) 116759) ((-69 . -408) T) ((-69 . -364) T) ((-459 . -586) 116743) ((-56 . -340) 116727) ((-562 . -156) T) ((-478 . -340) 116711) ((-459 . -340) 116695) ((-758 . -640) 116679) ((-1064 . -276) 116658) ((-1072 . -123) T) ((-112 . -156) T) ((-1041 . -278) 116596) ((-152 . -1104) T) ((-571 . -675) 116580) ((-549 . -675) 116564) ((-1159 . -123) T) ((-1130 . -841) 116543) ((-1114 . -830) 116496) ((-1109 . -841) 116475) ((-625 . -648) 116425) ((-1109 . -750) NIL) ((-937 . -1001) T) ((-793 . -345) 116402) ((-793 . -306) 116379) ((-822 . -1012) T) ((-152 . -804) 116363) ((-152 . -806) 116288) ((-452 . -1012) T) ((-192 . -1012) T) ((-308 . -1001) T) ((-75 . -408) T) ((-75 . -364) T) ((-152 . -950) 116186) ((-287 . -777) T) ((-1148 . -476) 116119) ((-1135 . -583) 116016) ((-1114 . -583) 115886) ((-794 . -724) 115865) ((-794 . -721) 115844) ((-794 . -657) T) ((-452 . -23) T) ((-197 . -555) 115826) ((-157 . -419) T) ((-196 . -278) 115764) ((-80 . -408) T) ((-80 . -364) T) ((-192 . -23) T) ((-1171 . -1166) 115743) ((-527 . -260) T) ((-501 . -260) T) ((-610 . -950) 115727) ((-458 . -260) T) ((-126 . -437) 115682) ((-47 . -1001) T) ((-643 . -204) 115666) ((-793 . -820) NIL) ((-1118 . -806) NIL) ((-808 . -97) T) ((-805 . -97) T) ((-356 . -1001) T) ((-152 . -345) 115650) ((-152 . -306) 115634) ((-1118 . -950) 115517) ((-782 . -950) 115415) ((-1037 . -97) T) ((-590 . -123) T) ((-112 . -476) 115278) ((-587 . -722) 115257) ((-587 . -727) 115236) ((-522 . -950) 115218) ((-262 . -1156) 115188) ((-788 . -97) T) ((-875 . -508) 115167) ((-1097 . -964) 115050) ((-448 . -577) 114958) ((-825 . -1001) T) ((-937 . -648) 114895) ((-642 . -964) 114860) ((-546 . -33) T) ((-1042 . -1104) T) ((-1097 . -106) 114722) ((-441 . -583) 114619) ((-308 . -648) 114564) ((-152 . -820) 114523) ((-630 . -260) T) ((-625 . -156) T) ((-642 . -106) 114472) ((-1175 . -965) T) ((-1118 . -345) 114456) ((-373 . -1108) 114434) ((-281 . -775) NIL) ((-373 . -508) T) ((-199 . -276) T) ((-1114 . -721) 114387) ((-1114 . -724) 114340) ((-1135 . -657) T) ((-1114 . -657) T) ((-47 . -648) 114305) ((-199 . -933) T) ((-320 . -1156) 114282) ((-1136 . -380) 114248) ((-649 . -657) T) ((-1118 . -820) 114192) ((-107 . -555) 114174) ((-107 . -556) 114156) ((-649 . -440) T) ((-448 . -21) 114067) ((-122 . -454) 114051) ((-116 . -454) 114035) ((-448 . -25) 113887) ((-562 . -260) T) ((-530 . -964) 113862) ((-404 . -1001) T) ((-969 . -276) T) ((-112 . -260) T) ((-1003 . -97) T) ((-917 . -97) T) ((-530 . -106) 113823) ((-1037 . -278) 113761) ((-1097 . -959) T) ((-969 . -933) T) ((-64 . -1104) T) ((-962 . -25) T) ((-962 . -21) T) ((-642 . -959) T) ((-349 . -21) T) ((-349 . -25) T) ((-625 . -476) NIL) ((-937 . -156) T) ((-642 . -216) T) ((-969 . -500) T) ((-465 . -97) T) ((-312 . -555) 113743) ((-308 . -156) T) ((-361 . -555) 113725) ((-441 . -657) T) ((-1018 . -775) T) ((-810 . -950) 113693) ((-103 . -777) T) ((-589 . -964) 113677) ((-452 . -123) T) ((-1136 . -965) T) ((-192 . -123) T) ((-1048 . -97) 113655) ((-94 . -1001) T) ((-218 . -601) 113639) ((-218 . -586) 113623) ((-589 . -106) 113602) ((-282 . -380) 113586) ((-218 . -340) 113570) ((-1054 . -208) 113517) ((-910 . -204) 113501) ((-72 . -1104) T) ((-47 . -156) T) ((-632 . -355) T) ((-632 . -130) T) ((-1170 . -97) T) ((-989 . -964) 113344) ((-235 . -830) 113323) ((-220 . -830) 113302) ((-711 . -964) 113125) ((-710 . -964) 112968) ((-550 . -1104) T) ((-1059 . -555) 112950) ((-989 . -106) 112772) ((-956 . -97) T) ((-442 . -1104) T) ((-428 . -964) 112743) ((-421 . -964) 112586) ((-599 . -583) 112570) ((-793 . -276) T) ((-711 . -106) 112372) ((-710 . -106) 112194) ((-323 . -583) 112146) ((-321 . -583) 112098) ((-313 . -583) 112050) ((-235 . -583) 111975) ((-220 . -583) 111900) ((-1053 . -777) T) ((-428 . -106) 111861) ((-421 . -106) 111683) ((-990 . -950) 111667) ((-979 . -950) 111644) ((-914 . -33) T) ((-877 . -1104) T) ((-121 . -924) 111628) ((-875 . -1012) T) ((-793 . -933) NIL) ((-666 . -1012) T) ((-646 . -1012) T) ((-1148 . -454) 111612) ((-1037 . -37) 111572) ((-875 . -23) T) ((-769 . -97) T) ((-747 . -21) T) ((-747 . -25) T) ((-666 . -23) T) ((-646 . -23) T) ((-105 . -597) T) ((-826 . -583) 111537) ((-528 . -964) 111502) ((-479 . -964) 111447) ((-420 . -23) T) ((-375 . -97) T) ((-232 . -97) T) ((-625 . -260) T) ((-788 . -37) 111417) ((-528 . -106) 111366) ((-479 . -106) 111283) ((-373 . -1012) T) ((-282 . -965) 111174) ((-281 . -965) T) ((-589 . -959) T) ((-1175 . -1001) T) ((-152 . -276) 111105) ((-373 . -23) T) ((-39 . -555) 111087) ((-39 . -556) 111071) ((-103 . -906) 111053) ((-111 . -792) 111037) ((-47 . -476) 111003) ((-1091 . -924) 110987) ((-1077 . -33) T) ((-839 . -555) 110969) ((-1013 . -777) 110920) ((-701 . -555) 110902) ((-606 . -555) 110884) ((-1048 . -278) 110822) ((-445 . -33) T) ((-993 . -1104) T) ((-444 . -419) T) ((-989 . -959) T) ((-1036 . -33) T) ((-711 . -959) T) ((-710 . -959) T) ((-582 . -208) 110806) ((-570 . -208) 110752) ((-1118 . -276) 110731) ((-989 . -294) 110693) ((-421 . -959) T) ((-1072 . -21) T) ((-989 . -206) 110672) ((-711 . -294) 110649) ((-711 . -206) T) ((-710 . -294) 110621) ((-295 . -586) 110605) ((-662 . -1108) 110584) ((-1072 . -25) T) ((-56 . -33) T) ((-480 . -33) T) ((-478 . -33) T) ((-421 . -294) 110563) ((-295 . -340) 110547) ((-460 . -33) T) ((-459 . -33) T) ((-917 . -1046) NIL) ((-571 . -97) T) ((-549 . -97) T) ((-662 . -508) 110478) ((-323 . -657) T) ((-321 . -657) T) ((-313 . -657) T) ((-235 . -657) T) ((-220 . -657) T) ((-956 . -278) 110386) ((-821 . -1001) 110364) ((-49 . -959) T) ((-1159 . -21) T) ((-1159 . -25) T) ((-1068 . -508) 110343) ((-1067 . -1108) 110322) ((-528 . -959) T) ((-479 . -959) T) ((-1061 . -1108) 110301) ((-329 . -950) 110285) ((-290 . -950) 110269) ((-937 . -260) T) ((-346 . -806) 110251) ((-1067 . -508) 110202) ((-1061 . -508) 110153) ((-917 . -37) 110098) ((-728 . -1012) T) ((-826 . -657) T) ((-528 . -216) T) ((-528 . -206) T) ((-479 . -206) T) ((-479 . -216) T) ((-1024 . -508) 110077) ((-308 . -260) T) ((-582 . -626) 110061) ((-346 . -950) 110021) ((-1018 . -965) T) ((-98 . -120) 110005) ((-728 . -23) T) ((-1148 . -256) 109982) ((-375 . -278) 109947) ((-1168 . -1166) 109923) ((-1167 . -1166) 109902) ((-1136 . -1001) T) ((-791 . -555) 109884) ((-764 . -950) 109853) ((-179 . -717) T) ((-178 . -717) T) ((-177 . -717) T) ((-176 . -717) T) ((-175 . -717) T) ((-174 . -717) T) ((-173 . -717) T) ((-172 . -717) T) ((-171 . -717) T) ((-170 . -717) T) ((-458 . -916) T) ((-245 . -766) T) ((-244 . -766) T) ((-243 . -766) T) ((-242 . -766) T) ((-47 . -260) T) ((-241 . -766) T) ((-240 . -766) T) ((-239 . -766) T) ((-169 . -717) T) ((-553 . -777) T) ((-591 . -380) 109837) ((-105 . -777) T) ((-590 . -21) T) ((-590 . -25) T) ((-1170 . -37) 109807) ((-112 . -256) 109737) ((-1148 . -19) 109721) ((-1148 . -548) 109698) ((-1160 . -1001) T) ((-981 . -1001) T) ((-901 . -1001) T) ((-875 . -123) T) ((-667 . -1001) T) ((-666 . -123) T) ((-646 . -123) T) ((-474 . -723) T) ((-375 . -1046) 109676) ((-420 . -123) T) ((-474 . -724) T) ((-197 . -959) T) ((-262 . -97) 109459) ((-128 . -1001) T) ((-630 . -916) T) ((-89 . -1104) T) ((-122 . -555) 109426) ((-116 . -555) 109393) ((-1175 . -156) T) ((-1067 . -331) 109372) ((-1061 . -331) 109351) ((-282 . -1001) T) ((-373 . -123) T) ((-281 . -1001) T) ((-375 . -37) 109303) ((-1031 . -97) T) ((-1136 . -648) 109160) ((-591 . -965) T) ((-287 . -132) 109139) ((-287 . -134) 109118) ((-126 . -1001) T) ((-108 . -1001) T) ((-784 . -97) T) ((-527 . -555) 109100) ((-501 . -556) 108999) ((-501 . -555) 108981) ((-458 . -555) 108963) ((-458 . -556) 108908) ((-450 . -23) T) ((-448 . -777) 108859) ((-452 . -577) 108841) ((-192 . -577) 108823) ((-199 . -372) T) ((-587 . -583) 108807) ((-1064 . -841) 108786) ((-662 . -1012) T) ((-320 . -97) T) ((-748 . -777) T) ((-662 . -23) T) ((-312 . -964) 108731) ((-1053 . -1052) T) ((-1042 . -102) 108715) ((-1068 . -1012) T) ((-1067 . -1012) T) ((-477 . -950) 108699) ((-1061 . -1012) T) ((-1024 . -1012) T) ((-312 . -106) 108616) ((-918 . -1108) T) ((-121 . -1104) T) ((-834 . -1108) T) ((-625 . -256) NIL) ((-1151 . -555) 108598) ((-1068 . -23) T) ((-918 . -508) T) ((-1067 . -23) T) ((-834 . -508) T) ((-1061 . -23) T) ((-1037 . -204) 108582) ((-1024 . -23) T) ((-980 . -1001) T) ((-728 . -123) T) ((-282 . -648) 108492) ((-281 . -648) 108421) ((-630 . -555) 108403) ((-630 . -556) 108348) ((-375 . -368) 108332) ((-406 . -1001) T) ((-452 . -25) T) ((-452 . -21) T) ((-1018 . -1001) T) ((-192 . -25) T) ((-192 . -21) T) ((-643 . -380) 108316) ((-645 . -950) 108285) ((-1148 . -555) 108224) ((-1148 . -556) 108185) ((-1136 . -156) T) ((-218 . -33) T) ((-847 . -889) T) ((-1091 . -1104) T) ((-587 . -721) 108164) ((-587 . -724) 108143) ((-366 . -364) T) ((-484 . -97) 108121) ((-948 . -1001) T) ((-196 . -909) 108105) ((-467 . -97) T) ((-562 . -555) 108087) ((-44 . -777) NIL) ((-562 . -556) 108064) ((-948 . -552) 108039) ((-821 . -476) 107972) ((-312 . -959) T) ((-112 . -556) NIL) ((-112 . -555) 107954) ((-794 . -1104) T) ((-605 . -386) 107938) ((-605 . -1021) 107883) ((-463 . -138) 107865) ((-312 . -206) T) ((-312 . -216) T) ((-39 . -964) 107810) ((-794 . -804) 107794) ((-794 . -806) 107719) ((-643 . -965) T) ((-625 . -916) NIL) ((-1135 . -46) 107689) ((-1114 . -46) 107666) ((-1036 . -924) 107637) ((-199 . -841) T) ((-39 . -106) 107554) ((-794 . -950) 107421) ((-1018 . -648) 107408) ((-1005 . -555) 107390) ((-983 . -134) 107369) ((-983 . -132) 107320) ((-918 . -331) T) ((-287 . -1093) 107286) ((-346 . -276) T) ((-287 . -1090) 107252) ((-282 . -156) 107231) ((-281 . -156) T) ((-917 . -204) 107208) ((-834 . -331) T) ((-528 . -1165) 107195) ((-479 . -1165) 107172) ((-327 . -134) 107151) ((-327 . -132) 107102) ((-322 . -134) 107081) ((-322 . -132) 107032) ((-550 . -1081) 107008) ((-314 . -134) 106987) ((-314 . -132) 106938) ((-287 . -34) 106904) ((-442 . -1081) 106883) ((0 . |EnumerationCategory|) T) ((-287 . -91) 106849) ((-346 . -933) T) ((-103 . -134) T) ((-103 . -132) NIL) ((-44 . -208) 106799) ((-591 . -1001) T) ((-550 . -102) 106746) ((-450 . -123) T) ((-442 . -102) 106696) ((-212 . -1012) 106627) ((-794 . -345) 106611) ((-794 . -306) 106595) ((-212 . -23) 106466) ((-969 . -841) T) ((-969 . -750) T) ((-528 . -336) T) ((-479 . -336) T) ((-320 . -1046) T) ((-295 . -33) T) ((-43 . -386) 106450) ((-358 . -675) 106434) ((-1160 . -476) 106367) ((-662 . -123) T) ((-1139 . -508) 106346) ((-1130 . -1108) 106325) ((-1130 . -508) 106276) ((-667 . -476) 106209) ((-1114 . -1104) 106188) ((-1114 . -806) 106061) ((-813 . -1001) T) ((-131 . -771) T) ((-1114 . -804) 106031) ((-1109 . -1108) 106010) ((-1109 . -508) 105961) ((-484 . -278) 105899) ((-1068 . -123) T) ((-128 . -476) NIL) ((-1067 . -123) T) ((-1061 . -123) T) ((-1024 . -123) T) ((-937 . -916) T) ((-320 . -37) 105864) ((-918 . -1012) T) ((-834 . -1012) T) ((-81 . -555) 105846) ((-39 . -959) T) ((-791 . -964) 105833) ((-918 . -23) T) ((-794 . -820) 105792) ((-632 . -97) T) ((-917 . -318) NIL) ((-546 . -1104) T) ((-886 . -23) T) ((-834 . -23) T) ((-791 . -106) 105777) ((-397 . -1012) T) ((-441 . -46) 105747) ((-125 . -97) T) ((-39 . -206) 105719) ((-39 . -216) T) ((-111 . -97) T) ((-541 . -508) 105698) ((-540 . -508) 105677) ((-625 . -555) 105659) ((-625 . -556) 105567) ((-282 . -476) 105533) ((-281 . -476) 105284) ((-1135 . -950) 105268) ((-1114 . -950) 105057) ((-910 . -380) 105041) ((-397 . -23) T) ((-1018 . -156) T) ((-1136 . -260) T) ((-591 . -648) 105011) ((-131 . -1001) T) ((-47 . -916) T) ((-375 . -204) 104995) ((-264 . -208) 104945) ((-793 . -841) T) ((-793 . -750) NIL) ((-787 . -777) T) ((-1114 . -306) 104915) ((-1114 . -345) 104885) ((-196 . -1019) 104869) ((-1148 . -258) 104846) ((-1097 . -583) 104771) ((-875 . -21) T) ((-875 . -25) T) ((-666 . -21) T) ((-666 . -25) T) ((-646 . -21) T) ((-646 . -25) T) ((-642 . -583) 104736) ((-420 . -21) T) ((-420 . -25) T) ((-307 . -97) T) ((-157 . -97) T) ((-910 . -965) T) ((-791 . -959) T) ((-703 . -97) T) ((-1135 . -820) 104642) ((-1130 . -331) 104621) ((-1114 . -820) 104472) ((-1109 . -331) 104451) ((-937 . -555) 104433) ((-375 . -751) 104386) ((-1068 . -456) 104352) ((-152 . -841) 104283) ((-1067 . -456) 104249) ((-1061 . -456) 104215) ((-643 . -1001) T) ((-1024 . -456) 104181) ((-527 . -964) 104168) ((-501 . -964) 104155) ((-458 . -964) 104120) ((-282 . -260) 104099) ((-281 . -260) T) ((-308 . -555) 104081) ((-373 . -25) T) ((-373 . -21) T) ((-94 . -256) 104060) ((-527 . -106) 104045) ((-501 . -106) 104030) ((-458 . -106) 103979) ((-1070 . -806) 103946) ((-821 . -454) 103930) ((-47 . -555) 103912) ((-47 . -556) 103857) ((-212 . -123) 103728) ((-1118 . -841) 103707) ((-746 . -1108) 103686) ((-948 . -476) 103494) ((-356 . -555) 103476) ((-746 . -508) 103407) ((-530 . -583) 103382) ((-235 . -46) 103354) ((-220 . -46) 103311) ((-487 . -471) 103288) ((-914 . -1104) T) ((-630 . -964) 103253) ((-1139 . -1012) T) ((-1130 . -1012) T) ((-1109 . -1012) T) ((-917 . -338) 103225) ((-107 . -336) T) ((-441 . -820) 103131) ((-1139 . -23) T) ((-1130 . -23) T) ((-825 . -555) 103113) ((-89 . -102) 103097) ((-1097 . -657) T) ((-822 . -777) 103048) ((-632 . -1046) T) ((-630 . -106) 102997) ((-1109 . -23) T) ((-541 . -1012) T) ((-540 . -1012) T) ((-643 . -648) 102826) ((-642 . -657) T) ((-1018 . -260) T) ((-918 . -123) T) ((-452 . -777) T) ((-886 . -123) T) ((-834 . -123) T) ((-527 . -959) T) ((-192 . -777) T) ((-501 . -959) T) ((-728 . -25) T) ((-728 . -21) T) ((-458 . -959) T) ((-541 . -23) T) ((-312 . -1165) 102803) ((-287 . -419) 102782) ((-307 . -278) 102769) ((-540 . -23) T) ((-397 . -123) T) ((-589 . -583) 102743) ((-218 . -924) 102727) ((-794 . -276) T) ((-1171 . -1161) 102711) ((-632 . -37) 102698) ((-501 . -206) T) ((-458 . -216) T) ((-458 . -206) T) ((-701 . -722) T) ((-701 . -727) T) ((-1045 . -208) 102648) ((-989 . -830) 102627) ((-111 . -37) 102614) ((-185 . -730) T) ((-184 . -730) T) ((-183 . -730) T) ((-182 . -730) T) ((-794 . -933) 102593) ((-1160 . -454) 102577) ((-711 . -830) 102556) ((-710 . -830) 102535) ((-1077 . -1104) T) ((-421 . -830) 102514) ((-667 . -454) 102498) ((-989 . -583) 102423) ((-711 . -583) 102348) ((-562 . -964) 102335) ((-445 . -1104) T) ((-312 . -336) T) ((-128 . -454) 102317) ((-710 . -583) 102242) ((-1036 . -1104) T) ((-428 . -583) 102213) ((-235 . -806) 102072) ((-220 . -806) NIL) ((-112 . -964) 102017) ((-421 . -583) 101942) ((-599 . -950) 101919) ((-562 . -106) 101904) ((-323 . -950) 101888) ((-321 . -950) 101872) ((-313 . -950) 101856) ((-235 . -950) 101702) ((-220 . -950) 101580) ((-112 . -106) 101497) ((-56 . -1104) T) ((-480 . -1104) T) ((-478 . -1104) T) ((-460 . -1104) T) ((-459 . -1104) T) ((-404 . -555) 101479) ((-402 . -555) 101461) ((-3 . -97) T) ((-940 . -1099) 101430) ((-762 . -97) T) ((-621 . -55) 101388) ((-630 . -959) T) ((-49 . -583) 101362) ((-259 . -419) T) ((-443 . -1099) 101331) ((0 . -97) T) ((-528 . -583) 101296) ((-479 . -583) 101241) ((-48 . -97) T) ((-826 . -950) 101228) ((-630 . -216) T) ((-983 . -378) 101207) ((-662 . -577) 101155) ((-910 . -1001) T) ((-643 . -156) 101046) ((-452 . -906) 101028) ((-235 . -345) 101012) ((-220 . -345) 100996) ((-367 . -1001) T) ((-307 . -37) 100980) ((-939 . -97) 100958) ((-192 . -906) 100940) ((-157 . -37) 100872) ((-1135 . -276) 100851) ((-1114 . -276) 100830) ((-589 . -657) T) ((-94 . -555) 100812) ((-1061 . -577) 100764) ((-450 . -25) T) ((-450 . -21) T) ((-1114 . -933) 100717) ((-562 . -959) T) ((-346 . -372) T) ((-358 . -97) T) ((-235 . -820) 100663) ((-220 . -820) 100640) ((-112 . -959) T) ((-746 . -1012) T) ((-989 . -657) T) ((-562 . -206) 100619) ((-558 . -97) T) ((-711 . -657) T) ((-710 . -657) T) ((-381 . -1012) T) ((-112 . -216) T) ((-39 . -336) NIL) ((-112 . -206) NIL) ((-421 . -657) T) ((-746 . -23) T) ((-662 . -25) T) ((-662 . -21) T) ((-634 . -777) T) ((-981 . -256) 100598) ((-73 . -365) T) ((-73 . -364) T) ((-625 . -964) 100548) ((-1139 . -123) T) ((-1130 . -123) T) ((-1109 . -123) T) ((-1037 . -380) 100532) ((-571 . -335) 100464) ((-549 . -335) 100396) ((-1048 . -1044) 100380) ((-98 . -1001) 100358) ((-1068 . -25) T) ((-1068 . -21) T) ((-1067 . -21) T) ((-910 . -648) 100306) ((-197 . -583) 100273) ((-625 . -106) 100200) ((-49 . -657) T) ((-1067 . -25) T) ((-320 . -318) T) ((-1061 . -21) T) ((-983 . -419) 100151) ((-1061 . -25) T) ((-643 . -476) 100099) ((-528 . -657) T) ((-479 . -657) T) ((-1024 . -21) T) ((-1024 . -25) T) ((-541 . -123) T) ((-540 . -123) T) ((-327 . -419) T) ((-322 . -419) T) ((-314 . -419) T) ((-441 . -276) 100078) ((-281 . -256) 99944) ((-103 . -419) T) ((-77 . -408) T) ((-77 . -364) T) ((-444 . -97) T) ((-1175 . -555) 99926) ((-1175 . -556) 99908) ((-983 . -370) 99887) ((-948 . -454) 99819) ((-501 . -727) T) ((-501 . -722) T) ((-970 . -208) 99765) ((-327 . -370) 99716) ((-322 . -370) 99667) ((-314 . -370) 99618) ((-1162 . -1012) T) ((-1162 . -23) T) ((-1152 . -97) T) ((-1037 . -965) T) ((-605 . -675) 99602) ((-1072 . -132) 99581) ((-1072 . -134) 99560) ((-1041 . -1001) T) ((-1041 . -977) 99529) ((-67 . -1104) T) ((-937 . -964) 99466) ((-788 . -965) T) ((-212 . -577) 99374) ((-625 . -959) T) ((-308 . -964) 99319) ((-60 . -1104) T) ((-937 . -106) 99228) ((-821 . -555) 99195) ((-625 . -216) T) ((-625 . -206) NIL) ((-769 . -775) 99174) ((-630 . -727) T) ((-630 . -722) T) ((-917 . -380) 99151) ((-308 . -106) 99068) ((-346 . -841) T) ((-375 . -775) 99047) ((-643 . -260) 98958) ((-197 . -657) T) ((-1139 . -456) 98924) ((-1130 . -456) 98890) ((-1109 . -456) 98856) ((-282 . -916) 98835) ((-196 . -1001) 98813) ((-287 . -888) 98776) ((-100 . -97) T) ((-47 . -964) 98741) ((-1171 . -97) T) ((-350 . -97) T) ((-47 . -106) 98690) ((-918 . -577) 98672) ((-1136 . -555) 98654) ((-487 . -97) T) ((-463 . -97) T) ((-1031 . -1032) 98638) ((-139 . -1156) 98622) ((-218 . -1104) T) ((-1064 . -1108) 98601) ((-1023 . -1108) 98580) ((-212 . -21) 98491) ((-212 . -25) 98343) ((-122 . -114) 98327) ((-116 . -114) 98311) ((-43 . -675) 98295) ((-1064 . -508) 98206) ((-1023 . -508) 98137) ((-948 . -256) 98112) ((-746 . -123) T) ((-112 . -727) NIL) ((-112 . -722) NIL) ((-323 . -276) T) ((-321 . -276) T) ((-313 . -276) T) ((-991 . -1104) T) ((-222 . -1012) 98043) ((-221 . -1012) 97974) ((-937 . -959) T) ((-917 . -965) T) ((-312 . -583) 97919) ((-558 . -37) 97903) ((-1160 . -555) 97865) ((-1160 . -556) 97826) ((-981 . -555) 97808) ((-937 . -216) T) ((-308 . -959) T) ((-745 . -1156) 97778) ((-222 . -23) T) ((-221 . -23) T) ((-901 . -555) 97760) ((-667 . -556) 97721) ((-667 . -555) 97703) ((-728 . -777) 97682) ((-910 . -476) 97594) ((-308 . -206) T) ((-308 . -216) T) ((-1054 . -138) 97541) ((-918 . -25) T) ((-128 . -555) 97523) ((-128 . -556) 97482) ((-826 . -276) T) ((-918 . -21) T) ((-886 . -25) T) ((-834 . -21) T) ((-834 . -25) T) ((-397 . -21) T) ((-397 . -25) T) ((-769 . -380) 97466) ((-47 . -959) T) ((-1168 . -1161) 97450) ((-1167 . -1161) 97434) ((-948 . -548) 97409) ((-282 . -556) 97270) ((-282 . -555) 97252) ((-281 . -556) NIL) ((-281 . -555) 97234) ((-47 . -216) T) ((-47 . -206) T) ((-591 . -256) 97195) ((-502 . -208) 97145) ((-126 . -555) 97127) ((-108 . -555) 97109) ((-444 . -37) 97074) ((-1171 . -1169) 97053) ((-1162 . -123) T) ((-1170 . -965) T) ((-986 . -97) T) ((-85 . -1104) T) ((-463 . -278) NIL) ((-914 . -102) 97037) ((-808 . -1001) T) ((-805 . -1001) T) ((-1148 . -586) 97021) ((-1148 . -340) 97005) ((-295 . -1104) T) ((-538 . -777) T) ((-1037 . -1001) T) ((-1037 . -961) 96945) ((-98 . -476) 96878) ((-845 . -555) 96860) ((-312 . -657) T) ((-30 . -555) 96842) ((-788 . -1001) T) ((-769 . -965) 96821) ((-39 . -583) 96766) ((-199 . -1108) T) ((-375 . -965) T) ((-1053 . -138) 96748) ((-910 . -260) 96699) ((-199 . -508) T) ((-287 . -1132) 96683) ((-287 . -1128) 96653) ((-1077 . -1081) 96632) ((-980 . -555) 96614) ((-582 . -138) 96598) ((-570 . -138) 96544) ((-1077 . -102) 96494) ((-445 . -1081) 96473) ((-452 . -134) T) ((-452 . -132) NIL) ((-1018 . -556) 96388) ((-406 . -555) 96370) ((-192 . -134) T) ((-192 . -132) NIL) ((-1018 . -555) 96352) ((-50 . -97) T) ((-1109 . -577) 96304) ((-445 . -102) 96254) ((-908 . -23) T) ((-1171 . -37) 96224) ((-1064 . -1012) T) ((-1023 . -1012) T) ((-969 . -1108) T) ((-781 . -1012) T) ((-866 . -1108) 96203) ((-447 . -1108) 96182) ((-662 . -777) 96161) ((-969 . -508) T) ((-866 . -508) 96092) ((-1064 . -23) T) ((-1023 . -23) T) ((-781 . -23) T) ((-447 . -508) 96023) ((-1037 . -648) 95955) ((-1041 . -476) 95888) ((-948 . -556) NIL) ((-948 . -555) 95870) ((-788 . -648) 95840) ((-1097 . -46) 95809) ((-222 . -123) T) ((-221 . -123) T) ((-1003 . -1001) T) ((-917 . -1001) T) ((-61 . -555) 95791) ((-1061 . -777) NIL) ((-937 . -722) T) ((-937 . -727) T) ((-1175 . -964) 95778) ((-1175 . -106) 95763) ((-791 . -583) 95750) ((-1139 . -25) T) ((-1139 . -21) T) ((-1130 . -21) T) ((-1130 . -25) T) ((-1109 . -21) T) ((-1109 . -25) T) ((-940 . -138) 95734) ((-794 . -750) 95713) ((-794 . -841) T) ((-643 . -256) 95640) ((-541 . -21) T) ((-541 . -25) T) ((-540 . -21) T) ((-39 . -657) T) ((-196 . -476) 95573) ((-540 . -25) T) ((-443 . -138) 95557) ((-430 . -138) 95541) ((-839 . -657) T) ((-701 . -723) T) ((-701 . -724) T) ((-465 . -1001) T) ((-701 . -657) T) ((-199 . -331) T) ((-1048 . -1001) 95519) ((-793 . -1108) T) ((-591 . -555) 95501) ((-793 . -508) T) ((-625 . -336) NIL) ((-327 . -1156) 95485) ((-605 . -97) T) ((-322 . -1156) 95469) ((-314 . -1156) 95453) ((-1170 . -1001) T) ((-481 . -777) 95432) ((-747 . -419) 95411) ((-956 . -1001) T) ((-956 . -977) 95340) ((-940 . -891) 95309) ((-749 . -1012) T) ((-917 . -648) 95254) ((-354 . -1012) T) ((-443 . -891) 95223) ((-430 . -891) 95192) ((-105 . -138) 95174) ((-71 . -555) 95156) ((-813 . -555) 95138) ((-983 . -655) 95117) ((-1175 . -959) T) ((-746 . -577) 95065) ((-262 . -965) 95008) ((-152 . -1108) 94913) ((-199 . -1012) T) ((-292 . -23) T) ((-1061 . -906) 94865) ((-769 . -1001) T) ((-1024 . -671) 94844) ((-1136 . -964) 94733) ((-1135 . -841) 94712) ((-791 . -657) T) ((-152 . -508) 94623) ((-1114 . -841) 94602) ((-527 . -583) 94589) ((-375 . -1001) T) ((-501 . -583) 94576) ((-232 . -1001) T) ((-458 . -583) 94541) ((-199 . -23) T) ((-1114 . -750) 94494) ((-1168 . -97) T) ((-308 . -1165) 94471) ((-1167 . -97) T) ((-1136 . -106) 94321) ((-131 . -555) 94303) ((-908 . -123) T) ((-43 . -97) T) ((-212 . -777) 94254) ((-1118 . -1108) 94233) ((-98 . -454) 94217) ((-1170 . -648) 94187) ((-989 . -46) 94149) ((-969 . -1012) T) ((-866 . -1012) T) ((-122 . -33) T) ((-116 . -33) T) ((-711 . -46) 94126) ((-710 . -46) 94098) ((-1118 . -508) 94009) ((-308 . -336) T) ((-447 . -1012) T) ((-1064 . -123) T) ((-1023 . -123) T) ((-421 . -46) 93988) ((-793 . -331) T) ((-781 . -123) T) ((-139 . -97) T) ((-969 . -23) T) ((-866 . -23) T) ((-522 . -508) T) ((-746 . -25) T) ((-746 . -21) T) ((-1037 . -476) 93921) ((-530 . -950) 93905) ((-447 . -23) T) ((-320 . -965) T) ((-1097 . -820) 93886) ((-605 . -278) 93824) ((-1013 . -1156) 93794) ((-630 . -583) 93759) ((-917 . -156) T) ((-875 . -132) 93738) ((-571 . -1001) T) ((-549 . -1001) T) ((-875 . -134) 93717) ((-918 . -777) T) ((-666 . -134) 93696) ((-666 . -132) 93675) ((-886 . -777) T) ((-441 . -841) 93654) ((-282 . -964) 93564) ((-281 . -964) 93493) ((-910 . -256) 93451) ((-375 . -648) 93403) ((-632 . -775) T) ((-1136 . -959) T) ((-282 . -106) 93292) ((-281 . -106) 93177) ((-883 . -97) T) ((-745 . -97) 92988) ((-643 . -556) NIL) ((-643 . -555) 92970) ((-589 . -950) 92868) ((-1136 . -294) 92812) ((-948 . -258) 92787) ((-527 . -657) T) ((-501 . -724) T) ((-152 . -331) 92738) ((-501 . -721) T) ((-501 . -657) T) ((-458 . -657) T) ((-1041 . -454) 92722) ((-989 . -806) NIL) ((-793 . -1012) T) ((-112 . -830) NIL) ((-1168 . -1169) 92698) ((-1167 . -1169) 92677) ((-711 . -806) NIL) ((-710 . -806) 92536) ((-1162 . -25) T) ((-1162 . -21) T) ((-1102 . -97) 92514) ((-1006 . -364) T) ((-562 . -583) 92501) ((-421 . -806) NIL) ((-609 . -97) 92479) ((-989 . -950) 92309) ((-793 . -23) T) ((-711 . -950) 92171) ((-710 . -950) 92030) ((-112 . -583) 91975) ((-421 . -950) 91853) ((-584 . -950) 91837) ((-565 . -97) T) ((-196 . -454) 91821) ((-1148 . -33) T) ((-571 . -648) 91805) ((-549 . -648) 91789) ((-605 . -37) 91749) ((-287 . -97) T) ((-84 . -555) 91731) ((-49 . -950) 91715) ((-1018 . -964) 91702) ((-989 . -345) 91686) ((-58 . -55) 91648) ((-630 . -724) T) ((-630 . -721) T) ((-528 . -950) 91635) ((-479 . -950) 91612) ((-630 . -657) T) ((-282 . -959) 91503) ((-292 . -123) T) ((-281 . -959) T) ((-152 . -1012) T) ((-711 . -345) 91487) ((-710 . -345) 91471) ((-44 . -138) 91421) ((-918 . -906) 91403) ((-421 . -345) 91387) ((-375 . -156) T) ((-282 . -216) 91366) ((-281 . -216) T) ((-281 . -206) NIL) ((-262 . -1001) 91149) ((-199 . -123) T) ((-1018 . -106) 91134) ((-152 . -23) T) ((-728 . -134) 91113) ((-728 . -132) 91092) ((-222 . -577) 91000) ((-221 . -577) 90908) ((-287 . -254) 90874) ((-1048 . -476) 90807) ((-1031 . -1001) T) ((-199 . -967) T) ((-745 . -278) 90745) ((-989 . -820) 90681) ((-711 . -820) 90625) ((-710 . -820) 90609) ((-1168 . -37) 90579) ((-1167 . -37) 90549) ((-1118 . -1012) T) ((-782 . -1012) T) ((-421 . -820) 90526) ((-784 . -1001) T) ((-1118 . -23) T) ((-522 . -1012) T) ((-782 . -23) T) ((-562 . -657) T) ((-323 . -841) T) ((-321 . -841) T) ((-259 . -97) T) ((-313 . -841) T) ((-969 . -123) T) ((-866 . -123) T) ((-112 . -724) NIL) ((-112 . -721) NIL) ((-112 . -657) T) ((-625 . -830) NIL) ((-956 . -476) 90410) ((-447 . -123) T) ((-522 . -23) T) ((-609 . -278) 90348) ((-571 . -692) T) ((-549 . -692) T) ((-1109 . -777) NIL) ((-917 . -260) T) ((-222 . -21) T) ((-625 . -583) 90298) ((-320 . -1001) T) ((-222 . -25) T) ((-221 . -21) T) ((-221 . -25) T) ((-139 . -37) 90282) ((-2 . -97) T) ((-826 . -841) T) ((-448 . -1156) 90252) ((-197 . -950) 90229) ((-1018 . -959) T) ((-642 . -276) T) ((-262 . -648) 90171) ((-632 . -965) T) ((-452 . -419) T) ((-375 . -476) 90083) ((-192 . -419) T) ((-1018 . -206) T) ((-264 . -138) 90033) ((-910 . -556) 89994) ((-910 . -555) 89976) ((-904 . -555) 89958) ((-111 . -965) T) ((-591 . -964) 89942) ((-199 . -456) T) ((-367 . -555) 89924) ((-367 . -556) 89901) ((-962 . -1156) 89871) ((-591 . -106) 89850) ((-1037 . -454) 89834) ((-745 . -37) 89804) ((-62 . -408) T) ((-62 . -364) T) ((-1054 . -97) T) ((-793 . -123) T) ((-449 . -97) 89782) ((-1175 . -336) T) ((-983 . -97) T) ((-968 . -97) T) ((-320 . -648) 89727) ((-662 . -134) 89706) ((-662 . -132) 89685) ((-937 . -583) 89622) ((-484 . -1001) 89600) ((-327 . -97) T) ((-322 . -97) T) ((-314 . -97) T) ((-103 . -97) T) ((-467 . -1001) T) ((-308 . -583) 89545) ((-1064 . -577) 89493) ((-1023 . -577) 89441) ((-349 . -471) 89420) ((-762 . -775) 89399) ((-346 . -1108) T) ((-625 . -657) T) ((-307 . -965) T) ((-1109 . -906) 89351) ((-157 . -965) T) ((-98 . -555) 89318) ((-1068 . -132) 89297) ((-1068 . -134) 89276) ((-346 . -508) T) ((-1067 . -134) 89255) ((-1067 . -132) 89234) ((-1061 . -132) 89141) ((-375 . -260) T) ((-1061 . -134) 89048) ((-1024 . -134) 89027) ((-1024 . -132) 89006) ((-287 . -37) 88847) ((-152 . -123) T) ((-281 . -727) NIL) ((-281 . -722) NIL) ((-591 . -959) T) ((-47 . -583) 88812) ((-908 . -21) T) ((-122 . -924) 88796) ((-116 . -924) 88780) ((-908 . -25) T) ((-821 . -114) 88764) ((-1053 . -97) T) ((-746 . -777) 88743) ((-1118 . -123) T) ((-1064 . -25) T) ((-1064 . -21) T) ((-782 . -123) T) ((-1023 . -25) T) ((-1023 . -21) T) ((-781 . -25) T) ((-781 . -21) T) ((-711 . -276) 88722) ((-582 . -97) 88700) ((-570 . -97) T) ((-1054 . -278) 88495) ((-522 . -123) T) ((-558 . -775) 88474) ((-1048 . -454) 88458) ((-1045 . -138) 88408) ((-1041 . -555) 88370) ((-1041 . -556) 88331) ((-937 . -721) T) ((-937 . -724) T) ((-937 . -657) T) ((-449 . -278) 88269) ((-420 . -386) 88239) ((-320 . -156) T) ((-259 . -37) 88226) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-242 . -97) T) ((-241 . -97) T) ((-240 . -97) T) ((-239 . -97) T) ((-312 . -950) 88203) ((-188 . -97) T) ((-187 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-643 . -964) 88026) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-170 . -97) T) ((-169 . -97) T) ((-308 . -657) T) ((-643 . -106) 87828) ((-605 . -204) 87812) ((-528 . -276) T) ((-479 . -276) T) ((-262 . -476) 87761) ((-103 . -278) NIL) ((-70 . -364) T) ((-1013 . -97) 87572) ((-762 . -380) 87556) ((-1018 . -727) T) ((-1018 . -722) T) ((-632 . -1001) T) ((-346 . -331) T) ((-152 . -456) 87534) ((-196 . -555) 87501) ((-125 . -1001) T) ((-111 . -1001) T) ((-47 . -657) T) ((-956 . -454) 87466) ((-128 . -394) 87448) ((-128 . -336) T) ((-940 . -97) T) ((-472 . -471) 87427) ((-443 . -97) T) ((-430 . -97) T) ((-947 . -1012) T) ((-1068 . -34) 87393) ((-1068 . -91) 87359) ((-1068 . -1093) 87325) ((-1068 . -1090) 87291) ((-1053 . -278) NIL) ((-87 . -365) T) ((-87 . -364) T) ((-983 . -1046) 87270) ((-1067 . -1090) 87236) ((-1067 . -1093) 87202) ((-947 . -23) T) ((-1067 . -91) 87168) ((-522 . -456) T) ((-1067 . -34) 87134) ((-1061 . -1090) 87100) ((-1061 . -1093) 87066) ((-1061 . -91) 87032) ((-329 . -1012) T) ((-327 . -1046) 87011) ((-322 . -1046) 86990) ((-314 . -1046) 86969) ((-1061 . -34) 86935) ((-1024 . -34) 86901) ((-1024 . -91) 86867) ((-103 . -1046) T) ((-1024 . -1093) 86833) ((-762 . -965) 86812) ((-582 . -278) 86750) ((-570 . -278) 86601) ((-1024 . -1090) 86567) ((-643 . -959) T) ((-969 . -577) 86549) ((-983 . -37) 86417) ((-866 . -577) 86365) ((-918 . -134) T) ((-918 . -132) NIL) ((-346 . -1012) T) ((-292 . -25) T) ((-290 . -23) T) ((-863 . -777) 86344) ((-643 . -294) 86321) ((-447 . -577) 86269) ((-39 . -950) 86146) ((-632 . -648) 86133) ((-643 . -206) T) ((-307 . -1001) T) ((-157 . -1001) T) ((-299 . -777) T) ((-373 . -419) 86083) ((-346 . -23) T) ((-327 . -37) 86048) ((-322 . -37) 86013) ((-314 . -37) 85978) ((-78 . -408) T) ((-78 . -364) T) ((-199 . -25) T) ((-199 . -21) T) ((-764 . -1012) T) ((-103 . -37) 85928) ((-758 . -1012) T) ((-703 . -1001) T) ((-111 . -648) 85915) ((-606 . -950) 85899) ((-553 . -97) T) ((-764 . -23) T) ((-758 . -23) T) ((-1048 . -256) 85876) ((-1013 . -278) 85814) ((-997 . -208) 85798) ((-59 . -365) T) ((-59 . -364) T) ((-105 . -97) T) ((-39 . -345) 85775) ((-590 . -779) 85759) ((-969 . -21) T) ((-969 . -25) T) ((-745 . -204) 85729) ((-866 . -25) T) ((-866 . -21) T) ((-558 . -965) T) ((-447 . -25) T) ((-447 . -21) T) ((-940 . -278) 85667) ((-808 . -555) 85649) ((-805 . -555) 85631) ((-222 . -777) 85582) ((-221 . -777) 85533) ((-484 . -476) 85466) ((-793 . -577) 85443) ((-443 . -278) 85381) ((-430 . -278) 85319) ((-320 . -260) T) ((-1048 . -1138) 85303) ((-1037 . -555) 85265) ((-1037 . -556) 85226) ((-1035 . -97) T) ((-910 . -964) 85122) ((-39 . -820) 85074) ((-1048 . -548) 85051) ((-1175 . -583) 85038) ((-970 . -138) 84984) ((-794 . -1108) T) ((-910 . -106) 84859) ((-307 . -648) 84843) ((-788 . -555) 84825) ((-157 . -648) 84757) ((-375 . -256) 84715) ((-794 . -508) T) ((-103 . -368) 84697) ((-83 . -353) T) ((-83 . -364) T) ((-632 . -156) T) ((-94 . -657) T) ((-448 . -97) 84508) ((-94 . -440) T) ((-111 . -156) T) ((-1013 . -37) 84478) ((-152 . -577) 84426) ((-962 . -97) T) ((-793 . -25) T) ((-745 . -211) 84405) ((-793 . -21) T) ((-748 . -97) T) ((-383 . -97) T) ((-349 . -97) T) ((-105 . -278) NIL) ((-122 . -1104) T) ((-116 . -1104) T) ((-947 . -123) T) ((-605 . -335) 84389) ((-910 . -959) T) ((-1118 . -577) 84337) ((-1003 . -555) 84319) ((-917 . -555) 84301) ((-477 . -23) T) ((-473 . -23) T) ((-312 . -276) T) ((-470 . -23) T) ((-290 . -123) T) ((-3 . -1001) T) ((-917 . -556) 84285) ((-910 . -216) 84264) ((-910 . -206) 84243) ((-1175 . -657) T) ((-1139 . -132) 84222) ((-762 . -1001) T) ((-1139 . -134) 84201) ((-1135 . -1108) 84180) ((-1130 . -134) 84159) ((-1130 . -132) 84138) ((-1114 . -1108) 84117) ((-1109 . -132) 84024) ((-1109 . -134) 83931) ((-346 . -123) T) ((-501 . -806) 83913) ((0 . -1001) T) ((-157 . -156) T) ((-152 . -21) T) ((-152 . -25) T) ((-48 . -1001) T) ((-1136 . -583) 83802) ((-1135 . -508) 83753) ((-645 . -1012) T) ((-1114 . -508) 83704) ((-501 . -950) 83686) ((-540 . -134) 83665) ((-540 . -132) 83644) ((-458 . -950) 83587) ((-86 . -353) T) ((-86 . -364) T) ((-794 . -331) T) ((-764 . -123) T) ((-758 . -123) T) ((-645 . -23) T) ((-465 . -555) 83569) ((-1171 . -965) T) ((-346 . -967) T) ((-939 . -1001) 83547) ((-821 . -33) T) ((-448 . -278) 83485) ((-1048 . -556) 83446) ((-1048 . -555) 83413) ((-1064 . -777) 83392) ((-44 . -97) T) ((-1023 . -777) 83371) ((-747 . -97) T) ((-1118 . -25) T) ((-1118 . -21) T) ((-782 . -25) T) ((-43 . -335) 83355) ((-782 . -21) T) ((-662 . -419) 83306) ((-1170 . -555) 83288) ((-522 . -25) T) ((-522 . -21) T) ((-358 . -1001) T) ((-962 . -278) 83226) ((-558 . -1001) T) ((-630 . -806) 83208) ((-1148 . -1104) T) ((-131 . -336) T) ((-956 . -556) 83150) ((-956 . -555) 83093) ((-281 . -830) NIL) ((-630 . -950) 83038) ((-642 . -841) T) ((-441 . -1108) 83017) ((-1067 . -419) 82996) ((-1061 . -419) 82975) ((-298 . -97) T) ((-794 . -1012) T) ((-282 . -583) 82797) ((-281 . -583) 82726) ((-441 . -508) 82677) ((-307 . -476) 82643) ((-502 . -138) 82593) ((-39 . -276) T) ((-769 . -555) 82575) ((-632 . -260) T) ((-794 . -23) T) ((-346 . -456) T) ((-983 . -204) 82545) ((-472 . -97) T) ((-375 . -556) 82348) ((-375 . -555) 82330) ((-232 . -555) 82312) ((-111 . -260) T) ((-1136 . -657) T) ((-1135 . -331) 82291) ((-1114 . -331) 82270) ((-1160 . -33) T) ((-112 . -1104) T) ((-103 . -204) 82252) ((-1072 . -97) T) ((-444 . -1001) T) ((-484 . -454) 82236) ((-667 . -33) T) ((-448 . -37) 82206) ((-128 . -33) T) ((-112 . -804) 82183) ((-112 . -806) NIL) ((-562 . -950) 82068) ((-578 . -777) 82047) ((-1159 . -97) T) ((-264 . -97) T) ((-643 . -336) 82026) ((-112 . -950) 82003) ((-358 . -648) 81987) ((-558 . -648) 81971) ((-44 . -278) 81775) ((-746 . -132) 81754) ((-746 . -134) 81733) ((-1170 . -352) 81712) ((-749 . -777) T) ((-1152 . -1001) T) ((-1054 . -202) 81659) ((-354 . -777) 81638) ((-1139 . -1093) 81604) ((-1139 . -1090) 81570) ((-1130 . -1090) 81536) ((-477 . -123) T) ((-1130 . -1093) 81502) ((-1109 . -1090) 81468) ((-1109 . -1093) 81434) ((-1139 . -34) 81400) ((-1139 . -91) 81366) ((-571 . -555) 81335) ((-549 . -555) 81304) ((-199 . -777) T) ((-1135 . -1012) T) ((-1130 . -91) 81270) ((-1130 . -34) 81236) ((-1018 . -583) 81223) ((-1114 . -1012) T) ((-1109 . -91) 81189) ((-538 . -138) 81171) ((-983 . -318) 81150) ((-112 . -345) 81127) ((-112 . -306) 81104) ((-157 . -260) T) ((-1109 . -34) 81070) ((-791 . -276) T) ((-281 . -724) NIL) ((-281 . -721) NIL) ((-282 . -657) 80920) ((-281 . -657) T) ((-441 . -331) 80899) ((-327 . -318) 80878) ((-322 . -318) 80857) ((-314 . -318) 80836) ((-282 . -440) 80815) ((-1135 . -23) T) ((-1114 . -23) T) ((-649 . -1012) T) ((-645 . -123) T) ((-590 . -97) T) ((-444 . -648) 80780) ((-44 . -252) 80730) ((-100 . -1001) T) ((-66 . -555) 80712) ((-787 . -97) T) ((-562 . -820) 80671) ((-1171 . -1001) T) ((-350 . -1001) T) ((-81 . -1104) T) ((-969 . -777) T) ((-866 . -777) 80650) ((-112 . -820) NIL) ((-711 . -841) 80629) ((-644 . -777) T) ((-487 . -1001) T) ((-463 . -1001) T) ((-323 . -1108) T) ((-321 . -1108) T) ((-313 . -1108) T) ((-235 . -1108) 80608) ((-220 . -1108) 80587) ((-1013 . -204) 80557) ((-447 . -777) 80536) ((-1037 . -964) 80520) ((-358 . -692) T) ((-1053 . -751) T) ((-625 . -1104) T) ((-323 . -508) T) ((-321 . -508) T) ((-313 . -508) T) ((-235 . -508) 80451) ((-220 . -508) 80382) ((-1037 . -106) 80361) ((-420 . -675) 80331) ((-788 . -964) 80301) ((-747 . -37) 80238) ((-625 . -804) 80220) ((-625 . -806) 80202) ((-264 . -278) 80006) ((-826 . -1108) T) ((-605 . -380) 79990) ((-788 . -106) 79955) ((-625 . -950) 79900) ((-918 . -419) T) ((-826 . -508) T) ((-528 . -841) T) ((-441 . -1012) T) ((-479 . -841) T) ((-1048 . -258) 79877) ((-834 . -419) T) ((-63 . -555) 79859) ((-570 . -202) 79805) ((-441 . -23) T) ((-1018 . -724) T) ((-794 . -123) T) ((-1018 . -721) T) ((-1162 . -1166) 79784) ((-1018 . -657) T) ((-591 . -583) 79758) ((-262 . -555) 79500) ((-948 . -33) T) ((-745 . -775) 79479) ((-527 . -276) T) ((-501 . -276) T) ((-458 . -276) T) ((-1171 . -648) 79449) ((-625 . -345) 79431) ((-625 . -306) 79413) ((-444 . -156) T) ((-350 . -648) 79383) ((-793 . -777) NIL) ((-501 . -933) T) ((-458 . -933) T) ((-1031 . -555) 79365) ((-1013 . -211) 79344) ((-189 . -97) T) ((-1045 . -97) T) ((-69 . -555) 79326) ((-1037 . -959) T) ((-1072 . -37) 79223) ((-784 . -555) 79205) ((-501 . -500) T) ((-605 . -965) T) ((-662 . -870) 79158) ((-1037 . -206) 79137) ((-986 . -1001) T) ((-947 . -25) T) ((-947 . -21) T) ((-917 . -964) 79082) ((-822 . -97) T) ((-788 . -959) T) ((-625 . -820) NIL) ((-323 . -297) 79066) ((-323 . -331) T) ((-321 . -297) 79050) ((-321 . -331) T) ((-313 . -297) 79034) ((-313 . -331) T) ((-452 . -97) T) ((-1159 . -37) 79004) ((-484 . -618) 78954) ((-192 . -97) T) ((-937 . -950) 78836) ((-917 . -106) 78753) ((-1068 . -888) 78723) ((-1067 . -888) 78686) ((-481 . -138) 78670) ((-983 . -338) 78649) ((-320 . -555) 78631) ((-290 . -21) T) ((-308 . -950) 78608) ((-290 . -25) T) ((-1061 . -888) 78578) ((-1024 . -888) 78545) ((-75 . -555) 78527) ((-630 . -276) T) ((-152 . -777) 78506) ((-826 . -331) T) ((-346 . -25) T) ((-346 . -21) T) ((-826 . -297) 78493) ((-80 . -555) 78475) ((-630 . -933) T) ((-610 . -777) T) ((-1135 . -123) T) ((-1114 . -123) T) ((-821 . -924) 78459) ((-764 . -21) T) ((-47 . -950) 78402) ((-764 . -25) T) ((-758 . -25) T) ((-758 . -21) T) ((-1168 . -965) T) ((-1167 . -965) T) ((-591 . -657) T) ((-1170 . -964) 78386) ((-1118 . -777) 78365) ((-745 . -380) 78334) ((-98 . -114) 78318) ((-50 . -1001) T) ((-847 . -555) 78300) ((-793 . -906) 78277) ((-754 . -97) T) ((-1170 . -106) 78256) ((-590 . -37) 78226) ((-522 . -777) T) ((-323 . -1012) T) ((-321 . -1012) T) ((-313 . -1012) T) ((-235 . -1012) T) ((-220 . -1012) T) ((-562 . -276) 78205) ((-1045 . -278) 78009) ((-599 . -23) T) ((-448 . -204) 77979) ((-139 . -965) T) ((-323 . -23) T) ((-321 . -23) T) ((-313 . -23) T) ((-112 . -276) T) ((-235 . -23) T) ((-220 . -23) T) ((-917 . -959) T) ((-643 . -830) 77958) ((-917 . -206) 77930) ((-917 . -216) T) ((-112 . -933) NIL) ((-826 . -1012) T) ((-1130 . -419) 77909) ((-1109 . -419) 77888) ((-484 . -555) 77855) ((-643 . -583) 77780) ((-375 . -964) 77732) ((-467 . -555) 77714) ((-826 . -23) T) ((-452 . -278) NIL) ((-441 . -123) T) ((-192 . -278) NIL) ((-375 . -106) 77645) ((-745 . -965) 77576) ((-667 . -999) 77560) ((-1135 . -456) 77526) ((-1114 . -456) 77492) ((-128 . -999) 77474) ((-444 . -260) T) ((-1170 . -959) T) ((-970 . -97) T) ((-463 . -476) NIL) ((-634 . -97) T) ((-448 . -211) 77453) ((-1064 . -132) 77432) ((-1064 . -134) 77411) ((-1023 . -134) 77390) ((-1023 . -132) 77369) ((-571 . -964) 77353) ((-549 . -964) 77337) ((-605 . -1001) T) ((-605 . -961) 77277) ((-1068 . -1142) 77261) ((-1068 . -1128) 77238) ((-452 . -1046) T) ((-1067 . -1134) 77199) ((-1067 . -1128) 77169) ((-1067 . -1132) 77153) ((-192 . -1046) T) ((-312 . -841) T) ((-748 . -237) 77137) ((-571 . -106) 77116) ((-549 . -106) 77095) ((-1061 . -1113) 77056) ((-769 . -959) 77035) ((-1061 . -1128) 77012) ((-477 . -25) T) ((-458 . -267) T) ((-474 . -23) T) ((-473 . -25) T) ((-470 . -25) T) ((-469 . -23) T) ((-1061 . -1111) 76996) ((-375 . -959) T) ((-287 . -965) T) ((-625 . -276) T) ((-103 . -775) T) ((-375 . -216) T) ((-375 . -206) 76975) ((-643 . -657) T) ((-452 . -37) 76925) ((-192 . -37) 76875) ((-441 . -456) 76841) ((-1053 . -1039) T) ((-1002 . -97) T) ((-632 . -555) 76823) ((-632 . -556) 76738) ((-645 . -21) T) ((-645 . -25) T) ((-125 . -555) 76720) ((-111 . -555) 76702) ((-142 . -25) T) ((-1168 . -1001) T) ((-794 . -577) 76650) ((-1167 . -1001) T) ((-875 . -97) T) ((-666 . -97) T) ((-646 . -97) T) ((-420 . -97) T) ((-746 . -419) 76601) ((-43 . -1001) T) ((-990 . -777) T) ((-599 . -123) T) ((-970 . -278) 76452) ((-605 . -648) 76436) ((-259 . -965) T) ((-323 . -123) T) ((-321 . -123) T) ((-313 . -123) T) ((-235 . -123) T) ((-220 . -123) T) ((-373 . -97) T) ((-139 . -1001) T) ((-44 . -202) 76386) ((-877 . -777) 76365) ((-910 . -583) 76303) ((-212 . -1156) 76273) ((-937 . -276) T) ((-262 . -964) 76195) ((-826 . -123) T) ((-39 . -841) T) ((-452 . -368) 76177) ((-308 . -276) T) ((-192 . -368) 76159) ((-983 . -380) 76143) ((-262 . -106) 76060) ((-794 . -25) T) ((-794 . -21) T) ((-307 . -555) 76042) ((-1136 . -46) 75986) ((-199 . -134) T) ((-157 . -555) 75968) ((-1013 . -775) 75947) ((-703 . -555) 75929) ((-550 . -208) 75876) ((-442 . -208) 75826) ((-1168 . -648) 75796) ((-47 . -276) T) ((-1167 . -648) 75766) ((-883 . -1001) T) ((-745 . -1001) 75577) ((-280 . -97) T) ((-821 . -1104) T) ((-47 . -933) T) ((-1114 . -577) 75485) ((-621 . -97) 75463) ((-43 . -648) 75447) ((-502 . -97) T) ((-65 . -351) T) ((-65 . -364) T) ((-587 . -23) T) ((-605 . -692) T) ((-1102 . -1001) 75425) ((-320 . -964) 75370) ((-609 . -1001) 75348) ((-969 . -134) T) ((-866 . -134) 75327) ((-866 . -132) 75306) ((-728 . -97) T) ((-139 . -648) 75290) ((-447 . -134) 75269) ((-447 . -132) 75248) ((-320 . -106) 75165) ((-983 . -965) T) ((-290 . -777) 75144) ((-1139 . -888) 75114) ((-565 . -1001) T) ((-1130 . -888) 75077) ((-474 . -123) T) ((-469 . -123) T) ((-264 . -202) 75027) ((-327 . -965) T) ((-322 . -965) T) ((-314 . -965) T) ((-262 . -959) 74970) ((-1109 . -888) 74940) ((-346 . -777) T) ((-103 . -965) T) ((-910 . -657) T) ((-791 . -841) T) ((-769 . -727) 74919) ((-769 . -722) 74898) ((-373 . -278) 74837) ((-435 . -97) T) ((-540 . -888) 74807) ((-287 . -1001) T) ((-375 . -727) 74786) ((-375 . -722) 74765) ((-463 . -454) 74747) ((-1136 . -950) 74713) ((-1135 . -21) T) ((-1135 . -25) T) ((-1114 . -21) T) ((-1114 . -25) T) ((-745 . -648) 74655) ((-630 . -372) T) ((-1160 . -1104) T) ((-1013 . -380) 74624) ((-917 . -336) NIL) ((-98 . -33) T) ((-667 . -1104) T) ((-43 . -692) T) ((-538 . -97) T) ((-76 . -365) T) ((-76 . -364) T) ((-590 . -593) 74608) ((-128 . -1104) T) ((-793 . -134) T) ((-793 . -132) NIL) ((-320 . -959) T) ((-68 . -351) T) ((-68 . -364) T) ((-1060 . -97) T) ((-605 . -476) 74541) ((-621 . -278) 74479) ((-875 . -37) 74376) ((-666 . -37) 74346) ((-502 . -278) 74150) ((-282 . -1104) T) ((-320 . -206) T) ((-320 . -216) T) ((-281 . -1104) T) ((-259 . -1001) T) ((-1074 . -555) 74132) ((-642 . -1108) T) ((-1048 . -586) 74116) ((-1097 . -508) 74095) ((-642 . -508) T) ((-282 . -804) 74079) ((-282 . -806) 74004) ((-281 . -804) 73965) ((-281 . -806) NIL) ((-728 . -278) 73930) ((-287 . -648) 73771) ((-292 . -291) 73748) ((-450 . -97) T) ((-441 . -25) T) ((-441 . -21) T) ((-373 . -37) 73722) ((-282 . -950) 73390) ((-199 . -1090) T) ((-199 . -1093) T) ((-3 . -555) 73372) ((-281 . -950) 73302) ((-2 . -1001) T) ((-2 . |RecordCategory|) T) ((-762 . -555) 73284) ((-1013 . -965) 73215) ((-527 . -841) T) ((-501 . -750) T) ((-501 . -841) T) ((-458 . -841) T) ((-126 . -950) 73199) ((-199 . -91) T) ((-152 . -134) 73178) ((-74 . -408) T) ((0 . -555) 73160) ((-74 . -364) T) ((-152 . -132) 73111) ((-199 . -34) T) ((-48 . -555) 73093) ((-444 . -965) T) ((-452 . -204) 73075) ((-449 . -884) 73059) ((-448 . -775) 73038) ((-192 . -204) 73020) ((-79 . -408) T) ((-79 . -364) T) ((-1041 . -33) T) ((-745 . -156) 72999) ((-662 . -97) T) ((-939 . -555) 72966) ((-463 . -256) 72941) ((-282 . -345) 72911) ((-281 . -345) 72872) ((-281 . -306) 72833) ((-746 . -870) 72780) ((-587 . -123) T) ((-1118 . -132) 72759) ((-1118 . -134) 72738) ((-1068 . -97) T) ((-1067 . -97) T) ((-1061 . -97) T) ((-1054 . -1001) T) ((-1024 . -97) T) ((-196 . -33) T) ((-259 . -648) 72725) ((-1054 . -552) 72701) ((-538 . -278) NIL) ((-449 . -1001) 72679) ((-358 . -555) 72661) ((-473 . -777) T) ((-1045 . -202) 72611) ((-1139 . -1142) 72595) ((-1139 . -1128) 72572) ((-1130 . -1134) 72533) ((-1130 . -1128) 72503) ((-1130 . -1132) 72487) ((-1109 . -1113) 72448) ((-1109 . -1128) 72425) ((-558 . -555) 72407) ((-1109 . -1111) 72391) ((-630 . -841) T) ((-1068 . -254) 72357) ((-1067 . -254) 72323) ((-1061 . -254) 72289) ((-983 . -1001) T) ((-968 . -1001) T) ((-47 . -267) T) ((-282 . -820) 72256) ((-281 . -820) NIL) ((-968 . -974) 72235) ((-1018 . -806) 72217) ((-728 . -37) 72201) ((-235 . -577) 72149) ((-220 . -577) 72097) ((-632 . -964) 72084) ((-540 . -1128) 72061) ((-1024 . -254) 72027) ((-287 . -156) 71958) ((-327 . -1001) T) ((-322 . -1001) T) ((-314 . -1001) T) ((-463 . -19) 71940) ((-1018 . -950) 71922) ((-997 . -138) 71906) ((-103 . -1001) T) ((-111 . -964) 71893) ((-642 . -331) T) ((-463 . -548) 71868) ((-632 . -106) 71853) ((-405 . -97) T) ((-44 . -1044) 71803) ((-111 . -106) 71788) ((-571 . -651) T) ((-549 . -651) T) ((-745 . -476) 71721) ((-948 . -1104) T) ((-863 . -138) 71705) ((-481 . -97) 71655) ((-989 . -1108) 71634) ((-444 . -555) 71586) ((-444 . -556) 71508) ((-61 . -1104) T) ((-711 . -1108) 71487) ((-710 . -1108) 71466) ((-1064 . -419) 71397) ((-1053 . -1001) T) ((-1037 . -583) 71371) ((-989 . -508) 71302) ((-448 . -380) 71271) ((-562 . -841) 71250) ((-421 . -1108) 71229) ((-1023 . -419) 71180) ((-366 . -555) 71162) ((-609 . -476) 71095) ((-711 . -508) 71006) ((-710 . -508) 70937) ((-662 . -278) 70924) ((-599 . -25) T) ((-599 . -21) T) ((-421 . -508) 70855) ((-112 . -841) T) ((-112 . -750) NIL) ((-323 . -25) T) ((-323 . -21) T) ((-321 . -25) T) ((-321 . -21) T) ((-313 . -25) T) ((-313 . -21) T) ((-235 . -25) T) ((-235 . -21) T) ((-82 . -353) T) ((-82 . -364) T) ((-220 . -25) T) ((-220 . -21) T) ((-1152 . -555) 70837) ((-1097 . -1012) T) ((-1097 . -23) T) ((-1061 . -278) 70722) ((-1024 . -278) 70709) ((-788 . -583) 70669) ((-983 . -648) 70537) ((-863 . -895) 70521) ((-259 . -156) T) ((-826 . -21) T) ((-826 . -25) T) ((-794 . -777) 70472) ((-642 . -1012) T) ((-642 . -23) T) ((-582 . -1001) 70450) ((-570 . -552) 70425) ((-570 . -1001) T) ((-528 . -1108) T) ((-479 . -1108) T) ((-528 . -508) T) ((-479 . -508) T) ((-327 . -648) 70377) ((-322 . -648) 70329) ((-157 . -964) 70261) ((-307 . -964) 70245) ((-103 . -648) 70195) ((-157 . -106) 70094) ((-314 . -648) 70046) ((-307 . -106) 70025) ((-245 . -1001) T) ((-244 . -1001) T) ((-243 . -1001) T) ((-242 . -1001) T) ((-632 . -959) T) ((-241 . -1001) T) ((-240 . -1001) T) ((-239 . -1001) T) ((-188 . -1001) T) ((-187 . -1001) T) ((-185 . -1001) T) ((-152 . -1093) 70003) ((-152 . -1090) 69981) ((-184 . -1001) T) ((-183 . -1001) T) ((-111 . -959) T) ((-182 . -1001) T) ((-179 . -1001) T) ((-632 . -206) T) ((-178 . -1001) T) ((-177 . -1001) T) ((-176 . -1001) T) ((-175 . -1001) T) ((-174 . -1001) T) ((-173 . -1001) T) ((-172 . -1001) T) ((-171 . -1001) T) ((-170 . -1001) T) ((-169 . -1001) T) ((-212 . -97) 69792) ((-152 . -34) 69770) ((-152 . -91) 69748) ((-591 . -950) 69646) ((-448 . -965) 69577) ((-1013 . -1001) 69388) ((-1037 . -33) T) ((-605 . -454) 69372) ((-71 . -1104) T) ((-100 . -555) 69354) ((-1171 . -555) 69336) ((-350 . -555) 69318) ((-522 . -1093) T) ((-522 . -1090) T) ((-662 . -37) 69167) ((-487 . -555) 69149) ((-481 . -278) 69087) ((-463 . -555) 69069) ((-463 . -556) 69051) ((-1061 . -1046) NIL) ((-940 . -977) 69020) ((-940 . -1001) T) ((-918 . -97) T) ((-886 . -97) T) ((-834 . -97) T) ((-813 . -950) 68997) ((-1037 . -657) T) ((-917 . -583) 68942) ((-443 . -1001) T) ((-430 . -1001) T) ((-530 . -23) T) ((-522 . -34) T) ((-522 . -91) T) ((-397 . -97) T) ((-970 . -202) 68888) ((-1068 . -37) 68785) ((-788 . -657) T) ((-625 . -841) T) ((-474 . -25) T) ((-469 . -21) T) ((-469 . -25) T) ((-1067 . -37) 68626) ((-307 . -959) T) ((-1061 . -37) 68422) ((-983 . -156) T) ((-157 . -959) T) ((-1024 . -37) 68319) ((-643 . -46) 68296) ((-327 . -156) T) ((-322 . -156) T) ((-480 . -55) 68270) ((-460 . -55) 68220) ((-320 . -1165) 68197) ((-199 . -419) T) ((-287 . -260) 68148) ((-314 . -156) T) ((-157 . -216) T) ((-1114 . -777) 68047) ((-103 . -156) T) ((-794 . -906) 68031) ((-589 . -1012) T) ((-528 . -331) T) ((-528 . -297) 68018) ((-479 . -297) 67995) ((-479 . -331) T) ((-282 . -276) 67974) ((-281 . -276) T) ((-546 . -777) 67953) ((-1013 . -648) 67895) ((-481 . -252) 67879) ((-589 . -23) T) ((-373 . -204) 67863) ((-281 . -933) NIL) ((-301 . -23) T) ((-98 . -924) 67847) ((-44 . -35) 67826) ((-553 . -1001) T) ((-320 . -336) T) ((-458 . -27) T) ((-212 . -278) 67764) ((-989 . -1012) T) ((-1170 . -583) 67738) ((-711 . -1012) T) ((-710 . -1012) T) ((-421 . -1012) T) ((-969 . -419) T) ((-866 . -419) 67689) ((-105 . -1001) T) ((-989 . -23) T) ((-747 . -965) T) ((-711 . -23) T) ((-710 . -23) T) ((-447 . -419) 67640) ((-1054 . -476) 67388) ((-350 . -352) 67367) ((-1072 . -380) 67351) ((-428 . -23) T) ((-421 . -23) T) ((-449 . -476) 67284) ((-259 . -260) T) ((-986 . -555) 67266) ((-375 . -830) 67245) ((-49 . -1012) T) ((-937 . -841) T) ((-917 . -657) T) ((-643 . -806) NIL) ((-528 . -1012) T) ((-479 . -1012) T) ((-769 . -583) 67218) ((-1097 . -123) T) ((-1061 . -368) 67170) ((-918 . -278) NIL) ((-745 . -454) 67154) ((-308 . -841) T) ((-1048 . -33) T) ((-375 . -583) 67106) ((-49 . -23) T) ((-642 . -123) T) ((-643 . -950) 66989) ((-528 . -23) T) ((-103 . -476) NIL) ((-479 . -23) T) ((-152 . -378) 66960) ((-1035 . -1001) T) ((-1162 . -1161) 66944) ((-632 . -727) T) ((-632 . -722) T) ((-346 . -134) T) ((-1018 . -276) T) ((-1114 . -906) 66914) ((-47 . -841) T) ((-609 . -454) 66898) ((-222 . -1156) 66868) ((-221 . -1156) 66838) ((-1070 . -777) T) ((-1013 . -156) 66817) ((-1018 . -933) T) ((-956 . -33) T) ((-764 . -134) 66796) ((-764 . -132) 66775) ((-667 . -102) 66759) ((-553 . -124) T) ((-448 . -1001) 66570) ((-1072 . -965) T) ((-793 . -419) T) ((-84 . -1104) T) ((-212 . -37) 66540) ((-128 . -102) 66522) ((-643 . -345) 66506) ((-1018 . -500) T) ((-358 . -964) 66490) ((-1170 . -657) T) ((-1064 . -870) 66460) ((-50 . -555) 66442) ((-1023 . -870) 66409) ((-590 . -380) 66393) ((-1159 . -965) T) ((-558 . -964) 66377) ((-587 . -25) T) ((-587 . -21) T) ((-1053 . -476) NIL) ((-1139 . -97) T) ((-1130 . -97) T) ((-358 . -106) 66356) ((-196 . -225) 66340) ((-1109 . -97) T) ((-962 . -1001) T) ((-918 . -1046) T) ((-962 . -961) 66280) ((-748 . -1001) T) ((-312 . -1108) T) ((-571 . -583) 66264) ((-558 . -106) 66243) ((-549 . -583) 66227) ((-541 . -97) T) ((-530 . -123) T) ((-540 . -97) T) ((-383 . -1001) T) ((-349 . -1001) T) ((-582 . -476) 66160) ((-570 . -476) 65968) ((-762 . -959) 65947) ((-578 . -138) 65931) ((-312 . -508) T) ((-643 . -820) 65875) ((-502 . -202) 65825) ((-1139 . -254) 65791) ((-983 . -260) 65742) ((-452 . -775) T) ((-197 . -1012) T) ((-1130 . -254) 65708) ((-1109 . -254) 65674) ((-918 . -37) 65624) ((-192 . -775) T) ((-1097 . -456) 65590) ((-834 . -37) 65542) ((-769 . -724) 65521) ((-769 . -721) 65500) ((-769 . -657) 65479) ((-327 . -260) T) ((-322 . -260) T) ((-314 . -260) T) ((-152 . -419) 65410) ((-397 . -37) 65394) ((-103 . -260) T) ((-197 . -23) T) ((-375 . -724) 65373) ((-375 . -721) 65352) ((-375 . -657) T) ((-463 . -258) 65327) ((-444 . -964) 65292) ((-589 . -123) T) ((-1013 . -476) 65225) ((-301 . -123) T) ((-152 . -370) 65204) ((-448 . -648) 65146) ((-745 . -256) 65123) ((-444 . -106) 65072) ((-590 . -965) T) ((-1118 . -419) 65003) ((-989 . -123) T) ((-235 . -777) 64982) ((-220 . -777) 64961) ((-711 . -123) T) ((-710 . -123) T) ((-522 . -419) T) ((-962 . -648) 64903) ((-558 . -959) T) ((-940 . -476) 64836) ((-428 . -123) T) ((-421 . -123) T) ((-44 . -1001) T) ((-349 . -648) 64806) ((-747 . -1001) T) ((-443 . -476) 64739) ((-430 . -476) 64672) ((-420 . -335) 64642) ((-44 . -552) 64621) ((-282 . -267) T) ((-605 . -555) 64583) ((-56 . -777) 64562) ((-1109 . -278) 64447) ((-918 . -368) 64429) ((-745 . -548) 64406) ((-478 . -777) 64385) ((-459 . -777) 64364) ((-39 . -1108) T) ((-910 . -950) 64262) ((-49 . -123) T) ((-528 . -123) T) ((-479 . -123) T) ((-262 . -583) 64124) ((-312 . -297) 64101) ((-312 . -331) T) ((-290 . -291) 64078) ((-287 . -256) 64063) ((-39 . -508) T) ((-346 . -1090) T) ((-346 . -1093) T) ((-948 . -1081) 64038) ((-1077 . -208) 63988) ((-1061 . -204) 63940) ((-298 . -1001) T) ((-346 . -91) T) ((-346 . -34) T) ((-948 . -102) 63886) ((-444 . -959) T) ((-445 . -208) 63836) ((-1054 . -454) 63770) ((-1171 . -964) 63754) ((-350 . -964) 63738) ((-444 . -216) T) ((-746 . -97) T) ((-645 . -134) 63717) ((-645 . -132) 63696) ((-449 . -454) 63680) ((-450 . -304) 63649) ((-1171 . -106) 63628) ((-472 . -1001) T) ((-448 . -156) 63607) ((-910 . -345) 63591) ((-381 . -97) T) ((-350 . -106) 63570) ((-910 . -306) 63554) ((-250 . -898) 63538) ((-249 . -898) 63522) ((-1168 . -555) 63504) ((-1167 . -555) 63486) ((-105 . -476) NIL) ((-1064 . -1125) 63470) ((-781 . -779) 63454) ((-1072 . -1001) T) ((-98 . -1104) T) ((-866 . -870) 63415) ((-747 . -648) 63352) ((-1109 . -1046) NIL) ((-447 . -870) 63297) ((-969 . -130) T) ((-58 . -97) 63275) ((-43 . -555) 63257) ((-73 . -555) 63239) ((-320 . -583) 63184) ((-1159 . -1001) T) ((-474 . -777) T) ((-312 . -1012) T) ((-264 . -1001) T) ((-910 . -820) 63143) ((-264 . -552) 63122) ((-1139 . -37) 63019) ((-1130 . -37) 62860) ((-452 . -965) T) ((-1109 . -37) 62656) ((-192 . -965) T) ((-312 . -23) T) ((-139 . -555) 62638) ((-762 . -727) 62617) ((-762 . -722) 62596) ((-541 . -37) 62569) ((-540 . -37) 62466) ((-791 . -508) T) ((-197 . -123) T) ((-287 . -916) 62432) ((-77 . -555) 62414) ((-643 . -276) 62393) ((-262 . -657) 62296) ((-756 . -97) T) ((-787 . -771) T) ((-262 . -440) 62275) ((-1162 . -97) T) ((-39 . -331) T) ((-794 . -134) 62254) ((-794 . -132) 62233) ((-1053 . -454) 62215) ((-1171 . -959) T) ((-448 . -476) 62148) ((-1041 . -1104) T) ((-883 . -555) 62130) ((-582 . -454) 62114) ((-570 . -454) 62046) ((-745 . -555) 61825) ((-47 . -27) T) ((-1072 . -648) 61722) ((-590 . -1001) T) ((-405 . -333) 61696) ((-997 . -97) T) ((-746 . -278) 61683) ((-787 . -1001) T) ((-1167 . -352) 61655) ((-962 . -476) 61588) ((-1054 . -256) 61564) ((-212 . -204) 61534) ((-1159 . -648) 61504) ((-747 . -156) 61483) ((-558 . -727) 61462) ((-558 . -722) 61441) ((-1102 . -555) 61388) ((-196 . -1104) T) ((-609 . -555) 61355) ((-1048 . -924) 61339) ((-320 . -657) T) ((-863 . -97) 61289) ((-1109 . -368) 61241) ((-1013 . -454) 61225) ((-58 . -278) 61163) ((-299 . -97) T) ((-1097 . -21) T) ((-1097 . -25) T) ((-39 . -1012) T) ((-642 . -21) T) ((-565 . -555) 61145) ((-477 . -291) 61124) ((-642 . -25) T) ((-103 . -256) NIL) ((-839 . -1012) T) ((-39 . -23) T) ((-701 . -1012) T) ((-501 . -1108) T) ((-458 . -1108) T) ((-287 . -555) 61106) ((-918 . -204) 61088) ((-152 . -150) 61072) ((-527 . -508) T) ((-501 . -508) T) ((-458 . -508) T) ((-701 . -23) T) ((-1135 . -134) 61051) ((-1054 . -548) 61027) ((-1135 . -132) 61006) ((-940 . -454) 60990) ((-1114 . -132) 60915) ((-1114 . -134) 60840) ((-1162 . -1169) 60819) ((-443 . -454) 60803) ((-430 . -454) 60787) ((-484 . -33) T) ((-590 . -648) 60757) ((-587 . -777) 60736) ((-1072 . -156) 60687) ((-332 . -97) T) ((-212 . -211) 60666) ((-222 . -97) T) ((-221 . -97) T) ((-1118 . -870) 60636) ((-104 . -97) T) ((-218 . -777) 60615) ((-746 . -37) 60464) ((-44 . -476) 60224) ((-1053 . -256) 60199) ((-189 . -1001) T) ((-1045 . -1001) T) ((-1045 . -552) 60178) ((-530 . -25) T) ((-530 . -21) T) ((-997 . -278) 60116) ((-875 . -380) 60100) ((-630 . -1108) T) ((-570 . -256) 60075) ((-989 . -577) 60023) ((-711 . -577) 59971) ((-710 . -577) 59919) ((-312 . -123) T) ((-259 . -555) 59901) ((-630 . -508) T) ((-822 . -1001) T) ((-791 . -1012) T) ((-421 . -577) 59849) ((-822 . -824) 59833) ((-346 . -419) T) ((-452 . -1001) T) ((-632 . -583) 59820) ((-863 . -278) 59758) ((-192 . -1001) T) ((-282 . -841) 59737) ((-281 . -841) T) ((-281 . -750) NIL) ((-358 . -651) T) ((-791 . -23) T) ((-111 . -583) 59724) ((-441 . -132) 59703) ((-373 . -380) 59687) ((-441 . -134) 59666) ((-105 . -454) 59648) ((-2 . -555) 59630) ((-1053 . -19) 59612) ((-1053 . -548) 59587) ((-589 . -21) T) ((-589 . -25) T) ((-538 . -1039) T) ((-1013 . -256) 59564) ((-301 . -25) T) ((-301 . -21) T) ((-458 . -331) T) ((-1162 . -37) 59534) ((-1037 . -1104) T) ((-570 . -548) 59509) ((-989 . -25) T) ((-989 . -21) T) ((-487 . -722) T) ((-487 . -727) T) ((-112 . -1108) T) ((-875 . -965) T) ((-562 . -508) T) ((-666 . -965) T) ((-646 . -965) T) ((-711 . -25) T) ((-711 . -21) T) ((-710 . -21) T) ((-710 . -25) T) ((-605 . -964) 59493) ((-428 . -25) T) ((-112 . -508) T) ((-428 . -21) T) ((-421 . -25) T) ((-421 . -21) T) ((-1037 . -950) 59391) ((-747 . -260) 59370) ((-754 . -1001) T) ((-605 . -106) 59349) ((-264 . -476) 59109) ((-1168 . -964) 59093) ((-1167 . -964) 59077) ((-222 . -278) 59015) ((-221 . -278) 58953) ((-1116 . -97) 58931) ((-1054 . -556) NIL) ((-1054 . -555) 58913) ((-1135 . -1090) 58879) ((-1135 . -1093) 58845) ((-1114 . -1090) 58811) ((-1114 . -1093) 58777) ((-1109 . -204) 58729) ((-1037 . -345) 58713) ((-1018 . -750) T) ((-1018 . -841) T) ((-1013 . -548) 58690) ((-983 . -556) 58674) ((-449 . -555) 58641) ((-745 . -258) 58618) ((-550 . -138) 58565) ((-373 . -965) T) ((-452 . -648) 58515) ((-448 . -454) 58499) ((-295 . -777) 58478) ((-307 . -583) 58452) ((-49 . -21) T) ((-49 . -25) T) ((-192 . -648) 58402) ((-152 . -655) 58373) ((-157 . -583) 58305) ((-528 . -21) T) ((-528 . -25) T) ((-479 . -25) T) ((-479 . -21) T) ((-442 . -138) 58255) ((-983 . -555) 58237) ((-968 . -555) 58219) ((-908 . -97) T) ((-786 . -97) T) ((-728 . -380) 58183) ((-39 . -123) T) ((-630 . -331) T) ((-188 . -815) T) ((-632 . -724) T) ((-632 . -721) T) ((-527 . -1012) T) ((-501 . -1012) T) ((-458 . -1012) T) ((-632 . -657) T) ((-327 . -555) 58165) ((-322 . -555) 58147) ((-314 . -555) 58129) ((-64 . -365) T) ((-64 . -364) T) ((-103 . -556) 58059) ((-103 . -555) 58041) ((-187 . -815) T) ((-877 . -138) 58025) ((-1135 . -91) 57991) ((-701 . -123) T) ((-125 . -657) T) ((-111 . -657) T) ((-1135 . -34) 57957) ((-962 . -454) 57941) ((-527 . -23) T) ((-501 . -23) T) ((-458 . -23) T) ((-1114 . -91) 57907) ((-1114 . -34) 57873) ((-1064 . -97) T) ((-1023 . -97) T) ((-781 . -97) T) ((-1168 . -106) 57852) ((-1167 . -106) 57831) ((-43 . -964) 57815) ((-1118 . -1125) 57799) ((-782 . -779) 57783) ((-1072 . -260) 57762) ((-105 . -256) 57737) ((-1037 . -820) 57696) ((-43 . -106) 57675) ((-605 . -959) T) ((-1053 . -556) NIL) ((-1053 . -555) 57657) ((-970 . -552) 57632) ((-970 . -1001) T) ((-72 . -408) T) ((-72 . -364) T) ((-605 . -206) 57611) ((-139 . -964) 57595) ((-522 . -506) 57579) ((-323 . -134) 57558) ((-323 . -132) 57509) ((-321 . -134) 57488) ((-634 . -1001) T) ((-321 . -132) 57439) ((-313 . -134) 57418) ((-313 . -132) 57369) ((-235 . -132) 57348) ((-235 . -134) 57327) ((-222 . -37) 57297) ((-220 . -134) 57276) ((-112 . -331) T) ((-220 . -132) 57255) ((-221 . -37) 57225) ((-139 . -106) 57204) ((-917 . -950) 57081) ((-1061 . -775) NIL) ((-625 . -1108) T) ((-728 . -965) T) ((-630 . -1012) T) ((-1168 . -959) T) ((-1167 . -959) T) ((-1048 . -1104) T) ((-917 . -345) 57058) ((-826 . -132) T) ((-826 . -134) 57040) ((-791 . -123) T) ((-745 . -964) 56938) ((-625 . -508) T) ((-630 . -23) T) ((-582 . -555) 56905) ((-582 . -556) 56866) ((-570 . -556) NIL) ((-570 . -555) 56848) ((-452 . -156) T) ((-197 . -21) T) ((-192 . -156) T) ((-197 . -25) T) ((-441 . -1093) 56814) ((-441 . -1090) 56780) ((-245 . -555) 56762) ((-244 . -555) 56744) ((-243 . -555) 56726) ((-242 . -555) 56708) ((-241 . -555) 56690) ((-463 . -586) 56672) ((-240 . -555) 56654) ((-307 . -657) T) ((-239 . -555) 56636) ((-105 . -19) 56618) ((-157 . -657) T) ((-463 . -340) 56600) ((-188 . -555) 56582) ((-481 . -1044) 56566) ((-463 . -118) T) ((-105 . -548) 56541) ((-187 . -555) 56523) ((-441 . -34) 56489) ((-441 . -91) 56455) ((-185 . -555) 56437) ((-184 . -555) 56419) ((-183 . -555) 56401) ((-182 . -555) 56383) ((-179 . -555) 56365) ((-178 . -555) 56347) ((-177 . -555) 56329) ((-176 . -555) 56311) ((-175 . -555) 56293) ((-174 . -555) 56275) ((-173 . -555) 56257) ((-490 . -1004) 56209) ((-172 . -555) 56191) ((-171 . -555) 56173) ((-44 . -454) 56110) ((-170 . -555) 56092) ((-169 . -555) 56074) ((-745 . -106) 55965) ((-578 . -97) 55915) ((-448 . -256) 55892) ((-1013 . -555) 55671) ((-1002 . -1001) T) ((-956 . -1104) T) ((-562 . -1012) T) ((-1170 . -950) 55655) ((-1064 . -278) 55642) ((-1023 . -278) 55629) ((-112 . -1012) T) ((-749 . -97) T) ((-562 . -23) T) ((-1045 . -476) 55389) ((-354 . -97) T) ((-292 . -97) T) ((-917 . -820) 55341) ((-875 . -1001) T) ((-139 . -959) T) ((-112 . -23) T) ((-662 . -380) 55325) ((-666 . -1001) T) ((-646 . -1001) T) ((-634 . -124) T) ((-420 . -1001) T) ((-282 . -389) 55309) ((-375 . -1104) T) ((-940 . -556) 55270) ((-937 . -1108) T) ((-199 . -97) T) ((-940 . -555) 55232) ((-746 . -204) 55216) ((-937 . -508) T) ((-762 . -583) 55189) ((-308 . -1108) T) ((-443 . -555) 55151) ((-443 . -556) 55112) ((-430 . -556) 55073) ((-430 . -555) 55035) ((-375 . -804) 55019) ((-287 . -964) 54854) ((-375 . -806) 54779) ((-769 . -950) 54677) ((-452 . -476) NIL) ((-448 . -548) 54654) ((-308 . -508) T) ((-192 . -476) NIL) ((-794 . -419) T) ((-373 . -1001) T) ((-375 . -950) 54521) ((-287 . -106) 54335) ((-625 . -331) T) ((-199 . -254) T) ((-47 . -1108) T) ((-745 . -959) 54266) ((-527 . -123) T) ((-501 . -123) T) ((-458 . -123) T) ((-47 . -508) T) ((-1054 . -258) 54242) ((-1064 . -1046) 54220) ((-282 . -27) 54199) ((-969 . -97) T) ((-745 . -206) 54152) ((-212 . -775) 54131) ((-866 . -97) T) ((-644 . -97) T) ((-264 . -454) 54068) ((-447 . -97) T) ((-662 . -965) T) ((-553 . -555) 54050) ((-553 . -556) 53911) ((-375 . -345) 53895) ((-375 . -306) 53879) ((-1064 . -37) 53708) ((-1023 . -37) 53557) ((-781 . -37) 53527) ((-358 . -583) 53511) ((-578 . -278) 53449) ((-875 . -648) 53346) ((-196 . -102) 53330) ((-44 . -256) 53255) ((-666 . -648) 53225) ((-558 . -583) 53199) ((-280 . -1001) T) ((-259 . -964) 53186) ((-105 . -555) 53168) ((-105 . -556) 53150) ((-420 . -648) 53120) ((-746 . -224) 53059) ((-621 . -1001) 53037) ((-502 . -1001) T) ((-1068 . -965) T) ((-1067 . -965) T) ((-259 . -106) 53022) ((-1061 . -965) T) ((-1024 . -965) T) ((-502 . -552) 53001) ((-918 . -775) T) ((-625 . -1012) T) ((-1097 . -671) 52977) ((-287 . -959) T) ((-312 . -25) T) ((-312 . -21) T) ((-375 . -820) 52936) ((-66 . -1104) T) ((-762 . -724) 52915) ((-373 . -648) 52889) ((-728 . -1001) T) ((-762 . -721) 52868) ((-630 . -123) T) ((-643 . -841) 52847) ((-625 . -23) T) ((-452 . -260) T) ((-762 . -657) 52826) ((-287 . -206) 52778) ((-287 . -216) 52757) ((-192 . -260) T) ((-937 . -331) T) ((-1135 . -419) 52736) ((-1114 . -419) 52715) ((-308 . -297) 52692) ((-308 . -331) T) ((-1035 . -555) 52674) ((-44 . -1138) 52624) ((-793 . -97) T) ((-578 . -252) 52608) ((-630 . -967) T) ((-444 . -583) 52573) ((-435 . -1001) T) ((-44 . -548) 52498) ((-1053 . -258) 52473) ((-39 . -577) 52407) ((-47 . -331) T) ((-1006 . -555) 52389) ((-989 . -777) 52368) ((-570 . -258) 52343) ((-711 . -777) 52322) ((-710 . -777) 52301) ((-448 . -555) 52080) ((-212 . -380) 52049) ((-866 . -278) 52036) ((-421 . -777) 52015) ((-63 . -1104) T) ((-562 . -123) T) ((-447 . -278) 52002) ((-970 . -476) 51810) ((-259 . -959) T) ((-112 . -123) T) ((-420 . -692) T) ((-875 . -156) 51761) ((-983 . -964) 51671) ((-558 . -724) 51650) ((-538 . -1001) T) ((-558 . -721) 51629) ((-558 . -657) T) ((-264 . -256) 51608) ((-262 . -1104) T) ((-962 . -555) 51570) ((-962 . -556) 51531) ((-937 . -1012) T) ((-152 . -97) T) ((-246 . -777) T) ((-748 . -555) 51513) ((-1060 . -1001) T) ((-1013 . -258) 51490) ((-997 . -202) 51474) ((-728 . -648) 51458) ((-327 . -964) 51410) ((-322 . -964) 51362) ((-308 . -1012) T) ((-383 . -555) 51344) ((-349 . -555) 51326) ((-314 . -964) 51278) ((-917 . -276) T) ((-983 . -106) 51167) ((-937 . -23) T) ((-103 . -964) 51117) ((-818 . -97) T) ((-768 . -97) T) ((-738 . -97) T) ((-699 . -97) T) ((-610 . -97) T) ((-441 . -419) 51096) ((-373 . -156) T) ((-327 . -106) 51027) ((-322 . -106) 50958) ((-314 . -106) 50889) ((-222 . -204) 50859) ((-221 . -204) 50829) ((-308 . -23) T) ((-69 . -1104) T) ((-199 . -37) 50794) ((-103 . -106) 50721) ((-39 . -25) T) ((-39 . -21) T) ((-605 . -651) T) ((-152 . -254) 50699) ((-47 . -1012) T) ((-839 . -25) T) ((-701 . -25) T) ((-1045 . -454) 50636) ((-450 . -1001) T) ((-1171 . -583) 50610) ((-1118 . -97) T) ((-782 . -97) T) ((-212 . -965) 50541) ((-969 . -1046) T) ((-883 . -722) 50494) ((-350 . -583) 50478) ((-47 . -23) T) ((-883 . -727) 50431) ((-745 . -727) 50382) ((-745 . -722) 50333) ((-264 . -548) 50312) ((-444 . -657) T) ((-522 . -97) T) ((-793 . -278) 50256) ((-590 . -256) 50235) ((-107 . -597) T) ((-75 . -1104) T) ((-969 . -37) 50222) ((-599 . -342) 50201) ((-866 . -37) 50050) ((-662 . -1001) T) ((-447 . -37) 49899) ((-80 . -1104) T) ((-522 . -254) T) ((-1109 . -775) NIL) ((-1068 . -1001) T) ((-1067 . -1001) T) ((-1061 . -1001) T) ((-320 . -950) 49876) ((-983 . -959) T) ((-918 . -965) T) ((-44 . -555) 49858) ((-44 . -556) NIL) ((-834 . -965) T) ((-747 . -555) 49840) ((-1042 . -97) 49818) ((-983 . -216) 49769) ((-397 . -965) T) ((-327 . -959) T) ((-322 . -959) T) ((-332 . -333) 49746) ((-314 . -959) T) ((-222 . -211) 49725) ((-221 . -211) 49704) ((-104 . -333) 49678) ((-983 . -206) 49603) ((-1024 . -1001) T) ((-262 . -820) 49562) ((-103 . -959) T) ((-625 . -123) T) ((-373 . -476) 49404) ((-327 . -206) 49383) ((-327 . -216) T) ((-43 . -651) T) ((-322 . -206) 49362) ((-322 . -216) T) ((-314 . -206) 49341) ((-314 . -216) T) ((-152 . -278) 49306) ((-103 . -216) T) ((-103 . -206) T) ((-287 . -722) T) ((-791 . -21) T) ((-791 . -25) T) ((-375 . -276) T) ((-463 . -33) T) ((-105 . -258) 49281) ((-1013 . -964) 49179) ((-793 . -1046) NIL) ((-298 . -555) 49161) ((-375 . -933) 49140) ((-1013 . -106) 49031) ((-405 . -1001) T) ((-1171 . -657) T) ((-62 . -555) 49013) ((-793 . -37) 48958) ((-484 . -1104) T) ((-546 . -138) 48942) ((-472 . -555) 48924) ((-1118 . -278) 48911) ((-662 . -648) 48760) ((-487 . -723) T) ((-487 . -724) T) ((-501 . -577) 48742) ((-458 . -577) 48702) ((-323 . -419) T) ((-321 . -419) T) ((-313 . -419) T) ((-235 . -419) 48653) ((-481 . -1001) 48603) ((-220 . -419) 48554) ((-1045 . -256) 48533) ((-1072 . -555) 48515) ((-621 . -476) 48448) ((-875 . -260) 48427) ((-502 . -476) 48187) ((-1064 . -204) 48171) ((-152 . -1046) 48150) ((-1159 . -555) 48132) ((-1068 . -648) 48029) ((-1067 . -648) 47870) ((-810 . -97) T) ((-1061 . -648) 47666) ((-1024 . -648) 47563) ((-1048 . -608) 47547) ((-323 . -370) 47498) ((-321 . -370) 47449) ((-313 . -370) 47400) ((-937 . -123) T) ((-728 . -476) 47312) ((-264 . -556) NIL) ((-264 . -555) 47294) ((-826 . -419) T) ((-883 . -336) 47247) ((-745 . -336) 47226) ((-473 . -471) 47205) ((-470 . -471) 47184) ((-452 . -256) NIL) ((-448 . -258) 47161) ((-373 . -260) T) ((-308 . -123) T) ((-192 . -256) NIL) ((-625 . -456) NIL) ((-94 . -1012) T) ((-152 . -37) 46989) ((-1135 . -888) 46952) ((-1042 . -278) 46890) ((-1114 . -888) 46860) ((-826 . -370) T) ((-1013 . -959) 46791) ((-1136 . -508) T) ((-1045 . -548) 46770) ((-107 . -777) T) ((-970 . -454) 46702) ((-527 . -21) T) ((-527 . -25) T) ((-501 . -21) T) ((-501 . -25) T) ((-458 . -25) T) ((-458 . -21) T) ((-1118 . -1046) 46680) ((-1013 . -206) 46633) ((-47 . -123) T) ((-1086 . -97) T) ((-212 . -1001) 46444) ((-793 . -368) 46421) ((-990 . -97) T) ((-979 . -97) T) ((-550 . -97) T) ((-442 . -97) T) ((-1118 . -37) 46250) ((-782 . -37) 46220) ((-662 . -156) 46131) ((-590 . -555) 46113) ((-522 . -37) 46100) ((-877 . -97) 46050) ((-787 . -555) 46032) ((-787 . -556) 45954) ((-538 . -476) NIL) ((-1139 . -965) T) ((-1130 . -965) T) ((-1109 . -965) T) ((-541 . -965) T) ((-540 . -965) T) ((-1175 . -1012) T) ((-1068 . -156) 45905) ((-1067 . -156) 45836) ((-1061 . -156) 45767) ((-1024 . -156) 45718) ((-918 . -1001) T) ((-886 . -1001) T) ((-834 . -1001) T) ((-1097 . -134) 45697) ((-728 . -726) 45681) ((-630 . -25) T) ((-630 . -21) T) ((-112 . -577) 45658) ((-632 . -806) 45640) ((-397 . -1001) T) ((-282 . -1108) 45619) ((-281 . -1108) T) ((-152 . -368) 45603) ((-1097 . -132) 45582) ((-441 . -888) 45545) ((-70 . -555) 45527) ((-103 . -727) T) ((-103 . -722) T) ((-282 . -508) 45506) ((-632 . -950) 45488) ((-281 . -508) T) ((-1175 . -23) T) ((-125 . -950) 45470) ((-448 . -964) 45368) ((-44 . -258) 45293) ((-212 . -648) 45235) ((-448 . -106) 45126) ((-993 . -97) 45104) ((-947 . -97) T) ((-578 . -751) 45083) ((-662 . -476) 45021) ((-962 . -964) 45005) ((-562 . -21) T) ((-562 . -25) T) ((-970 . -256) 44980) ((-329 . -97) T) ((-290 . -97) T) ((-605 . -583) 44954) ((-349 . -964) 44938) ((-962 . -106) 44917) ((-746 . -380) 44901) ((-112 . -25) T) ((-87 . -555) 44883) ((-112 . -21) T) ((-550 . -278) 44678) ((-442 . -278) 44482) ((-1045 . -556) NIL) ((-349 . -106) 44461) ((-346 . -97) T) ((-189 . -555) 44443) ((-1045 . -555) 44425) ((-918 . -648) 44375) ((-1061 . -476) 44109) ((-834 . -648) 44061) ((-1024 . -476) 44031) ((-320 . -276) T) ((-1077 . -138) 43981) ((-877 . -278) 43919) ((-764 . -97) T) ((-397 . -648) 43903) ((-199 . -751) T) ((-758 . -97) T) ((-755 . -97) T) ((-445 . -138) 43853) ((-1135 . -1134) 43832) ((-1018 . -1108) T) ((-307 . -950) 43799) ((-1135 . -1128) 43769) ((-1135 . -1132) 43753) ((-1114 . -1113) 43732) ((-78 . -555) 43714) ((-822 . -555) 43696) ((-1114 . -1128) 43673) ((-1018 . -508) T) ((-839 . -777) T) ((-452 . -556) 43603) ((-452 . -555) 43585) ((-701 . -777) T) ((-346 . -254) T) ((-606 . -777) T) ((-1114 . -1111) 43569) ((-1136 . -1012) T) ((-192 . -556) 43499) ((-192 . -555) 43481) ((-970 . -548) 43456) ((-56 . -138) 43440) ((-478 . -138) 43424) ((-459 . -138) 43408) ((-327 . -1165) 43392) ((-322 . -1165) 43376) ((-314 . -1165) 43360) ((-282 . -331) 43339) ((-281 . -331) T) ((-448 . -959) 43270) ((-625 . -577) 43252) ((-1168 . -583) 43226) ((-1167 . -583) 43200) ((-1136 . -23) T) ((-621 . -454) 43184) ((-59 . -555) 43166) ((-1013 . -727) 43117) ((-1013 . -722) 43068) ((-502 . -454) 43005) ((-605 . -33) T) ((-448 . -206) 42958) ((-264 . -258) 42937) ((-212 . -156) 42916) ((-746 . -965) T) ((-43 . -583) 42874) ((-983 . -336) 42825) ((-662 . -260) 42756) ((-481 . -476) 42689) ((-747 . -964) 42640) ((-989 . -132) 42619) ((-327 . -336) 42598) ((-322 . -336) 42577) ((-314 . -336) 42556) ((-989 . -134) 42535) ((-793 . -204) 42512) ((-747 . -106) 42447) ((-711 . -132) 42426) ((-711 . -134) 42405) ((-235 . -870) 42372) ((-222 . -775) 42351) ((-220 . -870) 42296) ((-221 . -775) 42275) ((-710 . -132) 42254) ((-710 . -134) 42233) ((-139 . -583) 42207) ((-421 . -134) 42186) ((-421 . -132) 42165) ((-605 . -657) T) ((-754 . -555) 42147) ((-1139 . -1001) T) ((-1130 . -1001) T) ((-1109 . -1001) T) ((-1097 . -1093) 42113) ((-1097 . -1090) 42079) ((-1068 . -260) 42058) ((-1067 . -260) 42009) ((-1061 . -260) 41960) ((-1024 . -260) 41939) ((-307 . -820) 41920) ((-918 . -156) T) ((-834 . -156) T) ((-541 . -1001) T) ((-540 . -1001) T) ((-625 . -21) T) ((-625 . -25) T) ((-441 . -1132) 41904) ((-441 . -1128) 41874) ((-373 . -256) 41802) ((-282 . -1012) 41652) ((-281 . -1012) T) ((-1097 . -34) 41618) ((-1097 . -91) 41584) ((-83 . -555) 41566) ((-89 . -97) 41544) ((-1175 . -123) T) ((-528 . -132) T) ((-528 . -134) 41526) ((-479 . -134) 41508) ((-479 . -132) T) ((-282 . -23) 41361) ((-39 . -310) 41335) ((-281 . -23) T) ((-1053 . -586) 41317) ((-745 . -583) 41167) ((-1162 . -965) T) ((-1053 . -340) 41149) ((-152 . -204) 41133) ((-538 . -454) 41115) ((-212 . -476) 41048) ((-1168 . -657) T) ((-1167 . -657) T) ((-1072 . -964) 40931) ((-1072 . -106) 40793) ((-747 . -959) T) ((-477 . -97) T) ((-47 . -577) 40753) ((-473 . -97) T) ((-470 . -97) T) ((-1159 . -964) 40723) ((-947 . -37) 40707) ((-747 . -206) T) ((-747 . -216) 40686) ((-502 . -256) 40665) ((-1159 . -106) 40630) ((-1118 . -204) 40614) ((-1139 . -648) 40511) ((-970 . -556) NIL) ((-970 . -555) 40493) ((-1130 . -648) 40334) ((-1109 . -648) 40130) ((-917 . -841) T) ((-634 . -555) 40099) ((-139 . -657) T) ((-1013 . -336) 40078) ((-918 . -476) NIL) ((-222 . -380) 40047) ((-221 . -380) 40016) ((-937 . -25) T) ((-937 . -21) T) ((-541 . -648) 39989) ((-540 . -648) 39886) ((-728 . -256) 39844) ((-121 . -97) 39822) ((-762 . -950) 39720) ((-152 . -751) 39699) ((-287 . -583) 39596) ((-745 . -33) T) ((-645 . -97) T) ((-1018 . -1012) T) ((-939 . -1104) T) ((-346 . -37) 39561) ((-308 . -25) T) ((-308 . -21) T) ((-146 . -97) T) ((-142 . -97) T) ((-323 . -1156) 39545) ((-321 . -1156) 39529) ((-313 . -1156) 39513) ((-152 . -318) 39492) ((-501 . -777) T) ((-458 . -777) T) ((-1018 . -23) T) ((-86 . -555) 39474) ((-632 . -276) T) ((-764 . -37) 39444) ((-758 . -37) 39414) ((-1136 . -123) T) ((-1045 . -258) 39393) ((-883 . -723) 39346) ((-883 . -724) 39299) ((-745 . -721) 39278) ((-111 . -276) T) ((-89 . -278) 39216) ((-609 . -33) T) ((-502 . -548) 39195) ((-47 . -25) T) ((-47 . -21) T) ((-745 . -724) 39146) ((-745 . -723) 39125) ((-632 . -933) T) ((-590 . -964) 39109) ((-883 . -657) 39008) ((-745 . -657) 38939) ((-883 . -440) 38892) ((-448 . -727) 38843) ((-448 . -722) 38794) ((-826 . -1156) 38781) ((-1072 . -959) T) ((-590 . -106) 38760) ((-1072 . -294) 38737) ((-1091 . -97) 38715) ((-1002 . -555) 38697) ((-632 . -500) T) ((-746 . -1001) T) ((-1159 . -959) T) ((-381 . -1001) T) ((-222 . -965) 38628) ((-221 . -965) 38559) ((-259 . -583) 38546) ((-538 . -256) 38521) ((-621 . -618) 38479) ((-875 . -555) 38461) ((-794 . -97) T) ((-666 . -555) 38443) ((-646 . -555) 38425) ((-1139 . -156) 38376) ((-1130 . -156) 38307) ((-1109 . -156) 38238) ((-630 . -777) T) ((-918 . -260) T) ((-420 . -555) 38220) ((-565 . -657) T) ((-58 . -1001) 38198) ((-218 . -138) 38182) ((-834 . -260) T) ((-937 . -926) T) ((-565 . -440) T) ((-643 . -1108) 38161) ((-541 . -156) 38140) ((-540 . -156) 38091) ((-1148 . -777) 38070) ((-643 . -508) 37981) ((-375 . -841) T) ((-375 . -750) 37960) ((-287 . -724) T) ((-287 . -657) T) ((-373 . -555) 37942) ((-373 . -556) 37845) ((-578 . -1044) 37829) ((-105 . -586) 37811) ((-121 . -278) 37749) ((-105 . -340) 37731) ((-157 . -276) T) ((-366 . -1104) T) ((-282 . -123) 37603) ((-281 . -123) T) ((-67 . -364) T) ((-105 . -118) T) ((-481 . -454) 37587) ((-591 . -1012) T) ((-538 . -19) 37569) ((-60 . -408) T) ((-60 . -364) T) ((-756 . -1001) T) ((-538 . -548) 37544) ((-444 . -950) 37504) ((-590 . -959) T) ((-591 . -23) T) ((-1162 . -1001) T) ((-746 . -648) 37353) ((-112 . -777) NIL) ((-1064 . -380) 37337) ((-1023 . -380) 37321) ((-781 . -380) 37305) ((-1135 . -97) T) ((-1114 . -97) T) ((-1091 . -278) 37243) ((-280 . -555) 37225) ((-1109 . -476) 36959) ((-997 . -1001) T) ((-1068 . -256) 36944) ((-1067 . -256) 36929) ((-259 . -657) T) ((-103 . -830) NIL) ((-621 . -555) 36896) ((-621 . -556) 36857) ((-983 . -583) 36767) ((-545 . -555) 36749) ((-502 . -556) NIL) ((-502 . -555) 36731) ((-1061 . -256) 36579) ((-452 . -964) 36529) ((-642 . -419) T) ((-474 . -471) 36508) ((-469 . -471) 36487) ((-192 . -964) 36437) ((-327 . -583) 36389) ((-322 . -583) 36341) ((-199 . -775) T) ((-314 . -583) 36293) ((-546 . -97) 36243) ((-448 . -336) 36222) ((-103 . -583) 36172) ((-452 . -106) 36099) ((-212 . -454) 36083) ((-312 . -134) 36065) ((-312 . -132) T) ((-152 . -338) 36036) ((-863 . -1147) 36020) ((-192 . -106) 35947) ((-794 . -278) 35912) ((-863 . -1001) 35862) ((-728 . -556) 35823) ((-728 . -555) 35805) ((-649 . -97) T) ((-299 . -1001) T) ((-1018 . -123) T) ((-645 . -37) 35775) ((-282 . -456) 35754) ((-463 . -1104) T) ((-1135 . -254) 35720) ((-1114 . -254) 35686) ((-295 . -138) 35670) ((-970 . -258) 35645) ((-1162 . -648) 35615) ((-1054 . -33) T) ((-1171 . -950) 35592) ((-435 . -555) 35574) ((-449 . -33) T) ((-350 . -950) 35558) ((-1064 . -965) T) ((-1023 . -965) T) ((-781 . -965) T) ((-969 . -775) T) ((-746 . -156) 35469) ((-481 . -256) 35446) ((-112 . -906) 35423) ((-1139 . -260) 35402) ((-1086 . -333) 35376) ((-990 . -237) 35360) ((-441 . -97) T) ((-332 . -1001) T) ((-222 . -1001) T) ((-221 . -1001) T) ((-1130 . -260) 35311) ((-104 . -1001) T) ((-1109 . -260) 35262) ((-794 . -1046) 35240) ((-1068 . -916) 35206) ((-550 . -333) 35146) ((-1067 . -916) 35112) ((-550 . -202) 35059) ((-538 . -555) 35041) ((-538 . -556) NIL) ((-625 . -777) T) ((-442 . -202) 34991) ((-452 . -959) T) ((-1061 . -916) 34957) ((-85 . -407) T) ((-85 . -364) T) ((-192 . -959) T) ((-1024 . -916) 34923) ((-983 . -657) T) ((-643 . -1012) T) ((-541 . -260) 34902) ((-540 . -260) 34881) ((-452 . -216) T) ((-452 . -206) T) ((-192 . -216) T) ((-192 . -206) T) ((-1060 . -555) 34863) ((-794 . -37) 34815) ((-327 . -657) T) ((-322 . -657) T) ((-314 . -657) T) ((-103 . -724) T) ((-103 . -721) T) ((-481 . -1138) 34799) ((-103 . -657) T) ((-643 . -23) T) ((-1175 . -25) T) ((-441 . -254) 34765) ((-1175 . -21) T) ((-1114 . -278) 34704) ((-1070 . -97) T) ((-39 . -132) 34676) ((-39 . -134) 34648) ((-481 . -548) 34625) ((-1013 . -583) 34475) ((-546 . -278) 34413) ((-44 . -586) 34363) ((-44 . -601) 34313) ((-44 . -340) 34263) ((-1053 . -33) T) ((-793 . -775) NIL) ((-591 . -123) T) ((-450 . -555) 34245) ((-212 . -256) 34222) ((-582 . -33) T) ((-570 . -33) T) ((-989 . -419) 34173) ((-746 . -476) 34038) ((-711 . -419) 33969) ((-710 . -419) 33920) ((-421 . -419) 33871) ((-866 . -380) 33855) ((-662 . -555) 33837) ((-222 . -648) 33779) ((-221 . -648) 33721) ((-662 . -556) 33582) ((-447 . -380) 33566) ((-307 . -267) T) ((-320 . -841) T) ((-914 . -97) 33544) ((-937 . -777) T) ((-58 . -476) 33477) ((-1114 . -1046) 33429) ((-918 . -256) NIL) ((-199 . -965) T) ((-346 . -751) T) ((-1013 . -33) T) ((-528 . -419) T) ((-479 . -419) T) ((-1116 . -995) 33413) ((-1116 . -1001) 33391) ((-212 . -548) 33368) ((-1116 . -996) 33325) ((-1068 . -555) 33307) ((-1067 . -555) 33289) ((-1061 . -555) 33271) ((-1061 . -556) NIL) ((-1024 . -555) 33253) ((-794 . -368) 33237) ((-490 . -97) T) ((-1135 . -37) 33078) ((-1114 . -37) 32892) ((-791 . -134) T) ((-528 . -370) T) ((-47 . -777) T) ((-479 . -370) T) ((-1136 . -21) T) ((-1136 . -25) T) ((-1013 . -721) 32871) ((-1013 . -724) 32822) ((-1013 . -723) 32801) ((-908 . -1001) T) ((-940 . -33) T) ((-786 . -1001) T) ((-1145 . -97) T) ((-1013 . -657) 32732) ((-599 . -97) T) ((-502 . -258) 32711) ((-1077 . -97) T) ((-443 . -33) T) ((-430 . -33) T) ((-323 . -97) T) ((-321 . -97) T) ((-313 . -97) T) ((-235 . -97) T) ((-220 . -97) T) ((-444 . -276) T) ((-969 . -965) T) ((-866 . -965) T) ((-282 . -577) 32619) ((-281 . -577) 32580) ((-447 . -965) T) ((-445 . -97) T) ((-405 . -555) 32562) ((-1064 . -1001) T) ((-1023 . -1001) T) ((-781 . -1001) T) ((-1036 . -97) T) ((-746 . -260) 32493) ((-875 . -964) 32376) ((-444 . -933) T) ((-666 . -964) 32346) ((-420 . -964) 32316) ((-1042 . -1019) 32300) ((-997 . -476) 32233) ((-875 . -106) 32095) ((-826 . -97) T) ((-666 . -106) 32060) ((-56 . -97) 32010) ((-481 . -556) 31971) ((-481 . -555) 31910) ((-480 . -97) 31888) ((-478 . -97) 31838) ((-460 . -97) 31816) ((-459 . -97) 31766) ((-420 . -106) 31717) ((-222 . -156) 31696) ((-221 . -156) 31675) ((-373 . -964) 31649) ((-1097 . -888) 31610) ((-910 . -1012) T) ((-863 . -476) 31543) ((-452 . -727) T) ((-441 . -37) 31384) ((-373 . -106) 31351) ((-452 . -722) T) ((-914 . -278) 31289) ((-192 . -727) T) ((-192 . -722) T) ((-910 . -23) T) ((-643 . -123) T) ((-1114 . -368) 31259) ((-282 . -25) 31112) ((-152 . -380) 31096) ((-282 . -21) 30968) ((-281 . -25) T) ((-281 . -21) T) ((-787 . -336) T) ((-105 . -33) T) ((-448 . -583) 30818) ((-793 . -965) T) ((-538 . -258) 30793) ((-527 . -134) T) ((-501 . -134) T) ((-458 . -134) T) ((-1064 . -648) 30622) ((-1023 . -648) 30471) ((-1018 . -577) 30453) ((-781 . -648) 30423) ((-605 . -1104) T) ((-1 . -97) T) ((-212 . -555) 30202) ((-1118 . -380) 30186) ((-1077 . -278) 29990) ((-875 . -959) T) ((-666 . -959) T) ((-646 . -959) T) ((-578 . -1001) 29940) ((-962 . -583) 29924) ((-782 . -380) 29908) ((-474 . -97) T) ((-469 . -97) T) ((-220 . -278) 29895) ((-235 . -278) 29882) ((-875 . -294) 29861) ((-349 . -583) 29845) ((-445 . -278) 29649) ((-222 . -476) 29582) ((-605 . -950) 29480) ((-221 . -476) 29413) ((-1036 . -278) 29339) ((-749 . -1001) T) ((-728 . -964) 29323) ((-1139 . -256) 29308) ((-1130 . -256) 29293) ((-1109 . -256) 29141) ((-354 . -1001) T) ((-292 . -1001) T) ((-373 . -959) T) ((-152 . -965) T) ((-56 . -278) 29079) ((-728 . -106) 29058) ((-540 . -256) 29043) ((-480 . -278) 28981) ((-478 . -278) 28919) ((-460 . -278) 28857) ((-459 . -278) 28795) ((-373 . -206) 28774) ((-448 . -33) T) ((-918 . -556) 28704) ((-199 . -1001) T) ((-918 . -555) 28686) ((-886 . -555) 28668) ((-886 . -556) 28643) ((-834 . -555) 28625) ((-630 . -134) T) ((-632 . -841) T) ((-632 . -750) T) ((-397 . -555) 28607) ((-1018 . -21) T) ((-1018 . -25) T) ((-605 . -345) 28591) ((-111 . -841) T) ((-794 . -204) 28575) ((-73 . -1104) T) ((-121 . -120) 28559) ((-962 . -33) T) ((-1168 . -950) 28533) ((-1167 . -950) 28490) ((-1118 . -965) T) ((-782 . -965) T) ((-448 . -721) 28469) ((-323 . -1046) 28448) ((-321 . -1046) 28427) ((-313 . -1046) 28406) ((-448 . -724) 28357) ((-448 . -723) 28336) ((-448 . -657) 28267) ((-58 . -454) 28251) ((-522 . -965) T) ((-1064 . -156) 28142) ((-1023 . -156) 28053) ((-969 . -1001) T) ((-989 . -870) 28000) ((-866 . -1001) T) ((-747 . -583) 27951) ((-711 . -870) 27921) ((-644 . -1001) T) ((-710 . -870) 27888) ((-478 . -252) 27872) ((-605 . -820) 27831) ((-447 . -1001) T) ((-421 . -870) 27798) ((-77 . -1104) T) ((-323 . -37) 27763) ((-321 . -37) 27728) ((-313 . -37) 27693) ((-235 . -37) 27542) ((-220 . -37) 27391) ((-826 . -1046) T) ((-562 . -134) 27370) ((-562 . -132) 27349) ((-112 . -134) T) ((-112 . -132) NIL) ((-383 . -657) T) ((-728 . -959) T) ((-312 . -419) T) ((-1139 . -916) 27315) ((-1130 . -916) 27281) ((-1109 . -916) 27247) ((-826 . -37) 27212) ((-199 . -648) 27177) ((-39 . -378) 27149) ((-287 . -46) 27119) ((-910 . -123) T) ((-745 . -1104) T) ((-157 . -841) T) ((-312 . -370) T) ((-481 . -258) 27096) ((-44 . -33) T) ((-745 . -950) 26925) ((-591 . -21) T) ((-587 . -97) T) ((-591 . -25) T) ((-997 . -454) 26909) ((-1114 . -204) 26879) ((-609 . -1104) T) ((-218 . -97) 26829) ((-793 . -1001) T) ((-1072 . -583) 26754) ((-969 . -648) 26741) ((-662 . -964) 26584) ((-1064 . -476) 26532) ((-866 . -648) 26381) ((-1023 . -476) 26333) ((-447 . -648) 26182) ((-65 . -555) 26164) ((-662 . -106) 25986) ((-863 . -454) 25970) ((-1159 . -583) 25930) ((-747 . -657) T) ((-1068 . -964) 25813) ((-1067 . -964) 25648) ((-1061 . -964) 25438) ((-1024 . -964) 25321) ((-917 . -1108) T) ((-991 . -97) 25299) ((-745 . -345) 25269) ((-917 . -508) T) ((-1068 . -106) 25131) ((-1067 . -106) 24945) ((-1061 . -106) 24691) ((-1024 . -106) 24553) ((-1005 . -1004) 24517) ((-346 . -775) T) ((-1139 . -555) 24499) ((-1130 . -555) 24481) ((-1109 . -555) 24463) ((-1109 . -556) NIL) ((-212 . -258) 24440) ((-39 . -419) T) ((-199 . -156) T) ((-152 . -1001) T) ((-625 . -134) T) ((-625 . -132) NIL) ((-541 . -555) 24422) ((-540 . -555) 24404) ((-818 . -1001) T) ((-768 . -1001) T) ((-738 . -1001) T) ((-699 . -1001) T) ((-589 . -779) 24388) ((-610 . -1001) T) ((-745 . -820) 24321) ((-39 . -370) NIL) ((-1018 . -597) T) ((-793 . -648) 24266) ((-222 . -454) 24250) ((-221 . -454) 24234) ((-643 . -577) 24182) ((-590 . -583) 24156) ((-264 . -33) T) ((-662 . -959) T) ((-528 . -1156) 24143) ((-479 . -1156) 24120) ((-1118 . -1001) T) ((-1064 . -260) 24031) ((-1023 . -260) 23962) ((-969 . -156) T) ((-782 . -1001) T) ((-866 . -156) 23873) ((-711 . -1125) 23857) ((-578 . -476) 23790) ((-76 . -555) 23772) ((-662 . -294) 23737) ((-1072 . -657) T) ((-522 . -1001) T) ((-447 . -156) 23648) ((-218 . -278) 23586) ((-1037 . -1012) T) ((-68 . -555) 23568) ((-1159 . -657) T) ((-1068 . -959) T) ((-1067 . -959) T) ((-295 . -97) 23518) ((-1061 . -959) T) ((-1037 . -23) T) ((-1024 . -959) T) ((-89 . -1019) 23502) ((-788 . -1012) T) ((-1068 . -206) 23461) ((-1067 . -216) 23440) ((-1067 . -206) 23392) ((-1061 . -206) 23279) ((-1061 . -216) 23258) ((-287 . -820) 23164) ((-788 . -23) T) ((-152 . -648) 22992) ((-375 . -1108) T) ((-1002 . -336) T) ((-937 . -134) T) ((-917 . -331) T) ((-791 . -419) T) ((-863 . -256) 22969) ((-282 . -777) T) ((-281 . -777) NIL) ((-795 . -97) T) ((-643 . -25) T) ((-375 . -508) T) ((-643 . -21) T) ((-308 . -134) 22951) ((-308 . -132) T) ((-1042 . -1001) 22929) ((-420 . -651) T) ((-74 . -555) 22911) ((-108 . -777) T) ((-218 . -252) 22895) ((-212 . -964) 22793) ((-79 . -555) 22775) ((-666 . -336) 22728) ((-1070 . -751) T) ((-667 . -208) 22712) ((-1054 . -1104) T) ((-128 . -208) 22694) ((-212 . -106) 22585) ((-1118 . -648) 22414) ((-47 . -134) T) ((-793 . -156) T) ((-782 . -648) 22384) ((-449 . -1104) T) ((-866 . -476) 22330) ((-590 . -657) T) ((-522 . -648) 22317) ((-947 . -965) T) ((-447 . -476) 22255) ((-863 . -19) 22239) ((-863 . -548) 22216) ((-746 . -556) NIL) ((-746 . -555) 22198) ((-918 . -964) 22148) ((-381 . -555) 22130) ((-222 . -256) 22107) ((-221 . -256) 22084) ((-452 . -830) NIL) ((-282 . -29) 22054) ((-103 . -1104) T) ((-917 . -1012) T) ((-192 . -830) NIL) ((-834 . -964) 22006) ((-983 . -950) 21904) ((-918 . -106) 21831) ((-235 . -204) 21815) ((-667 . -626) 21799) ((-397 . -964) 21783) ((-346 . -965) T) ((-917 . -23) T) ((-834 . -106) 21714) ((-625 . -1093) NIL) ((-452 . -583) 21664) ((-103 . -804) 21646) ((-103 . -806) 21628) ((-625 . -1090) NIL) ((-192 . -583) 21578) ((-327 . -950) 21562) ((-322 . -950) 21546) ((-295 . -278) 21484) ((-314 . -950) 21468) ((-199 . -260) T) ((-397 . -106) 21447) ((-58 . -555) 21414) ((-152 . -156) T) ((-1018 . -777) T) ((-103 . -950) 21374) ((-810 . -1001) T) ((-764 . -965) T) ((-758 . -965) T) ((-625 . -34) NIL) ((-625 . -91) NIL) ((-281 . -906) 21335) ((-527 . -419) T) ((-501 . -419) T) ((-458 . -419) T) ((-375 . -331) T) ((-212 . -959) 21266) ((-1045 . -33) T) ((-444 . -841) T) ((-910 . -577) 21214) ((-222 . -548) 21191) ((-221 . -548) 21168) ((-983 . -345) 21152) ((-793 . -476) 21015) ((-212 . -206) 20968) ((-1053 . -1104) T) ((-756 . -555) 20950) ((-1170 . -1012) T) ((-1162 . -555) 20932) ((-1118 . -156) 20823) ((-103 . -345) 20805) ((-103 . -306) 20787) ((-969 . -260) T) ((-866 . -260) 20718) ((-728 . -336) 20697) ((-582 . -1104) T) ((-570 . -1104) T) ((-447 . -260) 20628) ((-522 . -156) T) ((-295 . -252) 20612) ((-1170 . -23) T) ((-1097 . -97) T) ((-1086 . -1001) T) ((-990 . -1001) T) ((-979 . -1001) T) ((-82 . -555) 20594) ((-642 . -97) T) ((-323 . -318) 20573) ((-550 . -1001) T) ((-321 . -318) 20552) ((-313 . -318) 20531) ((-442 . -1001) T) ((-1077 . -202) 20481) ((-235 . -224) 20443) ((-1037 . -123) T) ((-550 . -552) 20419) ((-983 . -820) 20352) ((-918 . -959) T) ((-834 . -959) T) ((-442 . -552) 20331) ((-1061 . -722) NIL) ((-1061 . -727) NIL) ((-997 . -556) 20292) ((-445 . -202) 20242) ((-997 . -555) 20224) ((-918 . -216) T) ((-918 . -206) T) ((-397 . -959) T) ((-877 . -1001) 20174) ((-834 . -216) T) ((-788 . -123) T) ((-630 . -419) T) ((-769 . -1012) 20153) ((-103 . -820) NIL) ((-1097 . -254) 20119) ((-794 . -775) 20098) ((-1013 . -1104) T) ((-822 . -657) T) ((-152 . -476) 20010) ((-910 . -25) T) ((-822 . -440) T) ((-375 . -1012) T) ((-452 . -724) T) ((-452 . -721) T) ((-826 . -318) T) ((-452 . -657) T) ((-192 . -724) T) ((-192 . -721) T) ((-910 . -21) T) ((-192 . -657) T) ((-769 . -23) 19962) ((-287 . -276) 19941) ((-948 . -208) 19887) ((-375 . -23) T) ((-863 . -556) 19848) ((-863 . -555) 19787) ((-578 . -454) 19771) ((-44 . -924) 19721) ((-299 . -555) 19703) ((-1013 . -950) 19532) ((-538 . -586) 19514) ((-538 . -340) 19496) ((-312 . -1156) 19473) ((-940 . -1104) T) ((-793 . -260) T) ((-1118 . -476) 19421) ((-443 . -1104) T) ((-430 . -1104) T) ((-530 . -97) T) ((-1064 . -256) 19348) ((-562 . -419) 19327) ((-914 . -909) 19311) ((-1162 . -352) 19283) ((-112 . -419) T) ((-1084 . -97) T) ((-993 . -1001) 19261) ((-947 . -1001) T) ((-813 . -777) T) ((-320 . -1108) T) ((-1139 . -964) 19144) ((-1013 . -345) 19114) ((-1130 . -964) 18949) ((-1109 . -964) 18739) ((-1139 . -106) 18601) ((-1130 . -106) 18415) ((-1109 . -106) 18161) ((-1097 . -278) 18148) ((-320 . -508) T) ((-332 . -555) 18130) ((-259 . -276) T) ((-541 . -964) 18103) ((-540 . -964) 17986) ((-329 . -1001) T) ((-290 . -1001) T) ((-222 . -555) 17947) ((-221 . -555) 17908) ((-917 . -123) T) ((-104 . -555) 17890) ((-571 . -23) T) ((-625 . -378) 17857) ((-549 . -23) T) ((-589 . -97) T) ((-541 . -106) 17828) ((-540 . -106) 17690) ((-346 . -1001) T) ((-301 . -97) T) ((-152 . -260) 17601) ((-1114 . -775) 17554) ((-645 . -965) T) ((-1042 . -476) 17487) ((-1013 . -820) 17420) ((-764 . -1001) T) ((-758 . -1001) T) ((-755 . -1001) T) ((-92 . -97) T) ((-131 . -777) T) ((-553 . -804) 17404) ((-105 . -1104) T) ((-989 . -97) T) ((-970 . -33) T) ((-711 . -97) T) ((-710 . -97) T) ((-428 . -97) T) ((-421 . -97) T) ((-212 . -727) 17355) ((-212 . -722) 17306) ((-584 . -97) T) ((-1118 . -260) 17217) ((-599 . -573) 17201) ((-578 . -256) 17178) ((-947 . -648) 17162) ((-522 . -260) T) ((-875 . -583) 17087) ((-1170 . -123) T) ((-666 . -583) 17047) ((-646 . -583) 17034) ((-246 . -97) T) ((-420 . -583) 16964) ((-49 . -97) T) ((-528 . -97) T) ((-479 . -97) T) ((-1139 . -959) T) ((-1130 . -959) T) ((-1109 . -959) T) ((-290 . -648) 16946) ((-1139 . -206) 16905) ((-1130 . -216) 16884) ((-1130 . -206) 16836) ((-1109 . -206) 16723) ((-1109 . -216) 16702) ((-1097 . -37) 16599) ((-541 . -959) T) ((-540 . -959) T) ((-918 . -727) T) ((-918 . -722) T) ((-886 . -727) T) ((-886 . -722) T) ((-794 . -965) T) ((-791 . -792) 16583) ((-625 . -419) T) ((-346 . -648) 16548) ((-373 . -583) 16522) ((-643 . -777) 16501) ((-642 . -37) 16466) ((-540 . -206) 16425) ((-39 . -655) 16397) ((-320 . -297) 16374) ((-320 . -331) T) ((-983 . -276) 16325) ((-262 . -1012) 16207) ((-1006 . -1104) T) ((-155 . -97) T) ((-1116 . -555) 16174) ((-769 . -123) 16126) ((-578 . -1138) 16110) ((-764 . -648) 16080) ((-758 . -648) 16050) ((-448 . -1104) T) ((-327 . -276) T) ((-322 . -276) T) ((-314 . -276) T) ((-578 . -548) 16027) ((-375 . -123) T) ((-481 . -601) 16011) ((-103 . -276) T) ((-262 . -23) 15895) ((-481 . -586) 15879) ((-625 . -370) NIL) ((-481 . -340) 15863) ((-89 . -1001) 15841) ((-103 . -933) T) ((-501 . -130) T) ((-1148 . -138) 15825) ((-448 . -950) 15654) ((-1136 . -132) 15615) ((-1136 . -134) 15576) ((-962 . -1104) T) ((-908 . -555) 15558) ((-786 . -555) 15540) ((-746 . -964) 15383) ((-989 . -278) 15370) ((-711 . -278) 15357) ((-710 . -278) 15344) ((-746 . -106) 15166) ((-421 . -278) 15153) ((-1064 . -556) NIL) ((-1064 . -555) 15135) ((-1023 . -555) 15117) ((-1023 . -556) 14865) ((-947 . -156) T) ((-781 . -555) 14847) ((-863 . -258) 14824) ((-550 . -476) 14572) ((-748 . -950) 14556) ((-442 . -476) 14316) ((-875 . -657) T) ((-666 . -657) T) ((-646 . -657) T) ((-320 . -1012) T) ((-1073 . -555) 14298) ((-197 . -97) T) ((-448 . -345) 14268) ((-477 . -1001) T) ((-473 . -1001) T) ((-470 . -1001) T) ((-728 . -583) 14242) ((-937 . -419) T) ((-877 . -476) 14175) ((-320 . -23) T) ((-571 . -123) T) ((-549 . -123) T) ((-308 . -419) T) ((-212 . -336) 14154) ((-346 . -156) T) ((-1135 . -965) T) ((-1114 . -965) T) ((-199 . -916) T) ((-630 . -355) T) ((-373 . -657) T) ((-632 . -1108) T) ((-1037 . -577) 14102) ((-527 . -792) 14086) ((-1054 . -1081) 14062) ((-632 . -508) T) ((-121 . -1001) 14040) ((-1162 . -964) 14024) ((-645 . -1001) T) ((-448 . -820) 13957) ((-589 . -37) 13927) ((-308 . -370) T) ((-282 . -134) 13906) ((-282 . -132) 13885) ((-111 . -508) T) ((-281 . -134) 13841) ((-281 . -132) 13797) ((-47 . -419) T) ((-146 . -1001) T) ((-142 . -1001) T) ((-1054 . -102) 13744) ((-711 . -1046) 13722) ((-621 . -33) T) ((-1162 . -106) 13701) ((-502 . -33) T) ((-449 . -102) 13685) ((-222 . -258) 13662) ((-221 . -258) 13639) ((-793 . -256) 13569) ((-44 . -1104) T) ((-746 . -959) T) ((-1072 . -46) 13546) ((-746 . -294) 13508) ((-989 . -37) 13357) ((-746 . -206) 13336) ((-711 . -37) 13165) ((-710 . -37) 13014) ((-421 . -37) 12863) ((-578 . -556) 12824) ((-578 . -555) 12763) ((-528 . -1046) T) ((-479 . -1046) T) ((-1042 . -454) 12747) ((-1091 . -1001) 12725) ((-1037 . -25) T) ((-1037 . -21) T) ((-441 . -965) T) ((-1109 . -722) NIL) ((-1109 . -727) NIL) ((-910 . -777) 12704) ((-749 . -555) 12686) ((-788 . -21) T) ((-788 . -25) T) ((-728 . -657) T) ((-157 . -1108) T) ((-528 . -37) 12651) ((-479 . -37) 12616) ((-354 . -555) 12598) ((-292 . -555) 12580) ((-152 . -256) 12538) ((-62 . -1104) T) ((-107 . -97) T) ((-794 . -1001) T) ((-157 . -508) T) ((-645 . -648) 12508) ((-262 . -123) 12392) ((-199 . -555) 12374) ((-199 . -556) 12304) ((-917 . -577) 12238) ((-1162 . -959) T) ((-1018 . -134) T) ((-570 . -1081) 12213) ((-662 . -830) 12192) ((-538 . -33) T) ((-582 . -102) 12176) ((-570 . -102) 12122) ((-1118 . -256) 12049) ((-662 . -583) 11974) ((-264 . -1104) T) ((-1072 . -950) 11872) ((-1061 . -830) NIL) ((-969 . -556) 11787) ((-969 . -555) 11769) ((-312 . -97) T) ((-222 . -964) 11667) ((-221 . -964) 11565) ((-361 . -97) T) ((-866 . -555) 11547) ((-866 . -556) 11408) ((-644 . -555) 11390) ((-1160 . -1099) 11359) ((-447 . -555) 11341) ((-447 . -556) 11202) ((-220 . -380) 11186) ((-235 . -380) 11170) ((-222 . -106) 11061) ((-221 . -106) 10952) ((-1068 . -583) 10877) ((-1067 . -583) 10774) ((-1061 . -583) 10626) ((-1024 . -583) 10551) ((-320 . -123) T) ((-81 . -408) T) ((-81 . -364) T) ((-917 . -25) T) ((-917 . -21) T) ((-794 . -648) 10503) ((-346 . -260) T) ((-152 . -916) 10455) ((-625 . -355) T) ((-910 . -912) 10439) ((-632 . -1012) T) ((-625 . -150) 10421) ((-1135 . -1001) T) ((-1114 . -1001) T) ((-282 . -1090) 10400) ((-282 . -1093) 10379) ((-1059 . -97) T) ((-282 . -879) 10358) ((-125 . -1012) T) ((-111 . -1012) T) ((-546 . -1147) 10342) ((-632 . -23) T) ((-546 . -1001) 10292) ((-89 . -476) 10225) ((-157 . -331) T) ((-282 . -91) 10204) ((-282 . -34) 10183) ((-550 . -454) 10117) ((-125 . -23) T) ((-111 . -23) T) ((-649 . -1001) T) ((-442 . -454) 10054) ((-375 . -577) 10002) ((-590 . -950) 9900) ((-877 . -454) 9884) ((-323 . -965) T) ((-321 . -965) T) ((-313 . -965) T) ((-235 . -965) T) ((-220 . -965) T) ((-793 . -556) NIL) ((-793 . -555) 9866) ((-1170 . -21) T) ((-522 . -916) T) ((-662 . -657) T) ((-1170 . -25) T) ((-222 . -959) 9797) ((-221 . -959) 9728) ((-70 . -1104) T) ((-222 . -206) 9681) ((-221 . -206) 9634) ((-39 . -97) T) ((-826 . -965) T) ((-1068 . -657) T) ((-1067 . -657) T) ((-1061 . -657) T) ((-1061 . -721) NIL) ((-1061 . -724) NIL) ((-839 . -97) T) ((-1024 . -657) T) ((-701 . -97) T) ((-606 . -97) T) ((-441 . -1001) T) ((-307 . -1012) T) ((-157 . -1012) T) ((-287 . -841) 9613) ((-1135 . -648) 9454) ((-794 . -156) T) ((-1114 . -648) 9268) ((-769 . -21) 9220) ((-769 . -25) 9172) ((-218 . -1044) 9156) ((-121 . -476) 9089) ((-375 . -25) T) ((-375 . -21) T) ((-307 . -23) T) ((-152 . -556) 8857) ((-152 . -555) 8839) ((-157 . -23) T) ((-578 . -258) 8816) ((-481 . -33) T) ((-818 . -555) 8798) ((-87 . -1104) T) ((-768 . -555) 8780) ((-738 . -555) 8762) ((-699 . -555) 8744) ((-610 . -555) 8726) ((-212 . -583) 8576) ((-1070 . -1001) T) ((-1064 . -964) 8399) ((-1045 . -1104) T) ((-1023 . -964) 8242) ((-781 . -964) 8226) ((-1064 . -106) 8028) ((-1023 . -106) 7850) ((-781 . -106) 7829) ((-1118 . -556) NIL) ((-1118 . -555) 7811) ((-312 . -1046) T) ((-782 . -555) 7793) ((-979 . -256) 7772) ((-78 . -1104) T) ((-918 . -830) NIL) ((-550 . -256) 7748) ((-1091 . -476) 7681) ((-452 . -1104) T) ((-522 . -555) 7663) ((-442 . -256) 7642) ((-192 . -1104) T) ((-989 . -204) 7626) ((-259 . -841) T) ((-747 . -276) 7605) ((-791 . -97) T) ((-711 . -204) 7589) ((-918 . -583) 7539) ((-877 . -256) 7516) ((-834 . -583) 7468) ((-571 . -21) T) ((-571 . -25) T) ((-549 . -21) T) ((-312 . -37) 7433) ((-625 . -655) 7400) ((-452 . -804) 7382) ((-452 . -806) 7364) ((-441 . -648) 7205) ((-192 . -804) 7187) ((-59 . -1104) T) ((-192 . -806) 7169) ((-549 . -25) T) ((-397 . -583) 7143) ((-452 . -950) 7103) ((-794 . -476) 7015) ((-192 . -950) 6975) ((-212 . -33) T) ((-914 . -1001) 6953) ((-1135 . -156) 6884) ((-1114 . -156) 6815) ((-643 . -132) 6794) ((-643 . -134) 6773) ((-632 . -123) T) ((-126 . -432) 6750) ((-589 . -593) 6734) ((-1042 . -555) 6701) ((-111 . -123) T) ((-444 . -1108) T) ((-550 . -548) 6677) ((-442 . -548) 6656) ((-301 . -304) 6625) ((-490 . -1001) T) ((-444 . -508) T) ((-1064 . -959) T) ((-1023 . -959) T) ((-781 . -959) T) ((-212 . -721) 6604) ((-212 . -724) 6555) ((-212 . -723) 6534) ((-1064 . -294) 6511) ((-212 . -657) 6442) ((-877 . -19) 6426) ((-452 . -345) 6408) ((-452 . -306) 6390) ((-1023 . -294) 6362) ((-308 . -1156) 6339) ((-192 . -345) 6321) ((-192 . -306) 6303) ((-877 . -548) 6280) ((-1064 . -206) T) ((-599 . -1001) T) ((-1145 . -1001) T) ((-1077 . -1001) T) ((-989 . -224) 6219) ((-323 . -1001) T) ((-321 . -1001) T) ((-313 . -1001) T) ((-235 . -1001) T) ((-220 . -1001) T) ((-83 . -1104) T) ((-122 . -97) 6197) ((-116 . -97) 6175) ((-1077 . -552) 6154) ((-445 . -1001) T) ((-1036 . -1001) T) ((-445 . -552) 6133) ((-222 . -727) 6084) ((-222 . -722) 6035) ((-221 . -727) 5986) ((-39 . -1046) NIL) ((-221 . -722) 5937) ((-983 . -841) 5888) ((-918 . -724) T) ((-918 . -721) T) ((-918 . -657) T) ((-886 . -724) T) ((-834 . -657) T) ((-89 . -454) 5872) ((-452 . -820) NIL) ((-826 . -1001) T) ((-199 . -964) 5837) ((-794 . -260) T) ((-192 . -820) NIL) ((-762 . -1012) 5816) ((-56 . -1001) 5766) ((-480 . -1001) 5744) ((-478 . -1001) 5694) ((-460 . -1001) 5672) ((-459 . -1001) 5622) ((-527 . -97) T) ((-501 . -97) T) ((-458 . -97) T) ((-441 . -156) 5553) ((-327 . -841) T) ((-322 . -841) T) ((-314 . -841) T) ((-199 . -106) 5502) ((-762 . -23) 5454) ((-397 . -657) T) ((-103 . -841) T) ((-39 . -37) 5399) ((-103 . -750) T) ((-528 . -318) T) ((-479 . -318) T) ((-1114 . -476) 5259) ((-282 . -419) 5238) ((-281 . -419) T) ((-764 . -256) 5217) ((-307 . -123) T) ((-157 . -123) T) ((-262 . -25) 5082) ((-262 . -21) 4966) ((-44 . -1081) 4945) ((-64 . -555) 4927) ((-810 . -555) 4909) ((-546 . -476) 4842) ((-44 . -102) 4792) ((-997 . -394) 4776) ((-997 . -336) 4755) ((-970 . -1104) T) ((-969 . -964) 4742) ((-866 . -964) 4585) ((-447 . -964) 4428) ((-599 . -648) 4412) ((-969 . -106) 4397) ((-866 . -106) 4219) ((-444 . -331) T) ((-323 . -648) 4171) ((-321 . -648) 4123) ((-313 . -648) 4075) ((-235 . -648) 3924) ((-220 . -648) 3773) ((-863 . -586) 3757) ((-447 . -106) 3579) ((-1151 . -97) T) ((-863 . -340) 3563) ((-1109 . -830) NIL) ((-72 . -555) 3545) ((-875 . -46) 3524) ((-558 . -1012) T) ((-1 . -1001) T) ((-630 . -97) T) ((-1148 . -97) 3474) ((-1139 . -583) 3399) ((-1130 . -583) 3296) ((-121 . -454) 3280) ((-1086 . -555) 3262) ((-990 . -555) 3244) ((-358 . -23) T) ((-979 . -555) 3226) ((-86 . -1104) T) ((-1109 . -583) 3078) ((-826 . -648) 3043) ((-558 . -23) T) ((-550 . -555) 3025) ((-550 . -556) NIL) ((-442 . -556) NIL) ((-442 . -555) 3007) ((-474 . -1001) T) ((-469 . -1001) T) ((-320 . -25) T) ((-320 . -21) T) ((-122 . -278) 2945) ((-116 . -278) 2883) ((-541 . -583) 2870) ((-199 . -959) T) ((-540 . -583) 2795) ((-346 . -916) T) ((-199 . -216) T) ((-199 . -206) T) ((-877 . -556) 2756) ((-877 . -555) 2695) ((-791 . -37) 2682) ((-1135 . -260) 2633) ((-1114 . -260) 2584) ((-1018 . -419) T) ((-465 . -777) T) ((-282 . -1034) 2563) ((-910 . -134) 2542) ((-910 . -132) 2521) ((-458 . -278) 2508) ((-264 . -1081) 2487) ((-444 . -1012) T) ((-793 . -964) 2432) ((-562 . -97) T) ((-1091 . -454) 2416) ((-222 . -336) 2395) ((-221 . -336) 2374) ((-264 . -102) 2324) ((-969 . -959) T) ((-112 . -97) T) ((-866 . -959) T) ((-793 . -106) 2241) ((-444 . -23) T) ((-447 . -959) T) ((-969 . -206) T) ((-866 . -294) 2210) ((-447 . -294) 2167) ((-323 . -156) T) ((-321 . -156) T) ((-313 . -156) T) ((-235 . -156) 2078) ((-220 . -156) 1989) ((-875 . -950) 1887) ((-666 . -950) 1858) ((-1005 . -97) T) ((-993 . -555) 1825) ((-947 . -555) 1807) ((-1139 . -657) T) ((-1130 . -657) T) ((-1109 . -721) NIL) ((-152 . -964) 1717) ((-1109 . -724) NIL) ((-826 . -156) T) ((-1109 . -657) T) ((-1160 . -138) 1701) ((-917 . -310) 1675) ((-914 . -476) 1608) ((-769 . -777) 1587) ((-501 . -1046) T) ((-441 . -260) 1538) ((-541 . -657) T) ((-329 . -555) 1520) ((-290 . -555) 1502) ((-373 . -950) 1400) ((-540 . -657) T) ((-375 . -777) 1351) ((-152 . -106) 1240) ((-762 . -123) 1192) ((-667 . -138) 1176) ((-1148 . -278) 1114) ((-452 . -276) T) ((-346 . -555) 1081) ((-481 . -924) 1065) ((-346 . -556) 979) ((-192 . -276) T) ((-128 . -138) 961) ((-645 . -256) 940) ((-452 . -933) T) ((-527 . -37) 927) ((-501 . -37) 914) ((-458 . -37) 879) ((-192 . -933) T) ((-793 . -959) T) ((-764 . -555) 861) ((-758 . -555) 843) ((-755 . -555) 825) ((-746 . -830) 804) ((-1171 . -1012) T) ((-1118 . -964) 627) ((-782 . -964) 611) ((-793 . -216) T) ((-793 . -206) NIL) ((-621 . -1104) T) ((-1171 . -23) T) ((-746 . -583) 536) ((-502 . -1104) T) ((-373 . -306) 520) ((-522 . -964) 507) ((-1118 . -106) 309) ((-632 . -577) 291) ((-782 . -106) 270) ((-350 . -23) T) ((-1077 . -476) 30)) \ No newline at end of file +((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-207)) ((|#2| |#1|) |has| |#1| (-207)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-599 . -1003) T) ((-237 . -478) 143724) ((-221 . -478) 143662) ((-524 . -106) 143647) ((-489 . -23) T) ((-219 . -1003) 143597) ((-112 . -280) 143541) ((-447 . -478) 143301) ((-627 . -97) T) ((-1039 . -478) 143209) ((-360 . -123) T) ((-1164 . -893) 143178) ((-548 . -456) 143162) ((-562 . -123) T) ((-751 . -775) T) ((-486 . -55) 143112) ((-57 . -478) 143045) ((-482 . -478) 142978) ((-388 . -822) 142937) ((-153 . -961) T) ((-480 . -478) 142870) ((-462 . -478) 142803) ((-461 . -478) 142736) ((-731 . -952) 142523) ((-632 . -37) 142488) ((-313 . -319) T) ((-998 . -997) 142472) ((-998 . -1003) 142450) ((-153 . -217) 142401) ((-153 . -207) 142352) ((-998 . -999) 142310) ((-796 . -258) 142268) ((-199 . -727) T) ((-199 . -724) T) ((-627 . -256) NIL) ((-1048 . -1085) 142247) ((-377 . -909) 142231) ((-634 . -21) T) ((-634 . -25) T) ((-1166 . -585) 142205) ((-286 . -145) 142184) ((-286 . -130) 142163) ((-1048 . -102) 142113) ((-125 . -25) T) ((-39 . -205) 142090) ((-111 . -21) T) ((-111 . -25) T) ((-552 . -260) 142066) ((-444 . -260) 142045) ((-1127 . -961) T) ((-784 . -961) T) ((-731 . -308) 142029) ((-112 . -1049) NIL) ((-89 . -557) 141961) ((-446 . -123) T) ((-540 . -1108) T) ((-1127 . -296) 141938) ((-524 . -961) T) ((-1127 . -207) T) ((-599 . -650) 141922) ((-879 . -260) 141899) ((-58 . -33) T) ((-972 . -727) T) ((-972 . -724) T) ((-748 . -659) T) ((-664 . -46) 141864) ((-564 . -37) 141851) ((-325 . -262) T) ((-322 . -262) T) ((-314 . -262) T) ((-237 . -262) 141782) ((-221 . -262) 141713) ((-939 . -97) T) ((-383 . -659) T) ((-112 . -37) 141658) ((-383 . -442) T) ((-324 . -97) T) ((-1103 . -968) T) ((-644 . -968) T) ((-1071 . -46) 141635) ((-1070 . -46) 141605) ((-1064 . -46) 141582) ((-950 . -138) 141528) ((-832 . -262) T) ((-1027 . -46) 141500) ((-627 . -280) NIL) ((-479 . -557) 141482) ((-474 . -557) 141464) ((-472 . -557) 141446) ((-297 . -1003) 141396) ((-645 . -421) 141327) ((-47 . -97) T) ((-1138 . -258) 141312) ((-1117 . -258) 141232) ((-583 . -603) 141216) ((-583 . -588) 141200) ((-309 . -21) T) ((-309 . -25) T) ((-39 . -319) NIL) ((-157 . -21) T) ((-157 . -25) T) ((-583 . -343) 141184) ((-548 . -258) 141161) ((-358 . -97) T) ((-1021 . -130) T) ((-121 . -557) 141093) ((-797 . -1003) T) ((-595 . -381) 141077) ((-647 . -557) 141059) ((-146 . -557) 141041) ((-142 . -557) 141023) ((-1166 . -659) T) ((-1005 . -33) T) ((-795 . -727) NIL) ((-795 . -724) NIL) ((-786 . -779) T) ((-664 . -808) NIL) ((-1175 . -123) T) ((-351 . -123) T) ((-826 . -97) T) ((-664 . -952) 140901) ((-489 . -123) T) ((-992 . -381) 140885) ((-916 . -456) 140869) ((-112 . -370) 140846) ((-1064 . -1108) 140825) ((-714 . -381) 140809) ((-712 . -381) 140793) ((-865 . -33) T) ((-627 . -1049) NIL) ((-224 . -585) 140630) ((-223 . -585) 140454) ((-749 . -842) 140433) ((-423 . -381) 140417) ((-548 . -19) 140401) ((-1044 . -1102) 140370) ((-1064 . -808) NIL) ((-1064 . -806) 140322) ((-548 . -550) 140299) ((-1095 . -557) 140231) ((-1072 . -557) 140213) ((-60 . -365) T) ((-1070 . -952) 140148) ((-1064 . -952) 140114) ((-627 . -37) 140064) ((-443 . -258) 140049) ((-664 . -347) 140033) ((-595 . -968) T) ((-1138 . -918) 139999) ((-1117 . -918) 139965) ((-973 . -1085) 139940) ((-796 . -558) 139743) ((-796 . -557) 139725) ((-1082 . -456) 139662) ((-388 . -937) 139641) ((-47 . -280) 139628) ((-973 . -102) 139574) ((-447 . -456) 139511) ((-483 . -1108) T) ((-1039 . -456) 139482) ((-1064 . -308) 139434) ((-1064 . -347) 139386) ((-407 . -97) T) ((-992 . -968) T) ((-224 . -33) T) ((-223 . -33) T) ((-714 . -968) T) ((-712 . -968) T) ((-664 . -822) 139363) ((-423 . -968) T) ((-57 . -456) 139347) ((-949 . -967) 139321) ((-482 . -456) 139305) ((-480 . -456) 139289) ((-462 . -456) 139273) ((-461 . -456) 139257) ((-219 . -478) 139190) ((-949 . -106) 139157) ((-1071 . -822) 139070) ((-607 . -1015) T) ((-1070 . -822) 138976) ((-1064 . -822) 138809) ((-1027 . -822) 138793) ((-324 . -1049) T) ((-292 . -967) 138775) ((-224 . -723) 138754) ((-224 . -726) 138705) ((-224 . -725) 138684) ((-223 . -723) 138663) ((-223 . -726) 138614) ((-223 . -725) 138593) ((-49 . -968) T) ((-224 . -659) 138524) ((-223 . -659) 138455) ((-1103 . -1003) T) ((-607 . -23) T) ((-530 . -968) T) ((-481 . -968) T) ((-349 . -967) 138420) ((-292 . -106) 138395) ((-71 . -353) T) ((-71 . -365) T) ((-939 . -37) 138332) ((-627 . -370) 138314) ((-94 . -97) T) ((-644 . -1003) T) ((-919 . -132) 138286) ((-349 . -106) 138235) ((-289 . -1112) 138214) ((-443 . -918) 138180) ((-324 . -37) 138145) ((-39 . -340) 138117) ((-919 . -134) 138089) ((-122 . -120) 138073) ((-116 . -120) 138057) ((-766 . -967) 138027) ((-765 . -21) 137979) ((-759 . -967) 137963) ((-765 . -25) 137915) ((-289 . -509) 137866) ((-517 . -760) T) ((-214 . -1108) T) ((-766 . -106) 137831) ((-759 . -106) 137810) ((-1138 . -557) 137792) ((-1117 . -557) 137774) ((-1117 . -558) 137447) ((-1069 . -831) 137426) ((-1026 . -831) 137405) ((-47 . -37) 137370) ((-1173 . -1015) T) ((-548 . -557) 137282) ((-548 . -558) 137243) ((-1171 . -1015) T) ((-214 . -952) 137072) ((-1069 . -585) 136997) ((-1026 . -585) 136922) ((-651 . -557) 136904) ((-783 . -585) 136878) ((-1173 . -23) T) ((-1171 . -23) T) ((-949 . -961) T) ((-1082 . -258) 136857) ((-153 . -338) 136808) ((-920 . -1108) T) ((-43 . -23) T) ((-447 . -258) 136787) ((-534 . -1003) T) ((-1044 . -1012) 136756) ((-1007 . -1006) 136708) ((-360 . -21) T) ((-360 . -25) T) ((-139 . -1015) T) ((-1179 . -97) T) ((-920 . -806) 136690) ((-920 . -808) 136672) ((-1103 . -650) 136569) ((-564 . -205) 136553) ((-562 . -21) T) ((-261 . -509) T) ((-562 . -25) T) ((-1089 . -1003) T) ((-644 . -650) 136518) ((-214 . -347) 136488) ((-920 . -952) 136448) ((-349 . -961) T) ((-197 . -968) T) ((-112 . -205) 136425) ((-57 . -258) 136402) ((-139 . -23) T) ((-480 . -258) 136379) ((-297 . -478) 136312) ((-461 . -258) 136289) ((-349 . -217) T) ((-349 . -207) T) ((-766 . -961) T) ((-759 . -961) T) ((-645 . -871) 136259) ((-634 . -779) T) ((-443 . -557) 136241) ((-759 . -207) 136220) ((-125 . -779) T) ((-595 . -1003) T) ((-1082 . -550) 136199) ((-503 . -1085) 136178) ((-306 . -1003) T) ((-289 . -333) 136157) ((-377 . -134) 136136) ((-377 . -132) 136115) ((-885 . -1015) 136014) ((-214 . -822) 135947) ((-747 . -1015) 135878) ((-591 . -781) 135862) ((-447 . -550) 135841) ((-503 . -102) 135791) ((-920 . -347) 135773) ((-920 . -308) 135755) ((-92 . -1003) T) ((-885 . -23) 135566) ((-446 . -21) T) ((-446 . -25) T) ((-747 . -23) 135437) ((-1073 . -557) 135419) ((-57 . -19) 135403) ((-1073 . -558) 135325) ((-1069 . -659) T) ((-1026 . -659) T) ((-480 . -19) 135309) ((-461 . -19) 135293) ((-57 . -550) 135270) ((-992 . -1003) T) ((-823 . -97) 135248) ((-783 . -659) T) ((-714 . -1003) T) ((-480 . -550) 135225) ((-461 . -550) 135202) ((-712 . -1003) T) ((-712 . -975) 135169) ((-430 . -1003) T) ((-423 . -1003) T) ((-534 . -650) 135144) ((-586 . -1003) T) ((-920 . -822) NIL) ((-1146 . -46) 135121) ((-567 . -1015) T) ((-607 . -123) T) ((-1140 . -97) T) ((-1139 . -46) 135091) ((-1118 . -46) 135068) ((-1103 . -156) 135019) ((-987 . -1112) 134970) ((-248 . -1003) T) ((-83 . -410) T) ((-83 . -365) T) ((-1070 . -278) 134949) ((-1064 . -278) 134928) ((-49 . -1003) T) ((-987 . -509) 134879) ((-644 . -156) T) ((-542 . -46) 134856) ((-199 . -585) 134821) ((-530 . -1003) T) ((-481 . -1003) T) ((-329 . -1112) T) ((-323 . -1112) T) ((-315 . -1112) T) ((-454 . -752) T) ((-454 . -842) T) ((-289 . -1015) T) ((-103 . -1112) T) ((-309 . -779) T) ((-192 . -842) T) ((-192 . -752) T) ((-647 . -967) 134791) ((-329 . -509) T) ((-323 . -509) T) ((-315 . -509) T) ((-103 . -509) T) ((-595 . -650) 134761) ((-1064 . -937) NIL) ((-289 . -23) T) ((-65 . -1108) T) ((-916 . -557) 134693) ((-627 . -205) 134675) ((-647 . -106) 134640) ((-583 . -33) T) ((-219 . -456) 134624) ((-1005 . -1001) 134608) ((-155 . -1003) T) ((-874 . -831) 134587) ((-449 . -831) 134566) ((-1175 . -21) T) ((-1175 . -25) T) ((-1173 . -123) T) ((-1171 . -123) T) ((-992 . -650) 134415) ((-972 . -585) 134402) ((-874 . -585) 134327) ((-493 . -557) 134309) ((-493 . -558) 134290) ((-714 . -650) 134119) ((-712 . -650) 133968) ((-1164 . -97) T) ((-984 . -97) T) ((-351 . -25) T) ((-351 . -21) T) ((-449 . -585) 133893) ((-430 . -650) 133864) ((-423 . -650) 133713) ((-904 . -97) T) ((-670 . -97) T) ((-489 . -25) T) ((-1118 . -1108) 133692) ((-1149 . -557) 133658) ((-1118 . -808) NIL) ((-1118 . -806) 133610) ((-128 . -97) T) ((-43 . -123) T) ((-1082 . -558) NIL) ((-1082 . -557) 133592) ((-1040 . -1024) 133537) ((-313 . -968) T) ((-601 . -557) 133519) ((-261 . -1015) T) ((-325 . -557) 133501) ((-322 . -557) 133483) ((-314 . -557) 133465) ((-237 . -558) 133213) ((-237 . -557) 133195) ((-221 . -557) 133177) ((-221 . -558) 133038) ((-958 . -1102) 132967) ((-823 . -280) 132905) ((-1179 . -1049) T) ((-1139 . -952) 132840) ((-1118 . -952) 132806) ((-1103 . -478) 132773) ((-1039 . -557) 132755) ((-751 . -659) T) ((-548 . -260) 132732) ((-530 . -650) 132697) ((-447 . -558) NIL) ((-447 . -557) 132679) ((-481 . -650) 132624) ((-286 . -97) T) ((-283 . -97) T) ((-261 . -23) T) ((-139 . -123) T) ((-356 . -659) T) ((-796 . -967) 132576) ((-832 . -557) 132558) ((-832 . -558) 132540) ((-796 . -106) 132471) ((-127 . -97) T) ((-109 . -97) T) ((-645 . -1130) 132455) ((-647 . -961) T) ((-627 . -319) NIL) ((-482 . -557) 132387) ((-349 . -727) T) ((-197 . -1003) T) ((-349 . -724) T) ((-199 . -726) T) ((-199 . -723) T) ((-57 . -558) 132348) ((-57 . -557) 132260) ((-199 . -659) T) ((-480 . -558) 132221) ((-480 . -557) 132133) ((-462 . -557) 132065) ((-461 . -558) 132026) ((-461 . -557) 131938) ((-987 . -333) 131889) ((-39 . -381) 131866) ((-75 . -1108) T) ((-795 . -831) NIL) ((-329 . -299) 131850) ((-329 . -333) T) ((-323 . -299) 131834) ((-323 . -333) T) ((-315 . -299) 131818) ((-315 . -333) T) ((-286 . -256) 131797) ((-103 . -333) T) ((-68 . -1108) T) ((-1118 . -308) 131749) ((-795 . -585) 131694) ((-1118 . -347) 131646) ((-885 . -123) 131501) ((-747 . -123) 131372) ((-879 . -588) 131356) ((-992 . -156) 131267) ((-879 . -343) 131251) ((-972 . -726) T) ((-972 . -723) T) ((-714 . -156) 131142) ((-712 . -156) 131053) ((-748 . -46) 131015) ((-972 . -659) T) ((-297 . -456) 130999) ((-874 . -659) T) ((-423 . -156) 130910) ((-219 . -258) 130887) ((-449 . -659) T) ((-1164 . -280) 130825) ((-1146 . -822) 130738) ((-1139 . -822) 130644) ((-1138 . -967) 130479) ((-1118 . -822) 130312) ((-1117 . -967) 130120) ((-1103 . -262) 130099) ((-1044 . -138) 130083) ((-982 . -97) T) ((-849 . -876) T) ((-73 . -1108) T) ((-670 . -280) 130021) ((-153 . -831) 129974) ((-601 . -352) 129946) ((-30 . -876) T) ((-1 . -557) 129928) ((-1021 . -97) T) ((-987 . -23) T) ((-49 . -561) 129912) ((-987 . -1015) T) ((-919 . -379) 129884) ((-542 . -822) 129797) ((-408 . -97) T) ((-128 . -280) NIL) ((-796 . -961) T) ((-765 . -779) 129776) ((-79 . -1108) T) ((-644 . -262) T) ((-39 . -968) T) ((-530 . -156) T) ((-481 . -156) T) ((-475 . -557) 129758) ((-153 . -585) 129668) ((-471 . -557) 129650) ((-321 . -134) 129632) ((-321 . -132) T) ((-329 . -1015) T) ((-323 . -1015) T) ((-315 . -1015) T) ((-920 . -278) T) ((-836 . -278) T) ((-796 . -217) T) ((-103 . -1015) T) ((-796 . -207) 129611) ((-1138 . -106) 129425) ((-1117 . -106) 129207) ((-219 . -1142) 129191) ((-517 . -777) T) ((-329 . -23) T) ((-324 . -319) T) ((-286 . -280) 129178) ((-283 . -280) 129074) ((-323 . -23) T) ((-289 . -123) T) ((-315 . -23) T) ((-920 . -937) T) ((-103 . -23) T) ((-219 . -550) 129051) ((-1140 . -37) 128908) ((-1127 . -831) 128887) ((-107 . -1003) T) ((-950 . -97) T) ((-1127 . -585) 128812) ((-795 . -726) NIL) ((-784 . -585) 128786) ((-795 . -723) NIL) ((-748 . -808) NIL) ((-795 . -659) T) ((-992 . -478) 128651) ((-714 . -478) 128599) ((-712 . -478) 128551) ((-524 . -585) 128538) ((-748 . -952) 128368) ((-423 . -478) 128306) ((-358 . -359) T) ((-58 . -1108) T) ((-562 . -779) 128285) ((-465 . -598) T) ((-1044 . -893) 128254) ((-919 . -421) T) ((-632 . -777) T) ((-474 . -724) T) ((-443 . -967) 128089) ((-313 . -1003) T) ((-283 . -1049) NIL) ((-261 . -123) T) ((-364 . -1003) T) ((-627 . -340) 128056) ((-794 . -968) T) ((-197 . -561) 128033) ((-297 . -258) 128010) ((-443 . -106) 127824) ((-1138 . -961) T) ((-1117 . -961) T) ((-748 . -347) 127808) ((-153 . -659) T) ((-591 . -97) T) ((-1138 . -217) 127787) ((-1138 . -207) 127739) ((-1117 . -207) 127644) ((-1117 . -217) 127623) ((-919 . -372) NIL) ((-607 . -579) 127571) ((-286 . -37) 127481) ((-283 . -37) 127410) ((-67 . -557) 127392) ((-289 . -458) 127358) ((-1082 . -260) 127337) ((-1016 . -1015) 127268) ((-81 . -1108) T) ((-59 . -557) 127250) ((-447 . -260) 127229) ((-1166 . -952) 127206) ((-1062 . -1003) T) ((-1016 . -23) 127077) ((-748 . -822) 127013) ((-1127 . -659) T) ((-1005 . -1108) T) ((-992 . -262) 126944) ((-815 . -97) T) ((-714 . -262) 126855) ((-297 . -19) 126839) ((-57 . -260) 126816) ((-712 . -262) 126747) ((-784 . -659) T) ((-112 . -777) NIL) ((-480 . -260) 126724) ((-297 . -550) 126701) ((-461 . -260) 126678) ((-423 . -262) 126609) ((-950 . -280) 126460) ((-524 . -659) T) ((-599 . -557) 126442) ((-219 . -558) 126403) ((-219 . -557) 126315) ((-1045 . -33) T) ((-865 . -1108) T) ((-313 . -650) 126260) ((-607 . -25) T) ((-607 . -21) T) ((-443 . -961) T) ((-575 . -387) 126225) ((-551 . -387) 126190) ((-1021 . -1049) T) ((-530 . -262) T) ((-481 . -262) T) ((-1139 . -278) 126169) ((-443 . -207) 126121) ((-443 . -217) 126100) ((-1118 . -278) 126079) ((-987 . -123) T) ((-796 . -727) 126058) ((-131 . -97) T) ((-39 . -1003) T) ((-796 . -724) 126037) ((-583 . -926) 126021) ((-529 . -968) T) ((-517 . -968) T) ((-460 . -968) T) ((-377 . -421) T) ((-329 . -123) T) ((-286 . -370) 126005) ((-283 . -370) 125966) ((-323 . -123) T) ((-315 . -123) T) ((-1118 . -937) NIL) ((-998 . -557) 125933) ((-103 . -123) T) ((-1021 . -37) 125920) ((-843 . -1003) T) ((-703 . -1003) T) ((-608 . -1003) T) ((-634 . -134) T) ((-111 . -134) T) ((-1173 . -21) T) ((-1173 . -25) T) ((-1171 . -21) T) ((-1171 . -25) T) ((-601 . -967) 125904) ((-489 . -779) T) ((-465 . -779) T) ((-325 . -967) 125856) ((-322 . -967) 125808) ((-314 . -967) 125760) ((-224 . -1108) T) ((-223 . -1108) T) ((-237 . -967) 125603) ((-221 . -967) 125446) ((-601 . -106) 125425) ((-325 . -106) 125356) ((-322 . -106) 125287) ((-314 . -106) 125218) ((-237 . -106) 125040) ((-221 . -106) 124862) ((-749 . -1112) 124841) ((-564 . -381) 124825) ((-43 . -21) T) ((-43 . -25) T) ((-747 . -579) 124733) ((-749 . -509) 124712) ((-224 . -952) 124541) ((-223 . -952) 124370) ((-121 . -114) 124354) ((-832 . -967) 124319) ((-632 . -968) T) ((-645 . -97) T) ((-313 . -156) T) ((-139 . -21) T) ((-139 . -25) T) ((-86 . -557) 124301) ((-832 . -106) 124250) ((-39 . -650) 124195) ((-794 . -1003) T) ((-297 . -558) 124156) ((-297 . -557) 124068) ((-1117 . -724) 124021) ((-1117 . -727) 123974) ((-224 . -347) 123944) ((-223 . -347) 123914) ((-591 . -37) 123884) ((-552 . -33) T) ((-450 . -1015) 123815) ((-444 . -33) T) ((-1016 . -123) 123686) ((-885 . -25) 123497) ((-797 . -557) 123479) ((-885 . -21) 123434) ((-747 . -21) 123345) ((-747 . -25) 123197) ((-564 . -968) T) ((-1075 . -509) 123176) ((-1069 . -46) 123153) ((-325 . -961) T) ((-322 . -961) T) ((-450 . -23) 123024) ((-314 . -961) T) ((-237 . -961) T) ((-221 . -961) T) ((-1026 . -46) 122996) ((-112 . -968) T) ((-949 . -585) 122970) ((-879 . -33) T) ((-325 . -207) 122949) ((-325 . -217) T) ((-322 . -207) 122928) ((-221 . -296) 122885) ((-322 . -217) T) ((-314 . -207) 122864) ((-314 . -217) T) ((-237 . -296) 122836) ((-237 . -207) 122815) ((-1054 . -138) 122799) ((-224 . -822) 122732) ((-223 . -822) 122665) ((-989 . -779) T) ((-1121 . -1108) T) ((-384 . -1015) T) ((-965 . -23) T) ((-832 . -961) T) ((-292 . -585) 122647) ((-939 . -777) T) ((-1103 . -918) 122613) ((-1070 . -842) 122592) ((-1064 . -842) 122571) ((-832 . -217) T) ((-749 . -333) 122550) ((-355 . -23) T) ((-122 . -1003) 122528) ((-116 . -1003) 122506) ((-832 . -207) T) ((-1064 . -752) NIL) ((-349 . -585) 122471) ((-794 . -650) 122458) ((-958 . -138) 122423) ((-39 . -156) T) ((-627 . -381) 122405) ((-645 . -280) 122392) ((-766 . -585) 122352) ((-759 . -585) 122326) ((-289 . -25) T) ((-289 . -21) T) ((-595 . -258) 122305) ((-529 . -1003) T) ((-517 . -1003) T) ((-460 . -1003) T) ((-219 . -260) 122282) ((-283 . -205) 122243) ((-1069 . -808) NIL) ((-1026 . -808) 122102) ((-1069 . -952) 121985) ((-1026 . -952) 121870) ((-783 . -952) 121768) ((-714 . -258) 121695) ((-749 . -1015) T) ((-949 . -659) T) ((-548 . -588) 121679) ((-958 . -893) 121608) ((-915 . -97) T) ((-749 . -23) T) ((-645 . -1049) 121586) ((-627 . -968) T) ((-548 . -343) 121570) ((-321 . -421) T) ((-313 . -262) T) ((-1154 . -1003) T) ((-369 . -97) T) ((-261 . -21) T) ((-261 . -25) T) ((-331 . -659) T) ((-632 . -1003) T) ((-331 . -442) T) ((-1103 . -557) 121552) ((-1069 . -347) 121536) ((-1026 . -347) 121520) ((-939 . -381) 121482) ((-128 . -203) 121464) ((-349 . -726) T) ((-349 . -723) T) ((-794 . -156) T) ((-349 . -659) T) ((-644 . -557) 121446) ((-645 . -37) 121275) ((-1153 . -1151) 121259) ((-321 . -372) T) ((-1153 . -1003) 121209) ((-529 . -650) 121196) ((-517 . -650) 121183) ((-460 . -650) 121148) ((-286 . -569) 121127) ((-766 . -659) T) ((-759 . -659) T) ((-583 . -1108) T) ((-987 . -579) 121075) ((-1069 . -822) 121019) ((-1026 . -822) 121003) ((-599 . -967) 120987) ((-103 . -579) 120969) ((-450 . -123) 120840) ((-1075 . -1015) T) ((-874 . -46) 120809) ((-564 . -1003) T) ((-599 . -106) 120788) ((-297 . -260) 120765) ((-449 . -46) 120722) ((-1075 . -23) T) ((-112 . -1003) T) ((-98 . -97) 120700) ((-1163 . -1015) T) ((-965 . -123) T) ((-939 . -968) T) ((-751 . -952) 120684) ((-919 . -657) 120656) ((-1163 . -23) T) ((-632 . -650) 120621) ((-534 . -557) 120603) ((-356 . -952) 120587) ((-324 . -968) T) ((-355 . -123) T) ((-294 . -952) 120571) ((-199 . -808) 120553) ((-920 . -842) T) ((-89 . -33) T) ((-920 . -752) T) ((-836 . -842) T) ((-454 . -1112) T) ((-1089 . -557) 120535) ((-1008 . -1003) T) ((-192 . -1112) T) ((-915 . -280) 120500) ((-199 . -952) 120460) ((-39 . -262) T) ((-987 . -21) T) ((-987 . -25) T) ((-1021 . -760) T) ((-454 . -509) T) ((-329 . -25) T) ((-192 . -509) T) ((-329 . -21) T) ((-323 . -25) T) ((-323 . -21) T) ((-647 . -585) 120420) ((-315 . -25) T) ((-315 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -968) T) ((-529 . -156) T) ((-517 . -156) T) ((-460 . -156) T) ((-595 . -557) 120402) ((-670 . -669) 120386) ((-306 . -557) 120368) ((-66 . -353) T) ((-66 . -365) T) ((-1005 . -102) 120352) ((-972 . -808) 120334) ((-874 . -808) 120259) ((-590 . -1015) T) ((-564 . -650) 120246) ((-449 . -808) NIL) ((-1044 . -97) T) ((-972 . -952) 120228) ((-92 . -557) 120210) ((-446 . -134) T) ((-874 . -952) 120092) ((-112 . -650) 120037) ((-590 . -23) T) ((-449 . -952) 119915) ((-992 . -558) NIL) ((-992 . -557) 119897) ((-714 . -558) NIL) ((-714 . -557) 119858) ((-712 . -558) 119493) ((-712 . -557) 119407) ((-1016 . -579) 119315) ((-430 . -557) 119297) ((-423 . -557) 119279) ((-423 . -558) 119140) ((-950 . -203) 119086) ((-121 . -33) T) ((-749 . -123) T) ((-796 . -831) 119065) ((-586 . -557) 119047) ((-325 . -1170) 119031) ((-322 . -1170) 119015) ((-314 . -1170) 118999) ((-122 . -478) 118932) ((-116 . -478) 118865) ((-475 . -724) T) ((-475 . -727) T) ((-474 . -726) T) ((-98 . -280) 118803) ((-196 . -97) 118781) ((-627 . -1003) T) ((-632 . -156) T) ((-796 . -585) 118733) ((-63 . -354) T) ((-248 . -557) 118715) ((-63 . -365) T) ((-874 . -347) 118699) ((-794 . -262) T) ((-49 . -557) 118681) ((-915 . -37) 118629) ((-530 . -557) 118611) ((-449 . -347) 118595) ((-530 . -558) 118577) ((-481 . -557) 118559) ((-832 . -1170) 118546) ((-795 . -1108) T) ((-634 . -421) T) ((-460 . -478) 118512) ((-454 . -333) T) ((-325 . -338) 118491) ((-322 . -338) 118470) ((-314 . -338) 118449) ((-192 . -333) T) ((-647 . -659) T) ((-111 . -421) T) ((-1174 . -1165) 118433) ((-795 . -806) 118410) ((-795 . -808) NIL) ((-885 . -779) 118309) ((-747 . -779) 118260) ((-591 . -593) 118244) ((-1095 . -33) T) ((-155 . -557) 118226) ((-1016 . -21) 118137) ((-1016 . -25) 117989) ((-795 . -952) 117966) ((-874 . -822) 117947) ((-1127 . -46) 117924) ((-832 . -338) T) ((-57 . -588) 117908) ((-480 . -588) 117892) ((-449 . -822) 117869) ((-69 . -410) T) ((-69 . -365) T) ((-461 . -588) 117853) ((-57 . -343) 117837) ((-564 . -156) T) ((-480 . -343) 117821) ((-461 . -343) 117805) ((-759 . -642) 117789) ((-1069 . -278) 117768) ((-1075 . -123) T) ((-112 . -156) T) ((-1044 . -280) 117706) ((-153 . -1108) T) ((-575 . -677) 117690) ((-551 . -677) 117674) ((-1163 . -123) T) ((-1139 . -842) 117653) ((-1118 . -842) 117632) ((-1118 . -752) NIL) ((-627 . -650) 117582) ((-1117 . -831) 117535) ((-939 . -1003) T) ((-795 . -347) 117512) ((-795 . -308) 117489) ((-827 . -1015) T) ((-153 . -806) 117473) ((-153 . -808) 117398) ((-454 . -1015) T) ((-324 . -1003) T) ((-192 . -1015) T) ((-74 . -410) T) ((-74 . -365) T) ((-153 . -952) 117296) ((-289 . -779) T) ((-1153 . -478) 117229) ((-1138 . -585) 117126) ((-1117 . -585) 116996) ((-796 . -726) 116975) ((-796 . -723) 116954) ((-796 . -659) T) ((-454 . -23) T) ((-197 . -557) 116936) ((-157 . -421) T) ((-196 . -280) 116874) ((-84 . -410) T) ((-84 . -365) T) ((-192 . -23) T) ((-1175 . -1168) 116853) ((-529 . -262) T) ((-517 . -262) T) ((-612 . -952) 116837) ((-460 . -262) T) ((-127 . -439) 116792) ((-47 . -1003) T) ((-645 . -205) 116776) ((-795 . -822) NIL) ((-1127 . -808) NIL) ((-811 . -97) T) ((-807 . -97) T) ((-358 . -1003) T) ((-153 . -347) 116760) ((-153 . -308) 116744) ((-1127 . -952) 116627) ((-784 . -952) 116525) ((-1040 . -97) T) ((-590 . -123) T) ((-112 . -478) 116388) ((-599 . -724) 116367) ((-599 . -727) 116346) ((-524 . -952) 116328) ((-265 . -1160) 116298) ((-790 . -97) T) ((-884 . -509) 116277) ((-1103 . -967) 116160) ((-450 . -579) 116068) ((-826 . -1003) T) ((-939 . -650) 116005) ((-644 . -967) 115970) ((-548 . -33) T) ((-1045 . -1108) T) ((-1103 . -106) 115832) ((-443 . -585) 115729) ((-324 . -650) 115674) ((-153 . -822) 115633) ((-632 . -262) T) ((-627 . -156) T) ((-644 . -106) 115582) ((-1179 . -968) T) ((-1127 . -347) 115566) ((-388 . -1112) 115544) ((-283 . -777) NIL) ((-388 . -509) T) ((-199 . -278) T) ((-1117 . -723) 115497) ((-1117 . -726) 115450) ((-1138 . -659) T) ((-1117 . -659) T) ((-47 . -650) 115415) ((-199 . -937) T) ((-321 . -1160) 115392) ((-1140 . -381) 115358) ((-651 . -659) T) ((-1127 . -822) 115302) ((-107 . -557) 115284) ((-107 . -558) 115266) ((-651 . -442) T) ((-450 . -21) 115177) ((-122 . -456) 115161) ((-116 . -456) 115145) ((-450 . -25) 114997) ((-564 . -262) T) ((-534 . -967) 114972) ((-407 . -1003) T) ((-972 . -278) T) ((-112 . -262) T) ((-1007 . -97) T) ((-919 . -97) T) ((-534 . -106) 114933) ((-1040 . -280) 114871) ((-1103 . -961) T) ((-972 . -937) T) ((-64 . -1108) T) ((-965 . -25) T) ((-965 . -21) T) ((-644 . -961) T) ((-355 . -21) T) ((-355 . -25) T) ((-627 . -478) NIL) ((-939 . -156) T) ((-644 . -217) T) ((-972 . -502) T) ((-467 . -97) T) ((-324 . -156) T) ((-313 . -557) 114853) ((-364 . -557) 114835) ((-443 . -659) T) ((-1021 . -777) T) ((-814 . -952) 114803) ((-103 . -779) T) ((-595 . -967) 114787) ((-454 . -123) T) ((-1140 . -968) T) ((-192 . -123) T) ((-1054 . -97) 114765) ((-94 . -1003) T) ((-219 . -603) 114749) ((-219 . -588) 114733) ((-595 . -106) 114712) ((-286 . -381) 114696) ((-219 . -343) 114680) ((-1057 . -209) 114627) ((-915 . -205) 114611) ((-72 . -1108) T) ((-47 . -156) T) ((-634 . -357) T) ((-634 . -130) T) ((-1174 . -97) T) ((-992 . -967) 114454) ((-237 . -831) 114433) ((-221 . -831) 114412) ((-714 . -967) 114235) ((-712 . -967) 114078) ((-552 . -1108) T) ((-1062 . -557) 114060) ((-992 . -106) 113882) ((-958 . -97) T) ((-444 . -1108) T) ((-430 . -967) 113853) ((-423 . -967) 113696) ((-601 . -585) 113680) ((-795 . -278) T) ((-714 . -106) 113482) ((-712 . -106) 113304) ((-325 . -585) 113256) ((-322 . -585) 113208) ((-314 . -585) 113160) ((-237 . -585) 113085) ((-221 . -585) 113010) ((-1056 . -779) T) ((-430 . -106) 112971) ((-423 . -106) 112793) ((-993 . -952) 112777) ((-983 . -952) 112754) ((-916 . -33) T) ((-879 . -1108) T) ((-121 . -926) 112738) ((-884 . -1015) T) ((-795 . -937) NIL) ((-668 . -1015) T) ((-648 . -1015) T) ((-1153 . -456) 112722) ((-1040 . -37) 112682) ((-884 . -23) T) ((-772 . -97) T) ((-749 . -21) T) ((-749 . -25) T) ((-668 . -23) T) ((-648 . -23) T) ((-105 . -598) T) ((-832 . -585) 112647) ((-530 . -967) 112612) ((-481 . -967) 112557) ((-201 . -55) 112515) ((-422 . -23) T) ((-377 . -97) T) ((-236 . -97) T) ((-627 . -262) T) ((-790 . -37) 112485) ((-530 . -106) 112434) ((-481 . -106) 112351) ((-388 . -1015) T) ((-286 . -968) 112242) ((-283 . -968) T) ((-595 . -961) T) ((-1179 . -1003) T) ((-153 . -278) 112173) ((-388 . -23) T) ((-39 . -557) 112155) ((-39 . -558) 112139) ((-103 . -909) 112121) ((-111 . -793) 112105) ((-47 . -478) 112071) ((-1095 . -926) 112055) ((-1078 . -557) 112037) ((-1082 . -33) T) ((-843 . -557) 112019) ((-1016 . -779) 111970) ((-703 . -557) 111952) ((-608 . -557) 111934) ((-1054 . -280) 111872) ((-447 . -33) T) ((-996 . -1108) T) ((-446 . -421) T) ((-992 . -961) T) ((-1039 . -33) T) ((-714 . -961) T) ((-712 . -961) T) ((-584 . -209) 111856) ((-572 . -209) 111802) ((-1127 . -278) 111781) ((-992 . -296) 111743) ((-423 . -961) T) ((-1075 . -21) T) ((-992 . -207) 111722) ((-714 . -296) 111699) ((-714 . -207) T) ((-712 . -296) 111671) ((-297 . -588) 111655) ((-664 . -1112) 111634) ((-1075 . -25) T) ((-57 . -33) T) ((-482 . -33) T) ((-480 . -33) T) ((-423 . -296) 111613) ((-297 . -343) 111597) ((-462 . -33) T) ((-461 . -33) T) ((-919 . -1049) NIL) ((-575 . -97) T) ((-551 . -97) T) ((-664 . -509) 111528) ((-325 . -659) T) ((-322 . -659) T) ((-314 . -659) T) ((-237 . -659) T) ((-221 . -659) T) ((-958 . -280) 111436) ((-823 . -1003) 111414) ((-49 . -961) T) ((-1163 . -21) T) ((-1163 . -25) T) ((-1071 . -509) 111393) ((-1070 . -1112) 111372) ((-530 . -961) T) ((-481 . -961) T) ((-1064 . -1112) 111351) ((-331 . -952) 111335) ((-292 . -952) 111319) ((-939 . -262) T) ((-349 . -808) 111301) ((-1070 . -509) 111252) ((-1064 . -509) 111203) ((-919 . -37) 111148) ((-731 . -1015) T) ((-832 . -659) T) ((-530 . -217) T) ((-530 . -207) T) ((-481 . -207) T) ((-481 . -217) T) ((-1027 . -509) 111127) ((-324 . -262) T) ((-584 . -628) 111111) ((-349 . -952) 111071) ((-1021 . -968) T) ((-98 . -120) 111055) ((-731 . -23) T) ((-1153 . -258) 111032) ((-377 . -280) 110997) ((-1173 . -1168) 110973) ((-1171 . -1168) 110952) ((-1140 . -1003) T) ((-794 . -557) 110934) ((-766 . -952) 110903) ((-179 . -719) T) ((-178 . -719) T) ((-177 . -719) T) ((-176 . -719) T) ((-175 . -719) T) ((-174 . -719) T) ((-173 . -719) T) ((-172 . -719) T) ((-171 . -719) T) ((-170 . -719) T) ((-460 . -918) T) ((-247 . -768) T) ((-246 . -768) T) ((-245 . -768) T) ((-244 . -768) T) ((-47 . -262) T) ((-243 . -768) T) ((-242 . -768) T) ((-241 . -768) T) ((-169 . -719) T) ((-556 . -779) T) ((-591 . -381) 110887) ((-105 . -779) T) ((-590 . -21) T) ((-590 . -25) T) ((-1174 . -37) 110857) ((-112 . -258) 110787) ((-1153 . -19) 110771) ((-1153 . -550) 110748) ((-1164 . -1003) T) ((-984 . -1003) T) ((-904 . -1003) T) ((-884 . -123) T) ((-670 . -1003) T) ((-668 . -123) T) ((-648 . -123) T) ((-475 . -725) T) ((-377 . -1049) 110726) ((-422 . -123) T) ((-475 . -726) T) ((-197 . -961) T) ((-265 . -97) 110509) ((-128 . -1003) T) ((-632 . -918) T) ((-89 . -1108) T) ((-122 . -557) 110441) ((-116 . -557) 110373) ((-1179 . -156) T) ((-1070 . -333) 110352) ((-1064 . -333) 110331) ((-286 . -1003) T) ((-388 . -123) T) ((-283 . -1003) T) ((-377 . -37) 110283) ((-1034 . -97) T) ((-1140 . -650) 110140) ((-591 . -968) T) ((-289 . -132) 110119) ((-289 . -134) 110098) ((-127 . -1003) T) ((-109 . -1003) T) ((-786 . -97) T) ((-529 . -557) 110080) ((-517 . -558) 109979) ((-517 . -557) 109961) ((-460 . -557) 109943) ((-460 . -558) 109888) ((-452 . -23) T) ((-450 . -779) 109839) ((-454 . -579) 109821) ((-192 . -579) 109803) ((-199 . -374) T) ((-599 . -585) 109787) ((-1069 . -842) 109766) ((-664 . -1015) T) ((-321 . -97) T) ((-750 . -779) T) ((-664 . -23) T) ((-313 . -967) 109711) ((-1056 . -1055) T) ((-1045 . -102) 109695) ((-1071 . -1015) T) ((-1070 . -1015) T) ((-479 . -952) 109679) ((-1064 . -1015) T) ((-1027 . -1015) T) ((-313 . -106) 109596) ((-920 . -1112) T) ((-121 . -1108) T) ((-836 . -1112) T) ((-627 . -258) NIL) ((-1154 . -557) 109578) ((-1071 . -23) T) ((-1070 . -23) T) ((-920 . -509) T) ((-1064 . -23) T) ((-836 . -509) T) ((-1040 . -205) 109562) ((-222 . -557) 109544) ((-1027 . -23) T) ((-982 . -1003) T) ((-731 . -123) T) ((-286 . -650) 109454) ((-283 . -650) 109383) ((-632 . -557) 109365) ((-632 . -558) 109310) ((-377 . -370) 109294) ((-408 . -1003) T) ((-454 . -25) T) ((-454 . -21) T) ((-1021 . -1003) T) ((-192 . -25) T) ((-192 . -21) T) ((-645 . -381) 109278) ((-647 . -952) 109247) ((-1153 . -557) 109159) ((-1153 . -558) 109120) ((-1140 . -156) T) ((-219 . -33) T) ((-848 . -891) T) ((-1095 . -1108) T) ((-599 . -723) 109099) ((-599 . -726) 109078) ((-368 . -365) T) ((-486 . -97) 109056) ((-950 . -1003) T) ((-196 . -911) 109040) ((-469 . -97) T) ((-564 . -557) 109022) ((-44 . -779) NIL) ((-564 . -558) 108999) ((-950 . -554) 108974) ((-823 . -478) 108907) ((-313 . -961) T) ((-112 . -558) NIL) ((-112 . -557) 108889) ((-796 . -1108) T) ((-607 . -387) 108873) ((-607 . -1024) 108818) ((-465 . -138) 108800) ((-313 . -207) T) ((-313 . -217) T) ((-39 . -967) 108745) ((-796 . -806) 108729) ((-796 . -808) 108654) ((-645 . -968) T) ((-627 . -918) NIL) ((-1138 . -46) 108624) ((-1117 . -46) 108601) ((-1039 . -926) 108572) ((-199 . -842) T) ((-39 . -106) 108489) ((-796 . -952) 108356) ((-1021 . -650) 108343) ((-1008 . -557) 108325) ((-987 . -134) 108304) ((-987 . -132) 108255) ((-920 . -333) T) ((-289 . -1097) 108221) ((-349 . -278) T) ((-289 . -1094) 108187) ((-286 . -156) 108166) ((-283 . -156) T) ((-919 . -205) 108143) ((-836 . -333) T) ((-530 . -1170) 108130) ((-481 . -1170) 108107) ((-329 . -134) 108086) ((-329 . -132) 108037) ((-323 . -134) 108016) ((-323 . -132) 107967) ((-552 . -1085) 107943) ((-315 . -134) 107922) ((-315 . -132) 107873) ((-289 . -34) 107839) ((-444 . -1085) 107818) ((0 . |EnumerationCategory|) T) ((-289 . -91) 107784) ((-349 . -937) T) ((-103 . -134) T) ((-103 . -132) NIL) ((-44 . -209) 107734) ((-591 . -1003) T) ((-552 . -102) 107681) ((-452 . -123) T) ((-444 . -102) 107631) ((-214 . -1015) 107562) ((-796 . -347) 107546) ((-796 . -308) 107530) ((-214 . -23) 107401) ((-972 . -842) T) ((-972 . -752) T) ((-530 . -338) T) ((-481 . -338) T) ((-321 . -1049) T) ((-297 . -33) T) ((-43 . -387) 107385) ((-360 . -677) 107369) ((-1164 . -478) 107302) ((-664 . -123) T) ((-1146 . -509) 107281) ((-1139 . -1112) 107260) ((-1139 . -509) 107211) ((-670 . -478) 107144) ((-1118 . -1112) 107123) ((-1118 . -509) 107074) ((-815 . -1003) T) ((-131 . -773) T) ((-1117 . -1108) 107053) ((-1117 . -808) 106926) ((-1117 . -806) 106896) ((-486 . -280) 106834) ((-1071 . -123) T) ((-128 . -478) NIL) ((-1070 . -123) T) ((-1064 . -123) T) ((-1027 . -123) T) ((-939 . -918) T) ((-321 . -37) 106799) ((-920 . -1015) T) ((-836 . -1015) T) ((-80 . -557) 106781) ((-39 . -961) T) ((-794 . -967) 106768) ((-920 . -23) T) ((-796 . -822) 106727) ((-634 . -97) T) ((-919 . -319) NIL) ((-548 . -1108) T) ((-888 . -23) T) ((-836 . -23) T) ((-794 . -106) 106712) ((-397 . -1015) T) ((-443 . -46) 106682) ((-125 . -97) T) ((-39 . -207) 106654) ((-39 . -217) T) ((-111 . -97) T) ((-543 . -509) 106633) ((-542 . -509) 106612) ((-627 . -557) 106594) ((-627 . -558) 106502) ((-286 . -478) 106468) ((-283 . -478) 106219) ((-1138 . -952) 106203) ((-1117 . -952) 105992) ((-915 . -381) 105976) ((-397 . -23) T) ((-1021 . -156) T) ((-1140 . -262) T) ((-591 . -650) 105946) ((-131 . -1003) T) ((-47 . -918) T) ((-377 . -205) 105930) ((-266 . -209) 105880) ((-795 . -842) T) ((-795 . -752) NIL) ((-789 . -779) T) ((-1117 . -308) 105850) ((-1117 . -347) 105820) ((-196 . -1022) 105804) ((-1153 . -260) 105781) ((-1103 . -585) 105706) ((-884 . -21) T) ((-884 . -25) T) ((-668 . -21) T) ((-668 . -25) T) ((-648 . -21) T) ((-648 . -25) T) ((-644 . -585) 105671) ((-422 . -21) T) ((-422 . -25) T) ((-309 . -97) T) ((-157 . -97) T) ((-915 . -968) T) ((-794 . -961) T) ((-706 . -97) T) ((-1139 . -333) 105650) ((-1138 . -822) 105556) ((-1118 . -333) 105535) ((-1117 . -822) 105386) ((-939 . -557) 105368) ((-377 . -760) 105321) ((-1071 . -458) 105287) ((-153 . -842) 105218) ((-1070 . -458) 105184) ((-1064 . -458) 105150) ((-645 . -1003) T) ((-1027 . -458) 105116) ((-529 . -967) 105103) ((-517 . -967) 105090) ((-460 . -967) 105055) ((-286 . -262) 105034) ((-283 . -262) T) ((-324 . -557) 105016) ((-388 . -25) T) ((-388 . -21) T) ((-94 . -258) 104995) ((-529 . -106) 104980) ((-517 . -106) 104965) ((-460 . -106) 104914) ((-1073 . -808) 104881) ((-823 . -456) 104865) ((-47 . -557) 104847) ((-47 . -558) 104792) ((-214 . -123) 104663) ((-1127 . -842) 104642) ((-748 . -1112) 104621) ((-950 . -478) 104429) ((-358 . -557) 104411) ((-748 . -509) 104342) ((-534 . -585) 104317) ((-237 . -46) 104289) ((-221 . -46) 104246) ((-489 . -473) 104223) ((-916 . -1108) T) ((-632 . -967) 104188) ((-1146 . -1015) T) ((-1139 . -1015) T) ((-1118 . -1015) T) ((-919 . -340) 104160) ((-107 . -338) T) ((-443 . -822) 104066) ((-1146 . -23) T) ((-1139 . -23) T) ((-826 . -557) 104048) ((-89 . -102) 104032) ((-1103 . -659) T) ((-827 . -779) 103983) ((-634 . -1049) T) ((-632 . -106) 103932) ((-1118 . -23) T) ((-543 . -1015) T) ((-542 . -1015) T) ((-645 . -650) 103761) ((-644 . -659) T) ((-1021 . -262) T) ((-920 . -123) T) ((-454 . -779) T) ((-888 . -123) T) ((-836 . -123) T) ((-529 . -961) T) ((-192 . -779) T) ((-517 . -961) T) ((-731 . -25) T) ((-731 . -21) T) ((-460 . -961) T) ((-543 . -23) T) ((-313 . -1170) 103738) ((-289 . -421) 103717) ((-309 . -280) 103704) ((-542 . -23) T) ((-397 . -123) T) ((-595 . -585) 103678) ((-219 . -926) 103662) ((-796 . -278) T) ((-1175 . -1165) 103646) ((-634 . -37) 103633) ((-517 . -207) T) ((-460 . -217) T) ((-460 . -207) T) ((-703 . -724) T) ((-703 . -727) T) ((-1048 . -209) 103583) ((-992 . -831) 103562) ((-111 . -37) 103549) ((-185 . -732) T) ((-184 . -732) T) ((-183 . -732) T) ((-182 . -732) T) ((-796 . -937) 103528) ((-1164 . -456) 103512) ((-714 . -831) 103491) ((-712 . -831) 103470) ((-1082 . -1108) T) ((-423 . -831) 103449) ((-670 . -456) 103433) ((-992 . -585) 103358) ((-714 . -585) 103283) ((-564 . -967) 103270) ((-447 . -1108) T) ((-313 . -338) T) ((-128 . -456) 103252) ((-712 . -585) 103177) ((-1039 . -1108) T) ((-430 . -585) 103148) ((-237 . -808) 103007) ((-221 . -808) NIL) ((-112 . -967) 102952) ((-423 . -585) 102877) ((-601 . -952) 102854) ((-564 . -106) 102839) ((-325 . -952) 102823) ((-322 . -952) 102807) ((-314 . -952) 102791) ((-237 . -952) 102637) ((-221 . -952) 102515) ((-112 . -106) 102432) ((-57 . -1108) T) ((-482 . -1108) T) ((-480 . -1108) T) ((-462 . -1108) T) ((-461 . -1108) T) ((-407 . -557) 102414) ((-404 . -557) 102396) ((-3 . -97) T) ((-942 . -1102) 102365) ((-765 . -97) T) ((-623 . -55) 102323) ((-632 . -961) T) ((-49 . -585) 102297) ((-261 . -421) T) ((-445 . -1102) 102266) ((0 . -97) T) ((-530 . -585) 102231) ((-481 . -585) 102176) ((-48 . -97) T) ((-832 . -952) 102163) ((-632 . -217) T) ((-987 . -379) 102142) ((-664 . -579) 102090) ((-915 . -1003) T) ((-645 . -156) 101981) ((-454 . -909) 101963) ((-237 . -347) 101947) ((-221 . -347) 101931) ((-369 . -1003) T) ((-309 . -37) 101915) ((-941 . -97) 101893) ((-192 . -909) 101875) ((-157 . -37) 101807) ((-1138 . -278) 101786) ((-1117 . -278) 101765) ((-595 . -659) T) ((-94 . -557) 101747) ((-1064 . -579) 101699) ((-452 . -25) T) ((-452 . -21) T) ((-1117 . -937) 101652) ((-564 . -961) T) ((-349 . -374) T) ((-360 . -97) T) ((-237 . -822) 101598) ((-221 . -822) 101575) ((-112 . -961) T) ((-748 . -1015) T) ((-992 . -659) T) ((-564 . -207) 101554) ((-562 . -97) T) ((-714 . -659) T) ((-712 . -659) T) ((-383 . -1015) T) ((-112 . -217) T) ((-39 . -338) NIL) ((-112 . -207) NIL) ((-423 . -659) T) ((-748 . -23) T) ((-664 . -25) T) ((-664 . -21) T) ((-636 . -779) T) ((-984 . -258) 101533) ((-76 . -366) T) ((-76 . -365) T) ((-627 . -967) 101483) ((-1146 . -123) T) ((-1139 . -123) T) ((-1118 . -123) T) ((-1040 . -381) 101467) ((-575 . -337) 101399) ((-551 . -337) 101331) ((-1054 . -1047) 101315) ((-98 . -1003) 101293) ((-1071 . -25) T) ((-1071 . -21) T) ((-1070 . -21) T) ((-915 . -650) 101241) ((-197 . -585) 101208) ((-627 . -106) 101135) ((-49 . -659) T) ((-1070 . -25) T) ((-321 . -319) T) ((-1064 . -21) T) ((-987 . -421) 101086) ((-1064 . -25) T) ((-645 . -478) 101034) ((-530 . -659) T) ((-481 . -659) T) ((-1027 . -21) T) ((-1027 . -25) T) ((-543 . -123) T) ((-542 . -123) T) ((-329 . -421) T) ((-323 . -421) T) ((-315 . -421) T) ((-443 . -278) 101013) ((-283 . -258) 100879) ((-103 . -421) T) ((-77 . -410) T) ((-77 . -365) T) ((-446 . -97) T) ((-1179 . -557) 100861) ((-1179 . -558) 100843) ((-987 . -372) 100822) ((-950 . -456) 100754) ((-517 . -727) T) ((-517 . -724) T) ((-973 . -209) 100700) ((-329 . -372) 100651) ((-323 . -372) 100602) ((-315 . -372) 100553) ((-1166 . -1015) T) ((-1166 . -23) T) ((-1155 . -97) T) ((-1040 . -968) T) ((-607 . -677) 100537) ((-1075 . -132) 100516) ((-1075 . -134) 100495) ((-1044 . -1003) T) ((-1044 . -980) 100464) ((-67 . -1108) T) ((-939 . -967) 100401) ((-790 . -968) T) ((-214 . -579) 100309) ((-627 . -961) T) ((-324 . -967) 100254) ((-59 . -1108) T) ((-939 . -106) 100163) ((-823 . -557) 100095) ((-627 . -217) T) ((-627 . -207) NIL) ((-772 . -777) 100074) ((-632 . -727) T) ((-632 . -724) T) ((-919 . -381) 100051) ((-324 . -106) 99968) ((-349 . -842) T) ((-377 . -777) 99947) ((-645 . -262) 99858) ((-197 . -659) T) ((-1146 . -458) 99824) ((-1139 . -458) 99790) ((-1118 . -458) 99756) ((-286 . -918) 99735) ((-196 . -1003) 99713) ((-289 . -890) 99676) ((-100 . -97) T) ((-47 . -967) 99641) ((-1175 . -97) T) ((-351 . -97) T) ((-47 . -106) 99590) ((-920 . -579) 99572) ((-1140 . -557) 99554) ((-489 . -97) T) ((-465 . -97) T) ((-1034 . -1035) 99538) ((-139 . -1160) 99522) ((-219 . -1108) T) ((-1069 . -1112) 99501) ((-1026 . -1112) 99480) ((-214 . -21) 99391) ((-214 . -25) 99243) ((-122 . -114) 99227) ((-116 . -114) 99211) ((-43 . -677) 99195) ((-1069 . -509) 99106) ((-1026 . -509) 99037) ((-950 . -258) 99012) ((-748 . -123) T) ((-112 . -727) NIL) ((-112 . -724) NIL) ((-325 . -278) T) ((-322 . -278) T) ((-314 . -278) T) ((-998 . -1108) T) ((-224 . -1015) 98943) ((-223 . -1015) 98874) ((-939 . -961) T) ((-919 . -968) T) ((-313 . -585) 98819) ((-562 . -37) 98803) ((-1164 . -557) 98765) ((-1164 . -558) 98726) ((-984 . -557) 98708) ((-939 . -217) T) ((-324 . -961) T) ((-747 . -1160) 98678) ((-224 . -23) T) ((-223 . -23) T) ((-904 . -557) 98660) ((-670 . -558) 98621) ((-670 . -557) 98603) ((-731 . -779) 98582) ((-915 . -478) 98494) ((-324 . -207) T) ((-324 . -217) T) ((-1057 . -138) 98441) ((-920 . -25) T) ((-128 . -557) 98423) ((-128 . -558) 98382) ((-832 . -278) T) ((-920 . -21) T) ((-888 . -25) T) ((-836 . -21) T) ((-836 . -25) T) ((-397 . -21) T) ((-397 . -25) T) ((-772 . -381) 98366) ((-47 . -961) T) ((-1173 . -1165) 98350) ((-1171 . -1165) 98334) ((-950 . -550) 98309) ((-286 . -558) 98170) ((-286 . -557) 98152) ((-283 . -558) NIL) ((-283 . -557) 98134) ((-47 . -217) T) ((-47 . -207) T) ((-591 . -258) 98095) ((-503 . -209) 98045) ((-127 . -557) 98027) ((-109 . -557) 98009) ((-446 . -37) 97974) ((-1175 . -1172) 97953) ((-1166 . -123) T) ((-1174 . -968) T) ((-989 . -97) T) ((-86 . -1108) T) ((-465 . -280) NIL) ((-916 . -102) 97937) ((-811 . -1003) T) ((-807 . -1003) T) ((-1153 . -588) 97921) ((-1153 . -343) 97905) ((-297 . -1108) T) ((-540 . -779) T) ((-1040 . -1003) T) ((-1040 . -964) 97845) ((-98 . -478) 97778) ((-849 . -557) 97760) ((-313 . -659) T) ((-30 . -557) 97742) ((-790 . -1003) T) ((-772 . -968) 97721) ((-39 . -585) 97666) ((-199 . -1112) T) ((-377 . -968) T) ((-1056 . -138) 97648) ((-915 . -262) 97599) ((-199 . -509) T) ((-289 . -1135) 97583) ((-289 . -1132) 97553) ((-1082 . -1085) 97532) ((-982 . -557) 97514) ((-584 . -138) 97498) ((-572 . -138) 97444) ((-1082 . -102) 97394) ((-447 . -1085) 97373) ((-454 . -134) T) ((-454 . -132) NIL) ((-1021 . -558) 97288) ((-408 . -557) 97270) ((-192 . -134) T) ((-192 . -132) NIL) ((-1021 . -557) 97252) ((-51 . -97) T) ((-1118 . -579) 97204) ((-447 . -102) 97154) ((-910 . -23) T) ((-1175 . -37) 97124) ((-1069 . -1015) T) ((-1026 . -1015) T) ((-972 . -1112) T) ((-783 . -1015) T) ((-874 . -1112) 97103) ((-449 . -1112) 97082) ((-664 . -779) 97061) ((-972 . -509) T) ((-874 . -509) 96992) ((-1069 . -23) T) ((-1026 . -23) T) ((-783 . -23) T) ((-449 . -509) 96923) ((-1040 . -650) 96855) ((-1044 . -478) 96788) ((-950 . -558) NIL) ((-950 . -557) 96770) ((-790 . -650) 96740) ((-1103 . -46) 96709) ((-224 . -123) T) ((-223 . -123) T) ((-1007 . -1003) T) ((-919 . -1003) T) ((-60 . -557) 96691) ((-1064 . -779) NIL) ((-939 . -724) T) ((-939 . -727) T) ((-1179 . -967) 96678) ((-1179 . -106) 96663) ((-794 . -585) 96650) ((-1146 . -25) T) ((-1146 . -21) T) ((-1139 . -21) T) ((-1139 . -25) T) ((-1118 . -21) T) ((-1118 . -25) T) ((-942 . -138) 96634) ((-796 . -752) 96613) ((-796 . -842) T) ((-645 . -258) 96540) ((-543 . -21) T) ((-543 . -25) T) ((-542 . -21) T) ((-39 . -659) T) ((-196 . -478) 96473) ((-542 . -25) T) ((-445 . -138) 96457) ((-432 . -138) 96441) ((-843 . -659) T) ((-703 . -725) T) ((-703 . -726) T) ((-467 . -1003) T) ((-703 . -659) T) ((-199 . -333) T) ((-1054 . -1003) 96419) ((-795 . -1112) T) ((-591 . -557) 96401) ((-795 . -509) T) ((-627 . -338) NIL) ((-329 . -1160) 96385) ((-607 . -97) T) ((-323 . -1160) 96369) ((-315 . -1160) 96353) ((-1174 . -1003) T) ((-483 . -779) 96332) ((-749 . -421) 96311) ((-958 . -1003) T) ((-958 . -980) 96240) ((-942 . -893) 96209) ((-751 . -1015) T) ((-919 . -650) 96154) ((-356 . -1015) T) ((-445 . -893) 96123) ((-432 . -893) 96092) ((-105 . -138) 96074) ((-71 . -557) 96056) ((-815 . -557) 96038) ((-987 . -657) 96017) ((-1179 . -961) T) ((-748 . -579) 95965) ((-265 . -968) 95908) ((-153 . -1112) 95813) ((-199 . -1015) T) ((-294 . -23) T) ((-1064 . -909) 95765) ((-772 . -1003) T) ((-1027 . -673) 95744) ((-1140 . -967) 95633) ((-1138 . -842) 95612) ((-794 . -659) T) ((-153 . -509) 95523) ((-1117 . -842) 95502) ((-529 . -585) 95489) ((-377 . -1003) T) ((-517 . -585) 95476) ((-236 . -1003) T) ((-460 . -585) 95441) ((-199 . -23) T) ((-1117 . -752) 95394) ((-1173 . -97) T) ((-324 . -1170) 95371) ((-1171 . -97) T) ((-1140 . -106) 95221) ((-131 . -557) 95203) ((-910 . -123) T) ((-43 . -97) T) ((-214 . -779) 95154) ((-1127 . -1112) 95133) ((-98 . -456) 95117) ((-1174 . -650) 95087) ((-992 . -46) 95049) ((-972 . -1015) T) ((-874 . -1015) T) ((-122 . -33) T) ((-116 . -33) T) ((-714 . -46) 95026) ((-712 . -46) 94998) ((-1127 . -509) 94909) ((-324 . -338) T) ((-449 . -1015) T) ((-1069 . -123) T) ((-1026 . -123) T) ((-423 . -46) 94888) ((-795 . -333) T) ((-783 . -123) T) ((-139 . -97) T) ((-972 . -23) T) ((-874 . -23) T) ((-524 . -509) T) ((-748 . -25) T) ((-748 . -21) T) ((-1040 . -478) 94821) ((-534 . -952) 94805) ((-449 . -23) T) ((-321 . -968) T) ((-1103 . -822) 94786) ((-607 . -280) 94724) ((-1016 . -1160) 94694) ((-632 . -585) 94659) ((-919 . -156) T) ((-884 . -132) 94638) ((-575 . -1003) T) ((-551 . -1003) T) ((-884 . -134) 94617) ((-920 . -779) T) ((-668 . -134) 94596) ((-668 . -132) 94575) ((-888 . -779) T) ((-443 . -842) 94554) ((-286 . -967) 94464) ((-283 . -967) 94393) ((-915 . -258) 94351) ((-377 . -650) 94303) ((-634 . -777) T) ((-1140 . -961) T) ((-286 . -106) 94192) ((-283 . -106) 94077) ((-885 . -97) T) ((-747 . -97) 93888) ((-645 . -558) NIL) ((-645 . -557) 93870) ((-595 . -952) 93768) ((-1140 . -296) 93712) ((-950 . -260) 93687) ((-529 . -659) T) ((-517 . -726) T) ((-153 . -333) 93638) ((-517 . -723) T) ((-517 . -659) T) ((-460 . -659) T) ((-1044 . -456) 93622) ((-992 . -808) NIL) ((-795 . -1015) T) ((-112 . -831) NIL) ((-1173 . -1172) 93598) ((-1171 . -1172) 93577) ((-714 . -808) NIL) ((-712 . -808) 93436) ((-1166 . -25) T) ((-1166 . -21) T) ((-1106 . -97) 93414) ((-1009 . -365) T) ((-564 . -585) 93401) ((-423 . -808) NIL) ((-611 . -97) 93379) ((-992 . -952) 93209) ((-795 . -23) T) ((-714 . -952) 93071) ((-712 . -952) 92930) ((-112 . -585) 92875) ((-423 . -952) 92753) ((-586 . -952) 92737) ((-567 . -97) T) ((-196 . -456) 92721) ((-1153 . -33) T) ((-575 . -650) 92705) ((-551 . -650) 92689) ((-607 . -37) 92649) ((-289 . -97) T) ((-83 . -557) 92631) ((-49 . -952) 92615) ((-1021 . -967) 92602) ((-992 . -347) 92586) ((-58 . -55) 92548) ((-632 . -726) T) ((-632 . -723) T) ((-530 . -952) 92535) ((-481 . -952) 92512) ((-632 . -659) T) ((-286 . -961) 92403) ((-294 . -123) T) ((-283 . -961) T) ((-153 . -1015) T) ((-714 . -347) 92387) ((-712 . -347) 92371) ((-44 . -138) 92321) ((-920 . -909) 92303) ((-423 . -347) 92287) ((-377 . -156) T) ((-286 . -217) 92266) ((-283 . -217) T) ((-283 . -207) NIL) ((-265 . -1003) 92049) ((-199 . -123) T) ((-1021 . -106) 92034) ((-153 . -23) T) ((-731 . -134) 92013) ((-731 . -132) 91992) ((-224 . -579) 91900) ((-223 . -579) 91808) ((-289 . -256) 91774) ((-1054 . -478) 91707) ((-1034 . -1003) T) ((-199 . -970) T) ((-747 . -280) 91645) ((-992 . -822) 91581) ((-714 . -822) 91525) ((-712 . -822) 91509) ((-1173 . -37) 91479) ((-1171 . -37) 91449) ((-1127 . -1015) T) ((-784 . -1015) T) ((-423 . -822) 91426) ((-786 . -1003) T) ((-1127 . -23) T) ((-524 . -1015) T) ((-784 . -23) T) ((-564 . -659) T) ((-325 . -842) T) ((-322 . -842) T) ((-261 . -97) T) ((-314 . -842) T) ((-972 . -123) T) ((-874 . -123) T) ((-112 . -726) NIL) ((-112 . -723) NIL) ((-112 . -659) T) ((-627 . -831) NIL) ((-958 . -478) 91310) ((-449 . -123) T) ((-524 . -23) T) ((-611 . -280) 91248) ((-575 . -694) T) ((-551 . -694) T) ((-1118 . -779) NIL) ((-919 . -262) T) ((-224 . -21) T) ((-627 . -585) 91198) ((-321 . -1003) T) ((-224 . -25) T) ((-223 . -21) T) ((-223 . -25) T) ((-139 . -37) 91182) ((-2 . -97) T) ((-832 . -842) T) ((-450 . -1160) 91152) ((-197 . -952) 91129) ((-1021 . -961) T) ((-644 . -278) T) ((-265 . -650) 91071) ((-634 . -968) T) ((-454 . -421) T) ((-377 . -478) 90983) ((-192 . -421) T) ((-1021 . -207) T) ((-266 . -138) 90933) ((-915 . -558) 90894) ((-915 . -557) 90876) ((-906 . -557) 90858) ((-111 . -968) T) ((-591 . -967) 90842) ((-199 . -458) T) ((-369 . -557) 90824) ((-369 . -558) 90801) ((-965 . -1160) 90771) ((-591 . -106) 90750) ((-1040 . -456) 90734) ((-747 . -37) 90704) ((-61 . -410) T) ((-61 . -365) T) ((-1057 . -97) T) ((-795 . -123) T) ((-451 . -97) 90682) ((-1179 . -338) T) ((-987 . -97) T) ((-971 . -97) T) ((-321 . -650) 90627) ((-664 . -134) 90606) ((-664 . -132) 90585) ((-939 . -585) 90522) ((-486 . -1003) 90500) ((-329 . -97) T) ((-323 . -97) T) ((-315 . -97) T) ((-103 . -97) T) ((-469 . -1003) T) ((-324 . -585) 90445) ((-1069 . -579) 90393) ((-1026 . -579) 90341) ((-355 . -473) 90320) ((-765 . -777) 90299) ((-349 . -1112) T) ((-627 . -659) T) ((-309 . -968) T) ((-1118 . -909) 90251) ((-157 . -968) T) ((-98 . -557) 90183) ((-1071 . -132) 90162) ((-1071 . -134) 90141) ((-349 . -509) T) ((-1070 . -134) 90120) ((-1070 . -132) 90099) ((-1064 . -132) 90006) ((-377 . -262) T) ((-1064 . -134) 89913) ((-1027 . -134) 89892) ((-1027 . -132) 89871) ((-289 . -37) 89712) ((-153 . -123) T) ((-283 . -727) NIL) ((-283 . -724) NIL) ((-591 . -961) T) ((-47 . -585) 89677) ((-910 . -21) T) ((-122 . -926) 89661) ((-116 . -926) 89645) ((-910 . -25) T) ((-823 . -114) 89629) ((-1056 . -97) T) ((-748 . -779) 89608) ((-1127 . -123) T) ((-1069 . -25) T) ((-1069 . -21) T) ((-784 . -123) T) ((-1026 . -25) T) ((-1026 . -21) T) ((-783 . -25) T) ((-783 . -21) T) ((-714 . -278) 89587) ((-584 . -97) 89565) ((-572 . -97) T) ((-1057 . -280) 89360) ((-524 . -123) T) ((-562 . -777) 89339) ((-1054 . -456) 89323) ((-1048 . -138) 89273) ((-1044 . -557) 89235) ((-1044 . -558) 89196) ((-939 . -723) T) ((-939 . -726) T) ((-939 . -659) T) ((-451 . -280) 89134) ((-422 . -387) 89104) ((-321 . -156) T) ((-261 . -37) 89091) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-242 . -97) T) ((-241 . -97) T) ((-313 . -952) 89068) ((-188 . -97) T) ((-187 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-645 . -967) 88891) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-170 . -97) T) ((-169 . -97) T) ((-324 . -659) T) ((-645 . -106) 88693) ((-607 . -205) 88677) ((-530 . -278) T) ((-481 . -278) T) ((-265 . -478) 88626) ((-103 . -280) NIL) ((-70 . -365) T) ((-1016 . -97) 88437) ((-765 . -381) 88421) ((-1021 . -727) T) ((-1021 . -724) T) ((-634 . -1003) T) ((-349 . -333) T) ((-153 . -458) 88399) ((-196 . -557) 88331) ((-125 . -1003) T) ((-111 . -1003) T) ((-47 . -659) T) ((-958 . -456) 88296) ((-128 . -395) 88278) ((-128 . -338) T) ((-942 . -97) T) ((-476 . -473) 88257) ((-445 . -97) T) ((-432 . -97) T) ((-949 . -1015) T) ((-1071 . -34) 88223) ((-1071 . -91) 88189) ((-1071 . -1097) 88155) ((-1071 . -1094) 88121) ((-1056 . -280) NIL) ((-87 . -366) T) ((-87 . -365) T) ((-987 . -1049) 88100) ((-1070 . -1094) 88066) ((-1070 . -1097) 88032) ((-949 . -23) T) ((-1070 . -91) 87998) ((-524 . -458) T) ((-1070 . -34) 87964) ((-1064 . -1094) 87930) ((-1064 . -1097) 87896) ((-1064 . -91) 87862) ((-331 . -1015) T) ((-329 . -1049) 87841) ((-323 . -1049) 87820) ((-315 . -1049) 87799) ((-1064 . -34) 87765) ((-1027 . -34) 87731) ((-1027 . -91) 87697) ((-103 . -1049) T) ((-1027 . -1097) 87663) ((-765 . -968) 87642) ((-584 . -280) 87580) ((-572 . -280) 87431) ((-1027 . -1094) 87397) ((-645 . -961) T) ((-972 . -579) 87379) ((-987 . -37) 87247) ((-874 . -579) 87195) ((-920 . -134) T) ((-920 . -132) NIL) ((-349 . -1015) T) ((-294 . -25) T) ((-292 . -23) T) ((-865 . -779) 87174) ((-645 . -296) 87151) ((-449 . -579) 87099) ((-39 . -952) 86976) ((-634 . -650) 86963) ((-645 . -207) T) ((-309 . -1003) T) ((-157 . -1003) T) ((-301 . -779) T) ((-388 . -421) 86913) ((-349 . -23) T) ((-329 . -37) 86878) ((-323 . -37) 86843) ((-315 . -37) 86808) ((-78 . -410) T) ((-78 . -365) T) ((-199 . -25) T) ((-199 . -21) T) ((-766 . -1015) T) ((-103 . -37) 86758) ((-759 . -1015) T) ((-706 . -1003) T) ((-111 . -650) 86745) ((-608 . -952) 86729) ((-556 . -97) T) ((-766 . -23) T) ((-759 . -23) T) ((-1054 . -258) 86706) ((-1016 . -280) 86644) ((-1005 . -209) 86628) ((-62 . -366) T) ((-62 . -365) T) ((-105 . -97) T) ((-39 . -347) 86605) ((-590 . -781) 86589) ((-972 . -21) T) ((-972 . -25) T) ((-747 . -205) 86559) ((-874 . -25) T) ((-874 . -21) T) ((-562 . -968) T) ((-449 . -25) T) ((-449 . -21) T) ((-942 . -280) 86497) ((-811 . -557) 86479) ((-807 . -557) 86461) ((-224 . -779) 86412) ((-223 . -779) 86363) ((-486 . -478) 86296) ((-795 . -579) 86273) ((-445 . -280) 86211) ((-432 . -280) 86149) ((-321 . -262) T) ((-1054 . -1142) 86133) ((-1040 . -557) 86095) ((-1040 . -558) 86056) ((-1038 . -97) T) ((-915 . -967) 85952) ((-39 . -822) 85904) ((-1054 . -550) 85881) ((-1179 . -585) 85868) ((-973 . -138) 85814) ((-796 . -1112) T) ((-915 . -106) 85689) ((-309 . -650) 85673) ((-790 . -557) 85655) ((-157 . -650) 85587) ((-377 . -258) 85545) ((-796 . -509) T) ((-103 . -370) 85527) ((-82 . -354) T) ((-82 . -365) T) ((-634 . -156) T) ((-94 . -659) T) ((-450 . -97) 85338) ((-94 . -442) T) ((-111 . -156) T) ((-1016 . -37) 85308) ((-153 . -579) 85256) ((-965 . -97) T) ((-795 . -25) T) ((-747 . -212) 85235) ((-795 . -21) T) ((-750 . -97) T) ((-384 . -97) T) ((-355 . -97) T) ((-105 . -280) NIL) ((-201 . -97) 85213) ((-122 . -1108) T) ((-116 . -1108) T) ((-949 . -123) T) ((-607 . -337) 85197) ((-915 . -961) T) ((-1127 . -579) 85145) ((-1007 . -557) 85127) ((-919 . -557) 85109) ((-479 . -23) T) ((-474 . -23) T) ((-313 . -278) T) ((-472 . -23) T) ((-292 . -123) T) ((-3 . -1003) T) ((-919 . -558) 85093) ((-915 . -217) 85072) ((-915 . -207) 85051) ((-1179 . -659) T) ((-1146 . -132) 85030) ((-765 . -1003) T) ((-1146 . -134) 85009) ((-1139 . -134) 84988) ((-1139 . -132) 84967) ((-1138 . -1112) 84946) ((-1118 . -132) 84853) ((-1118 . -134) 84760) ((-1117 . -1112) 84739) ((-349 . -123) T) ((-517 . -808) 84721) ((0 . -1003) T) ((-157 . -156) T) ((-153 . -21) T) ((-153 . -25) T) ((-48 . -1003) T) ((-1140 . -585) 84610) ((-1138 . -509) 84561) ((-647 . -1015) T) ((-1117 . -509) 84512) ((-517 . -952) 84494) ((-542 . -134) 84473) ((-542 . -132) 84452) ((-460 . -952) 84395) ((-85 . -354) T) ((-85 . -365) T) ((-796 . -333) T) ((-766 . -123) T) ((-759 . -123) T) ((-647 . -23) T) ((-467 . -557) 84377) ((-1175 . -968) T) ((-349 . -970) T) ((-941 . -1003) 84355) ((-823 . -33) T) ((-450 . -280) 84293) ((-1054 . -558) 84254) ((-1054 . -557) 84186) ((-1069 . -779) 84165) ((-44 . -97) T) ((-1026 . -779) 84144) ((-749 . -97) T) ((-1127 . -25) T) ((-1127 . -21) T) ((-784 . -25) T) ((-43 . -337) 84128) ((-784 . -21) T) ((-664 . -421) 84079) ((-1174 . -557) 84061) ((-524 . -25) T) ((-524 . -21) T) ((-360 . -1003) T) ((-965 . -280) 83999) ((-562 . -1003) T) ((-632 . -808) 83981) ((-1153 . -1108) T) ((-201 . -280) 83919) ((-131 . -338) T) ((-958 . -558) 83861) ((-958 . -557) 83804) ((-283 . -831) NIL) ((-632 . -952) 83749) ((-644 . -842) T) ((-443 . -1112) 83728) ((-1070 . -421) 83707) ((-1064 . -421) 83686) ((-300 . -97) T) ((-796 . -1015) T) ((-286 . -585) 83508) ((-283 . -585) 83437) ((-443 . -509) 83388) ((-309 . -478) 83354) ((-503 . -138) 83304) ((-39 . -278) T) ((-772 . -557) 83286) ((-634 . -262) T) ((-796 . -23) T) ((-349 . -458) T) ((-987 . -205) 83256) ((-476 . -97) T) ((-377 . -558) 83059) ((-377 . -557) 83041) ((-236 . -557) 83023) ((-111 . -262) T) ((-1140 . -659) T) ((-1138 . -333) 83002) ((-1117 . -333) 82981) ((-1164 . -33) T) ((-112 . -1108) T) ((-103 . -205) 82963) ((-1075 . -97) T) ((-446 . -1003) T) ((-486 . -456) 82947) ((-670 . -33) T) ((-450 . -37) 82917) ((-128 . -33) T) ((-112 . -806) 82894) ((-112 . -808) NIL) ((-564 . -952) 82779) ((-583 . -779) 82758) ((-1163 . -97) T) ((-266 . -97) T) ((-645 . -338) 82737) ((-112 . -952) 82714) ((-360 . -650) 82698) ((-562 . -650) 82682) ((-44 . -280) 82486) ((-748 . -132) 82465) ((-748 . -134) 82444) ((-1174 . -352) 82423) ((-751 . -779) T) ((-1155 . -1003) T) ((-1057 . -203) 82370) ((-356 . -779) 82349) ((-1146 . -1097) 82315) ((-1146 . -1094) 82281) ((-1139 . -1094) 82247) ((-479 . -123) T) ((-1139 . -1097) 82213) ((-1118 . -1094) 82179) ((-1118 . -1097) 82145) ((-1146 . -34) 82111) ((-1146 . -91) 82077) ((-575 . -557) 82046) ((-551 . -557) 82015) ((-199 . -779) T) ((-1139 . -91) 81981) ((-1139 . -34) 81947) ((-1138 . -1015) T) ((-1021 . -585) 81934) ((-1118 . -91) 81900) ((-1117 . -1015) T) ((-540 . -138) 81882) ((-987 . -319) 81861) ((-112 . -347) 81838) ((-112 . -308) 81815) ((-157 . -262) T) ((-1118 . -34) 81781) ((-794 . -278) T) ((-283 . -726) NIL) ((-283 . -723) NIL) ((-286 . -659) 81631) ((-283 . -659) T) ((-443 . -333) 81610) ((-329 . -319) 81589) ((-323 . -319) 81568) ((-315 . -319) 81547) ((-286 . -442) 81526) ((-1138 . -23) T) ((-1117 . -23) T) ((-651 . -1015) T) ((-647 . -123) T) ((-590 . -97) T) ((-446 . -650) 81491) ((-44 . -254) 81441) ((-100 . -1003) T) ((-66 . -557) 81423) ((-789 . -97) T) ((-564 . -822) 81382) ((-1175 . -1003) T) ((-351 . -1003) T) ((-80 . -1108) T) ((-972 . -779) T) ((-874 . -779) 81361) ((-112 . -822) NIL) ((-714 . -842) 81340) ((-646 . -779) T) ((-489 . -1003) T) ((-465 . -1003) T) ((-325 . -1112) T) ((-322 . -1112) T) ((-314 . -1112) T) ((-237 . -1112) 81319) ((-221 . -1112) 81298) ((-1016 . -205) 81268) ((-449 . -779) 81247) ((-1040 . -967) 81231) ((-360 . -694) T) ((-1056 . -760) T) ((-627 . -1108) T) ((-325 . -509) T) ((-322 . -509) T) ((-314 . -509) T) ((-237 . -509) 81162) ((-221 . -509) 81093) ((-1040 . -106) 81072) ((-422 . -677) 81042) ((-790 . -967) 81012) ((-749 . -37) 80949) ((-627 . -806) 80931) ((-627 . -808) 80913) ((-266 . -280) 80717) ((-832 . -1112) T) ((-607 . -381) 80701) ((-790 . -106) 80666) ((-627 . -952) 80611) ((-920 . -421) T) ((-832 . -509) T) ((-530 . -842) T) ((-443 . -1015) T) ((-481 . -842) T) ((-1054 . -260) 80588) ((-836 . -421) T) ((-63 . -557) 80570) ((-572 . -203) 80516) ((-443 . -23) T) ((-1021 . -726) T) ((-796 . -123) T) ((-1021 . -723) T) ((-1166 . -1168) 80495) ((-1021 . -659) T) ((-591 . -585) 80469) ((-265 . -557) 80211) ((-950 . -33) T) ((-747 . -777) 80190) ((-529 . -278) T) ((-517 . -278) T) ((-460 . -278) T) ((-1175 . -650) 80160) ((-627 . -347) 80142) ((-627 . -308) 80124) ((-446 . -156) T) ((-351 . -650) 80094) ((-795 . -779) NIL) ((-517 . -937) T) ((-460 . -937) T) ((-1034 . -557) 80076) ((-1016 . -212) 80055) ((-189 . -97) T) ((-1048 . -97) T) ((-69 . -557) 80037) ((-1040 . -961) T) ((-1075 . -37) 79934) ((-786 . -557) 79916) ((-517 . -502) T) ((-607 . -968) T) ((-664 . -871) 79869) ((-1040 . -207) 79848) ((-989 . -1003) T) ((-949 . -25) T) ((-949 . -21) T) ((-919 . -967) 79793) ((-827 . -97) T) ((-790 . -961) T) ((-627 . -822) NIL) ((-325 . -299) 79777) ((-325 . -333) T) ((-322 . -299) 79761) ((-322 . -333) T) ((-314 . -299) 79745) ((-314 . -333) T) ((-454 . -97) T) ((-1163 . -37) 79715) ((-486 . -621) 79665) ((-192 . -97) T) ((-939 . -952) 79547) ((-919 . -106) 79464) ((-1071 . -890) 79434) ((-1070 . -890) 79397) ((-483 . -138) 79381) ((-987 . -340) 79360) ((-321 . -557) 79342) ((-292 . -21) T) ((-324 . -952) 79319) ((-292 . -25) T) ((-1064 . -890) 79289) ((-1027 . -890) 79256) ((-74 . -557) 79238) ((-632 . -278) T) ((-153 . -779) 79217) ((-832 . -333) T) ((-349 . -25) T) ((-349 . -21) T) ((-832 . -299) 79204) ((-84 . -557) 79186) ((-632 . -937) T) ((-612 . -779) T) ((-1138 . -123) T) ((-1117 . -123) T) ((-823 . -926) 79170) ((-766 . -21) T) ((-47 . -952) 79113) ((-766 . -25) T) ((-759 . -25) T) ((-759 . -21) T) ((-1173 . -968) T) ((-1171 . -968) T) ((-591 . -659) T) ((-1174 . -967) 79097) ((-1127 . -779) 79076) ((-747 . -381) 79045) ((-98 . -114) 79029) ((-51 . -1003) T) ((-848 . -557) 79011) ((-795 . -909) 78988) ((-755 . -97) T) ((-1174 . -106) 78967) ((-590 . -37) 78937) ((-524 . -779) T) ((-325 . -1015) T) ((-322 . -1015) T) ((-314 . -1015) T) ((-237 . -1015) T) ((-221 . -1015) T) ((-564 . -278) 78916) ((-1048 . -280) 78720) ((-601 . -23) T) ((-450 . -205) 78690) ((-139 . -968) T) ((-325 . -23) T) ((-322 . -23) T) ((-314 . -23) T) ((-112 . -278) T) ((-237 . -23) T) ((-221 . -23) T) ((-919 . -961) T) ((-645 . -831) 78669) ((-919 . -207) 78641) ((-919 . -217) T) ((-112 . -937) NIL) ((-832 . -1015) T) ((-1139 . -421) 78620) ((-1118 . -421) 78599) ((-486 . -557) 78531) ((-645 . -585) 78456) ((-377 . -967) 78408) ((-469 . -557) 78390) ((-832 . -23) T) ((-454 . -280) NIL) ((-443 . -123) T) ((-192 . -280) NIL) ((-377 . -106) 78321) ((-747 . -968) 78252) ((-670 . -1001) 78236) ((-1138 . -458) 78202) ((-1117 . -458) 78168) ((-128 . -1001) 78150) ((-446 . -262) T) ((-1174 . -961) T) ((-973 . -97) T) ((-465 . -478) NIL) ((-636 . -97) T) ((-450 . -212) 78129) ((-1069 . -132) 78108) ((-1069 . -134) 78087) ((-1026 . -134) 78066) ((-1026 . -132) 78045) ((-575 . -967) 78029) ((-551 . -967) 78013) ((-607 . -1003) T) ((-607 . -964) 77953) ((-1071 . -1145) 77937) ((-1071 . -1132) 77914) ((-454 . -1049) T) ((-1070 . -1137) 77875) ((-1070 . -1132) 77845) ((-1070 . -1135) 77829) ((-192 . -1049) T) ((-313 . -842) T) ((-750 . -239) 77813) ((-575 . -106) 77792) ((-551 . -106) 77771) ((-1064 . -1116) 77732) ((-772 . -961) 77711) ((-1064 . -1132) 77688) ((-479 . -25) T) ((-460 . -273) T) ((-475 . -23) T) ((-474 . -25) T) ((-472 . -25) T) ((-471 . -23) T) ((-1064 . -1114) 77672) ((-377 . -961) T) ((-289 . -968) T) ((-627 . -278) T) ((-103 . -777) T) ((-377 . -217) T) ((-377 . -207) 77651) ((-645 . -659) T) ((-454 . -37) 77601) ((-192 . -37) 77551) ((-443 . -458) 77517) ((-1056 . -1042) T) ((-1004 . -97) T) ((-634 . -557) 77499) ((-634 . -558) 77414) ((-647 . -21) T) ((-647 . -25) T) ((-125 . -557) 77396) ((-111 . -557) 77378) ((-142 . -25) T) ((-1173 . -1003) T) ((-796 . -579) 77326) ((-1171 . -1003) T) ((-884 . -97) T) ((-668 . -97) T) ((-648 . -97) T) ((-422 . -97) T) ((-748 . -421) 77277) ((-43 . -1003) T) ((-993 . -779) T) ((-601 . -123) T) ((-973 . -280) 77128) ((-607 . -650) 77112) ((-261 . -968) T) ((-325 . -123) T) ((-322 . -123) T) ((-314 . -123) T) ((-237 . -123) T) ((-221 . -123) T) ((-388 . -97) T) ((-139 . -1003) T) ((-44 . -203) 77062) ((-879 . -779) 77041) ((-915 . -585) 76979) ((-214 . -1160) 76949) ((-939 . -278) T) ((-265 . -967) 76871) ((-832 . -123) T) ((-39 . -842) T) ((-454 . -370) 76853) ((-324 . -278) T) ((-192 . -370) 76835) ((-987 . -381) 76819) ((-265 . -106) 76736) ((-796 . -25) T) ((-796 . -21) T) ((-309 . -557) 76718) ((-1140 . -46) 76662) ((-199 . -134) T) ((-157 . -557) 76644) ((-1016 . -777) 76623) ((-706 . -557) 76605) ((-552 . -209) 76552) ((-444 . -209) 76502) ((-1173 . -650) 76472) ((-47 . -278) T) ((-1171 . -650) 76442) ((-885 . -1003) T) ((-747 . -1003) 76253) ((-282 . -97) T) ((-823 . -1108) T) ((-47 . -937) T) ((-1117 . -579) 76161) ((-623 . -97) 76139) ((-43 . -650) 76123) ((-503 . -97) T) ((-65 . -353) T) ((-65 . -365) T) ((-599 . -23) T) ((-607 . -694) T) ((-1106 . -1003) 76101) ((-321 . -967) 76046) ((-611 . -1003) 76024) ((-972 . -134) T) ((-874 . -134) 76003) ((-874 . -132) 75982) ((-731 . -97) T) ((-139 . -650) 75966) ((-449 . -134) 75945) ((-449 . -132) 75924) ((-321 . -106) 75841) ((-987 . -968) T) ((-292 . -779) 75820) ((-1146 . -890) 75790) ((-567 . -1003) T) ((-1139 . -890) 75753) ((-475 . -123) T) ((-471 . -123) T) ((-266 . -203) 75703) ((-329 . -968) T) ((-323 . -968) T) ((-315 . -968) T) ((-265 . -961) 75646) ((-1118 . -890) 75616) ((-349 . -779) T) ((-103 . -968) T) ((-915 . -659) T) ((-794 . -842) T) ((-772 . -727) 75595) ((-772 . -724) 75574) ((-388 . -280) 75513) ((-437 . -97) T) ((-542 . -890) 75483) ((-289 . -1003) T) ((-377 . -727) 75462) ((-377 . -724) 75441) ((-465 . -456) 75423) ((-1140 . -952) 75389) ((-1138 . -21) T) ((-1138 . -25) T) ((-1117 . -21) T) ((-1117 . -25) T) ((-747 . -650) 75331) ((-632 . -374) T) ((-1164 . -1108) T) ((-1016 . -381) 75300) ((-919 . -338) NIL) ((-98 . -33) T) ((-670 . -1108) T) ((-43 . -694) T) ((-540 . -97) T) ((-75 . -366) T) ((-75 . -365) T) ((-590 . -593) 75284) ((-128 . -1108) T) ((-795 . -134) T) ((-795 . -132) NIL) ((-321 . -961) T) ((-68 . -353) T) ((-68 . -365) T) ((-1063 . -97) T) ((-607 . -478) 75217) ((-623 . -280) 75155) ((-884 . -37) 75052) ((-668 . -37) 75022) ((-503 . -280) 74826) ((-286 . -1108) T) ((-321 . -207) T) ((-321 . -217) T) ((-283 . -1108) T) ((-261 . -1003) T) ((-1077 . -557) 74808) ((-644 . -1112) T) ((-1054 . -588) 74792) ((-1103 . -509) 74771) ((-644 . -509) T) ((-286 . -806) 74755) ((-286 . -808) 74680) ((-283 . -806) 74641) ((-283 . -808) NIL) ((-731 . -280) 74606) ((-289 . -650) 74447) ((-294 . -293) 74424) ((-452 . -97) T) ((-443 . -25) T) ((-443 . -21) T) ((-388 . -37) 74398) ((-286 . -952) 74066) ((-199 . -1094) T) ((-199 . -1097) T) ((-3 . -557) 74048) ((-283 . -952) 73978) ((-2 . -1003) T) ((-2 . |RecordCategory|) T) ((-765 . -557) 73960) ((-1016 . -968) 73891) ((-529 . -842) T) ((-517 . -752) T) ((-517 . -842) T) ((-460 . -842) T) ((-127 . -952) 73875) ((-199 . -91) T) ((-153 . -134) 73854) ((-73 . -410) T) ((0 . -557) 73836) ((-73 . -365) T) ((-153 . -132) 73787) ((-199 . -34) T) ((-48 . -557) 73769) ((-446 . -968) T) ((-454 . -205) 73751) ((-451 . -886) 73735) ((-450 . -777) 73714) ((-192 . -205) 73696) ((-79 . -410) T) ((-79 . -365) T) ((-1044 . -33) T) ((-747 . -156) 73675) ((-664 . -97) T) ((-941 . -557) 73642) ((-465 . -258) 73617) ((-286 . -347) 73587) ((-283 . -347) 73548) ((-283 . -308) 73509) ((-748 . -871) 73456) ((-599 . -123) T) ((-1127 . -132) 73435) ((-1127 . -134) 73414) ((-1071 . -97) T) ((-1070 . -97) T) ((-1064 . -97) T) ((-1057 . -1003) T) ((-1027 . -97) T) ((-196 . -33) T) ((-261 . -650) 73401) ((-1057 . -554) 73377) ((-540 . -280) NIL) ((-451 . -1003) 73355) ((-360 . -557) 73337) ((-474 . -779) T) ((-1048 . -203) 73287) ((-1146 . -1145) 73271) ((-1146 . -1132) 73248) ((-1139 . -1137) 73209) ((-1139 . -1132) 73179) ((-1139 . -1135) 73163) ((-1118 . -1116) 73124) ((-1118 . -1132) 73101) ((-562 . -557) 73083) ((-1118 . -1114) 73067) ((-632 . -842) T) ((-1071 . -256) 73033) ((-1070 . -256) 72999) ((-1064 . -256) 72965) ((-987 . -1003) T) ((-971 . -1003) T) ((-47 . -273) T) ((-286 . -822) 72932) ((-283 . -822) NIL) ((-971 . -977) 72911) ((-1021 . -808) 72893) ((-731 . -37) 72877) ((-237 . -579) 72825) ((-221 . -579) 72773) ((-634 . -967) 72760) ((-542 . -1132) 72737) ((-1027 . -256) 72703) ((-289 . -156) 72634) ((-329 . -1003) T) ((-323 . -1003) T) ((-315 . -1003) T) ((-465 . -19) 72616) ((-1021 . -952) 72598) ((-1005 . -138) 72582) ((-103 . -1003) T) ((-111 . -967) 72569) ((-644 . -333) T) ((-465 . -550) 72544) ((-634 . -106) 72529) ((-406 . -97) T) ((-44 . -1047) 72479) ((-111 . -106) 72464) ((-575 . -653) T) ((-551 . -653) T) ((-747 . -478) 72397) ((-950 . -1108) T) ((-865 . -138) 72381) ((-483 . -97) 72331) ((-992 . -1112) 72310) ((-446 . -557) 72262) ((-446 . -558) 72184) ((-60 . -1108) T) ((-714 . -1112) 72163) ((-712 . -1112) 72142) ((-1069 . -421) 72073) ((-1056 . -1003) T) ((-1040 . -585) 72047) ((-992 . -509) 71978) ((-450 . -381) 71947) ((-564 . -842) 71926) ((-423 . -1112) 71905) ((-1026 . -421) 71856) ((-368 . -557) 71838) ((-611 . -478) 71771) ((-714 . -509) 71682) ((-712 . -509) 71613) ((-664 . -280) 71600) ((-601 . -25) T) ((-601 . -21) T) ((-423 . -509) 71531) ((-112 . -842) T) ((-112 . -752) NIL) ((-325 . -25) T) ((-325 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-314 . -25) T) ((-314 . -21) T) ((-237 . -25) T) ((-237 . -21) T) ((-81 . -354) T) ((-81 . -365) T) ((-221 . -25) T) ((-221 . -21) T) ((-1155 . -557) 71513) ((-1103 . -1015) T) ((-1103 . -23) T) ((-1064 . -280) 71398) ((-1027 . -280) 71385) ((-790 . -585) 71345) ((-987 . -650) 71213) ((-865 . -897) 71197) ((-261 . -156) T) ((-832 . -21) T) ((-832 . -25) T) ((-796 . -779) 71148) ((-644 . -1015) T) ((-644 . -23) T) ((-584 . -1003) 71126) ((-572 . -554) 71101) ((-572 . -1003) T) ((-530 . -1112) T) ((-481 . -1112) T) ((-530 . -509) T) ((-481 . -509) T) ((-329 . -650) 71053) ((-323 . -650) 71005) ((-157 . -967) 70937) ((-309 . -967) 70921) ((-103 . -650) 70871) ((-157 . -106) 70770) ((-315 . -650) 70722) ((-309 . -106) 70701) ((-247 . -1003) T) ((-246 . -1003) T) ((-245 . -1003) T) ((-244 . -1003) T) ((-634 . -961) T) ((-243 . -1003) T) ((-242 . -1003) T) ((-241 . -1003) T) ((-188 . -1003) T) ((-187 . -1003) T) ((-185 . -1003) T) ((-153 . -1097) 70679) ((-153 . -1094) 70657) ((-184 . -1003) T) ((-183 . -1003) T) ((-111 . -961) T) ((-182 . -1003) T) ((-179 . -1003) T) ((-634 . -207) T) ((-178 . -1003) T) ((-177 . -1003) T) ((-176 . -1003) T) ((-175 . -1003) T) ((-174 . -1003) T) ((-173 . -1003) T) ((-172 . -1003) T) ((-171 . -1003) T) ((-170 . -1003) T) ((-169 . -1003) T) ((-214 . -97) 70468) ((-153 . -34) 70446) ((-153 . -91) 70424) ((-591 . -952) 70322) ((-450 . -968) 70253) ((-1016 . -1003) 70064) ((-1040 . -33) T) ((-607 . -456) 70048) ((-71 . -1108) T) ((-100 . -557) 70030) ((-1175 . -557) 70012) ((-351 . -557) 69994) ((-524 . -1097) T) ((-524 . -1094) T) ((-664 . -37) 69843) ((-489 . -557) 69825) ((-483 . -280) 69763) ((-465 . -557) 69745) ((-465 . -558) 69727) ((-1064 . -1049) NIL) ((-942 . -980) 69696) ((-942 . -1003) T) ((-920 . -97) T) ((-888 . -97) T) ((-836 . -97) T) ((-815 . -952) 69673) ((-1040 . -659) T) ((-919 . -585) 69618) ((-445 . -1003) T) ((-432 . -1003) T) ((-534 . -23) T) ((-524 . -34) T) ((-524 . -91) T) ((-397 . -97) T) ((-973 . -203) 69564) ((-1071 . -37) 69461) ((-790 . -659) T) ((-627 . -842) T) ((-475 . -25) T) ((-471 . -21) T) ((-471 . -25) T) ((-1070 . -37) 69302) ((-309 . -961) T) ((-1064 . -37) 69098) ((-987 . -156) T) ((-157 . -961) T) ((-1027 . -37) 68995) ((-645 . -46) 68972) ((-329 . -156) T) ((-323 . -156) T) ((-482 . -55) 68946) ((-462 . -55) 68896) ((-321 . -1170) 68873) ((-199 . -421) T) ((-289 . -262) 68824) ((-315 . -156) T) ((-157 . -217) T) ((-1117 . -779) 68723) ((-103 . -156) T) ((-796 . -909) 68707) ((-595 . -1015) T) ((-530 . -333) T) ((-530 . -299) 68694) ((-481 . -299) 68671) ((-481 . -333) T) ((-286 . -278) 68650) ((-283 . -278) T) ((-548 . -779) 68629) ((-1016 . -650) 68571) ((-483 . -254) 68555) ((-595 . -23) T) ((-388 . -205) 68539) ((-283 . -937) NIL) ((-306 . -23) T) ((-98 . -926) 68523) ((-44 . -35) 68502) ((-556 . -1003) T) ((-321 . -338) T) ((-460 . -27) T) ((-214 . -280) 68440) ((-992 . -1015) T) ((-1174 . -585) 68414) ((-714 . -1015) T) ((-712 . -1015) T) ((-423 . -1015) T) ((-972 . -421) T) ((-874 . -421) 68365) ((-105 . -1003) T) ((-992 . -23) T) ((-749 . -968) T) ((-714 . -23) T) ((-712 . -23) T) ((-449 . -421) 68316) ((-1057 . -478) 68064) ((-351 . -352) 68043) ((-1075 . -381) 68027) ((-430 . -23) T) ((-423 . -23) T) ((-451 . -478) 67960) ((-261 . -262) T) ((-989 . -557) 67942) ((-377 . -831) 67921) ((-49 . -1015) T) ((-939 . -842) T) ((-919 . -659) T) ((-645 . -808) NIL) ((-530 . -1015) T) ((-481 . -1015) T) ((-772 . -585) 67894) ((-1103 . -123) T) ((-1064 . -370) 67846) ((-920 . -280) NIL) ((-747 . -456) 67830) ((-324 . -842) T) ((-1054 . -33) T) ((-377 . -585) 67782) ((-49 . -23) T) ((-644 . -123) T) ((-645 . -952) 67665) ((-530 . -23) T) ((-103 . -478) NIL) ((-481 . -23) T) ((-153 . -379) 67636) ((-1038 . -1003) T) ((-1166 . -1165) 67620) ((-634 . -727) T) ((-634 . -724) T) ((-349 . -134) T) ((-1021 . -278) T) ((-1117 . -909) 67590) ((-47 . -842) T) ((-611 . -456) 67574) ((-224 . -1160) 67544) ((-223 . -1160) 67514) ((-1073 . -779) T) ((-1016 . -156) 67493) ((-1021 . -937) T) ((-958 . -33) T) ((-766 . -134) 67472) ((-766 . -132) 67451) ((-670 . -102) 67435) ((-556 . -124) T) ((-450 . -1003) 67246) ((-1075 . -968) T) ((-795 . -421) T) ((-83 . -1108) T) ((-214 . -37) 67216) ((-128 . -102) 67198) ((-645 . -347) 67182) ((-1021 . -502) T) ((-360 . -967) 67166) ((-1174 . -659) T) ((-1069 . -871) 67136) ((-51 . -557) 67118) ((-1026 . -871) 67085) ((-590 . -381) 67069) ((-1163 . -968) T) ((-562 . -967) 67053) ((-599 . -25) T) ((-599 . -21) T) ((-1056 . -478) NIL) ((-1146 . -97) T) ((-1139 . -97) T) ((-360 . -106) 67032) ((-196 . -227) 67016) ((-1118 . -97) T) ((-965 . -1003) T) ((-920 . -1049) T) ((-965 . -964) 66956) ((-750 . -1003) T) ((-313 . -1112) T) ((-575 . -585) 66940) ((-562 . -106) 66919) ((-551 . -585) 66903) ((-543 . -97) T) ((-534 . -123) T) ((-542 . -97) T) ((-384 . -1003) T) ((-355 . -1003) T) ((-201 . -1003) 66881) ((-584 . -478) 66814) ((-572 . -478) 66622) ((-765 . -961) 66601) ((-583 . -138) 66585) ((-313 . -509) T) ((-645 . -822) 66529) ((-503 . -203) 66479) ((-1146 . -256) 66445) ((-987 . -262) 66396) ((-454 . -777) T) ((-197 . -1015) T) ((-1139 . -256) 66362) ((-1118 . -256) 66328) ((-920 . -37) 66278) ((-192 . -777) T) ((-1103 . -458) 66244) ((-836 . -37) 66196) ((-772 . -726) 66175) ((-772 . -723) 66154) ((-772 . -659) 66133) ((-329 . -262) T) ((-323 . -262) T) ((-315 . -262) T) ((-153 . -421) 66064) ((-397 . -37) 66048) ((-103 . -262) T) ((-197 . -23) T) ((-377 . -726) 66027) ((-377 . -723) 66006) ((-377 . -659) T) ((-465 . -260) 65981) ((-446 . -967) 65946) ((-595 . -123) T) ((-1016 . -478) 65879) ((-306 . -123) T) ((-153 . -372) 65858) ((-450 . -650) 65800) ((-747 . -258) 65777) ((-446 . -106) 65726) ((-590 . -968) T) ((-1127 . -421) 65657) ((-992 . -123) T) ((-237 . -779) 65636) ((-221 . -779) 65615) ((-714 . -123) T) ((-712 . -123) T) ((-524 . -421) T) ((-965 . -650) 65557) ((-562 . -961) T) ((-942 . -478) 65490) ((-430 . -123) T) ((-423 . -123) T) ((-44 . -1003) T) ((-355 . -650) 65460) ((-749 . -1003) T) ((-445 . -478) 65393) ((-432 . -478) 65326) ((-422 . -337) 65296) ((-44 . -554) 65275) ((-286 . -273) T) ((-607 . -557) 65237) ((-57 . -779) 65216) ((-1118 . -280) 65101) ((-920 . -370) 65083) ((-747 . -550) 65060) ((-480 . -779) 65039) ((-461 . -779) 65018) ((-39 . -1112) T) ((-915 . -952) 64916) ((-49 . -123) T) ((-530 . -123) T) ((-481 . -123) T) ((-265 . -585) 64778) ((-313 . -299) 64755) ((-313 . -333) T) ((-292 . -293) 64732) ((-289 . -258) 64717) ((-39 . -509) T) ((-349 . -1094) T) ((-349 . -1097) T) ((-950 . -1085) 64692) ((-1082 . -209) 64642) ((-1064 . -205) 64594) ((-300 . -1003) T) ((-349 . -91) T) ((-349 . -34) T) ((-950 . -102) 64540) ((-446 . -961) T) ((-447 . -209) 64490) ((-1057 . -456) 64424) ((-1175 . -967) 64408) ((-351 . -967) 64392) ((-446 . -217) T) ((-748 . -97) T) ((-647 . -134) 64371) ((-647 . -132) 64350) ((-451 . -456) 64334) ((-452 . -305) 64303) ((-1175 . -106) 64282) ((-476 . -1003) T) ((-450 . -156) 64261) ((-915 . -347) 64245) ((-383 . -97) T) ((-351 . -106) 64224) ((-915 . -308) 64208) ((-252 . -900) 64192) ((-251 . -900) 64176) ((-1173 . -557) 64158) ((-1171 . -557) 64140) ((-105 . -478) NIL) ((-1069 . -1130) 64124) ((-783 . -781) 64108) ((-1075 . -1003) T) ((-98 . -1108) T) ((-874 . -871) 64069) ((-749 . -650) 64006) ((-1118 . -1049) NIL) ((-449 . -871) 63951) ((-972 . -130) T) ((-58 . -97) 63929) ((-43 . -557) 63911) ((-76 . -557) 63893) ((-321 . -585) 63838) ((-1163 . -1003) T) ((-475 . -779) T) ((-313 . -1015) T) ((-266 . -1003) T) ((-915 . -822) 63797) ((-266 . -554) 63776) ((-1146 . -37) 63673) ((-1139 . -37) 63514) ((-454 . -968) T) ((-1118 . -37) 63310) ((-192 . -968) T) ((-313 . -23) T) ((-139 . -557) 63292) ((-765 . -727) 63271) ((-765 . -724) 63250) ((-543 . -37) 63223) ((-542 . -37) 63120) ((-794 . -509) T) ((-197 . -123) T) ((-289 . -918) 63086) ((-77 . -557) 63068) ((-645 . -278) 63047) ((-265 . -659) 62950) ((-756 . -97) T) ((-789 . -773) T) ((-265 . -442) 62929) ((-1166 . -97) T) ((-39 . -333) T) ((-796 . -134) 62908) ((-796 . -132) 62887) ((-1056 . -456) 62869) ((-1175 . -961) T) ((-450 . -478) 62802) ((-1044 . -1108) T) ((-885 . -557) 62784) ((-584 . -456) 62768) ((-572 . -456) 62700) ((-747 . -557) 62452) ((-47 . -27) T) ((-1075 . -650) 62349) ((-590 . -1003) T) ((-406 . -334) 62323) ((-1005 . -97) T) ((-748 . -280) 62310) ((-789 . -1003) T) ((-1171 . -352) 62282) ((-965 . -478) 62215) ((-1057 . -258) 62191) ((-214 . -205) 62161) ((-1163 . -650) 62131) ((-749 . -156) 62110) ((-201 . -478) 62043) ((-562 . -727) 62022) ((-562 . -724) 62001) ((-1106 . -557) 61913) ((-196 . -1108) T) ((-611 . -557) 61845) ((-1054 . -926) 61829) ((-321 . -659) T) ((-865 . -97) 61779) ((-1118 . -370) 61731) ((-1016 . -456) 61715) ((-58 . -280) 61653) ((-301 . -97) T) ((-1103 . -21) T) ((-1103 . -25) T) ((-39 . -1015) T) ((-644 . -21) T) ((-567 . -557) 61635) ((-479 . -293) 61614) ((-644 . -25) T) ((-103 . -258) NIL) ((-843 . -1015) T) ((-39 . -23) T) ((-703 . -1015) T) ((-517 . -1112) T) ((-460 . -1112) T) ((-289 . -557) 61596) ((-920 . -205) 61578) ((-153 . -150) 61562) ((-529 . -509) T) ((-517 . -509) T) ((-460 . -509) T) ((-703 . -23) T) ((-1138 . -134) 61541) ((-1057 . -550) 61517) ((-1138 . -132) 61496) ((-942 . -456) 61480) ((-1117 . -132) 61405) ((-1117 . -134) 61330) ((-1166 . -1172) 61309) ((-445 . -456) 61293) ((-432 . -456) 61277) ((-486 . -33) T) ((-590 . -650) 61247) ((-599 . -779) 61226) ((-1075 . -156) 61177) ((-335 . -97) T) ((-214 . -212) 61156) ((-224 . -97) T) ((-223 . -97) T) ((-1127 . -871) 61126) ((-104 . -97) T) ((-219 . -779) 61105) ((-748 . -37) 60954) ((-44 . -478) 60714) ((-1056 . -258) 60689) ((-189 . -1003) T) ((-1048 . -1003) T) ((-1048 . -554) 60668) ((-534 . -25) T) ((-534 . -21) T) ((-1005 . -280) 60606) ((-884 . -381) 60590) ((-632 . -1112) T) ((-572 . -258) 60565) ((-992 . -579) 60513) ((-714 . -579) 60461) ((-712 . -579) 60409) ((-313 . -123) T) ((-261 . -557) 60391) ((-632 . -509) T) ((-827 . -1003) T) ((-794 . -1015) T) ((-423 . -579) 60339) ((-827 . -825) 60323) ((-349 . -421) T) ((-454 . -1003) T) ((-634 . -585) 60310) ((-865 . -280) 60248) ((-192 . -1003) T) ((-286 . -842) 60227) ((-283 . -842) T) ((-283 . -752) NIL) ((-360 . -653) T) ((-794 . -23) T) ((-111 . -585) 60214) ((-443 . -132) 60193) ((-388 . -381) 60177) ((-443 . -134) 60156) ((-105 . -456) 60138) ((-2 . -557) 60120) ((-1056 . -19) 60102) ((-1056 . -550) 60077) ((-595 . -21) T) ((-595 . -25) T) ((-540 . -1042) T) ((-1016 . -258) 60054) ((-306 . -25) T) ((-306 . -21) T) ((-460 . -333) T) ((-1166 . -37) 60024) ((-1040 . -1108) T) ((-572 . -550) 59999) ((-992 . -25) T) ((-992 . -21) T) ((-489 . -724) T) ((-489 . -727) T) ((-112 . -1112) T) ((-884 . -968) T) ((-564 . -509) T) ((-668 . -968) T) ((-648 . -968) T) ((-714 . -25) T) ((-714 . -21) T) ((-712 . -21) T) ((-712 . -25) T) ((-607 . -967) 59983) ((-430 . -25) T) ((-112 . -509) T) ((-430 . -21) T) ((-423 . -25) T) ((-423 . -21) T) ((-1040 . -952) 59881) ((-749 . -262) 59860) ((-755 . -1003) T) ((-607 . -106) 59839) ((-266 . -478) 59599) ((-1173 . -967) 59583) ((-1171 . -967) 59567) ((-224 . -280) 59505) ((-223 . -280) 59443) ((-1121 . -97) 59421) ((-1057 . -558) NIL) ((-1057 . -557) 59403) ((-1138 . -1094) 59369) ((-1138 . -1097) 59335) ((-1118 . -205) 59287) ((-1117 . -1094) 59253) ((-1117 . -1097) 59219) ((-1040 . -347) 59203) ((-1021 . -752) T) ((-1021 . -842) T) ((-1016 . -550) 59180) ((-987 . -558) 59164) ((-451 . -557) 59096) ((-747 . -260) 59073) ((-552 . -138) 59020) ((-388 . -968) T) ((-454 . -650) 58970) ((-450 . -456) 58954) ((-297 . -779) 58933) ((-309 . -585) 58907) ((-49 . -21) T) ((-49 . -25) T) ((-192 . -650) 58857) ((-153 . -657) 58828) ((-157 . -585) 58760) ((-530 . -21) T) ((-530 . -25) T) ((-481 . -25) T) ((-481 . -21) T) ((-444 . -138) 58710) ((-987 . -557) 58692) ((-971 . -557) 58674) ((-910 . -97) T) ((-787 . -97) T) ((-731 . -381) 58638) ((-39 . -123) T) ((-632 . -333) T) ((-188 . -817) T) ((-634 . -726) T) ((-634 . -723) T) ((-529 . -1015) T) ((-517 . -1015) T) ((-460 . -1015) T) ((-634 . -659) T) ((-329 . -557) 58620) ((-323 . -557) 58602) ((-315 . -557) 58584) ((-64 . -366) T) ((-64 . -365) T) ((-103 . -558) 58514) ((-103 . -557) 58496) ((-187 . -817) T) ((-879 . -138) 58480) ((-1138 . -91) 58446) ((-703 . -123) T) ((-125 . -659) T) ((-111 . -659) T) ((-1138 . -34) 58412) ((-965 . -456) 58396) ((-529 . -23) T) ((-517 . -23) T) ((-460 . -23) T) ((-1117 . -91) 58362) ((-1117 . -34) 58328) ((-1069 . -97) T) ((-1026 . -97) T) ((-783 . -97) T) ((-201 . -456) 58312) ((-1173 . -106) 58291) ((-1171 . -106) 58270) ((-43 . -967) 58254) ((-1127 . -1130) 58238) ((-784 . -781) 58222) ((-1075 . -262) 58201) ((-105 . -258) 58176) ((-1040 . -822) 58135) ((-43 . -106) 58114) ((-607 . -961) T) ((-1056 . -558) NIL) ((-1056 . -557) 58096) ((-973 . -554) 58071) ((-973 . -1003) T) ((-72 . -410) T) ((-72 . -365) T) ((-607 . -207) 58050) ((-139 . -967) 58034) ((-524 . -507) 58018) ((-325 . -134) 57997) ((-325 . -132) 57948) ((-322 . -134) 57927) ((-636 . -1003) T) ((-322 . -132) 57878) ((-314 . -134) 57857) ((-314 . -132) 57808) ((-237 . -132) 57787) ((-237 . -134) 57766) ((-224 . -37) 57736) ((-221 . -134) 57715) ((-112 . -333) T) ((-221 . -132) 57694) ((-223 . -37) 57664) ((-139 . -106) 57643) ((-919 . -952) 57520) ((-1064 . -777) NIL) ((-627 . -1112) T) ((-731 . -968) T) ((-632 . -1015) T) ((-1173 . -961) T) ((-1171 . -961) T) ((-1054 . -1108) T) ((-919 . -347) 57497) ((-832 . -132) T) ((-832 . -134) 57479) ((-794 . -123) T) ((-747 . -967) 57377) ((-627 . -509) T) ((-632 . -23) T) ((-584 . -557) 57309) ((-584 . -558) 57270) ((-572 . -558) NIL) ((-572 . -557) 57252) ((-454 . -156) T) ((-197 . -21) T) ((-192 . -156) T) ((-197 . -25) T) ((-443 . -1097) 57218) ((-443 . -1094) 57184) ((-247 . -557) 57166) ((-246 . -557) 57148) ((-245 . -557) 57130) ((-244 . -557) 57112) ((-243 . -557) 57094) ((-465 . -588) 57076) ((-242 . -557) 57058) ((-309 . -659) T) ((-241 . -557) 57040) ((-105 . -19) 57022) ((-157 . -659) T) ((-465 . -343) 57004) ((-188 . -557) 56986) ((-483 . -1047) 56970) ((-465 . -118) T) ((-105 . -550) 56945) ((-187 . -557) 56927) ((-443 . -34) 56893) ((-443 . -91) 56859) ((-185 . -557) 56841) ((-184 . -557) 56823) ((-183 . -557) 56805) ((-182 . -557) 56787) ((-179 . -557) 56769) ((-178 . -557) 56751) ((-177 . -557) 56733) ((-176 . -557) 56715) ((-175 . -557) 56697) ((-174 . -557) 56679) ((-173 . -557) 56661) ((-493 . -1006) 56613) ((-172 . -557) 56595) ((-171 . -557) 56577) ((-44 . -456) 56514) ((-170 . -557) 56496) ((-169 . -557) 56478) ((-747 . -106) 56369) ((-583 . -97) 56319) ((-450 . -258) 56296) ((-1016 . -557) 56048) ((-1004 . -1003) T) ((-958 . -1108) T) ((-564 . -1015) T) ((-1174 . -952) 56032) ((-1069 . -280) 56019) ((-1026 . -280) 56006) ((-112 . -1015) T) ((-751 . -97) T) ((-564 . -23) T) ((-1048 . -478) 55766) ((-356 . -97) T) ((-294 . -97) T) ((-919 . -822) 55718) ((-884 . -1003) T) ((-139 . -961) T) ((-112 . -23) T) ((-664 . -381) 55702) ((-668 . -1003) T) ((-648 . -1003) T) ((-636 . -124) T) ((-422 . -1003) T) ((-286 . -400) 55686) ((-377 . -1108) T) ((-942 . -558) 55647) ((-939 . -1112) T) ((-199 . -97) T) ((-942 . -557) 55609) ((-748 . -205) 55593) ((-939 . -509) T) ((-765 . -585) 55566) ((-324 . -1112) T) ((-445 . -557) 55528) ((-445 . -558) 55489) ((-432 . -558) 55450) ((-432 . -557) 55412) ((-377 . -806) 55396) ((-289 . -967) 55231) ((-377 . -808) 55156) ((-772 . -952) 55054) ((-454 . -478) NIL) ((-450 . -550) 55031) ((-324 . -509) T) ((-192 . -478) NIL) ((-796 . -421) T) ((-388 . -1003) T) ((-377 . -952) 54898) ((-289 . -106) 54712) ((-627 . -333) T) ((-199 . -256) T) ((-47 . -1112) T) ((-747 . -961) 54643) ((-529 . -123) T) ((-517 . -123) T) ((-460 . -123) T) ((-47 . -509) T) ((-1057 . -260) 54619) ((-1069 . -1049) 54597) ((-286 . -27) 54576) ((-972 . -97) T) ((-747 . -207) 54529) ((-214 . -777) 54508) ((-874 . -97) T) ((-646 . -97) T) ((-266 . -456) 54445) ((-449 . -97) T) ((-664 . -968) T) ((-556 . -557) 54427) ((-556 . -558) 54288) ((-377 . -347) 54272) ((-377 . -308) 54256) ((-1069 . -37) 54085) ((-1026 . -37) 53934) ((-783 . -37) 53904) ((-360 . -585) 53888) ((-583 . -280) 53826) ((-884 . -650) 53723) ((-196 . -102) 53707) ((-44 . -258) 53632) ((-668 . -650) 53602) ((-562 . -585) 53576) ((-282 . -1003) T) ((-261 . -967) 53563) ((-105 . -557) 53545) ((-105 . -558) 53527) ((-422 . -650) 53497) ((-748 . -226) 53436) ((-623 . -1003) 53414) ((-503 . -1003) T) ((-1071 . -968) T) ((-1070 . -968) T) ((-261 . -106) 53399) ((-1064 . -968) T) ((-1027 . -968) T) ((-503 . -554) 53378) ((-920 . -777) T) ((-201 . -621) 53336) ((-627 . -1015) T) ((-1103 . -673) 53312) ((-289 . -961) T) ((-313 . -25) T) ((-313 . -21) T) ((-377 . -822) 53271) ((-66 . -1108) T) ((-765 . -726) 53250) ((-388 . -650) 53224) ((-731 . -1003) T) ((-765 . -723) 53203) ((-632 . -123) T) ((-645 . -842) 53182) ((-627 . -23) T) ((-454 . -262) T) ((-765 . -659) 53161) ((-289 . -207) 53113) ((-289 . -217) 53092) ((-192 . -262) T) ((-939 . -333) T) ((-1138 . -421) 53071) ((-1117 . -421) 53050) ((-324 . -299) 53027) ((-324 . -333) T) ((-1038 . -557) 53009) ((-44 . -1142) 52959) ((-795 . -97) T) ((-583 . -254) 52943) ((-632 . -970) T) ((-446 . -585) 52908) ((-437 . -1003) T) ((-44 . -550) 52833) ((-1056 . -260) 52808) ((-39 . -579) 52742) ((-47 . -333) T) ((-1009 . -557) 52724) ((-992 . -779) 52703) ((-572 . -260) 52678) ((-714 . -779) 52657) ((-712 . -779) 52636) ((-450 . -557) 52388) ((-214 . -381) 52357) ((-874 . -280) 52344) ((-423 . -779) 52323) ((-63 . -1108) T) ((-564 . -123) T) ((-449 . -280) 52310) ((-973 . -478) 52118) ((-261 . -961) T) ((-112 . -123) T) ((-422 . -694) T) ((-884 . -156) 52069) ((-987 . -967) 51979) ((-562 . -726) 51958) ((-540 . -1003) T) ((-562 . -723) 51937) ((-562 . -659) T) ((-266 . -258) 51916) ((-265 . -1108) T) ((-965 . -557) 51878) ((-965 . -558) 51839) ((-939 . -1015) T) ((-153 . -97) T) ((-248 . -779) T) ((-1063 . -1003) T) ((-750 . -557) 51821) ((-1016 . -260) 51798) ((-1005 . -203) 51782) ((-919 . -278) T) ((-731 . -650) 51766) ((-329 . -967) 51718) ((-324 . -1015) T) ((-323 . -967) 51670) ((-384 . -557) 51652) ((-355 . -557) 51634) ((-315 . -967) 51586) ((-201 . -557) 51518) ((-987 . -106) 51407) ((-939 . -23) T) ((-103 . -967) 51357) ((-820 . -97) T) ((-770 . -97) T) ((-740 . -97) T) ((-701 . -97) T) ((-612 . -97) T) ((-443 . -421) 51336) ((-388 . -156) T) ((-329 . -106) 51267) ((-323 . -106) 51198) ((-315 . -106) 51129) ((-224 . -205) 51099) ((-223 . -205) 51069) ((-324 . -23) T) ((-69 . -1108) T) ((-199 . -37) 51034) ((-103 . -106) 50961) ((-39 . -25) T) ((-39 . -21) T) ((-607 . -653) T) ((-153 . -256) 50939) ((-47 . -1015) T) ((-843 . -25) T) ((-703 . -25) T) ((-1048 . -456) 50876) ((-452 . -1003) T) ((-1175 . -585) 50850) ((-1127 . -97) T) ((-784 . -97) T) ((-214 . -968) 50781) ((-972 . -1049) T) ((-885 . -724) 50734) ((-351 . -585) 50718) ((-47 . -23) T) ((-885 . -727) 50671) ((-747 . -727) 50622) ((-747 . -724) 50573) ((-266 . -550) 50552) ((-446 . -659) T) ((-524 . -97) T) ((-795 . -280) 50496) ((-590 . -258) 50475) ((-107 . -598) T) ((-74 . -1108) T) ((-972 . -37) 50462) ((-601 . -344) 50441) ((-874 . -37) 50290) ((-664 . -1003) T) ((-449 . -37) 50139) ((-84 . -1108) T) ((-524 . -256) T) ((-1118 . -777) NIL) ((-1071 . -1003) T) ((-1070 . -1003) T) ((-1064 . -1003) T) ((-321 . -952) 50116) ((-987 . -961) T) ((-920 . -968) T) ((-44 . -557) 50098) ((-44 . -558) NIL) ((-836 . -968) T) ((-749 . -557) 50080) ((-1045 . -97) 50058) ((-987 . -217) 50009) ((-397 . -968) T) ((-329 . -961) T) ((-323 . -961) T) ((-335 . -334) 49986) ((-315 . -961) T) ((-224 . -212) 49965) ((-223 . -212) 49944) ((-104 . -334) 49918) ((-987 . -207) 49843) ((-1027 . -1003) T) ((-265 . -822) 49802) ((-103 . -961) T) ((-627 . -123) T) ((-388 . -478) 49644) ((-329 . -207) 49623) ((-329 . -217) T) ((-43 . -653) T) ((-323 . -207) 49602) ((-323 . -217) T) ((-315 . -207) 49581) ((-315 . -217) T) ((-153 . -280) 49546) ((-103 . -217) T) ((-103 . -207) T) ((-289 . -724) T) ((-794 . -21) T) ((-794 . -25) T) ((-377 . -278) T) ((-465 . -33) T) ((-105 . -260) 49521) ((-1016 . -967) 49419) ((-795 . -1049) NIL) ((-300 . -557) 49401) ((-377 . -937) 49380) ((-1016 . -106) 49271) ((-406 . -1003) T) ((-1175 . -659) T) ((-61 . -557) 49253) ((-795 . -37) 49198) ((-486 . -1108) T) ((-548 . -138) 49182) ((-476 . -557) 49164) ((-1127 . -280) 49151) ((-664 . -650) 49000) ((-489 . -725) T) ((-489 . -726) T) ((-517 . -579) 48982) ((-460 . -579) 48942) ((-325 . -421) T) ((-322 . -421) T) ((-314 . -421) T) ((-237 . -421) 48893) ((-483 . -1003) 48843) ((-221 . -421) 48794) ((-1048 . -258) 48773) ((-1075 . -557) 48755) ((-623 . -478) 48688) ((-884 . -262) 48667) ((-503 . -478) 48427) ((-1069 . -205) 48411) ((-153 . -1049) 48390) ((-1163 . -557) 48372) ((-1071 . -650) 48269) ((-1070 . -650) 48110) ((-814 . -97) T) ((-1064 . -650) 47906) ((-1027 . -650) 47803) ((-1054 . -610) 47787) ((-325 . -372) 47738) ((-322 . -372) 47689) ((-314 . -372) 47640) ((-939 . -123) T) ((-731 . -478) 47552) ((-266 . -558) NIL) ((-266 . -557) 47534) ((-832 . -421) T) ((-885 . -338) 47487) ((-747 . -338) 47466) ((-474 . -473) 47445) ((-472 . -473) 47424) ((-454 . -258) NIL) ((-450 . -260) 47401) ((-388 . -262) T) ((-324 . -123) T) ((-192 . -258) NIL) ((-627 . -458) NIL) ((-94 . -1015) T) ((-153 . -37) 47229) ((-1138 . -890) 47192) ((-1045 . -280) 47130) ((-1117 . -890) 47100) ((-832 . -372) T) ((-1016 . -961) 47031) ((-1140 . -509) T) ((-1048 . -550) 47010) ((-107 . -779) T) ((-973 . -456) 46942) ((-529 . -21) T) ((-529 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-460 . -25) T) ((-460 . -21) T) ((-1127 . -1049) 46920) ((-1016 . -207) 46873) ((-47 . -123) T) ((-1090 . -97) T) ((-214 . -1003) 46684) ((-795 . -370) 46661) ((-993 . -97) T) ((-983 . -97) T) ((-552 . -97) T) ((-444 . -97) T) ((-1127 . -37) 46490) ((-784 . -37) 46460) ((-664 . -156) 46371) ((-590 . -557) 46353) ((-524 . -37) 46340) ((-879 . -97) 46290) ((-789 . -557) 46272) ((-789 . -558) 46194) ((-540 . -478) NIL) ((-1146 . -968) T) ((-1139 . -968) T) ((-1118 . -968) T) ((-543 . -968) T) ((-542 . -968) T) ((-1179 . -1015) T) ((-1071 . -156) 46145) ((-1070 . -156) 46076) ((-1064 . -156) 46007) ((-1027 . -156) 45958) ((-920 . -1003) T) ((-888 . -1003) T) ((-836 . -1003) T) ((-1103 . -134) 45937) ((-731 . -729) 45921) ((-632 . -25) T) ((-632 . -21) T) ((-112 . -579) 45898) ((-634 . -808) 45880) ((-397 . -1003) T) ((-286 . -1112) 45859) ((-283 . -1112) T) ((-153 . -370) 45843) ((-1103 . -132) 45822) ((-443 . -890) 45785) ((-70 . -557) 45767) ((-103 . -727) T) ((-103 . -724) T) ((-286 . -509) 45746) ((-634 . -952) 45728) ((-283 . -509) T) ((-1179 . -23) T) ((-125 . -952) 45710) ((-450 . -967) 45608) ((-44 . -260) 45533) ((-214 . -650) 45475) ((-450 . -106) 45366) ((-996 . -97) 45344) ((-949 . -97) T) ((-583 . -760) 45323) ((-664 . -478) 45261) ((-965 . -967) 45245) ((-564 . -21) T) ((-564 . -25) T) ((-973 . -258) 45220) ((-331 . -97) T) ((-292 . -97) T) ((-607 . -585) 45194) ((-355 . -967) 45178) ((-965 . -106) 45157) ((-748 . -381) 45141) ((-112 . -25) T) ((-87 . -557) 45123) ((-112 . -21) T) ((-552 . -280) 44918) ((-444 . -280) 44722) ((-1048 . -558) NIL) ((-355 . -106) 44701) ((-349 . -97) T) ((-189 . -557) 44683) ((-1048 . -557) 44665) ((-920 . -650) 44615) ((-1064 . -478) 44349) ((-836 . -650) 44301) ((-1027 . -478) 44271) ((-321 . -278) T) ((-1082 . -138) 44221) ((-879 . -280) 44159) ((-766 . -97) T) ((-397 . -650) 44143) ((-199 . -760) T) ((-759 . -97) T) ((-757 . -97) T) ((-447 . -138) 44093) ((-1138 . -1137) 44072) ((-1021 . -1112) T) ((-309 . -952) 44039) ((-1138 . -1132) 44009) ((-1138 . -1135) 43993) ((-1117 . -1116) 43972) ((-78 . -557) 43954) ((-827 . -557) 43936) ((-1117 . -1132) 43913) ((-1021 . -509) T) ((-843 . -779) T) ((-454 . -558) 43843) ((-454 . -557) 43825) ((-703 . -779) T) ((-349 . -256) T) ((-608 . -779) T) ((-1117 . -1114) 43809) ((-1140 . -1015) T) ((-192 . -558) 43739) ((-192 . -557) 43721) ((-973 . -550) 43696) ((-57 . -138) 43680) ((-480 . -138) 43664) ((-461 . -138) 43648) ((-329 . -1170) 43632) ((-323 . -1170) 43616) ((-315 . -1170) 43600) ((-286 . -333) 43579) ((-283 . -333) T) ((-450 . -961) 43510) ((-627 . -579) 43492) ((-1173 . -585) 43466) ((-1171 . -585) 43440) ((-1140 . -23) T) ((-623 . -456) 43424) ((-62 . -557) 43406) ((-1016 . -727) 43357) ((-1016 . -724) 43308) ((-503 . -456) 43245) ((-607 . -33) T) ((-450 . -207) 43198) ((-266 . -260) 43177) ((-214 . -156) 43156) ((-748 . -968) T) ((-43 . -585) 43114) ((-987 . -338) 43065) ((-664 . -262) 42996) ((-483 . -478) 42929) ((-749 . -967) 42880) ((-992 . -132) 42859) ((-329 . -338) 42838) ((-323 . -338) 42817) ((-315 . -338) 42796) ((-992 . -134) 42775) ((-795 . -205) 42752) ((-749 . -106) 42687) ((-714 . -132) 42666) ((-714 . -134) 42645) ((-237 . -871) 42612) ((-224 . -777) 42591) ((-221 . -871) 42536) ((-223 . -777) 42515) ((-712 . -132) 42494) ((-712 . -134) 42473) ((-139 . -585) 42447) ((-423 . -134) 42426) ((-423 . -132) 42405) ((-607 . -659) T) ((-755 . -557) 42387) ((-1146 . -1003) T) ((-1139 . -1003) T) ((-1118 . -1003) T) ((-1103 . -1097) 42353) ((-1103 . -1094) 42319) ((-1071 . -262) 42298) ((-1070 . -262) 42249) ((-1064 . -262) 42200) ((-1027 . -262) 42179) ((-309 . -822) 42160) ((-920 . -156) T) ((-836 . -156) T) ((-543 . -1003) T) ((-542 . -1003) T) ((-627 . -21) T) ((-627 . -25) T) ((-443 . -1135) 42144) ((-443 . -1132) 42114) ((-388 . -258) 42042) ((-286 . -1015) 41892) ((-283 . -1015) T) ((-1103 . -34) 41858) ((-1103 . -91) 41824) ((-82 . -557) 41806) ((-89 . -97) 41784) ((-1179 . -123) T) ((-530 . -132) T) ((-530 . -134) 41766) ((-481 . -134) 41748) ((-481 . -132) T) ((-286 . -23) 41601) ((-39 . -312) 41575) ((-283 . -23) T) ((-1056 . -588) 41557) ((-747 . -585) 41407) ((-1166 . -968) T) ((-1056 . -343) 41389) ((-153 . -205) 41373) ((-540 . -456) 41355) ((-214 . -478) 41288) ((-1173 . -659) T) ((-1171 . -659) T) ((-1075 . -967) 41171) ((-1075 . -106) 41033) ((-749 . -961) T) ((-479 . -97) T) ((-47 . -579) 40993) ((-474 . -97) T) ((-472 . -97) T) ((-1163 . -967) 40963) ((-949 . -37) 40947) ((-749 . -207) T) ((-749 . -217) 40926) ((-503 . -258) 40905) ((-1163 . -106) 40870) ((-1127 . -205) 40854) ((-1146 . -650) 40751) ((-973 . -558) NIL) ((-973 . -557) 40733) ((-1139 . -650) 40574) ((-1118 . -650) 40370) ((-919 . -842) T) ((-636 . -557) 40339) ((-139 . -659) T) ((-1016 . -338) 40318) ((-920 . -478) NIL) ((-224 . -381) 40287) ((-223 . -381) 40256) ((-939 . -25) T) ((-939 . -21) T) ((-543 . -650) 40229) ((-542 . -650) 40126) ((-731 . -258) 40084) ((-121 . -97) 40062) ((-765 . -952) 39960) ((-153 . -760) 39939) ((-289 . -585) 39836) ((-747 . -33) T) ((-647 . -97) T) ((-1021 . -1015) T) ((-941 . -1108) T) ((-349 . -37) 39801) ((-324 . -25) T) ((-324 . -21) T) ((-146 . -97) T) ((-142 . -97) T) ((-325 . -1160) 39785) ((-322 . -1160) 39769) ((-314 . -1160) 39753) ((-153 . -319) 39732) ((-517 . -779) T) ((-460 . -779) T) ((-1021 . -23) T) ((-85 . -557) 39714) ((-634 . -278) T) ((-766 . -37) 39684) ((-759 . -37) 39654) ((-1140 . -123) T) ((-1048 . -260) 39633) ((-885 . -725) 39586) ((-885 . -726) 39539) ((-747 . -723) 39518) ((-111 . -278) T) ((-89 . -280) 39456) ((-611 . -33) T) ((-503 . -550) 39435) ((-47 . -25) T) ((-47 . -21) T) ((-747 . -726) 39386) ((-747 . -725) 39365) ((-634 . -937) T) ((-590 . -967) 39349) ((-885 . -659) 39248) ((-747 . -659) 39179) ((-885 . -442) 39132) ((-450 . -727) 39083) ((-450 . -724) 39034) ((-832 . -1160) 39021) ((-1075 . -961) T) ((-590 . -106) 39000) ((-1075 . -296) 38977) ((-1095 . -97) 38955) ((-1004 . -557) 38937) ((-634 . -502) T) ((-748 . -1003) T) ((-1163 . -961) T) ((-383 . -1003) T) ((-224 . -968) 38868) ((-223 . -968) 38799) ((-261 . -585) 38786) ((-540 . -258) 38761) ((-623 . -621) 38719) ((-884 . -557) 38701) ((-796 . -97) T) ((-668 . -557) 38683) ((-648 . -557) 38665) ((-1146 . -156) 38616) ((-1139 . -156) 38547) ((-1118 . -156) 38478) ((-632 . -779) T) ((-920 . -262) T) ((-422 . -557) 38460) ((-567 . -659) T) ((-58 . -1003) 38438) ((-219 . -138) 38422) ((-836 . -262) T) ((-939 . -928) T) ((-567 . -442) T) ((-645 . -1112) 38401) ((-543 . -156) 38380) ((-542 . -156) 38331) ((-1153 . -779) 38310) ((-645 . -509) 38221) ((-377 . -842) T) ((-377 . -752) 38200) ((-289 . -726) T) ((-289 . -659) T) ((-388 . -557) 38182) ((-388 . -558) 38085) ((-583 . -1047) 38069) ((-105 . -588) 38051) ((-121 . -280) 37989) ((-105 . -343) 37971) ((-157 . -278) T) ((-368 . -1108) T) ((-286 . -123) 37843) ((-283 . -123) T) ((-67 . -365) T) ((-105 . -118) T) ((-483 . -456) 37827) ((-591 . -1015) T) ((-540 . -19) 37809) ((-59 . -410) T) ((-59 . -365) T) ((-756 . -1003) T) ((-540 . -550) 37784) ((-446 . -952) 37744) ((-590 . -961) T) ((-591 . -23) T) ((-1166 . -1003) T) ((-748 . -650) 37593) ((-112 . -779) NIL) ((-1069 . -381) 37577) ((-1026 . -381) 37561) ((-783 . -381) 37545) ((-1138 . -97) T) ((-1118 . -478) 37279) ((-1095 . -280) 37217) ((-282 . -557) 37199) ((-1117 . -97) T) ((-1005 . -1003) T) ((-1071 . -258) 37184) ((-1070 . -258) 37169) ((-261 . -659) T) ((-103 . -831) NIL) ((-623 . -557) 37101) ((-623 . -558) 37062) ((-987 . -585) 36972) ((-547 . -557) 36954) ((-503 . -558) NIL) ((-503 . -557) 36936) ((-1064 . -258) 36784) ((-454 . -967) 36734) ((-644 . -421) T) ((-475 . -473) 36713) ((-471 . -473) 36692) ((-192 . -967) 36642) ((-329 . -585) 36594) ((-323 . -585) 36546) ((-199 . -777) T) ((-315 . -585) 36498) ((-548 . -97) 36448) ((-450 . -338) 36427) ((-103 . -585) 36377) ((-454 . -106) 36304) ((-214 . -456) 36288) ((-313 . -134) 36270) ((-313 . -132) T) ((-153 . -340) 36241) ((-865 . -1151) 36225) ((-192 . -106) 36152) ((-796 . -280) 36117) ((-865 . -1003) 36067) ((-731 . -558) 36028) ((-731 . -557) 36010) ((-651 . -97) T) ((-301 . -1003) T) ((-1021 . -123) T) ((-647 . -37) 35980) ((-286 . -458) 35959) ((-465 . -1108) T) ((-1138 . -256) 35925) ((-1117 . -256) 35891) ((-297 . -138) 35875) ((-973 . -260) 35850) ((-1166 . -650) 35820) ((-1057 . -33) T) ((-1175 . -952) 35797) ((-437 . -557) 35779) ((-451 . -33) T) ((-351 . -952) 35763) ((-1069 . -968) T) ((-1026 . -968) T) ((-783 . -968) T) ((-972 . -777) T) ((-748 . -156) 35674) ((-483 . -258) 35651) ((-112 . -909) 35628) ((-1146 . -262) 35607) ((-1090 . -334) 35581) ((-993 . -239) 35565) ((-443 . -97) T) ((-335 . -1003) T) ((-224 . -1003) T) ((-223 . -1003) T) ((-1139 . -262) 35516) ((-104 . -1003) T) ((-1118 . -262) 35467) ((-796 . -1049) 35445) ((-1071 . -918) 35411) ((-552 . -334) 35351) ((-1070 . -918) 35317) ((-552 . -203) 35264) ((-540 . -557) 35246) ((-540 . -558) NIL) ((-627 . -779) T) ((-444 . -203) 35196) ((-454 . -961) T) ((-1064 . -918) 35162) ((-86 . -409) T) ((-86 . -365) T) ((-192 . -961) T) ((-1027 . -918) 35128) ((-987 . -659) T) ((-645 . -1015) T) ((-543 . -262) 35107) ((-542 . -262) 35086) ((-454 . -217) T) ((-454 . -207) T) ((-192 . -217) T) ((-192 . -207) T) ((-1063 . -557) 35068) ((-796 . -37) 35020) ((-329 . -659) T) ((-323 . -659) T) ((-315 . -659) T) ((-103 . -726) T) ((-103 . -723) T) ((-483 . -1142) 35004) ((-103 . -659) T) ((-645 . -23) T) ((-1179 . -25) T) ((-443 . -256) 34970) ((-1179 . -21) T) ((-1117 . -280) 34909) ((-1073 . -97) T) ((-39 . -132) 34881) ((-39 . -134) 34853) ((-483 . -550) 34830) ((-1016 . -585) 34680) ((-548 . -280) 34618) ((-44 . -588) 34568) ((-44 . -603) 34518) ((-44 . -343) 34468) ((-1056 . -33) T) ((-795 . -777) NIL) ((-591 . -123) T) ((-452 . -557) 34450) ((-214 . -258) 34427) ((-584 . -33) T) ((-572 . -33) T) ((-992 . -421) 34378) ((-748 . -478) 34243) ((-714 . -421) 34174) ((-712 . -421) 34125) ((-423 . -421) 34076) ((-874 . -381) 34060) ((-664 . -557) 34042) ((-224 . -650) 33984) ((-223 . -650) 33926) ((-664 . -558) 33787) ((-449 . -381) 33771) ((-309 . -273) T) ((-321 . -842) T) ((-916 . -97) 33749) ((-939 . -779) T) ((-58 . -478) 33682) ((-1117 . -1049) 33634) ((-920 . -258) NIL) ((-199 . -968) T) ((-349 . -760) T) ((-1016 . -33) T) ((-530 . -421) T) ((-481 . -421) T) ((-1121 . -997) 33618) ((-1121 . -1003) 33596) ((-214 . -550) 33573) ((-1121 . -999) 33530) ((-1071 . -557) 33512) ((-1070 . -557) 33494) ((-1064 . -557) 33476) ((-1064 . -558) NIL) ((-1027 . -557) 33458) ((-796 . -370) 33442) ((-493 . -97) T) ((-1138 . -37) 33283) ((-1117 . -37) 33097) ((-794 . -134) T) ((-530 . -372) T) ((-47 . -779) T) ((-481 . -372) T) ((-1140 . -21) T) ((-1140 . -25) T) ((-1016 . -723) 33076) ((-1016 . -726) 33027) ((-1016 . -725) 33006) ((-910 . -1003) T) ((-942 . -33) T) ((-787 . -1003) T) ((-1149 . -97) T) ((-1016 . -659) 32937) ((-601 . -97) T) ((-503 . -260) 32916) ((-1082 . -97) T) ((-445 . -33) T) ((-432 . -33) T) ((-325 . -97) T) ((-322 . -97) T) ((-314 . -97) T) ((-237 . -97) T) ((-221 . -97) T) ((-446 . -278) T) ((-972 . -968) T) ((-874 . -968) T) ((-286 . -579) 32824) ((-283 . -579) 32785) ((-449 . -968) T) ((-447 . -97) T) ((-406 . -557) 32767) ((-1069 . -1003) T) ((-1026 . -1003) T) ((-783 . -1003) T) ((-1039 . -97) T) ((-748 . -262) 32698) ((-884 . -967) 32581) ((-446 . -937) T) ((-668 . -967) 32551) ((-422 . -967) 32521) ((-1045 . -1022) 32505) ((-1005 . -478) 32438) ((-884 . -106) 32300) ((-832 . -97) T) ((-668 . -106) 32265) ((-57 . -97) 32215) ((-483 . -558) 32176) ((-483 . -557) 32088) ((-482 . -97) 32066) ((-480 . -97) 32016) ((-462 . -97) 31994) ((-461 . -97) 31944) ((-422 . -106) 31895) ((-224 . -156) 31874) ((-223 . -156) 31853) ((-388 . -967) 31827) ((-1103 . -890) 31788) ((-915 . -1015) T) ((-865 . -478) 31721) ((-454 . -727) T) ((-443 . -37) 31562) ((-388 . -106) 31529) ((-454 . -724) T) ((-916 . -280) 31467) ((-192 . -727) T) ((-192 . -724) T) ((-915 . -23) T) ((-645 . -123) T) ((-1117 . -370) 31437) ((-286 . -25) 31290) ((-153 . -381) 31274) ((-286 . -21) 31146) ((-283 . -25) T) ((-283 . -21) T) ((-789 . -338) T) ((-105 . -33) T) ((-450 . -585) 30996) ((-795 . -968) T) ((-540 . -260) 30971) ((-529 . -134) T) ((-517 . -134) T) ((-460 . -134) T) ((-1069 . -650) 30800) ((-1026 . -650) 30649) ((-1021 . -579) 30631) ((-783 . -650) 30601) ((-607 . -1108) T) ((-1 . -97) T) ((-214 . -557) 30353) ((-1127 . -381) 30337) ((-1082 . -280) 30141) ((-884 . -961) T) ((-668 . -961) T) ((-648 . -961) T) ((-583 . -1003) 30091) ((-965 . -585) 30075) ((-784 . -381) 30059) ((-475 . -97) T) ((-471 . -97) T) ((-221 . -280) 30046) ((-237 . -280) 30033) ((-884 . -296) 30012) ((-355 . -585) 29996) ((-447 . -280) 29800) ((-224 . -478) 29733) ((-607 . -952) 29631) ((-223 . -478) 29564) ((-1039 . -280) 29490) ((-751 . -1003) T) ((-731 . -967) 29474) ((-1146 . -258) 29459) ((-1139 . -258) 29444) ((-1118 . -258) 29292) ((-356 . -1003) T) ((-294 . -1003) T) ((-388 . -961) T) ((-153 . -968) T) ((-57 . -280) 29230) ((-731 . -106) 29209) ((-542 . -258) 29194) ((-482 . -280) 29132) ((-480 . -280) 29070) ((-462 . -280) 29008) ((-461 . -280) 28946) ((-388 . -207) 28925) ((-450 . -33) T) ((-920 . -558) 28855) ((-199 . -1003) T) ((-920 . -557) 28837) ((-888 . -557) 28819) ((-888 . -558) 28794) ((-836 . -557) 28776) ((-632 . -134) T) ((-634 . -842) T) ((-634 . -752) T) ((-397 . -557) 28758) ((-1021 . -21) T) ((-1021 . -25) T) ((-607 . -347) 28742) ((-111 . -842) T) ((-796 . -205) 28726) ((-76 . -1108) T) ((-121 . -120) 28710) ((-965 . -33) T) ((-1173 . -952) 28684) ((-1171 . -952) 28641) ((-1127 . -968) T) ((-784 . -968) T) ((-450 . -723) 28620) ((-325 . -1049) 28599) ((-322 . -1049) 28578) ((-314 . -1049) 28557) ((-450 . -726) 28508) ((-450 . -725) 28487) ((-201 . -33) T) ((-450 . -659) 28418) ((-58 . -456) 28402) ((-524 . -968) T) ((-1069 . -156) 28293) ((-1026 . -156) 28204) ((-972 . -1003) T) ((-992 . -871) 28151) ((-874 . -1003) T) ((-749 . -585) 28102) ((-714 . -871) 28072) ((-646 . -1003) T) ((-712 . -871) 28039) ((-480 . -254) 28023) ((-607 . -822) 27982) ((-449 . -1003) T) ((-423 . -871) 27949) ((-77 . -1108) T) ((-325 . -37) 27914) ((-322 . -37) 27879) ((-314 . -37) 27844) ((-237 . -37) 27693) ((-221 . -37) 27542) ((-832 . -1049) T) ((-564 . -134) 27521) ((-564 . -132) 27500) ((-112 . -134) T) ((-112 . -132) NIL) ((-384 . -659) T) ((-731 . -961) T) ((-313 . -421) T) ((-1146 . -918) 27466) ((-1139 . -918) 27432) ((-1118 . -918) 27398) ((-832 . -37) 27363) ((-199 . -650) 27328) ((-39 . -379) 27300) ((-289 . -46) 27270) ((-915 . -123) T) ((-747 . -1108) T) ((-157 . -842) T) ((-313 . -372) T) ((-483 . -260) 27247) ((-44 . -33) T) ((-747 . -952) 27076) ((-599 . -97) T) ((-591 . -21) T) ((-591 . -25) T) ((-1005 . -456) 27060) ((-1117 . -205) 27030) ((-611 . -1108) T) ((-219 . -97) 26980) ((-795 . -1003) T) ((-1075 . -585) 26905) ((-972 . -650) 26892) ((-664 . -967) 26735) ((-1069 . -478) 26683) ((-874 . -650) 26532) ((-1026 . -478) 26484) ((-449 . -650) 26333) ((-65 . -557) 26315) ((-664 . -106) 26137) ((-865 . -456) 26121) ((-1163 . -585) 26081) ((-749 . -659) T) ((-1071 . -967) 25964) ((-1070 . -967) 25799) ((-1064 . -967) 25589) ((-1027 . -967) 25472) ((-919 . -1112) T) ((-998 . -97) 25450) ((-747 . -347) 25420) ((-919 . -509) T) ((-1071 . -106) 25282) ((-1070 . -106) 25096) ((-1064 . -106) 24842) ((-1027 . -106) 24704) ((-1008 . -1006) 24668) ((-349 . -777) T) ((-1146 . -557) 24650) ((-1139 . -557) 24632) ((-1118 . -557) 24614) ((-1118 . -558) NIL) ((-214 . -260) 24591) ((-39 . -421) T) ((-199 . -156) T) ((-153 . -1003) T) ((-627 . -134) T) ((-627 . -132) NIL) ((-543 . -557) 24573) ((-542 . -557) 24555) ((-820 . -1003) T) ((-770 . -1003) T) ((-740 . -1003) T) ((-701 . -1003) T) ((-595 . -781) 24539) ((-612 . -1003) T) ((-747 . -822) 24472) ((-39 . -372) NIL) ((-1021 . -598) T) ((-795 . -650) 24417) ((-224 . -456) 24401) ((-223 . -456) 24385) ((-645 . -579) 24333) ((-590 . -585) 24307) ((-266 . -33) T) ((-664 . -961) T) ((-530 . -1160) 24294) ((-481 . -1160) 24271) ((-1127 . -1003) T) ((-1069 . -262) 24182) ((-1026 . -262) 24113) ((-972 . -156) T) ((-784 . -1003) T) ((-874 . -156) 24024) ((-714 . -1130) 24008) ((-583 . -478) 23941) ((-75 . -557) 23923) ((-664 . -296) 23888) ((-1075 . -659) T) ((-524 . -1003) T) ((-449 . -156) 23799) ((-219 . -280) 23737) ((-1040 . -1015) T) ((-68 . -557) 23719) ((-1163 . -659) T) ((-1071 . -961) T) ((-1070 . -961) T) ((-297 . -97) 23669) ((-1064 . -961) T) ((-1040 . -23) T) ((-1027 . -961) T) ((-89 . -1022) 23653) ((-790 . -1015) T) ((-1071 . -207) 23612) ((-1070 . -217) 23591) ((-1070 . -207) 23543) ((-1064 . -207) 23430) ((-1064 . -217) 23409) ((-289 . -822) 23315) ((-790 . -23) T) ((-153 . -650) 23143) ((-377 . -1112) T) ((-1004 . -338) T) ((-939 . -134) T) ((-919 . -333) T) ((-794 . -421) T) ((-865 . -258) 23120) ((-286 . -779) T) ((-283 . -779) NIL) ((-797 . -97) T) ((-645 . -25) T) ((-377 . -509) T) ((-645 . -21) T) ((-324 . -134) 23102) ((-324 . -132) T) ((-1045 . -1003) 23080) ((-422 . -653) T) ((-73 . -557) 23062) ((-109 . -779) T) ((-219 . -254) 23046) ((-214 . -967) 22944) ((-79 . -557) 22926) ((-668 . -338) 22879) ((-1073 . -760) T) ((-670 . -209) 22863) ((-1057 . -1108) T) ((-128 . -209) 22845) ((-214 . -106) 22736) ((-1127 . -650) 22565) ((-47 . -134) T) ((-795 . -156) T) ((-784 . -650) 22535) ((-451 . -1108) T) ((-874 . -478) 22481) ((-590 . -659) T) ((-524 . -650) 22468) ((-949 . -968) T) ((-449 . -478) 22406) ((-865 . -19) 22390) ((-865 . -550) 22367) ((-748 . -558) NIL) ((-748 . -557) 22349) ((-920 . -967) 22299) ((-383 . -557) 22281) ((-224 . -258) 22258) ((-223 . -258) 22235) ((-454 . -831) NIL) ((-286 . -29) 22205) ((-103 . -1108) T) ((-919 . -1015) T) ((-192 . -831) NIL) ((-836 . -967) 22157) ((-987 . -952) 22055) ((-920 . -106) 21982) ((-237 . -205) 21966) ((-670 . -628) 21950) ((-397 . -967) 21934) ((-349 . -968) T) ((-919 . -23) T) ((-836 . -106) 21865) ((-627 . -1097) NIL) ((-454 . -585) 21815) ((-103 . -806) 21797) ((-103 . -808) 21779) ((-627 . -1094) NIL) ((-192 . -585) 21729) ((-329 . -952) 21713) ((-323 . -952) 21697) ((-297 . -280) 21635) ((-315 . -952) 21619) ((-199 . -262) T) ((-397 . -106) 21598) ((-58 . -557) 21530) ((-153 . -156) T) ((-1021 . -779) T) ((-103 . -952) 21490) ((-814 . -1003) T) ((-766 . -968) T) ((-759 . -968) T) ((-627 . -34) NIL) ((-627 . -91) NIL) ((-283 . -909) 21451) ((-529 . -421) T) ((-517 . -421) T) ((-460 . -421) T) ((-377 . -333) T) ((-214 . -961) 21382) ((-1048 . -33) T) ((-446 . -842) T) ((-915 . -579) 21330) ((-224 . -550) 21307) ((-223 . -550) 21284) ((-987 . -347) 21268) ((-795 . -478) 21131) ((-214 . -207) 21084) ((-1056 . -1108) T) ((-756 . -557) 21066) ((-1174 . -1015) T) ((-1166 . -557) 21048) ((-1127 . -156) 20939) ((-103 . -347) 20921) ((-103 . -308) 20903) ((-972 . -262) T) ((-874 . -262) 20834) ((-731 . -338) 20813) ((-584 . -1108) T) ((-572 . -1108) T) ((-449 . -262) 20744) ((-524 . -156) T) ((-297 . -254) 20728) ((-1174 . -23) T) ((-1103 . -97) T) ((-1090 . -1003) T) ((-993 . -1003) T) ((-983 . -1003) T) ((-81 . -557) 20710) ((-644 . -97) T) ((-325 . -319) 20689) ((-552 . -1003) T) ((-322 . -319) 20668) ((-314 . -319) 20647) ((-444 . -1003) T) ((-1082 . -203) 20597) ((-237 . -226) 20559) ((-1040 . -123) T) ((-552 . -554) 20535) ((-987 . -822) 20468) ((-920 . -961) T) ((-836 . -961) T) ((-444 . -554) 20447) ((-1064 . -724) NIL) ((-1064 . -727) NIL) ((-1005 . -558) 20408) ((-447 . -203) 20358) ((-1005 . -557) 20340) ((-920 . -217) T) ((-920 . -207) T) ((-397 . -961) T) ((-879 . -1003) 20290) ((-836 . -217) T) ((-790 . -123) T) ((-632 . -421) T) ((-772 . -1015) 20269) ((-103 . -822) NIL) ((-1103 . -256) 20235) ((-796 . -777) 20214) ((-1016 . -1108) T) ((-827 . -659) T) ((-153 . -478) 20126) ((-915 . -25) T) ((-827 . -442) T) ((-377 . -1015) T) ((-454 . -726) T) ((-454 . -723) T) ((-832 . -319) T) ((-454 . -659) T) ((-192 . -726) T) ((-192 . -723) T) ((-915 . -21) T) ((-192 . -659) T) ((-772 . -23) 20078) ((-289 . -278) 20057) ((-950 . -209) 20003) ((-377 . -23) T) ((-865 . -558) 19964) ((-865 . -557) 19876) ((-583 . -456) 19860) ((-44 . -926) 19810) ((-301 . -557) 19792) ((-1016 . -952) 19621) ((-540 . -588) 19603) ((-540 . -343) 19585) ((-313 . -1160) 19562) ((-942 . -1108) T) ((-795 . -262) T) ((-1127 . -478) 19510) ((-445 . -1108) T) ((-432 . -1108) T) ((-534 . -97) T) ((-1069 . -258) 19437) ((-564 . -421) 19416) ((-916 . -911) 19400) ((-1166 . -352) 19372) ((-112 . -421) T) ((-1089 . -97) T) ((-996 . -1003) 19350) ((-949 . -1003) T) ((-815 . -779) T) ((-321 . -1112) T) ((-1146 . -967) 19233) ((-1016 . -347) 19203) ((-1139 . -967) 19038) ((-1118 . -967) 18828) ((-1146 . -106) 18690) ((-1139 . -106) 18504) ((-1118 . -106) 18250) ((-1103 . -280) 18237) ((-321 . -509) T) ((-335 . -557) 18219) ((-261 . -278) T) ((-543 . -967) 18192) ((-542 . -967) 18075) ((-331 . -1003) T) ((-292 . -1003) T) ((-224 . -557) 18036) ((-223 . -557) 17997) ((-919 . -123) T) ((-104 . -557) 17979) ((-575 . -23) T) ((-627 . -379) 17946) ((-551 . -23) T) ((-595 . -97) T) ((-543 . -106) 17917) ((-542 . -106) 17779) ((-349 . -1003) T) ((-306 . -97) T) ((-153 . -262) 17690) ((-1117 . -777) 17643) ((-647 . -968) T) ((-1045 . -478) 17576) ((-1016 . -822) 17509) ((-766 . -1003) T) ((-759 . -1003) T) ((-757 . -1003) T) ((-92 . -97) T) ((-131 . -779) T) ((-556 . -806) 17493) ((-105 . -1108) T) ((-992 . -97) T) ((-973 . -33) T) ((-714 . -97) T) ((-712 . -97) T) ((-430 . -97) T) ((-423 . -97) T) ((-214 . -727) 17444) ((-214 . -724) 17395) ((-586 . -97) T) ((-1127 . -262) 17306) ((-601 . -574) 17290) ((-583 . -258) 17267) ((-949 . -650) 17251) ((-524 . -262) T) ((-884 . -585) 17176) ((-1174 . -123) T) ((-668 . -585) 17136) ((-648 . -585) 17123) ((-248 . -97) T) ((-422 . -585) 17053) ((-49 . -97) T) ((-530 . -97) T) ((-481 . -97) T) ((-1146 . -961) T) ((-1139 . -961) T) ((-1118 . -961) T) ((-292 . -650) 17035) ((-1146 . -207) 16994) ((-1139 . -217) 16973) ((-1139 . -207) 16925) ((-1118 . -207) 16812) ((-1118 . -217) 16791) ((-1103 . -37) 16688) ((-543 . -961) T) ((-542 . -961) T) ((-920 . -727) T) ((-920 . -724) T) ((-888 . -727) T) ((-888 . -724) T) ((-796 . -968) T) ((-794 . -793) 16672) ((-627 . -421) T) ((-349 . -650) 16637) ((-388 . -585) 16611) ((-645 . -779) 16590) ((-644 . -37) 16555) ((-542 . -207) 16514) ((-39 . -657) 16486) ((-321 . -299) 16463) ((-321 . -333) T) ((-987 . -278) 16414) ((-265 . -1015) 16296) ((-1009 . -1108) T) ((-155 . -97) T) ((-1121 . -557) 16263) ((-772 . -123) 16215) ((-583 . -1142) 16199) ((-766 . -650) 16169) ((-759 . -650) 16139) ((-450 . -1108) T) ((-329 . -278) T) ((-323 . -278) T) ((-315 . -278) T) ((-583 . -550) 16116) ((-377 . -123) T) ((-483 . -603) 16100) ((-103 . -278) T) ((-265 . -23) 15984) ((-483 . -588) 15968) ((-627 . -372) NIL) ((-483 . -343) 15952) ((-89 . -1003) 15930) ((-103 . -937) T) ((-517 . -130) T) ((-1153 . -138) 15914) ((-450 . -952) 15743) ((-1140 . -132) 15704) ((-1140 . -134) 15665) ((-965 . -1108) T) ((-910 . -557) 15647) ((-787 . -557) 15629) ((-748 . -967) 15472) ((-992 . -280) 15459) ((-201 . -1108) T) ((-714 . -280) 15446) ((-712 . -280) 15433) ((-748 . -106) 15255) ((-423 . -280) 15242) ((-1069 . -558) NIL) ((-1069 . -557) 15224) ((-1026 . -557) 15206) ((-1026 . -558) 14954) ((-949 . -156) T) ((-783 . -557) 14936) ((-865 . -260) 14913) ((-552 . -478) 14661) ((-750 . -952) 14645) ((-444 . -478) 14405) ((-884 . -659) T) ((-668 . -659) T) ((-648 . -659) T) ((-321 . -1015) T) ((-1076 . -557) 14387) ((-197 . -97) T) ((-450 . -347) 14357) ((-479 . -1003) T) ((-474 . -1003) T) ((-472 . -1003) T) ((-731 . -585) 14331) ((-939 . -421) T) ((-879 . -478) 14264) ((-321 . -23) T) ((-575 . -123) T) ((-551 . -123) T) ((-324 . -421) T) ((-214 . -338) 14243) ((-349 . -156) T) ((-1138 . -968) T) ((-1117 . -968) T) ((-199 . -918) T) ((-632 . -357) T) ((-388 . -659) T) ((-634 . -1112) T) ((-1040 . -579) 14191) ((-529 . -793) 14175) ((-1057 . -1085) 14151) ((-634 . -509) T) ((-121 . -1003) 14129) ((-1166 . -967) 14113) ((-647 . -1003) T) ((-450 . -822) 14046) ((-595 . -37) 14016) ((-324 . -372) T) ((-286 . -134) 13995) ((-286 . -132) 13974) ((-111 . -509) T) ((-283 . -134) 13930) ((-283 . -132) 13886) ((-47 . -421) T) ((-146 . -1003) T) ((-142 . -1003) T) ((-1057 . -102) 13833) ((-714 . -1049) 13811) ((-623 . -33) T) ((-1166 . -106) 13790) ((-503 . -33) T) ((-451 . -102) 13774) ((-224 . -260) 13751) ((-223 . -260) 13728) ((-795 . -258) 13658) ((-44 . -1108) T) ((-748 . -961) T) ((-1075 . -46) 13635) ((-748 . -296) 13597) ((-992 . -37) 13446) ((-748 . -207) 13425) ((-714 . -37) 13254) ((-712 . -37) 13103) ((-423 . -37) 12952) ((-583 . -558) 12913) ((-583 . -557) 12825) ((-530 . -1049) T) ((-481 . -1049) T) ((-1045 . -456) 12809) ((-1095 . -1003) 12787) ((-1040 . -25) T) ((-1040 . -21) T) ((-443 . -968) T) ((-1118 . -724) NIL) ((-1118 . -727) NIL) ((-915 . -779) 12766) ((-751 . -557) 12748) ((-790 . -21) T) ((-790 . -25) T) ((-731 . -659) T) ((-157 . -1112) T) ((-530 . -37) 12713) ((-481 . -37) 12678) ((-356 . -557) 12660) ((-294 . -557) 12642) ((-153 . -258) 12600) ((-61 . -1108) T) ((-107 . -97) T) ((-796 . -1003) T) ((-157 . -509) T) ((-647 . -650) 12570) ((-265 . -123) 12454) ((-199 . -557) 12436) ((-199 . -558) 12366) ((-919 . -579) 12300) ((-1166 . -961) T) ((-1021 . -134) T) ((-572 . -1085) 12275) ((-664 . -831) 12254) ((-540 . -33) T) ((-584 . -102) 12238) ((-572 . -102) 12184) ((-1127 . -258) 12111) ((-664 . -585) 12036) ((-266 . -1108) T) ((-1075 . -952) 11934) ((-1064 . -831) NIL) ((-972 . -558) 11849) ((-972 . -557) 11831) ((-313 . -97) T) ((-224 . -967) 11729) ((-223 . -967) 11627) ((-364 . -97) T) ((-874 . -557) 11609) ((-874 . -558) 11470) ((-646 . -557) 11452) ((-1164 . -1102) 11421) ((-449 . -557) 11403) ((-449 . -558) 11264) ((-221 . -381) 11248) ((-237 . -381) 11232) ((-224 . -106) 11123) ((-223 . -106) 11014) ((-1071 . -585) 10939) ((-1070 . -585) 10836) ((-1064 . -585) 10688) ((-1027 . -585) 10613) ((-321 . -123) T) ((-80 . -410) T) ((-80 . -365) T) ((-919 . -25) T) ((-919 . -21) T) ((-796 . -650) 10565) ((-349 . -262) T) ((-153 . -918) 10517) ((-627 . -357) T) ((-915 . -913) 10501) ((-634 . -1015) T) ((-627 . -150) 10483) ((-1138 . -1003) T) ((-1117 . -1003) T) ((-286 . -1094) 10462) ((-286 . -1097) 10441) ((-1062 . -97) T) ((-286 . -880) 10420) ((-125 . -1015) T) ((-111 . -1015) T) ((-548 . -1151) 10404) ((-634 . -23) T) ((-548 . -1003) 10354) ((-89 . -478) 10287) ((-157 . -333) T) ((-286 . -91) 10266) ((-286 . -34) 10245) ((-552 . -456) 10179) ((-125 . -23) T) ((-111 . -23) T) ((-651 . -1003) T) ((-444 . -456) 10116) ((-377 . -579) 10064) ((-590 . -952) 9962) ((-879 . -456) 9946) ((-325 . -968) T) ((-322 . -968) T) ((-314 . -968) T) ((-237 . -968) T) ((-221 . -968) T) ((-795 . -558) NIL) ((-795 . -557) 9928) ((-1174 . -21) T) ((-524 . -918) T) ((-664 . -659) T) ((-1174 . -25) T) ((-224 . -961) 9859) ((-223 . -961) 9790) ((-70 . -1108) T) ((-224 . -207) 9743) ((-223 . -207) 9696) ((-39 . -97) T) ((-832 . -968) T) ((-1071 . -659) T) ((-1070 . -659) T) ((-1064 . -659) T) ((-1064 . -723) NIL) ((-1064 . -726) NIL) ((-843 . -97) T) ((-1027 . -659) T) ((-703 . -97) T) ((-608 . -97) T) ((-443 . -1003) T) ((-309 . -1015) T) ((-157 . -1015) T) ((-289 . -842) 9675) ((-1138 . -650) 9516) ((-796 . -156) T) ((-1117 . -650) 9330) ((-772 . -21) 9282) ((-772 . -25) 9234) ((-219 . -1047) 9218) ((-121 . -478) 9151) ((-377 . -25) T) ((-377 . -21) T) ((-309 . -23) T) ((-153 . -558) 8919) ((-153 . -557) 8901) ((-157 . -23) T) ((-583 . -260) 8878) ((-483 . -33) T) ((-820 . -557) 8860) ((-87 . -1108) T) ((-770 . -557) 8842) ((-740 . -557) 8824) ((-701 . -557) 8806) ((-612 . -557) 8788) ((-214 . -585) 8638) ((-1073 . -1003) T) ((-1069 . -967) 8461) ((-1048 . -1108) T) ((-1026 . -967) 8304) ((-783 . -967) 8288) ((-1069 . -106) 8090) ((-1026 . -106) 7912) ((-783 . -106) 7891) ((-1127 . -558) NIL) ((-1127 . -557) 7873) ((-313 . -1049) T) ((-784 . -557) 7855) ((-983 . -258) 7834) ((-78 . -1108) T) ((-920 . -831) NIL) ((-552 . -258) 7810) ((-1095 . -478) 7743) ((-454 . -1108) T) ((-524 . -557) 7725) ((-444 . -258) 7704) ((-192 . -1108) T) ((-992 . -205) 7688) ((-261 . -842) T) ((-749 . -278) 7667) ((-794 . -97) T) ((-714 . -205) 7651) ((-920 . -585) 7601) ((-879 . -258) 7578) ((-836 . -585) 7530) ((-575 . -21) T) ((-575 . -25) T) ((-551 . -21) T) ((-313 . -37) 7495) ((-627 . -657) 7462) ((-454 . -806) 7444) ((-454 . -808) 7426) ((-443 . -650) 7267) ((-192 . -806) 7249) ((-62 . -1108) T) ((-192 . -808) 7231) ((-551 . -25) T) ((-397 . -585) 7205) ((-454 . -952) 7165) ((-796 . -478) 7077) ((-192 . -952) 7037) ((-214 . -33) T) ((-916 . -1003) 7015) ((-1138 . -156) 6946) ((-1117 . -156) 6877) ((-645 . -132) 6856) ((-645 . -134) 6835) ((-634 . -123) T) ((-127 . -434) 6812) ((-595 . -593) 6796) ((-1045 . -557) 6728) ((-111 . -123) T) ((-446 . -1112) T) ((-552 . -550) 6704) ((-444 . -550) 6683) ((-306 . -305) 6652) ((-493 . -1003) T) ((-446 . -509) T) ((-1069 . -961) T) ((-1026 . -961) T) ((-783 . -961) T) ((-214 . -723) 6631) ((-214 . -726) 6582) ((-214 . -725) 6561) ((-1069 . -296) 6538) ((-214 . -659) 6469) ((-879 . -19) 6453) ((-454 . -347) 6435) ((-454 . -308) 6417) ((-1026 . -296) 6389) ((-324 . -1160) 6366) ((-192 . -347) 6348) ((-192 . -308) 6330) ((-879 . -550) 6307) ((-1069 . -207) T) ((-601 . -1003) T) ((-1149 . -1003) T) ((-1082 . -1003) T) ((-992 . -226) 6246) ((-325 . -1003) T) ((-322 . -1003) T) ((-314 . -1003) T) ((-237 . -1003) T) ((-221 . -1003) T) ((-82 . -1108) T) ((-122 . -97) 6224) ((-116 . -97) 6202) ((-1082 . -554) 6181) ((-447 . -1003) T) ((-1039 . -1003) T) ((-447 . -554) 6160) ((-224 . -727) 6111) ((-224 . -724) 6062) ((-223 . -727) 6013) ((-39 . -1049) NIL) ((-223 . -724) 5964) ((-987 . -842) 5915) ((-920 . -726) T) ((-920 . -723) T) ((-920 . -659) T) ((-888 . -726) T) ((-836 . -659) T) ((-89 . -456) 5899) ((-454 . -822) NIL) ((-832 . -1003) T) ((-199 . -967) 5864) ((-796 . -262) T) ((-192 . -822) NIL) ((-765 . -1015) 5843) ((-57 . -1003) 5793) ((-482 . -1003) 5771) ((-480 . -1003) 5721) ((-462 . -1003) 5699) ((-461 . -1003) 5649) ((-529 . -97) T) ((-517 . -97) T) ((-460 . -97) T) ((-443 . -156) 5580) ((-329 . -842) T) ((-323 . -842) T) ((-315 . -842) T) ((-199 . -106) 5529) ((-765 . -23) 5481) ((-397 . -659) T) ((-103 . -842) T) ((-39 . -37) 5426) ((-103 . -752) T) ((-530 . -319) T) ((-481 . -319) T) ((-1117 . -478) 5286) ((-286 . -421) 5265) ((-283 . -421) T) ((-766 . -258) 5244) ((-309 . -123) T) ((-157 . -123) T) ((-265 . -25) 5109) ((-265 . -21) 4993) ((-44 . -1085) 4972) ((-64 . -557) 4954) ((-814 . -557) 4936) ((-548 . -478) 4869) ((-44 . -102) 4819) ((-1005 . -395) 4803) ((-1005 . -338) 4782) ((-973 . -1108) T) ((-972 . -967) 4769) ((-874 . -967) 4612) ((-449 . -967) 4455) ((-601 . -650) 4439) ((-972 . -106) 4424) ((-874 . -106) 4246) ((-446 . -333) T) ((-325 . -650) 4198) ((-322 . -650) 4150) ((-314 . -650) 4102) ((-237 . -650) 3951) ((-221 . -650) 3800) ((-865 . -588) 3784) ((-449 . -106) 3606) ((-1154 . -97) T) ((-865 . -343) 3590) ((-1118 . -831) NIL) ((-72 . -557) 3572) ((-884 . -46) 3551) ((-562 . -1015) T) ((-1 . -1003) T) ((-632 . -97) T) ((-1153 . -97) 3501) ((-1146 . -585) 3426) ((-1139 . -585) 3323) ((-121 . -456) 3307) ((-1090 . -557) 3289) ((-993 . -557) 3271) ((-360 . -23) T) ((-983 . -557) 3253) ((-85 . -1108) T) ((-1118 . -585) 3105) ((-832 . -650) 3070) ((-562 . -23) T) ((-552 . -557) 3052) ((-552 . -558) NIL) ((-444 . -558) NIL) ((-444 . -557) 3034) ((-475 . -1003) T) ((-471 . -1003) T) ((-321 . -25) T) ((-321 . -21) T) ((-122 . -280) 2972) ((-116 . -280) 2910) ((-543 . -585) 2897) ((-199 . -961) T) ((-542 . -585) 2822) ((-349 . -918) T) ((-199 . -217) T) ((-199 . -207) T) ((-879 . -558) 2783) ((-879 . -557) 2695) ((-794 . -37) 2682) ((-1138 . -262) 2633) ((-1117 . -262) 2584) ((-1021 . -421) T) ((-467 . -779) T) ((-286 . -1037) 2563) ((-915 . -134) 2542) ((-915 . -132) 2521) ((-460 . -280) 2508) ((-266 . -1085) 2487) ((-446 . -1015) T) ((-795 . -967) 2432) ((-564 . -97) T) ((-1095 . -456) 2416) ((-224 . -338) 2395) ((-223 . -338) 2374) ((-266 . -102) 2324) ((-972 . -961) T) ((-112 . -97) T) ((-874 . -961) T) ((-795 . -106) 2241) ((-446 . -23) T) ((-449 . -961) T) ((-972 . -207) T) ((-874 . -296) 2210) ((-449 . -296) 2167) ((-325 . -156) T) ((-322 . -156) T) ((-314 . -156) T) ((-237 . -156) 2078) ((-221 . -156) 1989) ((-884 . -952) 1887) ((-668 . -952) 1858) ((-1008 . -97) T) ((-996 . -557) 1825) ((-949 . -557) 1807) ((-1146 . -659) T) ((-1139 . -659) T) ((-1118 . -723) NIL) ((-153 . -967) 1717) ((-1118 . -726) NIL) ((-832 . -156) T) ((-1118 . -659) T) ((-1164 . -138) 1701) ((-919 . -312) 1675) ((-916 . -478) 1608) ((-772 . -779) 1587) ((-517 . -1049) T) ((-443 . -262) 1538) ((-543 . -659) T) ((-331 . -557) 1520) ((-292 . -557) 1502) ((-388 . -952) 1400) ((-542 . -659) T) ((-377 . -779) 1351) ((-153 . -106) 1240) ((-765 . -123) 1192) ((-670 . -138) 1176) ((-1153 . -280) 1114) ((-454 . -278) T) ((-349 . -557) 1081) ((-483 . -926) 1065) ((-349 . -558) 979) ((-192 . -278) T) ((-128 . -138) 961) ((-647 . -258) 940) ((-454 . -937) T) ((-529 . -37) 927) ((-517 . -37) 914) ((-460 . -37) 879) ((-192 . -937) T) ((-795 . -961) T) ((-766 . -557) 861) ((-759 . -557) 843) ((-757 . -557) 825) ((-748 . -831) 804) ((-1175 . -1015) T) ((-1127 . -967) 627) ((-784 . -967) 611) ((-795 . -217) T) ((-795 . -207) NIL) ((-623 . -1108) T) ((-1175 . -23) T) ((-748 . -585) 536) ((-503 . -1108) T) ((-388 . -308) 520) ((-524 . -967) 507) ((-1127 . -106) 309) ((-634 . -579) 291) ((-784 . -106) 270) ((-351 . -23) T) ((-1082 . -478) 30)) \ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 35fc1d7b..e4492c87 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,3 +1,3 @@ -(30 . 3269429128) -(4170 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| |AlgebraicallyClosedField&| |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AlgebraicFunction| |Aggregate&| |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any| |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedEquations| |ArrayStack| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |BinaryFile| |Bits| |BiModule| |Boolean| |BasicOperator| |BasicOperatorFunctions1| |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| |CartesianTensor| |CartesianTensorFunctions2| |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |Complex| |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |Database| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| |DirectProductCategory| |DirectProduct| |DirectProductFunctions2| |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0| |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| |EntireRing| |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions| |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage| |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&| |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| |ExponentialExpansion| |Expression| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver| |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&| |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&| |FunctionFieldCategory| |FunctionFieldCategoryFunctions2| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory| |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&| |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage| |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory| |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat| |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory| |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion| |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&| |FunctionSpace| |FunctionSpaceFunctions2| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2| |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate| |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |GroebnerPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GcdDomain&| |GcdDomain| |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable| |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| |InnerNumericEigenPackage| |Infinity| |InputForm| |InputFormFunctions1| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| |Integer| |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| |TranscendentalIntegration| |InverseLaplaceTransform| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| |IntegrationResult| |IntegrationResultFunctions2| |IntegrationResultToFunction| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo| |Kovacic| |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage| |LiouvillianFunction| |LiouvillianFunctionCategory| |LinGroebnerPackage| |Library| |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| |List| |ListFunctions2| |ListToMap| |ListFunctions3| |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| |LinearAggregate| |Localize| |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| |LinearSystemPolynomialPackage| |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&| |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| |ModularField| |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset| |MultisetAggregate| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| |MultivariateFactorize| |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis| |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| |None| |NoneFunctions1| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&| |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion| |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| |OpenMath| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2| |Operator| |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrdSetInts| |OutputPackage| |OutputForm| |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage| |PAdicInteger| |PAdicIntegerCategory| |PAdicRational| |PAdicRationalConstructor| |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| |PatternMatchResult| |PatternMatchResultFunctions2| |Pattern| |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| |Permutation| |Permanent| |PermutationCategory| |PermutationGroup| |PrimeField| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions| |PrincipalIdealDomain| |PolynomialInterpolation| |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot| |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions| |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| |AttachPredicates| |FunctionSpaceAttachPredicates| |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| |PolToPol| |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2| |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| |PolynomialRoots| |PlottablePlaneCurveCategory| |PolynomialRing| |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2| |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| |PrintPackage| |Product| |PriorityQueueAggregate| |PseudoRemainderSequence| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| |PushVariables| |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&| |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm| |QueueAggregate| |Quaternion| |QuaternionCategory&| |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| |RealConstant| |RealZeroPackage| |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet| |RadicalEigenPackage| |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor| |RationalFunctionFactorizer| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RewriteRule| |RuleCalled| |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension| |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory| |SegmentExpansionCategory| |Set| |SetAggregate&| |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression| |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |ElementaryFunctionSign| |RationalFunctionSign| |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| |Stream| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |SystemSolvePackage| |TableauxBumpers| |Table| |Tableau| |TangentExpansions| |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1| |TextFile| |ToolsForSign| |TopLevelThreeSpace| |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&| |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment| |UniversalSegmentFunctions2| |UnivariatePolynomial| |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeries| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver| |UTSodetools| |Variable| |VectorCategory&| |VectorCategory| |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport| |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&| |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&| |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial| |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| |Union| |Category| |sincos| |intPatternMatch| |apply| |axes| |compdegd| |concat!| |setLabelValue| |ptFunc| |triangular?| |first| |ratDenom| |realEigenvalues| |toroidal| |inverseLaplace| |ravel| |iitanh| |lSpaceBasis| |swapRows!| |rest| |any?| |degree| |removeRoughlyRedundantFactorsInPol| |sec2cos| |setelt!| |reshape| |numberOfComponents| |overlabel| |removeRedundantFactors| |purelyAlgebraicLeadingMonomial?| |replaceKthElement| |startStats!| |map| |gcdcofact| |mapmult| |generateIrredPoly| |isAbsolutelyIrreducible?| |unrankImproperPartitions1| |collectQuasiMonic| |laguerre| |algebraicOf| |select!| |pointColorPalette| |besselY| |leftExtendedGcd| |readIfCan!| |bipolar| |printInfo!| |iicsch| |coerceImages| |setStatus| |changeThreshhold| |laplacian| |mathieu24| |multiEuclidean| |cAcos| |yRange| |decimal| |makeSeries| |curryRight| |OMgetError| |expenseOfEvaluationIF| |aLinear| |update| |double?| |sumOfSquares| |prevPrime| |oddlambert| |convert| GE |allRootsOf| |extract!| |maxrow| |resultantEuclideannaif| |wordInStrongGenerators| |findCycle| |imagk| |monic?| |rules| |cubic| |pop!| |explimitedint| |eq?| |brillhartTrials| |doubleDisc| |cond| |check| |complete| |reducedDiscriminant| |endSubProgram| |useNagFunctions| |rootsOf| |clipWithRanges| |associative?| |charthRoot| |inverseIntegralMatrixAtInfinity| |integralDerivationMatrix| |inf| |assign| |subNodeOf?| |and| |divisor| |fixedDivisor| |OMreadFile| |inverseColeman| |isPlus| |rationalPoints| |areEquivalent?| |leastAffineMultiple| |opeval| |rdregime| |resultantEuclidean| |scalarMatrix| |dot| |exprToUPS| |factorsOfCyclicGroupSize| |showTypeInOutput| |safetyMargin| |primintfldpoly| |binomial| |OMunhandledSymbol| |extractSplittingLeaf| |getMultiplicationTable| |coefficients| |romberg| |symmetricSquare| |split!| |matrixGcd| |fortranCompilerName| |increment| |evaluateInverse| |acothIfCan| |OMputError| |left| |startPolynomial| |normalForm| |lift| |primitiveElement| |integralRepresents| |supDimElseRittWu?| |right| |car| |OMbindTCP| |max| |OMputEndApp| |genericRightTraceForm| |uniform| |highCommonTerms| |inspect| |cdr| |closedCurve| |diff| |selectFiniteRoutines| |changeWeightLevel| |jacobi| |moduleSum| |option?| |separate| |quoByVar| |kmax| |symbolIfCan| |partialQuotients| |nthRoot| |totalGroebner| |comparison| |closeComponent| |alternatingGroup| |supersub| |t| |createPrimitiveElement| |SFunction| |doubleRank| |integralLastSubResultant| |outputFloating| |invertible?| |one?| |module| |level| |trueEqual| |elRow1!| |atanIfCan| |monomRDEsys| |character?| |associator| |linearDependence| |redmat| |listexp| |rightMult| |compactFraction| |BumInSepFFE| |stFunc1| |separateFactors| |viewSizeDefault| |c02aff| |reducedForm| |reverse!| |limitedIntegrate| |c02agf| |setchildren!| |reduceByQuasiMonic| |rectangularMatrix| |sortConstraints| |strongGenerators| |last| |simplifyPower| |iiasin| |delete!| |completeSmith| |c05adf| |checkPrecision| |representationType| |printingInfo?| |An| |cardinality| |scripted?| |terms| |c05nbf| NOT |rootPower| |iFTable| |subPolSet?| |csubst| |nullary?| |redPol| |c05pbf| OR |applyRules| |empty?| |roughEqualIdeals?| |removeSquaresIfCan| |localAbs| |stiffnessAndStabilityFactor| |c06eaf| AND |iiperm| |orthonormalBasis| |complementaryBasis| |sign| |laurentRep| |LyndonWordsList1| |c06ebf| |zeroVector| |complexEigenvectors| |youngGroup| |c06ecf| |radicalEigenvalues| |child| |OMputBind| |adaptive| |duplicates?| |groebSolve| |multiset| |c06ekf| |complexElementary| |expandTrigProducts| |makeVariable| |ramified?| |outputFixed| |c06fpf| |trapezoidal| |coerceListOfPairs| |supRittWu?| |union| |logGamma| |scaleRoots| |expenseOfEvaluation| |subspace| |computePowers| |c06fqf| |viewThetaDefault| |twist| |prime| |horizConcat| |round| |intChoose| |cycleTail| |c06frf| |modTree| |expint| |getCurve| |linearMatrix| |moreAlgebraic?| |createLowComplexityTable| |c06fuf| |homogeneous?| |lowerPolynomial| |myDegree| |tanhIfCan| |delete| |whatInfinity| |c06gbf| |viewWriteDefault| |leftRegularRepresentation| |insert| |reorder| |cExp| |OMputInteger| |options| |c06gcf| |mainVariable?| |stoseLastSubResultant| |assoc| * |eigenvector| |edf2fi| |rootBound| |bumprow| |ranges| |taylorRep| |c06gqf| |differentialVariables| |integerIfCan| |monicRightFactorIfCan| |mainPrimitivePart| |infieldIntegrate| |approxSqrt| |c06gsf| |normalDeriv| |genericRightMinimalPolynomial| |overbar| |keys| |tanSum| |commutativeEquality| |d01ajf| |tab| |range| |weight| UTS2UP |d01akf| |OMgetEndBind| |asinIfCan| |tail| |pushup| |associatedSystem| |cartesian| |stop| |unitNormal| |outputMeasure| |makeResult| |d01alf| |indicialEquation| |bitCoef| |maxIndex| |d01amf| |maxPoints3D| |shift| |remove| |OMgetVariable| |generic?| |quotientByP| |showFortranOutputStack| |fortranCarriageReturn| |radicalRoots| |d01anf| |rubiksGroup| |rightLcm| |null?| |decreasePrecision| |unexpand| |d01apf| |generalInfiniteProduct| |particularSolution| |curve| |OMputEndAttr| |argscript| |algintegrate| |useSingleFactorBound?| |linearPart| |expintfldpoly| |stronglyReduced?| |bitTruth| |zeroDimensional?| |OMputEndError| |d01aqf| |monicDivide| |pdf2df| |generalizedEigenvector| |changeName| |prinshINFO| |squareFree| |diagonals| |d01asf| |univariatePolynomial| |iilog| |second| |d01bbf| |diagonal| |minRowIndex| |gramschmidt| |typeList| |wordsForStrongGenerators| |parabolicCylindrical| |morphism| |d01fcf| |removeZeroes| |factors| |insertionSort!| |quasiComponent| |gderiv| |mkPrim| |d01gaf| |SturmHabicht| |UpTriBddDenomInv| |hasTopPredicate?| |bernoulliB| |linearDependenceOverZ| |sizeMultiplication| |hasSolution?| |modularGcd| |d01gbf| |initiallyReduced?| |rst| |computeBasis| |d02bbf| |setvalue!| |viewport3D| |basicSet| |mathieu12| |univariatePolynomials| |flexibleArray| |leftDiscriminant| |returnTypeOf| |cscIfCan| |d02bhf| |OMcloseConn| |complexExpand| |clearTable!| |nonSingularModel| |cyclicParents| |getBadValues| |harmonic| |d02cjf| |accuracyIF| |unrankImproperPartitions0| |biRank| |socf2socdf| |inverse| |univariateSolve| |invertibleSet| |d02ejf| |mapExpon| |chiSquare| |exprHasLogarithmicWeights| |top!| |lazyPseudoQuotient| |triangSolve| |exQuo| |d02gaf| |prime?| |identityMatrix| |singleFactorBound| |elRow2!| |stoseInternalLastSubResultant| |resultantReduit| |positiveSolve| |log| |d02gbf| |numberOfOperations| |collectUpper| |unit?| |normal01| |taylorIfCan| |stoseInvertible?sqfreg| |d02kef| |commonDenominator| |subQuasiComponent?| |makeSketch| |high| |nrows| |iflist2Result| |d02raf| |diagonalProduct| |nextsousResultant2| |rangeIsFinite| |points| |nextSubsetGray| |d03edf| |head| |ode1| |iiacsc| |functionIsOscillatory| |d03eef| |roughBase?| |colorDef| |OMgetEndAttr| |drawComplexVectorField| |lowerCase!| |repeatUntilLoop| |genericPosition| |d03faf| |poisson| |modifyPointData| |slex| |deepestInitial| |someBasis| |append| |interpolate| |oddInfiniteProduct| |OMgetBind| |e01baf| |integer?| |asimpson| |lambda| |rowEchelonLocal| |function| |e01bef| |B1solve| |yCoord| |decompose| |roughBasicSet| |cRationalPower| |graphStates| |e01bff| |OMconnectTCP| |extendedResultant| |interReduce| |rational?| |lcm| |e01bgf| |totalDegree| |cosSinInfo| |patternVariable| |setOrder| |slash| |makeSUP| |basisOfCommutingElements| |innerSolve1| |irreducibleFactors| |e01bhf| |augment| |critM| |const| |polar| |clikeUniv| |e01daf| |phiCoord| RF2UTS |complexRoots| |HenselLift| |fortranComplex| |abs| |e01saf| |rightFactorIfCan| |viewPhiDefault| |clipPointsDefault| |quasiAlgebraicSet| |makeFR| |lprop| |e01sbf| |halfExtendedSubResultantGcd1| |besselJ| |dmp2rfi| |transcendenceDegree| |lfextendedint| |content| |mathieu23| |e01sef| |extractPoint| |unit| |tan2cot| |seriesSolve| |mainForm| |e01sff| |minimize| |e02adf| |returns| |compiledFunction| |partialNumerators| |e02aef| |resultant| |mathieu22| |initializeGroupForWordProblem| |padecf| |innerSolve| |oblateSpheroidal| |smith| |e02agf| |blankSeparate| |product| |boundOfCauchy| |e02ahf| |resetVariableOrder| |initiallyReduce| |structuralConstants| |symmetricProduct| |leftUnits| |decrease| |bezoutResultant| |printCode| |multMonom| |e02ajf| |interpret| |getOrder| |recolor| |subResultantGcdEuclidean| |e02akf| |aCubic| |simpleBounds?| |removeZero| |e02baf| |simplify| |qqq| |lazyPrem| |width| |halfExtendedSubResultantGcd2| |exactQuotient!| |sparsityIF| |logical?| |e02bbf| |factorSquareFreeByRecursion| |iisqrt2| |lfintegrate| |minimalPolynomial| |e02bcf| |radicalEigenvectors| |OMputApp| |block| |cCoth| |paraboloidal| |e02bdf| |ridHack1| |point| |exponential| |createMultiplicationTable| |dimensionOfIrreducibleRepresentation| |e02bef| |linearAssociatedLog| |bottom!| |bit?| |OMputEndBind| |e02daf| |OMReadError?| |OMgetAtp| |rangePascalTriangle| |RittWuCompare| |e02dcf| |isOp| |viewPosDefault| |red| |e02ddf| |acoshIfCan| |changeBase| |unitVector| |e02def| |OMgetEndAtp| |preprocess| |getStream| |pushdown| |mantissa| |primeFactor| |e02dff| |box| |LiePolyIfCan| |complexZeros| |mapSolve| |elliptic?| |e02gaf| |internalSubQuasiComponent?| |leftDivide| |debug| |e02zaf| |viewDeltaXDefault| |iisech| |palgextint| |meshFun2Var| |e04dgf| |generalTwoFactor| |torsion?| |palgLODE| |e04fdf| |Zero| |LazardQuotient| |remainder| |operator| |e04gcf| |subResultantGcd| |nextPrime| |e04jaf| |makeYoungTableau| |outputAsScript| |OMgetEndError| |e04mbf| |dequeue!| |mapBivariate| |euclideanSize| |e04naf| |reverseLex| |moebiusMu| |selectNonFiniteRoutines| |e04ucf| |imagi| |plotPolar| |fglmIfCan| |e04ycf| |genericLeftTraceForm| |lflimitedint| |graphImage| |f01brf| |virtualDegree| |showScalarValues| |rationalFunction| |f01bsf| |numericalIntegration| |cfirst| |iiacoth| |f01maf| |fullPartialFraction| |rightRecip| LE |infinite?| |f01mcf| |palgextint0| |reduceLODE| Y |removeSuperfluousCases| |f01qcf| |setright!| |integralBasis| |firstNumer| |f01qdf| |PDESolve| |lyndon?| |clearTheIFTable| |f01qef| |viewZoomDefault| |qelt| |dequeue| |f01rcf| |optpair| |rightTrace| |subresultantVector| |f01rdf| |LyndonCoordinates| |filename| |ListOfTerms| |makeFloatFunction| |f01ref| |birth| |univcase| |divisors| |f02aaf| |removeConstantTerm| |legendreP| |primes| |f02abf| |One| |btwFact| LODO2FUN |normal?| |f02adf| |euclideanNormalForm| |f02aef| |distance| |rowEchelon| |position| |LyndonWordsList| |pquo| |selectPolynomials| |f02aff| |f02agf| |completeEchelonBasis| |coth2tanh| |lagrange| |createPrimitiveNormalPoly| |f02ajf| |midpoint| |repeating| |unaryFunction| |f02akf| |generate| |xor| |simplifyExp| |f02awf| |makeprod| |hcrf| |monicModulo| |rightUnit| |incrementBy| |f02axf| |symFunc| |withPredicates| |children| |f02bbf| |solveRetract| |normalized?| |base| |errorKind| |expand| |clearCache| |nand| |generalizedContinuumHypothesisAssumed| |null| |purelyAlgebraic?| |f02bjf| |filterWhile| |eyeDistance| |complex| |commutative?| |numberOfDivisors| |complexLimit| |f02fjf| |filterUntil| |zeroDimPrime?| |minPoly| |discreteLog| |listConjugateBases| |f02wef| |select| |nilFactor| |exp| |multiEuclideanTree| |swap!| |leftRecip| |f02xef| |queue| |cn| |var2Steps| |ScanArabic| |reopen!| |f04adf| |isPower| |iicosh| |positiveRemainder| |pi| |integer| |f04arf| |lhs| |elt| |drawCurves| |asecIfCan| |hexDigit| |string| |redPo| |f04asf| |mesh?| |rhs| |expintegrate| |float| |neglist| |lastSubResultant| |topFortranOutputStack| |f04atf| |tanIfCan| |rootPoly| |makeRecord| |extractIndex| |f04axf| |numberOfFractionalTerms| |gbasis| |infinity| |f04faf| |univariatePolynomialsGcds| |sylvesterSequence| |antiCommutator| |selectOrPolynomials| |clipParametric| |lfunc| |f04jgf| |relativeApprox| |selectPDERoutines| |plusInfinity| |iroot| |prepareSubResAlgo| |Ci| |f04maf| |sorted?| |iisqrt3| |enqueue!| |f04mbf| |subHeight| |hyperelliptic| |minusInfinity| |mapMatrixIfCan| |bumptab1| |f04mcf| |trunc| |getPickedPoints| |modularGcdPrimitive| |normalise| |generalLambert| |f04qaf| |cyclotomicDecomposition| |f07adf| |atrapezoidal| |lastSubResultantElseSplit| |bat1| |unparse| |getZechTable| |createLowComplexityNormalBasis| |octon| |f07aef| |normDeriv2| |extractTop!| |zeroSetSplit| |sts2stst| |f07fdf| |simplifyLog| |sdf2lst| |rur| |f07fef| |csc2sin| |LagrangeInterpolation| |s01eaf| |quasiRegular?| |leftRemainder| |coordinates| |rarrow| |setRealSteps| |monomialIntegrate| |cAtanh| |s13aaf| |normal| |untab| |escape| |problemPoints| |gradient| |call| |s13acf| |acschIfCan| |curry| |makeop| |s13adf| |discriminantEuclidean| |checkRur| |vark| |pr2dmp| |s14aaf| |cotIfCan| |besselI| |close| |shiftRoots| |OMserve| |coefChoose| |s14abf| |addBadValue| |Nul| |ksec| |numerator| |s14baf| |generalPosition| |style| |limit| |s15adf| |outerProduct| |calcRanges| |display| |basisOfNucleus| |OMgetType| |cyclicCopy| |s15aef| |reduced?| |integral?| |super| |s17acf| |airyBi| |ScanFloatIgnoreSpaces| |binaryTree| |dioSolve| |OMgetInteger| |s17adf| |appendPoint| |leftZero| |rationalPoint?| |s17aef| |commutator| |safeFloor| |constantOpIfCan| |outputGeneral| |s17aff| |abelianGroup| |value| |certainlySubVariety?| |s17agf| |nthFactor| |ParCond| |imagE| |qsetelt!| |s17ahf| |divideExponents| |evenlambert| |rightQuotient| |packageCall| |library| |palgintegrate| |positive?| |s17ajf| |rightFactorCandidate| |stoseInvertibleSetreg| |oneDimensionalArray| |rationalPower| |inc| |s17akf| |leftAlternative?| |s17dcf| |recip| |midpoints| |numberOfCycles| |constDsolve| |s17def| |lineColorDefault| |optimize| |removeSinhSq| |OMgetEndObject| |selectIntegrationRoutines| |rootOfIrreduciblePoly| |musserTrials| |write!| |s17dgf| |separateDegrees| |spherical| |coleman| |s17dhf| |postfix| |setlast!| |rquo| |KrullNumber| |binaryFunction| |wholePart| |set| |writable?| |headRemainder| |ReduceOrder| |useEisensteinCriterion?| |show| |makeCos| |lazyIrreducibleFactors| |singularitiesOf| |pToHdmp| |sumSquares| |complexNormalize| |mapCoef| |member?| |true| |merge!| |cCot| |fortranTypeOf| |evenInfiniteProduct| |invertibleElseSplit?| |satisfy?| |iiatan| |cross| |prepareDecompose| |shiftLeft| |expextendedint| |Lazard| |trace| |lazyPremWithDefault| |newSubProgram| |rspace| |arity| |drawStyle| |derivationCoordinates| |seed| |iitan| |constantToUnaryFunction| |pointData| |cAcoth| |listOfLists| |basisOfRightNucloid| |traceMatrix| |parametersOf| |symmetricGroup| |corrPoly| |multiple?| |clearTheSymbolTable| |mainCharacterization| |rightRank| |rischNormalize| |crushedSet| |exteriorDifferential| |distdfact| |semiSubResultantGcdEuclidean1| |OMsend| |rotate!| |gethi| |inGroundField?| |remove!| |groebnerFactorize| |input| |parametric?| |lex| |dimensionsOf| |gcdPrimitive| |newLine| |definingPolynomial| |traverse| |realEigenvectors| |insertTop!| |splitLinear| |quadraticForm| |leftCharacteristicPolynomial| |setProperty| |palgLODE0| |printStatement| |mainCoefficients| |bumptab| |doubleComplex?| |realRoots| |component| |probablyZeroDim?| |gcdcofactprim| |stiffnessAndStabilityOfODEIF| |qroot| |polyred| |cyclicGroup| |minimumDegree| |palgint0| |log2| |edf2df| |subresultantSequence| |addPoint| |setFormula!| |rightMinimalPolynomial| |OMputEndBVar| |factorset| |deepestTail| |unvectorise| |internalAugment| |shrinkable| |extractIfCan| |showRegion| |zCoord| |modularFactor| |nextNormalPrimitivePoly| |inRadical?| |factorSquareFreePolynomial| |quartic| |expPot| ~ |tanQ| |htrigs| |rightTraceMatrix| |regime| |yellow| |ef2edf| |hermiteH| |linSolve| |aspFilename| |addiag| |prindINFO| |cyclicSubmodule| |pair?| |linGenPos| |tRange| |rootSimp| |perfectSqrt| |weierstrass| |stripCommentsAndBlanks| |firstSubsetGray| |iteratedInitials| |singular?| |primintegrate| |univariate?| |pushucoef| |setMaxPoints| |monicCompleteDecompose| |safeCeiling| |internalLastSubResultant| |airyAi| |rewriteIdealWithHeadRemainder| |setTopPredicate| |leaf?| |open| |FormatArabic| |mindeg| |setStatus!| |power!| |whileLoop| |f2df| |rootSplit| |fortranDouble| |declare| |pseudoDivide| |ScanFloatIgnoreSpacesIfCan| |OMputAttr| |copyInto!| |exprToXXP| |polCase| |row| |normalDenom| |setTex!| |mvar| |rCoord| |denomLODE| |move| |createNormalPrimitivePoly| |back| |linear?| |inverseIntegralMatrix| |every?| |float?| |logIfCan| |fTable| EQ |permutationRepresentation| |conditionP| |brillhartIrreducible?| |internalIntegrate0| |beauzamyBound| |df2ef| |tan2trig| |toseSquareFreePart| |maximumExponent| |validExponential| |fortranReal| |tanh2coth| |makeViewport3D| |primaryDecomp| |binaryTournament| |operators| |error| |approximate| |interval| |pile| |stopTable!| |approxNthRoot| |setFieldInfo| |groebnerIdeal| |rightDiscriminant| |basisOfRightNucleus| |setRow!| |radicalSimplify| |assert| |edf2ef| |OMlistSymbols| |constantKernel| |binary| |lepol| |diophantineSystem| |in?| |fixPredicate| |rotate| |vertConcat| |acosIfCan| |setprevious!| |notelem| |oddintegers| |jordanAdmissible?| |acotIfCan| |divide| |bubbleSort!| |noLinearFactor?| |testModulus| |setScreenResolution3D| |jacobian| |top| |quickSort| |dominantTerm| |mkAnswer| |basisOfCentroid| |Aleph| |ran| |continue| |lfextlimint| |exptMod| |elliptic| |computeInt| |cyclePartition| |trace2PowMod| |iidsum| |cAtan| |curryLeft| |associates?| |moduloP| |pascalTriangle| |acscIfCan| |paren| |doublyTransitive?| |rootRadius| |numberOfIrreduciblePoly| |printTypes| |mapGen| |factorSquareFree| |rule| |conjug| |sinhcosh| |weights| |zeroMatrix| |qfactor| |central?| |cos2sec| |removeCosSq| |upperCase?| |basisOfLeftAnnihilator| |extractBottom!| |critT| |integralMatrixAtInfinity| |colorFunction| |linearAssociatedExp| |stopTableGcd!| |constantRight| |radPoly| |Hausdorff| |connect| |trim| |hermite| |quadraticNorm| |thetaCoord| |superscript| |putColorInfo| |setColumn!| |setnext!| |collectUnder| |leadingIdeal| |OMgetEndApp| |getMultiplicationMatrix| |leader| |hMonic| |symbolTable| |physicalLength!| |constant?| |numericalOptimization| |genericRightTrace| |dAndcExp| |symbol?| |coefficient| |say| |OMsetEncoding| |addPoint2| |eq| |perspective| |userOrdered?| |outputAsTex| |heapSort| |removeRoughlyRedundantFactorsInPols| |pushFortranOutputStack| |previous| |quadratic?| |quatern| |hitherPlane| |kovacic| |llprop| |prolateSpheroidal| |systemSizeIF| |popFortranOutputStack| |specialTrigs| |ramifiedAtInfinity?| |iter| |putGraph| |map!| |find| |bivariatePolynomials| |outputAsFortran| |objectOf| |definingInequation| |badValues| |failed?| |pmComplexintegrate| |eigenvalues| |rightExactQuotient| |leftQuotient| |imagJ| |discriminant| |limitPlus| |stirling1| |setfirst!| |critBonD| |kroneckerDelta| |mainSquareFreePart| |var1Steps| |sample| |OMgetAttr| |processTemplate| |plus| |digit| |semiSubResultantGcdEuclidean2| |definingEquations| |next| |algSplitSimple| |hdmpToP| |zeroDimPrimary?| |isExpt| |divergence| |unitsColorDefault| |firstUncouplingMatrix| |SturmHabichtMultiple| |changeMeasure| |solid?| |sumOfKthPowerDivisors| |exponents| |autoReduced?| |bitLength| |infLex?| |zero| |nary?| |dec| |eulerE| |fractRadix| |indicialEquationAtInfinity| |basisOfMiddleNucleus| |mapUp!| |cSech| |factorPolynomial| |iExquo| |imaginary| |leastPower| |OMlistCDs| |initial| |critMTonD1| |middle| |pastel| |stoseInvertibleSet| |leftRankPolynomial| |prinb| |times| |iicsc| |li| |rowEch| |string?| |setref| |symmetricTensors| |flatten| |removeRoughlyRedundantFactorsInContents| |pdct| |critB| |mdeg| |differentiate| |OMputFloat| |meshPar2Var| |stronglyReduce| |direction| |asinhIfCan| |setAdaptive| |euclideanGroebner| |nthRootIfCan| |radicalSolve| |roughSubIdeal?| |monom| |drawComplex| |maxrank| |mergeDifference| |primPartElseUnitCanonical!| |inrootof| |vector| |inR?| |critpOrder| |listBranches| |algebraicVariables| |iiacsch| |symmetricRemainder| |common| |deriv| |cyclic?| |setPredicates| |subResultantsChain| |antiCommutative?| |norm| |stoseInvertible?| |linearPolynomials| |cAcsch| |matrix| |fixedPointExquo| |viewWriteAvailable| |ellipticCylindrical| |stopTableInvSet!| |addMatch| |rename!| |isList| |algebraicSort| |functionIsContinuousAtEndPoints| |solve1| |sin2csc| |iisec| |droot| |plus!| |void| |semiResultantReduitEuclidean| |pushdterm| |expressIdealMember| |ratPoly| |palgRDE0| |transcendentalDecompose| |bernoulli| |leftUnit| |OMreadStr| |complement| |firstDenom| |tryFunctionalDecomposition| |indices| |algebraic?| |startTable!| |showClipRegion| |messagePrint| |pol| |integralBasisAtInfinity| |nlde| |OMputEndObject| |headReduced?| |leadingSupport| |ratDsolve| |tanNa| |isQuotient| |continuedFraction| |removeDuplicates| |numberOfVariables| |branchPointAtInfinity?| |transpose| |minPol| |setDifference| |realSolve| |epilogue| |exprHasWeightCosWXorSinWX| |mainMonomial| |setIntersection| |ode2| |infieldint| |nonQsign| |selectAndPolynomials| |listRepresentation| |patternMatchTimes| |stoseIntegralLastSubResultant| |factorGroebnerBasis| |setUnion| |rationalApproximation| |linear| |getMeasure| |height| |OMputBVar| |substitute| |completeHensel| |numFunEvals3D| |plot| |stoseSquareFreePart| |OMencodingXML| |standardBasisOfCyclicSubmodule| |physicalLength| |monomial?| |npcoef| |linkToFortran| |maxPoints| |absolutelyIrreducible?| |explogs2trigs| |charpol| |monomials| |mapdiv| |complexNumericIfCan| |fortranLinkerArgs| |skewSFunction| |pureLex| |heap| |cCsch| |HermiteIntegrate| |hypergeometric0F1| |tubePointsDefault| |nthExponent| |innerEigenvectors| |polygamma| |sturmVariationsOf| |squareFreeLexTriangular| |genericLeftMinimalPolynomial| |ddFact| |mainDefiningPolynomial| |parts| |palglimint| |minColIndex| |power| |over| |sncndn| |linearlyDependentOverZ?| |iibinom| |sech2cosh| |lexTriangular| |dim| |iiacosh| |ptree| |localUnquote| |makeGraphImage| |denominators| |principal?| |pointColor| |atom?| |bits| |mainVariable| |leftGcd| |rroot| |lastSubResultantEuclidean| |flagFactor| |imagI| |sin?| |contractSolve| |OMputVariable| |coord| |output| |addPointLast| |coth2trigh| |permanent| |rightOne| |scanOneDimSubspaces| |makeTerm| |cAsin| |toScale| |doubleResultant| |roughUnitIdeal?| |derivative| |build| |primlimitedint| |result| |triangularSystems| |solve| |optional?| |flexible?| |sizeLess?| |monomialIntPoly| |curveColor| |cot2trig| |listLoops| |third| |cycleEntry| |polyRDE| |mainKernel| |iCompose| |clip| |OMconnInDevice| |selectODEIVPRoutines| |jacobiIdentity?| |surface| |integralMatrix| |pade| |nodeOf?| |rombergo| |solveLinearlyOverQ| |fractionPart| |sequences| |ceiling| |setCondition!| |truncate| |pointLists| |largest| |delta| |equality| |tube| |finiteBound| |numericIfCan| |showArrayValues| |medialSet| |s17dlf| |freeOf?| |internal?| |OMencodingSGML| |hexDigit?| |s18acf| |createIrreduciblePoly| |changeNameToObjf| |cycles| |GospersMethod| |s18adf| |lists| |createMultiplicationMatrix| |factorsOfDegree| |expIfCan| |s18aef| |hconcat| |ffactor| |root| |printStats!| |s18aff| |subscript| |option| |lieAlgebra?| |rischDE| |sturmSequence| |s18dcf| |indicialEquations| |printHeader| |outputArgs| |entry?| |s18def| |setAdaptive3D| |unravel| |stFunc2| |s19aaf| |sinhIfCan| |index?| |numberOfComputedEntries| |s19abf| |OMgetString| |copy!| |zoom| |s19acf| |rename| |OMopenString| |sort| |permutationGroup| |s19adf| |outlineRender| |unitCanonical| |bag| |s20acf| |currentSubProgram| |showTheIFTable| |rationalIfCan| |s20adf| |atanhIfCan| |setMinPoints3D| |lowerCase| |s21baf| |stirling2| |setMaxPoints3D| |stopMusserTrials| |s21bbf| |karatsuba| |complex?| |setProperties| |s21bcf| |fixedPoint| |makeCrit| |anticoord| |s21bdf| |times!| |sqfree| |random| |setMinPoints| |symbol| |radical| |ODESolve| |hdmpToDmp| |center| |decomposeFunc| |lazyEvaluate| |rootOf| |iicot| |debug3D| |choosemon| |stosePrepareSubResAlgo| |axesColorDefault| |objects| |extensionDegree| |blue| |duplicates| |Si| |associatedEquations| |rightPower| |RemainderList| |matrixConcat3D| |makeViewport2D| |label| |perfectNthPower?| |multiplyExponents| |branchIfCan| |setleft!| |viewDefaults| |removeDuplicates!| |entry| |systemCommand| |semiDiscriminantEuclidean| |number?| |cosIfCan| |algDsolve| |symbolTableOf| |rightDivide| |tubePoints| |OMgetApp| |drawToScale| |tubeRadius| |weighted| |arg1| |scalarTypeOf| |rk4a| |arg2| |lazyResidueClass| |permutation| |OMputAtp| |characteristicPolynomial| |bfEntry| |properties| |parabolic| |numer| |stack| |isTimes| |denom| |goto| |nil| |column| |translate| |open?| |euler| |noKaratsuba| |quasiRegular| F |genericRightNorm| |sayLength| |lazyPseudoRemainder| |countRealRoots| |OMUnknownSymbol?| |insertRoot!| |leadingIndex| |elColumn2!| |leftFactorIfCan| |status| |maxRowIndex| |child?| |bsolve| |graphCurves| |series| |hspace| |getMatch| |nextLatticePermutation| |baseRDEsys| |mat| |dfRange| |degreeSubResultant| |symmetric?| |clipBoolean| |po| |singRicDE| |monicLeftDivide| |primextintfrac| |getButtonValue| |push!| |script| |curveColorPalette| |cAsec| |argument| |meshPar1Var| |sechIfCan| |prefix| |reset| |size?| |resultantReduitEuclidean| |inHallBasis?| |write| |LyndonBasis| |tubePlot| |edf2efi| |cyclotomicFactorization| BY |tex| |rischDEsys| |Vectorise| |internalIntegrate| |modifyPoint| |ignore?| |sPol| |dictionary| |low| |irreducibleRepresentation| |zeroSetSplitIntoTriangularSystems| |tensorProduct| |swap| |cCosh| |generic| |nonLinearPart| |sinh2csch| |rem| |f2st| |backOldPos| |closedCurve?| |exponent| |integral| |tab1| |vspace| |not| |And| |OMmakeConn| |quo| |fixedPoints| |algebraicCoefficients?| |cAcosh| |Or| |increasePrecision| |div| |digamma| |radicalEigenvector| |iiasech| |point?| |Not| |comment| |fillPascalTriangle| |nthFlag| |lquo| |adaptive3D?| |OMread| |shade| |parent| |rightUnits| |figureUnits| |conditionsForIdempotents| |ocf2ocdf| |alphanumeric| |pdf2ef| |showTheFTable| |seriesToOutputForm| |presuper| |cache| |laurentIfCan| |viewport2D| |idealiser| |primeFrobenius| |fortranInteger| |tanintegrate| |regularRepresentation| |ratpart| |recur| |reciprocalPolynomial| |qinterval| |bat| |besselK| |vectorise| |externalList| |errorInfo| |primextendedint| |unmakeSUP| |generalSqFr| |quoted?| |fill!| |front| |condition| |returnType!| |revert| |int| |prem| |internalInfRittWu?| |/\\| |ricDsolve| |forLoop| |extendedSubResultantGcd| |xRange| |conjugate| |constantOperator| |\\/| |fractionFreeGauss!| |finite?| |cot2tan| |wronskianMatrix| |lookup| |xCoord| |cCsc| |generalizedContinuumHypothesisAssumed?| |rightZero| |is?| |conjugates| |removeRedundantFactorsInContents| |knownInfBasis| |reseed| |pack!| |unprotectedRemoveRedundantFactors| |LiePoly| |lowerCase?| |e| |semiIndiceSubResultantEuclidean| |henselFact| |modulus| |empty| |linearlyDependent?| |lllip| |cothIfCan| |exprToGenUPS| |randomLC| |optAttributes| |powern| |cSec| |computeCycleEntry| |quasiMonic?| |diagonalMatrix| |nor| |factorSFBRlcUnit| |kernel| |perfectNthRoot| |genericRightDiscriminant| |dn| |approximants| |overset?| |represents| |list| |leadingCoefficientRicDE| |iiexp| |graphs| |domainOf| |ldf2lst| |OMconnOutDevice| |draw| |OMsupportsCD?| |external?| |asechIfCan| |leastMonomial| |less?| |setleaves!| |leftOne| |LazardQuotient2| |nthExpon| |nthFractionalTerm| |bright| |scan| |lighting| |normalizedAssociate| |exists?| |hessian| |factorFraction| |powerAssociative?| |order| |explicitlyEmpty?| |getCode| |even?| |squareTop| |alphabetic?| |resultantnaif| |makeObject| |subtractIfCan| |genericLeftDiscriminant| |karatsubaDivide| |purelyTranscendental?| |cTanh| |primitivePart!| |setClosed| |Frobenius| |powmod| |setOfMinN| |loopPoints| |integrate| |coef| |numberOfNormalPoly| |linears| |fortran| |createRandomElement| |cPower| |eval| |leftMult| |position!| |cons| |geometric| |SturmHabichtCoefficients| |node?| |coshIfCan| |magnitude| |resetNew| |split| |nsqfree| |rootProduct| |polygon| |reindex| |exponentialOrder| |semiLastSubResultantEuclidean| |laguerreL| |innerint| |mapDown!| |prod| |merge| |symmetricDifference| |semiDegreeSubResultantEuclidean| |fortranLiteralLine| |reduction| |algebraicDecompose| |chainSubResultants| |localReal?| |rightRemainder| |OMencodingBinary| |iiacos| |makeEq| |legendre| |implies| |makingStats?| |newReduc| |setEpilogue!| |iicoth| |tanh2trigh| |secIfCan| |quotient| |refine| |UnVectorise| |completeEval| |solveid| |numeric| |cyclicEqual?| |removeIrreducibleRedundantFactors| |leftRank| |save| |removeRedundantFactorsInPols| |squareFreePrim| |ncols| |composites| |deepCopy| |setsubMatrix!| |setImagSteps| |updateStatus!| |iiGamma| |cschIfCan| |getRef| |pow| |alternative?| |OMgetEndBVar| |factorial| |cycleRagits| ** |identitySquareMatrix| |consnewpol| |radix| |log10| |squareFreeFactors| |var2StepsDefault| |indiceSubResultant| |exprHasAlgebraicWeight| |iiatanh| |bandedJacobian| |partition| |region| |possiblyInfinite?| |lazyPseudoDivide| |curve?| |cycleLength| |complexIntegrate| |lyndon| |invertIfCan| |setLegalFortranSourceExtensions| |zRange| |goodnessOfFit| |singularAtInfinity?| |minPoints| |dihedral| |balancedBinaryTree| |normFactors| |testDim| |createPrimitivePoly| |zero?| |makeUnit| |lyndonIfCan| |maxdeg| |coerceP| |chvar| |balancedFactorisation| |splitConstant| |listYoungTableaus| |nthCoef| |sylvesterMatrix| |lazyPquo| |argumentList!| |root?| |fractRagits| |denominator| |df2mf| |moebius| |solid| |OMopenFile| |getGoodPrime| |cyclic| |torsionIfCan| |determinant| |critMonD1| |outputForm| |halfExtendedResultant2| |setrest!| |leadingBasisTerm| |sh| |chiSquare1| |toseInvertibleSet| |squareFreePolynomial| |deleteProperty!| |internalZeroSetSplit| |difference| |factorList| |orbit| |cAcot| |pole?| |factorials| |rightCharacteristicPolynomial| |subscriptedVariables| |setAttributeButtonStep| |changeVar| |weakBiRank| |mkcomm| |signAround| |closed?| |constantCoefficientRicDE| |unary?| |elements| |startTableGcd!| |repeating?| |lazy?| |totolex| |bracket| |selectfirst| |compBound| |showAll?| |extractProperty| |usingTable?| |PollardSmallFactor| |defineProperty| |variationOfParameters| |simpson| |measure2Result| |taylorQuoByVar| |Beta| |groebgen| |fortranDoubleComplex| |selectMultiDimensionalRoutines| |numberOfFactors| |cAsech| |csch2sinh| |characteristicSerie| |cap| |BasicMethod| |mapUnivariateIfCan| |close!| |leadingExponent| |normalize| |distFact| |irreducible?| |iicos| |pointColorDefault| |fibonacci| |more?| |members| |leftPower| |companionBlocks| |floor| |hasPredicate?| |basisOfLeftNucloid| |leaves| |varselect| |cycleElt| |var1StepsDefault| |cyclicEntries| FG2F |stFuncN| |permutations| |iiasec| |iprint| |OMreceive| |cSin| |rewriteIdealWithQuasiMonicGenerators| |dimensions| |randnum| |numberOfComposites| |quasiMonicPolynomials| |setEmpty!| |cAsinh| |sup| |fi2df| |frobenius| |showTheSymbolTable| |directSum| |bivariate?| |presub| |mapUnivariate| |rightScalarTimes!| |bipolarCylindrical| |shuffle| |subSet| |compose| |integralCoordinates| |se2rfi| |intersect| |stoseInvertibleSetsqfreg| |subCase?| |eigenvectors| |gcdPolynomial| |bezoutMatrix| |increase| |goodPoint| |totalDifferential| |addmod| |polynomial| |tableForDiscreteLogarithm| |tanAn| |solveLinearPolynomialEquationByFractions| |badNum| |infinityNorm| |outputSpacing| |invmod| |padicFraction| |iiacot| |powers| |sort!| |getGraph| |aQuadratic| |df2fi| |shanksDiscLogAlgorithm| |Lazard2| |restorePrecision| |zeroOf| |upperCase!| |resetAttributeButtons| |endOfFile?| |factorOfDegree| |mainVariables| |computeCycleLength| |laplace| |ldf2vmf| |separant| |insertBottom!| |karatsubaOnce| |latex| |solveLinearPolynomialEquationByRecursion| |createZechTable| |ideal| |pToDmp| |arrayStack| |setPoly| |genericLeftTrace| |polygon?| |nextPrimitiveNormalPoly| |pseudoQuotient| |trigs| |functionIsFracPolynomial?| |splitDenominator| |leftMinimalPolynomial| |isMult| |saturate| |numberOfChildren| |extendIfCan| |color| |fortranCharacter| |createNormalElement| |trivialIdeal?| |psolve| |variable| |stoseInvertible?reg| |showAllElements| |scale| |imagj| |basisOfCenter| |retract| |maxColIndex| |measure| |nextItem| |subTriSet?| |chebyshevT| |normalizedDivide| |removeSinSq| |space| |polyPart| |eigenMatrix| |solveLinear| |cosh2sech| |pomopo!| |startTableInvSet!| |read!| |index| |matrixDimensions| |evaluate| |countRealRootsMultiple| |binarySearchTree| |divideIfCan| |fullDisplay| |nextNormalPoly| |varList| |mapExponents| |getlo| |fintegrate| |rational| |graeffe| |relationsIdeal| |primitive?| |palgint| |infRittWu?| |universe| |nextColeman| |readLine!| |lazyIntegrate| |pushuconst| |elementary| |shallowCopy| |hue| |iisinh| |primitivePart| |tracePowMod| |message| |screenResolution| |extendedint| |splitSquarefree| |totalfract| |logpart| |expandPower| |bringDown| |leviCivitaSymbol| |fortranLogical| |prinpolINFO| |explicitEntries?| |reduce| |subMatrix| |complexSolve| |acsch| |removeSuperfluousQuasiComponents| |nullSpace| |gcdprim| |plenaryPower| |minset| |cCos| |redpps| |toseInvertible?| |resize| |hasoln| |sumOfDivisors| |eisensteinIrreducible?| |getDatabase| |froot| |FormatRoman| |reduceBasisAtInfinity| |powerSum| |unitNormalize| |create3Space| |trapezoidalo| |wreath| |minordet| |cyclotomic| |initials| |rootKerSimp| |key?| |setErrorBound| |rowEchLocal| |bandedHessian| |combineFeatureCompatibility| |#| |indiceSubResultantEuclidean| |realElementary| D |complexForm| |controlPanel| |quotedOperators| |zerosOf| |possiblyNewVariety?| |transcendent?| |contract| |nthr| |getVariableOrder| |irreducibleFactor| |antisymmetricTensors| |imagK| |isobaric?| |OMputEndAtp| |subset?| |OMclose| |numberOfImproperPartitions| |uniform01| |lifting| |nodes| |useSingleFactorBound| |sub| |symmetricPower| |multiplyCoefficients| |sinIfCan| |qPot| |id| |upperCase| |dimension| |wrregime| |prologue| |removeCoshSq| |pointSizeDefault| |headReduce| |vedf2vef| |radicalOfLeftTraceForm| |table| |mindegTerm| |predicates| |graphState| |nextPartition| |key| |minIndex| |numFunEvals| |partialFraction| |df2st| |subst| |dark| |screenResolution3D| |new| |multisect| |rootNormalize| |zeroSquareMatrix| |lintgcd| |polyRicDE| |prefixRagits| |leftLcm| |anfactor| |shiftRight| |ipow| |tree| |enumerate| |resetBadValues| |frst| |palglimint0| |hclf| |semiResultantEuclidean1| |bombieriNorm| |enterPointData| |explicitlyFinite?| |rewriteSetByReducingWithParticularGenerators| |rightAlternative?| |iiasinh| |recoverAfterFail| |alphabetic| |mirror| |depth| |finiteBasis| |cTan| |gcd| |rightRankPolynomial| |predicate| |false| |cAcsc| |squareMatrix| |denomRicDE| |OMwrite| |integralAtInfinity?| |createThreeSpace| |iisin| |antiAssociative?| |squareFreePart| |fracPart| |numerators| |internalDecompose| |rk4f| |zeroDim?| |clearTheFTable| |pattern| |contains?| |cSinh| SEGMENT |alternating| |interpretString| |rank| |OMgetSymbol| |coerce| |routines| |setScreenResolution| |exquo| |iidprod| |minGbasis| |diagonal?| |coordinate| |construct| |obj| |compile| |sn| |operation| |mesh| |Gamma| |numberOfMonomials| |lfinfieldint| |hash| |tower| |enterInCache| |lifting1| |infix| |count| |countable?| |meatAxe| |chineseRemainder| |complexNumeric| |extend| |antisymmetric?| |padicallyExpand| |linearAssociatedOrder| |SturmHabichtSequence| |mainMonomials| |kernels| |fprindINFO| |monicDecomposeIfCan| |groebner| |univariate| |odd?| |principalIdeal| F2FG |multinomial| |printInfo| |credPol| |checkForZero| ~= |collect| |crest| |factor| |normalizeAtInfinity| |tablePow| |idealSimplify| |sqrt| |factor1| |insertMatch| |init| |mathieu11| |test| |real| |selectSumOfSquaresRoutines| = |nullity| |idealiserMatrix| |setelt| |imag| |leftExactQuotient| |cup| |xn| |directProduct| |intermediateResultsIF| |degreeSubResultantEuclidean| < |lazyVariations| |copy| |retractIfCan| |solveInField| |yCoordinates| > |mightHaveRoots| |destruct| |binomThmExpt| |formula| <= |adjoint| ^= |extendedEuclidean| |cLog| >= |ScanRoman| |simpsono| |rk4qc| |setPosition| |exponential1| |leftNorm| |reverse| |mainValue| |monomial| |constantIfCan| |setValue!| + |setVariableOrder| |digit?| |exp1| |multivariate| |minPoints3D| |size| - |limitedint| |semicolonSeparate| |variables| |typeLists| |print| / |roman| |characteristicSet| |incrementKthElement| |bezoutDiscriminant| |jordanAlgebra?| |patternMatch| |primlimintfrac| |belong?| |leftScalarTimes!| |ParCondList| |dmpToHdmp| |comp| |maxint| |basisOfRightAnnihilator| |taylor| |localIntegralBasis| |complexEigenvalues| |leftTrace| |laurent| |cycle| |intensity| |basisOfLeftNucleus| |puiseux| |hex| |tableau| |updatD| |setButtonValue| |newTypeLists| |mix| |inv| |replace| |green| |leftFactor| |ground?| |wholeRagits| |relerror| |overlap| |ground| |tryFunctionalDecomposition?| |generalizedEigenvectors| |minrank| |leadingMonomial| |copies| |wordInGenerators| |perfectSquare?| |directory| |leadingCoefficient| |nextPrimitivePoly| |generalizedInverse| |viewDeltaYDefault| |primitiveMonomials| |primPartElseUnitCanonical| |intcompBasis| |lazyGintegrate| |reductum| |expandLog| |shellSort| |splitNodeOf!| |OMputSymbol| |repSq| |selectsecond| |quadratic| |property| |rightRegularRepresentation| |reducedSystem| |createGenericMatrix| |OMgetBVar| |createNormalPoly| |shallowExpand| |cycleSplit!| |lieAdmissible?| |pointPlot| |units| |useEisensteinCriterion| |Ei| |deleteRoutine!| |sizePascalTriangle| |minus!| |internalSubPolSet?| |commaSeparate| |att2Result| |listOfMonoms| |code| |submod| |argumentListOf| |list?| |expt| |partitions| |infiniteProduct| |transform| |mainContent| |tValues| |nullary| |constant| |clearFortranOutputStack| |genericLeftNorm| |rightExtendedGcd| |factorByRecursion| |conical| |tubeRadiusDefault| |light| |atoms| |janko2| |mkIntegral| |erf| |create| |brace| |quote| |rightGcd| |composite| |invmultisect| |realZeros| |conditions| |diag| |lp| |vconcat| |makeMulti| |match| |semiResultantEuclideannaif| |dflist| |dilog| |rightNorm| |dom| |rdHack1| |groebner?| |sin| |noncommutativeJordanAlgebra?| |fortranLiteral| |initTable!| |cos| |concat| |swapColumns!| |subResultantChain| |tan| |adaptive?| |coercePreimagesImages| |cot| |shufflein| |char| |precision| |polynomialZeros| |sec| |totalLex| |iomode| ^ |csc| |leadingTerm| |readLineIfCan!| |asin| |showTheRoutinesTable| |showIntensityFunctions| |acos| GF2FG |LowTriBddDenomInv| |atan| |randomR| |digits| |acot| |elem?| |raisePolynomial| |asec| |characteristic| |OMsupportsSymbol?| |acsc| |degreePartition| |branchPoint?| |sinh| |title| |double| |minimumExponent| |bfKeys| |cosh| |OMputObject| |summation| |tanh| |upDateBranches| |schwerpunkt| |coth| |exactQuotient| |generators| |sech| |reducedContinuedFraction| |name| |generator| |eulerPhi| |lexico| |match?| |csch| |makeSin| |deref| |omError| |asinh| |op| |completeHermite| |retractable?| |acosh| |lexGroebner| |convergents| |solveLinearPolynomialEquation| |atanh| |topPredicate| |iipow| |aromberg| |square?| |acoth| |viewpoint| |declare!| LT |OMputString| |asech| |nextsubResultant2| |ord| |dmpToP| |superHeight| |iifact| |search| |multiple| |components| |equation| |OMgetObject| |OMgetFloat| |nextIrreduciblePoly| |divideIfCan!| |toseLastSubResultant| |optional| |mergeFactors| |partialDenominators| |element?| |substring?| |movedPoints| |addMatchRestricted| |trailingCoefficient| |lllp| |ode| |mpsode| |numberOfHues| |extendedIntegrate| |bivariateSLPEBR| |suffix?| |applyQuote| |schema| |lo| |palginfieldint| |clipSurface| |iiabs| |factorAndSplit| |deepExpand| |updatF| |OMencodingUnknown| |incr| |outputList| |expr| |prefix?| |or| |semiResultantEuclidean2| |setClipValue| |hi| |monomRDE| |ruleset| |sum| |monicRightDivide| |normalElement| |nextSublist| |negative?| |cylindrical| |integerBound| |palgRDE| |dihedralGroup| |node| |constantLeft| |numberOfPrimitivePoly| |alphanumeric?| |normalizeIfCan| |rk4| |any| |charClass| |chebyshevU| |suchThat| |leftTrim| |halfExtendedResultant1| |normInvertible?| |wholeRadix| |delay| |segment| |ref| |rightTrim| |polarCoordinates| |subNode?| |extractClosed| |sqfrFactor| |pseudoRemainder| |infix?| |trigs2explogs| |UP2ifCan| |OMUnknownCD?| |has?| |mask| |Is| |associatorDependence| |setPrologue!| |coHeight| |baseRDE| |distribute| |lambert| |uncouplingMatrices| |integers| |rewriteIdealWithRemainder| |min| |selectOptimizationRoutines| |rewriteSetWithReduction| |insert!| |datalist| |pleskenSplit| |divisorCascade| |readable?| |basis| |extension| |triangulate| |genus| |writeLine!| |mulmod| |reducedQPowers| |hasHi| |identification| |algint| |showAttributes| |pmintegrate| |twoFactor| |clearDenominator| |real?| |zag| GT UP2UTS |entries| |fmecg| |length| |OMParseError?| |mr| |failed| |orbits| |aQuartic| |getExplanations| |leftTraceMatrix| |scripts| |nil| |infinite| |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file +(30 . 3403927921) +(4183 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| |AlgebraicallyClosedField&| |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AlgebraicFunction| |Aggregate&| |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| |OneDimensionalArrayFunctions2| |OneDimensionalArray| |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| |ArrayStack| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |BinaryFile| |Bits| |BiModule| |Boolean| |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |Database| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| |DirectProductCategory| |DirectProductFunctions2| |DirectProduct| |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |Domain| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| |DrawOptionFunctions1| |DrawOption| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| |EntireRing| |EigenPackage| |EquationFunctions2| |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| |ExponentialExpansion| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| |Expression| |ExpressionSpaceODESolver| |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| |FortranCodePackage1| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| |FullyEvalableOver| |FortranExpression| |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| |FunctionFieldCategory| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldNormalBasisExtension| |FiniteField| |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| |FreeModuleCat| |FortranMatrixCategory| |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| |FortranFunctionCategory| |FortranPackage| |FortranProgram| |FullPartialFractionExpansion| |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| |FiniteSetAggregate&| |FiniteSetAggregate| |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| |FortranType| |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain| |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| |InnerNumericEigenPackage| |Infinity| |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| |Integer| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| |TranscendentalIntegration| |InverseLaplaceTransform| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| |IntegrationResultToFunction| |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| |CoercibleTo| |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| |ListFunctions3| |List| |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| |LinearAggregate| |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| |ListAggregate| |LinearSystemMatrixPackage1| |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| |ModularField| |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| |MultivariateFactorize| |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis| |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OrderedCancellationAbelianMonoid| |OctonionCategory&| |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrdSetInts| |OutputForm| |OutputPackage| |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| |PatternMatchResultFunctions2| |PatternMatchResult| |PatternFunctions1| |PatternFunctions2| |Pattern| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| |FunctionSpaceAttachPredicates| |AttachPredicates| |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| |PlottablePlaneCurveCategory| |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| |PriorityQueueAggregate| |PseudoRemainderSequence| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| |PushVariables| |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategoryFunctions2| |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| |QueueAggregate| |QuaternionCategory&| |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet| |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RandomFloatDistributions| |RationalFunctionFactor| |RationalFunctionFactorizer| |RationalFunction| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RuleCalled| |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set| |SExpressionCategory| |SExpression| |SExpressionOf| |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |ElementaryFunctionSign| |RationalFunctionSign| |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctionsNonCommutative| |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage| |TableauxBumpers| |Tableau| |Table| |TangentExpansions| |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace| |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| |TranscendentalManipulations| |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| |UnivariateTaylorSeriesODESolver| |UTSodetools| |Variable| |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| |TwoDimensionalViewport| |ThreeDimensionalViewport| |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| |Union| |Category| |char| |numberOfNormalPoly| |cAtanh| |leftTrace| |heap| |cubic| |leadingCoefficient| |s19abf| |permutationGroup| |diophantineSystem| |extendIfCan| |linears| |untab| |cCsch| |cycle| |pop!| |primitiveMonomials| |s19acf| |outlineRender| |in?| |color| |escape| |name| |HermiteIntegrate| |createRandomElement| |close| |intensity| |reductum| |unitCanonical| |s19adf| |fortranCharacter| |fixPredicate| |exprToUPS| |problemPoints| |cPower| |basisOfLeftNucleus| |hypergeometric0F1| |bag| |s20acf| |createNormalElement| |rotate| |factorsOfCyclicGroupSize| |leftMult| |gradient| |hex| |tubePointsDefault| |vertConcat| |s20adf| |currentSubProgram| |function| |trivialIdeal?| |showTypeInOutput| |position!| |nthExponent| |d01fcf| |acschIfCan| |tableau| |display| |label| |s21baf| |showTheIFTable| |psolve| |acosIfCan| |safetyMargin| |updatD| |curry| |geometric| |innerEigenvectors| |d01gaf| |setprevious!| |s21bbf| |rationalIfCan| |entry| |stoseInvertible?reg| |setButtonValue| |primintfldpoly| |makeop| |SturmHabichtCoefficients| |d01gbf| |polygamma| |s21bcf| |atanhIfCan| |notelem| |showAllElements| |d02bbf| |binomial| |discriminantEuclidean| |node?| |sturmVariationsOf| |newTypeLists| |s21bdf| |setMinPoints3D| |oddintegers| |scale| |checkRur| |OMunhandledSymbol| |squareFreeLexTriangular| |coshIfCan| |d02bhf| |mix| |lowerCase| |jordanAdmissible?| |imagj| |input| |green| |extractSplittingLeaf| |vark| |magnitude| |genericLeftMinimalPolynomial| |d02cjf| |stirling2| |basisOfCenter| |acotIfCan| |getMultiplicationTable| |library| |ddFact| |pr2dmp| |resetNew| |d02ejf| |leftFactor| |setMaxPoints3D| |divide| |maxColIndex| |measure| |match?| |d02gaf| |coefficients| |cotIfCan| |split| |wholeRagits| |mainDefiningPolynomial| |associative?| |stopMusserTrials| |bubbleSort!| |nextItem| |relerror| BY |romberg| |nsqfree| |besselI| |palglimint| |d02gbf| |noLinearFactor?| |charthRoot| |karatsuba| |delta| |subTriSet?| |extendedResultant| |rootProduct| |symmetricSquare| |shiftRoots| |d02kef| |overlap| |minColIndex| |monomial| |complex?| |testModulus| |chebyshevT| |interReduce| |tryFunctionalDecomposition?| |split!| |OMserve| |polygon| |d02raf| |power| |multivariate| |setProperties| |normalizedDivide| |setScreenResolution3D| |reindex| |rational?| |rotatez| |generalizedEigenvectors| |matrixGcd| |coefChoose| |d03edf| |over| |set| |shift| |variables| |lcm| |fixedPoint| |jacobian| |removeSinSq| |totalDegree| |rotatey| |sncndn| |fortranCompilerName| |exponentialOrder| |addBadValue| |d03eef| |minrank| |qelt| |makeCrit| |space| |quickSort| |cosSinInfo| |copies| |increment| |Nul| |semiLastSubResultantEuclidean| |d03faf| |linearlyDependentOverZ?| |polyPart| |dominantTerm| |iibinom| |ksec| |evaluateInverse| |e01baf| |laguerreL| |wordInGenerators| |clearCache| |xRange| |bits| |mkAnswer| |eigenMatrix| |gcd| |innerint| |acothIfCan| |perfectSquare?| |numerator| |e01bef| |sech2cosh| |yRange| |mainVariable| |basisOfCentroid| |lambda| |solveLinear| |union| |substring?| |formula| |mapDown!| |OMputError| |nextPrimitivePoly| |generalPosition| |lexTriangular| |e01bff| |zRange| |leftGcd| |debug| |false| |Aleph| |cosh2sech| |rotatex| |startPolynomial| |iiacosh| |generalizedInverse| |e01bgf| |map!| |rroot| |ran| |pomopo!| |suffix?| |identity| |monicModulo| |prem| |normalForm| |localUnquote| |e01bhf| |viewDeltaYDefault| |qsetelt!| |lastSubResultantEuclidean| |lfextlimint| |startTableInvSet!| |elt| |rightUnit| |internalInfRittWu?| |makeGraphImage| |e01daf| |primPartElseUnitCanonical| |show| |flagFactor| |read!| |exptMod| |prefix?| ~ |ricDsolve| |outputList| |symFunc| |denominators| |intcompBasis| |e01saf| |imagI| |forLoop| |withPredicates| |principal?| |e01sbf| |trace| |lazyGintegrate| |sin?| |hermiteH| |cyclicEntries| |nrows| |extendedSubResultantGcd| |children| |pointColor| |e01sef| |expandLog| |contractSolve| FG2F |linSolve| |ncols| |conjugate| |solveRetract| |shellSort| |e02adf| |atom?| |acsch| |OMputVariable| |aspFilename| |stFuncN| |constantOperator| |normalized?| |e02aef| |coord| |permutations| |addiag| |filename| |fractionFreeGauss!| |errorKind| |minGbasis| |norm| |e02agf| |addPointLast| |iiasec| |prindINFO| |infix?| |patternVariable| |open| |nand| |finite?| |diagonal?| |stoseInvertible?| |e02ahf| |coth2trigh| |iprint| |cyclicSubmodule| |mask| |setOrder| |generalizedContinuumHypothesisAssumed| |options| |coordinate| |cot2tan| |linearPolynomials| |list| |e02ajf| |permanent| |OMreceive| |pair?| |slash| |sn| |parts| |wronskianMatrix| |purelyAlgebraic?| |cAcsch| |cons| |e02akf| |rightOne| |cSin| |linGenPos| |complete| |OMUnknownCD?| = |makeSUP| |lookup| |setDifference| |eyeDistance| |mesh| |fixedPointExquo| |e02baf| |scanOneDimSubspaces| |expr| |tRange| |rewriteIdealWithQuasiMonicGenerators| |has?| |basisOfCommutingElements| |commutative?| |setIntersection| |xCoord| |Gamma| |viewWriteAvailable| |e02bbf| |rootSimp| |makeTerm| |true| |dimensions| |Is| < |ellipticCylindrical| |numberOfDivisors| |cCsc| |setUnion| |numberOfMonomials| |e02bcf| |cAsin| |perfectSqrt| |randnum| |associatorDependence| > |generalizedContinuumHypothesisAssumed?| |lfinfieldint| |complexLimit| |apply| |stopTableInvSet!| |e02bdf| |taylor| |toScale| |numberOfComposites| |weierstrass| |setPrologue!| <= |rightZero| |zeroDimPrime?| |addMatch| |enterInCache| |e02bef| |laurent| |doubleResultant| |quasiMonicPolynomials| |stripCommentsAndBlanks| |coHeight| >= |minPoly| |lifting1| |is?| |rename!| |size| |e02daf| |puiseux| |firstSubsetGray| |roughUnitIdeal?| |reducedDiscriminant| |setEmpty!| |baseRDE| |constant| |discreteLog| |infix| |conjugates| |prefix| |isList| |e02dcf| |derivative| |cAsinh| |iteratedInitials| |endSubProgram| |distribute| |listConjugateBases| |removeRedundantFactorsInContents| |countable?| |algebraicSort| |e02ddf| |useNagFunctions| |build| |variable| |singular?| |sup| |lambert| + |knownInfBasis| |functionIsContinuousAtEndPoints| |nilFactor| |meatAxe| |first| |e02def| |rootsOf| |primlimitedint| |fi2df| |primintegrate| |uncouplingMatrices| - |erf| |multiEuclideanTree| |solve1| |reseed| |chineseRemainder| |rest| |e02dff| |clipWithRanges| |triangularSystems| |frobenius| |univariate?| |integers| / |swap!| |pack!| |substitute| |sin2csc| |extend| |e02gaf| |solve| |pushucoef| |showTheSymbolTable| |rewriteIdealWithRemainder| |say| |removeDuplicates| |leftRecip| |unprotectedRemoveRedundantFactors| |iisec| |antisymmetric?| |e02zaf| |optional?| |directSum| |setMaxPoints| |selectOptimizationRoutines| |dilog| |droot| |LiePoly| |queue| |padicallyExpand| |depth| |e04dgf| F |flexible?| |bivariate?| |monicCompleteDecompose| |rewriteSetWithReduction| |sin| |lowerCase?| |var2Steps| |linearAssociatedOrder| |plus!| |e04fdf| |sizeLess?| |safeCeiling| |presub| |insert!| |cos| |ScanArabic| |semiIndiceSubResultantEuclidean| |semiResultantReduitEuclidean| |SturmHabichtSequence| |e04gcf| |monomialIntPoly| |mapUnivariate| |internalLastSubResultant| |pleskenSplit| |tan| |comparison| |reopen!| |henselFact| |pushdterm| |mainMonomials| |e04jaf| |curveColor| |rightScalarTimes!| |airyAi| |divisorCascade| |cot| |closeComponent| |modulus| |isPower| |fprindINFO| |expressIdealMember| |e04mbf| |cot2trig| |bipolarCylindrical| |rewriteIdealWithHeadRemainder| |readable?| |sec| |alternatingGroup| |iicosh| |empty| |ratPoly| |monicDecomposeIfCan| |e04naf| |listLoops| |shuffle| |setTopPredicate| |basis| |csc| |supersub| |positiveRemainder| |linearlyDependent?| |palgRDE0| |groebner| |e04ucf| |cycleEntry| |subSet| |leaf?| |extension| |asin| |createPrimitiveElement| |lllip| |drawCurves| |odd?| |transcendentalDecompose| |e04ycf| |retractIfCan| |polyRDE| |FormatArabic| |compose| |triangulate| |acos| |asecIfCan| |cothIfCan| |principalIdeal| |bernoulli| |f01brf| |mainKernel| |integralCoordinates| |mindeg| |genus| |numer| |atan| |hexDigit| |numberOfComponents| |exprToGenUPS| |mainVariable?| |leftUnit| F2FG |f01bsf| |operation| |iCompose| |se2rfi| |setStatus!| |denom| |writeLine!| |acot| |randomLC| |overlabel| |redPo| |stoseLastSubResultant| |multinomial| |OMreadStr| |f01maf| |clip| |power!| |intersect| |mulmod| |asec| |optAttributes| |removeRedundantFactors| |eigenvector| |mesh?| |complement| |credPol| |f01mcf| |OMconnInDevice| |whileLoop| |stoseInvertibleSetsqfreg| |reducedQPowers| |doubleFloatFormat| |acsc| |edf2fi| |purelyAlgebraicLeadingMonomial?| |expintegrate| |powern| |checkForZero| |firstDenom| |f01qcf| |selectODEIVPRoutines| |f2df| |subCase?| |hasHi| |sinh| |matrix| |neglist| |replaceKthElement| |rootBound| |cSec| |tryFunctionalDecomposition| |collect| |f01qdf| |jacobiIdentity?| |rootSplit| |eigenvectors| |kernel| |identification| |cosh| |computeCycleEntry| |lastSubResultant| |bumprow| |indices| |crest| |f01qef| |surface| |fortranDouble| |gcdPolynomial| |draw| |algint| |tanh| |topFortranOutputStack| |log| |ranges| |quasiMonic?| |normalizeAtInfinity| |algebraic?| |integralMatrix| |bezoutMatrix| |pseudoDivide| |pmintegrate| |coth| |tablePow| |tanIfCan| |diagonalMatrix| |taylorRep| |height| |startTable!| |pade| |increase| |ScanFloatIgnoreSpacesIfCan| |twoFactor| |sech| |nor| |rootPoly| |differentialVariables| |idealSimplify| |showClipRegion| |map| |nodeOf?| |goodPoint| |OMputAttr| |clearDenominator| |csch| |integerIfCan| |extractIndex| |factorSFBRlcUnit| |factor1| |messagePrint| |rombergo| |totalDifferential| |copyInto!| |makeObject| |real?| |inverseIntegralMatrixAtInfinity| |perfectNthRoot| |numberOfFractionalTerms| |monicRightFactorIfCan| |pol| |insertMatch| |solveLinearlyOverQ| |exprToXXP| |addmod| |setvalue!| |zag| |integralDerivationMatrix| |gbasis| |genericRightDiscriminant| |mainPrimitivePart| |integralBasisAtInfinity| |mathieu11| |tableForDiscreteLogarithm| |fractionPart| |polCase| |viewport3D| UP2UTS |coef| |dn| |inf| |infieldIntegrate| |univariatePolynomialsGcds| |selectSumOfSquaresRoutines| |nlde| |sequences| |row| |tanAn| |entries| |basicSet| |approximants| |approxSqrt| |sylvesterSequence| |assign| |OMputEndObject| |nullity| |ceiling| |solveLinearPolynomialEquationByFractions| |normalDenom| |mathieu12| |fmecg| |idealiserMatrix| |comp| |antiCommutator| |overset?| |subNodeOf?| |headReduced?| |OMgetBind| |setCondition!| |badNum| |setTex!| |univariatePolynomials| |OMParseError?| |divisor| |represents| |leadingSupport| |selectOrPolynomials| |declare| |leftExactQuotient| Y |integer?| |truncate| |infinityNorm| |mvar| |flexibleArray| |orbits| |clipParametric| |cup| |leadingCoefficientRicDE| |fixedDivisor| |ratDsolve| |asimpson| |pointLists| |outputSpacing| |rCoord| |leftDiscriminant| |aQuartic| |iiexp| |lfunc| |xn| |OMreadFile| |tanNa| |rowEchelonLocal| |largest| |invmod| |denomLODE| |returnTypeOf| |getExplanations| |intermediateResultsIF| |relativeApprox| |graphs| |inverseColeman| |continuedFraction| |B1solve| |equality| |padicFraction| |move| |leftTraceMatrix| |cscIfCan| |bright| |domainOf| |selectPDERoutines| |degreeSubResultantEuclidean| |numberOfVariables| |yCoord| |tube| |iiacot| |createNormalPrimitivePoly| |OMcloseConn| |any| |iroot| |ldf2lst| |branchPointAtInfinity?| |lazyVariations| |powers| |back| |complexExpand| |OMconnOutDevice| |prepareSubResAlgo| |solveInField| |transpose| |sort!| |linear?| |clearTable!| |Ci| |OMsupportsCD?| |yCoordinates| |minPol| |inverseIntegralMatrix| |getGraph| |nonSingularModel| |sorted?| |external?| |mightHaveRoots| |realSolve| |every?| |aQuadratic| |cyclicParents| |eval| |remove| |binomThmExpt| |epilogue| |df2fi| |float?| |getBadValues| |backOldPos| |plotPolar| |exprHasWeightCosWXorSinWX| |adjoint| |cache| |shanksDiscLogAlgorithm| |logIfCan| |harmonic| |fglmIfCan| |closedCurve?| |last| |extendedEuclidean| |mainMonomial| |fTable| |Lazard2| |accuracyIF| |assoc| |option| |genericLeftTraceForm| |exponent| |cLog| |ode2| |unrankImproperPartitions0| |lflimitedint| |integral| |infieldint| |ScanRoman| |rightCharacteristicPolynomial| |groebnerFactorize| |biRank| |output| |graphImage| |tab1| |simpsono| |nonQsign| |subscriptedVariables| |parametric?| |width| |socf2socdf| |virtualDegree| |vspace| |rk4qc| |selectAndPolynomials| |error| |setAttributeButtonStep| |lex| |inverse| |OMmakeConn| |showScalarValues| |assert| |dimensionsOf| |changeVar| |univariateSolve| |fixedPoints| |rationalFunction| |numFunEvals| |autoReduced?| |weakBiRank| |gcdPrimitive| |invertibleSet| |numericalIntegration| |algebraicCoefficients?| |bitLength| |partialFraction| |e| |mkcomm| |newLine| |mapExpon| |equation| |cAcosh| |cfirst| |df2st| |infLex?| |eq| |decompose| |leader| |signAround| |definingPolynomial| |chiSquare| |iiacoth| |increasePrecision| |nary?| |dark| |iter| |roughBasicSet| |iiasin| |traverse| |closed?| |components| |t| |exprHasLogarithmicWeights| |fullPartialFraction| |digamma| |eulerE| |screenResolution3D| |cRationalPower| |delete!| |realEigenvectors| |constantCoefficientRicDE| |OMgetObject| |rightRecip| |radicalEigenvector| |fractRadix| |multisect| |graphStates| |unary?| |insertTop!| |completeSmith| |OMgetFloat| |optional| |iiasech| |infinite?| |rootNormalize| |indicialEquationAtInfinity| |splitLinear| |directory| |representationType| |elements| |nextIrreduciblePoly| |palgextint0| |point?| |basisOfMiddleNucleus| |zeroSquareMatrix| |printingInfo?| |quadraticForm| |startTableGcd!| |divideIfCan!| |pattern| |fillPascalTriangle| |reduceLODE| |mapUp!| |lintgcd| |leftCharacteristicPolynomial| |An| |repeating?| |toseLastSubResultant| |arg1| |length| |nthFlag| |removeSuperfluousCases| |cSech| |polyRicDE| |setProperty| |cardinality| |lazy?| |mergeFactors| |setright!| |arg2| |scripts| ^ |lquo| |factorPolynomial| |prefixRagits| |palgLODE0| |totolex| |scripted?| |partialDenominators| |adaptive3D?| |integralBasis| |iExquo| |leftLcm| |flatten| |printStatement| |bracket| |message| |terms| |element?| |conditions| |OMread| |firstNumer| |imaginary| |anfactor| |OMconnectTCP| |fortran| |rootPower| |test| |selectfirst| |mainCoefficients| |movedPoints| |match| |PDESolve| |shade| |leastPower| |shiftRight| |compBound| |closedCurve| |bumptab| |iFTable| |addMatchRestricted| |lyndon?| |parent| |ipow| |OMlistCDs| |doubleComplex?| |diff| |showAll?| |subPolSet?| |trailingCoefficient| |coerce| |rightUnits| |clearTheIFTable| |critMTonD1| |enumerate| |rank| |realRoots| |selectFiniteRoutines| |extractProperty| |csubst| |lllp| |figureUnits| |viewZoomDefault| |resetBadValues| |middle| |component| |usingTable?| |changeWeightLevel| |keys| |ode| |construct| |dequeue| |conditionsForIdempotents| |frst| |pastel| |PollardSmallFactor| |OMgetError| |jacobi| |probablyZeroDim?| |mpsode| |predicate| |ocf2ocdf| |optpair| |palglimint0| |stoseInvertibleSet| |unrankImproperPartitions1| |gcdcofactprim| |moduleSum| |defineProperty| |numberOfHues| |#| |alphanumeric| |normalDeriv| |rightTrace| |leftRankPolynomial| |hclf| |subst| |collectQuasiMonic| |stiffnessAndStabilityOfODEIF| |option?| |variationOfParameters| |extendedIntegrate| |pdf2ef| |prinb| |subresultantVector| |genericRightMinimalPolynomial| |semiResultantEuclidean1| |laguerre| |simpson| |qroot| |separate| |bivariateSLPEBR| |iicsc| |complexNumeric| |showTheFTable| |LyndonCoordinates| |bombieriNorm| |overbar| |status| |algebraicOf| |measure2Result| |polyred| |quoByVar| |schema| |seriesToOutputForm| |rowEch| |ListOfTerms| |tanSum| |enterPointData| |stack| |lists| |select!| |save| |taylorQuoByVar| |cyclicGroup| |call| |palginfieldint| |kernels| |commutativeEquality| |makeFloatFunction| |presuper| |string?| |explicitlyFinite?| |minimumDegree| |Beta| |clipSurface| |univariate| |birth| |laurentIfCan| |rewriteSetByReducingWithParticularGenerators| |setref| |palgint0| |groebgen| |iiabs| |univcase| |viewport2D| |rightAlternative?| |symmetricTensors| |objects| |log2| |fortranDoubleComplex| |factorAndSplit| |idealiser| |divisors| |iiasinh| |removeRoughlyRedundantFactorsInContents| |base| |declare!| |edf2df| |selectMultiDimensionalRoutines| |deepExpand| |multiEuclidean| |primeFrobenius| |removeConstantTerm| |pdct| |recoverAfterFail| |/\\| |numberOfFactors| |subresultantSequence| |updatF| |fortranInteger| |cAcos| |legendreP| |alphabetic| |critB| |\\/| |cAsech| |addPoint| |OMencodingUnknown| |stoseInternalLastSubResultant| |Zero| |properties| |decimal| |tanintegrate| |primes| |mdeg| |mirror| |expenseOfEvaluationIF| |setFormula!| |csch2sinh| |semiResultantEuclidean2| |resultantReduit| |coerceListOfPairs| |One| |regularRepresentation| |setelt| |btwFact| |makeSeries| |finiteBasis| |OMputFloat| |aLinear| |rightMinimalPolynomial| |characteristicSerie| |setClipValue| |positiveSolve| |supRittWu?| |ratpart| |curryRight| LODO2FUN |cTan| |meshPar2Var| |double?| |cap| |OMputEndBVar| |numberOfOperations| |monomRDE| |logGamma| |copy| |normal?| |recur| |rightRankPolynomial| |stronglyReduce| |sumOfSquares| |BasicMethod| |factorset| |monicRightDivide| |collectUpper| |scaleRoots| |translate| |reciprocalPolynomial| |euclideanNormalForm| |cAcsc| |direction| |mapUnivariateIfCan| |prevPrime| |deepestTail| |concat| |normalElement| |unit?| |expenseOfEvaluation| |cn| ^= |qinterval| |distance| |asinhIfCan| |squareMatrix| |ravel| |close!| |unvectorise| |nextSublist| |normal01| |subspace| |rowEchelon| |bat| |denomRicDE| |setAdaptive| |leadingExponent| |reshape| |internalAugment| |negative?| |exquo| |taylorIfCan| |computePowers| |LyndonWordsList| |besselK| |euclideanGroebner| |OMwrite| |cylindrical| |shrinkable| |normalize| |div| |stoseInvertible?sqfreg| |viewThetaDefault| |pquo| |vectorise| |integralAtInfinity?| |nthRootIfCan| |previous| |distFact| |extractIfCan| |integerBound| |quo| |twist| |selectPolynomials| |externalList| |radicalSolve| |createThreeSpace| |systemCommand| |irreducible?| |showRegion| |palgRDE| |optimize| |prime| |errorInfo| |completeEchelonBasis| |iisin| |roughSubIdeal?| |showAttributes| |LyndonWordsList1| |segment| |iicos| |zCoord| |rem| |dihedralGroup| |horizConcat| |primextendedint| |coth2tanh| |drawComplex| |antiAssociative?| |zeroVector| |modularFactor| |normal| |pointColorDefault| |update| |constantLeft| |round| |unmakeSUP| |lagrange| |maxrank| |squareFreePart| |complexEigenvectors| |common| |nextNormalPrimitivePoly| |fibonacci| |numberOfPrimitivePoly| |sum| |intChoose| |createPrimitiveNormalPoly| |fracPart| |generalSqFr| |mergeDifference| |axes| |youngGroup| |inRadical?| |more?| |alphanumeric?| |cycleTail| |numerators| |quoted?| |midpoint| |compdegd| |primPartElseUnitCanonical!| |pointColorPalette| |radicalEigenvalues| |members| |factorSquareFreePolynomial| |normalizeIfCan| |modTree| |inrootof| |fill!| |repeating| |internalDecompose| |concat!| |digit?| |besselY| |child| |leftPower| |quartic| |rk4| |expint| |setLabelValue| |unaryFunction| |front| |rk4f| |inR?| |OMputBind| |leftExtendedGcd| |expPot| |companionBlocks| |charClass| |getCurve| |critpOrder| |returnType!| |mr| |simplifyExp| |zeroDim?| |ptFunc| |fortranCarriageReturn| |adaptive| |readIfCan!| |tanQ| |floor| |chebyshevU| |makeprod| |revert| |clearTheFTable| |listBranches| |bipolar| |initial| |duplicates?| |radicalRoots| |position| |hasPredicate?| |htrigs| |halfExtendedResultant1| |hcrf| |int| |contains?| |algebraicVariables| |groebSolve| |rubiksGroup| |basisOfLeftNucloid| |cond| |rightTraceMatrix| |insert| |normInvertible?| |iiacsch| |cSinh| |exp| |multiset| |rightLcm| |varselect| |regime| |wholeRadix| |not| |rule| |sayLength| |radicalEigenvectors| |alternating| |symmetricRemainder| |null?| |complexElementary| |yellow| |cycleElt| |delay| |lazyPseudoRemainder| |OMputApp| |deriv| |interpretString| |pi| |decreasePrecision| |expandTrigProducts| |ef2edf| |var1StepsDefault| |null| |ref| |block| |countRealRoots| |OMgetSymbol| |cyclic?| |makeVariable| |unexpand| |polarCoordinates| |interpret| |iflist2Result| |cCoth| |plus| |OMUnknownSymbol?| |setPredicates| |routines| |ramified?| |generalInfiniteProduct| |wholePart| |lazyPseudoDivide| |subNode?| |diagonalProduct| |insertRoot!| |paraboloidal| |subResultantsChain| |setScreenResolution| |infinity| |void| |outputFixed| |particularSolution| |writable?| |curve?| |extractClosed| |nextsousResultant2| |leadingIndex| |ridHack1| |iidprod| |antiCommutative?| |trapezoidal| |curve| |headRemainder| |cycleLength| |functionIsOscillatory| |sqfrFactor| |car| |rangeIsFinite| |elColumn2!| |exponential| |OMputEndError| |plusInfinity| |OMputEndAttr| |complexIntegrate| |ReduceOrder| |roughBase?| |pseudoRemainder| |cdr| |createMultiplicationTable| |times| |leftFactorIfCan| |powerSum| |symbol?| |monicDivide| |argscript| |useEisensteinCriterion?| |lyndon| |colorDef| |trigs2explogs| |dimensionOfIrreducibleRepresentation| |maxRowIndex| |unitNormalize| |coefficient| |pdf2df| |minusInfinity| |outerProduct| |algintegrate| |makeCos| |invertIfCan| |OMgetEndAttr| |UP2ifCan| |linearAssociatedLog| |innerSolve1| D |child?| |OMsetEncoding| |create3Space| |generalizedEigenvector| |setLegalFortranSourceExtensions| |lazyIrreducibleFactors| |bottom!| |bsolve| |trapezoidalo| |addPoint2| |changeName| |singularitiesOf| |goodnessOfFit| |groebner?| |bit?| |graphCurves| |wreath| |perspective| ~= |prinshINFO| |singularAtInfinity?| |pToHdmp| |noncommutativeJordanAlgebra?| |OMputEndBind| |hspace| |minordet| |userOrdered?| |squareFree| |sumSquares| |minPoints| |fortranLiteral| |OMReadError?| |getMatch| |cyclotomic| |outputAsTex| |diagonals| |dihedral| |complexNormalize| |initTable!| |OMgetAtp| |nextLatticePermutation| |heapSort| |initials| |xor| |balancedBinaryTree| |mapCoef| |swapColumns!| |tail| |rangePascalTriangle| |baseRDEsys| |rootKerSimp| |removeRoughlyRedundantFactorsInPols| |univariatePolynomial| |reset| |normFactors| |member?| |subResultantChain| |dec| |mat| |RittWuCompare| |quadratic?| |key?| |iilog| |write| |testDim| |merge!| |adaptive?| |dfRange| |isOp| |setErrorBound| |quatern| |diagonal| |createPrimitivePoly| |cCot| |dim| |coercePreimagesImages| |print| |degreeSubResultant| |viewPosDefault| |rowEchLocal| |hitherPlane| |minRowIndex| |zero?| |fortranTypeOf| |shufflein| |red| |symmetric?| |kovacic| |bandedHessian| |c02aff| |gramschmidt| |useSingleFactorBound?| |makeUnit| |evenInfiniteProduct| |polynomialZeros| |clipBoolean| |acoshIfCan| |combineFeatureCompatibility| |llprop| |c02agf| |typeList| |lyndonIfCan| |invertibleElseSplit?| |totalLex| |init| |po| |changeBase| |prolateSpheroidal| |indiceSubResultantEuclidean| |c05adf| |wordsForStrongGenerators| |satisfy?| |maxdeg| |iomode| |singRicDE| |unitVector| |systemSizeIF| |realElementary| |parabolicCylindrical| |c05nbf| |coerceP| |iiatan| |leadingTerm| |OMgetEndAtp| |monicLeftDivide| |specialTrigs| |complexForm| |morphism| |c05pbf| |chvar| |cross| |readLineIfCan!| |primextintfrac| |preprocess| |ramifiedAtInfinity?| |controlPanel| |c06eaf| |removeZeroes| |balancedFactorisation| |prepareDecompose| |showTheRoutinesTable| UTS2UP |getButtonValue| |getStream| |quotedOperators| |putGraph| |c06ebf| |factors| |splitConstant| SEGMENT |shiftLeft| |showIntensityFunctions| |OMgetEndBind| |pushdown| |push!| |find| |zerosOf| |point| |c06ecf| |insertionSort!| |expextendedint| |listYoungTableaus| GF2FG |asinIfCan| |curveColorPalette| |primeFactor| |possiblyNewVariety?| |bivariatePolynomials| |c06ekf| |quasiComponent| |nthCoef| |Lazard| |LowTriBddDenomInv| |objectOf| |pushup| |cAsec| |LiePolyIfCan| |transcendent?| |tab| |c06fpf| |gderiv| |ptree| |sylvesterMatrix| |lazyPremWithDefault| |randomR| |associatedSystem| |complexZeros| |range| |contract| |argument| |mkPrim| |definingInequation| |c06fqf| |series| |level| |lp| |lazyPquo| |newSubProgram| |digits| |cartesian| |weight| |meshPar1Var| |mapSolve| |badValues| |nthr| |c06frf| |SturmHabicht| |rspace| |argumentList!| |elem?| |unitNormal| |elliptic?| |sechIfCan| |failed?| |getVariableOrder| |c06fuf| |UpTriBddDenomInv| |arity| |root?| |raisePolynomial| |outputMeasure| |size?| |internalSubQuasiComponent?| |irreducibleFactor| |pmComplexintegrate| |c06gbf| |hasTopPredicate?| |fractRagits| |drawStyle| |characteristic| |leftDivide| |resultantReduitEuclidean| |eigenvalues| |antisymmetricTensors| |isQuotient| |min| |c06gcf| |bernoulliB| |derivationCoordinates| |denominator| |OMsupportsSymbol?| |inHallBasis?| |viewDeltaXDefault| |rightExactQuotient| |imagK| |c06gqf| |linearDependenceOverZ| |df2mf| |seed| |degreePartition| |isobaric?| |iisech| |LyndonBasis| |leftQuotient| |center| |sizeMultiplication| |c06gsf| |iitan| |moebius| |f01rcf| |branchPoint?| |second| |property| |drawComplexVectorField| |tubePlot| |palgextint| |OMputEndAtp| |imagJ| |d01ajf| |solid| |constantToUnaryFunction| |f01rdf| |minimumExponent| |third| |lowerCase!| |edf2efi| |meshFun2Var| |subset?| |discriminant| |d01akf| |f01ref| |OMopenFile| |pointData| |bfKeys| |repeatUntilLoop| |cyclotomicFactorization| |generalTwoFactor| |OMclose| |limitPlus| |d01alf| |cAcoth| |f02aaf| |getGoodPrime| |OMputObject| |top!| |torsion?| |rischDEsys| |units| |stirling1| |numberOfImproperPartitions| |d01amf| |cyclic| |f02abf| |listOfLists| |summation| |lazyPseudoQuotient| |points| |palgLODE| |Vectorise| |uniform01| |setfirst!| |d01anf| |basisOfRightNucloid| |f02adf| |torsionIfCan| |upDateBranches| |triangSolve| |nextSubsetGray| |internalIntegrate| |LazardQuotient| |critBonD| |lifting| |d01apf| |traceMatrix| |f02aef| |determinant| |schwerpunkt| |head| |remainder| |modifyPoint| |kroneckerDelta| |nodes| |d01aqf| |critMonD1| |f02aff| |parametersOf| |exactQuotient| |ignore?| |ode1| |code| |operator| |useSingleFactorBound| |mainSquareFreePart| |d01asf| |f02agf| |symmetricGroup| |outputForm| |generators| |sPol| |subResultantGcd| |var1Steps| |sub| |d01bbf| |corrPoly| |f02ajf| |halfExtendedResultant2| |reducedContinuedFraction| |dictionary| |nextPrime| |symmetricPower| |sample| |reverse| |f02akf| |multiple?| |setrest!| |eulerPhi| |next| |max| |low| |makeYoungTableau| |OMgetAttr| |multiplyCoefficients| |comment| |leadingBasisTerm| ** |f02awf| |clearTheSymbolTable| |lexico| |irreducibleRepresentation| |outputAsScript| |processTemplate| |sinIfCan| |f02axf| |mainCharacterization| |sh| |makeSin| |vector| |OMgetEndError| |zeroSetSplitIntoTriangularSystems| |digit| |qPot| |rightRank| |f02bbf| |chiSquare1| |deref| |differentiate| EQ |dequeue!| |tensorProduct| |semiSubResultantGcdEuclidean2| |upperCase| |rischNormalize| |f02bjf| |toseInvertibleSet| |omError| |swap| |mapBivariate| |li| |definingEquations| |dimension| |f02fjf| |squareFreePolynomial| |crushedSet| |completeHermite| |euclideanSize| |cCosh| |algSplitSimple| |wrregime| |deleteProperty!| |exteriorDifferential| |f02wef| |retractable?| |generic| |reverseLex| |hdmpToP| |prologue| |distdfact| |f02xef| |internalZeroSetSplit| |lexGroebner| |nonLinearPart| |moebiusMu| |zeroDimPrimary?| |removeCoshSq| |sort| |brace| |f04adf| |semiSubResultantGcdEuclidean1| |difference| |convergents| |selectNonFiniteRoutines| |sinh2csch| |isExpt| |pointSizeDefault| |factorList| |f04arf| |OMsend| |solveLinearPolynomialEquation| |f2st| |imagi| |divergence| |headReduce| |f04asf| |orbit| |rotate!| |topPredicate| |vedf2vef| |retract| |unitsColorDefault| |gethi| |cAcot| |f04atf| |iipow| |anticoord| |quasiAlgebraicSet| |radicalOfLeftTraceForm| |firstUncouplingMatrix| |value| |f04axf| |pole?| |inGroundField?| |aromberg| |makeFR| |times!| |hash| |SturmHabichtMultiple| |mindegTerm| |random| |factorials| |f04faf| |remove!| |square?| |sqfree| |lprop| |lift| |count| |predicates| |changeMeasure| |generator| |f04jgf| |viewpoint| |setMinPoints| |halfExtendedSubResultantGcd1| |reduce| |solid?| |graphState| |style| |prod| |f04maf| |OMputString| |ODESolve| |besselJ| |sumOfKthPowerDivisors| |nextPartition| |limit| |merge| |f04mbf| |nextsubResultant2| |dmp2rfi| |hdmpToDmp| |exponents| |minIndex| |calcRanges| |symmetricDifference| |f04mcf| |ord| |laplacian| |decomposeFunc| |transcendenceDegree| |inc| |basisOfNucleus| |semiDegreeSubResultantEuclidean| |search| |f04qaf| |dmpToP| |lfextendedint| |lazyEvaluate| |elliptic| |matrixDimensions| |OMbindTCP| |fortranLiteralLine| |OMgetType| |f07adf| |superHeight| |content| |rootOf| |computeInt| |evaluate| |OMputEndApp| |reduction| |cyclicCopy| |f07aef| |iifact| |mathieu24| |iicot| |mathieu23| |cyclePartition| |countRealRootsMultiple| |iiacsc| |genericRightTraceForm| |algebraicDecompose| |reduced?| |f07fdf| |genericPosition| |debug3D| |extractPoint| |binarySearchTree| |trace2PowMod| |uniform| |integral?| |chainSubResultants| |f07fef| |splitNodeOf!| |unit| |choosemon| |iidsum| |divideIfCan| |highCommonTerms| |localReal?| |super| |s01eaf| |OMputSymbol| |startStats!| |stosePrepareSubResAlgo| |tan2cot| |fullDisplay| |cAtan| |inspect| |lo| |rightRemainder| |airyBi| |repSq| |s13aaf| |gcdcofact| |seriesSolve| |axesColorDefault| |nextNormalPoly| |curryLeft| |incr| |ScanFloatIgnoreSpaces| |OMencodingBinary| |s13acf| |selectsecond| |mapmult| |mainForm| |extensionDegree| |mapExponents| |associates?| |hi| |binaryTree| |iiacos| |s13adf| |quadratic| |generateIrredPoly| |poisson| |blue| |e01sff| |getlo| |moduloP| |getOperator| |dioSolve| |rightRegularRepresentation| |makeEq| |s14aaf| |rightTrim| |modifyPointData| |isAbsolutelyIrreducible?| |minimize| |duplicates| |pascalTriangle| |fintegrate| |nil| |getOperands| |reducedSystem| |OMgetInteger| |legendre| |s14abf| |leftTrim| |slex| |returns| |Si| |acscIfCan| |rational| |buildSyntax| |appendPoint| |makingStats?| |s14baf| |createGenericMatrix| |associatedEquations| |mantissa| |compiledFunction| |graeffe| |paren| |leftZero| |newReduc| |s15adf| |OMgetBVar| |partialNumerators| |rightPower| |doublyTransitive?| |relationsIdeal| |approximate| |rationalPoint?| |setEpilogue!| |createNormalPoly| |s15aef| |resultant| |RemainderList| |rootRadius| |primitive?| |complex| |iicoth| |commutator| |shallowExpand| |s17acf| |numberOfIrreduciblePoly| |matrixConcat3D| |mathieu22| |palgint| |isPlus| |id| |safeFloor| |tanh2trigh| |s17adf| |cycleSplit!| |rationalPoints| |initializeGroupForWordProblem| |makeViewport2D| |printTypes| |infRittWu?| |constantOpIfCan| |secIfCan| |lieAdmissible?| |s17aef| |universe| |perfectNthPower?| |padecf| |monom| |mapGen| |areEquivalent?| |table| |sincos| |outputGeneral| |quotient| |s17aff| |pointPlot| |leastAffineMultiple| |innerSolve| |multiplyExponents| |nextColeman| |factorSquareFree| |tree| |intPatternMatch| |key| |abelianGroup| |refine| |useEisensteinCriterion| |s17agf| |oblateSpheroidal| |makeResult| |primitiveElement| |deepestInitial| |branchIfCan| |conjug| |readLine!| |opeval| |index| |setleft!| |UnVectorise| |certainlySubVariety?| |Ei| |s17ahf| |integralRepresents| |rules| |someBasis| |indicialEquation| |smith| |lazyIntegrate| |sinhcosh| |rdregime| |new| |varList| |generate| |completeEval| |nthFactor| |s17ajf| |deleteRoutine!| |weights| |bitCoef| |supDimElseRittWu?| |blankSeparate| |viewDefaults| |pushuconst| |resultantEuclidean| |condition| |solveid| |ParCond| |sizePascalTriangle| |s17akf| |elementary| |maxIndex| |removeDuplicates!| |commonDenominator| |product| |zeroMatrix| |scalarMatrix| |incrementBy| |inconsistent?| |imagE| |cyclicEqual?| |minus!| |s17dcf| |qfactor| |boundOfCauchy| |maxPoints3D| |linear| |semiDiscriminantEuclidean| |subQuasiComponent?| |shallowCopy| |dot| |expand| |removeIrreducibleRedundantFactors| |divideExponents| |s17def| |internalSubPolSet?| |makeSketch| |OMgetVariable| |number?| |resetVariableOrder| |central?| |hue| |filterWhile| |leftRank| |evenlambert| |s17dgf| |commaSeparate| |cosIfCan| |generic?| |polynomial| |high| |initiallyReduce| |iisinh| |cos2sec| |filterUntil| |zero| |rightQuotient| |removeRedundantFactorsInPols| |att2Result| |s17dhf| |quotientByP| |algDsolve| |structuralConstants| |primitivePart| |removeCosSq| |select| |packageCall| |squareFreePrim| |listOfMonoms| |s17dlf| |symmetricProduct| |symbolTableOf| |upperCase?| |tracePowMod| |And| |palgintegrate| |composites| |submod| |s18acf| |leftUnits| |rightDivide| |basisOfLeftAnnihilator| |screenResolution| |precision| |Or| |positive?| |deepCopy| |argumentListOf| |decrease| |tubePoints| |extractBottom!| |extendedint| |Not| |linearMatrix| |setsubMatrix!| |rightFactorCandidate| |list?| |bezoutResultant| |result| |checkPrecision| |OMgetApp| |critT| |splitSquarefree| |setImagSteps| |stoseInvertibleSetreg| |moreAlgebraic?| |expt| |printCode| |drawToScale| |integralMatrixAtInfinity| |totalfract| |oneDimensionalArray| |nullary?| |createLowComplexityTable| |updateStatus!| |triangular?| |partitions| |tubeRadius| |multMonom| |colorFunction| |logpart| |ratDenom| |homogeneous?| |makeRecord| |redPol| |augment| |iiGamma| |rationalPower| |infiniteProduct| |linearAssociatedExp| |weighted| |getOrder| |lhs| |expandPower| |applyRules| |leftAlternative?| |critM| |cschIfCan| |realEigenvalues| |replace| |transform| |recolor| |bringDown| |scalarTypeOf| |stopTableGcd!| |rhs| |toroidal| |const| |empty?| |getRef| |recip| |mainContent| |rk4a| |subResultantGcdEuclidean| |leviCivitaSymbol| |constantRight| |polar| |compile| |inverseLaplace| |roughEqualIdeals?| |pow| |midpoints| |tValues| |lazyResidueClass| |aCubic| |radPoly| |fortranLogical| |iitanh| |left| |removeSquaresIfCan| |clikeUniv| |alternative?| |numberOfCycles| |nullary| |convert| |stop| |permutation| |simpleBounds?| |prinpolINFO| |Hausdorff| |lSpaceBasis| |right| |localAbs| |phiCoord| |constDsolve| |OMgetEndBVar| |clearFortranOutputStack| |OMputAtp| |removeZero| |explicitEntries?| |connect| |irreducibleFactors| |factorial| |stiffnessAndStabilityFactor| RF2UTS |swapRows!| |lineColorDefault| |genericLeftNorm| |characteristicPolynomial| |simplify| |subMatrix| |trim| |iiperm| |complexRoots| |any?| |cycleRagits| |removeSinhSq| |rightExtendedGcd| |bfEntry| |qqq| |complexSolve| |hermite| |asinh| |identitySquareMatrix| |HenselLift| |orthonormalBasis| |OMgetEndObject| |degree| |factorByRecursion| |numeric| |parabolic| |lazyPrem| |quadraticNorm| |removeSuperfluousQuasiComponents| |acosh| |complementaryBasis| |fortranComplex| |consnewpol| |selectIntegrationRoutines| |removeRoughlyRedundantFactorsInPol| |conical| |radical| |isTimes| |halfExtendedSubResultantGcd2| |thetaCoord| |nullSpace| |atanh| |rootOfIrreduciblePoly| |sign| |abs| |radix| |sec2cos| |failed| |tubeRadiusDefault| |goto| |exactQuotient!| |gcdprim| |superscript| |acoth| |log10| |laurentRep| |rightFactorIfCan| |musserTrials| |setelt!| |light| |tower| |sparsityIF| |column| |putColorInfo| |plenaryPower| |asech| |viewPhiDefault| |write!| |squareFreeFactors| |atoms| |script| |logical?| |open?| |setColumn!| |minset| |append| |clipPointsDefault| |separateDegrees| |var2StepsDefault| |janko2| |factorSquareFreeByRecursion| |euler| |setnext!| |cCos| |delete| |multiple| |spherical| |indiceSubResultant| |mkIntegral| |factor| |iisqrt2| |noKaratsuba| |redpps| |collectUnder| |applyQuote| |SFunction| |exprHasAlgebraicWeight| |coleman| |create| |tex| |sqrt| |lfintegrate| |quasiRegular| |leadingIdeal| |toseInvertible?| |doubleRank| |iiatanh| |postfix| |quote| |real| |genericRightNorm| |minimalPolynomial| |OMgetEndApp| |resize| |bandedJacobian| |setlast!| |integralLastSubResultant| |explimitedint| |rightGcd| |imag| |getMultiplicationMatrix| |hasoln| |ruleset| |outputFloating| |partition| |rquo| |eq?| |composite| |directProduct| |finiteBound| |kmax| NOT |hMonic| |sumOfDivisors| |KrullNumber| |region| |invertible?| |brillhartTrials| |invmultisect| |symbolIfCan| |numericIfCan| OR |eisensteinIrreducible?| |physicalLength!| |binaryFunction| |possiblyInfinite?| |doubleDisc| |realZeros| |destruct| |partialQuotients| |showArrayValues| AND |getDatabase| |constant?| |suchThat| |oddlambert| |diag| |check| |nthRoot| |medialSet| |numericalOptimization| |froot| |iisqrt3| |asechIfCan| |printInfo| |vconcat| |freeOf?| |totalGroebner| |genericRightTrace| |FormatRoman| |hasSolution?| |op| |enqueue!| |leastMonomial| |makeMulti| |exQuo| |internal?| |reduceBasisAtInfinity| |dAndcExp| |modularGcd| |subHeight| |less?| |one?| |prime?| |semiResultantEuclideannaif| |OMencodingSGML| |initiallyReduced?| |setleaves!| |hyperelliptic| |module| |dflist| |identityMatrix| |hexDigit?| |restorePrecision| |permutationRepresentation| |rst| |leftOne| |mapMatrixIfCan| |lowerPolynomial| |trueEqual| |rightNorm| |singleFactorBound| |createIrreduciblePoly| |zeroOf| |conditionP| |computeBasis| |LazardQuotient2| |bumptab1| |elRow1!| |myDegree| |elRow2!| |rdHack1| |changeNameToObjf| |brillhartIrreducible?| |upperCase!| |symbol| |nthExpon| |trunc| |atanIfCan| |tanhIfCan| |implies| |cycles| |resetAttributeButtons| |internalIntegrate0| |string| |datalist| |setPosition| |whatInfinity| |nthFractionalTerm| |getPickedPoints| |monomRDEsys| |listRepresentation| |beauzamyBound| |GospersMethod| |endOfFile?| * |character?| |modularGcdPrimitive| |viewWriteDefault| |scan| |patternMatchTimes| |exponential1| |obj| |createMultiplicationMatrix| |df2ef| |factorOfDegree| |integer| |leftNorm| |leftRegularRepresentation| |normalise| |lighting| |associator| |stoseIntegralLastSubResultant| |linearPart| |factorsOfDegree| |mainVariables| |tan2trig| |factorGroebnerBasis| |reorder| |normalizedAssociate| |generalLambert| |linearDependence| |mainValue| |expintfldpoly| |expIfCan| |computeCycleLength| |toseSquareFreePart| |cyclotomicDecomposition| |rationalApproximation| |exists?| |cExp| |constantIfCan| |redmat| |stronglyReduced?| |hconcat| |laplace| |maximumExponent| |hessian| |listexp| |OMputInteger| |atrapezoidal| |getMeasure| |setValue!| |bitTruth| |ffactor| |validExponential| |ldf2vmf| |rightMult| |factorFraction| |lastSubResultantElseSplit| |OMputBVar| |setVariableOrder| |zeroDimensional?| |root| |separant| |fortranReal| |powerAssociative?| |exp1| |bat1| |completeHensel| |compactFraction| |printStats!| |insertBottom!| |tanh2coth| |unparse| |BumInSepFFE| |order| |numFunEvals3D| |minPoints3D| |subscript| |karatsubaOnce| |makeViewport3D| |getZechTable| |limitedint| |explicitlyEmpty?| |stFunc1| |plot| |lieAlgebra?| |primaryDecomp| |latex| |getCode| |createLowComplexityNormalBasis| |separateFactors| |semicolonSeparate| |stoseSquareFreePart| |rischDE| |leaves| |binaryTournament| |solveLinearPolynomialEquationByRecursion| |allRootsOf| |viewSizeDefault| |octon| |even?| |OMencodingXML| |typeLists| |operators| |sturmSequence| |double| |createZechTable| |float| |extract!| |reducedForm| |squareTop| |normDeriv2| |standardBasisOfCyclicSubmodule| |roman| |showFortranOutputStack| |indicialEquations| |ideal| |interval| |maxrow| |alphabetic?| |extractTop!| |physicalLength| |reverse!| |characteristicSet| |printHeader| |pile| |pToDmp| |or| |resultantEuclideannaif| |limitedIntegrate| |resultantnaif| |zeroSetSplit| |incrementKthElement| |monomial?| |outputArgs| |arrayStack| |stopTable!| |and| |wordInStrongGenerators| |bezoutDiscriminant| |subtractIfCan| |sts2stst| |setchildren!| |npcoef| |entry?| |approxNthRoot| |setPoly| |jordanAlgebra?| |genericLeftDiscriminant| |simplifyLog| |linkToFortran| |reduceByQuasiMonic| |setAdaptive3D| |genericLeftTrace| |setFieldInfo| |sdf2lst| |rectangularMatrix| |karatsubaDivide| |maxPoints| |patternMatch| |interpolate| |unravel| |groebnerIdeal| |polygon?| |sortConstraints| |purelyTranscendental?| |rur| |absolutelyIrreducible?| |primlimintfrac| |stFunc2| |nextPrimitiveNormalPoly| |rightDiscriminant| |dom| |cTanh| |explogs2trigs| |csc2sin| |belong?| |strongGenerators| |oddInfiniteProduct| |basisOfRightNucleus| |sinhIfCan| GE |pseudoQuotient| |simplifyPower| |LagrangeInterpolation| |primitivePart!| |charpol| |leftScalarTimes!| |printInfo!| |setRow!| |index?| GT |trigs| |setClosed| |quasiRegular?| |ParCondList| |monomials| |iicsch| |functionIsFracPolynomial?| |numberOfComputedEntries| |s18adf| |radicalSimplify| LE |node| |leftRemainder| |Frobenius| |dmpToHdmp| |mapdiv| |coerceImages| |symbolTable| |edf2ef| |s18aef| |OMgetString| LT |splitDenominator| |powmod| |coordinates| |maxint| |complexNumericIfCan| |setStatus| |inv| |copy!| |s18aff| |leftMinimalPolynomial| |OMlistSymbols| |basisOfRightAnnihilator| |pushFortranOutputStack| |rarrow| |setOfMinN| |ground?| |fortranLinkerArgs| |changeThreshhold| |findCycle| |s18dcf| |zoom| |isMult| |constantKernel| |skewSFunction| |setRealSteps| |popFortranOutputStack| |loopPoints| |top| |localIntegralBasis| |ground| |imagk| |s18def| |rename| |saturate| |binary| |continue| |box| |monomialIntegrate| |title| |integrate| |leadingMonomial| |complexEigenvalues| |pureLex| |outputAsFortran| |monic?| |OMopenString| |s19aaf| |lepol| |numberOfChildren| |nil| |infinite| |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index d71bec21..5bef96d4 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4835 +1,4851 @@ -(3116140 . 3269429190) -((-2045 (((-107) (-1 (-107) |#2| |#2|) $) 62) (((-107) $) NIL)) (-3441 (($ (-1 (-107) |#2| |#2|) $) 17) (($ $) NIL)) (-3754 ((|#2| $ (-501) |#2|) NIL) ((|#2| $ (-1116 (-501)) |#2|) 34)) (-1375 (($ $) 58)) (-3547 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1934 (((-501) (-1 (-107) |#2|) $) 22) (((-501) |#2| $) NIL) (((-501) |#2| $ (-501)) 70)) (-2732 (((-578 |#2|) $) 13)) (-3216 (($ (-1 (-107) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-2519 (($ (-1 |#2| |#2|) $) 29)) (-1212 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-1473 (($ |#2| $ (-501)) NIL) (($ $ $ (-501)) 49)) (-2520 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 24)) (-2369 (((-107) (-1 (-107) |#2|) $) 21)) (-2007 ((|#2| $ (-501) |#2|) NIL) ((|#2| $ (-501)) NIL) (($ $ (-1116 (-501))) 48)) (-1468 (($ $ (-501)) 55) (($ $ (-1116 (-501))) 54)) (-3713 (((-701) (-1 (-107) |#2|) $) 26) (((-701) |#2| $) NIL)) (-2355 (($ $ $ (-501)) 51)) (-3764 (($ $) 50)) (-3699 (($ (-578 |#2|)) 52)) (-3934 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (-578 $)) 61)) (-3691 (((-786) $) 69)) (-1200 (((-107) (-1 (-107) |#2|) $) 20)) (-3751 (((-107) $ $) 64)) (-3762 (((-107) $ $) 72))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1375 (|#1| |#1|)) (-15 -2355 (|#1| |#1| |#1| (-501))) (-15 -2045 ((-107) |#1|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3754 (|#2| |#1| (-1116 (-501)) |#2|)) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -3754 (|#2| |#1| (-501) |#2|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -2732 ((-578 |#2|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3764 (|#1| |#1|))) (-19 |#2|) (-1104)) (T -18)) -NIL -(-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1375 (|#1| |#1|)) (-15 -2355 (|#1| |#1| |#1| (-501))) (-15 -2045 ((-107) |#1|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3754 (|#2| |#1| (-1116 (-501)) |#2|)) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -3754 (|#2| |#1| (-501) |#2|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -2732 ((-578 |#2|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3764 (|#1| |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| |#1| (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-1934 (((-501) (-1 (-107) |#1|) $) 97) (((-501) |#1| $) 96 (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) 95 (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 70)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 84 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 83 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) 85 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 82 (|has| |#1| (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-19 |#1|) (-1180) (-1104)) (T -19)) -NIL -(-13 (-340 |t#1|) (-10 -7 (-6 -4168))) -(((-33) . T) ((-97) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-555 (-786)) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-340 |#1|) . T) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-777) |has| |#1| (-777)) ((-1001) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-1104) . T)) -((-3177 (((-3 $ "failed") $ $) 12)) (-3797 (($ $) NIL) (($ $ $) 9)) (* (($ (-839) $) NIL) (($ (-701) $) 16) (($ (-501) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3177 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) (-21)) (T -20)) -NIL -(-10 -8 (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3177 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20))) -(((-21) (-1180)) (T -21)) -((-3797 (*1 *1 *1) (-4 *1 (-21))) (-3797 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-501))))) -(-13 (-123) (-10 -8 (-15 -3797 ($ $)) (-15 -3797 ($ $ $)) (-15 * ($ (-501) $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3292 (((-107) $) 10)) (-2540 (($) 15)) (* (($ (-839) $) 14) (($ (-701) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 -2540 (|#1|)) (-15 * (|#1| (-839) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 -2540 (|#1|)) (-15 * (|#1| (-839) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15))) -(((-23) (-1180)) (T -23)) -((-1850 (*1 *1) (-4 *1 (-23))) (-2540 (*1 *1) (-4 *1 (-23))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-701))))) -(-13 (-25) (-10 -8 (-15 (-1850) ($) -3897) (-15 -2540 ($) -3897) (-15 -3292 ((-107) $)) (-15 * ($ (-701) $)))) -(((-25) . T) ((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((* (($ (-839) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-839) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-839) |#1|))) -((-3736 (((-107) $ $) 7)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13))) -(((-25) (-1180)) (T -25)) -((-3790 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-839))))) -(-13 (-1001) (-10 -8 (-15 -3790 ($ $ $)) (-15 * ($ (-839) $)))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3588 (((-578 $) (-866 $)) 29) (((-578 $) (-1064 $)) 16) (((-578 $) (-1064 $) (-1070)) 20)) (-3448 (($ (-866 $)) 27) (($ (-1064 $)) 11) (($ (-1064 $) (-1070)) 54)) (-1271 (((-578 $) (-866 $)) 30) (((-578 $) (-1064 $)) 18) (((-578 $) (-1064 $) (-1070)) 19)) (-2899 (($ (-866 $)) 28) (($ (-1064 $)) 13) (($ (-1064 $) (-1070)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3588 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -3588 ((-578 |#1|) (-1064 |#1|))) (-15 -3588 ((-578 |#1|) (-866 |#1|))) (-15 -3448 (|#1| (-1064 |#1|) (-1070))) (-15 -3448 (|#1| (-1064 |#1|))) (-15 -3448 (|#1| (-866 |#1|))) (-15 -1271 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -1271 ((-578 |#1|) (-1064 |#1|))) (-15 -1271 ((-578 |#1|) (-866 |#1|))) (-15 -2899 (|#1| (-1064 |#1|) (-1070))) (-15 -2899 (|#1| (-1064 |#1|))) (-15 -2899 (|#1| (-866 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3588 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -3588 ((-578 |#1|) (-1064 |#1|))) (-15 -3588 ((-578 |#1|) (-866 |#1|))) (-15 -3448 (|#1| (-1064 |#1|) (-1070))) (-15 -3448 (|#1| (-1064 |#1|))) (-15 -3448 (|#1| (-866 |#1|))) (-15 -1271 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -1271 ((-578 |#1|) (-1064 |#1|))) (-15 -1271 ((-578 |#1|) (-866 |#1|))) (-15 -2899 (|#1| (-1064 |#1|) (-1070))) (-15 -2899 (|#1| (-1064 |#1|))) (-15 -2899 (|#1| (-866 |#1|)))) -((-3736 (((-107) $ $) 7)) (-3588 (((-578 $) (-866 $)) 80) (((-578 $) (-1064 $)) 79) (((-578 $) (-1064 $) (-1070)) 78)) (-3448 (($ (-866 $)) 83) (($ (-1064 $)) 82) (($ (-1064 $) (-1070)) 81)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-3743 (($ $) 92)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-1271 (((-578 $) (-866 $)) 86) (((-578 $) (-1064 $)) 85) (((-578 $) (-1064 $) (-1070)) 84)) (-2899 (($ (-866 $)) 89) (($ (-1064 $)) 88) (($ (-1064 $) (-1070)) 87)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 91)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68) (($ $ (-375 (-501))) 90)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66))) -(((-27) (-1180)) (T -27)) -((-2899 (*1 *1 *2) (-12 (-5 *2 (-866 *1)) (-4 *1 (-27)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-27)))) (-2899 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-5 *3 (-1070)) (-4 *1 (-27)))) (-1271 (*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1271 (*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1271 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *1)) (-5 *4 (-1070)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-866 *1)) (-4 *1 (-27)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-27)))) (-3448 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-5 *3 (-1070)) (-4 *1 (-27)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-3588 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *1)) (-5 *4 (-1070)) (-4 *1 (-27)) (-5 *2 (-578 *1))))) -(-13 (-331) (-916) (-10 -8 (-15 -2899 ($ (-866 $))) (-15 -2899 ($ (-1064 $))) (-15 -2899 ($ (-1064 $) (-1070))) (-15 -1271 ((-578 $) (-866 $))) (-15 -1271 ((-578 $) (-1064 $))) (-15 -1271 ((-578 $) (-1064 $) (-1070))) (-15 -3448 ($ (-866 $))) (-15 -3448 ($ (-1064 $))) (-15 -3448 ($ (-1064 $) (-1070))) (-15 -3588 ((-578 $) (-866 $))) (-15 -3588 ((-578 $) (-1064 $))) (-15 -3588 ((-578 $) (-1064 $) (-1070))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-916) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T)) -((-3588 (((-578 $) (-866 $)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-1064 $) (-1070)) 50) (((-578 $) $) 19) (((-578 $) $ (-1070)) 41)) (-3448 (($ (-866 $)) NIL) (($ (-1064 $)) NIL) (($ (-1064 $) (-1070)) 52) (($ $) 17) (($ $ (-1070)) 37)) (-1271 (((-578 $) (-866 $)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-1064 $) (-1070)) 48) (((-578 $) $) 15) (((-578 $) $ (-1070)) 43)) (-2899 (($ (-866 $)) NIL) (($ (-1064 $)) NIL) (($ (-1064 $) (-1070)) NIL) (($ $) 12) (($ $ (-1070)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3588 ((-578 |#1|) |#1| (-1070))) (-15 -3448 (|#1| |#1| (-1070))) (-15 -3588 ((-578 |#1|) |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -1271 ((-578 |#1|) |#1| (-1070))) (-15 -2899 (|#1| |#1| (-1070))) (-15 -1271 ((-578 |#1|) |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -3588 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -3588 ((-578 |#1|) (-1064 |#1|))) (-15 -3588 ((-578 |#1|) (-866 |#1|))) (-15 -3448 (|#1| (-1064 |#1|) (-1070))) (-15 -3448 (|#1| (-1064 |#1|))) (-15 -3448 (|#1| (-866 |#1|))) (-15 -1271 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -1271 ((-578 |#1|) (-1064 |#1|))) (-15 -1271 ((-578 |#1|) (-866 |#1|))) (-15 -2899 (|#1| (-1064 |#1|) (-1070))) (-15 -2899 (|#1| (-1064 |#1|))) (-15 -2899 (|#1| (-866 |#1|)))) (-29 |#2|) (-13 (-777) (-508))) (T -28)) -NIL -(-10 -8 (-15 -3588 ((-578 |#1|) |#1| (-1070))) (-15 -3448 (|#1| |#1| (-1070))) (-15 -3588 ((-578 |#1|) |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -1271 ((-578 |#1|) |#1| (-1070))) (-15 -2899 (|#1| |#1| (-1070))) (-15 -1271 ((-578 |#1|) |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -3588 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -3588 ((-578 |#1|) (-1064 |#1|))) (-15 -3588 ((-578 |#1|) (-866 |#1|))) (-15 -3448 (|#1| (-1064 |#1|) (-1070))) (-15 -3448 (|#1| (-1064 |#1|))) (-15 -3448 (|#1| (-866 |#1|))) (-15 -1271 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -1271 ((-578 |#1|) (-1064 |#1|))) (-15 -1271 ((-578 |#1|) (-866 |#1|))) (-15 -2899 (|#1| (-1064 |#1|) (-1070))) (-15 -2899 (|#1| (-1064 |#1|))) (-15 -2899 (|#1| (-866 |#1|)))) -((-3736 (((-107) $ $) 7)) (-3588 (((-578 $) (-866 $)) 80) (((-578 $) (-1064 $)) 79) (((-578 $) (-1064 $) (-1070)) 78) (((-578 $) $) 126) (((-578 $) $ (-1070)) 124)) (-3448 (($ (-866 $)) 83) (($ (-1064 $)) 82) (($ (-1064 $) (-1070)) 81) (($ $) 127) (($ $ (-1070)) 125)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-1070)) $) 201)) (-3728 (((-375 (-1064 $)) $ (-553 $)) 233 (|has| |#1| (-508)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3709 (((-578 (-553 $)) $) 164)) (-3177 (((-3 $ "failed") $ $) 19)) (-3631 (($ $ (-578 (-553 $)) (-578 $)) 154) (($ $ (-578 (-262 $))) 153) (($ $ (-262 $)) 152)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-3743 (($ $) 92)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-1271 (((-578 $) (-866 $)) 86) (((-578 $) (-1064 $)) 85) (((-578 $) (-1064 $) (-1070)) 84) (((-578 $) $) 130) (((-578 $) $ (-1070)) 128)) (-2899 (($ (-866 $)) 89) (($ (-1064 $)) 88) (($ (-1064 $) (-1070)) 87) (($ $) 131) (($ $ (-1070)) 129)) (-3765 (((-3 (-866 |#1|) "failed") $) 251 (|has| |#1| (-959))) (((-3 (-375 (-866 |#1|)) "failed") $) 235 (|has| |#1| (-508))) (((-3 |#1| "failed") $) 197) (((-3 (-501) "failed") $) 195 (|has| |#1| (-950 (-501)))) (((-3 (-1070) "failed") $) 188) (((-3 (-553 $) "failed") $) 139) (((-3 (-375 (-501)) "failed") $) 123 (-1405 (-12 (|has| |#1| (-950 (-501))) (|has| |#1| (-508))) (|has| |#1| (-950 (-375 (-501))))))) (-3490 (((-866 |#1|) $) 252 (|has| |#1| (-959))) (((-375 (-866 |#1|)) $) 236 (|has| |#1| (-508))) ((|#1| $) 198) (((-501) $) 194 (|has| |#1| (-950 (-501)))) (((-1070) $) 189) (((-553 $) $) 140) (((-375 (-501)) $) 122 (-1405 (-12 (|has| |#1| (-950 (-501))) (|has| |#1| (-508))) (|has| |#1| (-950 (-375 (-501))))))) (-3023 (($ $ $) 55)) (-3868 (((-621 |#1|) (-621 $)) 241 (|has| |#1| (-959))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 240 (|has| |#1| (-959))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 121 (-1405 (-1280 (|has| |#1| (-959)) (|has| |#1| (-577 (-501)))) (-1280 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))) (((-621 (-501)) (-621 $)) 120 (-1405 (-1280 (|has| |#1| (-959)) (|has| |#1| (-577 (-501)))) (-1280 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))))) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 193 (|has| |#1| (-806 (-346)))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 192 (|has| |#1| (-806 (-501))))) (-2446 (($ (-578 $)) 158) (($ $) 157)) (-2389 (((-578 (-108)) $) 165)) (-1853 (((-108) (-108)) 166)) (-1355 (((-107) $) 31)) (-3729 (((-107) $) 186 (|has| $ (-950 (-501))))) (-2117 (($ $) 218 (|has| |#1| (-959)))) (-2946 (((-1023 |#1| (-553 $)) $) 217 (|has| |#1| (-959)))) (-1342 (($ $ (-501)) 91)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1983 (((-1064 $) (-553 $)) 183 (|has| $ (-959)))) (-4111 (($ $ $) 137)) (-1323 (($ $ $) 136)) (-1212 (($ (-1 $ $) (-553 $)) 172)) (-2789 (((-3 (-553 $) "failed") $) 162)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3724 (((-578 (-553 $)) $) 163)) (-3136 (($ (-108) (-578 $)) 171) (($ (-108) $) 170)) (-2948 (((-3 (-578 $) "failed") $) 212 (|has| |#1| (-1012)))) (-2000 (((-3 (-2 (|:| |val| $) (|:| -3027 (-501))) "failed") $) 221 (|has| |#1| (-959)))) (-1285 (((-3 (-578 $) "failed") $) 214 (|has| |#1| (-25)))) (-3475 (((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2551 (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-1070)) 220 (|has| |#1| (-959))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-108)) 219 (|has| |#1| (-959))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $) 213 (|has| |#1| (-1012)))) (-3109 (((-107) $ (-1070)) 169) (((-107) $ (-108)) 168)) (-3833 (($ $) 70)) (-2696 (((-701) $) 161)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 199)) (-3841 ((|#1| $) 200)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-2816 (((-107) $ (-1070)) 174) (((-107) $ $) 173)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-3172 (((-107) $) 185 (|has| $ (-950 (-501))))) (-3195 (($ $ (-1070) (-701) (-1 $ $)) 225 (|has| |#1| (-959))) (($ $ (-1070) (-701) (-1 $ (-578 $))) 224 (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ (-578 $)))) 223 (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ $))) 222 (|has| |#1| (-959))) (($ $ (-578 (-108)) (-578 $) (-1070)) 211 (|has| |#1| (-556 (-490)))) (($ $ (-108) $ (-1070)) 210 (|has| |#1| (-556 (-490)))) (($ $) 209 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-1070))) 208 (|has| |#1| (-556 (-490)))) (($ $ (-1070)) 207 (|has| |#1| (-556 (-490)))) (($ $ (-108) (-1 $ $)) 182) (($ $ (-108) (-1 $ (-578 $))) 181) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) 180) (($ $ (-578 (-108)) (-578 (-1 $ $))) 179) (($ $ (-1070) (-1 $ $)) 178) (($ $ (-1070) (-1 $ (-578 $))) 177) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) 176) (($ $ (-578 (-1070)) (-578 (-1 $ $))) 175) (($ $ (-578 $) (-578 $)) 146) (($ $ $ $) 145) (($ $ (-262 $)) 144) (($ $ (-578 (-262 $))) 143) (($ $ (-578 (-553 $)) (-578 $)) 142) (($ $ (-553 $) $) 141)) (-1864 (((-701) $) 58)) (-2007 (($ (-108) (-578 $)) 151) (($ (-108) $ $ $ $) 150) (($ (-108) $ $ $) 149) (($ (-108) $ $) 148) (($ (-108) $) 147)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-4106 (($ $ $) 160) (($ $) 159)) (-2596 (($ $ (-1070)) 249 (|has| |#1| (-959))) (($ $ (-578 (-1070))) 248 (|has| |#1| (-959))) (($ $ (-1070) (-701)) 247 (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) 246 (|has| |#1| (-959)))) (-3307 (($ $) 228 (|has| |#1| (-508)))) (-2949 (((-1023 |#1| (-553 $)) $) 227 (|has| |#1| (-508)))) (-2264 (($ $) 184 (|has| $ (-959)))) (-1248 (((-490) $) 255 (|has| |#1| (-556 (-490)))) (($ (-373 $)) 226 (|has| |#1| (-508))) (((-810 (-346)) $) 191 (|has| |#1| (-556 (-810 (-346))))) (((-810 (-501)) $) 190 (|has| |#1| (-556 (-810 (-501)))))) (-3097 (($ $ $) 254 (|has| |#1| (-440)))) (-2144 (($ $ $) 253 (|has| |#1| (-440)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ (-866 |#1|)) 250 (|has| |#1| (-959))) (($ (-375 (-866 |#1|))) 234 (|has| |#1| (-508))) (($ (-375 (-866 (-375 |#1|)))) 232 (|has| |#1| (-508))) (($ (-866 (-375 |#1|))) 231 (|has| |#1| (-508))) (($ (-375 |#1|)) 230 (|has| |#1| (-508))) (($ (-1023 |#1| (-553 $))) 216 (|has| |#1| (-959))) (($ |#1|) 196) (($ (-1070)) 187) (($ (-553 $)) 138)) (-1274 (((-3 $ "failed") $) 239 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-1831 (($ (-578 $)) 156) (($ $) 155)) (-3811 (((-107) (-108)) 167)) (-2442 (((-107) $ $) 39)) (-4043 (($ (-1070) (-578 $)) 206) (($ (-1070) $ $ $ $) 205) (($ (-1070) $ $ $) 204) (($ (-1070) $ $) 203) (($ (-1070) $) 202)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1070)) 245 (|has| |#1| (-959))) (($ $ (-578 (-1070))) 244 (|has| |#1| (-959))) (($ $ (-1070) (-701)) 243 (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) 242 (|has| |#1| (-959)))) (-3778 (((-107) $ $) 134)) (-3768 (((-107) $ $) 133)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 135)) (-3762 (((-107) $ $) 132)) (-3803 (($ $ $) 64) (($ (-1023 |#1| (-553 $)) (-1023 |#1| (-553 $))) 229 (|has| |#1| (-508)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68) (($ $ (-375 (-501))) 90)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-156))) (($ |#1| $) 237 (|has| |#1| (-156))))) -(((-29 |#1|) (-1180) (-13 (-777) (-508))) (T -29)) -((-2899 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-777) (-508))))) (-1271 (*1 *2 *1) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *3)))) (-2899 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-777) (-508))))) (-1271 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) (-3448 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-777) (-508))))) (-3588 (*1 *2 *1) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *3)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-777) (-508))))) (-3588 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-389 |t#1|) (-10 -8 (-15 -2899 ($ $)) (-15 -1271 ((-578 $) $)) (-15 -2899 ($ $ (-1070))) (-15 -1271 ((-578 $) $ (-1070))) (-15 -3448 ($ $)) (-15 -3588 ((-578 $) $)) (-15 -3448 ($ $ (-1070))) (-15 -3588 ((-578 $) $ (-1070))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-556 (-810 (-346))) |has| |#1| (-556 (-810 (-346)))) ((-556 (-810 (-501))) |has| |#1| (-556 (-810 (-501)))) ((-216) . T) ((-260) . T) ((-276) . T) ((-278 $) . T) ((-267) . T) ((-331) . T) ((-345 |#1|) |has| |#1| (-959)) ((-368 |#1|) . T) ((-380 |#1|) . T) ((-389 |#1|) . T) ((-419) . T) ((-440) |has| |#1| (-440)) ((-476 (-553 $) $) . T) ((-476 $ $) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 |#1|) |has| |#1| (-156)) ((-583 $) . T) ((-577 (-501)) -12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) ((-577 |#1|) |has| |#1| (-959)) ((-648 (-375 (-501))) . T) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) . T) ((-657) . T) ((-777) . T) ((-820 (-1070)) |has| |#1| (-959)) ((-806 (-346)) |has| |#1| (-806 (-346))) ((-806 (-501)) |has| |#1| (-806 (-501))) ((-804 |#1|) . T) ((-841) . T) ((-916) . T) ((-950 (-375 (-501))) -1405 (|has| |#1| (-950 (-375 (-501)))) (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501))))) ((-950 (-375 (-866 |#1|))) |has| |#1| (-508)) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 (-553 $)) . T) ((-950 (-866 |#1|)) |has| |#1| (-959)) ((-950 (-1070)) . T) ((-950 |#1|) . T) ((-964 (-375 (-501))) . T) ((-964 |#1|) |has| |#1| (-156)) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1104) . T) ((-1108) . T)) -((-1236 (((-991 (-199)) $) NIL)) (-3096 (((-991 (-199)) $) NIL)) (-3237 (($ $ (-199)) 122)) (-1646 (($ (-866 (-501)) (-1070) (-1070) (-991 (-375 (-501))) (-991 (-375 (-501)))) 84)) (-2616 (((-578 (-578 (-863 (-199)))) $) 134)) (-3691 (((-786) $) 146))) -(((-30) (-13 (-874) (-10 -8 (-15 -1646 ($ (-866 (-501)) (-1070) (-1070) (-991 (-375 (-501))) (-991 (-375 (-501))))) (-15 -3237 ($ $ (-199)))))) (T -30)) -((-1646 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-866 (-501))) (-5 *3 (-1070)) (-5 *4 (-991 (-375 (-501)))) (-5 *1 (-30)))) (-3237 (*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30))))) -(-13 (-874) (-10 -8 (-15 -1646 ($ (-866 (-501)) (-1070) (-1070) (-991 (-375 (-501))) (-991 (-375 (-501))))) (-15 -3237 ($ $ (-199))))) -((-2899 ((|#2| (-1064 |#2|) (-1070)) 42)) (-1853 (((-108) (-108)) 55)) (-1983 (((-1064 |#2|) (-553 |#2|)) 132 (|has| |#1| (-950 (-501))))) (-2041 ((|#2| |#1| (-501)) 109 (|has| |#1| (-950 (-501))))) (-2612 ((|#2| (-1064 |#2|) |#2|) 30)) (-2643 (((-786) (-578 |#2|)) 85)) (-2264 ((|#2| |#2|) 128 (|has| |#1| (-950 (-501))))) (-3811 (((-107) (-108)) 18)) (** ((|#2| |#2| (-375 (-501))) 90 (|has| |#1| (-950 (-501)))))) -(((-31 |#1| |#2|) (-10 -7 (-15 -2899 (|#2| (-1064 |#2|) (-1070))) (-15 -1853 ((-108) (-108))) (-15 -3811 ((-107) (-108))) (-15 -2612 (|#2| (-1064 |#2|) |#2|)) (-15 -2643 ((-786) (-578 |#2|))) (IF (|has| |#1| (-950 (-501))) (PROGN (-15 ** (|#2| |#2| (-375 (-501)))) (-15 -1983 ((-1064 |#2|) (-553 |#2|))) (-15 -2264 (|#2| |#2|)) (-15 -2041 (|#2| |#1| (-501)))) |noBranch|)) (-13 (-777) (-508)) (-389 |#1|)) (T -31)) -((-2041 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *2 (-389 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-950 *4)) (-4 *3 (-13 (-777) (-508))))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-950 (-501))) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-31 *3 *2)) (-4 *2 (-389 *3)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-553 *5)) (-4 *5 (-389 *4)) (-4 *4 (-950 (-501))) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-1064 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-950 (-501))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-31 *4 *2)) (-4 *2 (-389 *4)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-786)) (-5 *1 (-31 *4 *5)))) (-2612 (*1 *2 *3 *2) (-12 (-5 *3 (-1064 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-31 *4 *2)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-389 *4)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-31 *3 *4)) (-4 *4 (-389 *3)))) (-2899 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *2)) (-5 *4 (-1070)) (-4 *2 (-389 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-777) (-508)))))) -(-10 -7 (-15 -2899 (|#2| (-1064 |#2|) (-1070))) (-15 -1853 ((-108) (-108))) (-15 -3811 ((-107) (-108))) (-15 -2612 (|#2| (-1064 |#2|) |#2|)) (-15 -2643 ((-786) (-578 |#2|))) (IF (|has| |#1| (-950 (-501))) (PROGN (-15 ** (|#2| |#2| (-375 (-501)))) (-15 -1983 ((-1064 |#2|) (-553 |#2|))) (-15 -2264 (|#2| |#2|)) (-15 -2041 (|#2| |#1| (-501)))) |noBranch|)) -((-2997 (((-107) $ (-701)) 16)) (-2540 (($) 10)) (-3379 (((-107) $ (-701)) 15)) (-3155 (((-107) $ (-701)) 14)) (-1262 (((-107) $ $) 8)) (-1407 (((-107) $) 13))) -(((-32 |#1|) (-10 -8 (-15 -2540 (|#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701))) (-15 -1407 ((-107) |#1|)) (-15 -1262 ((-107) |#1| |#1|))) (-33)) (T -32)) -NIL -(-10 -8 (-15 -2540 (|#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701))) (-15 -1407 ((-107) |#1|)) (-15 -1262 ((-107) |#1| |#1|))) -((-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-3379 (((-107) $ (-701)) 9)) (-3155 (((-107) $ (-701)) 10)) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3764 (($ $) 13)) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-33) (-1180)) (T -33)) -((-1262 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-3764 (*1 *1 *1) (-4 *1 (-33))) (-3122 (*1 *1) (-4 *1 (-33))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-3155 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107)))) (-3379 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107)))) (-2997 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107)))) (-2540 (*1 *1) (-4 *1 (-33))) (-3581 (*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-33)) (-5 *2 (-701))))) -(-13 (-1104) (-10 -8 (-15 -1262 ((-107) $ $)) (-15 -3764 ($ $)) (-15 -3122 ($)) (-15 -1407 ((-107) $)) (-15 -3155 ((-107) $ (-701))) (-15 -3379 ((-107) $ (-701))) (-15 -2997 ((-107) $ (-701))) (-15 -2540 ($) -3897) (IF (|has| $ (-6 -4167)) (-15 -3581 ((-701) $)) |noBranch|))) -(((-1104) . T)) -((-4003 (($ $) 11)) (-3995 (($ $) 10)) (-4013 (($ $) 9)) (-3550 (($ $) 8)) (-4008 (($ $) 7)) (-3999 (($ $) 6))) -(((-34) (-1180)) (T -34)) -((-4003 (*1 *1 *1) (-4 *1 (-34))) (-3995 (*1 *1 *1) (-4 *1 (-34))) (-4013 (*1 *1 *1) (-4 *1 (-34))) (-3550 (*1 *1 *1) (-4 *1 (-34))) (-4008 (*1 *1 *1) (-4 *1 (-34))) (-3999 (*1 *1 *1) (-4 *1 (-34)))) -(-13 (-10 -8 (-15 -3999 ($ $)) (-15 -4008 ($ $)) (-15 -3550 ($ $)) (-15 -4013 ($ $)) (-15 -3995 ($ $)) (-15 -4003 ($ $)))) -((-3736 (((-107) $ $) 18 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2150 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 125)) (-2786 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 148)) (-1511 (($ $) 146)) (-3621 (($) 72) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 71)) (-1991 (((-1154) $ |#1| |#1|) 99 (|has| $ (-6 -4168))) (((-1154) $ (-501) (-501)) 178 (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 159 (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 209) (((-107) $) 203 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3441 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 200 (|has| $ (-6 -4168))) (($ $) 199 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2997 (((-107) $ (-701)) 8)) (-1594 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 134 (|has| $ (-6 -4168)))) (-3319 (($ $ $) 155 (|has| $ (-6 -4168)))) (-2193 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 157 (|has| $ (-6 -4168)))) (-2535 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 153 (|has| $ (-6 -4168)))) (-3754 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 189 (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-1116 (-501)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 160 (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "last" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 158 (|has| $ (-6 -4168))) (($ $ "rest" $) 156 (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "first" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 154 (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "value" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 133 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 132 (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 45 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 216)) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 55 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 175 (|has| $ (-6 -4167)))) (-1564 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 147)) (-4019 (((-3 |#2| "failed") |#1| $) 61)) (-2540 (($) 7 T CONST)) (-1375 (($ $) 201 (|has| $ (-6 -4168)))) (-3785 (($ $) 211)) (-1199 (($ $ (-701)) 142) (($ $) 140)) (-2921 (($ $) 214 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2673 (($ $) 58 (-1405 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))) (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 46 (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 220) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 215 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 54 (|has| $ (-6 -4167))) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 174 (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 56 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 53 (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 52 (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 176 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 173 (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 172 (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 190 (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) 88) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) 188)) (-3275 (((-107) $) 192)) (-1934 (((-501) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 208) (((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 207 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) (((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) 206 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 30 (|has| $ (-6 -4167))) (((-578 |#2|) $) 79 (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 114 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 123)) (-3201 (((-107) $ $) 131 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-3634 (($ (-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 169)) (-3379 (((-107) $ (-701)) 9)) (-3627 ((|#1| $) 96 (|has| |#1| (-777))) (((-501) $) 180 (|has| (-501) (-777)))) (-4111 (($ $ $) 198 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2213 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3216 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 29 (|has| $ (-6 -4167))) (((-578 |#2|) $) 80 (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 115 (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167)))) (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))))) (-1522 ((|#1| $) 95 (|has| |#1| (-777))) (((-501) $) 181 (|has| (-501) (-777)))) (-1323 (($ $ $) 197 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 34 (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4168))) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 110 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 109)) (-3143 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 225)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 128)) (-2341 (((-107) $) 124)) (-3460 (((-1053) $) 22 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1383 (($ $ (-701)) 145) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 143)) (-1500 (((-578 |#1|) $) 63)) (-3576 (((-107) |#1| $) 64)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 39)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 40) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) 219) (($ $ $ (-501)) 218)) (-1473 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) 162) (($ $ $ (-501)) 161)) (-2658 (((-578 |#1|) $) 93) (((-578 (-501)) $) 183)) (-2852 (((-107) |#1| $) 92) (((-107) (-501) $) 184)) (-3708 (((-1018) $) 21 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1190 ((|#2| $) 97 (|has| |#1| (-777))) (($ $ (-701)) 139) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 137)) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 51) (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 171)) (-3084 (($ $ |#2|) 98 (|has| $ (-6 -4168))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 179 (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 41)) (-3654 (((-107) $) 191)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 32 (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 112 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) 26 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 25 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 24 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 23 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) 86 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) 84 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) 83 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 121 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 120 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 119 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) 118 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 182 (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-4137 (((-578 |#2|) $) 91) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 185)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 187) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) 186) (($ $ (-1116 (-501))) 165) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "first") 138) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "value") 126)) (-1932 (((-501) $ $) 129)) (-3013 (($) 49) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 48)) (-1386 (($ $ (-501)) 222) (($ $ (-1116 (-501))) 221)) (-1468 (($ $ (-501)) 164) (($ $ (-1116 (-501))) 163)) (-2622 (((-107) $) 127)) (-1455 (($ $) 151)) (-3873 (($ $) 152 (|has| $ (-6 -4168)))) (-3278 (((-701) $) 150)) (-2787 (($ $) 149)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 31 (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-701) |#2| $) 81 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 113 (|has| $ (-6 -4167)))) (-2355 (($ $ $ (-501)) 202 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490)))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 50) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 170)) (-1186 (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 224) (($ $ $) 223)) (-3934 (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 168) (($ (-578 $)) 167) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 136) (($ $ $) 135)) (-3691 (((-786) $) 20 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1961 (((-578 $) $) 122)) (-2970 (((-107) $ $) 130 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 42)) (-1481 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") |#1| $) 108)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 33 (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 111 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 195 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3768 (((-107) $ $) 194 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3751 (((-107) $ $) 19 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-3773 (((-107) $ $) 196 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3762 (((-107) $ $) 193 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-35 |#1| |#2|) (-1180) (-1001) (-1001)) (T -35)) -((-1481 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-2 (|:| -3626 *3) (|:| -2922 *4)))))) -(-13 (-1081 |t#1| |t#2|) (-601 (-2 (|:| -3626 |t#1|) (|:| -2922 |t#2|))) (-10 -8 (-15 -1481 ((-3 (-2 (|:| -3626 |t#1|) (|:| -2922 |t#2|)) "failed") |t#1| $)))) -(((-33) . T) ((-102 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-97) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777))) ((-555 (-786)) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777))) ((-138 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-556 (-490)) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))) ((-202 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-208 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-256 (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-256 |#1| |#2|) . T) ((-258 (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-278 |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-252 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-340 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-454 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-454 |#2|) . T) ((-548 (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-548 |#1| |#2|) . T) ((-476 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-476 |#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-552 |#1| |#2|) . T) ((-586 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-601 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-777) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)) ((-924 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-1001) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777))) ((-1044 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-1081 |#1| |#2|) . T) ((-1104) . T) ((-1138 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T)) -((-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) 10))) -(((-36 |#1| |#2|) (-10 -8 (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-37 |#2|) (-156)) (T -36)) -NIL -(-10 -8 (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-37 |#1|) (-1180) (-156)) (T -37)) -((-3691 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156))))) -(-13 (-959) (-648 |t#1|) (-10 -8 (-15 -3691 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) . T) ((-657) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3205 (((-373 |#1|) |#1|) 38)) (-3739 (((-373 |#1|) |#1|) 27) (((-373 |#1|) |#1| (-578 (-47))) 30)) (-2447 (((-107) |#1|) 54))) -(((-38 |#1|) (-10 -7 (-15 -3739 ((-373 |#1|) |#1| (-578 (-47)))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3205 ((-373 |#1|) |#1|)) (-15 -2447 ((-107) |#1|))) (-1125 (-47))) (T -38)) -((-2447 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) (-3205 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47)))))) -(-10 -7 (-15 -3739 ((-373 |#1|) |#1| (-578 (-47)))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3205 ((-373 |#1|) |#1|)) (-15 -2447 ((-107) |#1|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3767 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| (-375 |#2|) (-331)))) (-2865 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1639 (((-107) $) NIL (|has| (-375 |#2|) (-331)))) (-2239 (((-621 (-375 |#2|)) (-1148 $)) NIL) (((-621 (-375 |#2|))) NIL)) (-2225 (((-375 |#2|) $) NIL)) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-375 |#2|) (-318)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1559 (((-373 $) $) NIL (|has| (-375 |#2|) (-331)))) (-2781 (((-107) $ $) NIL (|has| (-375 |#2|) (-331)))) (-3796 (((-701)) NIL (|has| (-375 |#2|) (-336)))) (-3285 (((-107)) NIL)) (-2330 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| (-375 |#2|) (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-3 (-375 |#2|) "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| (-375 |#2|) (-950 (-501)))) (((-375 (-501)) $) NIL (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-375 |#2|) $) NIL)) (-3142 (($ (-1148 (-375 |#2|)) (-1148 $)) NIL) (($ (-1148 (-375 |#2|))) 57) (($ (-1148 |#2|) |#2|) 124)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-375 |#2|) (-318)))) (-3023 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3070 (((-621 (-375 |#2|)) $ (-1148 $)) NIL) (((-621 (-375 |#2|)) $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-375 |#2|))) (|:| |vec| (-1148 (-375 |#2|)))) (-621 $) (-1148 $)) NIL) (((-621 (-375 |#2|)) (-621 $)) NIL)) (-3566 (((-1148 $) (-1148 $)) NIL)) (-3547 (($ |#3|) NIL) (((-3 $ "failed") (-375 |#3|)) NIL (|has| (-375 |#2|) (-331)))) (-2174 (((-3 $ "failed") $) NIL)) (-1286 (((-578 (-578 |#1|))) NIL (|has| |#1| (-336)))) (-2142 (((-107) |#1| |#1|) NIL)) (-3689 (((-839)) NIL)) (-2890 (($) NIL (|has| (-375 |#2|) (-336)))) (-2516 (((-107)) NIL)) (-1436 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-3034 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| (-375 |#2|) (-331)))) (-3533 (($ $) NIL)) (-1317 (($) NIL (|has| (-375 |#2|) (-318)))) (-3521 (((-107) $) NIL (|has| (-375 |#2|) (-318)))) (-3067 (($ $ (-701)) NIL (|has| (-375 |#2|) (-318))) (($ $) NIL (|has| (-375 |#2|) (-318)))) (-1628 (((-107) $) NIL (|has| (-375 |#2|) (-331)))) (-3169 (((-839) $) NIL (|has| (-375 |#2|) (-318))) (((-762 (-839)) $) NIL (|has| (-375 |#2|) (-318)))) (-1355 (((-107) $) NIL)) (-1206 (((-701)) NIL)) (-3740 (((-1148 $) (-1148 $)) 100)) (-2626 (((-375 |#2|) $) NIL)) (-1607 (((-578 (-866 |#1|)) (-1070)) NIL (|has| |#1| (-331)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-375 |#2|) (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-375 |#2|) (-331)))) (-1792 ((|#3| $) NIL (|has| (-375 |#2|) (-331)))) (-3104 (((-839) $) NIL (|has| (-375 |#2|) (-336)))) (-1316 ((|#3| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| (-375 |#2|) (-331))) (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3460 (((-1053) $) NIL)) (-3112 (((-1154) (-701)) 78)) (-1275 (((-621 (-375 |#2|))) 51)) (-2368 (((-621 (-375 |#2|))) 44)) (-3833 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1318 (($ (-1148 |#2|) |#2|) 125)) (-2466 (((-621 (-375 |#2|))) 45)) (-2796 (((-621 (-375 |#2|))) 43)) (-1276 (((-2 (|:| |num| (-621 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-3418 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) 63)) (-2664 (((-1148 $)) 42)) (-1897 (((-1148 $)) 41)) (-3672 (((-107) $) NIL)) (-2131 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-3746 (($) NIL (|has| (-375 |#2|) (-318)) CONST)) (-3506 (($ (-839)) NIL (|has| (-375 |#2|) (-336)))) (-2050 (((-3 |#2| "failed")) NIL)) (-3708 (((-1018) $) NIL)) (-4122 (((-701)) NIL)) (-3987 (($) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| (-375 |#2|) (-331)))) (-3664 (($ (-578 $)) NIL (|has| (-375 |#2|) (-331))) (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-375 |#2|) (-318)))) (-3739 (((-373 $) $) NIL (|has| (-375 |#2|) (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-375 |#2|) (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| (-375 |#2|) (-331)))) (-3694 (((-3 $ "failed") $ $) NIL (|has| (-375 |#2|) (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-375 |#2|) (-331)))) (-1864 (((-701) $) NIL (|has| (-375 |#2|) (-331)))) (-2007 ((|#1| $ |#1| |#1|) NIL)) (-2435 (((-3 |#2| "failed")) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| (-375 |#2|) (-331)))) (-2532 (((-375 |#2|) (-1148 $)) NIL) (((-375 |#2|)) 39)) (-1984 (((-701) $) NIL (|has| (-375 |#2|) (-318))) (((-3 (-701) "failed") $ $) NIL (|has| (-375 |#2|) (-318)))) (-2596 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-2231 (((-621 (-375 |#2|)) (-1148 $) (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331)))) (-2264 ((|#3|) 50)) (-1349 (($) NIL (|has| (-375 |#2|) (-318)))) (-2085 (((-1148 (-375 |#2|)) $ (-1148 $)) NIL) (((-621 (-375 |#2|)) (-1148 $) (-1148 $)) NIL) (((-1148 (-375 |#2|)) $) 58) (((-621 (-375 |#2|)) (-1148 $)) 101)) (-1248 (((-1148 (-375 |#2|)) $) NIL) (($ (-1148 (-375 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-375 |#2|) (-318)))) (-1416 (((-1148 $) (-1148 $)) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 |#2|)) NIL) (($ (-375 (-501))) NIL (-1405 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-950 (-375 (-501)))))) (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1274 (($ $) NIL (|has| (-375 |#2|) (-318))) (((-3 $ "failed") $) NIL (|has| (-375 |#2|) (-132)))) (-2942 ((|#3| $) NIL)) (-3965 (((-701)) NIL)) (-2675 (((-107)) 37)) (-3969 (((-107) |#1|) 49) (((-107) |#2|) 130)) (-4119 (((-1148 $)) 91)) (-2442 (((-107) $ $) NIL (|has| (-375 |#2|) (-331)))) (-2548 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2710 (((-107)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| (-375 |#2|) (-331)))) (-1850 (($) 16 T CONST)) (-1925 (($) 26 T CONST)) (-3584 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| (-375 |#2|) (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 |#2|)) NIL) (($ (-375 |#2|) $) NIL) (($ (-375 (-501)) $) NIL (|has| (-375 |#2|) (-331))) (($ $ (-375 (-501))) NIL (|has| (-375 |#2|) (-331))))) -(((-39 |#1| |#2| |#3| |#4|) (-13 (-310 |#1| |#2| |#3|) (-10 -7 (-15 -3112 ((-1154) (-701))))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) |#3|) (T -39)) -((-3112 (*1 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-331)) (-4 *5 (-1125 *4)) (-5 *2 (-1154)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1125 (-375 *5))) (-14 *7 *6)))) -(-13 (-310 |#1| |#2| |#3|) (-10 -7 (-15 -3112 ((-1154) (-701))))) -((-2349 ((|#2| |#2|) 47)) (-2324 ((|#2| |#2|) 116 (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-419)) (|has| |#1| (-777)) (|has| |#1| (-950 (-501)))))) (-3207 ((|#2| |#2|) 85 (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-419)) (|has| |#1| (-777)) (|has| |#1| (-950 (-501)))))) (-1398 ((|#2| |#2|) 86 (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-419)) (|has| |#1| (-777)) (|has| |#1| (-950 (-501)))))) (-3575 ((|#2| (-108) |#2| (-701)) 73 (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-419)) (|has| |#1| (-777)) (|has| |#1| (-950 (-501)))))) (-2649 (((-1064 |#2|) |#2|) 44)) (-1191 ((|#2| |#2| (-578 (-553 |#2|))) 17) ((|#2| |#2| (-578 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15))) -(((-40 |#1| |#2|) (-10 -7 (-15 -2349 (|#2| |#2|)) (-15 -1191 (|#2| |#2|)) (-15 -1191 (|#2| |#2| |#2|)) (-15 -1191 (|#2| |#2| (-578 |#2|))) (-15 -1191 (|#2| |#2| (-578 (-553 |#2|)))) (-15 -2649 ((-1064 |#2|) |#2|)) (IF (|has| |#1| (-777)) (IF (|has| |#1| (-419)) (IF (|has| |#1| (-950 (-501))) (IF (|has| |#2| (-389 |#1|)) (PROGN (-15 -1398 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -3575 (|#2| (-108) |#2| (-701)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-508) (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 |#1| (-553 $)) $)) (-15 -2949 ((-1023 |#1| (-553 $)) $)) (-15 -3691 ($ (-1023 |#1| (-553 $))))))) (T -40)) -((-3575 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-108)) (-5 *4 (-701)) (-4 *5 (-419)) (-4 *5 (-777)) (-4 *5 (-950 (-501))) (-4 *5 (-508)) (-5 *1 (-40 *5 *2)) (-4 *2 (-389 *5)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *5 (-553 $)) $)) (-15 -2949 ((-1023 *5 (-553 $)) $)) (-15 -3691 ($ (-1023 *5 (-553 $))))))))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) (-3207 (*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) (-1398 (*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) (-2649 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-1064 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $))))))))) (-1191 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-553 *2))) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $))))))) (-4 *4 (-508)) (-5 *1 (-40 *4 *2)))) (-1191 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $))))))) (-4 *4 (-508)) (-5 *1 (-40 *4 *2)))) (-1191 (*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) (-1191 (*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $)))))))))) -(-10 -7 (-15 -2349 (|#2| |#2|)) (-15 -1191 (|#2| |#2|)) (-15 -1191 (|#2| |#2| |#2|)) (-15 -1191 (|#2| |#2| (-578 |#2|))) (-15 -1191 (|#2| |#2| (-578 (-553 |#2|)))) (-15 -2649 ((-1064 |#2|) |#2|)) (IF (|has| |#1| (-777)) (IF (|has| |#1| (-419)) (IF (|has| |#1| (-950 (-501))) (IF (|has| |#2| (-389 |#1|)) (PROGN (-15 -1398 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -3575 (|#2| (-108) |#2| (-701)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) -((-3739 (((-373 (-1064 |#3|)) (-1064 |#3|) (-578 (-47))) 22) (((-373 |#3|) |#3| (-578 (-47))) 18))) -(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3739 ((-373 |#3|) |#3| (-578 (-47)))) (-15 -3739 ((-373 (-1064 |#3|)) (-1064 |#3|) (-578 (-47))))) (-777) (-723) (-870 (-47) |#2| |#1|)) (T -41)) -((-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *7 (-870 (-47) *6 *5)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *2 (-373 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-870 (-47) *6 *5))))) -(-10 -7 (-15 -3739 ((-373 |#3|) |#3| (-578 (-47)))) (-15 -3739 ((-373 (-1064 |#3|)) (-1064 |#3|) (-578 (-47))))) -((-3337 (((-701) |#2|) 65)) (-2246 (((-701) |#2|) 68)) (-3620 (((-578 |#2|)) 33)) (-3244 (((-701) |#2|) 67)) (-1351 (((-701) |#2|) 64)) (-1614 (((-701) |#2|) 66)) (-2238 (((-578 (-621 |#1|))) 60)) (-2399 (((-578 |#2|)) 55)) (-3817 (((-578 |#2|) |#2|) 43)) (-2126 (((-578 |#2|)) 57)) (-2569 (((-578 |#2|)) 56)) (-3385 (((-578 (-621 |#1|))) 48)) (-3825 (((-578 |#2|)) 54)) (-2463 (((-578 |#2|) |#2|) 42)) (-1705 (((-578 |#2|)) 50)) (-2429 (((-578 (-621 |#1|))) 61)) (-3489 (((-578 |#2|)) 59)) (-4119 (((-1148 |#2|) (-1148 |#2|)) 83 (|has| |#1| (-276))))) -(((-42 |#1| |#2|) (-10 -7 (-15 -3244 ((-701) |#2|)) (-15 -2246 ((-701) |#2|)) (-15 -1351 ((-701) |#2|)) (-15 -3337 ((-701) |#2|)) (-15 -1614 ((-701) |#2|)) (-15 -1705 ((-578 |#2|))) (-15 -2463 ((-578 |#2|) |#2|)) (-15 -3817 ((-578 |#2|) |#2|)) (-15 -3825 ((-578 |#2|))) (-15 -2399 ((-578 |#2|))) (-15 -2569 ((-578 |#2|))) (-15 -2126 ((-578 |#2|))) (-15 -3489 ((-578 |#2|))) (-15 -3385 ((-578 (-621 |#1|)))) (-15 -2238 ((-578 (-621 |#1|)))) (-15 -2429 ((-578 (-621 |#1|)))) (-15 -3620 ((-578 |#2|))) (IF (|has| |#1| (-276)) (-15 -4119 ((-1148 |#2|) (-1148 |#2|))) |noBranch|)) (-508) (-386 |#1|)) (T -42)) -((-4119 (*1 *2 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-386 *3)) (-4 *3 (-276)) (-4 *3 (-508)) (-5 *1 (-42 *3 *4)))) (-3620 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-2429 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-2238 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-3385 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-3489 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-2126 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-2569 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-2399 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-3825 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-3817 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-2463 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-1705 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-1614 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-1351 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-2246 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-3244 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4))))) -(-10 -7 (-15 -3244 ((-701) |#2|)) (-15 -2246 ((-701) |#2|)) (-15 -1351 ((-701) |#2|)) (-15 -3337 ((-701) |#2|)) (-15 -1614 ((-701) |#2|)) (-15 -1705 ((-578 |#2|))) (-15 -2463 ((-578 |#2|) |#2|)) (-15 -3817 ((-578 |#2|) |#2|)) (-15 -3825 ((-578 |#2|))) (-15 -2399 ((-578 |#2|))) (-15 -2569 ((-578 |#2|))) (-15 -2126 ((-578 |#2|))) (-15 -3489 ((-578 |#2|))) (-15 -3385 ((-578 (-621 |#1|)))) (-15 -2238 ((-578 (-621 |#1|)))) (-15 -2429 ((-578 (-621 |#1|)))) (-15 -3620 ((-578 |#2|))) (IF (|has| |#1| (-276)) (-15 -4119 ((-1148 |#2|) (-1148 |#2|))) |noBranch|)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1738 (((-3 $ "failed")) NIL (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-1763 (((-1148 (-621 |#1|)) (-1148 $)) NIL) (((-1148 (-621 |#1|))) 24)) (-1674 (((-1148 $)) 50)) (-2540 (($) NIL T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (|has| |#1| (-508)))) (-1956 (((-3 $ "failed")) NIL (|has| |#1| (-508)))) (-2311 (((-621 |#1|) (-1148 $)) NIL) (((-621 |#1|)) NIL)) (-1909 ((|#1| $) NIL)) (-3867 (((-621 |#1|) $ (-1148 $)) NIL) (((-621 |#1|) $) NIL)) (-1887 (((-3 $ "failed") $) NIL (|has| |#1| (-508)))) (-3665 (((-1064 (-866 |#1|))) NIL (|has| |#1| (-331)))) (-2911 (($ $ (-839)) NIL)) (-3925 ((|#1| $) NIL)) (-2292 (((-1064 |#1|) $) NIL (|has| |#1| (-508)))) (-2398 ((|#1| (-1148 $)) NIL) ((|#1|) NIL)) (-3333 (((-1064 |#1|) $) NIL)) (-3656 (((-107)) 86)) (-3142 (($ (-1148 |#1|) (-1148 $)) NIL) (($ (-1148 |#1|)) NIL)) (-2174 (((-3 $ "failed") $) 14 (|has| |#1| (-508)))) (-3689 (((-839)) 51)) (-3168 (((-107)) NIL)) (-3554 (($ $ (-839)) NIL)) (-3930 (((-107)) NIL)) (-2838 (((-107)) NIL)) (-3874 (((-107)) 88)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (|has| |#1| (-508)))) (-2653 (((-3 $ "failed")) NIL (|has| |#1| (-508)))) (-4146 (((-621 |#1|) (-1148 $)) NIL) (((-621 |#1|)) NIL)) (-3821 ((|#1| $) NIL)) (-1472 (((-621 |#1|) $ (-1148 $)) NIL) (((-621 |#1|) $) NIL)) (-1992 (((-3 $ "failed") $) NIL (|has| |#1| (-508)))) (-2582 (((-1064 (-866 |#1|))) NIL (|has| |#1| (-331)))) (-3381 (($ $ (-839)) NIL)) (-3784 ((|#1| $) NIL)) (-3474 (((-1064 |#1|) $) NIL (|has| |#1| (-508)))) (-1600 ((|#1| (-1148 $)) NIL) ((|#1|) NIL)) (-2270 (((-1064 |#1|) $) NIL)) (-2172 (((-107)) 85)) (-3460 (((-1053) $) NIL)) (-3808 (((-107)) 92)) (-2417 (((-107)) 91)) (-2794 (((-107)) 93)) (-3708 (((-1018) $) NIL)) (-2780 (((-107)) 87)) (-2007 ((|#1| $ (-501)) 53)) (-2085 (((-1148 |#1|) $ (-1148 $)) 47) (((-621 |#1|) (-1148 $) (-1148 $)) NIL) (((-1148 |#1|) $) 28) (((-621 |#1|) (-1148 $)) NIL)) (-1248 (((-1148 |#1|) $) NIL) (($ (-1148 |#1|)) NIL)) (-3056 (((-578 (-866 |#1|)) (-1148 $)) NIL) (((-578 (-866 |#1|))) NIL)) (-2144 (($ $ $) NIL)) (-1977 (((-107)) 83)) (-3691 (((-786) $) 68) (($ (-1148 |#1|)) 22)) (-4119 (((-1148 $)) 44)) (-4102 (((-578 (-1148 |#1|))) NIL (|has| |#1| (-508)))) (-1363 (($ $ $ $) NIL)) (-1273 (((-107)) 81)) (-1183 (($ (-621 |#1|) $) 18)) (-2033 (($ $ $) NIL)) (-2625 (((-107)) 84)) (-3675 (((-107)) 82)) (-3258 (((-107)) 80)) (-1850 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1037 |#2| |#1|) $) 19))) -(((-43 |#1| |#2| |#3| |#4|) (-13 (-386 |#1|) (-583 (-1037 |#2| |#1|)) (-10 -8 (-15 -3691 ($ (-1148 |#1|))))) (-331) (-839) (-578 (-1070)) (-1148 (-621 |#1|))) (T -43)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-331)) (-14 *6 (-1148 (-621 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-839)) (-14 *5 (-578 (-1070)))))) -(-13 (-386 |#1|) (-583 (-1037 |#2| |#1|)) (-10 -8 (-15 -3691 ($ (-1148 |#1|))))) -((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2150 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2786 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-1511 (($ $) NIL)) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168))) (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (((-107) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3441 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777))))) (-2861 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-1594 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168)))) (-3319 (($ $ $) 27 (|has| $ (-6 -4168)))) (-2193 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168)))) (-2535 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 29 (|has| $ (-6 -4168)))) (-3754 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-1116 (-501)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "last" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168))) (($ $ "rest" $) NIL (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "first" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "value" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1564 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4019 (((-3 |#2| "failed") |#1| $) 37)) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-1199 (($ $ (-701)) NIL) (($ $) 24)) (-2921 (($ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 46) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) NIL)) (-3275 (((-107) $) NIL)) (-1934 (((-501) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) (((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 18 (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 18 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-3634 (($ (-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777))) (((-501) $) 32 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2213 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3216 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777))) (((-501) $) 34 (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168))) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3143 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) 41 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1383 (($ $ (-701)) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-1500 (((-578 |#1|) $) 20)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-1473 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 |#1|) $) NIL) (((-578 (-501)) $) NIL)) (-2852 (((-107) |#1| $) NIL) (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777))) (($ $ (-701)) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 23)) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-3654 (((-107) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-4137 (((-578 |#2|) $) NIL) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 17)) (-1407 (((-107) $) 16)) (-3122 (($) 13)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) NIL) (($ $ (-1116 (-501))) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "first") NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "value") NIL)) (-1932 (((-501) $ $) NIL)) (-3013 (($) 12) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1386 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-2622 (((-107) $) NIL)) (-1455 (($ $) NIL)) (-3873 (($ $) NIL (|has| $ (-6 -4168)))) (-3278 (((-701) $) NIL)) (-2787 (($ $) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1186 (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL) (($ $ $) NIL)) (-3934 (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL) (($ (-578 $)) NIL) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 25) (($ $ $) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1481 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") |#1| $) 43)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3773 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3581 (((-701) $) 22 (|has| $ (-6 -4167))))) -(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1001) (-1001)) (T -44)) +(3124874 . 3403927952) +((-2044 (((-107) (-1 (-107) |#2| |#2|) $) 62) (((-107) $) NIL)) (-2034 (($ (-1 (-107) |#2| |#2|) $) 17) (($ $) NIL)) (-2411 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-1121 (-517)) |#2|) 34)) (-4020 (($ $) 58)) (-3225 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2607 (((-517) (-1 (-107) |#2|) $) 22) (((-517) |#2| $) NIL) (((-517) |#2| $ (-517)) 70)) (-1536 (((-583 |#2|) $) 13)) (-3237 (($ (-1 (-107) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-1433 (($ (-1 |#2| |#2|) $) 29)) (-1893 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2620 (($ |#2| $ (-517)) NIL) (($ $ $ (-517)) 49)) (-2887 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 24)) (-2048 (((-107) (-1 (-107) |#2|) $) 21)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL) (($ $ (-1121 (-517))) 48)) (-3750 (($ $ (-517)) 55) (($ $ (-1121 (-517))) 54)) (-3217 (((-703) (-1 (-107) |#2|) $) 26) (((-703) |#2| $) NIL)) (-1906 (($ $ $ (-517)) 51)) (-2433 (($ $) 50)) (-2276 (($ (-583 |#2|)) 52)) (-2452 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (-583 $)) 61)) (-2256 (((-787) $) 68)) (-3675 (((-107) (-1 (-107) |#2|) $) 20)) (-1547 (((-107) $ $) 69)) (-1572 (((-107) $ $) 72))) +(((-18 |#1| |#2|) (-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -2044 ((-107) |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|))) (-19 |#2|) (-1108)) (T -18)) +NIL +(-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -2044 ((-107) |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-19 |#1|) (-1184) (-1108)) (T -19)) +NIL +(-13 (-343 |t#1|) (-10 -7 (-6 -4181))) +(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T)) +((-4038 (((-3 $ "failed") $ $) 12)) (-1654 (($ $) NIL) (($ $ $) 9)) (* (($ (-843) $) NIL) (($ (-703) $) 16) (($ (-517) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -4038 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-21)) (T -20)) +NIL +(-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -4038 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20))) +(((-21) (-1184)) (T -21)) +((-1654 (*1 *1 *1) (-4 *1 (-21))) (-1654 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517))))) +(-13 (-123) (-10 -8 (-15 -1654 ($ $)) (-15 -1654 ($ $ $)) (-15 * ($ (-517) $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2814 (((-107) $) 10)) (-3092 (($) 15)) (* (($ (-843) $) 14) (($ (-703) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 * (|#1| (-843) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 * (|#1| (-843) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15))) +(((-23) (-1184)) (T -23)) +((-2396 (*1 *1) (-4 *1 (-23))) (-3092 (*1 *1) (-4 *1 (-23))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703))))) +(-13 (-25) (-10 -8 (-15 (-2396) ($) -1619) (-15 -3092 ($) -1619) (-15 -2814 ((-107) $)) (-15 * ($ (-703) $)))) +(((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((* (($ (-843) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-843) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-843) |#1|))) +((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13))) +(((-25) (-1184)) (T -25)) +((-1642 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-843))))) +(-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ (-843) $)))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2888 (((-583 $) (-874 $)) 29) (((-583 $) (-1069 $)) 16) (((-583 $) (-1069 $) (-1073)) 20)) (-3869 (($ (-874 $)) 27) (($ (-1069 $)) 11) (($ (-1069 $) (-1073)) 54)) (-1649 (((-583 $) (-874 $)) 30) (((-583 $) (-1069 $)) 18) (((-583 $) (-1069 $) (-1073)) 19)) (-3267 (($ (-874 $)) 28) (($ (-1069 $)) 13) (($ (-1069 $) (-1073)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|)))) +((-2750 (((-107) $ $) 7)) (-2888 (((-583 $) (-874 $)) 80) (((-583 $) (-1069 $)) 79) (((-583 $) (-1069 $) (-1073)) 78)) (-3869 (($ (-874 $)) 83) (($ (-1069 $)) 82) (($ (-1069 $) (-1073)) 81)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 92)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-1649 (((-583 $) (-874 $)) 86) (((-583 $) (-1069 $)) 85) (((-583 $) (-1069 $) (-1073)) 84)) (-3267 (($ (-874 $)) 89) (($ (-1069 $)) 88) (($ (-1069 $) (-1073)) 87)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 91)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) +(((-27) (-1184)) (T -27)) +((-3267 (*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) (-3267 (*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) (-3267 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-3869 (*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) (-3869 (*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) (-3869 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1))))) +(-13 (-333) (-918) (-10 -8 (-15 -3267 ($ (-874 $))) (-15 -3267 ($ (-1069 $))) (-15 -3267 ($ (-1069 $) (-1073))) (-15 -1649 ((-583 $) (-874 $))) (-15 -1649 ((-583 $) (-1069 $))) (-15 -1649 ((-583 $) (-1069 $) (-1073))) (-15 -3869 ($ (-874 $))) (-15 -3869 ($ (-1069 $))) (-15 -3869 ($ (-1069 $) (-1073))) (-15 -2888 ((-583 $) (-874 $))) (-15 -2888 ((-583 $) (-1069 $))) (-15 -2888 ((-583 $) (-1069 $) (-1073))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-918) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T)) +((-2888 (((-583 $) (-874 $)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-1069 $) (-1073)) 50) (((-583 $) $) 19) (((-583 $) $ (-1073)) 41)) (-3869 (($ (-874 $)) NIL) (($ (-1069 $)) NIL) (($ (-1069 $) (-1073)) 52) (($ $) 17) (($ $ (-1073)) 37)) (-1649 (((-583 $) (-874 $)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-1069 $) (-1073)) 48) (((-583 $) $) 15) (((-583 $) $ (-1073)) 43)) (-3267 (($ (-874 $)) NIL) (($ (-1069 $)) NIL) (($ (-1069 $) (-1073)) NIL) (($ $) 12) (($ $ (-1073)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -2888 ((-583 |#1|) |#1| (-1073))) (-15 -3869 (|#1| |#1| (-1073))) (-15 -2888 ((-583 |#1|) |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -1649 ((-583 |#1|) |#1| (-1073))) (-15 -3267 (|#1| |#1| (-1073))) (-15 -1649 ((-583 |#1|) |#1|)) (-15 -3267 (|#1| |#1|)) (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|)))) (-29 |#2|) (-13 (-779) (-509))) (T -28)) +NIL +(-10 -8 (-15 -2888 ((-583 |#1|) |#1| (-1073))) (-15 -3869 (|#1| |#1| (-1073))) (-15 -2888 ((-583 |#1|) |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -1649 ((-583 |#1|) |#1| (-1073))) (-15 -3267 (|#1| |#1| (-1073))) (-15 -1649 ((-583 |#1|) |#1|)) (-15 -3267 (|#1| |#1|)) (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|)))) +((-2750 (((-107) $ $) 7)) (-2888 (((-583 $) (-874 $)) 80) (((-583 $) (-1069 $)) 79) (((-583 $) (-1069 $) (-1073)) 78) (((-583 $) $) 126) (((-583 $) $ (-1073)) 124)) (-3869 (($ (-874 $)) 83) (($ (-1069 $)) 82) (($ (-1069 $) (-1073)) 81) (($ $) 127) (($ $ (-1073)) 125)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-1073)) $) 201)) (-2352 (((-377 (-1069 $)) $ (-556 $)) 233 (|has| |#1| (-509)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-3726 (((-583 (-556 $)) $) 164)) (-4038 (((-3 $ "failed") $ $) 19)) (-2302 (($ $ (-583 (-556 $)) (-583 $)) 154) (($ $ (-583 (-265 $))) 153) (($ $ (-265 $)) 152)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 92)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-1649 (((-583 $) (-874 $)) 86) (((-583 $) (-1069 $)) 85) (((-583 $) (-1069 $) (-1073)) 84) (((-583 $) $) 130) (((-583 $) $ (-1073)) 128)) (-3267 (($ (-874 $)) 89) (($ (-1069 $)) 88) (($ (-1069 $) (-1073)) 87) (($ $) 131) (($ $ (-1073)) 129)) (-1772 (((-3 (-874 |#1|) "failed") $) 251 (|has| |#1| (-961))) (((-3 (-377 (-874 |#1|)) "failed") $) 235 (|has| |#1| (-509))) (((-3 |#1| "failed") $) 197) (((-3 (-517) "failed") $) 195 (|has| |#1| (-952 (-517)))) (((-3 (-1073) "failed") $) 188) (((-3 (-556 $) "failed") $) 139) (((-3 (-377 (-517)) "failed") $) 123 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 (((-874 |#1|) $) 252 (|has| |#1| (-961))) (((-377 (-874 |#1|)) $) 236 (|has| |#1| (-509))) ((|#1| $) 198) (((-517) $) 194 (|has| |#1| (-952 (-517)))) (((-1073) $) 189) (((-556 $) $) 140) (((-377 (-517)) $) 122 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-2518 (($ $ $) 55)) (-3355 (((-623 |#1|) (-623 $)) 241 (|has| |#1| (-961))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 240 (|has| |#1| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 121 (-3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (((-623 (-517)) (-623 $)) 120 (-3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 193 (|has| |#1| (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 192 (|has| |#1| (-808 (-517))))) (-3374 (($ (-583 $)) 158) (($ $) 157)) (-4001 (((-583 (-109)) $) 165)) (-3072 (((-109) (-109)) 166)) (-3848 (((-107) $) 31)) (-1769 (((-107) $) 186 (|has| $ (-952 (-517))))) (-1405 (($ $) 218 (|has| |#1| (-961)))) (-1787 (((-1026 |#1| (-556 $)) $) 217 (|has| |#1| (-961)))) (-3824 (($ $ (-517)) 91)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1607 (((-1069 $) (-556 $)) 183 (|has| $ (-961)))) (-2967 (($ $ $) 137)) (-3099 (($ $ $) 136)) (-1893 (($ (-1 $ $) (-556 $)) 172)) (-1783 (((-3 (-556 $) "failed") $) 162)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-2343 (((-583 (-556 $)) $) 163)) (-1851 (($ (-109) (-583 $)) 171) (($ (-109) $) 170)) (-3703 (((-3 (-583 $) "failed") $) 212 (|has| |#1| (-1015)))) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) 221 (|has| |#1| (-961)))) (-3401 (((-3 (-583 $) "failed") $) 214 (|has| |#1| (-25)))) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) 220 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) 219 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) 213 (|has| |#1| (-1015)))) (-1609 (((-107) $ (-1073)) 169) (((-107) $ (-109)) 168)) (-4118 (($ $) 70)) (-1881 (((-703) $) 161)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 199)) (-4141 ((|#1| $) 200)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3832 (((-107) $ (-1073)) 174) (((-107) $ $) 173)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3998 (((-107) $) 185 (|has| $ (-952 (-517))))) (-2051 (($ $ (-1073) (-703) (-1 $ $)) 225 (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ (-583 $))) 224 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 223 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) 222 (|has| |#1| (-961))) (($ $ (-583 (-109)) (-583 $) (-1073)) 211 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1073)) 210 (|has| |#1| (-558 (-493)))) (($ $) 209 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073))) 208 (|has| |#1| (-558 (-493)))) (($ $ (-1073)) 207 (|has| |#1| (-558 (-493)))) (($ $ (-109) (-1 $ $)) 182) (($ $ (-109) (-1 $ (-583 $))) 181) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 180) (($ $ (-583 (-109)) (-583 (-1 $ $))) 179) (($ $ (-1073) (-1 $ $)) 178) (($ $ (-1073) (-1 $ (-583 $))) 177) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 176) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 175) (($ $ (-583 $) (-583 $)) 146) (($ $ $ $) 145) (($ $ (-265 $)) 144) (($ $ (-583 (-265 $))) 143) (($ $ (-583 (-556 $)) (-583 $)) 142) (($ $ (-556 $) $) 141)) (-3146 (((-703) $) 58)) (-1449 (($ (-109) (-583 $)) 151) (($ (-109) $ $ $ $) 150) (($ (-109) $ $ $) 149) (($ (-109) $ $) 148) (($ (-109) $) 147)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1630 (($ $ $) 160) (($ $) 159)) (-3127 (($ $ (-1073)) 249 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 248 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 247 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) 246 (|has| |#1| (-961)))) (-2971 (($ $) 228 (|has| |#1| (-509)))) (-1800 (((-1026 |#1| (-556 $)) $) 227 (|has| |#1| (-509)))) (-2135 (($ $) 184 (|has| $ (-961)))) (-3645 (((-493) $) 255 (|has| |#1| (-558 (-493)))) (($ (-388 $)) 226 (|has| |#1| (-509))) (((-814 (-349)) $) 191 (|has| |#1| (-558 (-814 (-349))))) (((-814 (-517)) $) 190 (|has| |#1| (-558 (-814 (-517)))))) (-1487 (($ $ $) 254 (|has| |#1| (-442)))) (-3394 (($ $ $) 253 (|has| |#1| (-442)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-874 |#1|)) 250 (|has| |#1| (-961))) (($ (-377 (-874 |#1|))) 234 (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) 232 (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) 231 (|has| |#1| (-509))) (($ (-377 |#1|)) 230 (|has| |#1| (-509))) (($ (-1026 |#1| (-556 $))) 216 (|has| |#1| (-961))) (($ |#1|) 196) (($ (-1073)) 187) (($ (-556 $)) 138)) (-1328 (((-3 $ "failed") $) 239 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-4148 (($ (-583 $)) 156) (($ $) 155)) (-4074 (((-107) (-109)) 167)) (-3329 (((-107) $ $) 39)) (-3760 (($ (-1073) (-583 $)) 206) (($ (-1073) $ $ $ $) 205) (($ (-1073) $ $ $) 204) (($ (-1073) $ $) 203) (($ (-1073) $) 202)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1073)) 245 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 244 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 243 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) 242 (|has| |#1| (-961)))) (-1606 (((-107) $ $) 134)) (-1583 (((-107) $ $) 133)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 135)) (-1572 (((-107) $ $) 132)) (-1667 (($ $ $) 64) (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 229 (|has| |#1| (-509)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-156))) (($ |#1| $) 237 (|has| |#1| (-156))))) +(((-29 |#1|) (-1184) (-13 (-779) (-509))) (T -29)) +((-3267 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-1649 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-1649 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-3869 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-2888 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-2888 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-400 |t#1|) (-10 -8 (-15 -3267 ($ $)) (-15 -1649 ((-583 $) $)) (-15 -3267 ($ $ (-1073))) (-15 -1649 ((-583 $) $ (-1073))) (-15 -3869 ($ $)) (-15 -2888 ((-583 $) $)) (-15 -3869 ($ $ (-1073))) (-15 -2888 ((-583 $) $ (-1073))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-217) . T) ((-262) . T) ((-278) . T) ((-280 $) . T) ((-273) . T) ((-333) . T) ((-347 |#1|) |has| |#1| (-961)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-400 |#1|) . T) ((-421) . T) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) ((-579 |#1|) |has| |#1| (-961)) ((-650 (-377 (-517))) . T) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-822 (-1073)) |has| |#1| (-961)) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-842) . T) ((-918) . T) ((-952 (-377 (-517))) -3807 (|has| |#1| (-952 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) ((-952 (-377 (-874 |#1|))) |has| |#1| (-509)) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-556 $)) . T) ((-952 (-874 |#1|)) |has| |#1| (-961)) ((-952 (-1073)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) |has| |#1| (-156)) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1108) . T) ((-1112) . T)) +((-1408 (((-998 (-199)) $) NIL)) (-1397 (((-998 (-199)) $) NIL)) (-3437 (($ $ (-199)) 122)) (-3507 (($ (-874 (-517)) (-1073) (-1073) (-998 (-377 (-517))) (-998 (-377 (-517)))) 84)) (-2602 (((-583 (-583 (-865 (-199)))) $) 134)) (-2256 (((-787) $) 146))) +(((-30) (-13 (-876) (-10 -8 (-15 -3507 ($ (-874 (-517)) (-1073) (-1073) (-998 (-377 (-517))) (-998 (-377 (-517))))) (-15 -3437 ($ $ (-199)))))) (T -30)) +((-3507 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-874 (-517))) (-5 *3 (-1073)) (-5 *4 (-998 (-377 (-517)))) (-5 *1 (-30)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30))))) +(-13 (-876) (-10 -8 (-15 -3507 ($ (-874 (-517)) (-1073) (-1073) (-998 (-377 (-517))) (-998 (-377 (-517))))) (-15 -3437 ($ $ (-199))))) +((-3267 ((|#2| (-1069 |#2|) (-1073)) 42)) (-3072 (((-109) (-109)) 55)) (-1607 (((-1069 |#2|) (-556 |#2|)) 132 (|has| |#1| (-952 (-517))))) (-2023 ((|#2| |#1| (-517)) 121 (|has| |#1| (-952 (-517))))) (-2564 ((|#2| (-1069 |#2|) |#2|) 30)) (-1690 (((-787) (-583 |#2|)) 85)) (-2135 ((|#2| |#2|) 128 (|has| |#1| (-952 (-517))))) (-4074 (((-107) (-109)) 18)) (** ((|#2| |#2| (-377 (-517))) 96 (|has| |#1| (-952 (-517)))))) +(((-31 |#1| |#2|) (-10 -7 (-15 -3267 (|#2| (-1069 |#2|) (-1073))) (-15 -3072 ((-109) (-109))) (-15 -4074 ((-107) (-109))) (-15 -2564 (|#2| (-1069 |#2|) |#2|)) (-15 -1690 ((-787) (-583 |#2|))) (IF (|has| |#1| (-952 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -1607 ((-1069 |#2|) (-556 |#2|))) (-15 -2135 (|#2| |#2|)) (-15 -2023 (|#2| |#1| (-517)))) |noBranch|)) (-13 (-779) (-509)) (-400 |#1|)) (T -31)) +((-2023 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-13 (-779) (-509))))) (-2135 (*1 *2 *2) (-12 (-4 *3 (-952 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1069 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))) (-2564 (*1 *2 *3 *2) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) (-3267 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-5 *4 (-1073)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509)))))) +(-10 -7 (-15 -3267 (|#2| (-1069 |#2|) (-1073))) (-15 -3072 ((-109) (-109))) (-15 -4074 ((-107) (-109))) (-15 -2564 (|#2| (-1069 |#2|) |#2|)) (-15 -1690 ((-787) (-583 |#2|))) (IF (|has| |#1| (-952 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -1607 ((-1069 |#2|) (-556 |#2|))) (-15 -2135 (|#2| |#2|)) (-15 -2023 (|#2| |#1| (-517)))) |noBranch|)) +((-2953 (((-107) $ (-703)) 16)) (-3092 (($) 10)) (-2550 (((-107) $ (-703)) 15)) (-3847 (((-107) $ (-703)) 14)) (-3792 (((-107) $ $) 8)) (-3619 (((-107) $) 13))) +(((-32 |#1|) (-10 -8 (-15 -3092 (|#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -3619 ((-107) |#1|)) (-15 -3792 ((-107) |#1| |#1|))) (-33)) (T -32)) +NIL +(-10 -8 (-15 -3092 (|#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -3619 ((-107) |#1|)) (-15 -3792 ((-107) |#1| |#1|))) +((-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-2550 (((-107) $ (-703)) 9)) (-3847 (((-107) $ (-703)) 10)) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-2433 (($ $) 13)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-33) (-1184)) (T -33)) +((-3792 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2433 (*1 *1 *1) (-4 *1 (-33))) (-1746 (*1 *1) (-4 *1 (-33))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-3847 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2550 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2953 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-3092 (*1 *1) (-4 *1 (-33))) (-2296 (*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-33)) (-5 *2 (-703))))) +(-13 (-1108) (-10 -8 (-15 -3792 ((-107) $ $)) (-15 -2433 ($ $)) (-15 -1746 ($)) (-15 -3619 ((-107) $)) (-15 -3847 ((-107) $ (-703))) (-15 -2550 ((-107) $ (-703))) (-15 -2953 ((-107) $ (-703))) (-15 -3092 ($) -1619) (IF (|has| $ (-6 -4180)) (-15 -2296 ((-703) $)) |noBranch|))) +(((-1108) . T)) +((-3707 (($ $) 11)) (-3683 (($ $) 10)) (-3731 (($ $) 9)) (-1492 (($ $) 8)) (-3719 (($ $) 7)) (-3695 (($ $) 6))) +(((-34) (-1184)) (T -34)) +((-3707 (*1 *1 *1) (-4 *1 (-34))) (-3683 (*1 *1 *1) (-4 *1 (-34))) (-3731 (*1 *1 *1) (-4 *1 (-34))) (-1492 (*1 *1 *1) (-4 *1 (-34))) (-3719 (*1 *1 *1) (-4 *1 (-34))) (-3695 (*1 *1 *1) (-4 *1 (-34)))) +(-13 (-10 -8 (-15 -3695 ($ $)) (-15 -3719 ($ $)) (-15 -1492 ($ $)) (-15 -3731 ($ $)) (-15 -3683 ($ $)) (-15 -3707 ($ $)))) +((-2750 (((-107) $ $) 18 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3199 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 125)) (-3005 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 148)) (-2779 (($ $) 146)) (-3422 (($) 72) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 71)) (-1668 (((-1158) $ |#1| |#1|) 99 (|has| $ (-6 -4181))) (((-1158) $ (-517) (-517)) 178 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 159 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 209) (((-107) $) 203 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2034 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 200 (|has| $ (-6 -4181))) (($ $) 199 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2953 (((-107) $ (-703)) 8)) (-1918 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 134 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 155 (|has| $ (-6 -4181)))) (-3781 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 157 (|has| $ (-6 -4181)))) (-3042 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 153 (|has| $ (-6 -4181)))) (-2411 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 189 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-1121 (-517)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 160 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 158 (|has| $ (-6 -4181))) (($ $ "rest" $) 156 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 154 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 133 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 132 (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 45 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 216)) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 55 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 175 (|has| $ (-6 -4180)))) (-2993 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 147)) (-3254 (((-3 |#2| "failed") |#1| $) 61)) (-3092 (($) 7 T CONST)) (-4020 (($ $) 201 (|has| $ (-6 -4181)))) (-3093 (($ $) 211)) (-1660 (($ $ (-703)) 142) (($ $) 140)) (-3483 (($ $) 214 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1679 (($ $) 58 (-3807 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))) (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 46 (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 220) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 215 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 54 (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 174 (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 56 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 53 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 52 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 176 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 173 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 172 (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 190 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 88) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 188)) (-3811 (((-107) $) 192)) (-2607 (((-517) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 208) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 207 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 206 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 30 (|has| $ (-6 -4180))) (((-583 |#2|) $) 79 (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 114 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 123)) (-1272 (((-107) $ $) 131 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-3462 (($ (-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 169)) (-2550 (((-107) $ (-703)) 9)) (-3243 ((|#1| $) 96 (|has| |#1| (-779))) (((-517) $) 180 (|has| (-517) (-779)))) (-2967 (($ $ $) 198 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2797 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-3237 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 29 (|has| $ (-6 -4180))) (((-583 |#2|) $) 80 (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 115 (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-3482 ((|#1| $) 95 (|has| |#1| (-779))) (((-517) $) 181 (|has| (-517) (-779)))) (-3099 (($ $ $) 197 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 34 (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4181))) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 110 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 109)) (-1529 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 225)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 128)) (-1763 (((-107) $) 124)) (-3985 (((-1056) $) 22 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-2068 (($ $ (-703)) 145) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 143)) (-2274 (((-583 |#1|) $) 63)) (-2793 (((-107) |#1| $) 64)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 39)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 40) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 219) (($ $ $ (-517)) 218)) (-2620 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 162) (($ $ $ (-517)) 161)) (-1857 (((-583 |#1|) $) 93) (((-583 (-517)) $) 183)) (-4088 (((-107) |#1| $) 92) (((-107) (-517) $) 184)) (-3206 (((-1021) $) 21 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1647 ((|#2| $) 97 (|has| |#1| (-779))) (($ $ (-703)) 139) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 137)) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 51) (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 171)) (-2565 (($ $ |#2|) 98 (|has| $ (-6 -4181))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 179 (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 41)) (-2348 (((-107) $) 191)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 32 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 112 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 26 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 25 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 24 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 23 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 121 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 120 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 119 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 118 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 182 (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1941 (((-583 |#2|) $) 91) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 185)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 187) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 186) (($ $ (-1121 (-517))) 165) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first") 138) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value") 126)) (-2459 (((-517) $ $) 129)) (-3089 (($) 49) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 48)) (-2154 (($ $ (-517)) 222) (($ $ (-1121 (-517))) 221)) (-3750 (($ $ (-517)) 164) (($ $ (-1121 (-517))) 163)) (-2655 (((-107) $) 127)) (-2552 (($ $) 151)) (-3406 (($ $) 152 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 150)) (-1761 (($ $) 149)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 31 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 113 (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) 202 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493)))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 50) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 170)) (-2568 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 224) (($ $ $) 223)) (-2452 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 168) (($ (-583 $)) 167) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 136) (($ $ $) 135)) (-2256 (((-787) $) 20 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1479 (((-583 $) $) 122)) (-2732 (((-107) $ $) 130 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 42)) (-2074 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") |#1| $) 108)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 33 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 111 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 195 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1583 (((-107) $ $) 194 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1547 (((-107) $ $) 19 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1595 (((-107) $ $) 196 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1572 (((-107) $ $) 193 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-35 |#1| |#2|) (-1184) (-1003) (-1003)) (T -35)) +((-2074 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| -3435 *3) (|:| -1257 *4)))))) +(-13 (-1085 |t#1| |t#2|) (-603 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|))) (-10 -8 (-15 -2074 ((-3 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|)) "failed") |t#1| $)))) +(((-33) . T) ((-102 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-97) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779))) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-209 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-258 (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-260 (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-260 |#1| |#2|) . T) ((-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-254 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-343 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-456 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-456 |#2|) . T) ((-550 (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-550 |#1| |#2|) . T) ((-478 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-554 |#1| |#2|) . T) ((-588 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-603 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-779) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)) ((-926 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-1003) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779))) ((-1047 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-1085 |#1| |#2|) . T) ((-1108) . T) ((-1142 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T)) +((-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10))) +(((-36 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-37 |#2|) (-156)) (T -36)) +NIL +(-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-37 |#1|) (-1184) (-156)) (T -37)) +((-2256 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156))))) +(-13 (-961) (-650 |t#1|) (-10 -8 (-15 -2256 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-1313 (((-388 |#1|) |#1|) 38)) (-3755 (((-388 |#1|) |#1|) 27) (((-388 |#1|) |#1| (-583 (-47))) 30)) (-3381 (((-107) |#1|) 54))) +(((-38 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1313 ((-388 |#1|) |#1|)) (-15 -3381 ((-107) |#1|))) (-1130 (-47))) (T -38)) +((-3381 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) (-1313 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47)))))) +(-10 -7 (-15 -3755 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1313 ((-388 |#1|) |#1|)) (-15 -3381 ((-107) |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2039 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-1213 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2454 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3055 (((-623 (-377 |#2|)) (-1153 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1472 (((-377 |#2|) $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2759 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1707 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1611 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-2752 (((-107)) NIL)) (-1639 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-1967 (($ (-1153 (-377 |#2|)) (-1153 $)) NIL) (($ (-1153 (-377 |#2|))) 57) (($ (-1153 |#2|) |#2|) 124)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2518 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2410 (((-623 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-377 |#2|))) (|:| |vec| (-1153 (-377 |#2|)))) (-623 $) (-1153 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-3843 (((-1153 $) (-1153 $)) NIL)) (-3225 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-3407 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3384 (((-107) |#1| |#1|) NIL)) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| (-377 |#2|) (-338)))) (-2866 (((-107)) NIL)) (-2666 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2497 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-3534 (($ $) NIL)) (-3442 (($) NIL (|has| (-377 |#2|) (-319)))) (-3391 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2378 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-3849 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3972 (((-843) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) NIL (|has| (-377 |#2|) (-319)))) (-3848 (((-107) $) NIL)) (-1790 (((-703)) NIL)) (-1870 (((-1153 $) (-1153 $)) 100)) (-1506 (((-377 |#2|) $) NIL)) (-2043 (((-583 (-874 |#1|)) (-1073)) NIL (|has| |#1| (-333)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3777 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-1549 (((-843) $) NIL (|has| (-377 |#2|) (-338)))) (-3216 ((|#3| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3985 (((-1056) $) NIL)) (-1643 (((-1158) (-703)) 78)) (-1909 (((-623 (-377 |#2|))) 51)) (-2041 (((-623 (-377 |#2|))) 44)) (-4118 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3454 (($ (-1153 |#2|) |#2|) 125)) (-3580 (((-623 (-377 |#2|))) 45)) (-1872 (((-623 (-377 |#2|))) 43)) (-1920 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-1784 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 63)) (-1924 (((-1153 $)) 42)) (-2216 (((-1153 $)) 41)) (-2491 (((-107) $) NIL)) (-3291 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2836 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| (-377 |#2|) (-338)))) (-3854 (((-3 |#2| "failed")) NIL)) (-3206 (((-1021) $) NIL)) (-1786 (((-703)) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| (-377 |#2|) (-333)))) (-1401 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3755 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3146 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-1449 ((|#1| $ |#1| |#1|) NIL)) (-3259 (((-3 |#2| "failed")) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3010 (((-377 |#2|) (-1153 $)) NIL) (((-377 |#2|)) 39)) (-1620 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-3127 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2970 (((-623 (-377 |#2|)) (-1153 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2135 ((|#3|) 50)) (-1766 (($) NIL (|has| (-377 |#2|) (-319)))) (-4114 (((-1153 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) (-1153 $) (-1153 $)) NIL) (((-1153 (-377 |#2|)) $) 58) (((-623 (-377 |#2|)) (-1153 $)) 101)) (-3645 (((-1153 (-377 |#2|)) $) NIL) (($ (-1153 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-3696 (((-1153 $) (-1153 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| (-377 |#2|) (-952 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1328 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3669 ((|#3| $) NIL)) (-2961 (((-703)) NIL)) (-2025 (((-107)) 37)) (-2992 (((-107) |#1|) 49) (((-107) |#2|) 130)) (-1753 (((-1153 $)) 91)) (-3329 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3148 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4065 (((-107)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-2396 (($) 16 T CONST)) (-2409 (($) 26 T CONST)) (-2731 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333))))) +(((-39 |#1| |#2| |#3| |#4|) (-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1643 ((-1158) (-703))))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) |#3|) (T -39)) +((-1643 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *2 (-1158)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1130 (-377 *5))) (-14 *7 *6)))) +(-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1643 ((-1158) (-703))))) +((-1849 ((|#2| |#2|) 47)) (-1567 ((|#2| |#2|) 117 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-1333 ((|#2| |#2|) 85 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-2232 ((|#2| |#2|) 86 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-2782 ((|#2| (-109) |#2| (-703)) 113 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-1747 (((-1069 |#2|) |#2|) 44)) (-3592 ((|#2| |#2| (-583 (-556 |#2|))) 17) ((|#2| |#2| (-583 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15))) +(((-40 |#1| |#2|) (-10 -7 (-15 -1849 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -3592 (|#2| |#2| (-583 |#2|))) (-15 -3592 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -1747 ((-1069 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-952 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -2232 (|#2| |#2|)) (-15 -1333 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -2782 (|#2| (-109) |#2| (-703)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-509) (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 |#1| (-556 $)) $)) (-15 -1800 ((-1026 |#1| (-556 $)) $)) (-15 -2256 ($ (-1026 |#1| (-556 $))))))) (T -40)) +((-2782 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-952 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *5 (-556 $)) $)) (-15 -1800 ((-1026 *5 (-556 $)) $)) (-15 -2256 ($ (-1026 *5 (-556 $))))))))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-1747 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1069 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))))) (-3592 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3592 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3592 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $)))))))))) +(-10 -7 (-15 -1849 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -3592 (|#2| |#2| (-583 |#2|))) (-15 -3592 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -1747 ((-1069 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-952 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -2232 (|#2| |#2|)) (-15 -1333 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -2782 (|#2| (-109) |#2| (-703)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) +((-3755 (((-388 (-1069 |#3|)) (-1069 |#3|) (-583 (-47))) 22) (((-388 |#3|) |#3| (-583 (-47))) 18))) +(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3755 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3755 ((-388 (-1069 |#3|)) (-1069 |#3|) (-583 (-47))))) (-779) (-725) (-871 (-47) |#2| |#1|)) (T -41)) +((-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-871 (-47) *6 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-871 (-47) *6 *5))))) +(-10 -7 (-15 -3755 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3755 ((-388 (-1069 |#3|)) (-1069 |#3|) (-583 (-47))))) +((-2115 (((-703) |#2|) 65)) (-3123 (((-703) |#2|) 68)) (-3197 (((-583 |#2|)) 33)) (-3514 (((-703) |#2|) 67)) (-3771 (((-703) |#2|) 64)) (-2087 (((-703) |#2|) 66)) (-3044 (((-583 (-623 |#1|))) 60)) (-4077 (((-583 |#2|)) 55)) (-4123 (((-583 |#2|) |#2|) 43)) (-3252 (((-583 |#2|)) 57)) (-2179 (((-583 |#2|)) 56)) (-2617 (((-583 (-623 |#1|))) 48)) (-1220 (((-583 |#2|)) 54)) (-3552 (((-583 |#2|) |#2|) 42)) (-1560 (((-583 |#2|)) 50)) (-1410 (((-583 (-623 |#1|))) 61)) (-1296 (((-583 |#2|)) 59)) (-1753 (((-1153 |#2|) (-1153 |#2|)) 83 (|has| |#1| (-278))))) +(((-42 |#1| |#2|) (-10 -7 (-15 -3514 ((-703) |#2|)) (-15 -3123 ((-703) |#2|)) (-15 -3771 ((-703) |#2|)) (-15 -2115 ((-703) |#2|)) (-15 -2087 ((-703) |#2|)) (-15 -1560 ((-583 |#2|))) (-15 -3552 ((-583 |#2|) |#2|)) (-15 -4123 ((-583 |#2|) |#2|)) (-15 -1220 ((-583 |#2|))) (-15 -4077 ((-583 |#2|))) (-15 -2179 ((-583 |#2|))) (-15 -3252 ((-583 |#2|))) (-15 -1296 ((-583 |#2|))) (-15 -2617 ((-583 (-623 |#1|)))) (-15 -3044 ((-583 (-623 |#1|)))) (-15 -1410 ((-583 (-623 |#1|)))) (-15 -3197 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -1753 ((-1153 |#2|) (-1153 |#2|))) |noBranch|)) (-509) (-387 |#1|)) (T -42)) +((-1753 (*1 *2 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) (-3197 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1410 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3044 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2617 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1296 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3252 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2179 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-4077 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1220 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-4123 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-1560 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2087 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3771 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3123 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3514 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4))))) +(-10 -7 (-15 -3514 ((-703) |#2|)) (-15 -3123 ((-703) |#2|)) (-15 -3771 ((-703) |#2|)) (-15 -2115 ((-703) |#2|)) (-15 -2087 ((-703) |#2|)) (-15 -1560 ((-583 |#2|))) (-15 -3552 ((-583 |#2|) |#2|)) (-15 -4123 ((-583 |#2|) |#2|)) (-15 -1220 ((-583 |#2|))) (-15 -4077 ((-583 |#2|))) (-15 -2179 ((-583 |#2|))) (-15 -3252 ((-583 |#2|))) (-15 -1296 ((-583 |#2|))) (-15 -2617 ((-583 (-623 |#1|)))) (-15 -3044 ((-583 (-623 |#1|)))) (-15 -1410 ((-583 (-623 |#1|)))) (-15 -3197 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -1753 ((-1153 |#2|) (-1153 |#2|))) |noBranch|)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#1|)) (-1153 $)) NIL) (((-1153 (-623 |#1|))) 24)) (-3456 (((-1153 $)) 50)) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-1450 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2619 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) NIL)) (-2299 ((|#1| $) NIL)) (-3343 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-2158 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-2436 (((-1069 (-874 |#1|))) NIL (|has| |#1| (-333)))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#1| $) NIL)) (-2417 (((-1069 |#1|) $) NIL (|has| |#1| (-509)))) (-4069 ((|#1| (-1153 $)) NIL) ((|#1|) NIL)) (-2085 (((-1069 |#1|) $) NIL)) (-2362 (((-107)) 86)) (-1967 (($ (-1153 |#1|) (-1153 $)) NIL) (($ (-1153 |#1|)) NIL)) (-3621 (((-3 $ "failed") $) 14 (|has| |#1| (-509)))) (-2261 (((-843)) 51)) (-3962 (((-107)) NIL)) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL)) (-3983 (((-107)) NIL)) (-3414 (((-107)) 88)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-1793 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2010 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) NIL)) (-1188 ((|#1| $) NIL)) (-3914 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-1680 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-2300 (((-1069 (-874 |#1|))) NIL (|has| |#1| (-333)))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#1| $) NIL)) (-4121 (((-1069 |#1|) $) NIL (|has| |#1| (-509)))) (-1988 ((|#1| (-1153 $)) NIL) ((|#1|) NIL)) (-2190 (((-1069 |#1|) $) NIL)) (-3606 (((-107)) 85)) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) 92)) (-1286 (((-107)) 91)) (-1848 (((-107)) 93)) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) 87)) (-1449 ((|#1| $ (-517)) 53)) (-4114 (((-1153 |#1|) $ (-1153 $)) 47) (((-623 |#1|) (-1153 $) (-1153 $)) NIL) (((-1153 |#1|) $) 28) (((-623 |#1|) (-1153 $)) NIL)) (-3645 (((-1153 |#1|) $) NIL) (($ (-1153 |#1|)) NIL)) (-2278 (((-583 (-874 |#1|)) (-1153 $)) NIL) (((-583 (-874 |#1|))) NIL)) (-3394 (($ $ $) NIL)) (-1561 (((-107)) 83)) (-2256 (((-787) $) 68) (($ (-1153 |#1|)) 22)) (-1753 (((-1153 $)) 44)) (-1582 (((-583 (-1153 |#1|))) NIL (|has| |#1| (-509)))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) 81)) (-1587 (($ (-623 |#1|) $) 18)) (-1956 (($ $ $) NIL)) (-2687 (((-107)) 84)) (-2524 (((-107)) 82)) (-3642 (((-107)) 80)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1040 |#2| |#1|) $) 19))) +(((-43 |#1| |#2| |#3| |#4|) (-13 (-387 |#1|) (-585 (-1040 |#2| |#1|)) (-10 -8 (-15 -2256 ($ (-1153 |#1|))))) (-333) (-843) (-583 (-1073)) (-1153 (-623 |#1|))) (T -43)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073)))))) +(-13 (-387 |#1|) (-585 (-1040 |#2| |#1|)) (-10 -8 (-15 -2256 ($ (-1153 |#1|))))) +((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3199 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-3005 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2779 (($ $) NIL)) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181))) (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (((-107) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2034 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779))))) (-3166 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-1918 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) 27 (|has| $ (-6 -4181)))) (-3781 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-3042 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 29 (|has| $ (-6 -4181)))) (-2411 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-1121 (-517)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (($ $ "rest" $) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2993 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-3254 (((-3 |#2| "failed") |#1| $) 37)) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1660 (($ $ (-703)) NIL) (($ $) 24)) (-3483 (($ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 46) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 18 (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 18 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-3462 (($ (-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 32 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2797 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-3237 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 34 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-1529 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) 41 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2068 (($ $ (-703)) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2274 (((-583 |#1|) $) 20)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2620 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 |#1|) $) NIL) (((-583 (-517)) $) NIL)) (-4088 (((-107) |#1| $) NIL) (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779))) (($ $ (-703)) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 23)) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1941 (((-583 |#2|) $) NIL) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 17)) (-3619 (((-107) $) 16)) (-1746 (($) 13)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL) (($ $ (-1121 (-517))) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first") NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value") NIL)) (-2459 (((-517) $ $) NIL)) (-3089 (($) 12) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2154 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2655 (((-107) $) NIL)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2568 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL) (($ $ $) NIL)) (-2452 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL) (($ (-583 $)) NIL) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 25) (($ $ $) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2074 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") |#1| $) 43)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1595 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2296 (((-703) $) 22 (|has| $ (-6 -4180))))) +(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1003) (-1003)) (T -44)) NIL (-35 |#1| |#2|) -((-2706 (((-107) $) 12)) (-1212 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-375 (-501)) $) 24) (($ $ (-375 (-501))) NIL))) -(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -2706 ((-107) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) (-46 |#2| |#3|) (-959) (-722)) (T -45)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -2706 ((-107) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-2706 (((-107) $) 64)) (-3787 (($ |#1| |#2|) 63)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-1201 ((|#2| $) 66)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508))) (($ |#1|) 49 (|has| |#1| (-156)))) (-2495 ((|#1| $ |#2|) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501))))))) -(((-46 |#1| |#2|) (-1180) (-959) (-722)) (T -46)) -((-3850 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) (-3845 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-107)))) (-3787 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) (-2495 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-331))))) -(-13 (-959) (-106 |t#1| |t#1|) (-10 -8 (-15 -3850 (|t#1| $)) (-15 -3845 ($ $)) (-15 -1201 (|t#2| $)) (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (-15 -2706 ((-107) $)) (-15 -3787 ($ |t#1| |t#2|)) (-15 -3858 ($ $)) (-15 -2495 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-331)) (-15 -3803 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-6 (-156)) (-6 (-37 |t#1|))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-508)) (-6 (-508)) |noBranch|) (IF (|has| |t#1| (-37 (-375 (-501)))) (-6 (-37 (-375 (-501)))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-260) |has| |#1| (-508)) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3588 (((-578 $) (-1064 $) (-1070)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-866 $)) NIL)) (-3448 (($ (-1064 $) (-1070)) NIL) (($ (-1064 $)) NIL) (($ (-866 $)) NIL)) (-3292 (((-107) $) 11)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3709 (((-578 (-553 $)) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3631 (($ $ (-262 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-1271 (((-578 $) (-1064 $) (-1070)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-866 $)) NIL)) (-2899 (($ (-1064 $) (-1070)) NIL) (($ (-1064 $)) NIL) (($ (-866 $)) NIL)) (-3765 (((-3 (-553 $) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL)) (-3490 (((-553 $) $) NIL) (((-501) $) NIL) (((-375 (-501)) $) NIL)) (-3023 (($ $ $) NIL)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-375 (-501)))) (|:| |vec| (-1148 (-375 (-501))))) (-621 $) (-1148 $)) NIL) (((-621 (-375 (-501))) (-621 $)) NIL)) (-3547 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2446 (($ $) NIL) (($ (-578 $)) NIL)) (-2389 (((-578 (-108)) $) NIL)) (-1853 (((-108) (-108)) NIL)) (-1355 (((-107) $) 14)) (-3729 (((-107) $) NIL (|has| $ (-950 (-501))))) (-2946 (((-1023 (-501) (-553 $)) $) NIL)) (-1342 (($ $ (-501)) NIL)) (-2626 (((-1064 $) (-1064 $) (-553 $)) NIL) (((-1064 $) (-1064 $) (-578 (-553 $))) NIL) (($ $ (-553 $)) NIL) (($ $ (-578 (-553 $))) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1983 (((-1064 $) (-553 $)) NIL (|has| $ (-959)))) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 $ $) (-553 $)) NIL)) (-2789 (((-3 (-553 $) "failed") $) NIL)) (-1697 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3724 (((-578 (-553 $)) $) NIL)) (-3136 (($ (-108) $) NIL) (($ (-108) (-578 $)) NIL)) (-3109 (((-107) $ (-108)) NIL) (((-107) $ (-1070)) NIL)) (-3833 (($ $) NIL)) (-2696 (((-701) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ (-578 $)) NIL) (($ $ $) NIL)) (-2816 (((-107) $ $) NIL) (((-107) $ (-1070)) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-1070) (-1 $ (-578 $))) NIL) (($ $ (-1070) (-1 $ $)) NIL) (($ $ (-578 (-108)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-108) (-1 $ (-578 $))) NIL) (($ $ (-108) (-1 $ $)) NIL)) (-1864 (((-701) $) NIL)) (-2007 (($ (-108) $) NIL) (($ (-108) $ $) NIL) (($ (-108) $ $ $) NIL) (($ (-108) $ $ $ $) NIL) (($ (-108) (-578 $)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-4106 (($ $) NIL) (($ $ $) NIL)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-2949 (((-1023 (-501) (-553 $)) $) NIL)) (-2264 (($ $) NIL (|has| $ (-959)))) (-1248 (((-346) $) NIL) (((-199) $) NIL) (((-152 (-346)) $) NIL)) (-3691 (((-786) $) NIL) (($ (-553 $)) NIL) (($ (-375 (-501))) NIL) (($ $) NIL) (($ (-501)) NIL) (($ (-1023 (-501) (-553 $))) NIL)) (-3965 (((-701)) NIL)) (-1831 (($ $) NIL) (($ (-578 $)) NIL)) (-3811 (((-107) (-108)) NIL)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-501)) NIL) (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) 7 T CONST)) (-1925 (($) 12 T CONST)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 16)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (-3797 (($ $ $) 15) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-375 (-501))) NIL) (($ $ (-501)) NIL) (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL) (($ $ $) NIL) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL))) -(((-47) (-13 (-267) (-27) (-950 (-501)) (-950 (-375 (-501))) (-577 (-501)) (-933) (-577 (-375 (-501))) (-134) (-556 (-152 (-346))) (-206) (-10 -8 (-15 -3691 ($ (-1023 (-501) (-553 $)))) (-15 -2946 ((-1023 (-501) (-553 $)) $)) (-15 -2949 ((-1023 (-501) (-553 $)) $)) (-15 -3547 ($ $)) (-15 -2626 ((-1064 $) (-1064 $) (-553 $))) (-15 -2626 ((-1064 $) (-1064 $) (-578 (-553 $)))) (-15 -2626 ($ $ (-553 $))) (-15 -2626 ($ $ (-578 (-553 $))))))) (T -47)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) (-3547 (*1 *1 *1) (-5 *1 (-47))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-47))) (-5 *3 (-553 (-47))) (-5 *1 (-47)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-47))) (-5 *3 (-578 (-553 (-47)))) (-5 *1 (-47)))) (-2626 (*1 *1 *1 *2) (-12 (-5 *2 (-553 (-47))) (-5 *1 (-47)))) (-2626 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-553 (-47)))) (-5 *1 (-47))))) -(-13 (-267) (-27) (-950 (-501)) (-950 (-375 (-501))) (-577 (-501)) (-933) (-577 (-375 (-501))) (-134) (-556 (-152 (-346))) (-206) (-10 -8 (-15 -3691 ($ (-1023 (-501) (-553 $)))) (-15 -2946 ((-1023 (-501) (-553 $)) $)) (-15 -2949 ((-1023 (-501) (-553 $)) $)) (-15 -3547 ($ $)) (-15 -2626 ((-1064 $) (-1064 $) (-553 $))) (-15 -2626 ((-1064 $) (-1064 $) (-578 (-553 $)))) (-15 -2626 ($ $ (-553 $))) (-15 -2626 ($ $ (-578 (-553 $)))))) -((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 7)) (-3751 (((-107) $ $) NIL))) -(((-48) (-1001)) (T -48)) -NIL -(-1001) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 60)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3998 (((-107) $) 20)) (-3765 (((-3 |#1| "failed") $) 23)) (-3490 ((|#1| $) 24)) (-3858 (($ $) 27)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3850 ((|#1| $) 21)) (-3320 (($ $) 49)) (-3460 (((-1053) $) NIL)) (-1464 (((-107) $) 28)) (-3708 (((-1018) $) NIL)) (-3987 (($ (-701)) 47)) (-1989 (($ (-578 (-501))) 48)) (-1201 (((-701) $) 29)) (-3691 (((-786) $) 63) (($ (-501)) 44) (($ |#1|) 42)) (-2495 ((|#1| $ $) 19)) (-3965 (((-701)) 46)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 30 T CONST)) (-1925 (($) 14 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 40)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-49 |#1| |#2|) (-13 (-560 |#1|) (-950 |#1|) (-10 -8 (-15 -3850 (|#1| $)) (-15 -3320 ($ $)) (-15 -3858 ($ $)) (-15 -2495 (|#1| $ $)) (-15 -3987 ($ (-701))) (-15 -1989 ($ (-578 (-501)))) (-15 -1464 ((-107) $)) (-15 -3998 ((-107) $)) (-15 -1201 ((-701) $)) (-15 -1212 ($ (-1 |#1| |#1|) $)))) (-959) (-578 (-1070))) (T -49)) -((-3850 (*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-49 *2 *3)) (-14 *3 (-578 (-1070))))) (-3320 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))))) (-3858 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))))) (-2495 (*1 *2 *1 *1) (-12 (-4 *2 (-959)) (-5 *1 (-49 *2 *3)) (-14 *3 (-578 (-1070))))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) (-1989 (*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) (-1201 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-49 *3 *4)) (-14 *4 (-578 (-1070)))))) -(-13 (-560 |#1|) (-950 |#1|) (-10 -8 (-15 -3850 (|#1| $)) (-15 -3320 ($ $)) (-15 -3858 ($ $)) (-15 -2495 (|#1| $ $)) (-15 -3987 ($ (-701))) (-15 -1989 ($ (-578 (-501)))) (-15 -1464 ((-107) $)) (-15 -3998 ((-107) $)) (-15 -1201 ((-701) $)) (-15 -1212 ($ (-1 |#1| |#1|) $)))) -((-3736 (((-107) $ $) NIL)) (-1296 (((-1053) (-107)) 25)) (-2523 (((-786) $) 24)) (-3700 (((-703) $) 12)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3147 (((-786) $) 16)) (-3926 (((-1003) $) 14)) (-3691 (((-786) $) 32)) (-4078 (($ (-1003) (-703)) 33)) (-3751 (((-107) $ $) 18))) -(((-50) (-13 (-1001) (-10 -8 (-15 -4078 ($ (-1003) (-703))) (-15 -3147 ((-786) $)) (-15 -2523 ((-786) $)) (-15 -3926 ((-1003) $)) (-15 -3700 ((-703) $)) (-15 -1296 ((-1053) (-107)))))) (T -50)) -((-4078 (*1 *1 *2 *3) (-12 (-5 *2 (-1003)) (-5 *3 (-703)) (-5 *1 (-50)))) (-3147 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-50)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-50)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-50)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-50)))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1053)) (-5 *1 (-50))))) -(-13 (-1001) (-10 -8 (-15 -4078 ($ (-1003) (-703))) (-15 -3147 ((-786) $)) (-15 -2523 ((-786) $)) (-15 -3926 ((-1003) $)) (-15 -3700 ((-703) $)) (-15 -1296 ((-1053) (-107))))) -((-3998 (((-107) (-50)) 13)) (-3765 (((-3 |#1| "failed") (-50)) 21)) (-3490 ((|#1| (-50)) 22)) (-3691 (((-50) |#1|) 18))) -(((-51 |#1|) (-10 -7 (-15 -3691 ((-50) |#1|)) (-15 -3765 ((-3 |#1| "failed") (-50))) (-15 -3998 ((-107) (-50))) (-15 -3490 (|#1| (-50)))) (-1104)) (T -51)) -((-3490 (*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1104)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *2 (-107)) (-5 *1 (-51 *4)) (-4 *4 (-1104)))) (-3765 (*1 *2 *3) (|partial| -12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1104)))) (-3691 (*1 *2 *3) (-12 (-5 *2 (-50)) (-5 *1 (-51 *3)) (-4 *3 (-1104))))) -(-10 -7 (-15 -3691 ((-50) |#1|)) (-15 -3765 ((-3 |#1| "failed") (-50))) (-15 -3998 ((-107) (-50))) (-15 -3490 (|#1| (-50)))) -((-1183 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1183 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-959) (-583 |#1|) (-779 |#1|)) (T -52)) -((-1183 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-583 *5)) (-4 *5 (-959)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-779 *5))))) -(-10 -7 (-15 -1183 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2745 ((|#3| |#3| (-578 (-1070))) 35)) (-1406 ((|#3| (-578 (-979 |#1| |#2| |#3|)) |#3| (-839)) 22) ((|#3| (-578 (-979 |#1| |#2| |#3|)) |#3|) 20))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1406 (|#3| (-578 (-979 |#1| |#2| |#3|)) |#3|)) (-15 -1406 (|#3| (-578 (-979 |#1| |#2| |#3|)) |#3| (-839))) (-15 -2745 (|#3| |#3| (-578 (-1070))))) (-1001) (-13 (-959) (-806 |#1|) (-777) (-556 (-810 |#1|))) (-13 (-389 |#2|) (-806 |#1|) (-556 (-810 |#1|)))) (T -53)) -((-2745 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) (-1406 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 (-979 *5 *6 *2))) (-5 *4 (-839)) (-4 *5 (-1001)) (-4 *6 (-13 (-959) (-806 *5) (-777) (-556 (-810 *5)))) (-4 *2 (-13 (-389 *6) (-806 *5) (-556 (-810 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-1406 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-979 *4 *5 *2))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))) (-5 *1 (-53 *4 *5 *2))))) -(-10 -7 (-15 -1406 (|#3| (-578 (-979 |#1| |#2| |#3|)) |#3|)) (-15 -1406 (|#3| (-578 (-979 |#1| |#2| |#3|)) |#3| (-839))) (-15 -2745 (|#3| |#3| (-578 (-1070))))) -((-2997 (((-107) $ (-701)) 23)) (-2400 (($ $ (-501) |#3|) 45)) (-2480 (($ $ (-501) |#4|) 49)) (-2358 ((|#3| $ (-501)) 58)) (-2732 (((-578 |#2|) $) 30)) (-3379 (((-107) $ (-701)) 25)) (-2211 (((-107) |#2| $) 53)) (-2519 (($ (-1 |#2| |#2|) $) 37)) (-1212 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-3155 (((-107) $ (-701)) 24)) (-3084 (($ $ |#2|) 34)) (-2369 (((-107) (-1 (-107) |#2|) $) 19)) (-2007 ((|#2| $ (-501) (-501)) NIL) ((|#2| $ (-501) (-501) |#2|) 27)) (-3713 (((-701) (-1 (-107) |#2|) $) 28) (((-701) |#2| $) 55)) (-3764 (($ $) 33)) (-2952 ((|#4| $ (-501)) 61)) (-3691 (((-786) $) 66)) (-1200 (((-107) (-1 (-107) |#2|) $) 18)) (-3751 (((-107) $ $) 52)) (-3581 (((-701) $) 26))) -(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1| (-501) |#4|)) (-15 -2400 (|#1| |#1| (-501) |#3|)) (-15 -2732 ((-578 |#2|) |#1|)) (-15 -2952 (|#4| |#1| (-501))) (-15 -2358 (|#3| |#1| (-501))) (-15 -2007 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501))) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701))) (-15 -3764 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1104) (-340 |#2|) (-340 |#2|)) (T -54)) -NIL -(-10 -8 (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1| (-501) |#4|)) (-15 -2400 (|#1| |#1| (-501) |#3|)) (-15 -2732 ((-578 |#2|) |#1|)) (-15 -2952 (|#4| |#1| (-501))) (-15 -2358 (|#3| |#1| (-501))) (-15 -2007 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501))) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701))) (-15 -3764 (|#1| |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) (-501) |#1|) 44)) (-2400 (($ $ (-501) |#2|) 42)) (-2480 (($ $ (-501) |#3|) 41)) (-2540 (($) 7 T CONST)) (-2358 ((|#2| $ (-501)) 46)) (-2156 ((|#1| $ (-501) (-501) |#1|) 43)) (-1905 ((|#1| $ (-501) (-501)) 48)) (-2732 (((-578 |#1|) $) 30)) (-1648 (((-701) $) 51)) (-3634 (($ (-701) (-701) |#1|) 57)) (-3248 (((-701) $) 50)) (-3379 (((-107) $ (-701)) 9)) (-1567 (((-501) $) 55)) (-2734 (((-501) $) 53)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2969 (((-501) $) 54)) (-3491 (((-501) $) 52)) (-2519 (($ (-1 |#1| |#1|) $) 34)) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) 56)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) (-501)) 49) ((|#1| $ (-501) (-501) |#1|) 47)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-2952 ((|#3| $ (-501)) 45)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-55 |#1| |#2| |#3|) (-1180) (-1104) (-340 |t#1|) (-340 |t#1|)) (T -55)) -((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3634 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-701)) (-4 *3 (-1104)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3084 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-1567 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-701)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-701)))) (-2007 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-1104)))) (-1905 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-1104)))) (-2007 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) (-2358 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *2 (-340 *4)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *2 (-340 *4)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-578 *3)))) (-3754 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) (-2156 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) (-2400 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1104)) (-4 *3 (-340 *4)) (-4 *5 (-340 *4)))) (-2480 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *3 (-340 *4)))) (-2519 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-1212 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-1212 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3))))) -(-13 (-454 |t#1|) (-10 -8 (-6 -4168) (-6 -4167) (-15 -3634 ($ (-701) (-701) |t#1|)) (-15 -3084 ($ $ |t#1|)) (-15 -1567 ((-501) $)) (-15 -2969 ((-501) $)) (-15 -2734 ((-501) $)) (-15 -3491 ((-501) $)) (-15 -1648 ((-701) $)) (-15 -3248 ((-701) $)) (-15 -2007 (|t#1| $ (-501) (-501))) (-15 -1905 (|t#1| $ (-501) (-501))) (-15 -2007 (|t#1| $ (-501) (-501) |t#1|)) (-15 -2358 (|t#2| $ (-501))) (-15 -2952 (|t#3| $ (-501))) (-15 -2732 ((-578 |t#1|) $)) (-15 -3754 (|t#1| $ (-501) (-501) |t#1|)) (-15 -2156 (|t#1| $ (-501) (-501) |t#1|)) (-15 -2400 ($ $ (-501) |t#2|)) (-15 -2480 ($ $ (-501) |t#3|)) (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (-15 -2519 ($ (-1 |t#1| |t#1|) $)) (-15 -1212 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1212 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) 11 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2168 (($ (-578 |#1|)) 13) (($ (-701) |#1|) 14)) (-3634 (($ (-701) |#1|) 9)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 7)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-56 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2168 ($ (-578 |#1|))) (-15 -2168 ($ (-701) |#1|)))) (-1104)) (T -56)) -((-2168 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-56 *3)))) (-2168 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *1 (-56 *3)) (-4 *3 (-1104))))) -(-13 (-19 |#1|) (-10 -8 (-15 -2168 ($ (-578 |#1|))) (-15 -2168 ($ (-701) |#1|)))) -((-3162 (((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|) 16)) (-3547 ((|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|) 18)) (-1212 (((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)) 13))) -(((-57 |#1| |#2|) (-10 -7 (-15 -3162 ((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -1212 ((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)))) (-1104) (-1104)) (T -57)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-56 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-56 *6)) (-5 *1 (-57 *5 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-56 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-57 *5 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-56 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-56 *5)) (-5 *1 (-57 *6 *5))))) -(-10 -7 (-15 -3162 ((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -1212 ((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) (-501) |#1|) NIL)) (-2400 (($ $ (-501) (-56 |#1|)) NIL)) (-2480 (($ $ (-501) (-56 |#1|)) NIL)) (-2540 (($) NIL T CONST)) (-2358 (((-56 |#1|) $ (-501)) NIL)) (-2156 ((|#1| $ (-501) (-501) |#1|) NIL)) (-1905 ((|#1| $ (-501) (-501)) NIL)) (-2732 (((-578 |#1|) $) NIL)) (-1648 (((-701) $) NIL)) (-3634 (($ (-701) (-701) |#1|) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-1567 (((-501) $) NIL)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2969 (((-501) $) NIL)) (-3491 (((-501) $) NIL)) (-2519 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) (-501)) NIL) ((|#1| $ (-501) (-501) |#1|) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-2952 (((-56 |#1|) $ (-501)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-58 |#1|) (-13 (-55 |#1| (-56 |#1|) (-56 |#1|)) (-10 -7 (-6 -4168))) (-1104)) (T -58)) -NIL -(-13 (-55 |#1| (-56 |#1|) (-56 |#1|)) (-10 -7 (-6 -4168))) -((-3765 (((-3 $ "failed") (-282 (-346))) 36) (((-3 $ "failed") (-282 (-501))) 41) (((-3 $ "failed") (-866 (-346))) 46) (((-3 $ "failed") (-866 (-501))) 51) (((-3 $ "failed") (-375 (-866 (-346)))) 31) (((-3 $ "failed") (-375 (-866 (-501)))) 26)) (-3490 (($ (-282 (-346))) 34) (($ (-282 (-501))) 39) (($ (-866 (-346))) 44) (($ (-866 (-501))) 49) (($ (-375 (-866 (-346)))) 29) (($ (-375 (-866 (-501)))) 23)) (-2522 (((-1154) $) 73)) (-3691 (((-786) $) 66) (($ (-578 (-298))) 57) (($ (-298)) 63) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 60) (($ (-307 (-3699 (QUOTE X)) (-3699) (-630))) 22))) -(((-59 |#1|) (-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699 (QUOTE X)) (-3699) (-630)))))) (-1070)) (T -59)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-307 (-3699 (QUOTE X)) (-3699) (-630))) (-5 *1 (-59 *3)) (-14 *3 (-1070))))) -(-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699 (QUOTE X)) (-3699) (-630)))))) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 69) (((-3 $ "failed") (-1148 (-282 (-501)))) 58) (((-3 $ "failed") (-1148 (-866 (-346)))) 91) (((-3 $ "failed") (-1148 (-866 (-501)))) 80) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 47) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 36)) (-3490 (($ (-1148 (-282 (-346)))) 65) (($ (-1148 (-282 (-501)))) 54) (($ (-1148 (-866 (-346)))) 87) (($ (-1148 (-866 (-501)))) 76) (($ (-1148 (-375 (-866 (-346))))) 43) (($ (-1148 (-375 (-866 (-501))))) 29)) (-2522 (((-1154) $) 118)) (-3691 (((-786) $) 111) (($ (-578 (-298))) 100) (($ (-298)) 94) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 97) (($ (-1148 (-307 (-3699 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3699) (-630)))) 28))) -(((-60 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3699) (-630))))))) (-1070)) (T -60)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3699) (-630)))) (-5 *1 (-60 *3)) (-14 *3 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3699) (-630))))))) -((-2522 (((-1154) $) 48) (((-1154)) 49)) (-3691 (((-786) $) 45))) -(((-61 |#1|) (-13 (-364) (-10 -7 (-15 -2522 ((-1154))))) (-1070)) (T -61)) -((-2522 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-61 *3)) (-14 *3 (-1070))))) -(-13 (-364) (-10 -7 (-15 -2522 ((-1154))))) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 142) (((-3 $ "failed") (-1148 (-282 (-501)))) 132) (((-3 $ "failed") (-1148 (-866 (-346)))) 163) (((-3 $ "failed") (-1148 (-866 (-501)))) 152) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 121) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 110)) (-3490 (($ (-1148 (-282 (-346)))) 138) (($ (-1148 (-282 (-501)))) 128) (($ (-1148 (-866 (-346)))) 159) (($ (-1148 (-866 (-501)))) 148) (($ (-1148 (-375 (-866 (-346))))) 117) (($ (-1148 (-375 (-866 (-501))))) 103)) (-2522 (((-1154) $) 96)) (-3691 (((-786) $) 90) (($ (-578 (-298))) 28) (($ (-298)) 34) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 31) (($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) 88))) -(((-62 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630))))))) (-1070)) (T -62)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) (-5 *1 (-62 *3)) (-14 *3 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630))))))) -((-3765 (((-3 $ "failed") (-621 (-282 (-346)))) 100) (((-3 $ "failed") (-621 (-282 (-501)))) 89) (((-3 $ "failed") (-621 (-866 (-346)))) 122) (((-3 $ "failed") (-621 (-866 (-501)))) 111) (((-3 $ "failed") (-621 (-375 (-866 (-346))))) 78) (((-3 $ "failed") (-621 (-375 (-866 (-501))))) 67)) (-3490 (($ (-621 (-282 (-346)))) 96) (($ (-621 (-282 (-501)))) 85) (($ (-621 (-866 (-346)))) 118) (($ (-621 (-866 (-501)))) 107) (($ (-621 (-375 (-866 (-346))))) 74) (($ (-621 (-375 (-866 (-501))))) 60)) (-2522 (((-1154) $) 130)) (-3691 (((-786) $) 124) (($ (-578 (-298))) 27) (($ (-298)) 33) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 30) (($ (-621 (-307 (-3699) (-3699 (QUOTE X) (QUOTE HESS)) (-630)))) 53))) -(((-63 |#1|) (-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699) (-3699 (QUOTE X) (QUOTE HESS)) (-630))))))) (-1070)) (T -63)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699) (-3699 (QUOTE X) (QUOTE HESS)) (-630)))) (-5 *1 (-63 *3)) (-14 *3 (-1070))))) -(-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699) (-3699 (QUOTE X) (QUOTE HESS)) (-630))))))) -((-3765 (((-3 $ "failed") (-282 (-346))) 54) (((-3 $ "failed") (-282 (-501))) 59) (((-3 $ "failed") (-866 (-346))) 64) (((-3 $ "failed") (-866 (-501))) 69) (((-3 $ "failed") (-375 (-866 (-346)))) 49) (((-3 $ "failed") (-375 (-866 (-501)))) 44)) (-3490 (($ (-282 (-346))) 52) (($ (-282 (-501))) 57) (($ (-866 (-346))) 62) (($ (-866 (-501))) 67) (($ (-375 (-866 (-346)))) 47) (($ (-375 (-866 (-501)))) 41)) (-2522 (((-1154) $) 78)) (-3691 (((-786) $) 72) (($ (-578 (-298))) 27) (($ (-298)) 33) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 30) (($ (-307 (-3699) (-3699 (QUOTE XC)) (-630))) 38))) -(((-64 |#1|) (-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE XC)) (-630)))))) (-1070)) (T -64)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE XC)) (-630))) (-5 *1 (-64 *3)) (-14 *3 (-1070))))) -(-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE XC)) (-630)))))) -((-2522 (((-1154) $) 63)) (-3691 (((-786) $) 57) (($ (-621 (-630))) 49) (($ (-578 (-298))) 48) (($ (-298)) 55) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 53))) -(((-65 |#1|) (-351) (-1070)) (T -65)) -NIL -(-351) -((-2522 (((-1154) $) 64)) (-3691 (((-786) $) 58) (($ (-621 (-630))) 50) (($ (-578 (-298))) 49) (($ (-298)) 52) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 55))) -(((-66 |#1|) (-351) (-1070)) (T -66)) -NIL -(-351) -((-2522 (((-1154) $) NIL) (((-1154)) 32)) (-3691 (((-786) $) NIL))) -(((-67 |#1|) (-13 (-364) (-10 -7 (-15 -2522 ((-1154))))) (-1070)) (T -67)) -((-2522 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-67 *3)) (-14 *3 (-1070))))) -(-13 (-364) (-10 -7 (-15 -2522 ((-1154))))) -((-2522 (((-1154) $) 68)) (-3691 (((-786) $) 62) (($ (-621 (-630))) 53) (($ (-578 (-298))) 56) (($ (-298)) 59) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 52))) -(((-68 |#1|) (-351) (-1070)) (T -68)) -NIL -(-351) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 98) (((-3 $ "failed") (-1148 (-282 (-501)))) 87) (((-3 $ "failed") (-1148 (-866 (-346)))) 119) (((-3 $ "failed") (-1148 (-866 (-501)))) 108) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 76) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 65)) (-3490 (($ (-1148 (-282 (-346)))) 94) (($ (-1148 (-282 (-501)))) 83) (($ (-1148 (-866 (-346)))) 115) (($ (-1148 (-866 (-501)))) 104) (($ (-1148 (-375 (-866 (-346))))) 72) (($ (-1148 (-375 (-866 (-501))))) 58)) (-2522 (((-1154) $) 133)) (-3691 (((-786) $) 127) (($ (-578 (-298))) 122) (($ (-298)) 125) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 50) (($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) 51))) -(((-69 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))))))) (-1070)) (T -69)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-69 *3)) (-14 *3 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))))))) -((-2522 (((-1154) $) 32) (((-1154)) 31)) (-3691 (((-786) $) 35))) -(((-70 |#1|) (-13 (-364) (-10 -7 (-15 -2522 ((-1154))))) (-1070)) (T -70)) -((-2522 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-70 *3)) (-14 *3 (-1070))))) -(-13 (-364) (-10 -7 (-15 -2522 ((-1154))))) -((-2522 (((-1154) $) 62)) (-3691 (((-786) $) 56) (($ (-621 (-630))) 47) (($ (-578 (-298))) 50) (($ (-298)) 53) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 46))) -(((-71 |#1|) (-351) (-1070)) (T -71)) -NIL -(-351) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 119) (((-3 $ "failed") (-1148 (-282 (-501)))) 108) (((-3 $ "failed") (-1148 (-866 (-346)))) 141) (((-3 $ "failed") (-1148 (-866 (-501)))) 130) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 98) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 87)) (-3490 (($ (-1148 (-282 (-346)))) 115) (($ (-1148 (-282 (-501)))) 104) (($ (-1148 (-866 (-346)))) 137) (($ (-1148 (-866 (-501)))) 126) (($ (-1148 (-375 (-866 (-346))))) 94) (($ (-1148 (-375 (-866 (-501))))) 80)) (-2522 (((-1154) $) 73)) (-3691 (((-786) $) 27) (($ (-578 (-298))) 63) (($ (-298)) 59) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 66) (($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) 60))) -(((-72 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630))))))) (-1070)) (T -72)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-72 *3)) (-14 *3 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630))))))) -((-3765 (((-3 $ "failed") (-282 (-346))) 41) (((-3 $ "failed") (-282 (-501))) 46) (((-3 $ "failed") (-866 (-346))) 51) (((-3 $ "failed") (-866 (-501))) 56) (((-3 $ "failed") (-375 (-866 (-346)))) 36) (((-3 $ "failed") (-375 (-866 (-501)))) 31)) (-3490 (($ (-282 (-346))) 39) (($ (-282 (-501))) 44) (($ (-866 (-346))) 49) (($ (-866 (-501))) 54) (($ (-375 (-866 (-346)))) 34) (($ (-375 (-866 (-501)))) 28)) (-2522 (((-1154) $) 77)) (-3691 (((-786) $) 71) (($ (-578 (-298))) 62) (($ (-298)) 68) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 65) (($ (-307 (-3699) (-3699 (QUOTE X)) (-630))) 27))) -(((-73 |#1|) (-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE X)) (-630)))))) (-1070)) (T -73)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE X)) (-630))) (-5 *1 (-73 *3)) (-14 *3 (-1070))))) -(-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE X)) (-630)))))) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 125) (((-3 $ "failed") (-1148 (-282 (-501)))) 114) (((-3 $ "failed") (-1148 (-866 (-346)))) 147) (((-3 $ "failed") (-1148 (-866 (-501)))) 136) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 103) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 92)) (-3490 (($ (-1148 (-282 (-346)))) 121) (($ (-1148 (-282 (-501)))) 110) (($ (-1148 (-866 (-346)))) 143) (($ (-1148 (-866 (-501)))) 132) (($ (-1148 (-375 (-866 (-346))))) 99) (($ (-1148 (-375 (-866 (-501))))) 85)) (-2522 (((-1154) $) 78)) (-3691 (((-786) $) 70) (($ (-578 (-298))) NIL) (($ (-298)) NIL) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) NIL) (($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE EPS)) (-3699 (QUOTE -1893)) (-630)))) 65))) -(((-74 |#1| |#2| |#3|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE EPS)) (-3699 (QUOTE -1893)) (-630))))))) (-1070) (-1070) (-1070)) (T -74)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X) (QUOTE EPS)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1070)) (-14 *4 (-1070)) (-14 *5 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE EPS)) (-3699 (QUOTE -1893)) (-630))))))) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 129) (((-3 $ "failed") (-1148 (-282 (-501)))) 118) (((-3 $ "failed") (-1148 (-866 (-346)))) 151) (((-3 $ "failed") (-1148 (-866 (-501)))) 140) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 107) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 96)) (-3490 (($ (-1148 (-282 (-346)))) 125) (($ (-1148 (-282 (-501)))) 114) (($ (-1148 (-866 (-346)))) 147) (($ (-1148 (-866 (-501)))) 136) (($ (-1148 (-375 (-866 (-346))))) 103) (($ (-1148 (-375 (-866 (-501))))) 89)) (-2522 (((-1154) $) 82)) (-3691 (((-786) $) 74) (($ (-578 (-298))) NIL) (($ (-298)) NIL) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) NIL) (($ (-1148 (-307 (-3699 (QUOTE EPS)) (-3699 (QUOTE YA) (QUOTE YB)) (-630)))) 69))) -(((-75 |#1| |#2| |#3|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE EPS)) (-3699 (QUOTE YA) (QUOTE YB)) (-630))))))) (-1070) (-1070) (-1070)) (T -75)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE EPS)) (-3699 (QUOTE YA) (QUOTE YB)) (-630)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1070)) (-14 *4 (-1070)) (-14 *5 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE EPS)) (-3699 (QUOTE YA) (QUOTE YB)) (-630))))))) -((-3765 (((-3 $ "failed") (-282 (-346))) 77) (((-3 $ "failed") (-282 (-501))) 82) (((-3 $ "failed") (-866 (-346))) 87) (((-3 $ "failed") (-866 (-501))) 92) (((-3 $ "failed") (-375 (-866 (-346)))) 72) (((-3 $ "failed") (-375 (-866 (-501)))) 67)) (-3490 (($ (-282 (-346))) 75) (($ (-282 (-501))) 80) (($ (-866 (-346))) 85) (($ (-866 (-501))) 90) (($ (-375 (-866 (-346)))) 70) (($ (-375 (-866 (-501)))) 64)) (-2522 (((-1154) $) 61)) (-3691 (((-786) $) 49) (($ (-578 (-298))) 45) (($ (-298)) 55) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 53) (($ (-307 (-3699) (-3699 (QUOTE X)) (-630))) 46))) -(((-76 |#1|) (-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE X)) (-630)))))) (-1070)) (T -76)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE X)) (-630))) (-5 *1 (-76 *3)) (-14 *3 (-1070))))) -(-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE X)) (-630)))))) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 84) (((-3 $ "failed") (-1148 (-282 (-501)))) 73) (((-3 $ "failed") (-1148 (-866 (-346)))) 106) (((-3 $ "failed") (-1148 (-866 (-501)))) 95) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 62) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 51)) (-3490 (($ (-1148 (-282 (-346)))) 80) (($ (-1148 (-282 (-501)))) 69) (($ (-1148 (-866 (-346)))) 102) (($ (-1148 (-866 (-501)))) 91) (($ (-1148 (-375 (-866 (-346))))) 58) (($ (-1148 (-375 (-866 (-501))))) 44)) (-2522 (((-1154) $) 122)) (-3691 (((-786) $) 116) (($ (-578 (-298))) 109) (($ (-298)) 36) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 112) (($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) 37))) -(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630))))))) (-1070)) (T -77)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) (-5 *1 (-77 *3)) (-14 *3 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630))))))) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 137) (((-3 $ "failed") (-1148 (-282 (-501)))) 126) (((-3 $ "failed") (-1148 (-866 (-346)))) 158) (((-3 $ "failed") (-1148 (-866 (-501)))) 147) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 116) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 105)) (-3490 (($ (-1148 (-282 (-346)))) 133) (($ (-1148 (-282 (-501)))) 122) (($ (-1148 (-866 (-346)))) 154) (($ (-1148 (-866 (-501)))) 143) (($ (-1148 (-375 (-866 (-346))))) 112) (($ (-1148 (-375 (-866 (-501))))) 98)) (-2522 (((-1154) $) 91)) (-3691 (((-786) $) 85) (($ (-578 (-298))) 76) (($ (-298)) 83) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 81) (($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) 77))) -(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630))))))) (-1070)) (T -78)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-78 *3)) (-14 *3 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630))))))) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 73) (((-3 $ "failed") (-1148 (-282 (-501)))) 62) (((-3 $ "failed") (-1148 (-866 (-346)))) 95) (((-3 $ "failed") (-1148 (-866 (-501)))) 84) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 51) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 40)) (-3490 (($ (-1148 (-282 (-346)))) 69) (($ (-1148 (-282 (-501)))) 58) (($ (-1148 (-866 (-346)))) 91) (($ (-1148 (-866 (-501)))) 80) (($ (-1148 (-375 (-866 (-346))))) 47) (($ (-1148 (-375 (-866 (-501))))) 33)) (-2522 (((-1154) $) 121)) (-3691 (((-786) $) 115) (($ (-578 (-298))) 106) (($ (-298)) 112) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 110) (($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) 32))) -(((-79 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630))))))) (-1070)) (T -79)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-79 *3)) (-14 *3 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630))))))) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 74) (((-3 $ "failed") (-1148 (-282 (-501)))) 63) (((-3 $ "failed") (-1148 (-866 (-346)))) 96) (((-3 $ "failed") (-1148 (-866 (-501)))) 85) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 52) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 41)) (-3490 (($ (-1148 (-282 (-346)))) 70) (($ (-1148 (-282 (-501)))) 59) (($ (-1148 (-866 (-346)))) 92) (($ (-1148 (-866 (-501)))) 81) (($ (-1148 (-375 (-866 (-346))))) 48) (($ (-1148 (-375 (-866 (-501))))) 34)) (-2522 (((-1154) $) 122)) (-3691 (((-786) $) 116) (($ (-578 (-298))) 107) (($ (-298)) 113) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 111) (($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) 33))) -(((-80 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))))))) (-1070)) (T -80)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-80 *3)) (-14 *3 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))))))) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 90) (((-3 $ "failed") (-1148 (-282 (-501)))) 79) (((-3 $ "failed") (-1148 (-866 (-346)))) 112) (((-3 $ "failed") (-1148 (-866 (-501)))) 101) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 68) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 57)) (-3490 (($ (-1148 (-282 (-346)))) 86) (($ (-1148 (-282 (-501)))) 75) (($ (-1148 (-866 (-346)))) 108) (($ (-1148 (-866 (-501)))) 97) (($ (-1148 (-375 (-866 (-346))))) 64) (($ (-1148 (-375 (-866 (-501))))) 50)) (-2522 (((-1154) $) 43)) (-3691 (((-786) $) 36) (($ (-578 (-298))) 26) (($ (-298)) 29) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 32) (($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) 27))) -(((-81 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630))))))) (-1070)) (T -81)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) (-5 *1 (-81 *3)) (-14 *3 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630))))))) -((-3765 (((-3 $ "failed") (-621 (-282 (-346)))) 103) (((-3 $ "failed") (-621 (-282 (-501)))) 92) (((-3 $ "failed") (-621 (-866 (-346)))) 125) (((-3 $ "failed") (-621 (-866 (-501)))) 114) (((-3 $ "failed") (-621 (-375 (-866 (-346))))) 82) (((-3 $ "failed") (-621 (-375 (-866 (-501))))) 71)) (-3490 (($ (-621 (-282 (-346)))) 99) (($ (-621 (-282 (-501)))) 88) (($ (-621 (-866 (-346)))) 121) (($ (-621 (-866 (-501)))) 110) (($ (-621 (-375 (-866 (-346))))) 78) (($ (-621 (-375 (-866 (-501))))) 64)) (-2522 (((-1154) $) 57)) (-3691 (((-786) $) 43) (($ (-578 (-298))) 50) (($ (-298)) 39) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 47) (($ (-621 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) 40))) -(((-82 |#1|) (-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630))))))) (-1070)) (T -82)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) (-5 *1 (-82 *3)) (-14 *3 (-1070))))) -(-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630))))))) -((-3765 (((-3 $ "failed") (-621 (-282 (-346)))) 103) (((-3 $ "failed") (-621 (-282 (-501)))) 92) (((-3 $ "failed") (-621 (-866 (-346)))) 124) (((-3 $ "failed") (-621 (-866 (-501)))) 113) (((-3 $ "failed") (-621 (-375 (-866 (-346))))) 81) (((-3 $ "failed") (-621 (-375 (-866 (-501))))) 70)) (-3490 (($ (-621 (-282 (-346)))) 99) (($ (-621 (-282 (-501)))) 88) (($ (-621 (-866 (-346)))) 120) (($ (-621 (-866 (-501)))) 109) (($ (-621 (-375 (-866 (-346))))) 77) (($ (-621 (-375 (-866 (-501))))) 63)) (-2522 (((-1154) $) 56)) (-3691 (((-786) $) 50) (($ (-578 (-298))) 44) (($ (-298)) 47) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 40) (($ (-621 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) 41))) -(((-83 |#1|) (-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE X)) (-3699) (-630))))))) (-1070)) (T -83)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) (-5 *1 (-83 *3)) (-14 *3 (-1070))))) -(-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE X)) (-3699) (-630))))))) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 99) (((-3 $ "failed") (-1148 (-282 (-501)))) 88) (((-3 $ "failed") (-1148 (-866 (-346)))) 121) (((-3 $ "failed") (-1148 (-866 (-501)))) 110) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 77) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 66)) (-3490 (($ (-1148 (-282 (-346)))) 95) (($ (-1148 (-282 (-501)))) 84) (($ (-1148 (-866 (-346)))) 117) (($ (-1148 (-866 (-501)))) 106) (($ (-1148 (-375 (-866 (-346))))) 73) (($ (-1148 (-375 (-866 (-501))))) 59)) (-2522 (((-1154) $) 45)) (-3691 (((-786) $) 39) (($ (-578 (-298))) 48) (($ (-298)) 35) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 51) (($ (-1148 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) 36))) -(((-84 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699) (-630))))))) (-1070)) (T -84)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) (-5 *1 (-84 *3)) (-14 *3 (-1070))))) -(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699) (-630))))))) -((-2522 (((-1154) $) 44)) (-3691 (((-786) $) 38) (($ (-1148 (-630))) 88) (($ (-578 (-298))) 29) (($ (-298)) 35) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 32))) -(((-85 |#1|) (-407) (-1070)) (T -85)) -NIL -(-407) -((-3765 (((-3 $ "failed") (-621 (-282 (-346)))) 105) (((-3 $ "failed") (-621 (-282 (-501)))) 94) (((-3 $ "failed") (-621 (-866 (-346)))) 127) (((-3 $ "failed") (-621 (-866 (-501)))) 116) (((-3 $ "failed") (-621 (-375 (-866 (-346))))) 83) (((-3 $ "failed") (-621 (-375 (-866 (-501))))) 72)) (-3490 (($ (-621 (-282 (-346)))) 101) (($ (-621 (-282 (-501)))) 90) (($ (-621 (-866 (-346)))) 123) (($ (-621 (-866 (-501)))) 112) (($ (-621 (-375 (-866 (-346))))) 79) (($ (-621 (-375 (-866 (-501))))) 65)) (-2522 (((-1154) $) 58)) (-3691 (((-786) $) 52) (($ (-578 (-298))) 42) (($ (-298)) 49) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 47) (($ (-621 (-307 (-3699 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3699) (-630)))) 43))) -(((-86 |#1|) (-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3699) (-630))))))) (-1070)) (T -86)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3699) (-630)))) (-5 *1 (-86 *3)) (-14 *3 (-1070))))) -(-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3699) (-630))))))) -((-3765 (((-3 $ "failed") (-282 (-346))) 42) (((-3 $ "failed") (-282 (-501))) 47) (((-3 $ "failed") (-866 (-346))) 52) (((-3 $ "failed") (-866 (-501))) 57) (((-3 $ "failed") (-375 (-866 (-346)))) 37) (((-3 $ "failed") (-375 (-866 (-501)))) 32)) (-3490 (($ (-282 (-346))) 40) (($ (-282 (-501))) 45) (($ (-866 (-346))) 50) (($ (-866 (-501))) 55) (($ (-375 (-866 (-346)))) 35) (($ (-375 (-866 (-501)))) 29)) (-2522 (((-1154) $) 88)) (-3691 (((-786) $) 82) (($ (-578 (-298))) 76) (($ (-298)) 79) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 73) (($ (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))) 28))) -(((-87 |#1|) (-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))))) (-1070)) (T -87)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))) (-5 *1 (-87 *3)) (-14 *3 (-1070))))) -(-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))))) -((-4108 (((-1148 (-621 |#1|)) (-621 |#1|)) 54)) (-1513 (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 (-578 (-839))))) |#2| (-839)) 44)) (-2910 (((-2 (|:| |minor| (-578 (-839))) (|:| -2499 |#2|) (|:| |minors| (-578 (-578 (-839)))) (|:| |ops| (-578 |#2|))) |#2| (-839)) 62 (|has| |#1| (-331))))) -(((-88 |#1| |#2|) (-10 -7 (-15 -1513 ((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 (-578 (-839))))) |#2| (-839))) (-15 -4108 ((-1148 (-621 |#1|)) (-621 |#1|))) (IF (|has| |#1| (-331)) (-15 -2910 ((-2 (|:| |minor| (-578 (-839))) (|:| -2499 |#2|) (|:| |minors| (-578 (-578 (-839)))) (|:| |ops| (-578 |#2|))) |#2| (-839))) |noBranch|)) (-508) (-593 |#1|)) (T -88)) -((-2910 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |minor| (-578 (-839))) (|:| -2499 *3) (|:| |minors| (-578 (-578 (-839)))) (|:| |ops| (-578 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-839)) (-4 *3 (-593 *5)))) (-4108 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-621 *4)) (-4 *5 (-593 *4)))) (-1513 (*1 *2 *3 *4) (-12 (-4 *5 (-508)) (-5 *2 (-2 (|:| -2978 (-621 *5)) (|:| |vec| (-1148 (-578 (-839)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-839)) (-4 *3 (-593 *5))))) -(-10 -7 (-15 -1513 ((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 (-578 (-839))))) |#2| (-839))) (-15 -4108 ((-1148 (-621 |#1|)) (-621 |#1|))) (IF (|has| |#1| (-331)) (-15 -2910 ((-2 (|:| |minor| (-578 (-839))) (|:| -2499 |#2|) (|:| |minors| (-578 (-578 (-839)))) (|:| |ops| (-578 |#2|))) |#2| (-839))) |noBranch|)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2425 ((|#1| $) 35)) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-2988 ((|#1| |#1| $) 30)) (-1260 ((|#1| $) 28)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) NIL)) (-4114 (($ |#1| $) 31)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1251 ((|#1| $) 29)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 16)) (-3122 (($) 39)) (-3661 (((-701) $) 26)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 15)) (-3691 (((-786) $) 25 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) NIL)) (-3465 (($ (-578 |#1|)) 37)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 13 (|has| |#1| (-1001)))) (-3581 (((-701) $) 10 (|has| $ (-6 -4167))))) -(((-89 |#1|) (-13 (-1019 |#1|) (-10 -8 (-15 -3465 ($ (-578 |#1|))))) (-1001)) (T -89)) -((-3465 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-89 *3))))) -(-13 (-1019 |#1|) (-10 -8 (-15 -3465 ($ (-578 |#1|))))) -((-3964 (($ $) 10)) (-3967 (($ $) 12))) -(((-90 |#1|) (-10 -8 (-15 -3967 (|#1| |#1|)) (-15 -3964 (|#1| |#1|))) (-91)) (T -90)) -NIL -(-10 -8 (-15 -3967 (|#1| |#1|)) (-15 -3964 (|#1| |#1|))) -((-3958 (($ $) 11)) (-3952 (($ $) 10)) (-3964 (($ $) 9)) (-3967 (($ $) 8)) (-3961 (($ $) 7)) (-3955 (($ $) 6))) -(((-91) (-1180)) (T -91)) -((-3958 (*1 *1 *1) (-4 *1 (-91))) (-3952 (*1 *1 *1) (-4 *1 (-91))) (-3964 (*1 *1 *1) (-4 *1 (-91))) (-3967 (*1 *1 *1) (-4 *1 (-91))) (-3961 (*1 *1 *1) (-4 *1 (-91))) (-3955 (*1 *1 *1) (-4 *1 (-91)))) -(-13 (-10 -8 (-15 -3955 ($ $)) (-15 -3961 ($ $)) (-15 -3967 ($ $)) (-15 -3964 ($ $)) (-15 -3952 ($ $)) (-15 -3958 ($ $)))) -((-3736 (((-107) $ $) NIL)) (-3830 (((-346) (-1053) (-346)) 42) (((-346) (-1053) (-1053) (-346)) 41)) (-3335 (((-346) (-346)) 33)) (-3450 (((-1154)) 36)) (-3460 (((-1053) $) NIL)) (-3426 (((-346) (-1053) (-1053)) 46) (((-346) (-1053)) 48)) (-3708 (((-1018) $) NIL)) (-2987 (((-346) (-1053) (-1053)) 47)) (-1766 (((-346) (-1053) (-1053)) 49) (((-346) (-1053)) 50)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-92) (-13 (-1001) (-10 -7 (-15 -3426 ((-346) (-1053) (-1053))) (-15 -3426 ((-346) (-1053))) (-15 -1766 ((-346) (-1053) (-1053))) (-15 -1766 ((-346) (-1053))) (-15 -2987 ((-346) (-1053) (-1053))) (-15 -3450 ((-1154))) (-15 -3335 ((-346) (-346))) (-15 -3830 ((-346) (-1053) (-346))) (-15 -3830 ((-346) (-1053) (-1053) (-346))) (-6 -4167)))) (T -92)) -((-3426 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) (-1766 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) (-2987 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) (-3450 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-92)))) (-3335 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-92)))) (-3830 (*1 *2 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-1053)) (-5 *1 (-92)))) (-3830 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-1053)) (-5 *1 (-92))))) -(-13 (-1001) (-10 -7 (-15 -3426 ((-346) (-1053) (-1053))) (-15 -3426 ((-346) (-1053))) (-15 -1766 ((-346) (-1053) (-1053))) (-15 -1766 ((-346) (-1053))) (-15 -2987 ((-346) (-1053) (-1053))) (-15 -3450 ((-1154))) (-15 -3335 ((-346) (-346))) (-15 -3830 ((-346) (-1053) (-346))) (-15 -3830 ((-346) (-1053) (-1053) (-346))) (-6 -4167))) -NIL -(((-93) (-1180)) (T -93)) -NIL -(-13 (-10 -7 (-6 -4167) (-6 (-4169 "*")) (-6 -4168) (-6 -4164) (-6 -4162) (-6 -4161) (-6 -4160) (-6 -4165) (-6 -4159) (-6 -4158) (-6 -4157) (-6 -4156) (-6 -4155) (-6 -4163) (-6 -4166) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4154))) -((-3736 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-1572 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-501))) 22)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 14)) (-3708 (((-1018) $) NIL)) (-2007 ((|#1| $ |#1|) 11)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) 20)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 8 T CONST)) (-3751 (((-107) $ $) 10)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) 28) (($ $ (-701)) NIL) (($ $ (-501)) 16)) (* (($ $ $) 29))) -(((-94 |#1|) (-13 (-440) (-256 |#1| |#1|) (-10 -8 (-15 -1572 ($ (-1 |#1| |#1|))) (-15 -1572 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1572 ($ (-1 |#1| |#1| (-501)))))) (-959)) (T -94)) -((-1572 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-94 *3)))) (-1572 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-94 *3)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-501))) (-4 *3 (-959)) (-5 *1 (-94 *3))))) -(-13 (-440) (-256 |#1| |#1|) (-10 -8 (-15 -1572 ($ (-1 |#1| |#1|))) (-15 -1572 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1572 ($ (-1 |#1| |#1| (-501)))))) -((-3298 (((-373 |#2|) |#2| (-578 |#2|)) 10) (((-373 |#2|) |#2| |#2|) 11))) -(((-95 |#1| |#2|) (-10 -7 (-15 -3298 ((-373 |#2|) |#2| |#2|)) (-15 -3298 ((-373 |#2|) |#2| (-578 |#2|)))) (-13 (-419) (-134)) (-1125 |#1|)) (T -95)) -((-3298 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-13 (-419) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-95 *5 *3)))) (-3298 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-419) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1125 *4))))) -(-10 -7 (-15 -3298 ((-373 |#2|) |#2| |#2|)) (-15 -3298 ((-373 |#2|) |#2| (-578 |#2|)))) -((-3736 (((-107) $ $) 9))) -(((-96 |#1|) (-10 -8 (-15 -3736 ((-107) |#1| |#1|))) (-97)) (T -96)) -NIL -(-10 -8 (-15 -3736 ((-107) |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3751 (((-107) $ $) 6))) -(((-97) (-1180)) (T -97)) -((-3736 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) (-3751 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107))))) -(-13 (-10 -8 (-15 -3751 ((-107) $ $)) (-15 -3736 ((-107) $ $)))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) 13 (|has| $ (-6 -4168)))) (-1896 (($ $ $) NIL (|has| $ (-6 -4168)))) (-2919 (($ $ $) NIL (|has| $ (-6 -4168)))) (-3156 (($ $ (-578 |#1|)) 15)) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "left" $) NIL (|has| $ (-6 -4168))) (($ $ "right" $) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-1320 (($ $) 11)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4072 (($ $ |#1| $) 17)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2570 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3214 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-578 |#1|) |#1| |#1| |#1|)) 35)) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1313 (($ $) 10)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) 12)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 9)) (-3122 (($) 16)) (-2007 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3288 (($ (-701) |#1|) 19)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-98 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -3288 ($ (-701) |#1|)) (-15 -3156 ($ $ (-578 |#1|))) (-15 -2570 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2570 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3214 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3214 ($ $ |#1| (-1 (-578 |#1|) |#1| |#1| |#1|))))) (-1001)) (T -98)) -((-3288 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *1 (-98 *3)) (-4 *3 (-1001)))) (-3156 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-98 *3)))) (-2570 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1001)))) (-2570 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-98 *3)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1001)) (-5 *1 (-98 *2)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-578 *2) *2 *2 *2)) (-4 *2 (-1001)) (-5 *1 (-98 *2))))) -(-13 (-120 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -3288 ($ (-701) |#1|)) (-15 -3156 ($ $ (-578 |#1|))) (-15 -2570 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2570 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3214 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3214 ($ $ |#1| (-1 (-578 |#1|) |#1| |#1| |#1|))))) -((-3302 ((|#3| |#2| |#2|) 28)) (-1767 ((|#1| |#2| |#2|) 36 (|has| |#1| (-6 (-4169 "*"))))) (-3425 ((|#3| |#2| |#2|) 29)) (-3807 ((|#1| |#2|) 40 (|has| |#1| (-6 (-4169 "*")))))) -(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3302 (|#3| |#2| |#2|)) (-15 -3425 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4169 "*"))) (PROGN (-15 -1767 (|#1| |#2| |#2|)) (-15 -3807 (|#1| |#2|))) |noBranch|)) (-959) (-1125 |#1|) (-618 |#1| |#4| |#5|) (-340 |#1|) (-340 |#1|)) (T -99)) -((-3807 (*1 *2 *3) (-12 (|has| *2 (-6 (-4169 "*"))) (-4 *5 (-340 *2)) (-4 *6 (-340 *2)) (-4 *2 (-959)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1125 *2)) (-4 *4 (-618 *2 *5 *6)))) (-1767 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4169 "*"))) (-4 *5 (-340 *2)) (-4 *6 (-340 *2)) (-4 *2 (-959)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1125 *2)) (-4 *4 (-618 *2 *5 *6)))) (-3425 (*1 *2 *3 *3) (-12 (-4 *4 (-959)) (-4 *2 (-618 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1125 *4)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)))) (-3302 (*1 *2 *3 *3) (-12 (-4 *4 (-959)) (-4 *2 (-618 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1125 *4)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4))))) -(-10 -7 (-15 -3302 (|#3| |#2| |#2|)) (-15 -3425 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4169 "*"))) (PROGN (-15 -1767 (|#1| |#2| |#2|)) (-15 -3807 (|#1| |#2|))) |noBranch|)) -((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3974 (((-578 (-1070))) 32)) (-2943 (((-2 (|:| |zeros| (-1048 (-199))) (|:| |ones| (-1048 (-199))) (|:| |singularities| (-1048 (-199)))) (-1070)) 35)) (-3751 (((-107) $ $) NIL))) -(((-100) (-13 (-1001) (-10 -7 (-15 -3974 ((-578 (-1070)))) (-15 -2943 ((-2 (|:| |zeros| (-1048 (-199))) (|:| |ones| (-1048 (-199))) (|:| |singularities| (-1048 (-199)))) (-1070))) (-6 -4167)))) (T -100)) -((-3974 (*1 *2) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-100)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-2 (|:| |zeros| (-1048 (-199))) (|:| |ones| (-1048 (-199))) (|:| |singularities| (-1048 (-199))))) (-5 *1 (-100))))) -(-13 (-1001) (-10 -7 (-15 -3974 ((-578 (-1070)))) (-15 -2943 ((-2 (|:| |zeros| (-1048 (-199))) (|:| |ones| (-1048 (-199))) (|:| |singularities| (-1048 (-199)))) (-1070))) (-6 -4167))) -((-2866 (($ (-578 |#2|)) 11))) -(((-101 |#1| |#2|) (-10 -8 (-15 -2866 (|#1| (-578 |#2|)))) (-102 |#2|) (-1104)) (T -101)) -NIL -(-10 -8 (-15 -2866 (|#1| (-578 |#2|)))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-102 |#1|) (-1180) (-1104)) (T -102)) -((-2866 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-102 *3)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104)))) (-4114 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104)))) (-1328 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104))))) -(-13 (-454 |t#1|) (-10 -8 (-6 -4168) (-15 -2866 ($ (-578 |t#1|))) (-15 -1251 (|t#1| $)) (-15 -4114 ($ |t#1| $)) (-15 -1328 (|t#1| $)))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-501) $) NIL (|has| (-501) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-501) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-501) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-501) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-501) (-950 (-501))))) (-3490 (((-501) $) NIL) (((-1070) $) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-501) (-950 (-501)))) (((-501) $) NIL (|has| (-501) (-950 (-501))))) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-501) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-501) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-501) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-501) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-501) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-501) (-1046)))) (-4067 (((-107) $) NIL (|has| (-501) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-501) (-777)))) (-1212 (($ (-1 (-501) (-501)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-501) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-501) (-276))) (((-375 (-501)) $) NIL)) (-3383 (((-501) $) NIL (|has| (-501) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-501)) (-578 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-501) (-501)) NIL (|has| (-501) (-278 (-501)))) (($ $ (-262 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-262 (-501)))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-1070)) (-578 (-501))) NIL (|has| (-501) (-476 (-1070) (-501)))) (($ $ (-1070) (-501)) NIL (|has| (-501) (-476 (-1070) (-501))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-501)) NIL (|has| (-501) (-256 (-501) (-501))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-501) $) NIL)) (-1248 (((-810 (-501)) $) NIL (|has| (-501) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-501) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-501) (-556 (-490)))) (((-346) $) NIL (|has| (-501) (-933))) (((-199) $) NIL (|has| (-501) (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-501) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) 7) (($ (-501)) NIL) (($ (-1070)) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL) (((-918 2) $) 9)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-501) (-830))) (|has| (-501) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-501) $) NIL (|has| (-501) (-500)))) (-2406 (($ (-375 (-501))) 8)) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| (-501) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3803 (($ $ $) NIL) (($ (-501) (-501)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-501) $) NIL) (($ $ (-501)) NIL))) -(((-103) (-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 2) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -2406 ($ (-375 (-501))))))) (T -103)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-918 2)) (-5 *1 (-103)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103)))) (-2406 (*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103))))) -(-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 2) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -2406 ($ (-375 (-501)))))) -((-3736 (((-107) $ $) NIL)) (-2186 (((-1018) $ (-1018)) 23)) (-1998 (($ $ (-1053)) 17)) (-1225 (((-3 (-1018) "failed") $) 22)) (-3505 (((-1018) $) 20)) (-3197 (((-1018) $ (-1018)) 25)) (-1934 (((-1018) $) 24)) (-2342 (($ (-356)) NIL) (($ (-356) (-1053)) 16)) (-3986 (((-356) $) NIL)) (-3460 (((-1053) $) NIL)) (-3947 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3371 (($ $) 18)) (-3751 (((-107) $ $) NIL))) -(((-104) (-13 (-333 (-356) (-1018)) (-10 -8 (-15 -1225 ((-3 (-1018) "failed") $)) (-15 -1934 ((-1018) $)) (-15 -3197 ((-1018) $ (-1018)))))) (T -104)) -((-1225 (*1 *2 *1) (|partial| -12 (-5 *2 (-1018)) (-5 *1 (-104)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-104)))) (-3197 (*1 *2 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-104))))) -(-13 (-333 (-356) (-1018)) (-10 -8 (-15 -1225 ((-3 (-1018) "failed") $)) (-15 -1934 ((-1018) $)) (-15 -3197 ((-1018) $ (-1018))))) -((-3736 (((-107) $ $) NIL)) (-2308 (($ $) NIL)) (-1950 (($ $ $) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) $) NIL (|has| (-107) (-777))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-3441 (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| (-107) (-777)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4168)))) (-2861 (($ $) NIL (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3754 (((-107) $ (-1116 (-501)) (-107)) NIL (|has| $ (-6 -4168))) (((-107) $ (-501) (-107)) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-1526 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-3547 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-2156 (((-107) $ (-501) (-107)) NIL (|has| $ (-6 -4168)))) (-1905 (((-107) $ (-501)) NIL)) (-1934 (((-501) (-107) $ (-501)) NIL (|has| (-107) (-1001))) (((-501) (-107) $) NIL (|has| (-107) (-1001))) (((-501) (-1 (-107) (-107)) $) NIL)) (-2732 (((-578 (-107)) $) NIL (|has| $ (-6 -4167)))) (-4057 (($ $ $) NIL)) (-3031 (($ $) NIL)) (-3134 (($ $ $) NIL)) (-3634 (($ (-701) (-107)) 8)) (-1969 (($ $ $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL)) (-3216 (($ $ $) NIL (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-3380 (((-578 (-107)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL)) (-2519 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-107) (-107) (-107)) $ $) NIL) (($ (-1 (-107) (-107)) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ (-107) $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-107) $) NIL (|has| (-501) (-777)))) (-2520 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-3084 (($ $ (-107)) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-107)) (-578 (-107))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-262 (-107))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-578 (-262 (-107)))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-4137 (((-578 (-107)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 (($ $ (-1116 (-501))) NIL) (((-107) $ (-501)) NIL) (((-107) $ (-501) (-107)) NIL)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-3713 (((-701) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001)))) (((-701) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-107) (-556 (-490))))) (-3699 (($ (-578 (-107))) NIL)) (-3934 (($ (-578 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-3691 (((-786) $) NIL)) (-2751 (($ (-701) (-107)) 9)) (-1200 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-1280 (($ $ $) NIL)) (-3948 (($ $) NIL)) (-3099 (($ $ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3092 (($ $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-105) (-13 (-118) (-10 -8 (-15 -2751 ($ (-701) (-107)))))) (T -105)) -((-2751 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-107)) (-5 *1 (-105))))) -(-13 (-118) (-10 -8 (-15 -2751 ($ (-701) (-107))))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 24) (($ $ |#2|) 27))) -(((-106 |#1| |#2|) (-1180) (-959) (-959)) (T -106)) -NIL -(-13 (-583 |t#1|) (-964 |t#2|) (-10 -7 (-6 -4162) (-6 -4161))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-964 |#2|) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-2308 (($ $) 12)) (-1950 (($ $ $) 17)) (-2212 (($) 8 T CONST)) (-3748 (((-107) $) 7)) (-3796 (((-701)) 24)) (-2890 (($) 30)) (-4057 (($ $ $) 15)) (-3031 (($ $) 10)) (-3134 (($ $ $) 18)) (-1969 (($ $ $) 19)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3104 (((-839) $) 29)) (-3460 (((-1053) $) NIL)) (-3506 (($ (-839)) 28)) (-3229 (($ $ $) 21)) (-3708 (((-1018) $) NIL)) (-3667 (($) 9 T CONST)) (-1248 (((-490) $) 36)) (-3691 (((-786) $) 39)) (-1280 (($ $ $) 13)) (-3948 (($ $) 11)) (-3099 (($ $ $) 16)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 20)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 22)) (-3092 (($ $ $) 14))) -(((-107) (-13 (-777) (-336) (-597) (-556 (-490)) (-10 -8 (-15 -2212 ($) -3897) (-15 -3667 ($) -3897) (-15 -3948 ($ $)) (-15 -3031 ($ $)) (-15 -1280 ($ $ $)) (-15 -4057 ($ $ $)) (-15 -1950 ($ $ $)) (-15 -1969 ($ $ $)) (-15 -3134 ($ $ $)) (-15 -3229 ($ $ $)) (-15 -3748 ((-107) $))))) (T -107)) -((-2212 (*1 *1) (-5 *1 (-107))) (-3667 (*1 *1) (-5 *1 (-107))) (-3948 (*1 *1 *1) (-5 *1 (-107))) (-3031 (*1 *1 *1) (-5 *1 (-107))) (-1280 (*1 *1 *1 *1) (-5 *1 (-107))) (-4057 (*1 *1 *1 *1) (-5 *1 (-107))) (-1950 (*1 *1 *1 *1) (-5 *1 (-107))) (-1969 (*1 *1 *1 *1) (-5 *1 (-107))) (-3134 (*1 *1 *1 *1) (-5 *1 (-107))) (-3229 (*1 *1 *1 *1) (-5 *1 (-107))) (-3748 (*1 *1 *1) (-5 *1 (-107)))) -(-13 (-777) (-336) (-597) (-556 (-490)) (-10 -8 (-15 -2212 ($) -3897) (-15 -3667 ($) -3897) (-15 -3948 ($ $)) (-15 -3031 ($ $)) (-15 -1280 ($ $ $)) (-15 -4057 ($ $ $)) (-15 -1950 ($ $ $)) (-15 -1969 ($ $ $)) (-15 -3134 ($ $ $)) (-15 -3229 ($ $ $)) (-15 -3748 ((-107) $)))) -((-3736 (((-107) $ $) NIL)) (-1506 (((-701) $) 68) (($ $ (-701)) 30)) (-3342 (((-107) $) 32)) (-2271 (($ $ (-1053) (-703)) 26)) (-2882 (($ $ (-44 (-1053) (-703))) 13)) (-3866 (((-3 (-703) "failed") $ (-1053)) 24)) (-2944 (((-44 (-1053) (-703)) $) 12)) (-1853 (($ (-1070)) 15) (($ (-1070) (-701)) 20)) (-1402 (((-107) $) 31)) (-2564 (((-107) $) 33)) (-3986 (((-1070) $) 8)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3109 (((-107) $ (-1070)) 10)) (-2258 (($ $ (-1 (-490) (-578 (-490)))) 50) (((-3 (-1 (-490) (-578 (-490))) "failed") $) 54)) (-3708 (((-1018) $) NIL)) (-4099 (((-107) $ (-1053)) 29)) (-2809 (($ $ (-1 (-107) $ $)) 35)) (-2125 (((-3 (-1 (-786) (-578 (-786))) "failed") $) 52) (($ $ (-1 (-786) (-578 (-786)))) 41) (($ $ (-1 (-786) (-786))) 43)) (-3325 (($ $ (-1053)) 45)) (-3764 (($ $) 61)) (-1344 (($ $ (-1 (-107) $ $)) 36)) (-3691 (((-786) $) 48)) (-2402 (($ $ (-1053)) 27)) (-2229 (((-3 (-701) "failed") $) 56)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 67)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 72))) -(((-108) (-13 (-777) (-10 -8 (-15 -3986 ((-1070) $)) (-15 -2944 ((-44 (-1053) (-703)) $)) (-15 -3764 ($ $)) (-15 -1853 ($ (-1070))) (-15 -1853 ($ (-1070) (-701))) (-15 -2229 ((-3 (-701) "failed") $)) (-15 -1402 ((-107) $)) (-15 -3342 ((-107) $)) (-15 -2564 ((-107) $)) (-15 -1506 ((-701) $)) (-15 -1506 ($ $ (-701))) (-15 -2809 ($ $ (-1 (-107) $ $))) (-15 -1344 ($ $ (-1 (-107) $ $))) (-15 -2125 ((-3 (-1 (-786) (-578 (-786))) "failed") $)) (-15 -2125 ($ $ (-1 (-786) (-578 (-786))))) (-15 -2125 ($ $ (-1 (-786) (-786)))) (-15 -2258 ($ $ (-1 (-490) (-578 (-490))))) (-15 -2258 ((-3 (-1 (-490) (-578 (-490))) "failed") $)) (-15 -3109 ((-107) $ (-1070))) (-15 -4099 ((-107) $ (-1053))) (-15 -2402 ($ $ (-1053))) (-15 -3325 ($ $ (-1053))) (-15 -3866 ((-3 (-703) "failed") $ (-1053))) (-15 -2271 ($ $ (-1053) (-703))) (-15 -2882 ($ $ (-44 (-1053) (-703))))))) (T -108)) -((-3986 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-44 (-1053) (-703))) (-5 *1 (-108)))) (-3764 (*1 *1 *1) (-5 *1 (-108))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) (-1853 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *1 (-108)))) (-2229 (*1 *2 *1) (|partial| -12 (-5 *2 (-701)) (-5 *1 (-108)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-108)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-108)))) (-2809 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-108) (-108))) (-5 *1 (-108)))) (-1344 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-108) (-108))) (-5 *1 (-108)))) (-2125 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-786) (-578 (-786)))) (-5 *1 (-108)))) (-2125 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-786) (-578 (-786)))) (-5 *1 (-108)))) (-2125 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-786) (-786))) (-5 *1 (-108)))) (-2258 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-490) (-578 (-490)))) (-5 *1 (-108)))) (-2258 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-490) (-578 (-490)))) (-5 *1 (-108)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-107)) (-5 *1 (-108)))) (-4099 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-108)))) (-2402 (*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-108)))) (-3325 (*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-108)))) (-3866 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1053)) (-5 *2 (-703)) (-5 *1 (-108)))) (-2271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-703)) (-5 *1 (-108)))) (-2882 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1053) (-703))) (-5 *1 (-108))))) -(-13 (-777) (-10 -8 (-15 -3986 ((-1070) $)) (-15 -2944 ((-44 (-1053) (-703)) $)) (-15 -3764 ($ $)) (-15 -1853 ($ (-1070))) (-15 -1853 ($ (-1070) (-701))) (-15 -2229 ((-3 (-701) "failed") $)) (-15 -1402 ((-107) $)) (-15 -3342 ((-107) $)) (-15 -2564 ((-107) $)) (-15 -1506 ((-701) $)) (-15 -1506 ($ $ (-701))) (-15 -2809 ($ $ (-1 (-107) $ $))) (-15 -1344 ($ $ (-1 (-107) $ $))) (-15 -2125 ((-3 (-1 (-786) (-578 (-786))) "failed") $)) (-15 -2125 ($ $ (-1 (-786) (-578 (-786))))) (-15 -2125 ($ $ (-1 (-786) (-786)))) (-15 -2258 ($ $ (-1 (-490) (-578 (-490))))) (-15 -2258 ((-3 (-1 (-490) (-578 (-490))) "failed") $)) (-15 -3109 ((-107) $ (-1070))) (-15 -4099 ((-107) $ (-1053))) (-15 -2402 ($ $ (-1053))) (-15 -3325 ($ $ (-1053))) (-15 -3866 ((-3 (-703) "failed") $ (-1053))) (-15 -2271 ($ $ (-1053) (-703))) (-15 -2882 ($ $ (-44 (-1053) (-703)))))) -((-3508 (((-3 (-1 |#1| (-578 |#1|)) "failed") (-108)) 18) (((-108) (-108) (-1 |#1| |#1|)) 13) (((-108) (-108) (-1 |#1| (-578 |#1|))) 11) (((-3 |#1| "failed") (-108) (-578 |#1|)) 20)) (-2773 (((-3 (-578 (-1 |#1| (-578 |#1|))) "failed") (-108)) 24) (((-108) (-108) (-1 |#1| |#1|)) 30) (((-108) (-108) (-578 (-1 |#1| (-578 |#1|)))) 26)) (-3098 (((-108) |#1|) 53 (|has| |#1| (-777)))) (-2146 (((-3 |#1| "failed") (-108)) 48 (|has| |#1| (-777))))) -(((-109 |#1|) (-10 -7 (-15 -3508 ((-3 |#1| "failed") (-108) (-578 |#1|))) (-15 -3508 ((-108) (-108) (-1 |#1| (-578 |#1|)))) (-15 -3508 ((-108) (-108) (-1 |#1| |#1|))) (-15 -3508 ((-3 (-1 |#1| (-578 |#1|)) "failed") (-108))) (-15 -2773 ((-108) (-108) (-578 (-1 |#1| (-578 |#1|))))) (-15 -2773 ((-108) (-108) (-1 |#1| |#1|))) (-15 -2773 ((-3 (-578 (-1 |#1| (-578 |#1|))) "failed") (-108))) (IF (|has| |#1| (-777)) (PROGN (-15 -3098 ((-108) |#1|)) (-15 -2146 ((-3 |#1| "failed") (-108)))) |noBranch|)) (-1001)) (T -109)) -((-2146 (*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-4 *2 (-1001)) (-4 *2 (-777)) (-5 *1 (-109 *2)))) (-3098 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-109 *3)) (-4 *3 (-777)) (-4 *3 (-1001)))) (-2773 (*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-578 (-1 *4 (-578 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1001)))) (-2773 (*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) (-2773 (*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 (-1 *4 (-578 *4)))) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) (-3508 (*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-1 *4 (-578 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1001)))) (-3508 (*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) (-3508 (*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 (-578 *4))) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) (-3508 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-578 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1001))))) -(-10 -7 (-15 -3508 ((-3 |#1| "failed") (-108) (-578 |#1|))) (-15 -3508 ((-108) (-108) (-1 |#1| (-578 |#1|)))) (-15 -3508 ((-108) (-108) (-1 |#1| |#1|))) (-15 -3508 ((-3 (-1 |#1| (-578 |#1|)) "failed") (-108))) (-15 -2773 ((-108) (-108) (-578 (-1 |#1| (-578 |#1|))))) (-15 -2773 ((-108) (-108) (-1 |#1| |#1|))) (-15 -2773 ((-3 (-578 (-1 |#1| (-578 |#1|))) "failed") (-108))) (IF (|has| |#1| (-777)) (PROGN (-15 -3098 ((-108) |#1|)) (-15 -2146 ((-3 |#1| "failed") (-108)))) |noBranch|)) -((-4069 (((-501) |#2|) 36))) -(((-110 |#1| |#2|) (-10 -7 (-15 -4069 ((-501) |#2|))) (-13 (-331) (-950 (-375 (-501)))) (-1125 |#1|)) (T -110)) -((-4069 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-950 (-375 *2)))) (-5 *2 (-501)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1125 *4))))) -(-10 -7 (-15 -4069 ((-501) |#2|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $ (-501)) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2833 (($ (-1064 (-501)) (-501)) NIL)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-1529 (($ $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-3169 (((-701) $) NIL)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3121 (((-501)) NIL)) (-2443 (((-501) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3718 (($ $ (-501)) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3960 (((-1048 (-501)) $) NIL)) (-1267 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-2391 (((-501) $ (-501)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL))) -(((-111 |#1|) (-792 |#1|) (-501)) (T -111)) -NIL -(-792 |#1|) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-111 |#1|) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-111 |#1|) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-111 |#1|) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-111 |#1|) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-111 |#1|) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-111 |#1|) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-111 |#1|) (-950 (-501))))) (-3490 (((-111 |#1|) $) NIL) (((-1070) $) NIL (|has| (-111 |#1|) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-111 |#1|) (-950 (-501)))) (((-501) $) NIL (|has| (-111 |#1|) (-950 (-501))))) (-1574 (($ $) NIL) (($ (-501) $) NIL)) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-111 |#1|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-111 |#1|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-111 |#1|))) (|:| |vec| (-1148 (-111 |#1|)))) (-621 $) (-1148 $)) NIL) (((-621 (-111 |#1|)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-111 |#1|) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-111 |#1|) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-111 |#1|) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-111 |#1|) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-111 |#1|) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-111 |#1|) (-1046)))) (-4067 (((-107) $) NIL (|has| (-111 |#1|) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-111 |#1|) (-777)))) (-1323 (($ $ $) NIL (|has| (-111 |#1|) (-777)))) (-1212 (($ (-1 (-111 |#1|) (-111 |#1|)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-111 |#1|) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-111 |#1|) (-276)))) (-3383 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-111 |#1|) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-111 |#1|) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-111 |#1|)) (-578 (-111 |#1|))) NIL (|has| (-111 |#1|) (-278 (-111 |#1|)))) (($ $ (-111 |#1|) (-111 |#1|)) NIL (|has| (-111 |#1|) (-278 (-111 |#1|)))) (($ $ (-262 (-111 |#1|))) NIL (|has| (-111 |#1|) (-278 (-111 |#1|)))) (($ $ (-578 (-262 (-111 |#1|)))) NIL (|has| (-111 |#1|) (-278 (-111 |#1|)))) (($ $ (-578 (-1070)) (-578 (-111 |#1|))) NIL (|has| (-111 |#1|) (-476 (-1070) (-111 |#1|)))) (($ $ (-1070) (-111 |#1|)) NIL (|has| (-111 |#1|) (-476 (-1070) (-111 |#1|))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-111 |#1|)) NIL (|has| (-111 |#1|) (-256 (-111 |#1|) (-111 |#1|))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-111 |#1|) (-206))) (($ $ (-701)) NIL (|has| (-111 |#1|) (-206))) (($ $ (-1070)) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-701)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-111 |#1|) $) NIL)) (-1248 (((-810 (-501)) $) NIL (|has| (-111 |#1|) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-111 |#1|) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-111 |#1|) (-556 (-490)))) (((-346) $) NIL (|has| (-111 |#1|) (-933))) (((-199) $) NIL (|has| (-111 |#1|) (-933)))) (-2672 (((-157 (-375 (-501))) $) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-111 |#1|)) NIL) (($ (-1070)) NIL (|has| (-111 |#1|) (-950 (-1070))))) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-830))) (|has| (-111 |#1|) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-500)))) (-2442 (((-107) $ $) NIL)) (-2391 (((-375 (-501)) $ (-501)) NIL)) (-1720 (($ $) NIL (|has| (-111 |#1|) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-111 |#1|) (-206))) (($ $ (-701)) NIL (|has| (-111 |#1|) (-206))) (($ $ (-1070)) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-701)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-111 |#1|) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-111 |#1|) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-111 |#1|) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-111 |#1|) (-777)))) (-3803 (($ $ $) NIL) (($ (-111 |#1|) (-111 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-111 |#1|) $) NIL) (($ $ (-111 |#1|)) NIL))) -(((-112 |#1|) (-13 (-906 (-111 |#1|)) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $)))) (-501)) (T -112)) -((-2391 (*1 *2 *1 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-501)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-112 *3)) (-14 *3 (-501)))) (-1574 (*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-501)))) (-1574 (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-112 *3)) (-14 *3 *2)))) -(-13 (-906 (-111 |#1|)) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $)))) -((-3754 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-3604 (((-578 $) $) 27)) (-3201 (((-107) $ $) 32)) (-2211 (((-107) |#2| $) 36)) (-3386 (((-578 |#2|) $) 22)) (-2341 (((-107) $) 16)) (-2007 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2622 (((-107) $) 45)) (-3691 (((-786) $) 41)) (-1961 (((-578 $) $) 28)) (-3751 (((-107) $ $) 34)) (-3581 (((-701) $) 43))) -(((-113 |#1| |#2|) (-10 -8 (-15 -3754 (|#1| |#1| "right" |#1|)) (-15 -3754 (|#1| |#1| "left" |#1|)) (-15 -2007 (|#1| |#1| "right")) (-15 -2007 (|#1| |#1| "left")) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -3201 ((-107) |#1| |#1|)) (-15 -3386 ((-578 |#2|) |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3581 ((-701) |#1|))) (-114 |#2|) (-1104)) (T -113)) -NIL -(-10 -8 (-15 -3754 (|#1| |#1| "right" |#1|)) (-15 -3754 (|#1| |#1| "left" |#1|)) (-15 -2007 (|#1| |#1| "right")) (-15 -2007 (|#1| |#1| "left")) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -3201 ((-107) |#1| |#1|)) (-15 -3386 ((-578 |#2|) |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3581 ((-701) |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-1896 (($ $ $) 52 (|has| $ (-6 -4168)))) (-2919 (($ $ $) 54 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) (($ $ "left" $) 55 (|has| $ (-6 -4168))) (($ $ "right" $) 53 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-1320 (($ $) 57)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-1313 (($ $) 59)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1932 (((-501) $ $) 44)) (-2622 (((-107) $) 46)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-114 |#1|) (-1180) (-1104)) (T -114)) -((-1313 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1104)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1104)))) (-1320 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1104)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1104)))) (-3754 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4168)) (-4 *1 (-114 *3)) (-4 *3 (-1104)))) (-2919 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-114 *2)) (-4 *2 (-1104)))) (-3754 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4168)) (-4 *1 (-114 *3)) (-4 *3 (-1104)))) (-1896 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-114 *2)) (-4 *2 (-1104))))) -(-13 (-924 |t#1|) (-10 -8 (-15 -1313 ($ $)) (-15 -2007 ($ $ "left")) (-15 -1320 ($ $)) (-15 -2007 ($ $ "right")) (IF (|has| $ (-6 -4168)) (PROGN (-15 -3754 ($ $ "left" $)) (-15 -2919 ($ $ $)) (-15 -3754 ($ $ "right" $)) (-15 -1896 ($ $ $))) |noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-2421 (((-107) |#1|) 24)) (-1263 (((-701) (-701)) 23) (((-701)) 22)) (-2376 (((-107) |#1| (-107)) 25) (((-107) |#1|) 26))) -(((-115 |#1|) (-10 -7 (-15 -2376 ((-107) |#1|)) (-15 -2376 ((-107) |#1| (-107))) (-15 -1263 ((-701))) (-15 -1263 ((-701) (-701))) (-15 -2421 ((-107) |#1|))) (-1125 (-501))) (T -115)) -((-2421 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) (-1263 (*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) (-1263 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) (-2376 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) (-2376 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501)))))) -(-10 -7 (-15 -2376 ((-107) |#1|)) (-15 -2376 ((-107) |#1| (-107))) (-15 -1263 ((-701))) (-15 -1263 ((-701) (-701))) (-15 -2421 ((-107) |#1|))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) 15)) (-3205 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-1896 (($ $ $) 18 (|has| $ (-6 -4168)))) (-2919 (($ $ $) 20 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "left" $) NIL (|has| $ (-6 -4168))) (($ $ "right" $) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-1320 (($ $) 17)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4072 (($ $ |#1| $) 23)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1313 (($ $) 19)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-2964 (($ |#1| $) 24)) (-4114 (($ |#1| $) 10)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 14)) (-3122 (($) 8)) (-2007 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3510 (($ (-578 |#1|)) 12)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-116 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4168) (-6 -4167) (-15 -3510 ($ (-578 |#1|))) (-15 -4114 ($ |#1| $)) (-15 -2964 ($ |#1| $)) (-15 -3205 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-777)) (T -116)) -((-3510 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-116 *3)))) (-4114 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-777)))) (-2964 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-777)))) (-3205 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-777))))) -(-13 (-120 |#1|) (-10 -8 (-6 -4168) (-6 -4167) (-15 -3510 ($ (-578 |#1|))) (-15 -4114 ($ |#1| $)) (-15 -2964 ($ |#1| $)) (-15 -3205 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2308 (($ $) 14)) (-3031 (($ $) 11)) (-3134 (($ $ $) 24)) (-1969 (($ $ $) 22)) (-3948 (($ $) 12)) (-3099 (($ $ $) 20)) (-3092 (($ $ $) 18))) -(((-117 |#1|) (-10 -8 (-15 -3134 (|#1| |#1| |#1|)) (-15 -1969 (|#1| |#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1|))) (-118)) (T -117)) -NIL -(-10 -8 (-15 -3134 (|#1| |#1| |#1|)) (-15 -1969 (|#1| |#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-2308 (($ $) 104)) (-1950 (($ $ $) 25)) (-1991 (((-1154) $ (-501) (-501)) 67 (|has| $ (-6 -4168)))) (-2045 (((-107) $) 99 (|has| (-107) (-777))) (((-107) (-1 (-107) (-107) (-107)) $) 93)) (-3441 (($ $) 103 (-12 (|has| (-107) (-777)) (|has| $ (-6 -4168)))) (($ (-1 (-107) (-107) (-107)) $) 102 (|has| $ (-6 -4168)))) (-2861 (($ $) 98 (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $) 92)) (-2997 (((-107) $ (-701)) 38)) (-3754 (((-107) $ (-1116 (-501)) (-107)) 89 (|has| $ (-6 -4168))) (((-107) $ (-501) (-107)) 55 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-107)) $) 72 (|has| $ (-6 -4167)))) (-2540 (($) 39 T CONST)) (-1375 (($ $) 101 (|has| $ (-6 -4168)))) (-3785 (($ $) 91)) (-2673 (($ $) 69 (-12 (|has| (-107) (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ (-1 (-107) (-107)) $) 73 (|has| $ (-6 -4167))) (($ (-107) $) 70 (-12 (|has| (-107) (-1001)) (|has| $ (-6 -4167))))) (-3547 (((-107) (-1 (-107) (-107) (-107)) $) 75 (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) 74 (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) 71 (-12 (|has| (-107) (-1001)) (|has| $ (-6 -4167))))) (-2156 (((-107) $ (-501) (-107)) 54 (|has| $ (-6 -4168)))) (-1905 (((-107) $ (-501)) 56)) (-1934 (((-501) (-107) $ (-501)) 96 (|has| (-107) (-1001))) (((-501) (-107) $) 95 (|has| (-107) (-1001))) (((-501) (-1 (-107) (-107)) $) 94)) (-2732 (((-578 (-107)) $) 46 (|has| $ (-6 -4167)))) (-4057 (($ $ $) 26)) (-3031 (($ $) 31)) (-3134 (($ $ $) 28)) (-3634 (($ (-701) (-107)) 78)) (-1969 (($ $ $) 29)) (-3379 (((-107) $ (-701)) 37)) (-3627 (((-501) $) 64 (|has| (-501) (-777)))) (-4111 (($ $ $) 13)) (-3216 (($ $ $) 97 (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $ $) 90)) (-3380 (((-578 (-107)) $) 47 (|has| $ (-6 -4167)))) (-2211 (((-107) (-107) $) 49 (-12 (|has| (-107) (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 63 (|has| (-501) (-777)))) (-1323 (($ $ $) 14)) (-2519 (($ (-1 (-107) (-107)) $) 42 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-107) (-107) (-107)) $ $) 83) (($ (-1 (-107) (-107)) $) 41)) (-3155 (((-107) $ (-701)) 36)) (-3460 (((-1053) $) 9)) (-1473 (($ $ $ (-501)) 88) (($ (-107) $ (-501)) 87)) (-2658 (((-578 (-501)) $) 61)) (-2852 (((-107) (-501) $) 60)) (-3708 (((-1018) $) 10)) (-1190 (((-107) $) 65 (|has| (-501) (-777)))) (-2520 (((-3 (-107) "failed") (-1 (-107) (-107)) $) 76)) (-3084 (($ $ (-107)) 66 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-107)) $) 44 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-107)) (-578 (-107))) 53 (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-107) (-107)) 52 (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-262 (-107))) 51 (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-578 (-262 (-107)))) 50 (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001))))) (-1262 (((-107) $ $) 32)) (-2845 (((-107) (-107) $) 62 (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-4137 (((-578 (-107)) $) 59)) (-1407 (((-107) $) 35)) (-3122 (($) 34)) (-2007 (($ $ (-1116 (-501))) 84) (((-107) $ (-501)) 58) (((-107) $ (-501) (-107)) 57)) (-1468 (($ $ (-1116 (-501))) 86) (($ $ (-501)) 85)) (-3713 (((-701) (-107) $) 48 (-12 (|has| (-107) (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) (-107)) $) 45 (|has| $ (-6 -4167)))) (-2355 (($ $ $ (-501)) 100 (|has| $ (-6 -4168)))) (-3764 (($ $) 33)) (-1248 (((-490) $) 68 (|has| (-107) (-556 (-490))))) (-3699 (($ (-578 (-107))) 77)) (-3934 (($ (-578 $)) 82) (($ $ $) 81) (($ (-107) $) 80) (($ $ (-107)) 79)) (-3691 (((-786) $) 11)) (-1200 (((-107) (-1 (-107) (-107)) $) 43 (|has| $ (-6 -4167)))) (-1280 (($ $ $) 27)) (-3948 (($ $) 30)) (-3099 (($ $ $) 106)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3092 (($ $ $) 105)) (-3581 (((-701) $) 40 (|has| $ (-6 -4167))))) -(((-118) (-1180)) (T -118)) -((-3031 (*1 *1 *1) (-4 *1 (-118))) (-3948 (*1 *1 *1) (-4 *1 (-118))) (-1969 (*1 *1 *1 *1) (-4 *1 (-118))) (-3134 (*1 *1 *1 *1) (-4 *1 (-118))) (-1280 (*1 *1 *1 *1) (-4 *1 (-118))) (-4057 (*1 *1 *1 *1) (-4 *1 (-118))) (-1950 (*1 *1 *1 *1) (-4 *1 (-118)))) -(-13 (-777) (-597) (-19 (-107)) (-10 -8 (-15 -3031 ($ $)) (-15 -3948 ($ $)) (-15 -1969 ($ $ $)) (-15 -3134 ($ $ $)) (-15 -1280 ($ $ $)) (-15 -4057 ($ $ $)) (-15 -1950 ($ $ $)))) -(((-33) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 (-107)) . T) ((-556 (-490)) |has| (-107) (-556 (-490))) ((-256 (-501) (-107)) . T) ((-258 (-501) (-107)) . T) ((-278 (-107)) -12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001))) ((-340 (-107)) . T) ((-454 (-107)) . T) ((-548 (-501) (-107)) . T) ((-476 (-107) (-107)) -12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001))) ((-586 (-107)) . T) ((-597) . T) ((-19 (-107)) . T) ((-777) . T) ((-1001) . T) ((-1104) . T)) -((-2519 (($ (-1 |#2| |#2|) $) 22)) (-3764 (($ $) 16)) (-3581 (((-701) $) 24))) -(((-119 |#1| |#2|) (-10 -8 (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -3764 (|#1| |#1|))) (-120 |#2|) (-1001)) (T -119)) -NIL -(-10 -8 (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -3764 (|#1| |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-1896 (($ $ $) 52 (|has| $ (-6 -4168)))) (-2919 (($ $ $) 54 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) (($ $ "left" $) 55 (|has| $ (-6 -4168))) (($ $ "right" $) 53 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-1320 (($ $) 57)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-4072 (($ $ |#1| $) 60)) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-1313 (($ $) 59)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1932 (((-501) $ $) 44)) (-2622 (((-107) $) 46)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-120 |#1|) (-1180) (-1001)) (T -120)) -((-4072 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1001))))) -(-13 (-114 |t#1|) (-10 -8 (-6 -4168) (-6 -4167) (-15 -4072 ($ $ |t#1| $)))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-114 |#1|) . T) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) 15)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) 19 (|has| $ (-6 -4168)))) (-1896 (($ $ $) 20 (|has| $ (-6 -4168)))) (-2919 (($ $ $) 18 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "left" $) NIL (|has| $ (-6 -4168))) (($ $ "right" $) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-1320 (($ $) 21)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4072 (($ $ |#1| $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1313 (($ $) NIL)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-4114 (($ |#1| $) 10)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 14)) (-3122 (($) 8)) (-2007 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 17)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2388 (($ (-578 |#1|)) 12)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-121 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4168) (-15 -2388 ($ (-578 |#1|))) (-15 -4114 ($ |#1| $)))) (-777)) (T -121)) -((-2388 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-121 *3)))) (-4114 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-777))))) -(-13 (-120 |#1|) (-10 -8 (-6 -4168) (-15 -2388 ($ (-578 |#1|))) (-15 -4114 ($ |#1| $)))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) 24)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) 26 (|has| $ (-6 -4168)))) (-1896 (($ $ $) 30 (|has| $ (-6 -4168)))) (-2919 (($ $ $) 28 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "left" $) NIL (|has| $ (-6 -4168))) (($ $ "right" $) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-1320 (($ $) 20)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4072 (($ $ |#1| $) 15)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1313 (($ $) 19)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) 21)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 18)) (-3122 (($) 11)) (-2007 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2136 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 10 (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-122 |#1|) (-13 (-120 |#1|) (-10 -8 (-15 -2136 ($ |#1|)) (-15 -2136 ($ $ |#1| $)))) (-1001)) (T -122)) -((-2136 (*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1001)))) (-2136 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1001))))) -(-13 (-120 |#1|) (-10 -8 (-15 -2136 ($ |#1|)) (-15 -2136 ($ $ |#1| $)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15))) -(((-123) (-1180)) (T -123)) -((-3177 (*1 *1 *1 *1) (|partial| -4 *1 (-123)))) -(-13 (-23) (-10 -8 (-15 -3177 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3736 (((-107) $ $) 7)) (-3782 (((-1154) $ (-701)) 19)) (-1934 (((-701) $) 20)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18))) -(((-124) (-1180)) (T -124)) -((-1934 (*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-701)))) (-3782 (*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-701)) (-5 *2 (-1154))))) -(-13 (-777) (-10 -8 (-15 -1934 ((-701) $)) (-15 -3782 ((-1154) $ (-701))))) -(((-97) . T) ((-555 (-786)) . T) ((-777) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-701) "failed") $) 38)) (-3490 (((-701) $) 36)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) 26)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3107 (((-107)) 39)) (-1970 (((-107) (-107)) 41)) (-3101 (((-107) $) 23)) (-3714 (((-107) $) 35)) (-3691 (((-786) $) 22) (($ (-701)) 14)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) 12 T CONST)) (-1925 (($) 11 T CONST)) (-2430 (($ (-701)) 15)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 24)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 25)) (-3797 (((-3 $ "failed") $ $) 29)) (-3790 (($ $ $) 27)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL) (($ $ $) 34)) (* (($ (-701) $) 32) (($ (-839) $) NIL) (($ $ $) 30))) -(((-125) (-13 (-777) (-23) (-657) (-950 (-701)) (-10 -8 (-6 (-4169 "*")) (-15 -3797 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2430 ($ (-701))) (-15 -3101 ((-107) $)) (-15 -3714 ((-107) $)) (-15 -3107 ((-107))) (-15 -1970 ((-107) (-107)))))) (T -125)) -((-3797 (*1 *1 *1 *1) (|partial| -5 *1 (-125))) (** (*1 *1 *1 *1) (-5 *1 (-125))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-125)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-3107 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1970 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125))))) -(-13 (-777) (-23) (-657) (-950 (-701)) (-10 -8 (-6 (-4169 "*")) (-15 -3797 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2430 ($ (-701))) (-15 -3101 ((-107) $)) (-15 -3714 ((-107) $)) (-15 -3107 ((-107))) (-15 -1970 ((-107) (-107))))) -((-3736 (((-107) $ $) NIL)) (-2848 (($ (-578 |#3|)) 38)) (-2676 (($ $) 97) (($ $ (-501) (-501)) 96)) (-2540 (($) 17)) (-3765 (((-3 |#3| "failed") $) 58)) (-3490 ((|#3| $) NIL)) (-3209 (($ $ (-578 (-501))) 98)) (-1195 (((-578 |#3|) $) 34)) (-3689 (((-701) $) 42)) (-1758 (($ $ $) 91)) (-3543 (($) 41)) (-3460 (((-1053) $) NIL)) (-2537 (($) 16)) (-3708 (((-1018) $) NIL)) (-2007 ((|#3| $) 44) ((|#3| $ (-501)) 45) ((|#3| $ (-501) (-501)) 46) ((|#3| $ (-501) (-501) (-501)) 47) ((|#3| $ (-501) (-501) (-501) (-501)) 48) ((|#3| $ (-578 (-501))) 50)) (-1201 (((-701) $) 43)) (-3591 (($ $ (-501) $ (-501)) 92) (($ $ (-501) (-501)) 94)) (-3691 (((-786) $) 65) (($ |#3|) 66) (($ (-212 |#2| |#3|)) 73) (($ (-1037 |#2| |#3|)) 76) (($ (-578 |#3|)) 51) (($ (-578 $)) 56)) (-1850 (($) 67 T CONST)) (-1925 (($) 68 T CONST)) (-3751 (((-107) $ $) 78)) (-3797 (($ $) 84) (($ $ $) 82)) (-3790 (($ $ $) 80)) (* (($ |#3| $) 89) (($ $ |#3|) 90) (($ $ (-501)) 87) (($ (-501) $) 86) (($ $ $) 93))) -(((-126 |#1| |#2| |#3|) (-13 (-432 |#3| (-701)) (-437 (-501) (-701)) (-10 -8 (-15 -3691 ($ (-212 |#2| |#3|))) (-15 -3691 ($ (-1037 |#2| |#3|))) (-15 -3691 ($ (-578 |#3|))) (-15 -3691 ($ (-578 $))) (-15 -3689 ((-701) $)) (-15 -2007 (|#3| $)) (-15 -2007 (|#3| $ (-501))) (-15 -2007 (|#3| $ (-501) (-501))) (-15 -2007 (|#3| $ (-501) (-501) (-501))) (-15 -2007 (|#3| $ (-501) (-501) (-501) (-501))) (-15 -2007 (|#3| $ (-578 (-501)))) (-15 -1758 ($ $ $)) (-15 * ($ $ $)) (-15 -3591 ($ $ (-501) $ (-501))) (-15 -3591 ($ $ (-501) (-501))) (-15 -2676 ($ $)) (-15 -2676 ($ $ (-501) (-501))) (-15 -3209 ($ $ (-578 (-501)))) (-15 -2537 ($)) (-15 -3543 ($)) (-15 -1195 ((-578 |#3|) $)) (-15 -2848 ($ (-578 |#3|))) (-15 -2540 ($)))) (-501) (-701) (-156)) (T -126)) -((-1758 (*1 *1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-212 *4 *5)) (-14 *4 (-701)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1037 *4 *5)) (-14 *4 (-701)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *5)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-126 *3 *4 *5))) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 *2) (-4 *5 (-156)))) (-2007 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-126 *3 *4 *2)) (-14 *3 (-501)) (-14 *4 (-701)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) (-2007 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) (-2007 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) (-2007 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-501))) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 (-501)) (-14 *5 (-701)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) (-3591 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) (-3591 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) (-2676 (*1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) (-2676 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) (-3209 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156)))) (-2537 (*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) (-3543 (*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) (-1195 (*1 *2 *1) (-12 (-5 *2 (-578 *5)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156)))) (-2848 (*1 *1 *2) (-12 (-5 *2 (-578 *5)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)))) (-2540 (*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156))))) -(-13 (-432 |#3| (-701)) (-437 (-501) (-701)) (-10 -8 (-15 -3691 ($ (-212 |#2| |#3|))) (-15 -3691 ($ (-1037 |#2| |#3|))) (-15 -3691 ($ (-578 |#3|))) (-15 -3691 ($ (-578 $))) (-15 -3689 ((-701) $)) (-15 -2007 (|#3| $)) (-15 -2007 (|#3| $ (-501))) (-15 -2007 (|#3| $ (-501) (-501))) (-15 -2007 (|#3| $ (-501) (-501) (-501))) (-15 -2007 (|#3| $ (-501) (-501) (-501) (-501))) (-15 -2007 (|#3| $ (-578 (-501)))) (-15 -1758 ($ $ $)) (-15 * ($ $ $)) (-15 -3591 ($ $ (-501) $ (-501))) (-15 -3591 ($ $ (-501) (-501))) (-15 -2676 ($ $)) (-15 -2676 ($ $ (-501) (-501))) (-15 -3209 ($ $ (-578 (-501)))) (-15 -2537 ($)) (-15 -3543 ($)) (-15 -1195 ((-578 |#3|) $)) (-15 -2848 ($ (-578 |#3|))) (-15 -2540 ($)))) -((-1205 (((-126 |#1| |#2| |#4|) (-578 |#4|) (-126 |#1| |#2| |#3|)) 14)) (-1212 (((-126 |#1| |#2| |#4|) (-1 |#4| |#3|) (-126 |#1| |#2| |#3|)) 18))) -(((-127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1205 ((-126 |#1| |#2| |#4|) (-578 |#4|) (-126 |#1| |#2| |#3|))) (-15 -1212 ((-126 |#1| |#2| |#4|) (-1 |#4| |#3|) (-126 |#1| |#2| |#3|)))) (-501) (-701) (-156) (-156)) (T -127)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-126 *5 *6 *7)) (-14 *5 (-501)) (-14 *6 (-701)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-126 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) (-1205 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-126 *5 *6 *7)) (-14 *5 (-501)) (-14 *6 (-701)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-126 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8))))) -(-10 -7 (-15 -1205 ((-126 |#1| |#2| |#4|) (-578 |#4|) (-126 |#1| |#2| |#3|))) (-15 -1212 ((-126 |#1| |#2| |#4|) (-1 |#4| |#3|) (-126 |#1| |#2| |#3|)))) -((-3736 (((-107) $ $) NIL)) (-3612 (($) 15 T CONST)) (-3524 (($) NIL (|has| (-131) (-336)))) (-1442 (($ $ $) 17) (($ $ (-131)) NIL) (($ (-131) $) NIL)) (-3217 (($ $ $) NIL)) (-3599 (((-107) $ $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| (-131) (-336)))) (-2198 (($) NIL) (($ (-578 (-131))) NIL)) (-1221 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-2256 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167))) (($ (-131) $) 51 (|has| $ (-6 -4167)))) (-1526 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167))) (($ (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-3547 (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-2890 (($) NIL (|has| (-131) (-336)))) (-2732 (((-578 (-131)) $) 60 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-4111 (((-131) $) NIL (|has| (-131) (-777)))) (-3380 (((-578 (-131)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-131) $) 26 (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-1323 (((-131) $) NIL (|has| (-131) (-777)))) (-2519 (($ (-1 (-131) (-131)) $) 59 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-131) (-131)) $) 55)) (-2874 (($) 16 T CONST)) (-3104 (((-839) $) NIL (|has| (-131) (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-3420 (($ $ $) 29)) (-1328 (((-131) $) 52)) (-4114 (($ (-131) $) 50)) (-3506 (($ (-839)) NIL (|has| (-131) (-336)))) (-2010 (($) 14 T CONST)) (-3708 (((-1018) $) NIL)) (-2520 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-1251 (((-131) $) 53)) (-2369 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-131)) (-578 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-262 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-578 (-262 (-131)))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 48)) (-2544 (($) 13 T CONST)) (-3327 (($ $ $) 31) (($ $ (-131)) NIL)) (-3013 (($ (-578 (-131))) NIL) (($) NIL)) (-3713 (((-701) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001)))) (((-701) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-1053) $) 36) (((-490) $) NIL (|has| (-131) (-556 (-490)))) (((-578 (-131)) $) 34)) (-3699 (($ (-578 (-131))) NIL)) (-2655 (($ $) 32 (|has| (-131) (-336)))) (-3691 (((-786) $) 46)) (-4079 (($ (-1053)) 12) (($ (-578 (-131))) 43)) (-1393 (((-701) $) NIL)) (-3910 (($) 49) (($ (-578 (-131))) NIL)) (-2866 (($ (-578 (-131))) NIL)) (-1200 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3058 (($) 19 T CONST)) (-3659 (($) 18 T CONST)) (-3751 (((-107) $ $) 22)) (-3762 (((-107) $ $) NIL)) (-3581 (((-701) $) 47 (|has| $ (-6 -4167))))) -(((-128) (-13 (-1001) (-556 (-1053)) (-394 (-131)) (-556 (-578 (-131))) (-10 -8 (-15 -4079 ($ (-1053))) (-15 -4079 ($ (-578 (-131)))) (-15 -2544 ($) -3897) (-15 -2010 ($) -3897) (-15 -3612 ($) -3897) (-15 -2874 ($) -3897) (-15 -3659 ($) -3897) (-15 -3058 ($) -3897)))) (T -128)) -((-4079 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-128)))) (-4079 (*1 *1 *2) (-12 (-5 *2 (-578 (-131))) (-5 *1 (-128)))) (-2544 (*1 *1) (-5 *1 (-128))) (-2010 (*1 *1) (-5 *1 (-128))) (-3612 (*1 *1) (-5 *1 (-128))) (-2874 (*1 *1) (-5 *1 (-128))) (-3659 (*1 *1) (-5 *1 (-128))) (-3058 (*1 *1) (-5 *1 (-128)))) -(-13 (-1001) (-556 (-1053)) (-394 (-131)) (-556 (-578 (-131))) (-10 -8 (-15 -4079 ($ (-1053))) (-15 -4079 ($ (-578 (-131)))) (-15 -2544 ($) -3897) (-15 -2010 ($) -3897) (-15 -3612 ($) -3897) (-15 -2874 ($) -3897) (-15 -3659 ($) -3897) (-15 -3058 ($) -3897))) -((-3473 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1644 ((|#1| |#3|) 9)) (-4132 ((|#3| |#3|) 15))) -(((-129 |#1| |#2| |#3|) (-10 -7 (-15 -1644 (|#1| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-508) (-906 |#1|) (-340 |#2|)) (T -129)) -((-3473 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-340 *5)))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *4 (-906 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-340 *4)))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-340 *4))))) -(-10 -7 (-15 -1644 (|#1| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2940 (($ $ $) 8)) (-3260 (($ $) 7)) (-1299 (($ $ $) 6))) -(((-130) (-1180)) (T -130)) -((-2940 (*1 *1 *1 *1) (-4 *1 (-130))) (-3260 (*1 *1 *1) (-4 *1 (-130))) (-1299 (*1 *1 *1 *1) (-4 *1 (-130)))) -(-13 (-10 -8 (-15 -1299 ($ $ $)) (-15 -3260 ($ $)) (-15 -2940 ($ $ $)))) -((-3736 (((-107) $ $) NIL)) (-2462 (((-107) $) 38)) (-3612 (($ $) 51)) (-3498 (($) 25)) (-3796 (((-701)) 16)) (-2890 (($) 24)) (-3911 (($) 26)) (-4015 (((-501) $) 21)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3117 (((-107) $) 40)) (-2874 (($ $) 52)) (-3104 (((-839) $) 22)) (-3460 (((-1053) $) 47)) (-3506 (($ (-839)) 20)) (-2819 (((-107) $) 36)) (-3708 (((-1018) $) NIL)) (-2093 (($) 27)) (-3792 (((-107) $) 34)) (-3691 (((-786) $) 29)) (-3942 (($ (-501)) 18) (($ (-1053)) 50)) (-4075 (((-107) $) 44)) (-3174 (((-107) $) 42)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 13)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 14))) -(((-131) (-13 (-771) (-10 -8 (-15 -4015 ((-501) $)) (-15 -3942 ($ (-501))) (-15 -3942 ($ (-1053))) (-15 -3498 ($)) (-15 -3911 ($)) (-15 -2093 ($)) (-15 -3612 ($ $)) (-15 -2874 ($ $)) (-15 -3792 ((-107) $)) (-15 -2819 ((-107) $)) (-15 -3174 ((-107) $)) (-15 -2462 ((-107) $)) (-15 -3117 ((-107) $)) (-15 -4075 ((-107) $))))) (T -131)) -((-4015 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-131)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-131)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-131)))) (-3498 (*1 *1) (-5 *1 (-131))) (-3911 (*1 *1) (-5 *1 (-131))) (-2093 (*1 *1) (-5 *1 (-131))) (-3612 (*1 *1 *1) (-5 *1 (-131))) (-2874 (*1 *1 *1) (-5 *1 (-131))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) -(-13 (-771) (-10 -8 (-15 -4015 ((-501) $)) (-15 -3942 ($ (-501))) (-15 -3942 ($ (-1053))) (-15 -3498 ($)) (-15 -3911 ($)) (-15 -2093 ($)) (-15 -3612 ($ $)) (-15 -2874 ($ $)) (-15 -3792 ((-107) $)) (-15 -2819 ((-107) $)) (-15 -3174 ((-107) $)) (-15 -2462 ((-107) $)) (-15 -3117 ((-107) $)) (-15 -4075 ((-107) $)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-1274 (((-3 $ "failed") $) 35)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-132) (-1180)) (T -132)) -((-1274 (*1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-959) (-10 -8 (-15 -1274 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-2942 ((|#1| (-621 |#1|) |#1|) 17))) -(((-133 |#1|) (-10 -7 (-15 -2942 (|#1| (-621 |#1|) |#1|))) (-156)) (T -133)) -((-2942 (*1 *2 *3 *2) (-12 (-5 *3 (-621 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2))))) -(-10 -7 (-15 -2942 (|#1| (-621 |#1|) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-134) (-1180)) (T -134)) -NIL -(-13 (-959)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-2023 (((-2 (|:| -3027 (-701)) (|:| -3189 (-375 |#2|)) (|:| |radicand| |#2|)) (-375 |#2|) (-701)) 69)) (-2471 (((-3 (-2 (|:| |radicand| (-375 |#2|)) (|:| |deg| (-701))) "failed") |#3|) 51)) (-3907 (((-2 (|:| -3189 (-375 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-3427 ((|#1| |#3| |#3|) 39)) (-3195 ((|#3| |#3| (-375 |#2|) (-375 |#2|)) 19)) (-3297 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| |deg| (-701))) |#3| |#3|) 48))) -(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -3907 ((-2 (|:| -3189 (-375 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2471 ((-3 (-2 (|:| |radicand| (-375 |#2|)) (|:| |deg| (-701))) "failed") |#3|)) (-15 -2023 ((-2 (|:| -3027 (-701)) (|:| -3189 (-375 |#2|)) (|:| |radicand| |#2|)) (-375 |#2|) (-701))) (-15 -3427 (|#1| |#3| |#3|)) (-15 -3195 (|#3| |#3| (-375 |#2|) (-375 |#2|))) (-15 -3297 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| |deg| (-701))) |#3| |#3|))) (-1108) (-1125 |#1|) (-1125 (-375 |#2|))) (T -135)) -((-3297 (*1 *2 *3 *3) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-375 *5)) (|:| |c2| (-375 *5)) (|:| |deg| (-701)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5))))) (-3195 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-375 *5)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1125 *3)))) (-3427 (*1 *2 *3 *3) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-1108)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1125 (-375 *4))))) (-2023 (*1 *2 *3 *4) (-12 (-5 *3 (-375 *6)) (-4 *5 (-1108)) (-4 *6 (-1125 *5)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-701)) (-4 *7 (-1125 *3)))) (-2471 (*1 *2 *3) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |radicand| (-375 *5)) (|:| |deg| (-701)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5))))) (-3907 (*1 *2 *3) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3189 (-375 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5)))))) -(-10 -7 (-15 -3907 ((-2 (|:| -3189 (-375 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2471 ((-3 (-2 (|:| |radicand| (-375 |#2|)) (|:| |deg| (-701))) "failed") |#3|)) (-15 -2023 ((-2 (|:| -3027 (-701)) (|:| -3189 (-375 |#2|)) (|:| |radicand| |#2|)) (-375 |#2|) (-701))) (-15 -3427 (|#1| |#3| |#3|)) (-15 -3195 (|#3| |#3| (-375 |#2|) (-375 |#2|))) (-15 -3297 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| |deg| (-701))) |#3| |#3|))) -((-4002 (((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|)) 31))) -(((-136 |#1| |#2|) (-10 -7 (-15 -4002 ((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|)))) (-500) (-150 |#1|)) (T -136)) -((-4002 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *5))) (-5 *3 (-1064 *5)) (-4 *5 (-150 *4)) (-4 *4 (-500)) (-5 *1 (-136 *4 *5))))) -(-10 -7 (-15 -4002 ((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|)))) -((-1987 (($ (-1 (-107) |#2|) $) 29)) (-2673 (($ $) 36)) (-1526 (($ (-1 (-107) |#2|) $) 27) (($ |#2| $) 32)) (-3547 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2520 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 19)) (-2369 (((-107) (-1 (-107) |#2|) $) 16)) (-3713 (((-701) (-1 (-107) |#2|) $) 13) (((-701) |#2| $) NIL)) (-1200 (((-107) (-1 (-107) |#2|) $) 15)) (-3581 (((-701) $) 11))) -(((-137 |#1| |#2|) (-10 -8 (-15 -2673 (|#1| |#1|)) (-15 -1526 (|#1| |#2| |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1987 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1526 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|))) (-138 |#2|) (-1104)) (T -137)) -NIL -(-10 -8 (-15 -2673 (|#1| |#1|)) (-15 -1526 (|#1| |#2| |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1987 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1526 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-1987 (($ (-1 (-107) |#1|) $) 44 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2673 (($ $) 41 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167))) (($ |#1| $) 42 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 48)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 40 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 49)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-138 |#1|) (-1180) (-1104)) (T -138)) -((-3699 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-138 *3)))) (-2520 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) (-3547 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) (-1526 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *3)) (-4 *3 (-1104)))) (-1987 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *3)) (-4 *3 (-1104)))) (-3547 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1001)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) (-1526 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) (-2673 (*1 *1 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)) (-4 *2 (-1001))))) -(-13 (-454 |t#1|) (-10 -8 (-15 -3699 ($ (-578 |t#1|))) (-15 -2520 ((-3 |t#1| "failed") (-1 (-107) |t#1|) $)) (IF (|has| $ (-6 -4167)) (PROGN (-15 -3547 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3547 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1526 ($ (-1 (-107) |t#1|) $)) (-15 -1987 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1001)) (PROGN (-15 -3547 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1526 ($ |t#1| $)) (-15 -2673 ($ $))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) 85)) (-1355 (((-107) $) NIL)) (-3787 (($ |#2| (-578 (-839))) 56)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3118 (($ (-839)) 48)) (-3613 (((-125)) 23)) (-3691 (((-786) $) 68) (($ (-501)) 46) (($ |#2|) 47)) (-2495 ((|#2| $ (-578 (-839))) 58)) (-3965 (((-701)) 20)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 40 T CONST)) (-1925 (($) 44 T CONST)) (-3751 (((-107) $ $) 26)) (-3803 (($ $ |#2|) NIL)) (-3797 (($ $) 34) (($ $ $) 32)) (-3790 (($ $ $) 30)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-139 |#1| |#2| |#3|) (-13 (-959) (-37 |#2|) (-1156 |#2|) (-10 -8 (-15 -3118 ($ (-839))) (-15 -3787 ($ |#2| (-578 (-839)))) (-15 -2495 (|#2| $ (-578 (-839)))) (-15 -2174 ((-3 $ "failed") $)))) (-839) (-331) (-908 |#1| |#2|)) (T -139)) -((-2174 (*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-839)) (-4 *3 (-331)) (-14 *4 (-908 *2 *3)))) (-3118 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-331)) (-14 *5 (-908 *3 *4)))) (-3787 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-839))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-839)) (-4 *2 (-331)) (-14 *5 (-908 *4 *2)))) (-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-839))) (-4 *2 (-331)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-839)) (-14 *5 (-908 *4 *2))))) -(-13 (-959) (-37 |#2|) (-1156 |#2|) (-10 -8 (-15 -3118 ($ (-839))) (-15 -3787 ($ |#2| (-578 (-839)))) (-15 -2495 (|#2| $ (-578 (-839)))) (-15 -2174 ((-3 $ "failed") $)))) -((-1272 (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199)))) (-199) (-199) (-199) (-199)) 39)) (-2035 (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501))) 63) (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845)) 64)) (-2791 (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199))))) 67) (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-863 (-199)))) 66) (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501))) 58) (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845)) 59))) -(((-140) (-10 -7 (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501)))) (-15 -2035 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845))) (-15 -2035 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501)))) (-15 -1272 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199)))) (-199) (-199) (-199) (-199))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-863 (-199))))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199)))))))) (T -140)) -((-2791 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)) (-5 *3 (-578 (-578 (-863 (-199))))))) (-2791 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)) (-5 *3 (-578 (-863 (-199)))))) (-1272 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 *4)))) (|:| |xValues| (-991 *4)) (|:| |yValues| (-991 *4)))) (-5 *1 (-140)) (-5 *3 (-578 (-578 (-863 *4)))))) (-2035 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-375 (-501))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) (-2791 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-375 (-501))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140))))) -(-10 -7 (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501)))) (-15 -2035 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845))) (-15 -2035 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501)))) (-15 -1272 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199)))) (-199) (-199) (-199) (-199))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-863 (-199))))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199))))))) -((-1833 (((-578 (-152 |#2|)) |#1| |#2|) 45))) -(((-141 |#1| |#2|) (-10 -7 (-15 -1833 ((-578 (-152 |#2|)) |#1| |#2|))) (-1125 (-152 (-501))) (-13 (-331) (-775))) (T -141)) -((-1833 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-152 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1125 (-152 (-501)))) (-4 *4 (-13 (-331) (-775)))))) -(-10 -7 (-15 -1833 ((-578 (-152 |#2|)) |#1| |#2|))) -((-3736 (((-107) $ $) NIL)) (-2313 (($) 15)) (-1818 (($) 14)) (-4039 (((-839)) 22)) (-3460 (((-1053) $) NIL)) (-3531 (((-501) $) 19)) (-3708 (((-1018) $) NIL)) (-3835 (($) 16)) (-3479 (($ (-501)) 23)) (-3691 (((-786) $) 29)) (-2907 (($) 17)) (-3751 (((-107) $ $) 13)) (-3790 (($ $ $) 11)) (* (($ (-839) $) 21) (($ (-199) $) 8))) -(((-142) (-13 (-25) (-10 -8 (-15 * ($ (-839) $)) (-15 * ($ (-199) $)) (-15 -3790 ($ $ $)) (-15 -1818 ($)) (-15 -2313 ($)) (-15 -3835 ($)) (-15 -2907 ($)) (-15 -3531 ((-501) $)) (-15 -4039 ((-839))) (-15 -3479 ($ (-501)))))) (T -142)) -((-3790 (*1 *1 *1 *1) (-5 *1 (-142))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-142)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) (-1818 (*1 *1) (-5 *1 (-142))) (-2313 (*1 *1) (-5 *1 (-142))) (-3835 (*1 *1) (-5 *1 (-142))) (-2907 (*1 *1) (-5 *1 (-142))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-142)))) (-4039 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-142)))) (-3479 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-142))))) -(-13 (-25) (-10 -8 (-15 * ($ (-839) $)) (-15 * ($ (-199) $)) (-15 -3790 ($ $ $)) (-15 -1818 ($)) (-15 -2313 ($)) (-15 -3835 ($)) (-15 -2907 ($)) (-15 -3531 ((-501) $)) (-15 -4039 ((-839))) (-15 -3479 ($ (-501))))) -((-3977 ((|#2| |#2| (-993 |#2|)) 85) ((|#2| |#2| (-1070)) 68)) (-1758 ((|#2| |#2| (-993 |#2|)) 84) ((|#2| |#2| (-1070)) 67)) (-2940 ((|#2| |#2| |#2|) 30)) (-1853 (((-108) (-108)) 96)) (-3644 ((|#2| (-578 |#2|)) 115)) (-4005 ((|#2| (-578 |#2|)) 133)) (-1414 ((|#2| (-578 |#2|)) 123)) (-4018 ((|#2| |#2|) 121)) (-2439 ((|#2| (-578 |#2|)) 108)) (-3695 ((|#2| (-578 |#2|)) 109)) (-2739 ((|#2| (-578 |#2|)) 131)) (-3332 ((|#2| |#2| (-1070)) 57) ((|#2| |#2|) 56)) (-3260 ((|#2| |#2|) 26)) (-1299 ((|#2| |#2| |#2|) 29)) (-3811 (((-107) (-108)) 50)) (** ((|#2| |#2| |#2|) 41))) -(((-143 |#1| |#2|) (-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 ** (|#2| |#2| |#2|)) (-15 -1299 (|#2| |#2| |#2|)) (-15 -2940 (|#2| |#2| |#2|)) (-15 -3260 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -3332 (|#2| |#2| (-1070))) (-15 -3977 (|#2| |#2| (-1070))) (-15 -3977 (|#2| |#2| (-993 |#2|))) (-15 -1758 (|#2| |#2| (-1070))) (-15 -1758 (|#2| |#2| (-993 |#2|))) (-15 -4018 (|#2| |#2|)) (-15 -2739 (|#2| (-578 |#2|))) (-15 -1414 (|#2| (-578 |#2|))) (-15 -4005 (|#2| (-578 |#2|))) (-15 -2439 (|#2| (-578 |#2|))) (-15 -3695 (|#2| (-578 |#2|))) (-15 -3644 (|#2| (-578 |#2|)))) (-13 (-777) (-508)) (-389 |#1|)) (T -143)) -((-3644 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (-1758 (*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)))) (-1758 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) (-3977 (*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)))) (-3977 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) (-3332 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (-3260 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (-2940 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (-1299 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *4)) (-4 *4 (-389 *3)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-389 *4))))) -(-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 ** (|#2| |#2| |#2|)) (-15 -1299 (|#2| |#2| |#2|)) (-15 -2940 (|#2| |#2| |#2|)) (-15 -3260 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -3332 (|#2| |#2| (-1070))) (-15 -3977 (|#2| |#2| (-1070))) (-15 -3977 (|#2| |#2| (-993 |#2|))) (-15 -1758 (|#2| |#2| (-1070))) (-15 -1758 (|#2| |#2| (-993 |#2|))) (-15 -4018 (|#2| |#2|)) (-15 -2739 (|#2| (-578 |#2|))) (-15 -1414 (|#2| (-578 |#2|))) (-15 -4005 (|#2| (-578 |#2|))) (-15 -2439 (|#2| (-578 |#2|))) (-15 -3695 (|#2| (-578 |#2|))) (-15 -3644 (|#2| (-578 |#2|)))) -((-2876 ((|#1| |#1| |#1|) 52)) (-2534 ((|#1| |#1| |#1|) 49)) (-2940 ((|#1| |#1| |#1|) 43)) (-3273 ((|#1| |#1|) 34)) (-3732 ((|#1| |#1| (-578 |#1|)) 42)) (-3260 ((|#1| |#1|) 36)) (-1299 ((|#1| |#1| |#1|) 39))) -(((-144 |#1|) (-10 -7 (-15 -1299 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3732 (|#1| |#1| (-578 |#1|))) (-15 -3273 (|#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1| |#1|))) (-500)) (T -144)) -((-2876 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) (-2534 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) (-2940 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) (-3273 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) (-3732 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-500)) (-5 *1 (-144 *2)))) (-3260 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) (-1299 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500))))) -(-10 -7 (-15 -1299 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3732 (|#1| |#1| (-578 |#1|))) (-15 -3273 (|#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1| |#1|))) -((-3977 (($ $ (-1070)) 12) (($ $ (-993 $)) 11)) (-1758 (($ $ (-1070)) 10) (($ $ (-993 $)) 9)) (-2940 (($ $ $) 8)) (-3332 (($ $) 14) (($ $ (-1070)) 13)) (-3260 (($ $) 7)) (-1299 (($ $ $) 6))) -(((-145) (-1180)) (T -145)) -((-3332 (*1 *1 *1) (-4 *1 (-145))) (-3332 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070)))) (-3977 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070)))) (-3977 (*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-145)))) (-1758 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070)))) (-1758 (*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-145))))) -(-13 (-130) (-10 -8 (-15 -3332 ($ $)) (-15 -3332 ($ $ (-1070))) (-15 -3977 ($ $ (-1070))) (-15 -3977 ($ $ (-993 $))) (-15 -1758 ($ $ (-1070))) (-15 -1758 ($ $ (-993 $))))) +((-4031 (((-107) $) 12)) (-1893 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-377 (-517)) $) 24) (($ $ (-377 (-517))) NIL))) +(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -4031 ((-107) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-46 |#2| |#3|) (-961) (-724)) (T -45)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -4031 ((-107) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3688 ((|#2| $) 64)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) +(((-46 |#1| |#2|) (-1184) (-961) (-724)) (T -46)) +((-1191 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-4152 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) (-1339 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-2720 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-333))))) +(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (-15 -1191 (|t#1| $)) (-15 -4152 ($ $)) (-15 -3688 (|t#2| $)) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -4031 ((-107) $)) (-15 -1339 ($ |t#1| |t#2|)) (-15 -1212 ($ $)) (-15 -2720 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-333)) (-15 -1667 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-6 (-156)) (-6 (-37 |t#1|))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-509)) (-6 (-509)) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-6 (-37 (-377 (-517)))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2888 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3869 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-2814 (((-107) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-3726 (((-583 (-556 $)) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-1649 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3267 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-377 (-517)))) (|:| |vec| (-1153 (-377 (-517))))) (-623 $) (-1153 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-3225 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) NIL)) (-3848 (((-107) $) 14)) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1787 (((-1026 (-517) (-556 $)) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-1506 (((-1069 $) (-1069 $) (-556 $)) NIL) (((-1069 $) (-1069 $) (-583 (-556 $))) NIL) (($ $ (-556 $)) NIL) (($ $ (-583 (-556 $))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1607 (((-1069 $) (-556 $)) NIL (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) NIL)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) NIL)) (-1851 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) NIL)) (-4118 (($ $) NIL)) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3146 (((-703) $) NIL)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1630 (($ $) NIL) (($ $ $) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-1800 (((-1026 (-517) (-556 $)) $) NIL)) (-2135 (($ $) NIL (|has| $ (-961)))) (-3645 (((-349) $) NIL) (((-199) $) NIL) (((-153 (-349)) $) NIL)) (-2256 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1026 (-517) (-556 $))) NIL)) (-2961 (((-703)) NIL)) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-4074 (((-107) (-109)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 7 T CONST)) (-2409 (($) 12 T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 16)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $ $) 15) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL))) +(((-47) (-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $))))))) (T -47)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-3225 (*1 *1 *1) (-5 *1 (-47))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47))))) +(-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $)))))) +((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 7)) (-1547 (((-107) $ $) NIL))) +(((-48) (-1003)) (T -48)) +NIL +(-1003) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 60)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3153 (((-107) $) 20)) (-1772 (((-3 |#1| "failed") $) 23)) (-3189 ((|#1| $) 24)) (-1212 (($ $) 27)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1191 ((|#1| $) 21)) (-3105 (($ $) 49)) (-3985 (((-1056) $) NIL)) (-3593 (((-107) $) 28)) (-3206 (((-1021) $) NIL)) (-3220 (($ (-703)) 47)) (-2624 (($ (-583 (-517))) 48)) (-3688 (((-703) $) 29)) (-2256 (((-787) $) 63) (($ (-517)) 44) (($ |#1|) 42)) (-2720 ((|#1| $ $) 19)) (-2961 (((-703)) 46)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 30 T CONST)) (-2409 (($) 14 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 40)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-49 |#1| |#2|) (-13 (-561 |#1|) (-952 |#1|) (-10 -8 (-15 -1191 (|#1| $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 (|#1| $ $)) (-15 -3220 ($ (-703))) (-15 -2624 ($ (-583 (-517)))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-703) $)) (-15 -1893 ($ (-1 |#1| |#1|) $)))) (-961) (-583 (-1073))) (T -49)) +((-1191 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) (-3105 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) (-2720 (*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-2624 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1073)))))) +(-13 (-561 |#1|) (-952 |#1|) (-10 -8 (-15 -1191 (|#1| $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 (|#1| $ $)) (-15 -3220 ($ (-703))) (-15 -2624 ($ (-583 (-517)))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-703) $)) (-15 -1893 ($ (-1 |#1| |#1|) $)))) +((-3153 (((-107) (-51)) 13)) (-1772 (((-3 |#1| "failed") (-51)) 21)) (-3189 ((|#1| (-51)) 22)) (-2256 (((-51) |#1|) 18))) +(((-50 |#1|) (-10 -7 (-15 -2256 ((-51) |#1|)) (-15 -1772 ((-3 |#1| "failed") (-51))) (-15 -3153 ((-107) (-51))) (-15 -3189 (|#1| (-51)))) (-1108)) (T -50)) +((-3189 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1108)))) (-1772 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1108))))) +(-10 -7 (-15 -2256 ((-51) |#1|)) (-15 -1772 ((-3 |#1| "failed") (-51))) (-15 -3153 ((-107) (-51))) (-15 -3189 (|#1| (-51)))) +((-2750 (((-107) $ $) NIL)) (-1236 (((-1056) (-107)) 25)) (-2905 (((-787) $) 24)) (-3908 (((-706) $) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2013 (((-787) $) 16)) (-4070 (((-1007) $) 14)) (-2256 (((-787) $) 32)) (-2022 (($ (-1007) (-706)) 33)) (-1547 (((-107) $ $) 18))) +(((-51) (-13 (-1003) (-10 -8 (-15 -2022 ($ (-1007) (-706))) (-15 -2013 ((-787) $)) (-15 -2905 ((-787) $)) (-15 -4070 ((-1007) $)) (-15 -3908 ((-706) $)) (-15 -1236 ((-1056) (-107)))))) (T -51)) +((-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-706)) (-5 *1 (-51)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-51)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))) (-1236 (*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1056)) (-5 *1 (-51))))) +(-13 (-1003) (-10 -8 (-15 -2022 ($ (-1007) (-706))) (-15 -2013 ((-787) $)) (-15 -2905 ((-787) $)) (-15 -4070 ((-1007) $)) (-15 -3908 ((-706) $)) (-15 -1236 ((-1056) (-107))))) +((-1587 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1587 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-961) (-585 |#1|) (-781 |#1|)) (T -52)) +((-1587 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-961)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5))))) +(-10 -7 (-15 -1587 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1442 ((|#3| |#3| (-583 (-1073))) 35)) (-3605 ((|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843)) 22) ((|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|) 20))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|)) (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843))) (-15 -1442 (|#3| |#3| (-583 (-1073))))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -53)) +((-1442 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-3605 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-983 *5 *6 *2))) (-5 *4 (-843)) (-4 *5 (-1003)) (-4 *6 (-13 (-961) (-808 *5) (-779) (-558 (-814 *5)))) (-4 *2 (-13 (-400 *6) (-808 *5) (-558 (-814 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3605 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-983 *4 *5 *2))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2))))) +(-10 -7 (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|)) (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843))) (-15 -1442 (|#3| |#3| (-583 (-1073))))) +((-2953 (((-107) $ (-703)) 23)) (-4087 (($ $ (-517) |#3|) 45)) (-3739 (($ $ (-517) |#4|) 49)) (-1939 ((|#3| $ (-517)) 58)) (-1536 (((-583 |#2|) $) 30)) (-2550 (((-107) $ (-703)) 25)) (-2787 (((-107) |#2| $) 53)) (-1433 (($ (-1 |#2| |#2|) $) 37)) (-1893 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-3847 (((-107) $ (-703)) 24)) (-2565 (($ $ |#2|) 34)) (-2048 (((-107) (-1 (-107) |#2|) $) 19)) (-1449 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) 27)) (-3217 (((-703) (-1 (-107) |#2|) $) 28) (((-703) |#2| $) 55)) (-2433 (($ $) 33)) (-3728 ((|#4| $ (-517)) 61)) (-2256 (((-787) $) 66)) (-3675 (((-107) (-1 (-107) |#2|) $) 18)) (-1547 (((-107) $ $) 52)) (-2296 (((-703) $) 26))) +(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3739 (|#1| |#1| (-517) |#4|)) (-15 -4087 (|#1| |#1| (-517) |#3|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3728 (|#4| |#1| (-517))) (-15 -1939 (|#3| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -2433 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1108) (-343 |#2|) (-343 |#2|)) (T -54)) +NIL +(-10 -8 (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3739 (|#1| |#1| (-517) |#4|)) (-15 -4087 (|#1| |#1| (-517) |#3|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3728 (|#4| |#1| (-517))) (-15 -1939 (|#3| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -2433 (|#1| |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) (-517) |#1|) 44)) (-4087 (($ $ (-517) |#2|) 42)) (-3739 (($ $ (-517) |#3|) 41)) (-3092 (($) 7 T CONST)) (-1939 ((|#2| $ (-517)) 46)) (-1445 ((|#1| $ (-517) (-517) |#1|) 43)) (-1377 ((|#1| $ (-517) (-517)) 48)) (-1536 (((-583 |#1|) $) 30)) (-1477 (((-703) $) 51)) (-3462 (($ (-703) (-703) |#1|) 57)) (-1486 (((-703) $) 50)) (-2550 (((-107) $ (-703)) 9)) (-2813 (((-517) $) 55)) (-1338 (((-517) $) 53)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 54)) (-1307 (((-517) $) 52)) (-1433 (($ (-1 |#1| |#1|) $) 34)) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) 56)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3728 ((|#3| $ (-517)) 45)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-55 |#1| |#2| |#3|) (-1184) (-1108) (-343 |t#1|) (-343 |t#1|)) (T -55)) +((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3462 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1108)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2565 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1449 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) (-1377 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) (-2411 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-1445 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-4087 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))) (-3739 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))) (-1433 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1893 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))) +(-13 (-456 |t#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3462 ($ (-703) (-703) |t#1|)) (-15 -2565 ($ $ |t#1|)) (-15 -2813 ((-517) $)) (-15 -2718 ((-517) $)) (-15 -1338 ((-517) $)) (-15 -1307 ((-517) $)) (-15 -1477 ((-703) $)) (-15 -1486 ((-703) $)) (-15 -1449 (|t#1| $ (-517) (-517))) (-15 -1377 (|t#1| $ (-517) (-517))) (-15 -1449 (|t#1| $ (-517) (-517) |t#1|)) (-15 -1939 (|t#2| $ (-517))) (-15 -3728 (|t#3| $ (-517))) (-15 -1536 ((-583 |t#1|) $)) (-15 -2411 (|t#1| $ (-517) (-517) |t#1|)) (-15 -1445 (|t#1| $ (-517) (-517) |t#1|)) (-15 -4087 ($ $ (-517) |t#2|)) (-15 -3739 ($ $ (-517) |t#3|)) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -1433 ($ (-1 |t#1| |t#1|) $)) (-15 -1893 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1893 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-3905 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1893 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) +(((-56 |#1| |#2|) (-10 -7 (-15 -3905 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1893 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1108) (-1108)) (T -56)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-56 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) +(-10 -7 (-15 -3905 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1893 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3582 (($ (-583 |#1|)) 13) (($ (-703) |#1|) 14)) (-3462 (($ (-703) |#1|) 9)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 7)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3582 ($ (-583 |#1|))) (-15 -3582 ($ (-703) |#1|)))) (-1108)) (T -57)) +((-3582 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-57 *3)))) (-3582 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1108))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3582 ($ (-583 |#1|))) (-15 -3582 ($ (-703) |#1|)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL)) (-4087 (($ $ (-517) (-57 |#1|)) NIL)) (-3739 (($ $ (-517) (-57 |#1|)) NIL)) (-3092 (($) NIL T CONST)) (-1939 (((-57 |#1|) $ (-517)) NIL)) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-57 |#1|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4181))) (-1108)) (T -58)) +NIL +(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4181))) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 69) (((-3 $ "failed") (-1153 (-286 (-517)))) 58) (((-3 $ "failed") (-1153 (-874 (-349)))) 91) (((-3 $ "failed") (-1153 (-874 (-517)))) 80) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 47) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 36)) (-3189 (($ (-1153 (-286 (-349)))) 65) (($ (-1153 (-286 (-517)))) 54) (($ (-1153 (-874 (-349)))) 87) (($ (-1153 (-874 (-517)))) 76) (($ (-1153 (-377 (-874 (-349))))) 43) (($ (-1153 (-377 (-874 (-517))))) 29)) (-4155 (((-1158) $) 118)) (-2256 (((-787) $) 111) (($ (-583 (-300))) 100) (($ (-300)) 94) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 97) (($ (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632)))) 28))) +(((-59 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632))))))) (-1073)) (T -59)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632))))))) +((-4155 (((-1158) $) 48) (((-1158)) 49)) (-2256 (((-787) $) 45))) +(((-60 |#1|) (-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) (-1073)) (T -60)) +((-4155 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-60 *3)) (-14 *3 (-1073))))) +(-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 142) (((-3 $ "failed") (-1153 (-286 (-517)))) 132) (((-3 $ "failed") (-1153 (-874 (-349)))) 163) (((-3 $ "failed") (-1153 (-874 (-517)))) 152) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 121) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 110)) (-3189 (($ (-1153 (-286 (-349)))) 138) (($ (-1153 (-286 (-517)))) 128) (($ (-1153 (-874 (-349)))) 159) (($ (-1153 (-874 (-517)))) 148) (($ (-1153 (-377 (-874 (-349))))) 117) (($ (-1153 (-377 (-874 (-517))))) 103)) (-4155 (((-1158) $) 96)) (-2256 (((-787) $) 90) (($ (-583 (-300))) 28) (($ (-300)) 34) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 31) (($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) 88))) +(((-61 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632))))))) (-1073)) (T -61)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632))))))) +((-1772 (((-3 $ "failed") (-286 (-349))) 36) (((-3 $ "failed") (-286 (-517))) 41) (((-3 $ "failed") (-874 (-349))) 46) (((-3 $ "failed") (-874 (-517))) 51) (((-3 $ "failed") (-377 (-874 (-349)))) 31) (((-3 $ "failed") (-377 (-874 (-517)))) 26)) (-3189 (($ (-286 (-349))) 34) (($ (-286 (-517))) 39) (($ (-874 (-349))) 44) (($ (-874 (-517))) 49) (($ (-377 (-874 (-349)))) 29) (($ (-377 (-874 (-517)))) 23)) (-4155 (((-1158) $) 73)) (-2256 (((-787) $) 66) (($ (-583 (-300))) 57) (($ (-300)) 63) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 60) (($ (-309 (-2276 (QUOTE X)) (-2276) (-632))) 22))) +(((-62 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276) (-632)))))) (-1073)) (T -62)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1073))))) +(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276) (-632)))))) +((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 100) (((-3 $ "failed") (-623 (-286 (-517)))) 89) (((-3 $ "failed") (-623 (-874 (-349)))) 122) (((-3 $ "failed") (-623 (-874 (-517)))) 111) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 78) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 67)) (-3189 (($ (-623 (-286 (-349)))) 96) (($ (-623 (-286 (-517)))) 85) (($ (-623 (-874 (-349)))) 118) (($ (-623 (-874 (-517)))) 107) (($ (-623 (-377 (-874 (-349))))) 74) (($ (-623 (-377 (-874 (-517))))) 60)) (-4155 (((-1158) $) 130)) (-2256 (((-787) $) 124) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 30) (($ (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632)))) 53))) +(((-63 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632))))))) (-1073)) (T -63)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1073))))) +(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632))))))) +((-1772 (((-3 $ "failed") (-286 (-349))) 54) (((-3 $ "failed") (-286 (-517))) 59) (((-3 $ "failed") (-874 (-349))) 64) (((-3 $ "failed") (-874 (-517))) 69) (((-3 $ "failed") (-377 (-874 (-349)))) 49) (((-3 $ "failed") (-377 (-874 (-517)))) 44)) (-3189 (($ (-286 (-349))) 52) (($ (-286 (-517))) 57) (($ (-874 (-349))) 62) (($ (-874 (-517))) 67) (($ (-377 (-874 (-349)))) 47) (($ (-377 (-874 (-517)))) 41)) (-4155 (((-1158) $) 78)) (-2256 (((-787) $) 72) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 30) (($ (-309 (-2276) (-2276 (QUOTE XC)) (-632))) 38))) +(((-64 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE XC)) (-632)))))) (-1073)) (T -64)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1073))))) +(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE XC)) (-632)))))) +((-4155 (((-1158) $) 63)) (-2256 (((-787) $) 57) (($ (-623 (-632))) 49) (($ (-583 (-300))) 48) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 53))) +(((-65 |#1|) (-353) (-1073)) (T -65)) +NIL +(-353) +((-4155 (((-1158) $) 64)) (-2256 (((-787) $) 58) (($ (-623 (-632))) 50) (($ (-583 (-300))) 49) (($ (-300)) 52) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 55))) +(((-66 |#1|) (-353) (-1073)) (T -66)) +NIL +(-353) +((-4155 (((-1158) $) NIL) (((-1158)) 32)) (-2256 (((-787) $) NIL))) +(((-67 |#1|) (-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) (-1073)) (T -67)) +((-4155 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-67 *3)) (-14 *3 (-1073))))) +(-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) +((-4155 (((-1158) $) 68)) (-2256 (((-787) $) 62) (($ (-623 (-632))) 53) (($ (-583 (-300))) 56) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 52))) +(((-68 |#1|) (-353) (-1073)) (T -68)) +NIL +(-353) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 98) (((-3 $ "failed") (-1153 (-286 (-517)))) 87) (((-3 $ "failed") (-1153 (-874 (-349)))) 119) (((-3 $ "failed") (-1153 (-874 (-517)))) 108) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 76) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 65)) (-3189 (($ (-1153 (-286 (-349)))) 94) (($ (-1153 (-286 (-517)))) 83) (($ (-1153 (-874 (-349)))) 115) (($ (-1153 (-874 (-517)))) 104) (($ (-1153 (-377 (-874 (-349))))) 72) (($ (-1153 (-377 (-874 (-517))))) 58)) (-4155 (((-1158) $) 133)) (-2256 (((-787) $) 127) (($ (-583 (-300))) 122) (($ (-300)) 125) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 50) (($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) 51))) +(((-69 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))))))) (-1073)) (T -69)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))))))) +((-4155 (((-1158) $) 32) (((-1158)) 31)) (-2256 (((-787) $) 35))) +(((-70 |#1|) (-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) (-1073)) (T -70)) +((-4155 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-70 *3)) (-14 *3 (-1073))))) +(-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) +((-4155 (((-1158) $) 62)) (-2256 (((-787) $) 56) (($ (-623 (-632))) 47) (($ (-583 (-300))) 50) (($ (-300)) 53) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 46))) +(((-71 |#1|) (-353) (-1073)) (T -71)) +NIL +(-353) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 119) (((-3 $ "failed") (-1153 (-286 (-517)))) 108) (((-3 $ "failed") (-1153 (-874 (-349)))) 141) (((-3 $ "failed") (-1153 (-874 (-517)))) 130) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 98) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 87)) (-3189 (($ (-1153 (-286 (-349)))) 115) (($ (-1153 (-286 (-517)))) 104) (($ (-1153 (-874 (-349)))) 137) (($ (-1153 (-874 (-517)))) 126) (($ (-1153 (-377 (-874 (-349))))) 94) (($ (-1153 (-377 (-874 (-517))))) 80)) (-4155 (((-1158) $) 73)) (-2256 (((-787) $) 27) (($ (-583 (-300))) 63) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 66) (($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) 60))) +(((-72 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) (-1073)) (T -72)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 125) (((-3 $ "failed") (-1153 (-286 (-517)))) 114) (((-3 $ "failed") (-1153 (-874 (-349)))) 147) (((-3 $ "failed") (-1153 (-874 (-517)))) 136) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 103) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 92)) (-3189 (($ (-1153 (-286 (-349)))) 121) (($ (-1153 (-286 (-517)))) 110) (($ (-1153 (-874 (-349)))) 143) (($ (-1153 (-874 (-517)))) 132) (($ (-1153 (-377 (-874 (-349))))) 99) (($ (-1153 (-377 (-874 (-517))))) 85)) (-4155 (((-1158) $) 78)) (-2256 (((-787) $) 70) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) NIL) (($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632)))) 65))) +(((-73 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632))))))) (-1073) (-1073) (-1073)) (T -73)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632))))))) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 129) (((-3 $ "failed") (-1153 (-286 (-517)))) 118) (((-3 $ "failed") (-1153 (-874 (-349)))) 151) (((-3 $ "failed") (-1153 (-874 (-517)))) 140) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 107) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 96)) (-3189 (($ (-1153 (-286 (-349)))) 125) (($ (-1153 (-286 (-517)))) 114) (($ (-1153 (-874 (-349)))) 147) (($ (-1153 (-874 (-517)))) 136) (($ (-1153 (-377 (-874 (-349))))) 103) (($ (-1153 (-377 (-874 (-517))))) 89)) (-4155 (((-1158) $) 82)) (-2256 (((-787) $) 74) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) NIL) (($ (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632)))) 69))) +(((-74 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632))))))) (-1073) (-1073) (-1073)) (T -74)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632))))))) +((-1772 (((-3 $ "failed") (-286 (-349))) 77) (((-3 $ "failed") (-286 (-517))) 82) (((-3 $ "failed") (-874 (-349))) 87) (((-3 $ "failed") (-874 (-517))) 92) (((-3 $ "failed") (-377 (-874 (-349)))) 72) (((-3 $ "failed") (-377 (-874 (-517)))) 67)) (-3189 (($ (-286 (-349))) 75) (($ (-286 (-517))) 80) (($ (-874 (-349))) 85) (($ (-874 (-517))) 90) (($ (-377 (-874 (-349)))) 70) (($ (-377 (-874 (-517)))) 64)) (-4155 (((-1158) $) 61)) (-2256 (((-787) $) 49) (($ (-583 (-300))) 45) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 53) (($ (-309 (-2276) (-2276 (QUOTE X)) (-632))) 46))) +(((-75 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632)))))) (-1073)) (T -75)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1073))))) +(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632)))))) +((-1772 (((-3 $ "failed") (-286 (-349))) 41) (((-3 $ "failed") (-286 (-517))) 46) (((-3 $ "failed") (-874 (-349))) 51) (((-3 $ "failed") (-874 (-517))) 56) (((-3 $ "failed") (-377 (-874 (-349)))) 36) (((-3 $ "failed") (-377 (-874 (-517)))) 31)) (-3189 (($ (-286 (-349))) 39) (($ (-286 (-517))) 44) (($ (-874 (-349))) 49) (($ (-874 (-517))) 54) (($ (-377 (-874 (-349)))) 34) (($ (-377 (-874 (-517)))) 28)) (-4155 (((-1158) $) 77)) (-2256 (((-787) $) 71) (($ (-583 (-300))) 62) (($ (-300)) 68) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 65) (($ (-309 (-2276) (-2276 (QUOTE X)) (-632))) 27))) +(((-76 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632)))))) (-1073)) (T -76)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1073))))) +(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632)))))) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 84) (((-3 $ "failed") (-1153 (-286 (-517)))) 73) (((-3 $ "failed") (-1153 (-874 (-349)))) 106) (((-3 $ "failed") (-1153 (-874 (-517)))) 95) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 62) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 51)) (-3189 (($ (-1153 (-286 (-349)))) 80) (($ (-1153 (-286 (-517)))) 69) (($ (-1153 (-874 (-349)))) 102) (($ (-1153 (-874 (-517)))) 91) (($ (-1153 (-377 (-874 (-349))))) 58) (($ (-1153 (-377 (-874 (-517))))) 44)) (-4155 (((-1158) $) 122)) (-2256 (((-787) $) 116) (($ (-583 (-300))) 109) (($ (-300)) 36) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 112) (($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) 37))) +(((-77 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632))))))) (-1073)) (T -77)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632))))))) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 137) (((-3 $ "failed") (-1153 (-286 (-517)))) 126) (((-3 $ "failed") (-1153 (-874 (-349)))) 158) (((-3 $ "failed") (-1153 (-874 (-517)))) 147) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 116) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 105)) (-3189 (($ (-1153 (-286 (-349)))) 133) (($ (-1153 (-286 (-517)))) 122) (($ (-1153 (-874 (-349)))) 154) (($ (-1153 (-874 (-517)))) 143) (($ (-1153 (-377 (-874 (-349))))) 112) (($ (-1153 (-377 (-874 (-517))))) 98)) (-4155 (((-1158) $) 91)) (-2256 (((-787) $) 85) (($ (-583 (-300))) 76) (($ (-300)) 83) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 81) (($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) 77))) +(((-78 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) (-1073)) (T -78)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 73) (((-3 $ "failed") (-1153 (-286 (-517)))) 62) (((-3 $ "failed") (-1153 (-874 (-349)))) 95) (((-3 $ "failed") (-1153 (-874 (-517)))) 84) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 51) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 40)) (-3189 (($ (-1153 (-286 (-349)))) 69) (($ (-1153 (-286 (-517)))) 58) (($ (-1153 (-874 (-349)))) 91) (($ (-1153 (-874 (-517)))) 80) (($ (-1153 (-377 (-874 (-349))))) 47) (($ (-1153 (-377 (-874 (-517))))) 33)) (-4155 (((-1158) $) 121)) (-2256 (((-787) $) 115) (($ (-583 (-300))) 106) (($ (-300)) 112) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 110) (($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) 32))) +(((-79 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) (-1073)) (T -79)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 90) (((-3 $ "failed") (-1153 (-286 (-517)))) 79) (((-3 $ "failed") (-1153 (-874 (-349)))) 112) (((-3 $ "failed") (-1153 (-874 (-517)))) 101) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 68) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 57)) (-3189 (($ (-1153 (-286 (-349)))) 86) (($ (-1153 (-286 (-517)))) 75) (($ (-1153 (-874 (-349)))) 108) (($ (-1153 (-874 (-517)))) 97) (($ (-1153 (-377 (-874 (-349))))) 64) (($ (-1153 (-377 (-874 (-517))))) 50)) (-4155 (((-1158) $) 43)) (-2256 (((-787) $) 36) (($ (-583 (-300))) 26) (($ (-300)) 29) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 32) (($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) 27))) +(((-80 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632))))))) (-1073)) (T -80)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632))))))) +((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-874 (-349)))) 125) (((-3 $ "failed") (-623 (-874 (-517)))) 114) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 82) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 71)) (-3189 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-874 (-349)))) 121) (($ (-623 (-874 (-517)))) 110) (($ (-623 (-377 (-874 (-349))))) 78) (($ (-623 (-377 (-874 (-517))))) 64)) (-4155 (((-1158) $) 57)) (-2256 (((-787) $) 43) (($ (-583 (-300))) 50) (($ (-300)) 39) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 47) (($ (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) 40))) +(((-81 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632))))))) (-1073)) (T -81)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1073))))) +(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632))))))) +((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-874 (-349)))) 124) (((-3 $ "failed") (-623 (-874 (-517)))) 113) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 81) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 70)) (-3189 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-874 (-349)))) 120) (($ (-623 (-874 (-517)))) 109) (($ (-623 (-377 (-874 (-349))))) 77) (($ (-623 (-377 (-874 (-517))))) 63)) (-4155 (((-1158) $) 56)) (-2256 (((-787) $) 50) (($ (-583 (-300))) 44) (($ (-300)) 47) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 40) (($ (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) 41))) +(((-82 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632))))))) (-1073)) (T -82)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1073))))) +(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632))))))) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 99) (((-3 $ "failed") (-1153 (-286 (-517)))) 88) (((-3 $ "failed") (-1153 (-874 (-349)))) 121) (((-3 $ "failed") (-1153 (-874 (-517)))) 110) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 77) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 66)) (-3189 (($ (-1153 (-286 (-349)))) 95) (($ (-1153 (-286 (-517)))) 84) (($ (-1153 (-874 (-349)))) 117) (($ (-1153 (-874 (-517)))) 106) (($ (-1153 (-377 (-874 (-349))))) 73) (($ (-1153 (-377 (-874 (-517))))) 59)) (-4155 (((-1158) $) 45)) (-2256 (((-787) $) 39) (($ (-583 (-300))) 48) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 51) (($ (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) 36))) +(((-83 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632))))))) (-1073)) (T -83)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632))))))) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 74) (((-3 $ "failed") (-1153 (-286 (-517)))) 63) (((-3 $ "failed") (-1153 (-874 (-349)))) 96) (((-3 $ "failed") (-1153 (-874 (-517)))) 85) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 52) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 41)) (-3189 (($ (-1153 (-286 (-349)))) 70) (($ (-1153 (-286 (-517)))) 59) (($ (-1153 (-874 (-349)))) 92) (($ (-1153 (-874 (-517)))) 81) (($ (-1153 (-377 (-874 (-349))))) 48) (($ (-1153 (-377 (-874 (-517))))) 34)) (-4155 (((-1158) $) 122)) (-2256 (((-787) $) 116) (($ (-583 (-300))) 107) (($ (-300)) 113) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 111) (($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) 33))) +(((-84 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))))))) (-1073)) (T -84)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1073))))) +(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))))))) +((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 105) (((-3 $ "failed") (-623 (-286 (-517)))) 94) (((-3 $ "failed") (-623 (-874 (-349)))) 127) (((-3 $ "failed") (-623 (-874 (-517)))) 116) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 83) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 72)) (-3189 (($ (-623 (-286 (-349)))) 101) (($ (-623 (-286 (-517)))) 90) (($ (-623 (-874 (-349)))) 123) (($ (-623 (-874 (-517)))) 112) (($ (-623 (-377 (-874 (-349))))) 79) (($ (-623 (-377 (-874 (-517))))) 65)) (-4155 (((-1158) $) 58)) (-2256 (((-787) $) 52) (($ (-583 (-300))) 42) (($ (-300)) 49) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 47) (($ (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632)))) 43))) +(((-85 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632))))))) (-1073)) (T -85)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1073))))) +(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632))))))) +((-4155 (((-1158) $) 44)) (-2256 (((-787) $) 38) (($ (-1153 (-632))) 88) (($ (-583 (-300))) 29) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 32))) +(((-86 |#1|) (-409) (-1073)) (T -86)) +NIL +(-409) +((-1772 (((-3 $ "failed") (-286 (-349))) 42) (((-3 $ "failed") (-286 (-517))) 47) (((-3 $ "failed") (-874 (-349))) 52) (((-3 $ "failed") (-874 (-517))) 57) (((-3 $ "failed") (-377 (-874 (-349)))) 37) (((-3 $ "failed") (-377 (-874 (-517)))) 32)) (-3189 (($ (-286 (-349))) 40) (($ (-286 (-517))) 45) (($ (-874 (-349))) 50) (($ (-874 (-517))) 55) (($ (-377 (-874 (-349)))) 35) (($ (-377 (-874 (-517)))) 29)) (-4155 (((-1158) $) 88)) (-2256 (((-787) $) 82) (($ (-583 (-300))) 76) (($ (-300)) 79) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 73) (($ (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))) 28))) +(((-87 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))))) (-1073)) (T -87)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1073))))) +(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))))) +((-1653 (((-1153 (-623 |#1|)) (-623 |#1|)) 54)) (-2917 (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 (-583 (-843))))) |#2| (-843)) 44)) (-3370 (((-2 (|:| |minor| (-583 (-843))) (|:| -2131 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843)) 62 (|has| |#1| (-333))))) +(((-88 |#1| |#2|) (-10 -7 (-15 -2917 ((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 (-583 (-843))))) |#2| (-843))) (-15 -1653 ((-1153 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -3370 ((-2 (|:| |minor| (-583 (-843))) (|:| -2131 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843))) |noBranch|)) (-509) (-593 |#1|)) (T -88)) +((-3370 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-843))) (|:| -2131 *3) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))) (-1653 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))) (-2917 (*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 (-583 (-843)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5))))) +(-10 -7 (-15 -2917 ((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 (-583 (-843))))) |#2| (-843))) (-15 -1653 ((-1153 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -3370 ((-2 (|:| |minor| (-583 (-843))) (|:| -2131 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843))) |noBranch|)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4139 ((|#1| $) 35)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-2886 ((|#1| |#1| $) 30)) (-1200 ((|#1| $) 28)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) NIL)) (-1710 (($ |#1| $) 31)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4006 ((|#1| $) 29)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 16)) (-1746 (($) 39)) (-1694 (((-703) $) 26)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 15)) (-2256 (((-787) $) 25 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) NIL)) (-4033 (($ (-583 |#1|)) 37)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 13 (|has| |#1| (-1003)))) (-2296 (((-703) $) 10 (|has| $ (-6 -4180))))) +(((-89 |#1|) (-13 (-1022 |#1|) (-10 -8 (-15 -4033 ($ (-583 |#1|))))) (-1003)) (T -89)) +((-4033 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-89 *3))))) +(-13 (-1022 |#1|) (-10 -8 (-15 -4033 ($ (-583 |#1|))))) +((-1814 (($ $) 10)) (-1827 (($ $) 12))) +(((-90 |#1|) (-10 -8 (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|))) (-91)) (T -90)) +NIL +(-10 -8 (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|))) +((-1788 (($ $) 11)) (-1765 (($ $) 10)) (-1814 (($ $) 9)) (-1827 (($ $) 8)) (-1802 (($ $) 7)) (-1777 (($ $) 6))) +(((-91) (-1184)) (T -91)) +((-1788 (*1 *1 *1) (-4 *1 (-91))) (-1765 (*1 *1 *1) (-4 *1 (-91))) (-1814 (*1 *1 *1) (-4 *1 (-91))) (-1827 (*1 *1 *1) (-4 *1 (-91))) (-1802 (*1 *1 *1) (-4 *1 (-91))) (-1777 (*1 *1 *1) (-4 *1 (-91)))) +(-13 (-10 -8 (-15 -1777 ($ $)) (-15 -1802 ($ $)) (-15 -1827 ($ $)) (-15 -1814 ($ $)) (-15 -1765 ($ $)) (-15 -1788 ($ $)))) +((-2750 (((-107) $ $) NIL)) (-1259 (((-349) (-1056) (-349)) 42) (((-349) (-1056) (-1056) (-349)) 41)) (-2102 (((-349) (-349)) 33)) (-3888 (((-1158)) 36)) (-3985 (((-1056) $) NIL)) (-1884 (((-349) (-1056) (-1056)) 46) (((-349) (-1056)) 48)) (-3206 (((-1021) $) NIL)) (-2874 (((-349) (-1056) (-1056)) 47)) (-3559 (((-349) (-1056) (-1056)) 49) (((-349) (-1056)) 50)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-92) (-13 (-1003) (-10 -7 (-15 -1884 ((-349) (-1056) (-1056))) (-15 -1884 ((-349) (-1056))) (-15 -3559 ((-349) (-1056) (-1056))) (-15 -3559 ((-349) (-1056))) (-15 -2874 ((-349) (-1056) (-1056))) (-15 -3888 ((-1158))) (-15 -2102 ((-349) (-349))) (-15 -1259 ((-349) (-1056) (-349))) (-15 -1259 ((-349) (-1056) (-1056) (-349))) (-6 -4180)))) (T -92)) +((-1884 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3559 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2874 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3888 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-92)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))) (-1259 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92)))) (-1259 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92))))) +(-13 (-1003) (-10 -7 (-15 -1884 ((-349) (-1056) (-1056))) (-15 -1884 ((-349) (-1056))) (-15 -3559 ((-349) (-1056) (-1056))) (-15 -3559 ((-349) (-1056))) (-15 -2874 ((-349) (-1056) (-1056))) (-15 -3888 ((-1158))) (-15 -2102 ((-349) (-349))) (-15 -1259 ((-349) (-1056) (-349))) (-15 -1259 ((-349) (-1056) (-1056) (-349))) (-6 -4180))) +NIL +(((-93) (-1184)) (T -93)) +NIL +(-13 (-10 -7 (-6 -4180) (-6 (-4182 "*")) (-6 -4181) (-6 -4177) (-6 -4175) (-6 -4174) (-6 -4173) (-6 -4178) (-6 -4172) (-6 -4171) (-6 -4170) (-6 -4169) (-6 -4168) (-6 -4176) (-6 -4179) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4167))) +((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2859 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-517))) 22)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 14)) (-3206 (((-1021) $) NIL)) (-1449 ((|#1| $ |#1|) 11)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 20)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 8 T CONST)) (-1547 (((-107) $ $) 10)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) 28) (($ $ (-703)) NIL) (($ $ (-517)) 16)) (* (($ $ $) 29))) +(((-94 |#1|) (-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2859 ($ (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1| (-517)))))) (-961)) (T -94)) +((-2859 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) (-2859 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-94 *3))))) +(-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2859 ($ (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1| (-517)))))) +((-2870 (((-388 |#2|) |#2| (-583 |#2|)) 10) (((-388 |#2|) |#2| |#2|) 11))) +(((-95 |#1| |#2|) (-10 -7 (-15 -2870 ((-388 |#2|) |#2| |#2|)) (-15 -2870 ((-388 |#2|) |#2| (-583 |#2|)))) (-13 (-421) (-134)) (-1130 |#1|)) (T -95)) +((-2870 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1130 *4))))) +(-10 -7 (-15 -2870 ((-388 |#2|) |#2| |#2|)) (-15 -2870 ((-388 |#2|) |#2| (-583 |#2|)))) +((-2750 (((-107) $ $) 9))) +(((-96 |#1|) (-10 -8 (-15 -2750 ((-107) |#1| |#1|))) (-97)) (T -96)) +NIL +(-10 -8 (-15 -2750 ((-107) |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-1547 (((-107) $ $) 6))) +(((-97) (-1184)) (T -97)) +((-2750 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) (-1547 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107))))) +(-13 (-10 -8 (-15 -1547 ((-107) $ $)) (-15 -2750 ((-107) $ $)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) 13 (|has| $ (-6 -4181)))) (-2204 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3449 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3853 (($ $ (-583 |#1|)) 15)) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 11)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 17)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2188 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1416 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 35)) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 10)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) 12)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 9)) (-1746 (($) 16)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2776 (($ (-703) |#1|) 19)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-98 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2776 ($ (-703) |#1|)) (-15 -3853 ($ $ (-583 |#1|))) (-15 -2188 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2188 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1003)) (T -98)) +((-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1003)))) (-3853 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) (-2188 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1003)))) (-2188 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) (-1416 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))) (-1416 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2))))) +(-13 (-120 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2776 ($ (-703) |#1|)) (-15 -3853 ($ $ (-583 |#1|))) (-15 -2188 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2188 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) +((-2914 ((|#3| |#2| |#2|) 28)) (-3568 ((|#1| |#2| |#2|) 38 (|has| |#1| (-6 (-4182 "*"))))) (-1873 ((|#3| |#2| |#2|) 29)) (-4037 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4182 "*")))))) +(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2914 (|#3| |#2| |#2|)) (-15 -1873 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4182 "*"))) (PROGN (-15 -3568 (|#1| |#2| |#2|)) (-15 -4037 (|#1| |#2|))) |noBranch|)) (-961) (-1130 |#1|) (-621 |#1| |#4| |#5|) (-343 |#1|) (-343 |#1|)) (T -99)) +((-4037 (*1 *2 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6)))) (-3568 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6)))) (-1873 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))) (-2914 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))))) +(-10 -7 (-15 -2914 (|#3| |#2| |#2|)) (-15 -1873 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4182 "*"))) (PROGN (-15 -3568 (|#1| |#2| |#2|)) (-15 -4037 (|#1| |#2|))) |noBranch|)) +((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3015 (((-583 (-1073))) 32)) (-3679 (((-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199)))) (-1073)) 35)) (-1547 (((-107) $ $) NIL))) +(((-100) (-13 (-1003) (-10 -7 (-15 -3015 ((-583 (-1073)))) (-15 -3679 ((-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199)))) (-1073))) (-6 -4180)))) (T -100)) +((-3015 (*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-100)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199))))) (-5 *1 (-100))))) +(-13 (-1003) (-10 -7 (-15 -3015 ((-583 (-1073)))) (-15 -3679 ((-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199)))) (-1073))) (-6 -4180))) +((-1222 (($ (-583 |#2|)) 11))) +(((-101 |#1| |#2|) (-10 -8 (-15 -1222 (|#1| (-583 |#2|)))) (-102 |#2|) (-1108)) (T -101)) +NIL +(-10 -8 (-15 -1222 (|#1| (-583 |#2|)))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-102 |#1|) (-1184) (-1108)) (T -102)) +((-1222 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-102 *3)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))) (-1710 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108))))) +(-13 (-456 |t#1|) (-10 -8 (-6 -4181) (-15 -1222 ($ (-583 |t#1|))) (-15 -4006 (|t#1| $)) (-15 -1710 ($ |t#1| $)) (-15 -3309 (|t#1| $)))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-517) $) NIL (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2597 (((-517) $) NIL (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL) (((-920 2) $) 9)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-517) $) NIL (|has| (-517) (-502)))) (-4146 (($ (-377 (-517))) 8)) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1667 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL))) +(((-103) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 2) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -4146 ($ (-377 (-517))))))) (T -103)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-920 2)) (-5 *1 (-103)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-4146 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103))))) +(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 2) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -4146 ($ (-377 (-517)))))) +((-2750 (((-107) $ $) NIL)) (-3733 (((-1021) $ (-1021)) 23)) (-1723 (($ $ (-1056)) 17)) (-2595 (((-3 (-1021) "failed") $) 22)) (-1457 (((-1021) $) 20)) (-1237 (((-1021) $ (-1021)) 25)) (-2607 (((-1021) $) 24)) (-1513 (($ (-358)) NIL) (($ (-358) (-1056)) 16)) (-1207 (((-358) $) NIL)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2463 (($ $) 18)) (-1547 (((-107) $ $) NIL))) +(((-104) (-13 (-334 (-358) (-1021)) (-10 -8 (-15 -2595 ((-3 (-1021) "failed") $)) (-15 -2607 ((-1021) $)) (-15 -1237 ((-1021) $ (-1021)))))) (T -104)) +((-2595 (*1 *2 *1) (|partial| -12 (-5 *2 (-1021)) (-5 *1 (-104)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))) (-1237 (*1 *2 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-104))))) +(-13 (-334 (-358) (-1021)) (-10 -8 (-15 -2595 ((-3 (-1021) "failed") $)) (-15 -2607 ((-1021) $)) (-15 -1237 ((-1021) $ (-1021))))) +((-2750 (((-107) $ $) NIL)) (-1460 (($ $) NIL)) (-2775 (($ $ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-107) $ (-1121 (-517)) (-107)) NIL (|has| $ (-6 -4181))) (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-2052 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3225 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1445 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4181)))) (-1377 (((-107) $ (-517)) NIL)) (-2607 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1003))) (((-517) (-107) $) NIL (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1536 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-4025 (($ $ $) NIL)) (-2630 (($ $) NIL)) (-1888 (($ $ $) NIL)) (-3462 (($ (-703) (-107)) 8)) (-1514 (($ $ $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL)) (-3237 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-2560 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL)) (-1433 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-107) (-107) (-107)) $ $) NIL) (($ (-1 (-107) (-107)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-107) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2565 (($ $ (-107)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1941 (((-583 (-107)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (($ $ (-1121 (-517))) NIL) (((-107) $ (-517)) NIL) (((-107) $ (-517) (-107)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3217 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2276 (($ (-583 (-107))) NIL)) (-2452 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2256 (((-787) $) NIL)) (-1398 (($ (-703) (-107)) 9)) (-3675 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-4035 (($ $ $) NIL)) (-2207 (($ $) NIL)) (-2391 (($ $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-2382 (($ $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-105) (-13 (-118) (-10 -8 (-15 -1398 ($ (-703) (-107)))))) (T -105)) +((-1398 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105))))) +(-13 (-118) (-10 -8 (-15 -1398 ($ (-703) (-107))))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-106 |#1| |#2|) (-1184) (-961) (-961)) (T -106)) +NIL +(-13 (-585 |t#1|) (-967 |t#2|) (-10 -7 (-6 -4175) (-6 -4174))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-967 |#2|) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-1460 (($ $) 12)) (-2775 (($ $ $) 17)) (-1569 (($) 8 T CONST)) (-2233 (((-107) $) 7)) (-1611 (((-703)) 24)) (-3209 (($) 30)) (-4025 (($ $ $) 15)) (-2630 (($ $) 10)) (-1888 (($ $ $) 18)) (-1514 (($ $ $) 19)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1549 (((-843) $) 29)) (-3985 (((-1056) $) NIL)) (-3448 (($ (-843)) 28)) (-3886 (($ $ $) 21)) (-3206 (((-1021) $) NIL)) (-1425 (($) 9 T CONST)) (-3645 (((-493) $) 36)) (-2256 (((-787) $) 39)) (-4035 (($ $ $) 13)) (-2207 (($ $) 11)) (-2391 (($ $ $) 16)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 20)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 22)) (-2382 (($ $ $) 14))) +(((-107) (-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1569 ($) -1619) (-15 -1425 ($) -1619) (-15 -2207 ($ $)) (-15 -2630 ($ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -1514 ($ $ $)) (-15 -1888 ($ $ $)) (-15 -3886 ($ $ $)) (-15 -2233 ((-107) $))))) (T -107)) +((-1569 (*1 *1) (-5 *1 (-107))) (-1425 (*1 *1) (-5 *1 (-107))) (-2207 (*1 *1 *1) (-5 *1 (-107))) (-2630 (*1 *1 *1) (-5 *1 (-107))) (-4035 (*1 *1 *1 *1) (-5 *1 (-107))) (-4025 (*1 *1 *1 *1) (-5 *1 (-107))) (-2775 (*1 *1 *1 *1) (-5 *1 (-107))) (-1514 (*1 *1 *1 *1) (-5 *1 (-107))) (-1888 (*1 *1 *1 *1) (-5 *1 (-107))) (-3886 (*1 *1 *1 *1) (-5 *1 (-107))) (-2233 (*1 *1 *1) (-5 *1 (-107)))) +(-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1569 ($) -1619) (-15 -1425 ($) -1619) (-15 -2207 ($ $)) (-15 -2630 ($ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -1514 ($ $ $)) (-15 -1888 ($ $ $)) (-15 -3886 ($ $ $)) (-15 -2233 ((-107) $)))) +((-3269 (((-3 (-1 |#1| (-583 |#1|)) "failed") (-109)) 18) (((-109) (-109) (-1 |#1| |#1|)) 13) (((-109) (-109) (-1 |#1| (-583 |#1|))) 11) (((-3 |#1| "failed") (-109) (-583 |#1|)) 20)) (-1626 (((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109)) 24) (((-109) (-109) (-1 |#1| |#1|)) 30) (((-109) (-109) (-583 (-1 |#1| (-583 |#1|)))) 26)) (-1496 (((-109) |#1|) 53 (|has| |#1| (-779)))) (-3412 (((-3 |#1| "failed") (-109)) 48 (|has| |#1| (-779))))) +(((-108 |#1|) (-10 -7 (-15 -3269 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3269 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3269 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3269 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1626 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1626 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1626 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -1496 ((-109) |#1|)) (-15 -3412 ((-3 |#1| "failed") (-109)))) |noBranch|)) (-1003)) (T -108)) +((-3412 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-108 *2)))) (-1496 (*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))) (-1626 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) (-1626 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-1626 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3269 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) (-3269 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3269 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3269 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1003))))) +(-10 -7 (-15 -3269 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3269 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3269 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3269 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1626 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1626 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1626 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -1496 ((-109) |#1|)) (-15 -3412 ((-3 |#1| "failed") (-109)))) |noBranch|)) +((-2750 (((-107) $ $) NIL)) (-2932 (((-703) $) 68) (($ $ (-703)) 30)) (-2163 (((-107) $) 32)) (-2200 (($ $ (-1056) (-706)) 26)) (-1351 (($ $ (-44 (-1056) (-706))) 13)) (-2994 (((-3 (-706) "failed") $ (-1056)) 24)) (-2397 (((-44 (-1056) (-706)) $) 12)) (-3072 (($ (-1073)) 15) (($ (-1073) (-703)) 20)) (-3583 (((-107) $) 31)) (-2139 (((-107) $) 33)) (-1207 (((-1073) $) 8)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-1609 (((-107) $ (-1073)) 10)) (-1288 (($ $ (-1 (-493) (-583 (-493)))) 50) (((-3 (-1 (-493) (-583 (-493))) "failed") $) 54)) (-3206 (((-1021) $) NIL)) (-1559 (((-107) $ (-1056)) 29)) (-2007 (($ $ (-1 (-107) $ $)) 35)) (-1242 (((-3 (-1 (-787) (-583 (-787))) "failed") $) 52) (($ $ (-1 (-787) (-583 (-787)))) 41) (($ $ (-1 (-787) (-787))) 43)) (-3150 (($ $ (-1056)) 45)) (-2433 (($ $) 61)) (-1722 (($ $ (-1 (-107) $ $)) 36)) (-2256 (((-787) $) 48)) (-2107 (($ $ (-1056)) 27)) (-2949 (((-3 (-703) "failed") $) 56)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 67)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 72))) +(((-109) (-13 (-779) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -2397 ((-44 (-1056) (-706)) $)) (-15 -2433 ($ $)) (-15 -3072 ($ (-1073))) (-15 -3072 ($ (-1073) (-703))) (-15 -2949 ((-3 (-703) "failed") $)) (-15 -3583 ((-107) $)) (-15 -2163 ((-107) $)) (-15 -2139 ((-107) $)) (-15 -2932 ((-703) $)) (-15 -2932 ($ $ (-703))) (-15 -2007 ($ $ (-1 (-107) $ $))) (-15 -1722 ($ $ (-1 (-107) $ $))) (-15 -1242 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1242 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1242 ($ $ (-1 (-787) (-787)))) (-15 -1288 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1288 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -1609 ((-107) $ (-1073))) (-15 -1559 ((-107) $ (-1056))) (-15 -2107 ($ $ (-1056))) (-15 -3150 ($ $ (-1056))) (-15 -2994 ((-3 (-706) "failed") $ (-1056))) (-15 -2200 ($ $ (-1056) (-706))) (-15 -1351 ($ $ (-44 (-1056) (-706))))))) (T -109)) +((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109)))) (-2433 (*1 *1 *1) (-5 *1 (-109))) (-3072 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) (-3072 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *1 (-109)))) (-2949 (*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2932 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1722 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1242 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1242 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1242 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) (-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1288 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1609 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-109)))) (-1559 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-109)))) (-2107 (*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109)))) (-3150 (*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109)))) (-2994 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-706)) (-5 *1 (-109)))) (-2200 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-706)) (-5 *1 (-109)))) (-1351 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109))))) +(-13 (-779) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -2397 ((-44 (-1056) (-706)) $)) (-15 -2433 ($ $)) (-15 -3072 ($ (-1073))) (-15 -3072 ($ (-1073) (-703))) (-15 -2949 ((-3 (-703) "failed") $)) (-15 -3583 ((-107) $)) (-15 -2163 ((-107) $)) (-15 -2139 ((-107) $)) (-15 -2932 ((-703) $)) (-15 -2932 ($ $ (-703))) (-15 -2007 ($ $ (-1 (-107) $ $))) (-15 -1722 ($ $ (-1 (-107) $ $))) (-15 -1242 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1242 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1242 ($ $ (-1 (-787) (-787)))) (-15 -1288 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1288 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -1609 ((-107) $ (-1073))) (-15 -1559 ((-107) $ (-1056))) (-15 -2107 ($ $ (-1056))) (-15 -3150 ($ $ (-1056))) (-15 -2994 ((-3 (-706) "failed") $ (-1056))) (-15 -2200 ($ $ (-1056) (-706))) (-15 -1351 ($ $ (-44 (-1056) (-706)))))) +((-2496 (((-517) |#2|) 36))) +(((-110 |#1| |#2|) (-10 -7 (-15 -2496 ((-517) |#2|))) (-13 (-333) (-952 (-377 (-517)))) (-1130 |#1|)) (T -110)) +((-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-952 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1130 *4))))) +(-10 -7 (-15 -2496 ((-517) |#2|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $ (-517)) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3959 (($ (-1069 (-517)) (-517)) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3531 (($ $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3972 (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 (((-517)) NIL)) (-3340 (((-517) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1672 (($ $ (-517)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-1054 (-517)) $) NIL)) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-3383 (((-517) $ (-517)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL))) +(((-111 |#1|) (-793 |#1|) (-517)) (T -111)) +NIL +(-793 |#1|) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-111 |#1|) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-111 |#1|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-111 |#1|) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-111 |#1|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-111 |#1|) (-952 (-517))))) (-3189 (((-111 |#1|) $) NIL) (((-1073) $) NIL (|has| (-111 |#1|) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-111 |#1|) (-952 (-517)))) (((-517) $) NIL (|has| (-111 |#1|) (-952 (-517))))) (-2869 (($ $) NIL) (($ (-517) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-111 |#1|))) (|:| |vec| (-1153 (-111 |#1|)))) (-623 $) (-1153 $)) NIL) (((-623 (-111 |#1|)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-111 |#1|) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-111 |#1|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-111 |#1|) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-111 |#1|) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-111 |#1|) (-1049)))) (-2475 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-3099 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-1893 (($ (-1 (-111 |#1|) (-111 |#1|)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-111 |#1|) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-111 |#1|) (-278)))) (-2597 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-111 |#1|)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-111 |#1|) (-111 |#1|)) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-265 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-265 (-111 |#1|)))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-1073)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-478 (-1073) (-111 |#1|)))) (($ $ (-1073) (-111 |#1|)) NIL (|has| (-111 |#1|) (-478 (-1073) (-111 |#1|))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-111 |#1|)) NIL (|has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-111 |#1|) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-111 |#1|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-111 |#1|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-111 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-111 |#1|) (-937))) (((-199) $) NIL (|has| (-111 |#1|) (-937)))) (-2005 (((-157 (-377 (-517))) $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-111 |#1|)) NIL) (($ (-1073)) NIL (|has| (-111 |#1|) (-952 (-1073))))) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-831))) (|has| (-111 |#1|) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ (-517)) NIL)) (-3710 (($ $) NIL (|has| (-111 |#1|) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1667 (($ $ $) NIL) (($ (-111 |#1|) (-111 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-111 |#1|) $) NIL) (($ $ (-111 |#1|)) NIL))) +(((-112 |#1|) (-13 (-909 (-111 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) (-517)) (T -112)) +((-3383 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) (-2869 (*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2)))) +(-13 (-909 (-111 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) +((-2411 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-3063 (((-583 $) $) 27)) (-1272 (((-107) $ $) 32)) (-2787 (((-107) |#2| $) 36)) (-3992 (((-583 |#2|) $) 22)) (-1763 (((-107) $) 16)) (-1449 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2655 (((-107) $) 45)) (-2256 (((-787) $) 41)) (-1479 (((-583 $) $) 28)) (-1547 (((-107) $ $) 34)) (-2296 (((-703) $) 43))) +(((-113 |#1| |#2|) (-10 -8 (-15 -2411 (|#1| |#1| "right" |#1|)) (-15 -2411 (|#1| |#1| "left" |#1|)) (-15 -1449 (|#1| |#1| "right")) (-15 -1449 (|#1| |#1| "left")) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -3992 ((-583 |#2|) |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -2296 ((-703) |#1|))) (-114 |#2|) (-1108)) (T -113)) +NIL +(-10 -8 (-15 -2411 (|#1| |#1| "right" |#1|)) (-15 -2411 (|#1| |#1| "left" |#1|)) (-15 -1449 (|#1| |#1| "right")) (-15 -1449 (|#1| |#1| "left")) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -3992 ((-583 |#2|) |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -2296 ((-703) |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 52 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 54 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) (($ $ "left" $) 55 (|has| $ (-6 -4181))) (($ $ "right" $) 53 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-3652 (($ $) 57)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3639 (($ $) 59)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-114 |#1|) (-1184) (-1108)) (T -114)) +((-3639 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-3652 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-2411 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-3449 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108)))) (-2411 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-2204 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108))))) +(-13 (-926 |t#1|) (-10 -8 (-15 -3639 ($ $)) (-15 -1449 ($ $ "left")) (-15 -3652 ($ $)) (-15 -1449 ($ $ "right")) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2411 ($ $ "left" $)) (-15 -3449 ($ $ $)) (-15 -2411 ($ $ "right" $)) (-15 -2204 ($ $ $))) |noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-1327 (((-107) |#1|) 24)) (-3803 (((-703) (-703)) 23) (((-703)) 22)) (-3879 (((-107) |#1| (-107)) 25) (((-107) |#1|) 26))) +(((-115 |#1|) (-10 -7 (-15 -3879 ((-107) |#1|)) (-15 -3879 ((-107) |#1| (-107))) (-15 -3803 ((-703))) (-15 -3803 ((-703) (-703))) (-15 -1327 ((-107) |#1|))) (-1130 (-517))) (T -115)) +((-1327 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3803 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3879 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3879 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517)))))) +(-10 -7 (-15 -3879 ((-107) |#1|)) (-15 -3879 ((-107) |#1| (-107))) (-15 -3803 ((-703))) (-15 -3803 ((-703) (-703))) (-15 -1327 ((-107) |#1|))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 15)) (-1313 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2204 (($ $ $) 18 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 20 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 17)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 23)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 19)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2672 (($ |#1| $) 24)) (-1710 (($ |#1| $) 10)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 8)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3288 (($ (-583 |#1|)) 12)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-116 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3288 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $)) (-15 -2672 ($ |#1| $)) (-15 -1313 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-779)) (T -116)) +((-3288 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))) (-1710 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-2672 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-1313 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779))))) +(-13 (-120 |#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3288 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $)) (-15 -2672 ($ |#1| $)) (-15 -1313 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-1460 (($ $) 14)) (-2630 (($ $) 11)) (-1888 (($ $ $) 24)) (-1514 (($ $ $) 22)) (-2207 (($ $) 12)) (-2391 (($ $ $) 20)) (-2382 (($ $ $) 18))) +(((-117 |#1|) (-10 -8 (-15 -1888 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -1460 (|#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2391 (|#1| |#1| |#1|))) (-118)) (T -117)) +NIL +(-10 -8 (-15 -1888 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -1460 (|#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2391 (|#1| |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-1460 (($ $) 104)) (-2775 (($ $ $) 25)) (-1668 (((-1158) $ (-517) (-517)) 67 (|has| $ (-6 -4181)))) (-2044 (((-107) $) 99 (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) 93)) (-2034 (($ $) 103 (-12 (|has| (-107) (-779)) (|has| $ (-6 -4181)))) (($ (-1 (-107) (-107) (-107)) $) 102 (|has| $ (-6 -4181)))) (-3166 (($ $) 98 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) 92)) (-2953 (((-107) $ (-703)) 38)) (-2411 (((-107) $ (-1121 (-517)) (-107)) 89 (|has| $ (-6 -4181))) (((-107) $ (-517) (-107)) 55 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-107)) $) 72 (|has| $ (-6 -4180)))) (-3092 (($) 39 T CONST)) (-4020 (($ $) 101 (|has| $ (-6 -4181)))) (-3093 (($ $) 91)) (-1679 (($ $) 69 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-1 (-107) (-107)) $) 73 (|has| $ (-6 -4180))) (($ (-107) $) 70 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-3225 (((-107) (-1 (-107) (-107) (-107)) $) 75 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) 74 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) 71 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-1445 (((-107) $ (-517) (-107)) 54 (|has| $ (-6 -4181)))) (-1377 (((-107) $ (-517)) 56)) (-2607 (((-517) (-107) $ (-517)) 96 (|has| (-107) (-1003))) (((-517) (-107) $) 95 (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) 94)) (-1536 (((-583 (-107)) $) 46 (|has| $ (-6 -4180)))) (-4025 (($ $ $) 26)) (-2630 (($ $) 31)) (-1888 (($ $ $) 28)) (-3462 (($ (-703) (-107)) 78)) (-1514 (($ $ $) 29)) (-2550 (((-107) $ (-703)) 37)) (-3243 (((-517) $) 64 (|has| (-517) (-779)))) (-2967 (($ $ $) 13)) (-3237 (($ $ $) 97 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) 90)) (-2560 (((-583 (-107)) $) 47 (|has| $ (-6 -4180)))) (-2787 (((-107) (-107) $) 49 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 63 (|has| (-517) (-779)))) (-3099 (($ $ $) 14)) (-1433 (($ (-1 (-107) (-107)) $) 42 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-107) (-107) (-107)) $ $) 83) (($ (-1 (-107) (-107)) $) 41)) (-3847 (((-107) $ (-703)) 36)) (-3985 (((-1056) $) 9)) (-2620 (($ $ $ (-517)) 88) (($ (-107) $ (-517)) 87)) (-1857 (((-583 (-517)) $) 61)) (-4088 (((-107) (-517) $) 60)) (-3206 (((-1021) $) 10)) (-1647 (((-107) $) 65 (|has| (-517) (-779)))) (-2887 (((-3 (-107) "failed") (-1 (-107) (-107)) $) 76)) (-2565 (($ $ (-107)) 66 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-107)) $) 44 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-107)) (-583 (-107))) 53 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) 52 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) 51 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) 50 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3792 (((-107) $ $) 32)) (-4042 (((-107) (-107) $) 62 (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1941 (((-583 (-107)) $) 59)) (-3619 (((-107) $) 35)) (-1746 (($) 34)) (-1449 (($ $ (-1121 (-517))) 84) (((-107) $ (-517)) 58) (((-107) $ (-517) (-107)) 57)) (-3750 (($ $ (-1121 (-517))) 86) (($ $ (-517)) 85)) (-3217 (((-703) (-107) $) 48 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) (-107)) $) 45 (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) 100 (|has| $ (-6 -4181)))) (-2433 (($ $) 33)) (-3645 (((-493) $) 68 (|has| (-107) (-558 (-493))))) (-2276 (($ (-583 (-107))) 77)) (-2452 (($ (-583 $)) 82) (($ $ $) 81) (($ (-107) $) 80) (($ $ (-107)) 79)) (-2256 (((-787) $) 11)) (-3675 (((-107) (-1 (-107) (-107)) $) 43 (|has| $ (-6 -4180)))) (-4035 (($ $ $) 27)) (-2207 (($ $) 30)) (-2391 (($ $ $) 106)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-2382 (($ $ $) 105)) (-2296 (((-703) $) 40 (|has| $ (-6 -4180))))) +(((-118) (-1184)) (T -118)) +((-2630 (*1 *1 *1) (-4 *1 (-118))) (-2207 (*1 *1 *1) (-4 *1 (-118))) (-1514 (*1 *1 *1 *1) (-4 *1 (-118))) (-1888 (*1 *1 *1 *1) (-4 *1 (-118))) (-4035 (*1 *1 *1 *1) (-4 *1 (-118))) (-4025 (*1 *1 *1 *1) (-4 *1 (-118))) (-2775 (*1 *1 *1 *1) (-4 *1 (-118)))) +(-13 (-779) (-598) (-19 (-107)) (-10 -8 (-15 -2630 ($ $)) (-15 -2207 ($ $)) (-15 -1514 ($ $ $)) (-15 -1888 ($ $ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2775 ($ $ $)))) +(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 (-107)) . T) ((-558 (-493)) |has| (-107) (-558 (-493))) ((-258 (-517) (-107)) . T) ((-260 (-517) (-107)) . T) ((-280 (-107)) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))) ((-343 (-107)) . T) ((-456 (-107)) . T) ((-550 (-517) (-107)) . T) ((-478 (-107) (-107)) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))) ((-588 (-107)) . T) ((-598) . T) ((-19 (-107)) . T) ((-779) . T) ((-1003) . T) ((-1108) . T)) +((-1433 (($ (-1 |#2| |#2|) $) 22)) (-2433 (($ $) 16)) (-2296 (((-703) $) 24))) +(((-119 |#1| |#2|) (-10 -8 (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2433 (|#1| |#1|))) (-120 |#2|) (-1003)) (T -119)) +NIL +(-10 -8 (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2433 (|#1| |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 52 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 54 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) (($ $ "left" $) 55 (|has| $ (-6 -4181))) (($ $ "right" $) 53 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-3652 (($ $) 57)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 60)) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3639 (($ $) 59)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-120 |#1|) (-1184) (-1003)) (T -120)) +((-4101 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1003))))) +(-13 (-114 |t#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -4101 ($ $ |t#1| $)))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-114 |#1|) . T) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 15)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) 19 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 20 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 18 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 21)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-1710 (($ |#1| $) 10)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 8)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 17)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3993 (($ (-583 |#1|)) 12)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-121 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4181) (-15 -3993 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $)))) (-779)) (T -121)) +((-3993 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))) (-1710 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779))))) +(-13 (-120 |#1|) (-10 -8 (-6 -4181) (-15 -3993 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 24)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) 26 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 30 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 28 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 20)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 15)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 19)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) 21)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 18)) (-1746 (($) 11)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3331 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 10 (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-122 |#1|) (-13 (-120 |#1|) (-10 -8 (-15 -3331 ($ |#1|)) (-15 -3331 ($ $ |#1| $)))) (-1003)) (T -122)) +((-3331 (*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))) (-3331 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003))))) +(-13 (-120 |#1|) (-10 -8 (-15 -3331 ($ |#1|)) (-15 -3331 ($ $ |#1| $)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15))) +(((-123) (-1184)) (T -123)) +((-4038 (*1 *1 *1 *1) (|partial| -4 *1 (-123)))) +(-13 (-23) (-10 -8 (-15 -4038 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2750 (((-107) $ $) 7)) (-3892 (((-1158) $ (-703)) 19)) (-2607 (((-703) $) 20)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18))) +(((-124) (-1184)) (T -124)) +((-2607 (*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) (-3892 (*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1158))))) +(-13 (-779) (-10 -8 (-15 -2607 ((-703) $)) (-15 -3892 ((-1158) $ (-703))))) +(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-703) "failed") $) 38)) (-3189 (((-703) $) 36)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) 26)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1584 (((-107)) 39)) (-1524 (((-107) (-107)) 41)) (-1515 (((-107) $) 23)) (-1633 (((-107) $) 35)) (-2256 (((-787) $) 22) (($ (-703)) 14)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 12 T CONST)) (-2409 (($) 11 T CONST)) (-1426 (($ (-703)) 15)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 24)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 25)) (-1654 (((-3 $ "failed") $ $) 29)) (-1642 (($ $ $) 27)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ $) 34)) (* (($ (-703) $) 32) (($ (-843) $) NIL) (($ $ $) 30))) +(((-125) (-13 (-779) (-23) (-659) (-952 (-703)) (-10 -8 (-6 (-4182 "*")) (-15 -1654 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1426 ($ (-703))) (-15 -1515 ((-107) $)) (-15 -1633 ((-107) $)) (-15 -1584 ((-107))) (-15 -1524 ((-107) (-107)))))) (T -125)) +((-1654 (*1 *1 *1 *1) (|partial| -5 *1 (-125))) (** (*1 *1 *1 *1) (-5 *1 (-125))) (-1426 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1584 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125))))) +(-13 (-779) (-23) (-659) (-952 (-703)) (-10 -8 (-6 (-4182 "*")) (-15 -1654 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1426 ($ (-703))) (-15 -1515 ((-107) $)) (-15 -1633 ((-107) $)) (-15 -1584 ((-107))) (-15 -1524 ((-107) (-107))))) +((-2473 (((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|)) 14)) (-1893 (((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)) 18))) +(((-126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -1893 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)))) (-517) (-703) (-156) (-156)) (T -126)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) (-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8))))) +(-10 -7 (-15 -2473 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -1893 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)))) +((-2750 (((-107) $ $) NIL)) (-4059 (($ (-583 |#3|)) 38)) (-2033 (($ $) 97) (($ $ (-517) (-517)) 96)) (-3092 (($) 17)) (-1772 (((-3 |#3| "failed") $) 58)) (-3189 ((|#3| $) NIL)) (-1354 (($ $ (-583 (-517))) 98)) (-2462 (((-583 |#3|) $) 34)) (-2261 (((-703) $) 42)) (-3485 (($ $ $) 91)) (-3625 (($) 41)) (-3985 (((-1056) $) NIL)) (-3062 (($) 16)) (-3206 (((-1021) $) NIL)) (-1449 ((|#3| $) 44) ((|#3| $ (-517)) 45) ((|#3| $ (-517) (-517)) 46) ((|#3| $ (-517) (-517) (-517)) 47) ((|#3| $ (-517) (-517) (-517) (-517)) 48) ((|#3| $ (-583 (-517))) 50)) (-3688 (((-703) $) 43)) (-2920 (($ $ (-517) $ (-517)) 92) (($ $ (-517) (-517)) 94)) (-2256 (((-787) $) 65) (($ |#3|) 66) (($ (-214 |#2| |#3|)) 73) (($ (-1040 |#2| |#3|)) 76) (($ (-583 |#3|)) 51) (($ (-583 $)) 56)) (-2396 (($) 67 T CONST)) (-2409 (($) 68 T CONST)) (-1547 (((-107) $ $) 78)) (-1654 (($ $) 84) (($ $ $) 82)) (-1642 (($ $ $) 80)) (* (($ |#3| $) 89) (($ $ |#3|) 90) (($ $ (-517)) 87) (($ (-517) $) 86) (($ $ $) 93))) +(((-127 |#1| |#2| |#3|) (-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2256 ($ (-214 |#2| |#3|))) (-15 -2256 ($ (-1040 |#2| |#3|))) (-15 -2256 ($ (-583 |#3|))) (-15 -2256 ($ (-583 $))) (-15 -2261 ((-703) $)) (-15 -1449 (|#3| $)) (-15 -1449 (|#3| $ (-517))) (-15 -1449 (|#3| $ (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-583 (-517)))) (-15 -3485 ($ $ $)) (-15 * ($ $ $)) (-15 -2920 ($ $ (-517) $ (-517))) (-15 -2920 ($ $ (-517) (-517))) (-15 -2033 ($ $)) (-15 -2033 ($ $ (-517) (-517))) (-15 -1354 ($ $ (-583 (-517)))) (-15 -3062 ($)) (-15 -3625 ($)) (-15 -2462 ((-583 |#3|) $)) (-15 -4059 ($ (-583 |#3|))) (-15 -3092 ($)))) (-517) (-703) (-156)) (T -127)) +((-3485 (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1040 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) (-1449 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2920 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-2920 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-2033 (*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2033 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-1354 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3062 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-3625 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-3092 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156))))) +(-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2256 ($ (-214 |#2| |#3|))) (-15 -2256 ($ (-1040 |#2| |#3|))) (-15 -2256 ($ (-583 |#3|))) (-15 -2256 ($ (-583 $))) (-15 -2261 ((-703) $)) (-15 -1449 (|#3| $)) (-15 -1449 (|#3| $ (-517))) (-15 -1449 (|#3| $ (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-583 (-517)))) (-15 -3485 ($ $ $)) (-15 * ($ $ $)) (-15 -2920 ($ $ (-517) $ (-517))) (-15 -2920 ($ $ (-517) (-517))) (-15 -2033 ($ $)) (-15 -2033 ($ $ (-517) (-517))) (-15 -1354 ($ $ (-583 (-517)))) (-15 -3062 ($)) (-15 -3625 ($)) (-15 -2462 ((-583 |#3|) $)) (-15 -4059 ($ (-583 |#3|))) (-15 -3092 ($)))) +((-2750 (((-107) $ $) NIL)) (-3132 (($) 15 T CONST)) (-3416 (($) NIL (|has| (-131) (-338)))) (-1413 (($ $ $) 17) (($ $ (-131)) NIL) (($ (-131) $) NIL)) (-3245 (($ $ $) NIL)) (-3009 (((-107) $ $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| (-131) (-338)))) (-1362 (($) NIL) (($ (-583 (-131))) NIL)) (-2337 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3212 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (($ (-131) $) 51 (|has| $ (-6 -4180)))) (-2052 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (($ (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3209 (($) NIL (|has| (-131) (-338)))) (-1536 (((-583 (-131)) $) 60 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2967 (((-131) $) NIL (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) 26 (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3099 (((-131) $) NIL (|has| (-131) (-779)))) (-1433 (($ (-1 (-131) (-131)) $) 59 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) 55)) (-1285 (($) 16 T CONST)) (-1549 (((-843) $) NIL (|has| (-131) (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 29)) (-3309 (((-131) $) 52)) (-1710 (($ (-131) $) 50)) (-3448 (($ (-843)) NIL (|has| (-131) (-338)))) (-1789 (($) 14 T CONST)) (-3206 (((-1021) $) NIL)) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-4006 (((-131) $) 53)) (-2048 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 48)) (-3121 (($) 13 T CONST)) (-3170 (($ $ $) 31) (($ $ (-131)) NIL)) (-3089 (($ (-583 (-131))) NIL) (($) NIL)) (-3217 (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-1056) $) 36) (((-493) $) NIL (|has| (-131) (-558 (-493)))) (((-583 (-131)) $) 34)) (-2276 (($ (-583 (-131))) NIL)) (-1819 (($ $) 32 (|has| (-131) (-338)))) (-2256 (((-787) $) 46)) (-2585 (($ (-1056)) 12) (($ (-583 (-131))) 43)) (-2201 (((-703) $) NIL)) (-3167 (($) 49) (($ (-583 (-131))) NIL)) (-1222 (($ (-583 (-131))) NIL)) (-3675 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2297 (($) 19 T CONST)) (-2389 (($) 18 T CONST)) (-1547 (((-107) $ $) 22)) (-1572 (((-107) $ $) NIL)) (-2296 (((-703) $) 47 (|has| $ (-6 -4180))))) +(((-128) (-13 (-1003) (-558 (-1056)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -2585 ($ (-1056))) (-15 -2585 ($ (-583 (-131)))) (-15 -3121 ($) -1619) (-15 -1789 ($) -1619) (-15 -3132 ($) -1619) (-15 -1285 ($) -1619) (-15 -2389 ($) -1619) (-15 -2297 ($) -1619)))) (T -128)) +((-2585 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-128)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) (-3121 (*1 *1) (-5 *1 (-128))) (-1789 (*1 *1) (-5 *1 (-128))) (-3132 (*1 *1) (-5 *1 (-128))) (-1285 (*1 *1) (-5 *1 (-128))) (-2389 (*1 *1) (-5 *1 (-128))) (-2297 (*1 *1) (-5 *1 (-128)))) +(-13 (-1003) (-558 (-1056)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -2585 ($ (-1056))) (-15 -2585 ($ (-583 (-131)))) (-15 -3121 ($) -1619) (-15 -1789 ($) -1619) (-15 -3132 ($) -1619) (-15 -1285 ($) -1619) (-15 -2389 ($) -1619) (-15 -2297 ($) -1619))) +((-4112 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3484 ((|#1| |#3|) 9)) (-1897 ((|#3| |#3|) 15))) +(((-129 |#1| |#2| |#3|) (-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-909 |#1|) (-343 |#2|)) (T -129)) +((-4112 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) (-1897 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4))))) +(-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3647 (($ $ $) 8)) (-3663 (($ $) 7)) (-1270 (($ $ $) 6))) +(((-130) (-1184)) (T -130)) +((-3647 (*1 *1 *1 *1) (-4 *1 (-130))) (-3663 (*1 *1 *1) (-4 *1 (-130))) (-1270 (*1 *1 *1 *1) (-4 *1 (-130)))) +(-13 (-10 -8 (-15 -1270 ($ $ $)) (-15 -3663 ($ $)) (-15 -3647 ($ $ $)))) +((-2750 (((-107) $ $) NIL)) (-3543 (((-107) $) 38)) (-3132 (($ $) 50)) (-1379 (($) 25)) (-1611 (((-703)) 16)) (-3209 (($) 24)) (-3774 (($) 26)) (-3247 (((-517) $) 21)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1702 (((-107) $) 40)) (-1285 (($ $) 51)) (-1549 (((-843) $) 22)) (-3985 (((-1056) $) 46)) (-3448 (($ (-843)) 20)) (-3858 (((-107) $) 36)) (-3206 (((-1021) $) NIL)) (-1206 (($) 27)) (-2569 (((-107) $) 34)) (-2256 (((-787) $) 29)) (-1185 (($ (-517)) 18) (($ (-1056)) 49)) (-2551 (((-107) $) 44)) (-4017 (((-107) $) 42)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 13)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 14))) +(((-131) (-13 (-773) (-10 -8 (-15 -3247 ((-517) $)) (-15 -1185 ($ (-517))) (-15 -1185 ($ (-1056))) (-15 -1379 ($)) (-15 -3774 ($)) (-15 -1206 ($)) (-15 -3132 ($ $)) (-15 -1285 ($ $)) (-15 -2569 ((-107) $)) (-15 -3858 ((-107) $)) (-15 -4017 ((-107) $)) (-15 -3543 ((-107) $)) (-15 -1702 ((-107) $)) (-15 -2551 ((-107) $))))) (T -131)) +((-3247 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-1185 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-1185 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-131)))) (-1379 (*1 *1) (-5 *1 (-131))) (-3774 (*1 *1) (-5 *1 (-131))) (-1206 (*1 *1) (-5 *1 (-131))) (-3132 (*1 *1 *1) (-5 *1 (-131))) (-1285 (*1 *1 *1) (-5 *1 (-131))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) +(-13 (-773) (-10 -8 (-15 -3247 ((-517) $)) (-15 -1185 ($ (-517))) (-15 -1185 ($ (-1056))) (-15 -1379 ($)) (-15 -3774 ($)) (-15 -1206 ($)) (-15 -3132 ($ $)) (-15 -1285 ($ $)) (-15 -2569 ((-107) $)) (-15 -3858 ((-107) $)) (-15 -4017 ((-107) $)) (-15 -3543 ((-107) $)) (-15 -1702 ((-107) $)) (-15 -2551 ((-107) $)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-1328 (((-3 $ "failed") $) 35)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-132) (-1184)) (T -132)) +((-1328 (*1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-961) (-10 -8 (-15 -1328 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-3669 ((|#1| (-623 |#1|) |#1|) 17))) +(((-133 |#1|) (-10 -7 (-15 -3669 (|#1| (-623 |#1|) |#1|))) (-156)) (T -133)) +((-3669 (*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2))))) +(-10 -7 (-15 -3669 (|#1| (-623 |#1|) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-134) (-1184)) (T -134)) +NIL +(-13 (-961)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-1889 (((-2 (|:| -2077 (-703)) (|:| -1931 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703)) 69)) (-3636 (((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|) 51)) (-3754 (((-2 (|:| -1931 (-377 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-1895 ((|#1| |#3| |#3|) 39)) (-2051 ((|#3| |#3| (-377 |#2|) (-377 |#2|)) 19)) (-2861 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|) 48))) +(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -3754 ((-2 (|:| -1931 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3636 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -1889 ((-2 (|:| -2077 (-703)) (|:| -1931 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1895 (|#1| |#3| |#3|)) (-15 -2051 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2861 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|))) (-1112) (-1130 |#1|) (-1130 (-377 |#2|))) (T -135)) +((-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))) (-2051 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1130 *3)))) (-1895 (*1 *2 *3 *3) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-1112)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1130 (-377 *4))))) (-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1130 *3)))) (-3636 (*1 *2 *3) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1931 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5)))))) +(-10 -7 (-15 -3754 ((-2 (|:| -1931 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3636 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -1889 ((-2 (|:| -2077 (-703)) (|:| -1931 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1895 (|#1| |#3| |#3|)) (-15 -2051 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2861 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|))) +((-3179 (((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|)) 31))) +(((-136 |#1| |#2|) (-10 -7 (-15 -3179 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|)))) (-502) (-150 |#1|)) (T -136)) +((-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5))))) +(-10 -7 (-15 -3179 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|)))) +((-3536 (($ (-1 (-107) |#2|) $) 29)) (-1679 (($ $) 36)) (-2052 (($ (-1 (-107) |#2|) $) 27) (($ |#2| $) 32)) (-3225 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2887 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 19)) (-2048 (((-107) (-1 (-107) |#2|) $) 16)) (-3217 (((-703) (-1 (-107) |#2|) $) 13) (((-703) |#2| $) NIL)) (-3675 (((-107) (-1 (-107) |#2|) $) 15)) (-2296 (((-703) $) 11))) +(((-137 |#1| |#2|) (-10 -8 (-15 -1679 (|#1| |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|))) (-138 |#2|) (-1108)) (T -137)) +NIL +(-10 -8 (-15 -1679 (|#1| |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3536 (($ (-1 (-107) |#1|) $) 44 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 41 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180))) (($ |#1| $) 42 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 48)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 40 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 49)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-138 |#1|) (-1184) (-1108)) (T -138)) +((-2276 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-138 *3)))) (-2887 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-3225 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-3225 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-2052 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) (-3536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) (-3225 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-2052 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) (-1679 (*1 *1 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003))))) +(-13 (-456 |t#1|) (-10 -8 (-15 -2276 ($ (-583 |t#1|))) (-15 -2887 ((-3 |t#1| "failed") (-1 (-107) |t#1|) $)) (IF (|has| $ (-6 -4180)) (PROGN (-15 -3225 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3225 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2052 ($ (-1 (-107) |t#1|) $)) (-15 -3536 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3225 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2052 ($ |t#1| $)) (-15 -1679 ($ $))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) 85)) (-3848 (((-107) $) NIL)) (-1339 (($ |#2| (-583 (-843))) 56)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2122 (($ (-843)) 48)) (-3141 (((-125)) 23)) (-2256 (((-787) $) 68) (($ (-517)) 46) (($ |#2|) 47)) (-2720 ((|#2| $ (-583 (-843))) 58)) (-2961 (((-703)) 20)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 40 T CONST)) (-2409 (($) 44 T CONST)) (-1547 (((-107) $ $) 26)) (-1667 (($ $ |#2|) NIL)) (-1654 (($ $) 34) (($ $ $) 32)) (-1642 (($ $ $) 30)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-139 |#1| |#2| |#3|) (-13 (-961) (-37 |#2|) (-1160 |#2|) (-10 -8 (-15 -2122 ($ (-843))) (-15 -1339 ($ |#2| (-583 (-843)))) (-15 -2720 (|#2| $ (-583 (-843)))) (-15 -3621 ((-3 $ "failed") $)))) (-843) (-333) (-910 |#1| |#2|)) (T -139)) +((-3621 (*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-843)) (-4 *3 (-333)) (-14 *4 (-910 *2 *3)))) (-2122 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-910 *3 *4)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-4 *2 (-333)) (-14 *5 (-910 *4 *2)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-843))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-14 *5 (-910 *4 *2))))) +(-13 (-961) (-37 |#2|) (-1160 |#2|) (-10 -8 (-15 -2122 ($ (-843))) (-15 -1339 ($ |#2| (-583 (-843)))) (-15 -2720 (|#2| $ (-583 (-843)))) (-15 -3621 ((-3 $ "failed") $)))) +((-1662 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199)) 39)) (-1979 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517))) 63) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849)) 64)) (-1810 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199))))) 67) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199)))) 66) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517))) 58) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849)) 59))) +(((-140) (-10 -7 (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1662 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199))))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))))))) (T -140)) +((-1810 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 (-199))))))) (-1810 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-865 (-199)))))) (-1662 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 *4)))) (|:| |xValues| (-998 *4)) (|:| |yValues| (-998 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 *4)))))) (-1979 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140))))) +(-10 -7 (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1662 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199))))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199))))))) +((-2918 (((-583 (-153 |#2|)) |#1| |#2|) 45))) +(((-141 |#1| |#2|) (-10 -7 (-15 -2918 ((-583 (-153 |#2|)) |#1| |#2|))) (-1130 (-153 (-517))) (-13 (-333) (-777))) (T -141)) +((-2918 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1130 (-153 (-517)))) (-4 *4 (-13 (-333) (-777)))))) +(-10 -7 (-15 -2918 ((-583 (-153 |#2|)) |#1| |#2|))) +((-2750 (((-107) $ $) NIL)) (-2638 (($) 15)) (-2817 (($) 14)) (-2295 (((-843)) 22)) (-3985 (((-1056) $) NIL)) (-3512 (((-517) $) 19)) (-3206 (((-1021) $) NIL)) (-1289 (($) 16)) (-1205 (($ (-517)) 23)) (-2256 (((-787) $) 29)) (-3337 (($) 17)) (-1547 (((-107) $ $) 13)) (-1642 (($ $ $) 11)) (* (($ (-843) $) 21) (($ (-199) $) 8))) +(((-142) (-13 (-25) (-10 -8 (-15 * ($ (-843) $)) (-15 * ($ (-199) $)) (-15 -1642 ($ $ $)) (-15 -2817 ($)) (-15 -2638 ($)) (-15 -1289 ($)) (-15 -3337 ($)) (-15 -3512 ((-517) $)) (-15 -2295 ((-843))) (-15 -1205 ($ (-517)))))) (T -142)) +((-1642 (*1 *1 *1 *1) (-5 *1 (-142))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) (-2817 (*1 *1) (-5 *1 (-142))) (-2638 (*1 *1) (-5 *1 (-142))) (-1289 (*1 *1) (-5 *1 (-142))) (-3337 (*1 *1) (-5 *1 (-142))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) (-2295 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) (-1205 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142))))) +(-13 (-25) (-10 -8 (-15 * ($ (-843) $)) (-15 * ($ (-199) $)) (-15 -1642 ($ $ $)) (-15 -2817 ($)) (-15 -2638 ($)) (-15 -1289 ($)) (-15 -3337 ($)) (-15 -3512 ((-517) $)) (-15 -2295 ((-843))) (-15 -1205 ($ (-517))))) +((-3036 ((|#2| |#2| (-996 |#2|)) 87) ((|#2| |#2| (-1073)) 67)) (-3485 ((|#2| |#2| (-996 |#2|)) 86) ((|#2| |#2| (-1073)) 66)) (-3647 ((|#2| |#2| |#2|) 27)) (-3072 (((-109) (-109)) 97)) (-2249 ((|#2| (-583 |#2|)) 116)) (-3194 ((|#2| (-583 |#2|)) 134)) (-3673 ((|#2| (-583 |#2|)) 124)) (-3274 ((|#2| |#2|) 122)) (-3297 ((|#2| (-583 |#2|)) 109)) (-2686 ((|#2| (-583 |#2|)) 110)) (-1390 ((|#2| (-583 |#2|)) 132)) (-3210 ((|#2| |#2| (-1073)) 54) ((|#2| |#2|) 53)) (-3663 ((|#2| |#2|) 23)) (-1270 ((|#2| |#2| |#2|) 26)) (-4074 (((-107) (-109)) 47)) (** ((|#2| |#2| |#2|) 38))) +(((-143 |#1| |#2|) (-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1270 (|#2| |#2| |#2|)) (-15 -3647 (|#2| |#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-996 |#2|))) (-15 -3485 (|#2| |#2| (-1073))) (-15 -3485 (|#2| |#2| (-996 |#2|))) (-15 -3274 (|#2| |#2|)) (-15 -1390 (|#2| (-583 |#2|))) (-15 -3673 (|#2| (-583 |#2|))) (-15 -3194 (|#2| (-583 |#2|))) (-15 -3297 (|#2| (-583 |#2|))) (-15 -2686 (|#2| (-583 |#2|))) (-15 -2249 (|#2| (-583 |#2|)))) (-13 (-779) (-509)) (-400 |#1|)) (T -143)) +((-2249 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3274 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3485 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-3485 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3036 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-3036 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3647 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1270 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4))))) +(-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1270 (|#2| |#2| |#2|)) (-15 -3647 (|#2| |#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-996 |#2|))) (-15 -3485 (|#2| |#2| (-1073))) (-15 -3485 (|#2| |#2| (-996 |#2|))) (-15 -3274 (|#2| |#2|)) (-15 -1390 (|#2| (-583 |#2|))) (-15 -3673 (|#2| (-583 |#2|))) (-15 -3194 (|#2| (-583 |#2|))) (-15 -3297 (|#2| (-583 |#2|))) (-15 -2686 (|#2| (-583 |#2|))) (-15 -2249 (|#2| (-583 |#2|)))) +((-1295 ((|#1| |#1| |#1|) 52)) (-3030 ((|#1| |#1| |#1|) 49)) (-3647 ((|#1| |#1| |#1|) 43)) (-3790 ((|#1| |#1|) 34)) (-1807 ((|#1| |#1| (-583 |#1|)) 42)) (-3663 ((|#1| |#1|) 36)) (-1270 ((|#1| |#1| |#1|) 39))) +(((-144 |#1|) (-10 -7 (-15 -1270 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1807 (|#1| |#1| (-583 |#1|))) (-15 -3790 (|#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -1295 (|#1| |#1| |#1|))) (-502)) (T -144)) +((-1295 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3030 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3647 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3790 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1807 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))) (-3663 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1270 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))) +(-10 -7 (-15 -1270 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1807 (|#1| |#1| (-583 |#1|))) (-15 -3790 (|#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -1295 (|#1| |#1| |#1|))) +((-3036 (($ $ (-1073)) 12) (($ $ (-996 $)) 11)) (-3485 (($ $ (-1073)) 10) (($ $ (-996 $)) 9)) (-3647 (($ $ $) 8)) (-3210 (($ $) 14) (($ $ (-1073)) 13)) (-3663 (($ $) 7)) (-1270 (($ $ $) 6))) +(((-145) (-1184)) (T -145)) +((-3210 (*1 *1 *1) (-4 *1 (-145))) (-3210 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) (-3036 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) (-3036 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) (-3485 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) (-3485 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145))))) +(-13 (-130) (-10 -8 (-15 -3210 ($ $)) (-15 -3210 ($ $ (-1073))) (-15 -3036 ($ $ (-1073))) (-15 -3036 ($ $ (-996 $))) (-15 -3485 ($ $ (-1073))) (-15 -3485 ($ $ (-996 $))))) (((-130) . T)) -((-3736 (((-107) $ $) NIL)) (-3338 (($ (-501)) 13) (($ $ $) 14)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 17)) (-3751 (((-107) $ $) 9))) -(((-146) (-13 (-1001) (-10 -8 (-15 -3338 ($ (-501))) (-15 -3338 ($ $ $))))) (T -146)) -((-3338 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-146)))) (-3338 (*1 *1 *1 *1) (-5 *1 (-146)))) -(-13 (-1001) (-10 -8 (-15 -3338 ($ (-501))) (-15 -3338 ($ $ $)))) -((-1853 (((-108) (-1070)) 97))) -(((-147) (-10 -7 (-15 -1853 ((-108) (-1070))))) (T -147)) -((-1853 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-147))))) -(-10 -7 (-15 -1853 ((-108) (-1070)))) -((-3018 ((|#3| |#3|) 19))) -(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3018 (|#3| |#3|))) (-959) (-1125 |#1|) (-1125 |#2|)) (T -148)) -((-3018 (*1 *2 *2) (-12 (-4 *3 (-959)) (-4 *4 (-1125 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1125 *4))))) -(-10 -7 (-15 -3018 (|#3| |#3|))) -((-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 215)) (-2225 ((|#2| $) 95)) (-3978 (($ $) 242)) (-3937 (($ $) 236)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 39)) (-3970 (($ $) 240)) (-3929 (($ $) 234)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#2| "failed") $) 139)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL) ((|#2| $) 137)) (-3023 (($ $ $) 220)) (-3868 (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 153) (((-621 |#2|) (-621 $)) 147)) (-3547 (($ (-1064 |#2|)) 118) (((-3 $ "failed") (-375 (-1064 |#2|))) NIL)) (-2174 (((-3 $ "failed") $) 207)) (-2870 (((-3 (-375 (-501)) "failed") $) 197)) (-1696 (((-107) $) 192)) (-3518 (((-375 (-501)) $) 195)) (-3689 (((-839)) 88)) (-3034 (($ $ $) 222)) (-4090 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 258)) (-2003 (($) 231)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 184) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 189)) (-2626 ((|#2| $) 93)) (-1792 (((-1064 |#2|) $) 120)) (-1212 (($ (-1 |#2| |#2|) $) 101)) (-1635 (($ $) 233)) (-1316 (((-1064 |#2|) $) 119)) (-3833 (($ $) 200)) (-2574 (($) 96)) (-2305 (((-373 (-1064 $)) (-1064 $)) 87)) (-2572 (((-373 (-1064 $)) (-1064 $)) 56)) (-3694 (((-3 $ "failed") $ |#2|) 202) (((-3 $ "failed") $ $) 205)) (-1989 (($ $) 232)) (-1864 (((-701) $) 217)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 226)) (-2532 ((|#2| (-1148 $)) NIL) ((|#2|) 90)) (-2596 (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL)) (-2264 (((-1064 |#2|)) 113)) (-3975 (($ $) 241)) (-3933 (($ $) 235)) (-2085 (((-1148 |#2|) $ (-1148 $)) 126) (((-621 |#2|) (-1148 $) (-1148 $)) NIL) (((-1148 |#2|) $) 109) (((-621 |#2|) (-1148 $)) NIL)) (-1248 (((-1148 |#2|) $) NIL) (($ (-1148 |#2|)) NIL) (((-1064 |#2|) $) NIL) (($ (-1064 |#2|)) NIL) (((-810 (-501)) $) 175) (((-810 (-346)) $) 179) (((-152 (-346)) $) 165) (((-152 (-199)) $) 160) (((-490) $) 171)) (-3097 (($ $) 97)) (-3691 (((-786) $) 136) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-375 (-501))) NIL) (($ $) NIL)) (-2942 (((-1064 |#2|) $) 23)) (-3965 (((-701)) 99)) (-4003 (($ $) 245)) (-3958 (($ $) 239)) (-3995 (($ $) 243)) (-3952 (($ $) 237)) (-2992 ((|#2| $) 230)) (-3999 (($ $) 244)) (-3955 (($ $) 238)) (-1720 (($ $) 155)) (-3751 (((-107) $ $) 103)) (-3762 (((-107) $ $) 191)) (-3797 (($ $) 105) (($ $ $) NIL)) (-3790 (($ $ $) 104)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-375 (-501))) 264) (($ $ $) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL))) -(((-149 |#1| |#2|) (-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3691 (|#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -1864 ((-701) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3034 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 ** (|#1| |#1| (-501))) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-152 (-199)) |#1|)) (-15 -1248 ((-152 (-346)) |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2003 (|#1|)) (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -4090 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2992 (|#2| |#1|)) (-15 -1720 (|#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3097 (|#1| |#1|)) (-15 -2574 (|#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -3547 ((-3 |#1| "failed") (-375 (-1064 |#2|)))) (-15 -1316 ((-1064 |#2|) |#1|)) (-15 -1248 (|#1| (-1064 |#2|))) (-15 -3547 (|#1| (-1064 |#2|))) (-15 -2264 ((-1064 |#2|))) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 ((-1064 |#2|) |#1|)) (-15 -2532 (|#2|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1792 ((-1064 |#2|) |#1|)) (-15 -2942 ((-1064 |#2|) |#1|)) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -2626 (|#2| |#1|)) (-15 -2225 (|#2| |#1|)) (-15 -3689 ((-839))) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 ** (|#1| |#1| (-701))) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-150 |#2|) (-156)) (T -149)) -((-3965 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3689 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-839)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-2532 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) (-2264 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4))))) -(-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3691 (|#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -1864 ((-701) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3034 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 ** (|#1| |#1| (-501))) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-152 (-199)) |#1|)) (-15 -1248 ((-152 (-346)) |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2003 (|#1|)) (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -4090 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2992 (|#2| |#1|)) (-15 -1720 (|#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3097 (|#1| |#1|)) (-15 -2574 (|#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -3547 ((-3 |#1| "failed") (-375 (-1064 |#2|)))) (-15 -1316 ((-1064 |#2|) |#1|)) (-15 -1248 (|#1| (-1064 |#2|))) (-15 -3547 (|#1| (-1064 |#2|))) (-15 -2264 ((-1064 |#2|))) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 ((-1064 |#2|) |#1|)) (-15 -2532 (|#2|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1792 ((-1064 |#2|) |#1|)) (-15 -2942 ((-1064 |#2|) |#1|)) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -2626 (|#2| |#1|)) (-15 -2225 (|#2| |#1|)) (-15 -3689 ((-839))) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 ** (|#1| |#1| (-701))) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 93 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-2865 (($ $) 94 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-1639 (((-107) $) 96 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-2239 (((-621 |#1|) (-1148 $)) 46) (((-621 |#1|)) 61)) (-2225 ((|#1| $) 52)) (-3978 (($ $) 228 (|has| |#1| (-1090)))) (-3937 (($ $) 211 (|has| |#1| (-1090)))) (-3431 (((-1077 (-839) (-701)) (-501)) 147 (|has| |#1| (-318)))) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 242 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-3676 (($ $) 113 (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-1559 (((-373 $) $) 114 (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-3743 (($ $) 241 (-12 (|has| |#1| (-916)) (|has| |#1| (-1090))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 245 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-2781 (((-107) $ $) 104 (|has| |#1| (-276)))) (-3796 (((-701)) 87 (|has| |#1| (-336)))) (-3970 (($ $) 227 (|has| |#1| (-1090)))) (-3929 (($ $) 212 (|has| |#1| (-1090)))) (-3984 (($ $) 226 (|has| |#1| (-1090)))) (-3945 (($ $) 213 (|has| |#1| (-1090)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 169 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 167 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 166)) (-3490 (((-501) $) 170 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 168 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 165)) (-3142 (($ (-1148 |#1|) (-1148 $)) 48) (($ (-1148 |#1|)) 64)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-318)))) (-3023 (($ $ $) 108 (|has| |#1| (-276)))) (-3070 (((-621 |#1|) $ (-1148 $)) 53) (((-621 |#1|) $) 59)) (-3868 (((-621 (-501)) (-621 $)) 164 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 163 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 162) (((-621 |#1|) (-621 $)) 161)) (-3547 (($ (-1064 |#1|)) 158) (((-3 $ "failed") (-375 (-1064 |#1|))) 155 (|has| |#1| (-331)))) (-2174 (((-3 $ "failed") $) 34)) (-3749 ((|#1| $) 253)) (-2870 (((-3 (-375 (-501)) "failed") $) 246 (|has| |#1| (-500)))) (-1696 (((-107) $) 248 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 247 (|has| |#1| (-500)))) (-3689 (((-839)) 54)) (-2890 (($) 90 (|has| |#1| (-336)))) (-3034 (($ $ $) 107 (|has| |#1| (-276)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 102 (|has| |#1| (-276)))) (-1317 (($) 149 (|has| |#1| (-318)))) (-3521 (((-107) $) 150 (|has| |#1| (-318)))) (-3067 (($ $ (-701)) 141 (|has| |#1| (-318))) (($ $) 140 (|has| |#1| (-318)))) (-1628 (((-107) $) 115 (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-4090 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-967)) (|has| |#1| (-1090))))) (-2003 (($) 238 (|has| |#1| (-1090)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 261 (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 260 (|has| |#1| (-806 (-346))))) (-3169 (((-839) $) 152 (|has| |#1| (-318))) (((-762 (-839)) $) 138 (|has| |#1| (-318)))) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 240 (-12 (|has| |#1| (-916)) (|has| |#1| (-1090))))) (-2626 ((|#1| $) 51)) (-3493 (((-3 $ "failed") $) 142 (|has| |#1| (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 111 (|has| |#1| (-276)))) (-1792 (((-1064 |#1|) $) 44 (|has| |#1| (-331)))) (-4111 (($ $ $) 207 (|has| |#1| (-777)))) (-1323 (($ $ $) 206 (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) 262)) (-3104 (((-839) $) 89 (|has| |#1| (-336)))) (-1635 (($ $) 235 (|has| |#1| (-1090)))) (-1316 (((-1064 |#1|) $) 156)) (-1697 (($ (-578 $)) 100 (-1405 (|has| |#1| (-276)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (($ $ $) 99 (-1405 (|has| |#1| (-276)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 116 (|has| |#1| (-331)))) (-3746 (($) 143 (|has| |#1| (-318)) CONST)) (-3506 (($ (-839)) 88 (|has| |#1| (-336)))) (-2574 (($) 257)) (-3755 ((|#1| $) 254)) (-3708 (((-1018) $) 10)) (-3987 (($) 160)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 101 (-1405 (|has| |#1| (-276)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-3664 (($ (-578 $)) 98 (-1405 (|has| |#1| (-276)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (($ $ $) 97 (-1405 (|has| |#1| (-276)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 146 (|has| |#1| (-318)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 244 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-2572 (((-373 (-1064 $)) (-1064 $)) 243 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-3739 (((-373 $) $) 112 (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-276))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 109 (|has| |#1| (-276)))) (-3694 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 92 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 103 (|has| |#1| (-276)))) (-1989 (($ $) 236 (|has| |#1| (-1090)))) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) 268 (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) 266 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) 265 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 264 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) 263 (|has| |#1| (-476 (-1070) |#1|)))) (-1864 (((-701) $) 105 (|has| |#1| (-276)))) (-2007 (($ $ |#1|) 269 (|has| |#1| (-256 |#1| |#1|)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 106 (|has| |#1| (-276)))) (-2532 ((|#1| (-1148 $)) 47) ((|#1|) 60)) (-1984 (((-701) $) 151 (|has| |#1| (-318))) (((-3 (-701) "failed") $ $) 139 (|has| |#1| (-318)))) (-2596 (($ $ (-1 |#1| |#1|) (-701)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-578 (-1070)) (-578 (-701))) 130 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 131 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 132 (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) 133 (|has| |#1| (-820 (-1070)))) (($ $ (-701)) 135 (-1405 (-1280 (|has| |#1| (-331)) (|has| |#1| (-206))) (|has| |#1| (-206)) (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))))) (($ $) 137 (-1405 (-1280 (|has| |#1| (-331)) (|has| |#1| (-206))) (|has| |#1| (-206)) (-1280 (|has| |#1| (-206)) (|has| |#1| (-331)))))) (-2231 (((-621 |#1|) (-1148 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-331)))) (-2264 (((-1064 |#1|)) 159)) (-3991 (($ $) 225 (|has| |#1| (-1090)))) (-3949 (($ $) 214 (|has| |#1| (-1090)))) (-1349 (($) 148 (|has| |#1| (-318)))) (-3981 (($ $) 224 (|has| |#1| (-1090)))) (-3940 (($ $) 215 (|has| |#1| (-1090)))) (-3975 (($ $) 223 (|has| |#1| (-1090)))) (-3933 (($ $) 216 (|has| |#1| (-1090)))) (-2085 (((-1148 |#1|) $ (-1148 $)) 50) (((-621 |#1|) (-1148 $) (-1148 $)) 49) (((-1148 |#1|) $) 66) (((-621 |#1|) (-1148 $)) 65)) (-1248 (((-1148 |#1|) $) 63) (($ (-1148 |#1|)) 62) (((-1064 |#1|) $) 171) (($ (-1064 |#1|)) 157) (((-810 (-501)) $) 259 (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) 258 (|has| |#1| (-556 (-810 (-346))))) (((-152 (-346)) $) 210 (|has| |#1| (-933))) (((-152 (-199)) $) 209 (|has| |#1| (-933))) (((-490) $) 208 (|has| |#1| (-556 (-490))))) (-3097 (($ $) 256)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 145 (-1405 (-1280 (|has| $ (-132)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))) (|has| |#1| (-318))))) (-1976 (($ |#1| |#1|) 255)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37) (($ (-375 (-501))) 86 (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501)))))) (($ $) 91 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-1274 (($ $) 144 (|has| |#1| (-318))) (((-3 $ "failed") $) 43 (-1405 (-1280 (|has| $ (-132)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))) (|has| |#1| (-132))))) (-2942 (((-1064 |#1|) $) 45)) (-3965 (((-701)) 29)) (-4119 (((-1148 $)) 67)) (-4003 (($ $) 234 (|has| |#1| (-1090)))) (-3958 (($ $) 222 (|has| |#1| (-1090)))) (-2442 (((-107) $ $) 95 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-3995 (($ $) 233 (|has| |#1| (-1090)))) (-3952 (($ $) 221 (|has| |#1| (-1090)))) (-4013 (($ $) 232 (|has| |#1| (-1090)))) (-3964 (($ $) 220 (|has| |#1| (-1090)))) (-2992 ((|#1| $) 250 (|has| |#1| (-1090)))) (-3550 (($ $) 231 (|has| |#1| (-1090)))) (-3967 (($ $) 219 (|has| |#1| (-1090)))) (-4008 (($ $) 230 (|has| |#1| (-1090)))) (-3961 (($ $) 218 (|has| |#1| (-1090)))) (-3999 (($ $) 229 (|has| |#1| (-1090)))) (-3955 (($ $) 217 (|has| |#1| (-1090)))) (-1720 (($ $) 251 (|has| |#1| (-967)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 117 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1 |#1| |#1|) (-701)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-578 (-1070)) (-578 (-701))) 126 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 127 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 128 (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) 129 (|has| |#1| (-820 (-1070)))) (($ $ (-701)) 134 (-1405 (-1280 (|has| |#1| (-331)) (|has| |#1| (-206))) (|has| |#1| (-206)) (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))))) (($ $) 136 (-1405 (-1280 (|has| |#1| (-331)) (|has| |#1| (-206))) (|has| |#1| (-206)) (-1280 (|has| |#1| (-206)) (|has| |#1| (-331)))))) (-3778 (((-107) $ $) 204 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 203 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 205 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 202 (|has| |#1| (-777)))) (-3803 (($ $ $) 121 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-375 (-501))) 239 (-12 (|has| |#1| (-916)) (|has| |#1| (-1090)))) (($ $ $) 237 (|has| |#1| (-1090))) (($ $ (-501)) 118 (|has| |#1| (-331)))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-375 (-501)) $) 120 (|has| |#1| (-331))) (($ $ (-375 (-501))) 119 (|has| |#1| (-331))))) -(((-150 |#1|) (-1180) (-156)) (T -150)) -((-2626 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2574 (*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3097 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1976 (*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3694 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) (-1720 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1090)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-967)) (-4 *3 (-1090)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) (-2870 (*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501)))))) -(-13 (-655 |t#1| (-1064 |t#1|)) (-380 |t#1|) (-204 |t#1|) (-306 |t#1|) (-368 |t#1|) (-804 |t#1|) (-345 |t#1|) (-156) (-10 -8 (-6 -1976) (-15 -2574 ($)) (-15 -3097 ($ $)) (-15 -1976 ($ |t#1| |t#1|)) (-15 -3755 (|t#1| $)) (-15 -3749 (|t#1| $)) (-15 -2626 (|t#1| $)) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-6 (-508)) (-15 -3694 ((-3 $ "failed") $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-276)) (-6 (-276)) |noBranch|) (IF (|has| |t#1| (-6 -4166)) (-6 -4166) |noBranch|) (IF (|has| |t#1| (-6 -4163)) (-6 -4163) |noBranch|) (IF (|has| |t#1| (-331)) (-6 (-331)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-933)) (PROGN (-6 (-556 (-152 (-199)))) (-6 (-556 (-152 (-346))))) |noBranch|) (IF (|has| |t#1| (-967)) (-15 -1720 ($ $)) |noBranch|) (IF (|has| |t#1| (-1090)) (PROGN (-6 (-1090)) (-15 -2992 (|t#1| $)) (IF (|has| |t#1| (-916)) (-6 (-916)) |noBranch|) (IF (|has| |t#1| (-967)) (-15 -4090 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-830)) (IF (|has| |t#1| (-276)) (-6 (-830)) |noBranch|) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-37 |#1|) . T) ((-37 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-34) |has| |#1| (-1090)) ((-91) |has| |#1| (-1090)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -1405 (|has| |#1| (-318)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-556 (-152 (-199))) |has| |#1| (-933)) ((-556 (-152 (-346))) |has| |#1| (-933)) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-556 (-810 (-346))) |has| |#1| (-556 (-810 (-346)))) ((-556 (-810 (-501))) |has| |#1| (-556 (-810 (-501)))) ((-556 (-1064 |#1|)) . T) ((-204 |#1|) . T) ((-206) -1405 (|has| |#1| (-318)) (|has| |#1| (-206))) ((-216) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-254) |has| |#1| (-1090)) ((-256 |#1| $) |has| |#1| (-256 |#1| |#1|)) ((-260) -1405 (|has| |#1| (-508)) (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-276) -1405 (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-278 |#1|) |has| |#1| (-278 |#1|)) ((-331) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-370) |has| |#1| (-318)) ((-336) -1405 (|has| |#1| (-336)) (|has| |#1| (-318))) ((-318) |has| |#1| (-318)) ((-338 |#1| (-1064 |#1|)) . T) ((-378 |#1| (-1064 |#1|)) . T) ((-306 |#1|) . T) ((-345 |#1|) . T) ((-368 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-456) |has| |#1| (-1090)) ((-476 (-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((-476 |#1| |#1|) |has| |#1| (-278 |#1|)) ((-508) -1405 (|has| |#1| (-508)) (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-648 |#1|) . T) ((-648 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-655 |#1| (-1064 |#1|)) . T) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-806 (-346)) |has| |#1| (-806 (-346))) ((-806 (-501)) |has| |#1| (-806 (-501))) ((-804 |#1|) . T) ((-830) -12 (|has| |#1| (-276)) (|has| |#1| (-830))) ((-841) -1405 (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-916) -12 (|has| |#1| (-916)) (|has| |#1| (-1090))) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-964 |#1|) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| |#1| (-318)) ((-1090) |has| |#1| (-1090)) ((-1093) |has| |#1| (-1090)) ((-1104) . T) ((-1108) -1405 (|has| |#1| (-318)) (|has| |#1| (-331)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) -((-3739 (((-373 |#2|) |#2|) 63))) -(((-151 |#1| |#2|) (-10 -7 (-15 -3739 ((-373 |#2|) |#2|))) (-276) (-1125 (-152 |#1|))) (T -151)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1125 (-152 *4)))))) -(-10 -7 (-15 -3739 ((-373 |#2|) |#2|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 33)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-2865 (($ $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-1639 (((-107) $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-2239 (((-621 |#1|) (-1148 $)) NIL) (((-621 |#1|)) NIL)) (-2225 ((|#1| $) NIL)) (-3978 (($ $) NIL (|has| |#1| (-1090)))) (-3937 (($ $) NIL (|has| |#1| (-1090)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| |#1| (-318)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-3676 (($ $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-1559 (((-373 $) $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-3743 (($ $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1090))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-276)))) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-3970 (($ $) NIL (|has| |#1| (-1090)))) (-3929 (($ $) NIL (|has| |#1| (-1090)))) (-3984 (($ $) NIL (|has| |#1| (-1090)))) (-3945 (($ $) NIL (|has| |#1| (-1090)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3142 (($ (-1148 |#1|) (-1148 $)) NIL) (($ (-1148 |#1|)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-318)))) (-3023 (($ $ $) NIL (|has| |#1| (-276)))) (-3070 (((-621 |#1|) $ (-1148 $)) NIL) (((-621 |#1|) $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-3547 (($ (-1064 |#1|)) NIL) (((-3 $ "failed") (-375 (-1064 |#1|))) NIL (|has| |#1| (-331)))) (-2174 (((-3 $ "failed") $) NIL)) (-3749 ((|#1| $) 13)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-500)))) (-1696 (((-107) $) NIL (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) NIL (|has| |#1| (-500)))) (-3689 (((-839)) NIL)) (-2890 (($) NIL (|has| |#1| (-336)))) (-3034 (($ $ $) NIL (|has| |#1| (-276)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-276)))) (-1317 (($) NIL (|has| |#1| (-318)))) (-3521 (((-107) $) NIL (|has| |#1| (-318)))) (-3067 (($ $ (-701)) NIL (|has| |#1| (-318))) (($ $) NIL (|has| |#1| (-318)))) (-1628 (((-107) $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-4090 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-967)) (|has| |#1| (-1090))))) (-2003 (($) NIL (|has| |#1| (-1090)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| |#1| (-806 (-346))))) (-3169 (((-839) $) NIL (|has| |#1| (-318))) (((-762 (-839)) $) NIL (|has| |#1| (-318)))) (-1355 (((-107) $) 35)) (-1342 (($ $ (-501)) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1090))))) (-2626 ((|#1| $) 46)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-276)))) (-1792 (((-1064 |#1|) $) NIL (|has| |#1| (-331)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-1635 (($ $) NIL (|has| |#1| (-1090)))) (-1316 (((-1064 |#1|) $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-276))) (($ $ $) NIL (|has| |#1| (-276)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3746 (($) NIL (|has| |#1| (-318)) CONST)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-2574 (($) NIL)) (-3755 ((|#1| $) 15)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-276)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-276))) (($ $ $) NIL (|has| |#1| (-276)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| |#1| (-318)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-3739 (((-373 $) $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-276))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-276)))) (-3694 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 47 (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-276)))) (-1989 (($ $) NIL (|has| |#1| (-1090)))) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-476 (-1070) |#1|)))) (-1864 (((-701) $) NIL (|has| |#1| (-276)))) (-2007 (($ $ |#1|) NIL (|has| |#1| (-256 |#1| |#1|)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-276)))) (-2532 ((|#1| (-1148 $)) NIL) ((|#1|) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-318))) (((-3 (-701) "failed") $ $) NIL (|has| |#1| (-318)))) (-2596 (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $) NIL (|has| |#1| (-206)))) (-2231 (((-621 |#1|) (-1148 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-331)))) (-2264 (((-1064 |#1|)) NIL)) (-3991 (($ $) NIL (|has| |#1| (-1090)))) (-3949 (($ $) NIL (|has| |#1| (-1090)))) (-1349 (($) NIL (|has| |#1| (-318)))) (-3981 (($ $) NIL (|has| |#1| (-1090)))) (-3940 (($ $) NIL (|has| |#1| (-1090)))) (-3975 (($ $) NIL (|has| |#1| (-1090)))) (-3933 (($ $) NIL (|has| |#1| (-1090)))) (-2085 (((-1148 |#1|) $ (-1148 $)) NIL) (((-621 |#1|) (-1148 $) (-1148 $)) NIL) (((-1148 |#1|) $) NIL) (((-621 |#1|) (-1148 $)) NIL)) (-1248 (((-1148 |#1|) $) NIL) (($ (-1148 |#1|)) NIL) (((-1064 |#1|) $) NIL) (($ (-1064 |#1|)) NIL) (((-810 (-501)) $) NIL (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| |#1| (-556 (-810 (-346))))) (((-152 (-346)) $) NIL (|has| |#1| (-933))) (((-152 (-199)) $) NIL (|has| |#1| (-933))) (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3097 (($ $) 45)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-318))))) (-1976 (($ |#1| |#1|) 37)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) 36) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-1274 (($ $) NIL (|has| |#1| (-318))) (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-2942 (((-1064 |#1|) $) NIL)) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL)) (-4003 (($ $) NIL (|has| |#1| (-1090)))) (-3958 (($ $) NIL (|has| |#1| (-1090)))) (-2442 (((-107) $ $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-3995 (($ $) NIL (|has| |#1| (-1090)))) (-3952 (($ $) NIL (|has| |#1| (-1090)))) (-4013 (($ $) NIL (|has| |#1| (-1090)))) (-3964 (($ $) NIL (|has| |#1| (-1090)))) (-2992 ((|#1| $) NIL (|has| |#1| (-1090)))) (-3550 (($ $) NIL (|has| |#1| (-1090)))) (-3967 (($ $) NIL (|has| |#1| (-1090)))) (-4008 (($ $) NIL (|has| |#1| (-1090)))) (-3961 (($ $) NIL (|has| |#1| (-1090)))) (-3999 (($ $) NIL (|has| |#1| (-1090)))) (-3955 (($ $) NIL (|has| |#1| (-1090)))) (-1720 (($ $) NIL (|has| |#1| (-967)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 28 T CONST)) (-1925 (($) 30 T CONST)) (-3671 (((-1053) $) 23 (|has| |#1| (-751))) (((-1053) $ (-107)) 25 (|has| |#1| (-751))) (((-1154) (-753) $) 26 (|has| |#1| (-751))) (((-1154) (-753) $ (-107)) 27 (|has| |#1| (-751)))) (-3584 (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $) NIL (|has| |#1| (-206)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 39)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-375 (-501))) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1090)))) (($ $ $) NIL (|has| |#1| (-1090))) (($ $ (-501)) NIL (|has| |#1| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-375 (-501)) $) NIL (|has| |#1| (-331))) (($ $ (-375 (-501))) NIL (|has| |#1| (-331))))) -(((-152 |#1|) (-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|))) (-156)) (T -152)) -NIL -(-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|))) -((-1212 (((-152 |#2|) (-1 |#2| |#1|) (-152 |#1|)) 14))) -(((-153 |#1| |#2|) (-10 -7 (-15 -1212 ((-152 |#2|) (-1 |#2| |#1|) (-152 |#1|)))) (-156) (-156)) (T -153)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-152 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-152 *6)) (-5 *1 (-153 *5 *6))))) -(-10 -7 (-15 -1212 ((-152 |#2|) (-1 |#2| |#1|) (-152 |#1|)))) -((-1248 (((-810 |#1|) |#3|) 22))) -(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -1248 ((-810 |#1|) |#3|))) (-1001) (-13 (-556 (-810 |#1|)) (-156)) (-150 |#2|)) (T -154)) -((-1248 (*1 *2 *3) (-12 (-4 *5 (-13 (-556 *2) (-156))) (-5 *2 (-810 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1001)) (-4 *3 (-150 *5))))) -(-10 -7 (-15 -1248 ((-810 |#1|) |#3|))) -((-3736 (((-107) $ $) NIL)) (-2557 (((-107) $) 9)) (-3310 (((-107) $ (-107)) 11)) (-3634 (($) 12)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3764 (($ $) 13)) (-3691 (((-786) $) 17)) (-3340 (((-107) $) 8)) (-2109 (((-107) $ (-107)) 10)) (-3751 (((-107) $ $) NIL))) -(((-155) (-13 (-1001) (-10 -8 (-15 -3634 ($)) (-15 -3340 ((-107) $)) (-15 -2557 ((-107) $)) (-15 -2109 ((-107) $ (-107))) (-15 -3310 ((-107) $ (-107))) (-15 -3764 ($ $))))) (T -155)) -((-3634 (*1 *1) (-5 *1 (-155))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2109 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3310 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3764 (*1 *1 *1) (-5 *1 (-155)))) -(-13 (-1001) (-10 -8 (-15 -3634 ($)) (-15 -3340 ((-107) $)) (-15 -2557 ((-107) $)) (-15 -2109 ((-107) $ (-107))) (-15 -3310 ((-107) $ (-107))) (-15 -3764 ($ $)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-156) (-1180)) (T -156)) -NIL -(-13 (-959) (-106 $ $) (-10 -7 (-6 (-4169 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 ((|#1| $) 74)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL)) (-1374 (($ $) 19)) (-3985 (($ |#1| (-1048 |#1|)) 47)) (-2174 (((-3 $ "failed") $) 116)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-1341 (((-1048 |#1|) $) 81)) (-1747 (((-1048 |#1|) $) 78)) (-4030 (((-1048 |#1|) $) 79)) (-1355 (((-107) $) NIL)) (-3678 (((-1048 |#1|) $) 87)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1697 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3718 (($ $ (-501)) 90)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2747 (((-1048 |#1|) $) 88)) (-4001 (((-1048 (-375 |#1|)) $) 13)) (-2672 (($ (-375 |#1|)) 17) (($ |#1| (-1048 |#1|) (-1048 |#1|)) 37)) (-1267 (($ $) 92)) (-3691 (((-786) $) 126) (($ (-501)) 50) (($ |#1|) 51) (($ (-375 |#1|)) 35) (($ (-375 (-501))) NIL) (($ $) NIL)) (-3965 (((-701)) 63)) (-2442 (((-107) $ $) NIL)) (-3140 (((-1048 (-375 |#1|)) $) 18)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 25 T CONST)) (-1925 (($) 28 T CONST)) (-3751 (((-107) $ $) 34)) (-3803 (($ $ $) 114)) (-3797 (($ $) 105) (($ $ $) 102)) (-3790 (($ $ $) 100)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-375 |#1|) $) 110) (($ $ (-375 |#1|)) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL))) -(((-157 |#1|) (-13 (-37 |#1|) (-37 (-375 |#1|)) (-331) (-10 -8 (-15 -2672 ($ (-375 |#1|))) (-15 -2672 ($ |#1| (-1048 |#1|) (-1048 |#1|))) (-15 -3985 ($ |#1| (-1048 |#1|))) (-15 -1747 ((-1048 |#1|) $)) (-15 -4030 ((-1048 |#1|) $)) (-15 -1341 ((-1048 |#1|) $)) (-15 -2197 (|#1| $)) (-15 -1374 ($ $)) (-15 -3140 ((-1048 (-375 |#1|)) $)) (-15 -4001 ((-1048 (-375 |#1|)) $)) (-15 -3678 ((-1048 |#1|) $)) (-15 -2747 ((-1048 |#1|) $)) (-15 -3718 ($ $ (-501))) (-15 -1267 ($ $)))) (-276)) (T -157)) -((-2672 (*1 *1 *2) (-12 (-5 *2 (-375 *3)) (-4 *3 (-276)) (-5 *1 (-157 *3)))) (-2672 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1048 *2)) (-4 *2 (-276)) (-5 *1 (-157 *2)))) (-3985 (*1 *1 *2 *3) (-12 (-5 *3 (-1048 *2)) (-4 *2 (-276)) (-5 *1 (-157 *2)))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-2197 (*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276)))) (-1374 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-1048 (-375 *3))) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-1048 (-375 *3))) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-1267 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276))))) -(-13 (-37 |#1|) (-37 (-375 |#1|)) (-331) (-10 -8 (-15 -2672 ($ (-375 |#1|))) (-15 -2672 ($ |#1| (-1048 |#1|) (-1048 |#1|))) (-15 -3985 ($ |#1| (-1048 |#1|))) (-15 -1747 ((-1048 |#1|) $)) (-15 -4030 ((-1048 |#1|) $)) (-15 -1341 ((-1048 |#1|) $)) (-15 -2197 (|#1| $)) (-15 -1374 ($ $)) (-15 -3140 ((-1048 (-375 |#1|)) $)) (-15 -4001 ((-1048 (-375 |#1|)) $)) (-15 -3678 ((-1048 |#1|) $)) (-15 -2747 ((-1048 |#1|) $)) (-15 -3718 ($ $ (-501))) (-15 -1267 ($ $)))) -((-1193 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 40)) (-2189 (((-863 |#1|) (-863 |#1|)) 19)) (-2512 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 36)) (-1712 (((-863 |#1|) (-863 |#1|)) 17)) (-1798 (((-863 |#1|) (-863 |#1|)) 25)) (-1571 (((-863 |#1|) (-863 |#1|)) 24)) (-2945 (((-863 |#1|) (-863 |#1|)) 23)) (-1754 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 37)) (-2633 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 35)) (-2435 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 34)) (-4068 (((-863 |#1|) (-863 |#1|)) 18)) (-3902 (((-1 (-863 |#1|) (-863 |#1|)) |#1| |#1|) 43)) (-1514 (((-863 |#1|) (-863 |#1|)) 8)) (-3414 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 39)) (-1226 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 38))) -(((-158 |#1|) (-10 -7 (-15 -1514 ((-863 |#1|) (-863 |#1|))) (-15 -1712 ((-863 |#1|) (-863 |#1|))) (-15 -4068 ((-863 |#1|) (-863 |#1|))) (-15 -2189 ((-863 |#1|) (-863 |#1|))) (-15 -2945 ((-863 |#1|) (-863 |#1|))) (-15 -1571 ((-863 |#1|) (-863 |#1|))) (-15 -1798 ((-863 |#1|) (-863 |#1|))) (-15 -2435 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -2633 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -2512 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1754 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1226 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -3414 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1193 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -3902 ((-1 (-863 |#1|) (-863 |#1|)) |#1| |#1|))) (-13 (-331) (-1090) (-916))) (T -158)) -((-3902 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-1193 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-3414 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-1226 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-1754 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-2512 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-2633 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-2435 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-1571 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-1712 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-1514 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3))))) -(-10 -7 (-15 -1514 ((-863 |#1|) (-863 |#1|))) (-15 -1712 ((-863 |#1|) (-863 |#1|))) (-15 -4068 ((-863 |#1|) (-863 |#1|))) (-15 -2189 ((-863 |#1|) (-863 |#1|))) (-15 -2945 ((-863 |#1|) (-863 |#1|))) (-15 -1571 ((-863 |#1|) (-863 |#1|))) (-15 -1798 ((-863 |#1|) (-863 |#1|))) (-15 -2435 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -2633 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -2512 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1754 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1226 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -3414 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1193 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -3902 ((-1 (-863 |#1|) (-863 |#1|)) |#1| |#1|))) -((-2942 ((|#2| |#3|) 27))) -(((-159 |#1| |#2| |#3|) (-10 -7 (-15 -2942 (|#2| |#3|))) (-156) (-1125 |#1|) (-655 |#1| |#2|)) (T -159)) -((-2942 (*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1125 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-655 *4 *2))))) -(-10 -7 (-15 -2942 (|#2| |#3|))) -((-3809 (((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)) 47 (|has| (-866 |#2|) (-806 |#1|))))) -(((-160 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-866 |#2|) (-806 |#1|)) (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))) |noBranch|)) (-1001) (-13 (-806 |#1|) (-156)) (-150 |#2|)) (T -160)) -((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *3 (-150 *6)) (-4 (-866 *6) (-806 *5)) (-4 *6 (-13 (-806 *5) (-156))) (-5 *1 (-160 *5 *6 *3))))) -(-10 -7 (IF (|has| (-866 |#2|) (-806 |#1|)) (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))) |noBranch|)) -((-1990 (((-578 |#1|) (-578 |#1|) |#1|) 36)) (-1457 (((-578 |#1|) |#1| (-578 |#1|)) 19)) (-3716 (((-578 |#1|) (-578 (-578 |#1|)) (-578 |#1|)) 31) ((|#1| (-578 |#1|) (-578 |#1|)) 29))) -(((-161 |#1|) (-10 -7 (-15 -1457 ((-578 |#1|) |#1| (-578 |#1|))) (-15 -3716 (|#1| (-578 |#1|) (-578 |#1|))) (-15 -3716 ((-578 |#1|) (-578 (-578 |#1|)) (-578 |#1|))) (-15 -1990 ((-578 |#1|) (-578 |#1|) |#1|))) (-276)) (T -161)) -((-1990 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-276)) (-5 *1 (-161 *3)))) (-3716 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-578 *4))) (-5 *2 (-578 *4)) (-4 *4 (-276)) (-5 *1 (-161 *4)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-161 *2)) (-4 *2 (-276)))) (-1457 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-276)) (-5 *1 (-161 *3))))) -(-10 -7 (-15 -1457 ((-578 |#1|) |#1| (-578 |#1|))) (-15 -3716 (|#1| (-578 |#1|) (-578 |#1|))) (-15 -3716 ((-578 |#1|) (-578 (-578 |#1|)) (-578 |#1|))) (-15 -1990 ((-578 |#1|) (-578 |#1|) |#1|))) -((-1314 (((-2 (|:| |start| |#2|) (|:| -1575 (-373 |#2|))) |#2|) 61)) (-3577 ((|#1| |#1|) 54)) (-3980 (((-152 |#1|) |#2|) 82)) (-2448 ((|#1| |#2|) 122) ((|#1| |#2| |#1|) 80)) (-3073 ((|#2| |#2|) 81)) (-4116 (((-373 |#2|) |#2| |#1|) 112) (((-373 |#2|) |#2| |#1| (-107)) 79)) (-2626 ((|#1| |#2|) 111)) (-3519 ((|#2| |#2|) 118)) (-3739 (((-373 |#2|) |#2|) 133) (((-373 |#2|) |#2| |#1|) 32) (((-373 |#2|) |#2| |#1| (-107)) 132)) (-4117 (((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2|) 131) (((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2| (-107)) 75)) (-1833 (((-578 (-152 |#1|)) |#2| |#1|) 40) (((-578 (-152 |#1|)) |#2|) 41))) -(((-162 |#1| |#2|) (-10 -7 (-15 -1833 ((-578 (-152 |#1|)) |#2|)) (-15 -1833 ((-578 (-152 |#1|)) |#2| |#1|)) (-15 -4117 ((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2| (-107))) (-15 -4117 ((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2|)) (-15 -3739 ((-373 |#2|) |#2| |#1| (-107))) (-15 -3739 ((-373 |#2|) |#2| |#1|)) (-15 -3739 ((-373 |#2|) |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -2626 (|#1| |#2|)) (-15 -4116 ((-373 |#2|) |#2| |#1| (-107))) (-15 -4116 ((-373 |#2|) |#2| |#1|)) (-15 -3073 (|#2| |#2|)) (-15 -2448 (|#1| |#2| |#1|)) (-15 -2448 (|#1| |#2|)) (-15 -3980 ((-152 |#1|) |#2|)) (-15 -3577 (|#1| |#1|)) (-15 -1314 ((-2 (|:| |start| |#2|) (|:| -1575 (-373 |#2|))) |#2|))) (-13 (-331) (-775)) (-1125 (-152 |#1|))) (T -162)) -((-1314 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-2 (|:| |start| *3) (|:| -1575 (-373 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-3577 (*1 *2 *2) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) (-3980 (*1 *2 *3) (-12 (-5 *2 (-152 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-331) (-775))) (-4 *3 (-1125 *2)))) (-2448 (*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) (-2448 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) (-3073 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-775))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1125 (-152 *3))))) (-4116 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-4116 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-2626 (*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-775))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1125 (-152 *3))))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-3739 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-3739 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-4117 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-2 (|:| -1575 (-578 *3)) (|:| -2390 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-4117 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-331) (-775))) (-5 *2 (-578 (-2 (|:| -1575 (-578 *3)) (|:| -2390 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1125 (-152 *5))))) (-1833 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-1833 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4)))))) -(-10 -7 (-15 -1833 ((-578 (-152 |#1|)) |#2|)) (-15 -1833 ((-578 (-152 |#1|)) |#2| |#1|)) (-15 -4117 ((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2| (-107))) (-15 -4117 ((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2|)) (-15 -3739 ((-373 |#2|) |#2| |#1| (-107))) (-15 -3739 ((-373 |#2|) |#2| |#1|)) (-15 -3739 ((-373 |#2|) |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -2626 (|#1| |#2|)) (-15 -4116 ((-373 |#2|) |#2| |#1| (-107))) (-15 -4116 ((-373 |#2|) |#2| |#1|)) (-15 -3073 (|#2| |#2|)) (-15 -2448 (|#1| |#2| |#1|)) (-15 -2448 (|#1| |#2|)) (-15 -3980 ((-152 |#1|) |#2|)) (-15 -3577 (|#1| |#1|)) (-15 -1314 ((-2 (|:| |start| |#2|) (|:| -1575 (-373 |#2|))) |#2|))) -((-3388 (((-3 |#2| "failed") |#2|) 14)) (-3454 (((-701) |#2|) 16)) (-3131 ((|#2| |#2| |#2|) 18))) -(((-163 |#1| |#2|) (-10 -7 (-15 -3388 ((-3 |#2| "failed") |#2|)) (-15 -3454 ((-701) |#2|)) (-15 -3131 (|#2| |#2| |#2|))) (-1104) (-608 |#1|)) (T -163)) -((-3131 (*1 *2 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-163 *3 *2)) (-4 *2 (-608 *3)))) (-3454 (*1 *2 *3) (-12 (-4 *4 (-1104)) (-5 *2 (-701)) (-5 *1 (-163 *4 *3)) (-4 *3 (-608 *4)))) (-3388 (*1 *2 *2) (|partial| -12 (-4 *3 (-1104)) (-5 *1 (-163 *3 *2)) (-4 *2 (-608 *3))))) -(-10 -7 (-15 -3388 ((-3 |#2| "failed") |#2|)) (-15 -3454 ((-701) |#2|)) (-15 -3131 (|#2| |#2| |#2|))) -((-3471 ((|#2| |#2|) 28)) (-4133 (((-107) |#2|) 19)) (-3749 (((-282 |#1|) |#2|) 12)) (-3755 (((-282 |#1|) |#2|) 14)) (-2209 ((|#2| |#2| (-1070)) 68) ((|#2| |#2|) 69)) (-3585 (((-152 (-282 |#1|)) |#2|) 9)) (-1433 ((|#2| |#2| (-1070)) 65) ((|#2| |#2|) 58))) -(((-164 |#1| |#2|) (-10 -7 (-15 -2209 (|#2| |#2|)) (-15 -2209 (|#2| |#2| (-1070))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1070))) (-15 -3749 ((-282 |#1|) |#2|)) (-15 -3755 ((-282 |#1|) |#2|)) (-15 -4133 ((-107) |#2|)) (-15 -3471 (|#2| |#2|)) (-15 -3585 ((-152 (-282 |#1|)) |#2|))) (-13 (-508) (-777) (-950 (-501))) (-13 (-27) (-1090) (-389 (-152 |#1|)))) (T -164)) -((-3585 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-152 (-282 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3)))))) (-4133 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-3749 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-1433 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-1433 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3)))))) (-2209 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3))))))) -(-10 -7 (-15 -2209 (|#2| |#2|)) (-15 -2209 (|#2| |#2| (-1070))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1070))) (-15 -3749 ((-282 |#1|) |#2|)) (-15 -3755 ((-282 |#1|) |#2|)) (-15 -4133 ((-107) |#2|)) (-15 -3471 (|#2| |#2|)) (-15 -3585 ((-152 (-282 |#1|)) |#2|))) -((-3296 (((-1148 (-621 (-866 |#1|))) (-1148 (-621 |#1|))) 22)) (-3691 (((-1148 (-621 (-375 (-866 |#1|)))) (-1148 (-621 |#1|))) 30))) -(((-165 |#1|) (-10 -7 (-15 -3296 ((-1148 (-621 (-866 |#1|))) (-1148 (-621 |#1|)))) (-15 -3691 ((-1148 (-621 (-375 (-866 |#1|)))) (-1148 (-621 |#1|))))) (-156)) (T -165)) -((-3691 (*1 *2 *3) (-12 (-5 *3 (-1148 (-621 *4))) (-4 *4 (-156)) (-5 *2 (-1148 (-621 (-375 (-866 *4))))) (-5 *1 (-165 *4)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-1148 (-621 *4))) (-4 *4 (-156)) (-5 *2 (-1148 (-621 (-866 *4)))) (-5 *1 (-165 *4))))) -(-10 -7 (-15 -3296 ((-1148 (-621 (-866 |#1|))) (-1148 (-621 |#1|)))) (-15 -3691 ((-1148 (-621 (-375 (-866 |#1|)))) (-1148 (-621 |#1|))))) -((-3571 (((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501)))) 66)) (-2717 (((-1072 (-375 (-501))) (-578 (-501)) (-578 (-501))) 74)) (-3567 (((-1072 (-375 (-501))) (-501)) 40)) (-3146 (((-1072 (-375 (-501))) (-501)) 52)) (-3195 (((-375 (-501)) (-1072 (-375 (-501)))) 62)) (-3529 (((-1072 (-375 (-501))) (-501)) 32)) (-3287 (((-1072 (-375 (-501))) (-501)) 48)) (-3313 (((-1072 (-375 (-501))) (-501)) 46)) (-3757 (((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501)))) 60)) (-1267 (((-1072 (-375 (-501))) (-501)) 25)) (-3368 (((-375 (-501)) (-1072 (-375 (-501))) (-1072 (-375 (-501)))) 64)) (-3687 (((-1072 (-375 (-501))) (-501)) 30)) (-1350 (((-1072 (-375 (-501))) (-578 (-501))) 71))) -(((-166) (-10 -7 (-15 -1267 ((-1072 (-375 (-501))) (-501))) (-15 -3567 ((-1072 (-375 (-501))) (-501))) (-15 -3529 ((-1072 (-375 (-501))) (-501))) (-15 -3687 ((-1072 (-375 (-501))) (-501))) (-15 -3313 ((-1072 (-375 (-501))) (-501))) (-15 -3287 ((-1072 (-375 (-501))) (-501))) (-15 -3146 ((-1072 (-375 (-501))) (-501))) (-15 -3368 ((-375 (-501)) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -3757 ((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -3195 ((-375 (-501)) (-1072 (-375 (-501))))) (-15 -3571 ((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -1350 ((-1072 (-375 (-501))) (-578 (-501)))) (-15 -2717 ((-1072 (-375 (-501))) (-578 (-501)) (-578 (-501)))))) (T -166)) -((-2717 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))) (-3571 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-1072 (-375 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-166)))) (-3757 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))) (-3368 (*1 *2 *3 *3) (-12 (-5 *3 (-1072 (-375 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-166)))) (-3146 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-3287 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-3313 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-3687 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-3529 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-3567 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-1267 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501))))) -(-10 -7 (-15 -1267 ((-1072 (-375 (-501))) (-501))) (-15 -3567 ((-1072 (-375 (-501))) (-501))) (-15 -3529 ((-1072 (-375 (-501))) (-501))) (-15 -3687 ((-1072 (-375 (-501))) (-501))) (-15 -3313 ((-1072 (-375 (-501))) (-501))) (-15 -3287 ((-1072 (-375 (-501))) (-501))) (-15 -3146 ((-1072 (-375 (-501))) (-501))) (-15 -3368 ((-375 (-501)) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -3757 ((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -3195 ((-375 (-501)) (-1072 (-375 (-501))))) (-15 -3571 ((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -1350 ((-1072 (-375 (-501))) (-578 (-501)))) (-15 -2717 ((-1072 (-375 (-501))) (-578 (-501)) (-578 (-501))))) -((-3004 (((-373 (-1064 (-501))) (-501)) 28)) (-2061 (((-578 (-1064 (-501))) (-501)) 23)) (-3573 (((-1064 (-501)) (-501)) 21))) -(((-167) (-10 -7 (-15 -2061 ((-578 (-1064 (-501))) (-501))) (-15 -3573 ((-1064 (-501)) (-501))) (-15 -3004 ((-373 (-1064 (-501))) (-501))))) (T -167)) -((-3004 (*1 *2 *3) (-12 (-5 *2 (-373 (-1064 (-501)))) (-5 *1 (-167)) (-5 *3 (-501)))) (-3573 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-167)) (-5 *3 (-501)))) (-2061 (*1 *2 *3) (-12 (-5 *2 (-578 (-1064 (-501)))) (-5 *1 (-167)) (-5 *3 (-501))))) -(-10 -7 (-15 -2061 ((-578 (-1064 (-501))) (-501))) (-15 -3573 ((-1064 (-501)) (-501))) (-15 -3004 ((-373 (-1064 (-501))) (-501)))) -((-2206 (((-1048 (-199)) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 101)) (-2077 (((-578 (-1053)) (-1048 (-199))) NIL)) (-1653 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77)) (-2094 (((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199)))) NIL)) (-3148 (((-578 (-1053)) (-578 (-199))) NIL)) (-3516 (((-199) (-991 (-769 (-199)))) 22)) (-2254 (((-199) (-991 (-769 (-199)))) 23)) (-1660 (((-346) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 93)) (-2639 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 40)) (-3630 (((-1053) (-199)) NIL)) (-3883 (((-1053) (-578 (-1053))) 19)) (-1557 (((-948) (-1070) (-1070) (-948)) 12))) -(((-168) (-10 -7 (-15 -1653 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2639 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -1660 ((-346) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2094 ((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199)))) (-15 -3883 ((-1053) (-578 (-1053)))) (-15 -1557 ((-948) (-1070) (-1070) (-948))))) (T -168)) -((-1557 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-1070)) (-5 *1 (-168)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-168)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-168)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-168)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-168)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-168)))) (-2094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-168)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-168)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-3516 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168))))) -(-10 -7 (-15 -1653 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2639 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -1660 ((-346) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2094 ((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199)))) (-15 -3883 ((-1053) (-578 (-1053)))) (-15 -1557 ((-948) (-1070) (-1070) (-948)))) -((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 53) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 28) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-169) (-717)) (T -169)) -NIL -(-717) -((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 58) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-170) (-717)) (T -170)) -NIL -(-717) -((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 67) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-171) (-717)) (T -171)) -NIL -(-717) -((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 54) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 30) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-172) (-717)) (T -172)) -NIL -(-717) -((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 65) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 35) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-173) (-717)) (T -173)) -NIL -(-717) -((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 71) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-174) (-717)) (T -174)) -NIL -(-717) -((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 78) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 43) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-175) (-717)) (T -175)) -NIL -(-717) -((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 68) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-176) (-717)) (T -176)) -NIL -(-717) -((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 62)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-177) (-717)) (T -177)) -NIL -(-717) -((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 60)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 32)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-178) (-717)) (T -178)) -NIL -(-717) -((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 89) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-179) (-717)) (T -179)) -NIL -(-717) -((-2681 (((-3 (-2 (|:| -3996 (-108)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 80)) (-1622 (((-501) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 39)) (-3270 (((-3 (-578 (-199)) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 69))) -(((-180) (-10 -7 (-15 -2681 ((-3 (-2 (|:| -3996 (-108)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3270 ((-3 (-578 (-199)) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1622 ((-501) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -180)) -((-1622 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-501)) (-5 *1 (-180)))) (-3270 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-180)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3996 (-108)) (|:| |w| (-199)))) (-5 *1 (-180))))) -(-10 -7 (-15 -2681 ((-3 (-2 (|:| -3996 (-108)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3270 ((-3 (-578 (-199)) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1622 ((-501) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) -((-2513 (((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-2281 (((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 127)) (-1411 (((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-621 (-282 (-199)))) 87)) (-1786 (((-346) (-621 (-282 (-199)))) 110)) (-2424 (((-621 (-282 (-199))) (-1148 (-282 (-199))) (-578 (-1070))) 107)) (-3760 (((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-1241 (((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3195 (((-621 (-282 (-199))) (-621 (-282 (-199))) (-578 (-1070)) (-1148 (-282 (-199)))) 99)) (-3580 (((-346) (-346) (-578 (-346))) 104) (((-346) (-346) (-346)) 102)) (-1612 (((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33))) -(((-181) (-10 -7 (-15 -3580 ((-346) (-346) (-346))) (-15 -3580 ((-346) (-346) (-578 (-346)))) (-15 -1786 ((-346) (-621 (-282 (-199))))) (-15 -2424 ((-621 (-282 (-199))) (-1148 (-282 (-199))) (-578 (-1070)))) (-15 -3195 ((-621 (-282 (-199))) (-621 (-282 (-199))) (-578 (-1070)) (-1148 (-282 (-199))))) (-15 -1411 ((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-621 (-282 (-199))))) (-15 -2281 ((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2513 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1241 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1612 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3760 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -181)) -((-3760 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))) (-1612 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))) (-1241 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))) (-2513 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346)))) (-5 *1 (-181)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-621 (-282 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346)))) (-5 *1 (-181)))) (-3195 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-621 (-282 (-199)))) (-5 *3 (-578 (-1070))) (-5 *4 (-1148 (-282 (-199)))) (-5 *1 (-181)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *4 (-578 (-1070))) (-5 *2 (-621 (-282 (-199)))) (-5 *1 (-181)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-621 (-282 (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))) (-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-346))) (-5 *2 (-346)) (-5 *1 (-181)))) (-3580 (*1 *2 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-181))))) -(-10 -7 (-15 -3580 ((-346) (-346) (-346))) (-15 -3580 ((-346) (-346) (-578 (-346)))) (-15 -1786 ((-346) (-621 (-282 (-199))))) (-15 -2424 ((-621 (-282 (-199))) (-1148 (-282 (-199))) (-578 (-1070)))) (-15 -3195 ((-621 (-282 (-199))) (-621 (-282 (-199))) (-578 (-1070)) (-1148 (-282 (-199))))) (-15 -1411 ((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-621 (-282 (-199))))) (-15 -2281 ((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2513 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1241 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1612 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3760 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) -((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-2894 (((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-3751 (((-107) $ $) NIL))) -(((-182) (-730)) (T -182)) -NIL -(-730) -((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-2894 (((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-3751 (((-107) $ $) NIL))) -(((-183) (-730)) (T -183)) -NIL -(-730) -((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-2894 (((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 64)) (-3751 (((-107) $ $) NIL))) -(((-184) (-730)) (T -184)) -NIL -(-730) -((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-2894 (((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 73)) (-3751 (((-107) $ $) NIL))) -(((-185) (-730)) (T -185)) -NIL -(-730) -((-3514 (((-578 (-1070)) (-1070) (-701)) 22)) (-3334 (((-282 (-199)) (-282 (-199))) 29)) (-1835 (((-107) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 67)) (-2459 (((-107) (-199) (-199) (-578 (-282 (-199)))) 43))) -(((-186) (-10 -7 (-15 -3514 ((-578 (-1070)) (-1070) (-701))) (-15 -3334 ((-282 (-199)) (-282 (-199)))) (-15 -2459 ((-107) (-199) (-199) (-578 (-282 (-199))))) (-15 -1835 ((-107) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))))))) (T -186)) -((-1835 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))) (-2459 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-578 (-282 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-282 (-199))) (-5 *1 (-186)))) (-3514 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-578 (-1070))) (-5 *1 (-186)) (-5 *3 (-1070))))) -(-10 -7 (-15 -3514 ((-578 (-1070)) (-1070) (-701))) (-15 -3334 ((-282 (-199)) (-282 (-199)))) (-15 -2459 ((-107) (-199) (-199) (-578 (-282 (-199))))) (-15 -1835 ((-107) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))))) -((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 17)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1900 (((-948) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 55)) (-3751 (((-107) $ $) NIL))) -(((-187) (-815)) (T -187)) -NIL -(-815) -((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 12)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1900 (((-948) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) NIL)) (-3751 (((-107) $ $) NIL))) -(((-188) (-815)) (T -188)) -NIL -(-815) -((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3512 (((-1154) $) 36) (((-1154) $ (-839) (-839)) 38)) (-2007 (($ $ (-904)) 19) (((-218 (-1053)) $ (-1070)) 15)) (-2125 (((-1154) $) 34)) (-3691 (((-786) $) 31) (($ (-578 |#1|)) 8)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $ $) 27)) (-3790 (($ $ $) 22))) -(((-189 |#1|) (-13 (-1001) (-10 -8 (-15 -2007 ($ $ (-904))) (-15 -2007 ((-218 (-1053)) $ (-1070))) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $)) (-15 -3691 ($ (-578 |#1|))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $)) (-15 -3512 ((-1154) $ (-839) (-839))))) (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))) (T -189)) -((-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-904)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-218 (-1053))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ *3)) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) (-3790 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) (-3797 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))) (-5 *1 (-189 *3)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $))))))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $))))))) (-3512 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $)))))))) -(-13 (-1001) (-10 -8 (-15 -2007 ($ $ (-904))) (-15 -2007 ((-218 (-1053)) $ (-1070))) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $)) (-15 -3691 ($ (-578 |#1|))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $)) (-15 -3512 ((-1154) $ (-839) (-839))))) -((-2771 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2771 (|#2| |#4| (-1 |#2| |#2|)))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -190)) -((-2771 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-331)) (-4 *6 (-1125 (-375 *2))) (-4 *2 (-1125 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-310 *5 *2 *6))))) -(-10 -7 (-15 -2771 (|#2| |#4| (-1 |#2| |#2|)))) -((-3534 ((|#2| |#2| (-701) |#2|) 41)) (-2438 ((|#2| |#2| (-701) |#2|) 37)) (-1371 (((-578 |#2|) (-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|)))) 55)) (-2188 (((-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|))) |#2|) 51)) (-3375 (((-107) |#2|) 48)) (-2452 (((-373 |#2|) |#2|) 74)) (-3739 (((-373 |#2|) |#2|) 73)) (-2434 ((|#2| |#2| (-701) |#2|) 35)) (-2250 (((-2 (|:| |cont| |#1|) (|:| -1575 (-578 (-2 (|:| |irr| |#2|) (|:| -3257 (-501)))))) |#2| (-107)) 66))) -(((-191 |#1| |#2|) (-10 -7 (-15 -3739 ((-373 |#2|) |#2|)) (-15 -2452 ((-373 |#2|) |#2|)) (-15 -2250 ((-2 (|:| |cont| |#1|) (|:| -1575 (-578 (-2 (|:| |irr| |#2|) (|:| -3257 (-501)))))) |#2| (-107))) (-15 -2188 ((-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|))) |#2|)) (-15 -1371 ((-578 |#2|) (-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|))))) (-15 -2434 (|#2| |#2| (-701) |#2|)) (-15 -2438 (|#2| |#2| (-701) |#2|)) (-15 -3534 (|#2| |#2| (-701) |#2|)) (-15 -3375 ((-107) |#2|))) (-318) (-1125 |#1|)) (T -191)) -((-3375 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))) (-3534 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4)))) (-2438 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4)))) (-2434 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |deg| (-701)) (|:| -3215 *5)))) (-4 *5 (-1125 *4)) (-4 *4 (-318)) (-5 *2 (-578 *5)) (-5 *1 (-191 *4 *5)))) (-2188 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-578 (-2 (|:| |deg| (-701)) (|:| -3215 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))) (-2250 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1125 *5)))) (-2452 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4))))) -(-10 -7 (-15 -3739 ((-373 |#2|) |#2|)) (-15 -2452 ((-373 |#2|) |#2|)) (-15 -2250 ((-2 (|:| |cont| |#1|) (|:| -1575 (-578 (-2 (|:| |irr| |#2|) (|:| -3257 (-501)))))) |#2| (-107))) (-15 -2188 ((-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|))) |#2|)) (-15 -1371 ((-578 |#2|) (-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|))))) (-15 -2434 (|#2| |#2| (-701) |#2|)) (-15 -2438 (|#2| |#2| (-701) |#2|)) (-15 -3534 (|#2| |#2| (-701) |#2|)) (-15 -3375 ((-107) |#2|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-501) $) NIL (|has| (-501) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-501) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-501) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-501) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-501) (-950 (-501))))) (-3490 (((-501) $) NIL) (((-1070) $) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-501) (-950 (-501)))) (((-501) $) NIL (|has| (-501) (-950 (-501))))) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-501) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-501) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-501) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-501) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-501) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-501) (-1046)))) (-4067 (((-107) $) NIL (|has| (-501) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-501) (-777)))) (-1212 (($ (-1 (-501) (-501)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-501) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-501) (-276))) (((-375 (-501)) $) NIL)) (-3383 (((-501) $) NIL (|has| (-501) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-501)) (-578 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-501) (-501)) NIL (|has| (-501) (-278 (-501)))) (($ $ (-262 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-262 (-501)))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-1070)) (-578 (-501))) NIL (|has| (-501) (-476 (-1070) (-501)))) (($ $ (-1070) (-501)) NIL (|has| (-501) (-476 (-1070) (-501))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-501)) NIL (|has| (-501) (-256 (-501) (-501))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-501) $) NIL)) (-1237 (($ (-375 (-501))) 8)) (-1248 (((-810 (-501)) $) NIL (|has| (-501) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-501) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-501) (-556 (-490)))) (((-346) $) NIL (|has| (-501) (-933))) (((-199) $) NIL (|has| (-501) (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-501) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) 7) (($ (-501)) NIL) (($ (-1070)) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL) (((-918 10) $) 9)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-501) (-830))) (|has| (-501) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-501) $) NIL (|has| (-501) (-500)))) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| (-501) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3803 (($ $ $) NIL) (($ (-501) (-501)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-501) $) NIL) (($ $ (-501)) NIL))) -(((-192) (-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 10) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -1237 ($ (-375 (-501))))))) (T -192)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-918 10)) (-5 *1 (-192)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192)))) (-1237 (*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192))))) -(-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 10) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -1237 ($ (-375 (-501)))))) -((-3188 (((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|)) (-1053)) 27) (((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|))) 23)) (-3213 (((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070) (-769 |#2|) (-769 |#2|) (-107)) 16))) -(((-193 |#1| |#2|) (-10 -7 (-15 -3188 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|)))) (-15 -3188 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|)) (-1053))) (-15 -3213 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070) (-769 |#2|) (-769 |#2|) (-107)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-879) (-29 |#1|))) (T -193)) -((-3213 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1070)) (-5 *6 (-107)) (-4 *7 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-1090) (-879) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-769 *3)))) (-3188 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-769 *3))) (-5 *5 (-1053)) (-4 *3 (-13 (-1090) (-879) (-29 *6))) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *4 (-993 (-769 *3))) (-4 *3 (-13 (-1090) (-879) (-29 *5))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3))))) -(-10 -7 (-15 -3188 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|)))) (-15 -3188 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|)) (-1053))) (-15 -3213 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070) (-769 |#2|) (-769 |#2|) (-107)))) -((-3188 (((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|)))) (-1053)) 44) (((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|))))) 41) (((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|))) (-1053)) 45) (((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|)))) 17))) -(((-194 |#1|) (-10 -7 (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|))))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|))) (-1053))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|)))))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|)))) (-1053)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (T -194)) -((-3188 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-769 (-375 (-866 *6))))) (-5 *5 (-1053)) (-5 *3 (-375 (-866 *6))) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *6))) (|:| |f2| (-578 (-769 (-282 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *4 (-993 (-769 (-375 (-866 *5))))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *5))) (|:| |f2| (-578 (-769 (-282 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) (-3188 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-375 (-866 *6))) (-5 *4 (-993 (-769 (-282 *6)))) (-5 *5 (-1053)) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *6))) (|:| |f2| (-578 (-769 (-282 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-993 (-769 (-282 *5)))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *5))) (|:| |f2| (-578 (-769 (-282 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5))))) -(-10 -7 (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|))))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|))) (-1053))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|)))))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|)))) (-1053)))) -((-3547 (((-2 (|:| -2663 (-1064 |#1|)) (|:| |deg| (-839))) (-1064 |#1|)) 20)) (-1967 (((-578 (-282 |#2|)) (-282 |#2|) (-839)) 42))) -(((-195 |#1| |#2|) (-10 -7 (-15 -3547 ((-2 (|:| -2663 (-1064 |#1|)) (|:| |deg| (-839))) (-1064 |#1|))) (-15 -1967 ((-578 (-282 |#2|)) (-282 |#2|) (-839)))) (-959) (-13 (-508) (-777))) (T -195)) -((-1967 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *6 (-13 (-508) (-777))) (-5 *2 (-578 (-282 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-282 *6)) (-4 *5 (-959)))) (-3547 (*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-2 (|:| -2663 (-1064 *4)) (|:| |deg| (-839)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1064 *4)) (-4 *5 (-13 (-508) (-777)))))) -(-10 -7 (-15 -3547 ((-2 (|:| -2663 (-1064 |#1|)) (|:| |deg| (-839))) (-1064 |#1|))) (-15 -1967 ((-578 (-282 |#2|)) (-282 |#2|) (-839)))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1623 ((|#1| $) NIL)) (-2425 ((|#1| $) 25)) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-2253 (($ $) NIL)) (-1375 (($ $) 31)) (-2988 ((|#1| |#1| $) NIL)) (-1260 ((|#1| $) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-4139 (((-701) $) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) NIL)) (-2267 ((|#1| |#1| $) 28)) (-3458 ((|#1| |#1| $) 30)) (-4114 (($ |#1| $) NIL)) (-2696 (((-701) $) 27)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3085 ((|#1| $) NIL)) (-2072 ((|#1| $) 26)) (-2464 ((|#1| $) 24)) (-1251 ((|#1| $) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2047 ((|#1| |#1| $) NIL)) (-1407 (((-107) $) 9)) (-3122 (($) NIL)) (-1862 ((|#1| $) NIL)) (-1906 (($) NIL) (($ (-578 |#1|)) 16)) (-3661 (((-701) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1807 ((|#1| $) 13)) (-2866 (($ (-578 |#1|)) NIL)) (-2366 ((|#1| $) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-196 |#1|) (-13 (-225 |#1|) (-10 -8 (-15 -1906 ($ (-578 |#1|))))) (-1001)) (T -196)) -((-1906 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-196 *3))))) -(-13 (-225 |#1|) (-10 -8 (-15 -1906 ($ (-578 |#1|))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3428 (($ (-282 |#1|)) 23)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3998 (((-107) $) NIL)) (-3765 (((-3 (-282 |#1|) "failed") $) NIL)) (-3490 (((-282 |#1|) $) NIL)) (-3858 (($ $) 31)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-1212 (($ (-1 (-282 |#1|) (-282 |#1|)) $) NIL)) (-3850 (((-282 |#1|) $) NIL)) (-3320 (($ $) 30)) (-3460 (((-1053) $) NIL)) (-1464 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($ (-701)) NIL)) (-2249 (($ $) 32)) (-1201 (((-501) $) NIL)) (-3691 (((-786) $) 57) (($ (-501)) NIL) (($ (-282 |#1|)) NIL)) (-2495 (((-282 |#1|) $ $) NIL)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 25 T CONST)) (-1925 (($) 50 T CONST)) (-3751 (((-107) $ $) 28)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 19)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 24) (($ (-282 |#1|) $) 18))) -(((-197 |#1| |#2|) (-13 (-560 (-282 |#1|)) (-950 (-282 |#1|)) (-10 -8 (-15 -3850 ((-282 |#1|) $)) (-15 -3320 ($ $)) (-15 -3858 ($ $)) (-15 -2495 ((-282 |#1|) $ $)) (-15 -3987 ($ (-701))) (-15 -1464 ((-107) $)) (-15 -3998 ((-107) $)) (-15 -1201 ((-501) $)) (-15 -1212 ($ (-1 (-282 |#1|) (-282 |#1|)) $)) (-15 -3428 ($ (-282 |#1|))) (-15 -2249 ($ $)))) (-13 (-959) (-777)) (-578 (-1070))) (T -197)) -((-3850 (*1 *2 *1) (-12 (-5 *2 (-282 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-3320 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070))))) (-3858 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070))))) (-2495 (*1 *2 *1 *1) (-12 (-5 *2 (-282 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-1201 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-282 *3) (-282 *3))) (-4 *3 (-13 (-959) (-777))) (-5 *1 (-197 *3 *4)) (-14 *4 (-578 (-1070))))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-282 *3)) (-4 *3 (-13 (-959) (-777))) (-5 *1 (-197 *3 *4)) (-14 *4 (-578 (-1070))))) (-2249 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070)))))) -(-13 (-560 (-282 |#1|)) (-950 (-282 |#1|)) (-10 -8 (-15 -3850 ((-282 |#1|) $)) (-15 -3320 ($ $)) (-15 -3858 ($ $)) (-15 -2495 ((-282 |#1|) $ $)) (-15 -3987 ($ (-701))) (-15 -1464 ((-107) $)) (-15 -3998 ((-107) $)) (-15 -1201 ((-501) $)) (-15 -1212 ($ (-1 (-282 |#1|) (-282 |#1|)) $)) (-15 -3428 ($ (-282 |#1|))) (-15 -2249 ($ $)))) -((-3011 (((-107) (-1053)) 22)) (-2436 (((-3 (-769 |#2|) "failed") (-553 |#2|) |#2| (-769 |#2|) (-769 |#2|) (-107)) 32)) (-3735 (((-3 (-107) "failed") (-1064 |#2|) (-769 |#2|) (-769 |#2|) (-107)) 73) (((-3 (-107) "failed") (-866 |#1|) (-1070) (-769 |#2|) (-769 |#2|) (-107)) 74))) -(((-198 |#1| |#2|) (-10 -7 (-15 -3011 ((-107) (-1053))) (-15 -2436 ((-3 (-769 |#2|) "failed") (-553 |#2|) |#2| (-769 |#2|) (-769 |#2|) (-107))) (-15 -3735 ((-3 (-107) "failed") (-866 |#1|) (-1070) (-769 |#2|) (-769 |#2|) (-107))) (-15 -3735 ((-3 (-107) "failed") (-1064 |#2|) (-769 |#2|) (-769 |#2|) (-107)))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-29 |#1|))) (T -198)) -((-3735 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1064 *6)) (-5 *4 (-769 *6)) (-4 *6 (-13 (-1090) (-29 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-198 *5 *6)))) (-3735 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-866 *6)) (-5 *4 (-1070)) (-5 *5 (-769 *7)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *7 (-13 (-1090) (-29 *6))) (-5 *1 (-198 *6 *7)))) (-2436 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-769 *4)) (-5 *3 (-553 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1090) (-29 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-198 *6 *4)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1090) (-29 *4)))))) -(-10 -7 (-15 -3011 ((-107) (-1053))) (-15 -2436 ((-3 (-769 |#2|) "failed") (-553 |#2|) |#2| (-769 |#2|) (-769 |#2|) (-107))) (-15 -3735 ((-3 (-107) "failed") (-866 |#1|) (-1070) (-769 |#2|) (-769 |#2|) (-107))) (-15 -3735 ((-3 (-107) "failed") (-1064 |#2|) (-769 |#2|) (-769 |#2|) (-107)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 87)) (-2197 (((-501) $) 97)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2805 (($ $) NIL)) (-3978 (($ $) 75)) (-3937 (($ $) 63)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) 54)) (-2781 (((-107) $ $) NIL)) (-3970 (($ $) 73)) (-3929 (($ $) 61)) (-1417 (((-501) $) 114)) (-3984 (($ $) 78)) (-3945 (($ $) 65)) (-2540 (($) NIL T CONST)) (-1453 (($ $) NIL)) (-3765 (((-3 (-501) "failed") $) 113) (((-3 (-375 (-501)) "failed") $) 110)) (-3490 (((-501) $) 111) (((-375 (-501)) $) 108)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) 90)) (-2693 (((-375 (-501)) $ (-701)) 106) (((-375 (-501)) $ (-701) (-701)) 105)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3943 (((-839)) 27) (((-839) (-839)) NIL (|has| $ (-6 -4158)))) (-2164 (((-107) $) NIL)) (-2003 (($) 37)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL)) (-3169 (((-501) $) 33)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL)) (-2626 (($ $) NIL)) (-4067 (((-107) $) 86)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) 51) (($) 32 (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-1323 (($ $ $) 50) (($) 31 (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-1828 (((-501) $) 25)) (-2287 (($ $) 28)) (-3266 (($ $) 55)) (-1635 (($ $) 60)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3039 (((-839) (-501)) NIL (|has| $ (-6 -4158)))) (-3708 (((-1018) $) NIL) (((-501) $) 88)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL)) (-3383 (($ $) NIL)) (-2017 (($ (-501) (-501)) NIL) (($ (-501) (-501) (-839)) 98)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3027 (((-501) $) 26)) (-3793 (($) 36)) (-1989 (($ $) 59)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3960 (((-839)) NIL) (((-839) (-839)) NIL (|has| $ (-6 -4158)))) (-2596 (($ $ (-701)) NIL) (($ $) 91)) (-1537 (((-839) (-501)) NIL (|has| $ (-6 -4158)))) (-3991 (($ $) 76)) (-3949 (($ $) 66)) (-3981 (($ $) 77)) (-3940 (($ $) 64)) (-3975 (($ $) 74)) (-3933 (($ $) 62)) (-1248 (((-346) $) 102) (((-199) $) 99) (((-810 (-346)) $) NIL) (((-490) $) 43)) (-3691 (((-786) $) 40) (($ (-501)) 58) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-501)) 58) (($ (-375 (-501))) NIL)) (-3965 (((-701)) NIL)) (-2803 (($ $) NIL)) (-2751 (((-839)) 30) (((-839) (-839)) NIL (|has| $ (-6 -4158)))) (-1965 (((-839)) 23)) (-4003 (($ $) 81)) (-3958 (($ $) 69) (($ $ $) 107)) (-2442 (((-107) $ $) NIL)) (-3995 (($ $) 79)) (-3952 (($ $) 67)) (-4013 (($ $) 84)) (-3964 (($ $) 72)) (-3550 (($ $) 82)) (-3967 (($ $) 70)) (-4008 (($ $) 83)) (-3961 (($ $) 71)) (-3999 (($ $) 80)) (-3955 (($ $) 68)) (-1720 (($ $) 115)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 34 T CONST)) (-1925 (($) 35 T CONST)) (-3671 (((-1053) $) 17) (((-1053) $ (-107)) 19) (((-1154) (-753) $) 20) (((-1154) (-753) $ (-107)) 21)) (-3705 (($ $) 94)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3360 (($ $ $) 96)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 52)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 44)) (-3803 (($ $ $) 85) (($ $ (-501)) 53)) (-3797 (($ $) 45) (($ $ $) 47)) (-3790 (($ $ $) 46)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 56) (($ $ (-375 (-501))) 126) (($ $ $) 57)) (* (($ (-839) $) 29) (($ (-701) $) NIL) (($ (-501) $) 49) (($ $ $) 48) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL))) -(((-199) (-13 (-372) (-206) (-751) (-1090) (-556 (-490)) (-10 -8 (-15 -3803 ($ $ (-501))) (-15 ** ($ $ $)) (-15 -3793 ($)) (-15 -3708 ((-501) $)) (-15 -2287 ($ $)) (-15 -3266 ($ $)) (-15 -3958 ($ $ $)) (-15 -3705 ($ $)) (-15 -3360 ($ $ $)) (-15 -2693 ((-375 (-501)) $ (-701))) (-15 -2693 ((-375 (-501)) $ (-701) (-701)))))) (T -199)) -((** (*1 *1 *1 *1) (-5 *1 (-199))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-199)))) (-3793 (*1 *1) (-5 *1 (-199))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-199)))) (-2287 (*1 *1 *1) (-5 *1 (-199))) (-3266 (*1 *1 *1) (-5 *1 (-199))) (-3958 (*1 *1 *1 *1) (-5 *1 (-199))) (-3705 (*1 *1 *1) (-5 *1 (-199))) (-3360 (*1 *1 *1 *1) (-5 *1 (-199))) (-2693 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-199)))) (-2693 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-199))))) -(-13 (-372) (-206) (-751) (-1090) (-556 (-490)) (-10 -8 (-15 -3803 ($ $ (-501))) (-15 ** ($ $ $)) (-15 -3793 ($)) (-15 -3708 ((-501) $)) (-15 -2287 ($ $)) (-15 -3266 ($ $)) (-15 -3958 ($ $ $)) (-15 -3705 ($ $)) (-15 -3360 ($ $ $)) (-15 -2693 ((-375 (-501)) $ (-701))) (-15 -2693 ((-375 (-501)) $ (-701) (-701))))) -((-2726 (((-152 (-199)) (-701) (-152 (-199))) 11) (((-199) (-701) (-199)) 12)) (-1443 (((-152 (-199)) (-152 (-199))) 13) (((-199) (-199)) 14)) (-2722 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 19) (((-199) (-199) (-199)) 22)) (-3041 (((-152 (-199)) (-152 (-199))) 25) (((-199) (-199)) 24)) (-1223 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 43) (((-199) (-199) (-199)) 35)) (-3076 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 48) (((-199) (-199) (-199)) 45)) (-1730 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 15) (((-199) (-199) (-199)) 16)) (-2108 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 17) (((-199) (-199) (-199)) 18)) (-2134 (((-152 (-199)) (-152 (-199))) 60) (((-199) (-199)) 59)) (-2338 (((-199) (-199)) 54) (((-152 (-199)) (-152 (-199))) 58)) (-3705 (((-152 (-199)) (-152 (-199))) 7) (((-199) (-199)) 9)) (-3360 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 30) (((-199) (-199) (-199)) 26))) -(((-200) (-10 -7 (-15 -3705 ((-199) (-199))) (-15 -3705 ((-152 (-199)) (-152 (-199)))) (-15 -3360 ((-199) (-199) (-199))) (-15 -3360 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -1443 ((-199) (-199))) (-15 -1443 ((-152 (-199)) (-152 (-199)))) (-15 -3041 ((-199) (-199))) (-15 -3041 ((-152 (-199)) (-152 (-199)))) (-15 -2726 ((-199) (-701) (-199))) (-15 -2726 ((-152 (-199)) (-701) (-152 (-199)))) (-15 -1730 ((-199) (-199) (-199))) (-15 -1730 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -1223 ((-199) (-199) (-199))) (-15 -1223 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -2108 ((-199) (-199) (-199))) (-15 -2108 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -3076 ((-199) (-199) (-199))) (-15 -3076 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -2338 ((-152 (-199)) (-152 (-199)))) (-15 -2338 ((-199) (-199))) (-15 -2134 ((-199) (-199))) (-15 -2134 ((-152 (-199)) (-152 (-199)))) (-15 -2722 ((-199) (-199) (-199))) (-15 -2722 ((-152 (-199)) (-152 (-199)) (-152 (-199)))))) (T -200)) -((-2722 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-2722 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2134 (*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-2134 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2338 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2338 (*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-3076 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-3076 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2108 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-2108 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1223 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-1223 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1730 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-1730 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2726 (*1 *2 *3 *2) (-12 (-5 *2 (-152 (-199))) (-5 *3 (-701)) (-5 *1 (-200)))) (-2726 (*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-701)) (-5 *1 (-200)))) (-3041 (*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-3041 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1443 (*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-1443 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3360 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-3360 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))) -(-10 -7 (-15 -3705 ((-199) (-199))) (-15 -3705 ((-152 (-199)) (-152 (-199)))) (-15 -3360 ((-199) (-199) (-199))) (-15 -3360 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -1443 ((-199) (-199))) (-15 -1443 ((-152 (-199)) (-152 (-199)))) (-15 -3041 ((-199) (-199))) (-15 -3041 ((-152 (-199)) (-152 (-199)))) (-15 -2726 ((-199) (-701) (-199))) (-15 -2726 ((-152 (-199)) (-701) (-152 (-199)))) (-15 -1730 ((-199) (-199) (-199))) (-15 -1730 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -1223 ((-199) (-199) (-199))) (-15 -1223 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -2108 ((-199) (-199) (-199))) (-15 -2108 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -3076 ((-199) (-199) (-199))) (-15 -3076 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -2338 ((-152 (-199)) (-152 (-199)))) (-15 -2338 ((-199) (-199))) (-15 -2134 ((-199) (-199))) (-15 -2134 ((-152 (-199)) (-152 (-199)))) (-15 -2722 ((-199) (-199) (-199))) (-15 -2722 ((-152 (-199)) (-152 (-199)) (-152 (-199))))) -((-1221 (($ (-1 (-107) |#2|) $) 17)) (-2256 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 25)) (-3013 (($) NIL) (($ (-578 |#2|)) 11)) (-3751 (((-107) $ $) 23))) -(((-201 |#1| |#2|) (-10 -8 (-15 -1221 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -3013 (|#1| (-578 |#2|))) (-15 -3013 (|#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-202 |#2|) (-1001)) (T -201)) -NIL -(-10 -8 (-15 -1221 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -3013 (|#1| (-578 |#2|))) (-15 -3013 (|#1|)) (-15 -3751 ((-107) |#1| |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-202 |#1|) (-1180) (-1001)) (T -202)) -NIL -(-13 (-208 |t#1|)) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-208 |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-2596 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) 11) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) 19) (($ $ (-701)) NIL) (($ $) 16)) (-3584 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-701)) 14) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL))) -(((-203 |#1| |#2|) (-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3584 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3584 (|#1| |#1| (-1070))) (-15 -3584 (|#1| |#1| (-578 (-1070)))) (-15 -3584 (|#1| |#1| (-1070) (-701))) (-15 -3584 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|)))) (-204 |#2|) (-959)) (T -203)) -NIL -(-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3584 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3584 (|#1| |#1| (-1070))) (-15 -3584 (|#1| |#1| (-578 (-1070)))) (-15 -3584 (|#1| |#1| (-1070) (-701))) (-15 -3584 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2596 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-701)) 51) (($ $ (-578 (-1070)) (-578 (-701))) 44 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 43 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 42 (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) 41 (|has| |#1| (-820 (-1070)))) (($ $ (-701)) 39 (|has| |#1| (-206))) (($ $) 37 (|has| |#1| (-206)))) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-701)) 49) (($ $ (-578 (-1070)) (-578 (-701))) 48 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 47 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 46 (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) 45 (|has| |#1| (-820 (-1070)))) (($ $ (-701)) 40 (|has| |#1| (-206))) (($ $) 38 (|has| |#1| (-206)))) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-204 |#1|) (-1180) (-959)) (T -204)) -((-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-204 *3)) (-4 *3 (-959)))) (-2596 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *1 (-204 *4)) (-4 *4 (-959)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-204 *3)) (-4 *3 (-959)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *1 (-204 *4)) (-4 *4 (-959))))) -(-13 (-959) (-10 -8 (-15 -2596 ($ $ (-1 |t#1| |t#1|))) (-15 -2596 ($ $ (-1 |t#1| |t#1|) (-701))) (-15 -3584 ($ $ (-1 |t#1| |t#1|))) (-15 -3584 ($ $ (-1 |t#1| |t#1|) (-701))) (IF (|has| |t#1| (-206)) (-6 (-206)) |noBranch|) (IF (|has| |t#1| (-820 (-1070))) (-6 (-820 (-1070))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-206) |has| |#1| (-206)) ((-583 $) . T) ((-657) . T) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-2596 (($ $) NIL) (($ $ (-701)) 10)) (-3584 (($ $) 8) (($ $ (-701)) 12))) -(((-205 |#1|) (-10 -8 (-15 -3584 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-701))) (-15 -3584 (|#1| |#1|)) (-15 -2596 (|#1| |#1|))) (-206)) (T -205)) -NIL -(-10 -8 (-15 -3584 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-701))) (-15 -3584 (|#1| |#1|)) (-15 -2596 (|#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2596 (($ $) 38) (($ $ (-701)) 36)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $) 37) (($ $ (-701)) 35)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-206) (-1180)) (T -206)) -((-2596 (*1 *1 *1) (-4 *1 (-206))) (-3584 (*1 *1 *1) (-4 *1 (-206))) (-2596 (*1 *1 *1 *2) (-12 (-4 *1 (-206)) (-5 *2 (-701)))) (-3584 (*1 *1 *1 *2) (-12 (-4 *1 (-206)) (-5 *2 (-701))))) -(-13 (-959) (-10 -8 (-15 -2596 ($ $)) (-15 -3584 ($ $)) (-15 -2596 ($ $ (-701))) (-15 -3584 ($ $ (-701))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3013 (($) 12) (($ (-578 |#2|)) NIL)) (-3764 (($ $) 14)) (-3699 (($ (-578 |#2|)) 10)) (-3691 (((-786) $) 21))) -(((-207 |#1| |#2|) (-10 -8 (-15 -3013 (|#1| (-578 |#2|))) (-15 -3013 (|#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -3691 ((-786) |#1|)) (-15 -3764 (|#1| |#1|))) (-208 |#2|) (-1001)) (T -207)) -NIL -(-10 -8 (-15 -3013 (|#1| (-578 |#2|))) (-15 -3013 (|#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -3691 ((-786) |#1|)) (-15 -3764 (|#1| |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-208 |#1|) (-1180) (-1001)) (T -208)) -((-3013 (*1 *1) (-12 (-4 *1 (-208 *2)) (-4 *2 (-1001)))) (-3013 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-208 *3)))) (-2256 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-208 *2)) (-4 *2 (-1001)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-208 *3)) (-4 *3 (-1001)))) (-1221 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-208 *3)) (-4 *3 (-1001))))) -(-13 (-102 |t#1|) (-138 |t#1|) (-10 -8 (-15 -3013 ($)) (-15 -3013 ($ (-578 |t#1|))) (IF (|has| $ (-6 -4167)) (PROGN (-15 -2256 ($ |t#1| $)) (-15 -2256 ($ (-1 (-107) |t#1|) $)) (-15 -1221 ($ (-1 (-107) |t#1|) $))) |noBranch|))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-2137 (((-2 (|:| |varOrder| (-578 (-1070))) (|:| |inhom| (-3 (-578 (-1148 (-701))) "failed")) (|:| |hom| (-578 (-1148 (-701))))) (-262 (-866 (-501)))) 25))) -(((-209) (-10 -7 (-15 -2137 ((-2 (|:| |varOrder| (-578 (-1070))) (|:| |inhom| (-3 (-578 (-1148 (-701))) "failed")) (|:| |hom| (-578 (-1148 (-701))))) (-262 (-866 (-501))))))) (T -209)) -((-2137 (*1 *2 *3) (-12 (-5 *3 (-262 (-866 (-501)))) (-5 *2 (-2 (|:| |varOrder| (-578 (-1070))) (|:| |inhom| (-3 (-578 (-1148 (-701))) "failed")) (|:| |hom| (-578 (-1148 (-701)))))) (-5 *1 (-209))))) -(-10 -7 (-15 -2137 ((-2 (|:| |varOrder| (-578 (-1070))) (|:| |inhom| (-3 (-578 (-1148 (-701))) "failed")) (|:| |hom| (-578 (-1148 (-701))))) (-262 (-866 (-501)))))) -((-3796 (((-701)) 51)) (-3868 (((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 $) (-1148 $)) 49) (((-621 |#3|) (-621 $)) 41) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-3613 (((-125)) 57)) (-2596 (($ $ (-1 |#3| |#3|) (-701)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL)) (-3691 (((-1148 |#3|) $) NIL) (($ |#3|) NIL) (((-786) $) NIL) (($ (-501)) 12) (($ (-375 (-501))) NIL)) (-3965 (((-701)) 15)) (-3803 (($ $ |#3|) 54))) -(((-210 |#1| |#2| |#3|) (-10 -8 (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|)) (-15 -3965 ((-701))) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3691 (|#1| |#3|)) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|) (-701))) (-15 -3868 ((-621 |#3|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 |#1|) (-1148 |#1|))) (-15 -3796 ((-701))) (-15 -3803 (|#1| |#1| |#3|)) (-15 -3613 ((-125))) (-15 -3691 ((-1148 |#3|) |#1|))) (-211 |#2| |#3|) (-701) (-1104)) (T -210)) -((-3613 (*1 *2) (-12 (-14 *4 (-701)) (-4 *5 (-1104)) (-5 *2 (-125)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5)))) (-3796 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1104)) (-5 *2 (-701)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5)))) (-3965 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1104)) (-5 *2 (-701)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5))))) -(-10 -8 (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|)) (-15 -3965 ((-701))) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3691 (|#1| |#3|)) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|) (-701))) (-15 -3868 ((-621 |#3|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 |#1|) (-1148 |#1|))) (-15 -3796 ((-701))) (-15 -3803 (|#1| |#1| |#3|)) (-15 -3613 ((-125))) (-15 -3691 ((-1148 |#3|) |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#2| (-1001)))) (-3292 (((-107) $) 72 (|has| |#2| (-123)))) (-1822 (($ (-839)) 127 (|has| |#2| (-959)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-3405 (($ $ $) 123 (|has| |#2| (-723)))) (-3177 (((-3 $ "failed") $ $) 74 (|has| |#2| (-123)))) (-2997 (((-107) $ (-701)) 8)) (-3796 (((-701)) 109 (|has| |#2| (-336)))) (-1417 (((-501) $) 121 (|has| |#2| (-775)))) (-3754 ((|#2| $ (-501) |#2|) 52 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-3765 (((-3 (-501) "failed") $) 67 (-1280 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-3 (-375 (-501)) "failed") $) 64 (-1280 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1001)))) (-3490 (((-501) $) 68 (-1280 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-375 (-501)) $) 65 (-1280 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) ((|#2| $) 60 (|has| |#2| (-1001)))) (-3868 (((-621 (-501)) (-621 $)) 108 (-1280 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 107 (-1280 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 106 (|has| |#2| (-959))) (((-621 |#2|) (-621 $)) 105 (|has| |#2| (-959)))) (-2174 (((-3 $ "failed") $) 99 (|has| |#2| (-959)))) (-2890 (($) 112 (|has| |#2| (-336)))) (-2156 ((|#2| $ (-501) |#2|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#2| $ (-501)) 51)) (-2164 (((-107) $) 119 (|has| |#2| (-775)))) (-2732 (((-578 |#2|) $) 30 (|has| $ (-6 -4167)))) (-1355 (((-107) $) 102 (|has| |#2| (-959)))) (-4067 (((-107) $) 120 (|has| |#2| (-775)))) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 118 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-3380 (((-578 |#2|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 117 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-2519 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2|) $) 35)) (-3104 (((-839) $) 111 (|has| |#2| (-336)))) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#2| (-1001)))) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3506 (($ (-839)) 110 (|has| |#2| (-336)))) (-3708 (((-1018) $) 21 (|has| |#2| (-1001)))) (-1190 ((|#2| $) 42 (|has| (-501) (-777)))) (-3084 (($ $ |#2|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) 26 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) 25 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) 23 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#2| $ (-501) |#2|) 50) ((|#2| $ (-501)) 49)) (-1293 ((|#2| $ $) 126 (|has| |#2| (-959)))) (-3759 (($ (-1148 |#2|)) 128)) (-3613 (((-125)) 125 (|has| |#2| (-331)))) (-2596 (($ $) 92 (-1280 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) 90 (-1280 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) 88 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) 87 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) 86 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) 85 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) 78 (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-959)))) (-3713 (((-701) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4167))) (((-701) |#2| $) 28 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-1148 |#2|) $) 129) (((-786) $) 20 (|has| |#2| (-1001))) (($ (-501)) 66 (-1405 (-1280 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (|has| |#2| (-959)))) (($ (-375 (-501))) 63 (-1280 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (($ |#2|) 62 (|has| |#2| (-1001)))) (-3965 (((-701)) 104 (|has| |#2| (-959)))) (-1200 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4167)))) (-1720 (($ $) 122 (|has| |#2| (-775)))) (-3948 (($ $ (-701)) 100 (|has| |#2| (-959))) (($ $ (-839)) 96 (|has| |#2| (-959)))) (-1850 (($) 71 (|has| |#2| (-123)) CONST)) (-1925 (($) 103 (|has| |#2| (-959)) CONST)) (-3584 (($ $) 91 (-1280 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) 89 (-1280 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) 84 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) 83 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) 82 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) 81 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) 80 (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-959)))) (-3778 (((-107) $ $) 115 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-3768 (((-107) $ $) 114 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-3751 (((-107) $ $) 19 (|has| |#2| (-1001)))) (-3773 (((-107) $ $) 116 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-3762 (((-107) $ $) 113 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-3803 (($ $ |#2|) 124 (|has| |#2| (-331)))) (-3797 (($ $ $) 94 (|has| |#2| (-959))) (($ $) 93 (|has| |#2| (-959)))) (-3790 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-701)) 101 (|has| |#2| (-959))) (($ $ (-839)) 97 (|has| |#2| (-959)))) (* (($ $ $) 98 (|has| |#2| (-959))) (($ (-501) $) 95 (|has| |#2| (-959))) (($ $ |#2|) 76 (|has| |#2| (-657))) (($ |#2| $) 75 (|has| |#2| (-657))) (($ (-701) $) 73 (|has| |#2| (-123))) (($ (-839) $) 70 (|has| |#2| (-25)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-211 |#1| |#2|) (-1180) (-701) (-1104)) (T -211)) -((-3759 (*1 *1 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1104)) (-4 *1 (-211 *3 *4)))) (-1822 (*1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-211 *3 *4)) (-4 *4 (-959)) (-4 *4 (-1104)))) (-1293 (*1 *2 *1 *1) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-959)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-657))))) -(-13 (-548 (-501) |t#2|) (-555 (-1148 |t#2|)) (-10 -8 (-6 -4167) (-15 -3759 ($ (-1148 |t#2|))) (IF (|has| |t#2| (-1001)) (-6 (-380 |t#2|)) |noBranch|) (IF (|has| |t#2| (-959)) (PROGN (-6 (-106 |t#2| |t#2|)) (-6 (-204 |t#2|)) (-6 (-345 |t#2|)) (-15 -1822 ($ (-839))) (-15 -1293 (|t#2| $ $))) |noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |noBranch|) (IF (|has| |t#2| (-123)) (-6 (-123)) |noBranch|) (IF (|has| |t#2| (-657)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |noBranch|) (IF (|has| |t#2| (-336)) (-6 (-336)) |noBranch|) (IF (|has| |t#2| (-156)) (PROGN (-6 (-37 |t#2|)) (-6 (-156))) |noBranch|) (IF (|has| |t#2| (-6 -4164)) (-6 -4164) |noBranch|) (IF (|has| |t#2| (-775)) (-6 (-775)) |noBranch|) (IF (|has| |t#2| (-723)) (-6 (-723)) |noBranch|) (IF (|has| |t#2| (-331)) (-6 (-1156 |t#2|)) |noBranch|))) -(((-21) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-331)) (|has| |#2| (-156))) ((-23) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-25) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) -1405 (|has| |#2| (-1001)) (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-336)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-106 |#2| |#2|) -1405 (|has| |#2| (-959)) (|has| |#2| (-331)) (|has| |#2| (-156))) ((-106 $ $) |has| |#2| (-156)) ((-123) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-555 (-786)) -1405 (|has| |#2| (-1001)) (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-336)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-555 (-1148 |#2|)) . T) ((-156) |has| |#2| (-156)) ((-204 |#2|) |has| |#2| (-959)) ((-206) -12 (|has| |#2| (-206)) (|has| |#2| (-959))) ((-256 (-501) |#2|) . T) ((-258 (-501) |#2|) . T) ((-278 |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-336) |has| |#2| (-336)) ((-345 |#2|) |has| |#2| (-959)) ((-380 |#2|) |has| |#2| (-1001)) ((-454 |#2|) . T) ((-548 (-501) |#2|) . T) ((-476 |#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-583 |#2|) -1405 (|has| |#2| (-959)) (|has| |#2| (-331)) (|has| |#2| (-156))) ((-583 $) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-156))) ((-577 (-501)) -12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959))) ((-577 |#2|) |has| |#2| (-959)) ((-648 |#2|) -1405 (|has| |#2| (-331)) (|has| |#2| (-156))) ((-657) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-156))) ((-721) |has| |#2| (-775)) ((-722) -1405 (|has| |#2| (-775)) (|has| |#2| (-723))) ((-723) |has| |#2| (-723)) ((-724) -1405 (|has| |#2| (-775)) (|has| |#2| (-723))) ((-727) -1405 (|has| |#2| (-775)) (|has| |#2| (-723))) ((-775) |has| |#2| (-775)) ((-777) -1405 (|has| |#2| (-775)) (|has| |#2| (-723))) ((-820 (-1070)) -12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959))) ((-950 (-375 (-501))) -12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001))) ((-950 (-501)) -12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) ((-950 |#2|) |has| |#2| (-1001)) ((-964 |#2|) -1405 (|has| |#2| (-959)) (|has| |#2| (-331)) (|has| |#2| (-156))) ((-964 $) |has| |#2| (-156)) ((-959) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-156))) ((-965) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-156))) ((-1012) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-156))) ((-1001) -1405 (|has| |#2| (-1001)) (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-336)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-1104) . T) ((-1156 |#2|) |has| |#2| (-331))) -((-3736 (((-107) $ $) NIL (|has| |#2| (-1001)))) (-3292 (((-107) $) NIL (|has| |#2| (-123)))) (-1822 (($ (-839)) 56 (|has| |#2| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) 60 (|has| |#2| (-723)))) (-3177 (((-3 $ "failed") $ $) 48 (|has| |#2| (-123)))) (-2997 (((-107) $ (-701)) 17)) (-3796 (((-701)) NIL (|has| |#2| (-336)))) (-1417 (((-501) $) NIL (|has| |#2| (-775)))) (-3754 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1001)))) (-3490 (((-501) $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) ((|#2| $) 27 (|has| |#2| (-1001)))) (-3868 (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL (|has| |#2| (-959))) (((-621 |#2|) (-621 $)) NIL (|has| |#2| (-959)))) (-2174 (((-3 $ "failed") $) 53 (|has| |#2| (-959)))) (-2890 (($) NIL (|has| |#2| (-336)))) (-2156 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ (-501)) 51)) (-2164 (((-107) $) NIL (|has| |#2| (-775)))) (-2732 (((-578 |#2|) $) 15 (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#2| (-959)))) (-4067 (((-107) $) NIL (|has| |#2| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 20 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3380 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 (((-501) $) 50 (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-2519 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2|) $) 41)) (-3104 (((-839) $) NIL (|has| |#2| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#2| (-1001)))) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#2| (-336)))) (-3708 (((-1018) $) NIL (|has| |#2| (-1001)))) (-1190 ((|#2| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#2|) $) 24 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ (-501) |#2|) NIL) ((|#2| $ (-501)) 21)) (-1293 ((|#2| $ $) NIL (|has| |#2| (-959)))) (-3759 (($ (-1148 |#2|)) 18)) (-3613 (((-125)) NIL (|has| |#2| (-331)))) (-2596 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3713 (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#2|) $) 10) (((-786) $) NIL (|has| |#2| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (|has| |#2| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (($ |#2|) 13 (|has| |#2| (-1001)))) (-3965 (((-701)) NIL (|has| |#2| (-959)))) (-1200 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#2| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (-1850 (($) 35 (|has| |#2| (-123)) CONST)) (-1925 (($) 38 (|has| |#2| (-959)) CONST)) (-3584 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3751 (((-107) $ $) 26 (|has| |#2| (-1001)))) (-3773 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3762 (((-107) $ $) 58 (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $ $) NIL (|has| |#2| (-959))) (($ $) NIL (|has| |#2| (-959)))) (-3790 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (* (($ $ $) 49 (|has| |#2| (-959))) (($ (-501) $) NIL (|has| |#2| (-959))) (($ $ |#2|) 42 (|has| |#2| (-657))) (($ |#2| $) 43 (|has| |#2| (-657))) (($ (-701) $) NIL (|has| |#2| (-123))) (($ (-839) $) NIL (|has| |#2| (-25)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-212 |#1| |#2|) (-211 |#1| |#2|) (-701) (-1104)) (T -212)) -NIL -(-211 |#1| |#2|) -((-3162 (((-212 |#1| |#3|) (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|) 21)) (-3547 ((|#3| (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|) 23)) (-1212 (((-212 |#1| |#3|) (-1 |#3| |#2|) (-212 |#1| |#2|)) 18))) -(((-213 |#1| |#2| |#3|) (-10 -7 (-15 -3162 ((-212 |#1| |#3|) (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|)) (-15 -3547 (|#3| (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|)) (-15 -1212 ((-212 |#1| |#3|) (-1 |#3| |#2|) (-212 |#1| |#2|)))) (-701) (-1104) (-1104)) (T -213)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-212 *5 *6)) (-14 *5 (-701)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-212 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-212 *5 *6)) (-14 *5 (-701)) (-4 *6 (-1104)) (-4 *2 (-1104)) (-5 *1 (-213 *5 *6 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-212 *6 *7)) (-14 *6 (-701)) (-4 *7 (-1104)) (-4 *5 (-1104)) (-5 *2 (-212 *6 *5)) (-5 *1 (-213 *6 *7 *5))))) -(-10 -7 (-15 -3162 ((-212 |#1| |#3|) (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|)) (-15 -3547 (|#3| (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|)) (-15 -1212 ((-212 |#1| |#3|) (-1 |#3| |#2|) (-212 |#1| |#2|)))) -((-2960 (((-501) (-578 (-1053))) 24) (((-501) (-1053)) 19)) (-2496 (((-1154) (-578 (-1053))) 29) (((-1154) (-1053)) 28)) (-2263 (((-1053)) 14)) (-3846 (((-1053) (-501) (-1053)) 16)) (-2896 (((-578 (-1053)) (-578 (-1053)) (-501) (-1053)) 25) (((-1053) (-1053) (-501) (-1053)) 23)) (-3161 (((-578 (-1053)) (-578 (-1053))) 13) (((-578 (-1053)) (-1053)) 11))) -(((-214) (-10 -7 (-15 -3161 ((-578 (-1053)) (-1053))) (-15 -3161 ((-578 (-1053)) (-578 (-1053)))) (-15 -2263 ((-1053))) (-15 -3846 ((-1053) (-501) (-1053))) (-15 -2896 ((-1053) (-1053) (-501) (-1053))) (-15 -2896 ((-578 (-1053)) (-578 (-1053)) (-501) (-1053))) (-15 -2496 ((-1154) (-1053))) (-15 -2496 ((-1154) (-578 (-1053)))) (-15 -2960 ((-501) (-1053))) (-15 -2960 ((-501) (-578 (-1053)))))) (T -214)) -((-2960 (*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-501)) (-5 *1 (-214)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-501)) (-5 *1 (-214)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1154)) (-5 *1 (-214)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-214)))) (-2896 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 (-1053))) (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *1 (-214)))) (-2896 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-214)))) (-3846 (*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-214)))) (-2263 (*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-214)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-214)))) (-3161 (*1 *2 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-214)) (-5 *3 (-1053))))) -(-10 -7 (-15 -3161 ((-578 (-1053)) (-1053))) (-15 -3161 ((-578 (-1053)) (-578 (-1053)))) (-15 -2263 ((-1053))) (-15 -3846 ((-1053) (-501) (-1053))) (-15 -2896 ((-1053) (-1053) (-501) (-1053))) (-15 -2896 ((-578 (-1053)) (-578 (-1053)) (-501) (-1053))) (-15 -2496 ((-1154) (-1053))) (-15 -2496 ((-1154) (-578 (-1053)))) (-15 -2960 ((-501) (-1053))) (-15 -2960 ((-501) (-578 (-1053))))) -((-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 9)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 18)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ (-375 (-501)) $) 25) (($ $ (-375 (-501))) NIL))) -(((-215 |#1|) (-10 -8 (-15 -3948 (|#1| |#1| (-501))) (-15 ** (|#1| |#1| (-501))) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 ** (|#1| |#1| (-701))) (-15 -3948 (|#1| |#1| (-701))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 -3948 (|#1| |#1| (-839))) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) (-216)) (T -215)) -NIL -(-10 -8 (-15 -3948 (|#1| |#1| (-501))) (-15 ** (|#1| |#1| (-501))) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 ** (|#1| |#1| (-701))) (-15 -3948 (|#1| |#1| (-701))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 -3948 (|#1| |#1| (-839))) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 44)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 49)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 45)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 46)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ (-375 (-501)) $) 48) (($ $ (-375 (-501))) 47))) -(((-216) (-1180)) (T -216)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-501)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-501)))) (-3833 (*1 *1 *1) (-4 *1 (-216)))) -(-13 (-260) (-37 (-375 (-501))) (-10 -8 (-15 ** ($ $ (-501))) (-15 -3948 ($ $ (-501))) (-15 -3833 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-260) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-657) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-1511 (($ $) 57)) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-2414 (($ $ $) 53 (|has| $ (-6 -4168)))) (-2481 (($ $ $) 52 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-2506 (($ $) 56)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-2547 (($ $) 55)) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1383 ((|#1| $) 59)) (-1657 (($ $) 58)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47)) (-1932 (((-501) $ $) 44)) (-2622 (((-107) $) 46)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1186 (($ $ $) 54 (|has| $ (-6 -4168)))) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-217 |#1|) (-1180) (-1104)) (T -217)) -((-1383 (*1 *2 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-1657 (*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-1511 (*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-2506 (*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-2547 (*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-1186 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-2414 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-2481 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104))))) -(-13 (-924 |t#1|) (-10 -8 (-15 -1383 (|t#1| $)) (-15 -1657 ($ $)) (-15 -1511 ($ $)) (-15 -2506 ($ $)) (-15 -2547 ($ $)) (IF (|has| $ (-6 -4168)) (PROGN (-15 -1186 ($ $ $)) (-15 -2414 ($ $ $)) (-15 -2481 ($ $ $))) |noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) NIL)) (-2786 ((|#1| $) NIL)) (-1511 (($ $) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) $) NIL (|has| |#1| (-777))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3441 (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-2861 (($ $) 10 (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3319 (($ $ $) NIL (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "rest" $) NIL (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) NIL)) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-1564 ((|#1| $) NIL)) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-1199 (($ $) NIL) (($ $ (-701)) NIL)) (-2921 (($ $) NIL (|has| |#1| (-1001)))) (-2673 (($ $) 7 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) NIL (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) NIL)) (-1526 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-3275 (((-107) $) NIL)) (-1934 (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001))) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) (-1 (-107) |#1|) $) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2213 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3216 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3143 (($ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1383 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-4114 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-3654 (((-107) $) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1116 (-501))) NIL) ((|#1| $ (-501)) NIL) ((|#1| $ (-501) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-701) $ "count") 16)) (-1932 (((-501) $ $) NIL)) (-1386 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-4115 (($ (-578 |#1|)) 22)) (-2622 (((-107) $) NIL)) (-1455 (($ $) NIL)) (-3873 (($ $) NIL (|has| $ (-6 -4168)))) (-3278 (((-701) $) NIL)) (-2787 (($ $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-1186 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3934 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-578 $)) NIL) (($ $ |#1|) NIL)) (-3691 (($ (-578 |#1|)) 17) (((-578 |#1|) $) 18) (((-786) $) 21 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) 14 (|has| $ (-6 -4167))))) -(((-218 |#1|) (-13 (-601 |#1|) (-10 -8 (-15 -3691 ($ (-578 |#1|))) (-15 -3691 ((-578 |#1|) $)) (-15 -4115 ($ (-578 |#1|))) (-15 -2007 ($ $ "unique")) (-15 -2007 ($ $ "sort")) (-15 -2007 ((-701) $ "count")))) (-777)) (T -218)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-218 *3)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-218 *3)) (-4 *3 (-777)))) (-4115 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-218 *3)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-218 *3)) (-4 *3 (-777)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-218 *3)) (-4 *3 (-777)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-701)) (-5 *1 (-218 *4)) (-4 *4 (-777))))) -(-13 (-601 |#1|) (-10 -8 (-15 -3691 ($ (-578 |#1|))) (-15 -3691 ((-578 |#1|) $)) (-15 -4115 ($ (-578 |#1|))) (-15 -2007 ($ $ "unique")) (-15 -2007 ($ $ "sort")) (-15 -2007 ((-701) $ "count")))) -((-3445 (((-3 (-701) "failed") |#1| |#1| (-701)) 26))) -(((-219 |#1|) (-10 -7 (-15 -3445 ((-3 (-701) "failed") |#1| |#1| (-701)))) (-13 (-657) (-336) (-10 -7 (-15 ** (|#1| |#1| (-501)))))) (T -219)) -((-3445 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-701)) (-4 *3 (-13 (-657) (-336) (-10 -7 (-15 ** (*3 *3 (-501)))))) (-5 *1 (-219 *3))))) -(-10 -7 (-15 -3445 ((-3 (-701) "failed") |#1| |#1| (-701)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-787 |#1|)) $) NIL)) (-3728 (((-1064 $) $ (-787 |#1|)) NIL) (((-1064 |#2|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-508)))) (-2865 (($ $) NIL (|has| |#2| (-508)))) (-1639 (((-107) $) NIL (|has| |#2| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-787 |#1|))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL (|has| |#2| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-787 |#1|) "failed") $) NIL)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-787 |#1|) $) NIL)) (-1749 (($ $ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-1474 (($ $ (-578 (-501))) NIL)) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#2| (-830)))) (-3503 (($ $ |#2| (-212 (-3581 |#1|) (-701)) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#2|) (-787 |#1|)) NIL) (($ (-1064 $) (-787 |#1|)) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#2| (-212 (-3581 |#1|) (-701))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-787 |#1|)) NIL)) (-2285 (((-212 (-3581 |#1|) (-701)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-3515 (($ (-1 (-212 (-3581 |#1|) (-701)) (-212 (-3581 |#1|) (-701))) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-2752 (((-3 (-787 |#1|) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#2| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-787 |#1|)) (|:| -3027 (-701))) "failed") $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#2| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-830)))) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-787 |#1|) |#2|) NIL) (($ $ (-578 (-787 |#1|)) (-578 |#2|)) NIL) (($ $ (-787 |#1|) $) NIL) (($ $ (-578 (-787 |#1|)) (-578 $)) NIL)) (-2532 (($ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-2596 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1201 (((-212 (-3581 |#1|) (-701)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-787 |#1|) (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#2| $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-787 |#1|)) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#2| (-37 (-375 (-501)))) (|has| |#2| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#2| (-508)))) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-212 (-3581 |#1|) (-701))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#2| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#2| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#2| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#2| (-37 (-375 (-501))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-220 |#1| |#2|) (-13 (-870 |#2| (-212 (-3581 |#1|) (-701)) (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501)))))) (-578 (-1070)) (-959)) (T -220)) -((-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-220 *3 *4)) (-14 *3 (-578 (-1070))) (-4 *4 (-959))))) -(-13 (-870 |#2| (-212 (-3581 |#1|) (-701)) (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501)))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1822 (($ (-839)) NIL (|has| |#4| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) NIL (|has| |#4| (-723)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#4| (-336)))) (-1417 (((-501) $) NIL (|has| |#4| (-775)))) (-3754 ((|#4| $ (-501) |#4|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1001))) (((-3 (-501) "failed") $) NIL (-12 (|has| |#4| (-950 (-501))) (|has| |#4| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#4| (-950 (-375 (-501)))) (|has| |#4| (-1001))))) (-3490 ((|#4| $) NIL (|has| |#4| (-1001))) (((-501) $) NIL (-12 (|has| |#4| (-950 (-501))) (|has| |#4| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#4| (-950 (-375 (-501)))) (|has| |#4| (-1001))))) (-3868 (((-2 (|:| -2978 (-621 |#4|)) (|:| |vec| (-1148 |#4|))) (-621 $) (-1148 $)) NIL (|has| |#4| (-959))) (((-621 |#4|) (-621 $)) NIL (|has| |#4| (-959))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#4| (-577 (-501))) (|has| |#4| (-959)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#4| (-577 (-501))) (|has| |#4| (-959))))) (-2174 (((-3 $ "failed") $) NIL (|has| |#4| (-959)))) (-2890 (($) NIL (|has| |#4| (-336)))) (-2156 ((|#4| $ (-501) |#4|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#4| $ (-501)) NIL)) (-2164 (((-107) $) NIL (|has| |#4| (-775)))) (-2732 (((-578 |#4|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#4| (-959)))) (-4067 (((-107) $) NIL (|has| |#4| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-3380 (((-578 |#4|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-2519 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#4| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#4| (-336)))) (-3708 (((-1018) $) NIL)) (-1190 ((|#4| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#4|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-4137 (((-578 |#4|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#4| $ (-501) |#4|) NIL) ((|#4| $ (-501)) 12)) (-1293 ((|#4| $ $) NIL (|has| |#4| (-959)))) (-3759 (($ (-1148 |#4|)) NIL)) (-3613 (((-125)) NIL (|has| |#4| (-331)))) (-2596 (($ $ (-1 |#4| |#4|) (-701)) NIL (|has| |#4| (-959))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#4| (-206)) (|has| |#4| (-959)))) (($ $) NIL (-12 (|has| |#4| (-206)) (|has| |#4| (-959))))) (-3713 (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167))) (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#4|) $) NIL) (((-786) $) NIL) (($ |#4|) NIL (|has| |#4| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#4| (-950 (-501))) (|has| |#4| (-1001))) (|has| |#4| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#4| (-950 (-375 (-501)))) (|has| |#4| (-1001))))) (-3965 (((-701)) NIL (|has| |#4| (-959)))) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#4| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#4| (-959))) (($ $ (-839)) NIL (|has| |#4| (-959)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL (|has| |#4| (-959)) CONST)) (-3584 (($ $ (-1 |#4| |#4|) (-701)) NIL (|has| |#4| (-959))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#4| (-206)) (|has| |#4| (-959)))) (($ $) NIL (-12 (|has| |#4| (-206)) (|has| |#4| (-959))))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-3762 (((-107) $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-3803 (($ $ |#4|) NIL (|has| |#4| (-331)))) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL (|has| |#4| (-959))) (($ $ (-839)) NIL (|has| |#4| (-959)))) (* (($ |#2| $) 14) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-657))) (($ |#4| $) NIL (|has| |#4| (-657))) (($ $ $) NIL (|has| |#4| (-959)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-221 |#1| |#2| |#3| |#4|) (-13 (-211 |#1| |#4|) (-583 |#2|) (-583 |#3|)) (-839) (-959) (-1021 |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) (-583 |#2|)) (T -221)) -NIL -(-13 (-211 |#1| |#4|) (-583 |#2|) (-583 |#3|)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1822 (($ (-839)) NIL (|has| |#3| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) NIL (|has| |#3| (-723)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#3| (-336)))) (-1417 (((-501) $) NIL (|has| |#3| (-775)))) (-3754 ((|#3| $ (-501) |#3|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1001))) (((-3 (-501) "failed") $) NIL (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001))))) (-3490 ((|#3| $) NIL (|has| |#3| (-1001))) (((-501) $) NIL (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001))))) (-3868 (((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 $) (-1148 $)) NIL (|has| |#3| (-959))) (((-621 |#3|) (-621 $)) NIL (|has| |#3| (-959))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959))))) (-2174 (((-3 $ "failed") $) NIL (|has| |#3| (-959)))) (-2890 (($) NIL (|has| |#3| (-336)))) (-2156 ((|#3| $ (-501) |#3|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#3| $ (-501)) NIL)) (-2164 (((-107) $) NIL (|has| |#3| (-775)))) (-2732 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#3| (-959)))) (-4067 (((-107) $) NIL (|has| |#3| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3380 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-2519 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#3| |#3|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#3| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#3| (-336)))) (-3708 (((-1018) $) NIL)) (-1190 ((|#3| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#3|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#3|))) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-262 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-4137 (((-578 |#3|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#3| $ (-501) |#3|) NIL) ((|#3| $ (-501)) 11)) (-1293 ((|#3| $ $) NIL (|has| |#3| (-959)))) (-3759 (($ (-1148 |#3|)) NIL)) (-3613 (((-125)) NIL (|has| |#3| (-331)))) (-2596 (($ $ (-1 |#3| |#3|) (-701)) NIL (|has| |#3| (-959))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959))))) (-3713 (((-701) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167))) (((-701) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#3|) $) NIL) (((-786) $) NIL) (($ |#3|) NIL (|has| |#3| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001))) (|has| |#3| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001))))) (-3965 (((-701)) NIL (|has| |#3| (-959)))) (-1200 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#3| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#3| (-959))) (($ $ (-839)) NIL (|has| |#3| (-959)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL (|has| |#3| (-959)) CONST)) (-3584 (($ $ (-1 |#3| |#3|) (-701)) NIL (|has| |#3| (-959))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959))))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3762 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3803 (($ $ |#3|) NIL (|has| |#3| (-331)))) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL (|has| |#3| (-959))) (($ $ (-839)) NIL (|has| |#3| (-959)))) (* (($ |#2| $) 13) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-657))) (($ |#3| $) NIL (|has| |#3| (-657))) (($ $ $) NIL (|has| |#3| (-959)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-222 |#1| |#2| |#3|) (-13 (-211 |#1| |#3|) (-583 |#2|)) (-701) (-959) (-583 |#2|)) (T -222)) -NIL -(-13 (-211 |#1| |#3|) (-583 |#2|)) -((-2456 (((-578 (-701)) $) 47) (((-578 (-701)) $ |#3|) 50)) (-1506 (((-701) $) 49) (((-701) $ |#3|) 52)) (-3457 (($ $) 65)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3169 (((-701) $ |#3|) 39) (((-701) $) 36)) (-1435 (((-1 $ (-701)) |#3|) 15) (((-1 $ (-701)) $) 77)) (-2486 ((|#4| $) 58)) (-3597 (((-107) $) 56)) (-2577 (($ $) 64)) (-3195 (($ $ (-578 (-262 $))) 96) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-578 |#4|) (-578 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-578 |#4|) (-578 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-578 |#3|) (-578 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-578 |#3|) (-578 |#2|)) 84)) (-2596 (($ $ |#4|) NIL) (($ $ (-578 |#4|)) NIL) (($ $ |#4| (-701)) NIL) (($ $ (-578 |#4|) (-578 (-701))) NIL) (($ $) NIL) (($ $ (-701)) NIL) (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1490 (((-578 |#3|) $) 75)) (-1201 ((|#5| $) NIL) (((-701) $ |#4|) NIL) (((-578 (-701)) $ (-578 |#4|)) NIL) (((-701) $ |#3|) 44)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-375 (-501))) NIL) (($ $) NIL))) -(((-223 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3195 (|#1| |#1| (-578 |#3|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#3| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#3|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#3| |#1|)) (-15 -1435 ((-1 |#1| (-701)) |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -2486 (|#4| |#1|)) (-15 -3597 ((-107) |#1|)) (-15 -1506 ((-701) |#1| |#3|)) (-15 -2456 ((-578 (-701)) |#1| |#3|)) (-15 -1506 ((-701) |#1|)) (-15 -2456 ((-578 (-701)) |#1|)) (-15 -1201 ((-701) |#1| |#3|)) (-15 -3169 ((-701) |#1|)) (-15 -3169 ((-701) |#1| |#3|)) (-15 -1490 ((-578 |#3|) |#1|)) (-15 -1435 ((-1 |#1| (-701)) |#3|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3691 (|#1| |#3|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1201 ((-578 (-701)) |#1| (-578 |#4|))) (-15 -1201 ((-701) |#1| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3691 (|#1| |#4|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#4| |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#4| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -1201 (|#5| |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2596 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -2596 (|#1| |#1| |#4| (-701))) (-15 -2596 (|#1| |#1| (-578 |#4|))) (-15 -2596 (|#1| |#1| |#4|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-224 |#2| |#3| |#4| |#5|) (-959) (-777) (-237 |#3|) (-723)) (T -223)) -NIL -(-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3195 (|#1| |#1| (-578 |#3|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#3| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#3|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#3| |#1|)) (-15 -1435 ((-1 |#1| (-701)) |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -2486 (|#4| |#1|)) (-15 -3597 ((-107) |#1|)) (-15 -1506 ((-701) |#1| |#3|)) (-15 -2456 ((-578 (-701)) |#1| |#3|)) (-15 -1506 ((-701) |#1|)) (-15 -2456 ((-578 (-701)) |#1|)) (-15 -1201 ((-701) |#1| |#3|)) (-15 -3169 ((-701) |#1|)) (-15 -3169 ((-701) |#1| |#3|)) (-15 -1490 ((-578 |#3|) |#1|)) (-15 -1435 ((-1 |#1| (-701)) |#3|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3691 (|#1| |#3|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1201 ((-578 (-701)) |#1| (-578 |#4|))) (-15 -1201 ((-701) |#1| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3691 (|#1| |#4|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#4| |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#4| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -1201 (|#5| |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2596 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -2596 (|#1| |#1| |#4| (-701))) (-15 -2596 (|#1| |#1| (-578 |#4|))) (-15 -2596 (|#1| |#1| |#4|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2456 (((-578 (-701)) $) 214) (((-578 (-701)) $ |#2|) 212)) (-1506 (((-701) $) 213) (((-701) $ |#2|) 211)) (-3800 (((-578 |#3|) $) 110)) (-3728 (((-1064 $) $ |#3|) 125) (((-1064 |#1|) $) 124)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 87 (|has| |#1| (-508)))) (-2865 (($ $) 88 (|has| |#1| (-508)))) (-1639 (((-107) $) 90 (|has| |#1| (-508)))) (-1699 (((-701) $) 112) (((-701) $ (-578 |#3|)) 111)) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 100 (|has| |#1| (-830)))) (-3676 (($ $) 98 (|has| |#1| (-419)))) (-1559 (((-373 $) $) 97 (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 103 (|has| |#1| (-830)))) (-3457 (($ $) 207)) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 164) (((-3 (-375 (-501)) "failed") $) 162 (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) 160 (|has| |#1| (-950 (-501)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3490 ((|#1| $) 165) (((-375 (-501)) $) 161 (|has| |#1| (-950 (-375 (-501))))) (((-501) $) 159 (|has| |#1| (-950 (-501)))) ((|#3| $) 135) ((|#2| $) 220)) (-1749 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-3858 (($ $) 154)) (-3868 (((-621 (-501)) (-621 $)) 134 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 133 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 132) (((-621 |#1|) (-621 $)) 131)) (-2174 (((-3 $ "failed") $) 34)) (-3533 (($ $) 176 (|has| |#1| (-419))) (($ $ |#3|) 105 (|has| |#1| (-419)))) (-3854 (((-578 $) $) 109)) (-1628 (((-107) $) 96 (|has| |#1| (-830)))) (-3503 (($ $ |#1| |#4| $) 172)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 84 (-12 (|has| |#3| (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 83 (-12 (|has| |#3| (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ |#2|) 217) (((-701) $) 216)) (-1355 (((-107) $) 31)) (-3706 (((-701) $) 169)) (-3794 (($ (-1064 |#1|) |#3|) 117) (($ (-1064 $) |#3|) 116)) (-2713 (((-578 $) $) 126)) (-2706 (((-107) $) 152)) (-3787 (($ |#1| |#4|) 153) (($ $ |#3| (-701)) 119) (($ $ (-578 |#3|) (-578 (-701))) 118)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#3|) 120)) (-2285 ((|#4| $) 170) (((-701) $ |#3|) 122) (((-578 (-701)) $ (-578 |#3|)) 121)) (-4111 (($ $ $) 79 (|has| |#1| (-777)))) (-1323 (($ $ $) 78 (|has| |#1| (-777)))) (-3515 (($ (-1 |#4| |#4|) $) 171)) (-1212 (($ (-1 |#1| |#1|) $) 151)) (-1435 (((-1 $ (-701)) |#2|) 219) (((-1 $ (-701)) $) 206 (|has| |#1| (-206)))) (-2752 (((-3 |#3| "failed") $) 123)) (-3845 (($ $) 149)) (-3850 ((|#1| $) 148)) (-2486 ((|#3| $) 209)) (-1697 (($ (-578 $)) 94 (|has| |#1| (-419))) (($ $ $) 93 (|has| |#1| (-419)))) (-3460 (((-1053) $) 9)) (-3597 (((-107) $) 210)) (-2948 (((-3 (-578 $) "failed") $) 114)) (-1285 (((-3 (-578 $) "failed") $) 115)) (-2551 (((-3 (-2 (|:| |var| |#3|) (|:| -3027 (-701))) "failed") $) 113)) (-2577 (($ $) 208)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 166)) (-3841 ((|#1| $) 167)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 95 (|has| |#1| (-419)))) (-3664 (($ (-578 $)) 92 (|has| |#1| (-419))) (($ $ $) 91 (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 102 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 101 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 99 (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) 145) (($ $ (-262 $)) 144) (($ $ $ $) 143) (($ $ (-578 $) (-578 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-578 |#3|) (-578 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-578 |#3|) (-578 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-206))) (($ $ (-578 |#2|) (-578 $)) 204 (|has| |#1| (-206))) (($ $ |#2| |#1|) 203 (|has| |#1| (-206))) (($ $ (-578 |#2|) (-578 |#1|)) 202 (|has| |#1| (-206)))) (-2532 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2596 (($ $ |#3|) 42) (($ $ (-578 |#3|)) 41) (($ $ |#3| (-701)) 40) (($ $ (-578 |#3|) (-578 (-701))) 39) (($ $) 238 (|has| |#1| (-206))) (($ $ (-701)) 236 (|has| |#1| (-206))) (($ $ (-1070)) 234 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 233 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 232 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 231 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1490 (((-578 |#2|) $) 218)) (-1201 ((|#4| $) 150) (((-701) $ |#3|) 130) (((-578 (-701)) $ (-578 |#3|)) 129) (((-701) $ |#2|) 215)) (-1248 (((-810 (-346)) $) 82 (-12 (|has| |#3| (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) 81 (-12 (|has| |#3| (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) 80 (-12 (|has| |#3| (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) 175 (|has| |#1| (-419))) (($ $ |#3|) 106 (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 104 (-1280 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-375 (-501))) 72 (-1405 (|has| |#1| (-950 (-375 (-501)))) (|has| |#1| (-37 (-375 (-501)))))) (($ $) 85 (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) 168)) (-2495 ((|#1| $ |#4|) 155) (($ $ |#3| (-701)) 128) (($ $ (-578 |#3|) (-578 (-701))) 127)) (-1274 (((-3 $ "failed") $) 73 (-1405 (-1280 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 29)) (-3771 (($ $ $ (-701)) 173 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 89 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ |#3|) 38) (($ $ (-578 |#3|)) 37) (($ $ |#3| (-701)) 36) (($ $ (-578 |#3|) (-578 (-701))) 35) (($ $) 237 (|has| |#1| (-206))) (($ $ (-701)) 235 (|has| |#1| (-206))) (($ $ (-1070)) 230 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 229 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 228 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 227 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-3778 (((-107) $ $) 76 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 75 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 77 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 74 (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 156 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 158 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 157 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-224 |#1| |#2| |#3| |#4|) (-1180) (-959) (-777) (-237 |t#2|) (-723)) (T -224)) -((-1435 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-1 *1 (-701))) (-4 *1 (-224 *4 *3 *5 *6)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-578 *4)))) (-3169 (*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-701)))) (-1201 (*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) (-2456 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-578 (-701))))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-701)))) (-2456 (*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-578 (-701))))) (-1506 (*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-107)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-4 *2 (-237 *4)))) (-2577 (*1 *1 *1) (-12 (-4 *1 (-224 *2 *3 *4 *5)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-237 *3)) (-4 *5 (-723)))) (-3457 (*1 *1 *1) (-12 (-4 *1 (-224 *2 *3 *4 *5)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-237 *3)) (-4 *5 (-723)))) (-1435 (*1 *2 *1) (-12 (-4 *3 (-206)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-1 *1 (-701))) (-4 *1 (-224 *3 *4 *5 *6))))) -(-13 (-870 |t#1| |t#4| |t#3|) (-204 |t#1|) (-950 |t#2|) (-10 -8 (-15 -1435 ((-1 $ (-701)) |t#2|)) (-15 -1490 ((-578 |t#2|) $)) (-15 -3169 ((-701) $ |t#2|)) (-15 -3169 ((-701) $)) (-15 -1201 ((-701) $ |t#2|)) (-15 -2456 ((-578 (-701)) $)) (-15 -1506 ((-701) $)) (-15 -2456 ((-578 (-701)) $ |t#2|)) (-15 -1506 ((-701) $ |t#2|)) (-15 -3597 ((-107) $)) (-15 -2486 (|t#3| $)) (-15 -2577 ($ $)) (-15 -3457 ($ $)) (IF (|has| |t#1| (-206)) (PROGN (-6 (-476 |t#2| |t#1|)) (-6 (-476 |t#2| $)) (-6 (-278 $)) (-15 -1435 ((-1 $ (-701)) $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-556 (-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#3| (-556 (-490)))) ((-556 (-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#3| (-556 (-810 (-346))))) ((-556 (-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#3| (-556 (-810 (-501))))) ((-204 |#1|) . T) ((-206) |has| |#1| (-206)) ((-260) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-278 $) . T) ((-294 |#1| |#4|) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-830)) (|has| |#1| (-419))) ((-476 |#2| |#1|) |has| |#1| (-206)) ((-476 |#2| $) |has| |#1| (-206)) ((-476 |#3| |#1|) . T) ((-476 |#3| $) . T) ((-476 $ $) . T) ((-508) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-820 |#3|) . T) ((-806 (-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#3| (-806 (-346)))) ((-806 (-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#3| (-806 (-501)))) ((-870 |#1| |#4| |#3|) . T) ((-830) |has| |#1| (-830)) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-950 |#2|) . T) ((-950 |#3|) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) |has| |#1| (-830))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-1623 ((|#1| $) 54)) (-2425 ((|#1| $) 44)) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2253 (($ $) 60)) (-1375 (($ $) 48)) (-2988 ((|#1| |#1| $) 46)) (-1260 ((|#1| $) 45)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-4139 (((-701) $) 61)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-2267 ((|#1| |#1| $) 52)) (-3458 ((|#1| |#1| $) 51)) (-4114 (($ |#1| $) 40)) (-2696 (((-701) $) 55)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-3085 ((|#1| $) 62)) (-2072 ((|#1| $) 50)) (-2464 ((|#1| $) 49)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2047 ((|#1| |#1| $) 58)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-1862 ((|#1| $) 59)) (-1906 (($) 57) (($ (-578 |#1|)) 56)) (-3661 (((-701) $) 43)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1807 ((|#1| $) 53)) (-2866 (($ (-578 |#1|)) 42)) (-2366 ((|#1| $) 63)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-225 |#1|) (-1180) (-1104)) (T -225)) -((-1906 (*1 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-225 *3)))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-2267 (*1 *2 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-3458 (*1 *2 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-1375 (*1 *1 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104))))) -(-13 (-1019 |t#1|) (-909 |t#1|) (-10 -8 (-15 -1906 ($)) (-15 -1906 ($ (-578 |t#1|))) (-15 -2696 ((-701) $)) (-15 -1623 (|t#1| $)) (-15 -1807 (|t#1| $)) (-15 -2267 (|t#1| |t#1| $)) (-15 -3458 (|t#1| |t#1| $)) (-15 -2072 (|t#1| $)) (-15 -2464 (|t#1| $)) (-15 -1375 ($ $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-909 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1019 |#1|) . T) ((-1104) . T)) -((-3176 (((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346))) 69) (((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232))) 68) (((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346))) 59) (((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232))) 58) (((-1031 (-199)) (-800 |#1|) (-993 (-346))) 50) (((-1031 (-199)) (-800 |#1|) (-993 (-346)) (-578 (-232))) 49)) (-3150 (((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346))) 72) (((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232))) 71) (((-1152) |#1| (-993 (-346)) (-993 (-346))) 62) (((-1152) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232))) 61) (((-1152) (-800 |#1|) (-993 (-346))) 54) (((-1152) (-800 |#1|) (-993 (-346)) (-578 (-232))) 53) (((-1151) (-798 |#1|) (-993 (-346))) 41) (((-1151) (-798 |#1|) (-993 (-346)) (-578 (-232))) 40) (((-1151) |#1| (-993 (-346))) 33) (((-1151) |#1| (-993 (-346)) (-578 (-232))) 32))) -(((-226 |#1|) (-10 -7 (-15 -3150 ((-1151) |#1| (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) |#1| (-993 (-346)))) (-15 -3150 ((-1151) (-798 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-798 |#1|) (-993 (-346)))) (-15 -3150 ((-1152) (-800 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-800 |#1|) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) (-800 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-800 |#1|) (-993 (-346)))) (-15 -3150 ((-1152) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) |#1| (-993 (-346)) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346)))) (-15 -3150 ((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346))))) (-13 (-556 (-490)) (-1001))) (T -226)) -((-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *5)))) (-3176 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *6)))) (-3150 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *5)))) (-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *6)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) (-3176 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) (-3150 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1152)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) (-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *5)))) (-3176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *6)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *5)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *6)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-798 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1151)) (-5 *1 (-226 *5)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-798 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1151)) (-5 *1 (-226 *6)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1151)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001)))))) -(-10 -7 (-15 -3150 ((-1151) |#1| (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) |#1| (-993 (-346)))) (-15 -3150 ((-1151) (-798 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-798 |#1|) (-993 (-346)))) (-15 -3150 ((-1152) (-800 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-800 |#1|) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) (-800 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-800 |#1|) (-993 (-346)))) (-15 -3150 ((-1152) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) |#1| (-993 (-346)) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346)))) (-15 -3150 ((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346))))) -((-1773 (((-1 (-863 (-199)) (-199) (-199)) (-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 139)) (-3176 (((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346))) 160) (((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232))) 158) (((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346))) 163) (((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232))) 159) (((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346))) 150) (((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232))) 149) (((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346))) 129) (((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232))) 127) (((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346))) 128) (((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232))) 125)) (-3150 (((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346))) 162) (((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232))) 161) (((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346))) 165) (((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232))) 164) (((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346))) 152) (((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232))) 151) (((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346))) 135) (((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232))) 134) (((-1152) (-800 (-1 (-199) (-199))) (-991 (-346))) 133) (((-1152) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232))) 132) (((-1151) (-798 (-1 (-199) (-199))) (-991 (-346))) 99) (((-1151) (-798 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232))) 98) (((-1151) (-1 (-199) (-199)) (-991 (-346))) 95) (((-1151) (-1 (-199) (-199)) (-991 (-346)) (-578 (-232))) 94))) -(((-227) (-10 -7 (-15 -3150 ((-1151) (-1 (-199) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-1 (-199) (-199)) (-991 (-346)))) (-15 -3150 ((-1151) (-798 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-798 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3150 ((-1152) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-800 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3150 ((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)))) (-15 -1773 ((-1 (-863 (-199)) (-199) (-199)) (-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -227)) -((-1773 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-798 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1151)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-798 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1151)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-227))))) -(-10 -7 (-15 -3150 ((-1151) (-1 (-199) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-1 (-199) (-199)) (-991 (-346)))) (-15 -3150 ((-1151) (-798 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-798 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3150 ((-1152) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-800 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3150 ((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)))) (-15 -1773 ((-1 (-863 (-199)) (-199) (-199)) (-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))))) -((-3150 (((-1151) (-262 |#2|) (-1070) (-1070) (-578 (-232))) 93))) -(((-228 |#1| |#2|) (-10 -7 (-15 -3150 ((-1151) (-262 |#2|) (-1070) (-1070) (-578 (-232))))) (-13 (-508) (-777) (-950 (-501))) (-389 |#1|)) (T -228)) -((-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-1070)) (-5 *5 (-578 (-232))) (-4 *7 (-389 *6)) (-4 *6 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-1151)) (-5 *1 (-228 *6 *7))))) -(-10 -7 (-15 -3150 ((-1151) (-262 |#2|) (-1070) (-1070) (-578 (-232))))) -((-2087 (((-501) (-501)) 50)) (-3252 (((-501) (-501)) 51)) (-4059 (((-199) (-199)) 52)) (-1665 (((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199))) 49)) (-2608 (((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199)) (-107)) 47))) -(((-229) (-10 -7 (-15 -2608 ((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199)) (-107))) (-15 -1665 ((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199)))) (-15 -2087 ((-501) (-501))) (-15 -3252 ((-501) (-501))) (-15 -4059 ((-199) (-199))))) (T -229)) -((-4059 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-229)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-229)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-229)))) (-1665 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-152 (-199)) (-152 (-199)))) (-5 *4 (-991 (-199))) (-5 *2 (-1152)) (-5 *1 (-229)))) (-2608 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-152 (-199)) (-152 (-199)))) (-5 *4 (-991 (-199))) (-5 *5 (-107)) (-5 *2 (-1152)) (-5 *1 (-229))))) -(-10 -7 (-15 -2608 ((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199)) (-107))) (-15 -1665 ((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199)))) (-15 -2087 ((-501) (-501))) (-15 -3252 ((-501) (-501))) (-15 -4059 ((-199) (-199)))) -((-3691 (((-993 (-346)) (-993 (-282 |#1|))) 16))) -(((-230 |#1|) (-10 -7 (-15 -3691 ((-993 (-346)) (-993 (-282 |#1|))))) (-13 (-777) (-508) (-556 (-346)))) (T -230)) -((-3691 (*1 *2 *3) (-12 (-5 *3 (-993 (-282 *4))) (-4 *4 (-13 (-777) (-508) (-556 (-346)))) (-5 *2 (-993 (-346))) (-5 *1 (-230 *4))))) -(-10 -7 (-15 -3691 ((-993 (-346)) (-993 (-282 |#1|))))) -((-3150 (((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199)) (-578 (-232))) 21) (((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199))) 22) (((-1151) (-578 (-863 (-199))) (-578 (-232))) 13) (((-1151) (-578 (-863 (-199)))) 14) (((-1151) (-578 (-199)) (-578 (-199)) (-578 (-232))) 18) (((-1151) (-578 (-199)) (-578 (-199))) 19))) -(((-231) (-10 -7 (-15 -3150 ((-1151) (-578 (-199)) (-578 (-199)))) (-15 -3150 ((-1151) (-578 (-199)) (-578 (-199)) (-578 (-232)))) (-15 -3150 ((-1151) (-578 (-863 (-199))))) (-15 -3150 ((-1151) (-578 (-863 (-199))) (-578 (-232)))) (-15 -3150 ((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199)))) (-15 -3150 ((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199)) (-578 (-232)))))) (T -231)) -((-3150 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-231)))) (-3150 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1152)) (-5 *1 (-231)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-231)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *2 (-1151)) (-5 *1 (-231)))) (-3150 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-231)))) (-3150 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1151)) (-5 *1 (-231))))) -(-10 -7 (-15 -3150 ((-1151) (-578 (-199)) (-578 (-199)))) (-15 -3150 ((-1151) (-578 (-199)) (-578 (-199)) (-578 (-232)))) (-15 -3150 ((-1151) (-578 (-863 (-199))))) (-15 -3150 ((-1151) (-578 (-863 (-199))) (-578 (-232)))) (-15 -3150 ((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199)))) (-15 -3150 ((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199)) (-578 (-232))))) -((-3736 (((-107) $ $) NIL)) (-4009 (($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 14)) (-1996 (($ (-839)) 70)) (-2539 (($ (-839)) 69)) (-1738 (($ (-578 (-346))) 76)) (-2933 (($ (-346)) 55)) (-2930 (($ (-839)) 71)) (-2770 (($ (-107)) 22)) (-3971 (($ (-1053)) 17)) (-2120 (($ (-1053)) 18)) (-3498 (($ (-1031 (-199))) 65)) (-1487 (($ (-578 (-991 (-346)))) 61)) (-1505 (($ (-578 (-991 (-346)))) 56) (($ (-578 (-991 (-375 (-501))))) 60)) (-2749 (($ (-346)) 28) (($ (-795)) 32)) (-1336 (((-107) (-578 $) (-1070)) 85)) (-2837 (((-3 (-50) "failed") (-578 $) (-1070)) 87)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2783 (($ (-346)) 33) (($ (-795)) 34)) (-2085 (($ (-1 (-863 (-199)) (-863 (-199)))) 54)) (-2761 (($ (-1 (-863 (-199)) (-863 (-199)))) 72)) (-2467 (($ (-1 (-199) (-199))) 38) (($ (-1 (-199) (-199) (-199))) 42) (($ (-1 (-199) (-199) (-199) (-199))) 46)) (-3691 (((-786) $) 81)) (-2791 (($ (-107)) 23) (($ (-578 (-991 (-346)))) 50)) (-1428 (($ (-107)) 24)) (-3751 (((-107) $ $) 83))) -(((-232) (-13 (-1001) (-10 -8 (-15 -1428 ($ (-107))) (-15 -2791 ($ (-107))) (-15 -4009 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3971 ($ (-1053))) (-15 -2120 ($ (-1053))) (-15 -2770 ($ (-107))) (-15 -2791 ($ (-578 (-991 (-346))))) (-15 -2085 ($ (-1 (-863 (-199)) (-863 (-199))))) (-15 -2749 ($ (-346))) (-15 -2749 ($ (-795))) (-15 -2783 ($ (-346))) (-15 -2783 ($ (-795))) (-15 -2467 ($ (-1 (-199) (-199)))) (-15 -2467 ($ (-1 (-199) (-199) (-199)))) (-15 -2467 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -2933 ($ (-346))) (-15 -1505 ($ (-578 (-991 (-346))))) (-15 -1505 ($ (-578 (-991 (-375 (-501)))))) (-15 -1487 ($ (-578 (-991 (-346))))) (-15 -3498 ($ (-1031 (-199)))) (-15 -2539 ($ (-839))) (-15 -1996 ($ (-839))) (-15 -2930 ($ (-839))) (-15 -2761 ($ (-1 (-863 (-199)) (-863 (-199))))) (-15 -1738 ($ (-578 (-346)))) (-15 -2837 ((-3 (-50) "failed") (-578 $) (-1070))) (-15 -1336 ((-107) (-578 $) (-1070)))))) (T -232)) -((-1428 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232)))) (-2791 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232)))) (-4009 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-232)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-232)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-232)))) (-2770 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232)))) (-2791 (*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232)))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *1 (-232)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-232)))) (-2783 (*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232)))) (-2783 (*1 *1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-232)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-232)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-232)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-232)))) (-2933 (*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-375 (-501))))) (-5 *1 (-232)))) (-1487 (*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232)))) (-3498 (*1 *1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-232)))) (-2539 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) (-1996 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) (-2930 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) (-2761 (*1 *1 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *1 (-232)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-232)))) (-2837 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *2 (-50)) (-5 *1 (-232)))) (-1336 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *2 (-107)) (-5 *1 (-232))))) -(-13 (-1001) (-10 -8 (-15 -1428 ($ (-107))) (-15 -2791 ($ (-107))) (-15 -4009 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3971 ($ (-1053))) (-15 -2120 ($ (-1053))) (-15 -2770 ($ (-107))) (-15 -2791 ($ (-578 (-991 (-346))))) (-15 -2085 ($ (-1 (-863 (-199)) (-863 (-199))))) (-15 -2749 ($ (-346))) (-15 -2749 ($ (-795))) (-15 -2783 ($ (-346))) (-15 -2783 ($ (-795))) (-15 -2467 ($ (-1 (-199) (-199)))) (-15 -2467 ($ (-1 (-199) (-199) (-199)))) (-15 -2467 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -2933 ($ (-346))) (-15 -1505 ($ (-578 (-991 (-346))))) (-15 -1505 ($ (-578 (-991 (-375 (-501)))))) (-15 -1487 ($ (-578 (-991 (-346))))) (-15 -3498 ($ (-1031 (-199)))) (-15 -2539 ($ (-839))) (-15 -1996 ($ (-839))) (-15 -2930 ($ (-839))) (-15 -2761 ($ (-1 (-863 (-199)) (-863 (-199))))) (-15 -1738 ($ (-578 (-346)))) (-15 -2837 ((-3 (-50) "failed") (-578 $) (-1070))) (-15 -1336 ((-107) (-578 $) (-1070))))) -((-4009 (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-578 (-232)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 24)) (-1996 (((-839) (-578 (-232)) (-839)) 49)) (-2539 (((-839) (-578 (-232)) (-839)) 48)) (-3876 (((-578 (-346)) (-578 (-232)) (-578 (-346))) 65)) (-2933 (((-346) (-578 (-232)) (-346)) 55)) (-2930 (((-839) (-578 (-232)) (-839)) 50)) (-2770 (((-107) (-578 (-232)) (-107)) 26)) (-3971 (((-1053) (-578 (-232)) (-1053)) 19)) (-2120 (((-1053) (-578 (-232)) (-1053)) 25)) (-3498 (((-1031 (-199)) (-578 (-232))) 43)) (-1487 (((-578 (-991 (-346))) (-578 (-232)) (-578 (-991 (-346)))) 37)) (-1222 (((-795) (-578 (-232)) (-795)) 31)) (-2990 (((-795) (-578 (-232)) (-795)) 32)) (-2761 (((-1 (-863 (-199)) (-863 (-199))) (-578 (-232)) (-1 (-863 (-199)) (-863 (-199)))) 60)) (-2982 (((-107) (-578 (-232)) (-107)) 15)) (-1428 (((-107) (-578 (-232)) (-107)) 14))) -(((-233) (-10 -7 (-15 -1428 ((-107) (-578 (-232)) (-107))) (-15 -2982 ((-107) (-578 (-232)) (-107))) (-15 -4009 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-578 (-232)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3971 ((-1053) (-578 (-232)) (-1053))) (-15 -2120 ((-1053) (-578 (-232)) (-1053))) (-15 -2770 ((-107) (-578 (-232)) (-107))) (-15 -1222 ((-795) (-578 (-232)) (-795))) (-15 -2990 ((-795) (-578 (-232)) (-795))) (-15 -1487 ((-578 (-991 (-346))) (-578 (-232)) (-578 (-991 (-346))))) (-15 -2539 ((-839) (-578 (-232)) (-839))) (-15 -1996 ((-839) (-578 (-232)) (-839))) (-15 -3498 ((-1031 (-199)) (-578 (-232)))) (-15 -2930 ((-839) (-578 (-232)) (-839))) (-15 -2933 ((-346) (-578 (-232)) (-346))) (-15 -2761 ((-1 (-863 (-199)) (-863 (-199))) (-578 (-232)) (-1 (-863 (-199)) (-863 (-199))))) (-15 -3876 ((-578 (-346)) (-578 (-232)) (-578 (-346)))))) (T -233)) -((-3876 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-346))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2761 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2933 (*1 *2 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2930 (*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-233)))) (-1996 (*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2539 (*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-1487 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2990 (*1 *2 *3 *2) (-12 (-5 *2 (-795)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-1222 (*1 *2 *3 *2) (-12 (-5 *2 (-795)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2770 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2120 (*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-3971 (*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-4009 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2982 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-1428 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233))))) -(-10 -7 (-15 -1428 ((-107) (-578 (-232)) (-107))) (-15 -2982 ((-107) (-578 (-232)) (-107))) (-15 -4009 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-578 (-232)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3971 ((-1053) (-578 (-232)) (-1053))) (-15 -2120 ((-1053) (-578 (-232)) (-1053))) (-15 -2770 ((-107) (-578 (-232)) (-107))) (-15 -1222 ((-795) (-578 (-232)) (-795))) (-15 -2990 ((-795) (-578 (-232)) (-795))) (-15 -1487 ((-578 (-991 (-346))) (-578 (-232)) (-578 (-991 (-346))))) (-15 -2539 ((-839) (-578 (-232)) (-839))) (-15 -1996 ((-839) (-578 (-232)) (-839))) (-15 -3498 ((-1031 (-199)) (-578 (-232)))) (-15 -2930 ((-839) (-578 (-232)) (-839))) (-15 -2933 ((-346) (-578 (-232)) (-346))) (-15 -2761 ((-1 (-863 (-199)) (-863 (-199))) (-578 (-232)) (-1 (-863 (-199)) (-863 (-199))))) (-15 -3876 ((-578 (-346)) (-578 (-232)) (-578 (-346))))) -((-2837 (((-3 |#1| "failed") (-578 (-232)) (-1070)) 17))) -(((-234 |#1|) (-10 -7 (-15 -2837 ((-3 |#1| "failed") (-578 (-232)) (-1070)))) (-1104)) (T -234)) -((-2837 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *1 (-234 *2)) (-4 *2 (-1104))))) -(-10 -7 (-15 -2837 ((-3 |#1| "failed") (-578 (-232)) (-1070)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2456 (((-578 (-701)) $) NIL) (((-578 (-701)) $ |#2|) NIL)) (-1506 (((-701) $) NIL) (((-701) $ |#2|) NIL)) (-3800 (((-578 |#3|) $) NIL)) (-3728 (((-1064 $) $ |#3|) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 |#3|)) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3457 (($ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1023 |#1| |#2|) "failed") $) 20)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1023 |#1| |#2|) $) NIL)) (-1749 (($ $ $ |#3|) NIL (|has| |#1| (-156)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ |#3|) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-487 |#3|) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| |#1| (-806 (-346))) (|has| |#3| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| |#1| (-806 (-501))) (|has| |#3| (-806 (-501)))))) (-3169 (((-701) $ |#2|) NIL) (((-701) $) 10)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#1|) |#3|) NIL) (($ (-1064 $) |#3|) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-487 |#3|)) NIL) (($ $ |#3| (-701)) NIL) (($ $ (-578 |#3|) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#3|) NIL)) (-2285 (((-487 |#3|) $) NIL) (((-701) $ |#3|) NIL) (((-578 (-701)) $ (-578 |#3|)) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 |#3|) (-487 |#3|)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1435 (((-1 $ (-701)) |#2|) NIL) (((-1 $ (-701)) $) NIL (|has| |#1| (-206)))) (-2752 (((-3 |#3| "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-2486 ((|#3| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3597 (((-107) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| |#3|) (|:| -3027 (-701))) "failed") $) NIL)) (-2577 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-578 |#3|) (-578 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-578 |#3|) (-578 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-206))) (($ $ (-578 |#2|) (-578 $)) NIL (|has| |#1| (-206))) (($ $ |#2| |#1|) NIL (|has| |#1| (-206))) (($ $ (-578 |#2|) (-578 |#1|)) NIL (|has| |#1| (-206)))) (-2532 (($ $ |#3|) NIL (|has| |#1| (-156)))) (-2596 (($ $ |#3|) NIL) (($ $ (-578 |#3|)) NIL) (($ $ |#3| (-701)) NIL) (($ $ (-578 |#3|) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1490 (((-578 |#2|) $) NIL)) (-1201 (((-487 |#3|) $) NIL) (((-701) $ |#3|) NIL) (((-578 (-701)) $ (-578 |#3|)) NIL) (((-701) $ |#2|) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#3| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#3| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| |#1| (-556 (-490))) (|has| |#3| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ |#3|) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1023 |#1| |#2|)) 28) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-487 |#3|)) NIL) (($ $ |#3| (-701)) NIL) (($ $ (-578 |#3|) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ |#3|) NIL) (($ $ (-578 |#3|)) NIL) (($ $ |#3| (-701)) NIL) (($ $ (-578 |#3|) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-235 |#1| |#2| |#3|) (-13 (-224 |#1| |#2| |#3| (-487 |#3|)) (-950 (-1023 |#1| |#2|))) (-959) (-777) (-237 |#2|)) (T -235)) -NIL -(-13 (-224 |#1| |#2| |#3| (-487 |#3|)) (-950 (-1023 |#1| |#2|))) -((-1506 (((-701) $) 30)) (-3765 (((-3 |#2| "failed") $) 17)) (-3490 ((|#2| $) 27)) (-2596 (($ $) 12) (($ $ (-701)) 15)) (-3691 (((-786) $) 26) (($ |#2|) 10)) (-3751 (((-107) $ $) 20)) (-3762 (((-107) $ $) 29))) -(((-236 |#1| |#2|) (-10 -8 (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1506 ((-701) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-237 |#2|) (-777)) (T -236)) -NIL -(-10 -8 (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1506 ((-701) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-1506 (((-701) $) 22)) (-3484 ((|#1| $) 23)) (-3765 (((-3 |#1| "failed") $) 27)) (-3490 ((|#1| $) 26)) (-3169 (((-701) $) 24)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-1435 (($ |#1| (-701)) 25)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2596 (($ $) 21) (($ $ (-701)) 20)) (-3691 (((-786) $) 11) (($ |#1|) 28)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18))) -(((-237 |#1|) (-1180) (-777)) (T -237)) -((-3691 (*1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) (-1435 (*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-237 *2)) (-4 *2 (-777)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-237 *3)) (-4 *3 (-777)) (-5 *2 (-701)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-237 *3)) (-4 *3 (-777)) (-5 *2 (-701)))) (-2596 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-237 *3)) (-4 *3 (-777))))) -(-13 (-777) (-950 |t#1|) (-10 -8 (-15 -1435 ($ |t#1| (-701))) (-15 -3169 ((-701) $)) (-15 -3484 (|t#1| $)) (-15 -1506 ((-701) $)) (-15 -2596 ($ $)) (-15 -2596 ($ $ (-701))) (-15 -3691 ($ |t#1|)))) -(((-97) . T) ((-555 (-786)) . T) ((-777) . T) ((-950 |#1|) . T) ((-1001) . T)) -((-3800 (((-578 (-1070)) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 40)) (-3514 (((-578 (-1070)) (-282 (-199)) (-701)) 79)) (-1245 (((-3 (-282 (-199)) "failed") (-282 (-199))) 50)) (-2268 (((-282 (-199)) (-282 (-199))) 65)) (-1381 (((-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 26)) (-1777 (((-107) (-578 (-282 (-199)))) 83)) (-2507 (((-107) (-282 (-199))) 24)) (-3128 (((-578 (-1053)) (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) 104)) (-3021 (((-578 (-282 (-199))) (-578 (-282 (-199)))) 86)) (-1547 (((-578 (-282 (-199))) (-578 (-282 (-199)))) 85)) (-1460 (((-621 (-199)) (-578 (-282 (-199))) (-701)) 93)) (-2367 (((-107) (-282 (-199))) 20) (((-107) (-578 (-282 (-199)))) 84)) (-2811 (((-578 (-199)) (-578 (-769 (-199))) (-199)) 14)) (-1445 (((-346) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 99)) (-2822 (((-948) (-1070) (-948)) 33))) -(((-238) (-10 -7 (-15 -2811 ((-578 (-199)) (-578 (-769 (-199))) (-199))) (-15 -1381 ((-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))))) (-15 -1245 ((-3 (-282 (-199)) "failed") (-282 (-199)))) (-15 -2268 ((-282 (-199)) (-282 (-199)))) (-15 -1777 ((-107) (-578 (-282 (-199))))) (-15 -2367 ((-107) (-578 (-282 (-199))))) (-15 -2367 ((-107) (-282 (-199)))) (-15 -1460 ((-621 (-199)) (-578 (-282 (-199))) (-701))) (-15 -1547 ((-578 (-282 (-199))) (-578 (-282 (-199))))) (-15 -3021 ((-578 (-282 (-199))) (-578 (-282 (-199))))) (-15 -2507 ((-107) (-282 (-199)))) (-15 -3800 ((-578 (-1070)) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3514 ((-578 (-1070)) (-282 (-199)) (-701))) (-15 -2822 ((-948) (-1070) (-948))) (-15 -1445 ((-346) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3128 ((-578 (-1053)) (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))))))) (T -238)) -((-3128 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *2 (-578 (-1053))) (-5 *1 (-238)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-346)) (-5 *1 (-238)))) (-2822 (*1 *2 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-1070)) (-5 *1 (-238)))) (-3514 (*1 *2 *3 *4) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-701)) (-5 *2 (-578 (-1070))) (-5 *1 (-238)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-578 (-1070))) (-5 *1 (-238)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-107)) (-5 *1 (-238)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-578 (-282 (-199)))) (-5 *1 (-238)))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-578 (-282 (-199)))) (-5 *1 (-238)))) (-1460 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *4 (-701)) (-5 *2 (-621 (-199))) (-5 *1 (-238)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-107)) (-5 *1 (-238)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *2 (-107)) (-5 *1 (-238)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *2 (-107)) (-5 *1 (-238)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-282 (-199))) (-5 *1 (-238)))) (-1245 (*1 *2 *2) (|partial| -12 (-5 *2 (-282 (-199))) (-5 *1 (-238)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *1 (-238)))) (-2811 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-769 (-199)))) (-5 *4 (-199)) (-5 *2 (-578 *4)) (-5 *1 (-238))))) -(-10 -7 (-15 -2811 ((-578 (-199)) (-578 (-769 (-199))) (-199))) (-15 -1381 ((-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))))) (-15 -1245 ((-3 (-282 (-199)) "failed") (-282 (-199)))) (-15 -2268 ((-282 (-199)) (-282 (-199)))) (-15 -1777 ((-107) (-578 (-282 (-199))))) (-15 -2367 ((-107) (-578 (-282 (-199))))) (-15 -2367 ((-107) (-282 (-199)))) (-15 -1460 ((-621 (-199)) (-578 (-282 (-199))) (-701))) (-15 -1547 ((-578 (-282 (-199))) (-578 (-282 (-199))))) (-15 -3021 ((-578 (-282 (-199))) (-578 (-282 (-199))))) (-15 -2507 ((-107) (-282 (-199)))) (-15 -3800 ((-578 (-1070)) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3514 ((-578 (-1070)) (-282 (-199)) (-701))) (-15 -2822 ((-948) (-1070) (-948))) (-15 -1445 ((-346) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3128 ((-578 (-1053)) (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))))) -((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 39)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 20) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-239) (-766)) (T -239)) -NIL -(-766) -((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 54) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 49)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 29) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 31)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-240) (-766)) (T -240)) -NIL -(-766) -((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 73) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 69)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 40) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 51)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-241) (-766)) (T -241)) -NIL -(-766) -((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 48)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 27) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-242) (-766)) (T -242)) -NIL -(-766) -((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 48)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 23) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-243) (-766)) (T -243)) -NIL -(-766) -((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 69)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 23) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-244) (-766)) (T -244)) -NIL -(-766) -((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 73)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 19) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-245) (-766)) (T -245)) -NIL -(-766) -((-3736 (((-107) $ $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2559 (((-578 (-501)) $) 16)) (-1201 (((-701) $) 14)) (-3691 (((-786) $) 20) (($ (-578 (-501))) 12)) (-2115 (($ (-701)) 17)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 9)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 10))) -(((-246) (-13 (-777) (-10 -8 (-15 -3691 ($ (-578 (-501)))) (-15 -1201 ((-701) $)) (-15 -2559 ((-578 (-501)) $)) (-15 -2115 ($ (-701)))))) (T -246)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-246)))) (-1201 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-246)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-246)))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-246))))) -(-13 (-777) (-10 -8 (-15 -3691 ($ (-578 (-501)))) (-15 -1201 ((-701) $)) (-15 -2559 ((-578 (-501)) $)) (-15 -2115 ($ (-701))))) -((-3978 ((|#2| |#2|) 77)) (-3937 ((|#2| |#2|) 65)) (-2515 (((-3 |#2| "failed") |#2| (-578 (-2 (|:| |func| |#2|) (|:| |pole| (-107))))) 116)) (-3970 ((|#2| |#2|) 75)) (-3929 ((|#2| |#2|) 63)) (-3984 ((|#2| |#2|) 79)) (-3945 ((|#2| |#2|) 67)) (-2003 ((|#2|) 46)) (-1853 (((-108) (-108)) 95)) (-1635 ((|#2| |#2|) 61)) (-3223 (((-107) |#2|) 134)) (-1196 ((|#2| |#2|) 180)) (-2233 ((|#2| |#2|) 156)) (-2046 ((|#2|) 59)) (-1790 ((|#2|) 58)) (-3532 ((|#2| |#2|) 176)) (-3674 ((|#2| |#2|) 152)) (-1842 ((|#2| |#2|) 184)) (-2642 ((|#2| |#2|) 160)) (-1563 ((|#2| |#2|) 148)) (-3145 ((|#2| |#2|) 150)) (-1228 ((|#2| |#2|) 186)) (-2585 ((|#2| |#2|) 162)) (-3233 ((|#2| |#2|) 182)) (-2900 ((|#2| |#2|) 158)) (-2001 ((|#2| |#2|) 178)) (-3376 ((|#2| |#2|) 154)) (-3271 ((|#2| |#2|) 192)) (-2219 ((|#2| |#2|) 168)) (-3657 ((|#2| |#2|) 188)) (-1385 ((|#2| |#2|) 164)) (-3043 ((|#2| |#2|) 196)) (-3394 ((|#2| |#2|) 172)) (-2618 ((|#2| |#2|) 198)) (-1659 ((|#2| |#2|) 174)) (-1884 ((|#2| |#2|) 194)) (-3439 ((|#2| |#2|) 170)) (-2743 ((|#2| |#2|) 190)) (-3226 ((|#2| |#2|) 166)) (-1989 ((|#2| |#2|) 62)) (-3991 ((|#2| |#2|) 80)) (-3949 ((|#2| |#2|) 68)) (-3981 ((|#2| |#2|) 78)) (-3940 ((|#2| |#2|) 66)) (-3975 ((|#2| |#2|) 76)) (-3933 ((|#2| |#2|) 64)) (-3811 (((-107) (-108)) 93)) (-4003 ((|#2| |#2|) 83)) (-3958 ((|#2| |#2|) 71)) (-3995 ((|#2| |#2|) 81)) (-3952 ((|#2| |#2|) 69)) (-4013 ((|#2| |#2|) 85)) (-3964 ((|#2| |#2|) 73)) (-3550 ((|#2| |#2|) 86)) (-3967 ((|#2| |#2|) 74)) (-4008 ((|#2| |#2|) 84)) (-3961 ((|#2| |#2|) 72)) (-3999 ((|#2| |#2|) 82)) (-3955 ((|#2| |#2|) 70))) -(((-247 |#1| |#2|) (-10 -7 (-15 -1989 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3940 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -3952 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -3967 (|#2| |#2|)) (-15 -3970 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3978 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -2003 (|#2|)) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -1790 (|#2|)) (-15 -2046 (|#2|)) (-15 -3145 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3376 (|#2| |#2|)) (-15 -2233 (|#2| |#2|)) (-15 -2900 (|#2| |#2|)) (-15 -2642 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -1196 (|#2| |#2|)) (-15 -3233 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -1884 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -2618 (|#2| |#2|)) (-15 -2515 ((-3 |#2| "failed") |#2| (-578 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3223 ((-107) |#2|))) (-13 (-777) (-508)) (-13 (-389 |#1|) (-916))) (T -247)) -((-3223 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-247 *4 *3)) (-4 *3 (-13 (-389 *4) (-916))))) (-2515 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-578 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-389 *4) (-916))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-247 *4 *2)))) (-2618 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1884 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3271 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2743 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1842 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3233 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1196 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2001 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3226 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1385 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2585 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2642 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2900 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2233 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3376 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1563 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3145 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2046 (*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508))))) (-1790 (*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508))))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *4)) (-4 *4 (-13 (-389 *3) (-916))))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-247 *4 *5)) (-4 *5 (-13 (-389 *4) (-916))))) (-2003 (*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508))))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3978 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3970 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3967 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(-10 -7 (-15 -1989 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3940 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -3952 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -3967 (|#2| |#2|)) (-15 -3970 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3978 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -2003 (|#2|)) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -1790 (|#2|)) (-15 -2046 (|#2|)) (-15 -3145 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3376 (|#2| |#2|)) (-15 -2233 (|#2| |#2|)) (-15 -2900 (|#2| |#2|)) (-15 -2642 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -1196 (|#2| |#2|)) (-15 -3233 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -1884 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -2618 (|#2| |#2|)) (-15 -2515 ((-3 |#2| "failed") |#2| (-578 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3223 ((-107) |#2|))) -((-2383 (((-3 |#2| "failed") (-578 (-553 |#2|)) |#2| (-1070)) 133)) (-2309 ((|#2| (-375 (-501)) |#2|) 50)) (-3636 ((|#2| |#2| (-553 |#2|)) 126)) (-2247 (((-2 (|:| |func| |#2|) (|:| |kers| (-578 (-553 |#2|))) (|:| |vals| (-578 |#2|))) |#2| (-1070)) 125)) (-3583 ((|#2| |#2| (-1070)) 19) ((|#2| |#2|) 22)) (-3373 ((|#2| |#2| (-1070)) 139) ((|#2| |#2|) 137))) -(((-248 |#1| |#2|) (-10 -7 (-15 -3373 (|#2| |#2|)) (-15 -3373 (|#2| |#2| (-1070))) (-15 -2247 ((-2 (|:| |func| |#2|) (|:| |kers| (-578 (-553 |#2|))) (|:| |vals| (-578 |#2|))) |#2| (-1070))) (-15 -3583 (|#2| |#2|)) (-15 -3583 (|#2| |#2| (-1070))) (-15 -2383 ((-3 |#2| "failed") (-578 (-553 |#2|)) |#2| (-1070))) (-15 -3636 (|#2| |#2| (-553 |#2|))) (-15 -2309 (|#2| (-375 (-501)) |#2|))) (-13 (-508) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -248)) -((-2309 (*1 *2 *3 *2) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-3636 (*1 *2 *2 *3) (-12 (-5 *3 (-553 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)))) (-2383 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-578 (-553 *2))) (-5 *4 (-1070)) (-4 *2 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *5 *2)))) (-3583 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-3583 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) (-2247 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-578 (-553 *3))) (|:| |vals| (-578 *3)))) (-5 *1 (-248 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3373 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-3373 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3)))))) -(-10 -7 (-15 -3373 (|#2| |#2|)) (-15 -3373 (|#2| |#2| (-1070))) (-15 -2247 ((-2 (|:| |func| |#2|) (|:| |kers| (-578 (-553 |#2|))) (|:| |vals| (-578 |#2|))) |#2| (-1070))) (-15 -3583 (|#2| |#2|)) (-15 -3583 (|#2| |#2| (-1070))) (-15 -2383 ((-3 |#2| "failed") (-578 (-553 |#2|)) |#2| (-1070))) (-15 -3636 (|#2| |#2| (-553 |#2|))) (-15 -2309 (|#2| (-375 (-501)) |#2|))) -((-1467 (((-3 |#3| "failed") |#3|) 110)) (-3978 ((|#3| |#3|) 131)) (-2022 (((-3 |#3| "failed") |#3|) 82)) (-3937 ((|#3| |#3|) 121)) (-2851 (((-3 |#3| "failed") |#3|) 58)) (-3970 ((|#3| |#3|) 129)) (-3609 (((-3 |#3| "failed") |#3|) 46)) (-3929 ((|#3| |#3|) 119)) (-2994 (((-3 |#3| "failed") |#3|) 112)) (-3984 ((|#3| |#3|) 133)) (-3235 (((-3 |#3| "failed") |#3|) 84)) (-3945 ((|#3| |#3|) 123)) (-2604 (((-3 |#3| "failed") |#3| (-701)) 36)) (-2371 (((-3 |#3| "failed") |#3|) 74)) (-1635 ((|#3| |#3|) 118)) (-2829 (((-3 |#3| "failed") |#3|) 44)) (-1989 ((|#3| |#3|) 117)) (-3255 (((-3 |#3| "failed") |#3|) 113)) (-3991 ((|#3| |#3|) 134)) (-1602 (((-3 |#3| "failed") |#3|) 85)) (-3949 ((|#3| |#3|) 124)) (-3125 (((-3 |#3| "failed") |#3|) 111)) (-3981 ((|#3| |#3|) 132)) (-2107 (((-3 |#3| "failed") |#3|) 83)) (-3940 ((|#3| |#3|) 122)) (-3202 (((-3 |#3| "failed") |#3|) 60)) (-3975 ((|#3| |#3|) 130)) (-2926 (((-3 |#3| "failed") |#3|) 48)) (-3933 ((|#3| |#3|) 120)) (-2872 (((-3 |#3| "failed") |#3|) 66)) (-4003 ((|#3| |#3|) 137)) (-1360 (((-3 |#3| "failed") |#3|) 104)) (-3958 ((|#3| |#3|) 142)) (-2601 (((-3 |#3| "failed") |#3|) 62)) (-3995 ((|#3| |#3|) 135)) (-1510 (((-3 |#3| "failed") |#3|) 50)) (-3952 ((|#3| |#3|) 125)) (-3153 (((-3 |#3| "failed") |#3|) 70)) (-4013 ((|#3| |#3|) 139)) (-2009 (((-3 |#3| "failed") |#3|) 54)) (-3964 ((|#3| |#3|) 127)) (-2098 (((-3 |#3| "failed") |#3|) 72)) (-3550 ((|#3| |#3|) 140)) (-2445 (((-3 |#3| "failed") |#3|) 56)) (-3967 ((|#3| |#3|) 128)) (-1311 (((-3 |#3| "failed") |#3|) 68)) (-4008 ((|#3| |#3|) 138)) (-2418 (((-3 |#3| "failed") |#3|) 107)) (-3961 ((|#3| |#3|) 143)) (-1820 (((-3 |#3| "failed") |#3|) 64)) (-3999 ((|#3| |#3|) 136)) (-2413 (((-3 |#3| "failed") |#3|) 52)) (-3955 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-375 (-501))) 40 (|has| |#1| (-331))))) -(((-249 |#1| |#2| |#3|) (-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-331)) (-15 ** (|#3| |#3| (-375 (-501)))) |noBranch|) (-15 -1989 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3955 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)) (-15 -3967 (|#3| |#3|)) (-15 -3970 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3978 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -3550 (|#3| |#3|)))) (-37 (-375 (-501))) (-1142 |#1|) (-1113 |#1| |#2|)) (T -249)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-331)) (-4 *4 (-37 *3)) (-4 *5 (-1142 *4)) (-5 *1 (-249 *4 *5 *2)) (-4 *2 (-1113 *4 *5)))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3967 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3970 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3978 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4))))) -(-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-331)) (-15 ** (|#3| |#3| (-375 (-501)))) |noBranch|) (-15 -1989 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3955 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)) (-15 -3967 (|#3| |#3|)) (-15 -3970 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3978 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -3550 (|#3| |#3|)))) -((-1467 (((-3 |#3| "failed") |#3|) 66)) (-3978 ((|#3| |#3|) 133)) (-2022 (((-3 |#3| "failed") |#3|) 50)) (-3937 ((|#3| |#3|) 121)) (-2851 (((-3 |#3| "failed") |#3|) 62)) (-3970 ((|#3| |#3|) 131)) (-3609 (((-3 |#3| "failed") |#3|) 46)) (-3929 ((|#3| |#3|) 119)) (-2994 (((-3 |#3| "failed") |#3|) 70)) (-3984 ((|#3| |#3|) 135)) (-3235 (((-3 |#3| "failed") |#3|) 54)) (-3945 ((|#3| |#3|) 123)) (-2604 (((-3 |#3| "failed") |#3| (-701)) 35)) (-2371 (((-3 |#3| "failed") |#3|) 44)) (-1635 ((|#3| |#3|) 112)) (-2829 (((-3 |#3| "failed") |#3|) 42)) (-1989 ((|#3| |#3|) 118)) (-3255 (((-3 |#3| "failed") |#3|) 72)) (-3991 ((|#3| |#3|) 136)) (-1602 (((-3 |#3| "failed") |#3|) 56)) (-3949 ((|#3| |#3|) 124)) (-3125 (((-3 |#3| "failed") |#3|) 68)) (-3981 ((|#3| |#3|) 134)) (-2107 (((-3 |#3| "failed") |#3|) 52)) (-3940 ((|#3| |#3|) 122)) (-3202 (((-3 |#3| "failed") |#3|) 64)) (-3975 ((|#3| |#3|) 132)) (-2926 (((-3 |#3| "failed") |#3|) 48)) (-3933 ((|#3| |#3|) 120)) (-2872 (((-3 |#3| "failed") |#3|) 78)) (-4003 ((|#3| |#3|) 139)) (-1360 (((-3 |#3| "failed") |#3|) 58)) (-3958 ((|#3| |#3|) 127)) (-2601 (((-3 |#3| "failed") |#3|) 74)) (-3995 ((|#3| |#3|) 137)) (-1510 (((-3 |#3| "failed") |#3|) 102)) (-3952 ((|#3| |#3|) 125)) (-3153 (((-3 |#3| "failed") |#3|) 82)) (-4013 ((|#3| |#3|) 141)) (-2009 (((-3 |#3| "failed") |#3|) 109)) (-3964 ((|#3| |#3|) 129)) (-2098 (((-3 |#3| "failed") |#3|) 84)) (-3550 ((|#3| |#3|) 142)) (-2445 (((-3 |#3| "failed") |#3|) 111)) (-3967 ((|#3| |#3|) 130)) (-1311 (((-3 |#3| "failed") |#3|) 80)) (-4008 ((|#3| |#3|) 140)) (-2418 (((-3 |#3| "failed") |#3|) 60)) (-3961 ((|#3| |#3|) 128)) (-1820 (((-3 |#3| "failed") |#3|) 76)) (-3999 ((|#3| |#3|) 138)) (-2413 (((-3 |#3| "failed") |#3|) 105)) (-3955 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-375 (-501))) 40 (|has| |#1| (-331))))) -(((-250 |#1| |#2| |#3| |#4|) (-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-331)) (-15 ** (|#3| |#3| (-375 (-501)))) |noBranch|) (-15 -1989 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3955 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)) (-15 -3967 (|#3| |#3|)) (-15 -3970 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3978 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -3550 (|#3| |#3|)))) (-37 (-375 (-501))) (-1111 |#1|) (-1134 |#1| |#2|) (-898 |#2|)) (T -250)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-331)) (-4 *4 (-37 *3)) (-4 *5 (-1111 *4)) (-5 *1 (-250 *4 *5 *2 *6)) (-4 *2 (-1134 *4 *5)) (-4 *6 (-898 *5)))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3967 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3970 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3978 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4))))) -(-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-331)) (-15 ** (|#3| |#3| (-375 (-501)))) |noBranch|) (-15 -1989 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3955 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)) (-15 -3967 (|#3| |#3|)) (-15 -3970 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3978 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -3550 (|#3| |#3|)))) -((-1987 (($ (-1 (-107) |#2|) $) 23)) (-2673 (($ $) 36)) (-2256 (($ (-1 (-107) |#2|) $) NIL) (($ |#2| $) 34)) (-1526 (($ |#2| $) 31) (($ (-1 (-107) |#2|) $) 17)) (-2213 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1473 (($ |#2| $ (-501)) 19) (($ $ $ (-501)) 21)) (-1468 (($ $ (-501)) 11) (($ $ (-1116 (-501))) 14)) (-1186 (($ $ |#2|) 29) (($ $ $) NIL)) (-3934 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-578 $)) NIL))) -(((-251 |#1| |#2|) (-10 -8 (-15 -2213 (|#1| |#1| |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -2213 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1186 (|#1| |#1| |#1|)) (-15 -1186 (|#1| |#1| |#2|)) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -1526 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1987 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1526 (|#1| |#2| |#1|)) (-15 -2673 (|#1| |#1|))) (-252 |#2|) (-1104)) (T -251)) -NIL -(-10 -8 (-15 -2213 (|#1| |#1| |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -2213 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1186 (|#1| |#1| |#1|)) (-15 -1186 (|#1| |#1| |#2|)) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -1526 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1987 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1526 (|#1| |#2| |#1|)) (-15 -2673 (|#1| |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) 85)) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2921 (($ $) 83 (|has| |#1| (-1001)))) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ (-1 (-107) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1001)))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-2213 (($ (-1 (-107) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-4114 (($ |#1| $ (-501)) 88) (($ $ $ (-501)) 87)) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1386 (($ $ (-501)) 91) (($ $ (-1116 (-501))) 90)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 70)) (-1186 (($ $ |#1|) 93) (($ $ $) 92)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-252 |#1|) (-1180) (-1104)) (T -252)) -((-1186 (*1 *1 *1 *2) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)))) (-1186 (*1 *1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)))) (-1386 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-1386 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-4114 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-252 *2)) (-4 *2 (-1104)))) (-4114 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-2213 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-1221 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-2256 (*1 *1 *2 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) (-2921 (*1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) (-2213 (*1 *1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-777))))) -(-13 (-586 |t#1|) (-10 -8 (-6 -4168) (-15 -1186 ($ $ |t#1|)) (-15 -1186 ($ $ $)) (-15 -1386 ($ $ (-501))) (-15 -1386 ($ $ (-1116 (-501)))) (-15 -2256 ($ (-1 (-107) |t#1|) $)) (-15 -4114 ($ |t#1| $ (-501))) (-15 -4114 ($ $ $ (-501))) (-15 -2213 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -1221 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1001)) (PROGN (-15 -2256 ($ |t#1| $)) (-15 -2921 ($ $))) |noBranch|) (IF (|has| |t#1| (-777)) (-15 -2213 ($ $ $)) |noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) +((-2750 (((-107) $ $) NIL)) (-2123 (($ (-517)) 13) (($ $ $) 14)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 17)) (-1547 (((-107) $ $) 9))) +(((-146) (-13 (-1003) (-10 -8 (-15 -2123 ($ (-517))) (-15 -2123 ($ $ $))))) (T -146)) +((-2123 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))) (-2123 (*1 *1 *1 *1) (-5 *1 (-146)))) +(-13 (-1003) (-10 -8 (-15 -2123 ($ (-517))) (-15 -2123 ($ $ $)))) +((-3072 (((-109) (-1073)) 97))) +(((-147) (-10 -7 (-15 -3072 ((-109) (-1073))))) (T -147)) +((-3072 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-109)) (-5 *1 (-147))))) +(-10 -7 (-15 -3072 ((-109) (-1073)))) +((-3137 ((|#3| |#3|) 19))) +(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3137 (|#3| |#3|))) (-961) (-1130 |#1|) (-1130 |#2|)) (T -148)) +((-3137 (*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1130 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1130 *4))))) +(-10 -7 (-15 -3137 (|#3| |#3|))) +((-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 215)) (-1472 ((|#2| $) 95)) (-1865 (($ $) 242)) (-1721 (($ $) 236)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 39)) (-1839 (($ $) 240)) (-1701 (($ $) 234)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 139)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 137)) (-2518 (($ $ $) 220)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 153) (((-623 |#2|) (-623 $)) 147)) (-3225 (($ (-1069 |#2|)) 118) (((-3 $ "failed") (-377 (-1069 |#2|))) NIL)) (-3621 (((-3 $ "failed") $) 207)) (-1256 (((-3 (-377 (-517)) "failed") $) 197)) (-1355 (((-107) $) 192)) (-3364 (((-377 (-517)) $) 195)) (-2261 (((-843)) 88)) (-2497 (($ $ $) 222)) (-2658 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 258)) (-2645 (($) 231)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 184) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 189)) (-1506 ((|#2| $) 93)) (-3777 (((-1069 |#2|) $) 120)) (-1893 (($ (-1 |#2| |#2|) $) 101)) (-1867 (($ $) 233)) (-3216 (((-1069 |#2|) $) 119)) (-4118 (($ $) 200)) (-2228 (($) 96)) (-2561 (((-388 (-1069 $)) (-1069 $)) 87)) (-2209 (((-388 (-1069 $)) (-1069 $)) 56)) (-2476 (((-3 $ "failed") $ |#2|) 202) (((-3 $ "failed") $ $) 205)) (-2624 (($ $) 232)) (-3146 (((-703) $) 217)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 226)) (-3010 ((|#2| (-1153 $)) NIL) ((|#2|) 90)) (-3127 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2135 (((-1069 |#2|)) 113)) (-1853 (($ $) 241)) (-1711 (($ $) 235)) (-4114 (((-1153 |#2|) $ (-1153 $)) 126) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $) 109) (((-623 |#2|) (-1153 $)) NIL)) (-3645 (((-1153 |#2|) $) NIL) (($ (-1153 |#2|)) NIL) (((-1069 |#2|) $) NIL) (($ (-1069 |#2|)) NIL) (((-814 (-517)) $) 175) (((-814 (-349)) $) 179) (((-153 (-349)) $) 165) (((-153 (-199)) $) 160) (((-493) $) 171)) (-1487 (($ $) 97)) (-2256 (((-787) $) 136) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-377 (-517))) NIL) (($ $) NIL)) (-3669 (((-1069 |#2|) $) 23)) (-2961 (((-703)) 99)) (-3707 (($ $) 245)) (-1788 (($ $) 239)) (-3683 (($ $) 243)) (-1765 (($ $) 237)) (-2921 ((|#2| $) 230)) (-3695 (($ $) 244)) (-1777 (($ $) 238)) (-3710 (($ $) 155)) (-1547 (((-107) $ $) 103)) (-1572 (((-107) $ $) 191)) (-1654 (($ $) 105) (($ $ $) NIL)) (-1642 (($ $ $) 104)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) 264) (($ $ $) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL))) +(((-149 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2256 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-153 (-199)) |#1|)) (-15 -3645 ((-153 (-349)) |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2645 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2658 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1487 (|#1| |#1|)) (-15 -2228 (|#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3225 ((-3 |#1| "failed") (-377 (-1069 |#2|)))) (-15 -3216 ((-1069 |#2|) |#1|)) (-15 -3645 (|#1| (-1069 |#2|))) (-15 -3225 (|#1| (-1069 |#2|))) (-15 -2135 ((-1069 |#2|))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -3669 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -1506 (|#2| |#1|)) (-15 -1472 (|#2| |#1|)) (-15 -2261 ((-843))) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-150 |#2|) (-156)) (T -149)) +((-2961 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-2261 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-843)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3010 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) (-2135 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4))))) +(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2256 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-153 (-199)) |#1|)) (-15 -3645 ((-153 (-349)) |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2645 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2658 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1487 (|#1| |#1|)) (-15 -2228 (|#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3225 ((-3 |#1| "failed") (-377 (-1069 |#2|)))) (-15 -3216 ((-1069 |#2|) |#1|)) (-15 -3645 (|#1| (-1069 |#2|))) (-15 -3225 (|#1| (-1069 |#2|))) (-15 -2135 ((-1069 |#2|))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -3669 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -1506 (|#2| |#1|)) (-15 -1472 (|#2| |#1|)) (-15 -2261 ((-843))) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 93 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1213 (($ $) 94 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-2454 (((-107) $) 96 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3055 (((-623 |#1|) (-1153 $)) 46) (((-623 |#1|)) 61)) (-1472 ((|#1| $) 52)) (-1865 (($ $) 228 (|has| |#1| (-1094)))) (-1721 (($ $) 211 (|has| |#1| (-1094)))) (-1926 (((-1082 (-843) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 242 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2535 (($ $) 113 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2759 (((-388 $) $) 114 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3766 (($ $) 241 (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 245 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-1707 (((-107) $ $) 104 (|has| |#1| (-278)))) (-1611 (((-703)) 87 (|has| |#1| (-338)))) (-1839 (($ $) 227 (|has| |#1| (-1094)))) (-1701 (($ $) 212 (|has| |#1| (-1094)))) (-1887 (($ $) 226 (|has| |#1| (-1094)))) (-1743 (($ $) 213 (|has| |#1| (-1094)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 169 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3189 (((-517) $) 170 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 165)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48) (($ (-1153 |#1|)) 64)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2518 (($ $ $) 108 (|has| |#1| (-278)))) (-2410 (((-623 |#1|) $ (-1153 $)) 53) (((-623 |#1|) $) 59)) (-3355 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-3225 (($ (-1069 |#1|)) 158) (((-3 $ "failed") (-377 (-1069 |#1|))) 155 (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) 34)) (-3775 ((|#1| $) 253)) (-1256 (((-3 (-377 (-517)) "failed") $) 246 (|has| |#1| (-502)))) (-1355 (((-107) $) 248 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 247 (|has| |#1| (-502)))) (-2261 (((-843)) 54)) (-3209 (($) 90 (|has| |#1| (-338)))) (-2497 (($ $ $) 107 (|has| |#1| (-278)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 102 (|has| |#1| (-278)))) (-3442 (($) 149 (|has| |#1| (-319)))) (-3391 (((-107) $) 150 (|has| |#1| (-319)))) (-2378 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-3849 (((-107) $) 115 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2658 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-970)) (|has| |#1| (-1094))))) (-2645 (($) 238 (|has| |#1| (-1094)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 261 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 260 (|has| |#1| (-808 (-349))))) (-3972 (((-843) $) 152 (|has| |#1| (-319))) (((-765 (-843)) $) 138 (|has| |#1| (-319)))) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 240 (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-1506 ((|#1| $) 51)) (-1319 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-278)))) (-3777 (((-1069 |#1|) $) 44 (|has| |#1| (-333)))) (-2967 (($ $ $) 207 (|has| |#1| (-779)))) (-3099 (($ $ $) 206 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 262)) (-1549 (((-843) $) 89 (|has| |#1| (-338)))) (-1867 (($ $) 235 (|has| |#1| (-1094)))) (-3216 (((-1069 |#1|) $) 156)) (-1365 (($ (-583 $)) 100 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (($ $ $) 99 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 116 (|has| |#1| (-333)))) (-2836 (($) 143 (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) 88 (|has| |#1| (-338)))) (-2228 (($) 257)) (-3785 ((|#1| $) 254)) (-3206 (((-1021) $) 10)) (-3220 (($) 160)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 101 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1401 (($ (-583 $)) 98 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (($ $ $) 97 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 146 (|has| |#1| (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 244 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2209 (((-388 (-1069 $)) (-1069 $)) 243 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3755 (((-388 $) $) 112 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 109 (|has| |#1| (-278)))) (-2476 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 92 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-278)))) (-2624 (($ $) 236 (|has| |#1| (-1094)))) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 268 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 266 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 265 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 264 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 263 (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) 105 (|has| |#1| (-278)))) (-1449 (($ $ |#1|) 269 (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106 (|has| |#1| (-278)))) (-3010 ((|#1| (-1153 $)) 47) ((|#1|) 60)) (-1620 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-3127 (($ $ (-1 |#1| |#1|) (-703)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-583 (-1073)) (-583 (-703))) 130 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 131 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 132 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 133 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 135 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 137 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2135 (((-1069 |#1|)) 159)) (-1898 (($ $) 225 (|has| |#1| (-1094)))) (-1754 (($ $) 214 (|has| |#1| (-1094)))) (-1766 (($) 148 (|has| |#1| (-319)))) (-1876 (($ $) 224 (|has| |#1| (-1094)))) (-1732 (($ $) 215 (|has| |#1| (-1094)))) (-1853 (($ $) 223 (|has| |#1| (-1094)))) (-1711 (($ $) 216 (|has| |#1| (-1094)))) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49) (((-1153 |#1|) $) 66) (((-623 |#1|) (-1153 $)) 65)) (-3645 (((-1153 |#1|) $) 63) (($ (-1153 |#1|)) 62) (((-1069 |#1|) $) 171) (($ (-1069 |#1|)) 157) (((-814 (-517)) $) 259 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 258 (|has| |#1| (-558 (-814 (-349))))) (((-153 (-349)) $) 210 (|has| |#1| (-937))) (((-153 (-199)) $) 209 (|has| |#1| (-937))) (((-493) $) 208 (|has| |#1| (-558 (-493))))) (-1487 (($ $) 256)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 145 (-3807 (-4035 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (|has| |#1| (-319))))) (-3392 (($ |#1| |#1|) 255)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 86 (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517)))))) (($ $) 91 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1328 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (-3807 (-4035 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (|has| |#1| (-132))))) (-3669 (((-1069 |#1|) $) 45)) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 67)) (-3707 (($ $) 234 (|has| |#1| (-1094)))) (-1788 (($ $) 222 (|has| |#1| (-1094)))) (-3329 (((-107) $ $) 95 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3683 (($ $) 233 (|has| |#1| (-1094)))) (-1765 (($ $) 221 (|has| |#1| (-1094)))) (-3731 (($ $) 232 (|has| |#1| (-1094)))) (-1814 (($ $) 220 (|has| |#1| (-1094)))) (-2921 ((|#1| $) 250 (|has| |#1| (-1094)))) (-1492 (($ $) 231 (|has| |#1| (-1094)))) (-1827 (($ $) 219 (|has| |#1| (-1094)))) (-3719 (($ $) 230 (|has| |#1| (-1094)))) (-1802 (($ $) 218 (|has| |#1| (-1094)))) (-3695 (($ $) 229 (|has| |#1| (-1094)))) (-1777 (($ $) 217 (|has| |#1| (-1094)))) (-3710 (($ $) 251 (|has| |#1| (-970)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#1| |#1|) (-703)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-583 (-1073)) (-583 (-703))) 126 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 127 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 128 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 129 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 134 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 136 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-1606 (((-107) $ $) 204 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 203 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 205 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 202 (|has| |#1| (-779)))) (-1667 (($ $ $) 121 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-377 (-517))) 239 (-12 (|has| |#1| (-918)) (|has| |#1| (-1094)))) (($ $ $) 237 (|has| |#1| (-1094))) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333))))) +(((-150 |#1|) (-1184) (-156)) (T -150)) +((-1506 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2228 (*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1487 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3392 (*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-3710 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1094)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-970)) (-4 *3 (-1094)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517)))))) +(-13 (-657 |t#1| (-1069 |t#1|)) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-370 |t#1|) (-806 |t#1|) (-347 |t#1|) (-156) (-10 -8 (-6 -3392) (-15 -2228 ($)) (-15 -1487 ($ $)) (-15 -3392 ($ |t#1| |t#1|)) (-15 -3785 (|t#1| $)) (-15 -3775 (|t#1| $)) (-15 -1506 (|t#1| $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-509)) (-15 -2476 ((-3 $ "failed") $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-278)) (-6 (-278)) |noBranch|) (IF (|has| |t#1| (-6 -4179)) (-6 -4179) |noBranch|) (IF (|has| |t#1| (-6 -4176)) (-6 -4176) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-937)) (PROGN (-6 (-558 (-153 (-199)))) (-6 (-558 (-153 (-349))))) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -3710 ($ $)) |noBranch|) (IF (|has| |t#1| (-1094)) (PROGN (-6 (-1094)) (-15 -2921 (|t#1| $)) (IF (|has| |t#1| (-918)) (-6 (-918)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -2658 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-831)) (IF (|has| |t#1| (-278)) (-6 (-831)) |noBranch|) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-34) |has| |#1| (-1094)) ((-91) |has| |#1| (-1094)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-153 (-199))) |has| |#1| (-937)) ((-558 (-153 (-349))) |has| |#1| (-937)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-558 (-1069 |#1|)) . T) ((-205 |#1|) . T) ((-207) -3807 (|has| |#1| (-319)) (|has| |#1| (-207))) ((-217) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-256) |has| |#1| (-1094)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-278) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3807 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| (-1069 |#1|)) . T) ((-379 |#1| (-1069 |#1|)) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-458) |has| |#1| (-1094)) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-657 |#1| (-1069 |#1|)) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-831) -12 (|has| |#1| (-278)) (|has| |#1| (-831))) ((-842) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-918) -12 (|has| |#1| (-918)) (|has| |#1| (-1094))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-319)) ((-1094) |has| |#1| (-1094)) ((-1097) |has| |#1| (-1094)) ((-1108) . T) ((-1112) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) +((-3755 (((-388 |#2|) |#2|) 63))) +(((-151 |#1| |#2|) (-10 -7 (-15 -3755 ((-388 |#2|) |#2|))) (-278) (-1130 (-153 |#1|))) (T -151)) +((-3755 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1130 (-153 *4)))))) +(-10 -7 (-15 -3755 ((-388 |#2|) |#2|))) +((-1893 (((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)) 14))) +(((-152 |#1| |#2|) (-10 -7 (-15 -1893 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)))) (-156) (-156)) (T -152)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6))))) +(-10 -7 (-15 -1893 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 33)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1213 (($ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-2454 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-3055 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) NIL)) (-1472 ((|#1| $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-1094)))) (-1721 (($ $) NIL (|has| |#1| (-1094)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2535 (($ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2759 (((-388 $) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3766 (($ $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-278)))) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-1839 (($ $) NIL (|has| |#1| (-1094)))) (-1701 (($ $) NIL (|has| |#1| (-1094)))) (-1887 (($ $) NIL (|has| |#1| (-1094)))) (-1743 (($ $) NIL (|has| |#1| (-1094)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|) (-1153 $)) NIL) (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2518 (($ $ $) NIL (|has| |#1| (-278)))) (-2410 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3225 (($ (-1069 |#1|)) NIL) (((-3 $ "failed") (-377 (-1069 |#1|))) NIL (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-3775 ((|#1| $) 13)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1355 (((-107) $) NIL (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL (|has| |#1| (-278)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-278)))) (-3442 (($) NIL (|has| |#1| (-319)))) (-3391 (((-107) $) NIL (|has| |#1| (-319)))) (-2378 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-3849 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2658 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-970)) (|has| |#1| (-1094))))) (-2645 (($) NIL (|has| |#1| (-1094)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#1| (-808 (-349))))) (-3972 (((-843) $) NIL (|has| |#1| (-319))) (((-765 (-843)) $) NIL (|has| |#1| (-319)))) (-3848 (((-107) $) 35)) (-3824 (($ $ (-517)) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-1506 ((|#1| $) 46)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-3777 (((-1069 |#1|) $) NIL (|has| |#1| (-333)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1867 (($ $) NIL (|has| |#1| (-1094)))) (-3216 (((-1069 |#1|) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-2836 (($) NIL (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-2228 (($) NIL)) (-3785 ((|#1| $) 15)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-278)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3755 (((-388 $) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-278)))) (-2476 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 47 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-2624 (($ $) NIL (|has| |#1| (-1094)))) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) NIL (|has| |#1| (-278)))) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-278)))) (-3010 ((|#1| (-1153 $)) NIL) ((|#1|) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-3127 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2135 (((-1069 |#1|)) NIL)) (-1898 (($ $) NIL (|has| |#1| (-1094)))) (-1754 (($ $) NIL (|has| |#1| (-1094)))) (-1766 (($) NIL (|has| |#1| (-319)))) (-1876 (($ $) NIL (|has| |#1| (-1094)))) (-1732 (($ $) NIL (|has| |#1| (-1094)))) (-1853 (($ $) NIL (|has| |#1| (-1094)))) (-1711 (($ $) NIL (|has| |#1| (-1094)))) (-4114 (((-1153 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) (-1153 $) (-1153 $)) NIL) (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3645 (((-1153 |#1|) $) NIL) (($ (-1153 |#1|)) NIL) (((-1069 |#1|) $) NIL) (($ (-1069 |#1|)) NIL) (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (((-153 (-349)) $) NIL (|has| |#1| (-937))) (((-153 (-199)) $) NIL (|has| |#1| (-937))) (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1487 (($ $) 45)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-319))))) (-3392 (($ |#1| |#1|) 37)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 36) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1328 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-3669 (((-1069 |#1|) $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL)) (-3707 (($ $) NIL (|has| |#1| (-1094)))) (-1788 (($ $) NIL (|has| |#1| (-1094)))) (-3329 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-3683 (($ $) NIL (|has| |#1| (-1094)))) (-1765 (($ $) NIL (|has| |#1| (-1094)))) (-3731 (($ $) NIL (|has| |#1| (-1094)))) (-1814 (($ $) NIL (|has| |#1| (-1094)))) (-2921 ((|#1| $) NIL (|has| |#1| (-1094)))) (-1492 (($ $) NIL (|has| |#1| (-1094)))) (-1827 (($ $) NIL (|has| |#1| (-1094)))) (-3719 (($ $) NIL (|has| |#1| (-1094)))) (-1802 (($ $) NIL (|has| |#1| (-1094)))) (-3695 (($ $) NIL (|has| |#1| (-1094)))) (-1777 (($ $) NIL (|has| |#1| (-1094)))) (-3710 (($ $) NIL (|has| |#1| (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 28 T CONST)) (-2409 (($) 30 T CONST)) (-2482 (((-1056) $) 23 (|has| |#1| (-760))) (((-1056) $ (-107)) 25 (|has| |#1| (-760))) (((-1158) (-754) $) 26 (|has| |#1| (-760))) (((-1158) (-754) $ (-107)) 27 (|has| |#1| (-760)))) (-2731 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 39)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1094)))) (($ $ $) NIL (|has| |#1| (-1094))) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))))) +(((-153 |#1|) (-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|))) (-156)) (T -153)) +NIL +(-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|))) +((-3645 (((-814 |#1|) |#3|) 22))) +(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -3645 ((-814 |#1|) |#3|))) (-1003) (-13 (-558 (-814 |#1|)) (-156)) (-150 |#2|)) (T -154)) +((-3645 (*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-814 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1003)) (-4 *3 (-150 *5))))) +(-10 -7 (-15 -3645 ((-814 |#1|) |#3|))) +((-2750 (((-107) $ $) NIL)) (-3226 (((-107) $) 9)) (-3001 (((-107) $ (-107)) 11)) (-3462 (($) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2433 (($ $) 13)) (-2256 (((-787) $) 17)) (-2145 (((-107) $) 8)) (-1210 (((-107) $ (-107)) 10)) (-1547 (((-107) $ $) NIL))) +(((-155) (-13 (-1003) (-10 -8 (-15 -3462 ($)) (-15 -2145 ((-107) $)) (-15 -3226 ((-107) $)) (-15 -1210 ((-107) $ (-107))) (-15 -3001 ((-107) $ (-107))) (-15 -2433 ($ $))))) (T -155)) +((-3462 (*1 *1) (-5 *1 (-155))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-1210 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3001 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2433 (*1 *1 *1) (-5 *1 (-155)))) +(-13 (-1003) (-10 -8 (-15 -3462 ($)) (-15 -2145 ((-107) $)) (-15 -3226 ((-107) $)) (-15 -1210 ((-107) $ (-107))) (-15 -3001 ((-107) $ (-107))) (-15 -2433 ($ $)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-156) (-1184)) (T -156)) +NIL +(-13 (-961) (-106 $ $) (-10 -7 (-6 (-4182 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 ((|#1| $) 74)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-4007 (($ $) 19)) (-3088 (($ |#1| (-1054 |#1|)) 47)) (-3621 (((-3 $ "failed") $) 116)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3815 (((-1054 |#1|) $) 81)) (-3379 (((-1054 |#1|) $) 78)) (-2214 (((-1054 |#1|) $) 79)) (-3848 (((-107) $) NIL)) (-2553 (((-1054 |#1|) $) 87)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-1672 (($ $ (-517)) 90)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1464 (((-1054 |#1|) $) 88)) (-3171 (((-1054 (-377 |#1|)) $) 13)) (-2005 (($ (-377 |#1|)) 17) (($ |#1| (-1054 |#1|) (-1054 |#1|)) 37)) (-1545 (($ $) 92)) (-2256 (((-787) $) 126) (($ (-517)) 50) (($ |#1|) 51) (($ (-377 |#1|)) 35) (($ (-377 (-517))) NIL) (($ $) NIL)) (-2961 (((-703)) 63)) (-3329 (((-107) $ $) NIL)) (-1943 (((-1054 (-377 |#1|)) $) 18)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 25 T CONST)) (-2409 (($) 28 T CONST)) (-1547 (((-107) $ $) 34)) (-1667 (($ $ $) 114)) (-1654 (($ $) 105) (($ $ $) 102)) (-1642 (($ $ $) 100)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-377 |#1|) $) 110) (($ $ (-377 |#1|)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL))) +(((-157 |#1|) (-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -2005 ($ (-377 |#1|))) (-15 -2005 ($ |#1| (-1054 |#1|) (-1054 |#1|))) (-15 -3088 ($ |#1| (-1054 |#1|))) (-15 -3379 ((-1054 |#1|) $)) (-15 -2214 ((-1054 |#1|) $)) (-15 -3815 ((-1054 |#1|) $)) (-15 -2668 (|#1| $)) (-15 -4007 ($ $)) (-15 -1943 ((-1054 (-377 |#1|)) $)) (-15 -3171 ((-1054 (-377 |#1|)) $)) (-15 -2553 ((-1054 |#1|) $)) (-15 -1464 ((-1054 |#1|) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $)))) (-278)) (T -157)) +((-2005 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) (-2005 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3088 (*1 *1 *2 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2668 (*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-4007 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1545 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278))))) +(-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -2005 ($ (-377 |#1|))) (-15 -2005 ($ |#1| (-1054 |#1|) (-1054 |#1|))) (-15 -3088 ($ |#1| (-1054 |#1|))) (-15 -3379 ((-1054 |#1|) $)) (-15 -2214 ((-1054 |#1|) $)) (-15 -3815 ((-1054 |#1|) $)) (-15 -2668 (|#1| $)) (-15 -4007 ($ $)) (-15 -1943 ((-1054 (-377 |#1|)) $)) (-15 -3171 ((-1054 (-377 |#1|)) $)) (-15 -2553 ((-1054 |#1|) $)) (-15 -1464 ((-1054 |#1|) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $)))) +((-3617 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 40)) (-3752 (((-865 |#1|) (-865 |#1|)) 19)) (-2839 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 36)) (-3627 (((-865 |#1|) (-865 |#1|)) 17)) (-2673 (((-865 |#1|) (-865 |#1|)) 25)) (-2850 (((-865 |#1|) (-865 |#1|)) 24)) (-3691 (((-865 |#1|) (-865 |#1|)) 23)) (-3440 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 37)) (-1573 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 35)) (-3259 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 34)) (-2483 (((-865 |#1|) (-865 |#1|)) 18)) (-3701 (((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|) 43)) (-2931 (((-865 |#1|) (-865 |#1|)) 8)) (-1740 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 39)) (-2603 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 38))) +(((-158 |#1|) (-10 -7 (-15 -2931 ((-865 |#1|) (-865 |#1|))) (-15 -3627 ((-865 |#1|) (-865 |#1|))) (-15 -2483 ((-865 |#1|) (-865 |#1|))) (-15 -3752 ((-865 |#1|) (-865 |#1|))) (-15 -3691 ((-865 |#1|) (-865 |#1|))) (-15 -2850 ((-865 |#1|) (-865 |#1|))) (-15 -2673 ((-865 |#1|) (-865 |#1|))) (-15 -3259 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1573 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2839 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3440 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2603 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1740 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3617 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3701 ((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|))) (-13 (-333) (-1094) (-918))) (T -158)) +((-3701 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-3617 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-1740 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-2603 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-3440 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-2839 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-1573 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-3259 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-2673 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3))))) +(-10 -7 (-15 -2931 ((-865 |#1|) (-865 |#1|))) (-15 -3627 ((-865 |#1|) (-865 |#1|))) (-15 -2483 ((-865 |#1|) (-865 |#1|))) (-15 -3752 ((-865 |#1|) (-865 |#1|))) (-15 -3691 ((-865 |#1|) (-865 |#1|))) (-15 -2850 ((-865 |#1|) (-865 |#1|))) (-15 -2673 ((-865 |#1|) (-865 |#1|))) (-15 -3259 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1573 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2839 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3440 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2603 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1740 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3617 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3701 ((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|))) +((-3669 ((|#2| |#3|) 27))) +(((-159 |#1| |#2| |#3|) (-10 -7 (-15 -3669 (|#2| |#3|))) (-156) (-1130 |#1|) (-657 |#1| |#2|)) (T -159)) +((-3669 (*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1130 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2))))) +(-10 -7 (-15 -3669 (|#2| |#3|))) +((-4057 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 47 (|has| (-874 |#2|) (-808 |#1|))))) +(((-160 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-874 |#2|) (-808 |#1|)) (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) |noBranch|)) (-1003) (-13 (-808 |#1|) (-156)) (-150 |#2|)) (T -160)) +((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *3 (-150 *6)) (-4 (-874 *6) (-808 *5)) (-4 *6 (-13 (-808 *5) (-156))) (-5 *1 (-160 *5 *6 *3))))) +(-10 -7 (IF (|has| (-874 |#2|) (-808 |#1|)) (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) |noBranch|)) +((-1656 (((-583 |#1|) (-583 |#1|) |#1|) 36)) (-2563 (((-583 |#1|) |#1| (-583 |#1|)) 19)) (-1659 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 31) ((|#1| (-583 |#1|) (-583 |#1|)) 29))) +(((-161 |#1|) (-10 -7 (-15 -2563 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -1659 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -1659 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1656 ((-583 |#1|) (-583 |#1|) |#1|))) (-278)) (T -161)) +((-1656 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))) (-1659 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) (-1659 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) (-2563 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3))))) +(-10 -7 (-15 -2563 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -1659 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -1659 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1656 ((-583 |#1|) (-583 |#1|) |#1|))) +((-1429 (((-2 (|:| |start| |#2|) (|:| -2879 (-388 |#2|))) |#2|) 61)) (-2801 ((|#1| |#1|) 54)) (-3058 (((-153 |#1|) |#2|) 82)) (-3390 ((|#1| |#2|) 122) ((|#1| |#2| |#1|) 80)) (-2445 ((|#2| |#2|) 81)) (-1720 (((-388 |#2|) |#2| |#1|) 112) (((-388 |#2|) |#2| |#1| (-107)) 79)) (-1506 ((|#1| |#2|) 111)) (-3373 ((|#2| |#2|) 118)) (-3755 (((-388 |#2|) |#2|) 133) (((-388 |#2|) |#2| |#1|) 32) (((-388 |#2|) |#2| |#1| (-107)) 132)) (-1731 (((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2|) 131) (((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2| (-107)) 75)) (-2918 (((-583 (-153 |#1|)) |#2| |#1|) 40) (((-583 (-153 |#1|)) |#2|) 41))) +(((-162 |#1| |#2|) (-10 -7 (-15 -2918 ((-583 (-153 |#1|)) |#2|)) (-15 -2918 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2| (-107))) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2|)) (-15 -3755 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3755 ((-388 |#2|) |#2| |#1|)) (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3373 (|#2| |#2|)) (-15 -1506 (|#1| |#2|)) (-15 -1720 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1720 ((-388 |#2|) |#2| |#1|)) (-15 -2445 (|#2| |#2|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -3390 (|#1| |#2|)) (-15 -3058 ((-153 |#1|) |#2|)) (-15 -2801 (|#1| |#1|)) (-15 -1429 ((-2 (|:| |start| |#2|) (|:| -2879 (-388 |#2|))) |#2|))) (-13 (-333) (-777)) (-1130 (-153 |#1|))) (T -162)) +((-1429 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -2879 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-2801 (*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-3058 (*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1130 *2)))) (-3390 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-3390 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3))))) (-1720 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1720 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1506 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-3373 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-3755 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-3755 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1731 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1731 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1130 (-153 *5))))) (-2918 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-2918 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4)))))) +(-10 -7 (-15 -2918 ((-583 (-153 |#1|)) |#2|)) (-15 -2918 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2| (-107))) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2|)) (-15 -3755 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3755 ((-388 |#2|) |#2| |#1|)) (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3373 (|#2| |#2|)) (-15 -1506 (|#1| |#2|)) (-15 -1720 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1720 ((-388 |#2|) |#2| |#1|)) (-15 -2445 (|#2| |#2|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -3390 (|#1| |#2|)) (-15 -3058 ((-153 |#1|) |#2|)) (-15 -2801 (|#1| |#1|)) (-15 -1429 ((-2 (|:| |start| |#2|) (|:| -2879 (-388 |#2|))) |#2|))) +((-2639 (((-3 |#2| "failed") |#2|) 14)) (-3931 (((-703) |#2|) 16)) (-1854 ((|#2| |#2| |#2|) 18))) +(((-163 |#1| |#2|) (-10 -7 (-15 -2639 ((-3 |#2| "failed") |#2|)) (-15 -3931 ((-703) |#2|)) (-15 -1854 (|#2| |#2| |#2|))) (-1108) (-610 |#1|)) (T -163)) +((-1854 (*1 *2 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-1108)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))) (-2639 (*1 *2 *2) (|partial| -12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3))))) +(-10 -7 (-15 -2639 ((-3 |#2| "failed") |#2|)) (-15 -3931 ((-703) |#2|)) (-15 -1854 (|#2| |#2| |#2|))) +((-4090 ((|#2| |#2|) 28)) (-1908 (((-107) |#2|) 19)) (-3775 (((-286 |#1|) |#2|) 12)) (-3785 (((-286 |#1|) |#2|) 14)) (-2769 ((|#2| |#2| (-1073)) 68) ((|#2| |#2|) 69)) (-2858 (((-153 (-286 |#1|)) |#2|) 9)) (-2637 ((|#2| |#2| (-1073)) 65) ((|#2| |#2|) 58))) +(((-164 |#1| |#2|) (-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -3775 ((-286 |#1|) |#2|)) (-15 -3785 ((-286 |#1|) |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -2858 ((-153 (-286 |#1|)) |#2|))) (-13 (-509) (-779) (-952 (-517))) (-13 (-27) (-1094) (-400 (-153 |#1|)))) (T -164)) +((-2858 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-3785 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-3775 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-2637 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-2637 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) (-2769 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3))))))) +(-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -3775 ((-286 |#1|) |#2|)) (-15 -3785 ((-286 |#1|) |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -2858 ((-153 (-286 |#1|)) |#2|))) +((-2852 (((-1153 (-623 (-874 |#1|))) (-1153 (-623 |#1|))) 22)) (-2256 (((-1153 (-623 (-377 (-874 |#1|)))) (-1153 (-623 |#1|))) 30))) +(((-165 |#1|) (-10 -7 (-15 -2852 ((-1153 (-623 (-874 |#1|))) (-1153 (-623 |#1|)))) (-15 -2256 ((-1153 (-623 (-377 (-874 |#1|)))) (-1153 (-623 |#1|))))) (-156)) (T -165)) +((-2256 (*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-377 (-874 *4))))) (-5 *1 (-165 *4)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-874 *4)))) (-5 *1 (-165 *4))))) +(-10 -7 (-15 -2852 ((-1153 (-623 (-874 |#1|))) (-1153 (-623 |#1|)))) (-15 -2256 ((-1153 (-623 (-377 (-874 |#1|)))) (-1153 (-623 |#1|))))) +((-2748 (((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517)))) 66)) (-4135 (((-1075 (-377 (-517))) (-583 (-517)) (-583 (-517))) 74)) (-2709 (((-1075 (-377 (-517))) (-517)) 40)) (-2003 (((-1075 (-377 (-517))) (-517)) 52)) (-2051 (((-377 (-517)) (-1075 (-377 (-517)))) 62)) (-3481 (((-1075 (-377 (-517))) (-517)) 32)) (-2768 (((-1075 (-377 (-517))) (-517)) 48)) (-3033 (((-1075 (-377 (-517))) (-517)) 46)) (-1980 (((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517)))) 60)) (-1545 (((-1075 (-377 (-517))) (-517)) 25)) (-2428 (((-377 (-517)) (-1075 (-377 (-517))) (-1075 (-377 (-517)))) 64)) (-2634 (((-1075 (-377 (-517))) (-517)) 30)) (-3761 (((-1075 (-377 (-517))) (-583 (-517))) 71))) +(((-166) (-10 -7 (-15 -1545 ((-1075 (-377 (-517))) (-517))) (-15 -2709 ((-1075 (-377 (-517))) (-517))) (-15 -3481 ((-1075 (-377 (-517))) (-517))) (-15 -2634 ((-1075 (-377 (-517))) (-517))) (-15 -3033 ((-1075 (-377 (-517))) (-517))) (-15 -2768 ((-1075 (-377 (-517))) (-517))) (-15 -2003 ((-1075 (-377 (-517))) (-517))) (-15 -2428 ((-377 (-517)) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -1980 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -2051 ((-377 (-517)) (-1075 (-377 (-517))))) (-15 -2748 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -3761 ((-1075 (-377 (-517))) (-583 (-517)))) (-15 -4135 ((-1075 (-377 (-517))) (-583 (-517)) (-583 (-517)))))) (T -166)) +((-4135 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-2748 (*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-1980 (*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-2428 (*1 *2 *3 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-2003 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2768 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3033 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2634 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3481 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1545 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) +(-10 -7 (-15 -1545 ((-1075 (-377 (-517))) (-517))) (-15 -2709 ((-1075 (-377 (-517))) (-517))) (-15 -3481 ((-1075 (-377 (-517))) (-517))) (-15 -2634 ((-1075 (-377 (-517))) (-517))) (-15 -3033 ((-1075 (-377 (-517))) (-517))) (-15 -2768 ((-1075 (-377 (-517))) (-517))) (-15 -2003 ((-1075 (-377 (-517))) (-517))) (-15 -2428 ((-377 (-517)) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -1980 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -2051 ((-377 (-517)) (-1075 (-377 (-517))))) (-15 -2748 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -3761 ((-1075 (-377 (-517))) (-583 (-517)))) (-15 -4135 ((-1075 (-377 (-517))) (-583 (-517)) (-583 (-517))))) +((-3017 (((-388 (-1069 (-517))) (-517)) 28)) (-3933 (((-583 (-1069 (-517))) (-517)) 23)) (-2765 (((-1069 (-517)) (-517)) 21))) +(((-167) (-10 -7 (-15 -3933 ((-583 (-1069 (-517))) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3017 ((-388 (-1069 (-517))) (-517))))) (T -167)) +((-3017 (*1 *2 *3) (-12 (-5 *2 (-388 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))) (-2765 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) (-3933 (*1 *2 *3) (-12 (-5 *2 (-583 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517))))) +(-10 -7 (-15 -3933 ((-583 (-1069 (-517))) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3017 ((-388 (-1069 (-517))) (-517)))) +((-2743 (((-1054 (-199)) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 101)) (-4053 (((-583 (-1056)) (-1054 (-199))) NIL)) (-2695 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77)) (-1218 (((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199)))) NIL)) (-2024 (((-583 (-1056)) (-583 (-199))) NIL)) (-3339 (((-199) (-998 (-772 (-199)))) 22)) (-3191 (((-199) (-998 (-772 (-199)))) 23)) (-2692 (((-349) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 93)) (-1644 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 40)) (-2129 (((-1056) (-199)) NIL)) (-3517 (((-1056) (-583 (-1056))) 19)) (-2742 (((-950) (-1073) (-1073) (-950)) 12))) +(((-168) (-10 -7 (-15 -2695 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1644 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2692 ((-349) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3517 ((-1056) (-583 (-1056)))) (-15 -2742 ((-950) (-1073) (-1073) (-950))))) (T -168)) +((-2742 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-168)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-168)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-168)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-168)))) (-1218 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168))))) +(-10 -7 (-15 -2695 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1644 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2692 ((-349) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3517 ((-1056) (-583 (-1056)))) (-15 -2742 ((-950) (-1073) (-1073) (-950)))) +((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 53) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 28) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-169) (-719)) (T -169)) +NIL +(-719) +((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 58) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-170) (-719)) (T -170)) +NIL +(-719) +((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 67) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-171) (-719)) (T -171)) +NIL +(-719) +((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 54) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 30) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-172) (-719)) (T -172)) +NIL +(-719) +((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 65) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 35) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-173) (-719)) (T -173)) +NIL +(-719) +((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 71) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-174) (-719)) (T -174)) +NIL +(-719) +((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 78) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 43) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-175) (-719)) (T -175)) +NIL +(-719) +((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 68) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-176) (-719)) (T -176)) +NIL +(-719) +((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 62)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-177) (-719)) (T -177)) +NIL +(-719) +((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 60)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 32)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-178) (-719)) (T -178)) +NIL +(-719) +((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 89) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-179) (-719)) (T -179)) +NIL +(-719) +((-2060 (((-3 (-2 (|:| -3837 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 80)) (-2148 (((-517) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 39)) (-3762 (((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 69))) +(((-180) (-10 -7 (-15 -2060 ((-3 (-2 (|:| -3837 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3762 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2148 ((-517) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -180)) +((-2148 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))) (-3762 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))) (-2060 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3837 (-109)) (|:| |w| (-199)))) (-5 *1 (-180))))) +(-10 -7 (-15 -2060 ((-3 (-2 (|:| -3837 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3762 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2148 ((-517) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) +((-2848 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-2304 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 127)) (-3664 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199)))) 87)) (-3727 (((-349) (-623 (-286 (-199)))) 110)) (-1367 (((-623 (-286 (-199))) (-1153 (-286 (-199))) (-583 (-1073))) 107)) (-2001 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-2403 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-2051 (((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1073)) (-1153 (-286 (-199)))) 99)) (-2829 (((-349) (-349) (-583 (-349))) 104) (((-349) (-349) (-349)) 102)) (-2073 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33))) +(((-181) (-10 -7 (-15 -2829 ((-349) (-349) (-349))) (-15 -2829 ((-349) (-349) (-583 (-349)))) (-15 -3727 ((-349) (-623 (-286 (-199))))) (-15 -1367 ((-623 (-286 (-199))) (-1153 (-286 (-199))) (-583 (-1073)))) (-15 -2051 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1073)) (-1153 (-286 (-199))))) (-15 -3664 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -2304 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2848 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2403 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2073 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2001 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -181)) +((-2001 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-2051 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1073))) (-5 *4 (-1153 (-286 (-199)))) (-5 *1 (-181)))) (-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2829 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2829 (*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181))))) +(-10 -7 (-15 -2829 ((-349) (-349) (-349))) (-15 -2829 ((-349) (-349) (-583 (-349)))) (-15 -3727 ((-349) (-623 (-286 (-199))))) (-15 -1367 ((-623 (-286 (-199))) (-1153 (-286 (-199))) (-583 (-1073)))) (-15 -2051 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1073)) (-1153 (-286 (-199))))) (-15 -3664 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -2304 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2848 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2403 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2073 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2001 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) +((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1547 (((-107) $ $) NIL))) +(((-182) (-732)) (T -182)) +NIL +(-732) +((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1547 (((-107) $ $) NIL))) +(((-183) (-732)) (T -183)) +NIL +(-732) +((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 64)) (-1547 (((-107) $ $) NIL))) +(((-184) (-732)) (T -184)) +NIL +(-732) +((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 73)) (-1547 (((-107) $ $) NIL))) +(((-185) (-732)) (T -185)) +NIL +(-732) +((-3463 (((-583 (-1073)) (-1073) (-703)) 22)) (-2093 (((-286 (-199)) (-286 (-199))) 29)) (-2943 (((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 67)) (-3511 (((-107) (-199) (-199) (-583 (-286 (-199)))) 43))) +(((-186) (-10 -7 (-15 -3463 ((-583 (-1073)) (-1073) (-703))) (-15 -2093 ((-286 (-199)) (-286 (-199)))) (-15 -3511 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -2943 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))))) (T -186)) +((-2943 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))) (-3511 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))) (-2093 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-186)) (-5 *3 (-1073))))) +(-10 -7 (-15 -3463 ((-583 (-1073)) (-1073) (-703))) (-15 -2093 ((-286 (-199)) (-286 (-199)))) (-15 -3511 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -2943 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))))) +((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 17)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2238 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 55)) (-1547 (((-107) $ $) NIL))) +(((-187) (-817)) (T -187)) +NIL +(-817) +((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2238 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) NIL)) (-1547 (((-107) $ $) NIL))) +(((-188) (-817)) (T -188)) +NIL +(-817) +((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3307 (((-1158) $) 36) (((-1158) $ (-843) (-843)) 38)) (-1449 (($ $ (-906)) 19) (((-219 (-1056)) $ (-1073)) 15)) (-1242 (((-1158) $) 34)) (-2256 (((-787) $) 31) (($ (-583 |#1|)) 8)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $ $) 27)) (-1642 (($ $ $) 22))) +(((-189 |#1|) (-13 (-1003) (-10 -8 (-15 -1449 ($ $ (-906))) (-15 -1449 ((-219 (-1056)) $ (-1073))) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -2256 ($ (-583 |#1|))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -3307 ((-1158) $ (-843) (-843))))) (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))) (T -189)) +((-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-219 (-1056))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ *3)) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-1642 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-1654 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))) (-5 *1 (-189 *3)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) (-3307 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $)))))))) +(-13 (-1003) (-10 -8 (-15 -1449 ($ $ (-906))) (-15 -1449 ((-219 (-1056)) $ (-1073))) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -2256 ($ (-583 |#1|))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -3307 ((-1158) $ (-843) (-843))))) +((-1602 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1602 (|#2| |#4| (-1 |#2| |#2|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -190)) +((-1602 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1130 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6))))) +(-10 -7 (-15 -1602 (|#2| |#4| (-1 |#2| |#2|)))) +((-3544 ((|#2| |#2| (-703) |#2|) 41)) (-3289 ((|#2| |#2| (-703) |#2|) 37)) (-3988 (((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|)))) 55)) (-3743 (((-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))) |#2|) 51)) (-2504 (((-107) |#2|) 48)) (-3432 (((-388 |#2|) |#2|) 74)) (-3755 (((-388 |#2|) |#2|) 73)) (-1458 ((|#2| |#2| (-703) |#2|) 35)) (-3158 (((-2 (|:| |cont| |#1|) (|:| -2879 (-583 (-2 (|:| |irr| |#2|) (|:| -3631 (-517)))))) |#2| (-107)) 66))) +(((-191 |#1| |#2|) (-10 -7 (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3432 ((-388 |#2|) |#2|)) (-15 -3158 ((-2 (|:| |cont| |#1|) (|:| -2879 (-583 (-2 (|:| |irr| |#2|) (|:| -3631 (-517)))))) |#2| (-107))) (-15 -3743 ((-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))) |#2|)) (-15 -3988 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))))) (-15 -1458 (|#2| |#2| (-703) |#2|)) (-15 -3289 (|#2| |#2| (-703) |#2|)) (-15 -3544 (|#2| |#2| (-703) |#2|)) (-15 -2504 ((-107) |#2|))) (-319) (-1130 |#1|)) (T -191)) +((-2504 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) (-3544 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) (-3289 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) (-1458 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *5)))) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1130 *5)))) (-3432 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4))))) +(-10 -7 (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3432 ((-388 |#2|) |#2|)) (-15 -3158 ((-2 (|:| |cont| |#1|) (|:| -2879 (-583 (-2 (|:| |irr| |#2|) (|:| -3631 (-517)))))) |#2| (-107))) (-15 -3743 ((-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))) |#2|)) (-15 -3988 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))))) (-15 -1458 (|#2| |#2| (-703) |#2|)) (-15 -3289 (|#2| |#2| (-703) |#2|)) (-15 -3544 (|#2| |#2| (-703) |#2|)) (-15 -2504 ((-107) |#2|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-517) $) NIL (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2597 (((-517) $) NIL (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) NIL)) (-2398 (($ (-377 (-517))) 8)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL) (((-920 10) $) 9)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-517) $) NIL (|has| (-517) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1667 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL))) +(((-192) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 10) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -2398 ($ (-377 (-517))))))) (T -192)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-920 10)) (-5 *1 (-192)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192))))) +(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 10) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -2398 ($ (-377 (-517)))))) +((-4151 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1056)) 27) (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|))) 23)) (-1402 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1073) (-772 |#2|) (-772 |#2|) (-107)) 16))) +(((-193 |#1| |#2|) (-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)))) (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1056))) (-15 -1402 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1073) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-29 |#1|))) (T -193)) +((-1402 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1073)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1094) (-880) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 *3))) (-5 *5 (-1056)) (-4 *3 (-13 (-1094) (-880) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 *3))) (-4 *3 (-13 (-1094) (-880) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3))))) +(-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)))) (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1056))) (-15 -1402 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1073) (-772 |#2|) (-772 |#2|) (-107)))) +((-4151 (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1056)) 44) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|))))) 41) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1056)) 45) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|)))) 17))) +(((-194 |#1|) (-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1056))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1056)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (T -194)) +((-4151 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 (-377 (-874 *6))))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 (-377 (-874 *5))))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-996 (-772 (-286 *6)))) (-5 *5 (-1056)) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-996 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5))))) +(-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1056))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1056)))) +((-3225 (((-2 (|:| -1913 (-1069 |#1|)) (|:| |deg| (-843))) (-1069 |#1|)) 20)) (-3502 (((-583 (-286 |#2|)) (-286 |#2|) (-843)) 42))) +(((-195 |#1| |#2|) (-10 -7 (-15 -3225 ((-2 (|:| -1913 (-1069 |#1|)) (|:| |deg| (-843))) (-1069 |#1|))) (-15 -3502 ((-583 (-286 |#2|)) (-286 |#2|) (-843)))) (-961) (-13 (-509) (-779))) (T -195)) +((-3502 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-961)))) (-3225 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -1913 (-1069 *4)) (|:| |deg| (-843)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1069 *4)) (-4 *5 (-13 (-509) (-779)))))) +(-10 -7 (-15 -3225 ((-2 (|:| -1913 (-1069 |#1|)) (|:| |deg| (-843))) (-1069 |#1|))) (-15 -3502 ((-583 (-286 |#2|)) (-286 |#2|) (-843)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3026 ((|#1| $) NIL)) (-4139 ((|#1| $) 25)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-3186 (($ $) NIL)) (-4020 (($ $) 31)) (-2886 ((|#1| |#1| $) NIL)) (-1200 ((|#1| $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-2195 (((-703) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) NIL)) (-2164 ((|#1| |#1| $) 28)) (-3968 ((|#1| |#1| $) 30)) (-1710 (($ |#1| $) NIL)) (-1881 (((-703) $) 27)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2578 ((|#1| $) NIL)) (-4018 ((|#1| $) 26)) (-3561 ((|#1| $) 24)) (-4006 ((|#1| $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3838 ((|#1| |#1| $) NIL)) (-3619 (((-107) $) 9)) (-1746 (($) NIL)) (-3129 ((|#1| $) NIL)) (-2277 (($) NIL) (($ (-583 |#1|)) 16)) (-1694 (((-703) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-2738 ((|#1| $) 13)) (-1222 (($ (-583 |#1|)) NIL)) (-2028 ((|#1| $) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-196 |#1|) (-13 (-227 |#1|) (-10 -8 (-15 -2277 ($ (-583 |#1|))))) (-1003)) (T -196)) +((-2277 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-196 *3))))) +(-13 (-227 |#1|) (-10 -8 (-15 -2277 ($ (-583 |#1|))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1905 (($ (-286 |#1|)) 23)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3153 (((-107) $) NIL)) (-1772 (((-3 (-286 |#1|) "failed") $) NIL)) (-3189 (((-286 |#1|) $) NIL)) (-1212 (($ $) 31)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-1893 (($ (-1 (-286 |#1|) (-286 |#1|)) $) NIL)) (-1191 (((-286 |#1|) $) NIL)) (-3105 (($ $) 30)) (-3985 (((-1056) $) NIL)) (-3593 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($ (-703)) NIL)) (-3151 (($ $) 32)) (-3688 (((-517) $) NIL)) (-2256 (((-787) $) 57) (($ (-517)) NIL) (($ (-286 |#1|)) NIL)) (-2720 (((-286 |#1|) $ $) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 25 T CONST)) (-2409 (($) 50 T CONST)) (-1547 (((-107) $ $) 28)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 19)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 24) (($ (-286 |#1|) $) 18))) +(((-197 |#1| |#2|) (-13 (-561 (-286 |#1|)) (-952 (-286 |#1|)) (-10 -8 (-15 -1191 ((-286 |#1|) $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 ((-286 |#1|) $ $)) (-15 -3220 ($ (-703))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -1893 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1905 ($ (-286 |#1|))) (-15 -3151 ($ $)))) (-13 (-961) (-779)) (-583 (-1073))) (T -197)) +((-1191 (*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3105 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))) (-2720 (*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073))))) (-1905 (*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073))))) (-3151 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073)))))) +(-13 (-561 (-286 |#1|)) (-952 (-286 |#1|)) (-10 -8 (-15 -1191 ((-286 |#1|) $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 ((-286 |#1|) $ $)) (-15 -3220 ($ (-703))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -1893 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1905 ($ (-286 |#1|))) (-15 -3151 ($ $)))) +((-3069 (((-107) (-1056)) 22)) (-3268 (((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107)) 32)) (-1832 (((-3 (-107) "failed") (-1069 |#2|) (-772 |#2|) (-772 |#2|) (-107)) 73) (((-3 (-107) "failed") (-874 |#1|) (-1073) (-772 |#2|) (-772 |#2|) (-107)) 74))) +(((-198 |#1| |#2|) (-10 -7 (-15 -3069 ((-107) (-1056))) (-15 -3268 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-874 |#1|) (-1073) (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-1069 |#2|) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-29 |#1|))) (T -198)) +((-1832 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1069 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1094) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))) (-1832 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-874 *6)) (-5 *4 (-1073)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1094) (-29 *6))) (-5 *1 (-198 *6 *7)))) (-3268 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1094) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1094) (-29 *4)))))) +(-10 -7 (-15 -3069 ((-107) (-1056))) (-15 -3268 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-874 |#1|) (-1073) (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-1069 |#2|) (-772 |#2|) (-772 |#2|) (-107)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 89)) (-2668 (((-517) $) 99)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-1974 (($ $) NIL)) (-1865 (($ $) 77)) (-1721 (($ $) 65)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) 56)) (-1707 (((-107) $ $) NIL)) (-1839 (($ $) 75)) (-1701 (($ $) 63)) (-3709 (((-517) $) 116)) (-1887 (($ $) 80)) (-1743 (($ $) 67)) (-3092 (($) NIL T CONST)) (-2531 (($ $) NIL)) (-1772 (((-3 (-517) "failed") $) 115) (((-3 (-377 (-517)) "failed") $) 112)) (-3189 (((-517) $) 113) (((-377 (-517)) $) 110)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 92)) (-3934 (((-377 (-517)) $ (-703)) 108) (((-377 (-517)) $ (-703) (-703)) 107)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3554 (((-843)) 29) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-3556 (((-107) $) NIL)) (-2645 (($) 39)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-3972 (((-517) $) 35)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-1506 (($ $) NIL)) (-2475 (((-107) $) 88)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) 53) (($) 34 (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3099 (($ $ $) 52) (($) 33 (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3371 (((-517) $) 27)) (-2365 (($ $) 30)) (-3720 (($ $) 57)) (-1867 (($ $) 62)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2138 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-3206 (((-1021) $) NIL) (((-517) $) 90)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL)) (-2597 (($ $) NIL)) (-4005 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-843)) 100)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2077 (((-517) $) 28)) (-3963 (($) 38)) (-2624 (($ $) 61)) (-3146 (((-703) $) NIL)) (-1826 (((-1056) (-1056)) 8)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-3127 (($ $ (-703)) NIL) (($ $) 93)) (-2646 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-1898 (($ $) 78)) (-1754 (($ $) 68)) (-1876 (($ $) 79)) (-1732 (($ $) 66)) (-1853 (($ $) 76)) (-1711 (($ $) 64)) (-3645 (((-349) $) 104) (((-199) $) 101) (((-814 (-349)) $) NIL) (((-493) $) 45)) (-2256 (((-787) $) 42) (($ (-517)) 60) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 60) (($ (-377 (-517))) NIL)) (-2961 (((-703)) NIL)) (-1949 (($ $) NIL)) (-1398 (((-843)) 32) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-2372 (((-843)) 25)) (-3707 (($ $) 83)) (-1788 (($ $) 71) (($ $ $) 109)) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) 81)) (-1765 (($ $) 69)) (-3731 (($ $) 86)) (-1814 (($ $) 74)) (-1492 (($ $) 84)) (-1827 (($ $) 72)) (-3719 (($ $) 85)) (-1802 (($ $) 73)) (-3695 (($ $) 82)) (-1777 (($ $) 70)) (-3710 (($ $) 117)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 36 T CONST)) (-2409 (($) 37 T CONST)) (-2482 (((-1056) $) 19) (((-1056) $ (-107)) 21) (((-1158) (-754) $) 22) (((-1158) (-754) $ (-107)) 23)) (-1564 (($ $) 96)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-2350 (($ $ $) 98)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 54)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 46)) (-1667 (($ $ $) 87) (($ $ (-517)) 55)) (-1654 (($ $) 47) (($ $ $) 49)) (-1642 (($ $ $) 48)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 58) (($ $ (-377 (-517))) 128) (($ $ $) 59)) (* (($ (-843) $) 31) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 50) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) +(((-199) (-13 (-374) (-207) (-760) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -3963 ($)) (-15 -3206 ((-517) $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -1788 ($ $ $)) (-15 -1564 ($ $)) (-15 -2350 ($ $ $)) (-15 -1826 ((-1056) (-1056))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703)))))) (T -199)) +((** (*1 *1 *1 *1) (-5 *1 (-199))) (-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-3963 (*1 *1) (-5 *1 (-199))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-2365 (*1 *1 *1) (-5 *1 (-199))) (-3720 (*1 *1 *1) (-5 *1 (-199))) (-1788 (*1 *1 *1 *1) (-5 *1 (-199))) (-1564 (*1 *1 *1) (-5 *1 (-199))) (-2350 (*1 *1 *1 *1) (-5 *1 (-199))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-199)))) (-3934 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) (-3934 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199))))) +(-13 (-374) (-207) (-760) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -3963 ($)) (-15 -3206 ((-517) $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -1788 ($ $ $)) (-15 -1564 ($ $)) (-15 -2350 ($ $ $)) (-15 -1826 ((-1056) (-1056))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703))))) +((-1264 (((-153 (-199)) (-703) (-153 (-199))) 11) (((-199) (-703) (-199)) 12)) (-2432 (((-153 (-199)) (-153 (-199))) 13) (((-199) (-199)) 14)) (-1221 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 19) (((-199) (-199) (-199)) 22)) (-2150 (((-153 (-199)) (-153 (-199))) 25) (((-199) (-199)) 24)) (-2570 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 43) (((-199) (-199) (-199)) 35)) (-2480 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 48) (((-199) (-199) (-199)) 45)) (-3233 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 15) (((-199) (-199) (-199)) 16)) (-1324 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 17) (((-199) (-199) (-199)) 18)) (-3312 (((-153 (-199)) (-153 (-199))) 60) (((-199) (-199)) 59)) (-1730 (((-199) (-199)) 54) (((-153 (-199)) (-153 (-199))) 58)) (-1564 (((-153 (-199)) (-153 (-199))) 7) (((-199) (-199)) 9)) (-2350 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 30) (((-199) (-199) (-199)) 26))) +(((-200) (-10 -7 (-15 -1564 ((-199) (-199))) (-15 -1564 ((-153 (-199)) (-153 (-199)))) (-15 -2350 ((-199) (-199) (-199))) (-15 -2350 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2432 ((-199) (-199))) (-15 -2432 ((-153 (-199)) (-153 (-199)))) (-15 -2150 ((-199) (-199))) (-15 -2150 ((-153 (-199)) (-153 (-199)))) (-15 -1264 ((-199) (-703) (-199))) (-15 -1264 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -3233 ((-199) (-199) (-199))) (-15 -3233 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2570 ((-199) (-199) (-199))) (-15 -2570 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1324 ((-199) (-199) (-199))) (-15 -1324 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2480 ((-199) (-199) (-199))) (-15 -2480 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1730 ((-153 (-199)) (-153 (-199)))) (-15 -1730 ((-199) (-199))) (-15 -3312 ((-199) (-199))) (-15 -3312 ((-153 (-199)) (-153 (-199)))) (-15 -1221 ((-199) (-199) (-199))) (-15 -1221 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))) (T -200)) +((-1221 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1221 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2480 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2480 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1324 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1324 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2570 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2570 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3233 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3233 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1264 (*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) (-1264 (*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2350 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2350 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))) +(-10 -7 (-15 -1564 ((-199) (-199))) (-15 -1564 ((-153 (-199)) (-153 (-199)))) (-15 -2350 ((-199) (-199) (-199))) (-15 -2350 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2432 ((-199) (-199))) (-15 -2432 ((-153 (-199)) (-153 (-199)))) (-15 -2150 ((-199) (-199))) (-15 -2150 ((-153 (-199)) (-153 (-199)))) (-15 -1264 ((-199) (-703) (-199))) (-15 -1264 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -3233 ((-199) (-199) (-199))) (-15 -3233 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2570 ((-199) (-199) (-199))) (-15 -2570 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1324 ((-199) (-199) (-199))) (-15 -1324 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2480 ((-199) (-199) (-199))) (-15 -2480 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1730 ((-153 (-199)) (-153 (-199)))) (-15 -1730 ((-199) (-199))) (-15 -3312 ((-199) (-199))) (-15 -3312 ((-153 (-199)) (-153 (-199)))) (-15 -1221 ((-199) (-199) (-199))) (-15 -1221 ((-153 (-199)) (-153 (-199)) (-153 (-199))))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) NIL)) (-1231 (($ $ $) NIL)) (-2033 (($ (-1153 |#1|)) NIL) (($ $) NIL)) (-2444 (($ |#1| |#1| |#1|) 32)) (-2818 (((-107) $) NIL)) (-3666 (($ $ (-517) (-517)) NIL)) (-2778 (($ $ (-517) (-517)) NIL)) (-3671 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4008 (($ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3565 (($ $ (-517) (-517) $) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-4087 (($ $ (-517) (-1153 |#1|)) NIL)) (-3739 (($ $ (-517) (-1153 |#1|)) NIL)) (-1278 (($ |#1| |#1| |#1|) 31)) (-3487 (($ (-703) |#1|) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) NIL (|has| |#1| (-278)))) (-1939 (((-1153 |#1|) $ (-517)) NIL)) (-1356 (($ |#1|) 30)) (-1370 (($ |#1|) 29)) (-1428 (($ |#1|) 28)) (-2261 (((-703) $) NIL (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1948 (((-703) $) NIL (|has| |#1| (-509)))) (-3706 (((-583 (-1153 |#1|)) $) NIL (|has| |#1| (-509)))) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#1| $) NIL (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#1|))) 10)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3035 (((-583 (-583 |#1|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-1438 (($) 11)) (-2520 (($ $ $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-1879 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1516 (((-107) $) NIL)) (-3057 ((|#1| $) NIL (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-1153 |#1|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-1153 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1153 |#1|) $ (-1153 |#1|)) 14) (((-1153 |#1|) (-1153 |#1|) $) NIL) (((-865 |#1|) $ (-865 |#1|)) 20)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-201 |#1|) (-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 * ((-865 |#1|) $ (-865 |#1|))) (-15 -1438 ($)) (-15 -1428 ($ |#1|)) (-15 -1370 ($ |#1|)) (-15 -1356 ($ |#1|)) (-15 -1278 ($ |#1| |#1| |#1|)) (-15 -2444 ($ |#1| |#1| |#1|)))) (-13 (-333) (-1094))) (T -201)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094))) (-5 *1 (-201 *3)))) (-1438 (*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1428 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1370 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1356 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1278 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-2444 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094)))))) +(-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 * ((-865 |#1|) $ (-865 |#1|))) (-15 -1438 ($)) (-15 -1428 ($ |#1|)) (-15 -1370 ($ |#1|)) (-15 -1356 ($ |#1|)) (-15 -1278 ($ |#1| |#1| |#1|)) (-15 -2444 ($ |#1| |#1| |#1|)))) +((-2337 (($ (-1 (-107) |#2|) $) 17)) (-3212 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 25)) (-3089 (($) NIL) (($ (-583 |#2|)) 11)) (-1547 (((-107) $ $) 23))) +(((-202 |#1| |#2|) (-10 -8 (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-203 |#2|) (-1003)) (T -202)) +NIL +(-10 -8 (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -1547 ((-107) |#1| |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-203 |#1|) (-1184) (-1003)) (T -203)) +NIL +(-13 (-209 |t#1|)) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-3127 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) 11) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) 19) (($ $ (-703)) NIL) (($ $) 16)) (-2731 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-703)) 14) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL))) +(((-204 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1073))) (-15 -2731 (|#1| |#1| (-583 (-1073)))) (-15 -2731 (|#1| |#1| (-1073) (-703))) (-15 -2731 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|)))) (-205 |#2|) (-961)) (T -204)) +NIL +(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1073))) (-15 -2731 (|#1| |#1| (-583 (-1073)))) (-15 -2731 (|#1| |#1| (-1073) (-703))) (-15 -2731 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-703)) 51) (($ $ (-583 (-1073)) (-583 (-703))) 44 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 43 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 42 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 41 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 39 (|has| |#1| (-207))) (($ $) 37 (|has| |#1| (-207)))) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-703)) 49) (($ $ (-583 (-1073)) (-583 (-703))) 48 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 47 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 46 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 45 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 40 (|has| |#1| (-207))) (($ $) 38 (|has| |#1| (-207)))) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-205 |#1|) (-1184) (-961)) (T -205)) +((-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961))))) +(-13 (-961) (-10 -8 (-15 -3127 ($ $ (-1 |t#1| |t#1|))) (-15 -3127 ($ $ (-1 |t#1| |t#1|) (-703))) (-15 -2731 ($ $ (-1 |t#1| |t#1|))) (-15 -2731 ($ $ (-1 |t#1| |t#1|) (-703))) (IF (|has| |t#1| (-207)) (-6 (-207)) |noBranch|) (IF (|has| |t#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-207) |has| |#1| (-207)) ((-585 $) . T) ((-659) . T) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-3127 (($ $) NIL) (($ $ (-703)) 10)) (-2731 (($ $) 8) (($ $ (-703)) 12))) +(((-206 |#1|) (-10 -8 (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1|))) (-207)) (T -206)) +NIL +(-10 -8 (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $) 38) (($ $ (-703)) 36)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 37) (($ $ (-703)) 35)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-207) (-1184)) (T -207)) +((-3127 (*1 *1 *1) (-4 *1 (-207))) (-2731 (*1 *1 *1) (-4 *1 (-207))) (-3127 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) (-2731 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703))))) +(-13 (-961) (-10 -8 (-15 -3127 ($ $)) (-15 -2731 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2731 ($ $ (-703))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-3089 (($) 12) (($ (-583 |#2|)) NIL)) (-2433 (($ $) 14)) (-2276 (($ (-583 |#2|)) 10)) (-2256 (((-787) $) 21))) +(((-208 |#1| |#2|) (-10 -8 (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2256 ((-787) |#1|)) (-15 -2433 (|#1| |#1|))) (-209 |#2|) (-1003)) (T -208)) +NIL +(-10 -8 (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2256 ((-787) |#1|)) (-15 -2433 (|#1| |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-209 |#1|) (-1184) (-1003)) (T -209)) +((-3089 (*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1003)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-209 *3)))) (-3212 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-209 *2)) (-4 *2 (-1003)))) (-3212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) (-2337 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003))))) +(-13 (-102 |t#1|) (-138 |t#1|) (-10 -8 (-15 -3089 ($)) (-15 -3089 ($ (-583 |t#1|))) (IF (|has| $ (-6 -4180)) (PROGN (-15 -3212 ($ |t#1| $)) (-15 -3212 ($ (-1 (-107) |t#1|) $)) (-15 -2337 ($ (-1 (-107) |t#1|) $))) |noBranch|))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-3342 (((-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703))))) (-265 (-874 (-517)))) 25))) +(((-210) (-10 -7 (-15 -3342 ((-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703))))) (-265 (-874 (-517))))))) (T -210)) +((-3342 (*1 *2 *3) (-12 (-5 *3 (-265 (-874 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703)))))) (-5 *1 (-210))))) +(-10 -7 (-15 -3342 ((-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703))))) (-265 (-874 (-517)))))) +((-1611 (((-703)) 51)) (-3355 (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) 49) (((-623 |#3|) (-623 $)) 41) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3141 (((-125)) 57)) (-3127 (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2256 (((-1153 |#3|) $) NIL) (($ |#3|) NIL) (((-787) $) NIL) (($ (-517)) 12) (($ (-377 (-517))) NIL)) (-2961 (((-703)) 15)) (-1667 (($ $ |#3|) 54))) +(((-211 |#1| |#2| |#3|) (-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)) (-15 -2961 ((-703))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -1611 ((-703))) (-15 -1667 (|#1| |#1| |#3|)) (-15 -3141 ((-125))) (-15 -2256 ((-1153 |#3|) |#1|))) (-212 |#2| |#3|) (-703) (-1108)) (T -211)) +((-3141 (*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1108)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-1611 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-2961 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5))))) +(-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)) (-15 -2961 ((-703))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -1611 ((-703))) (-15 -1667 (|#1| |#1| |#3|)) (-15 -3141 ((-125))) (-15 -2256 ((-1153 |#3|) |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#2| (-1003)))) (-2814 (((-107) $) 72 (|has| |#2| (-123)))) (-2847 (($ (-843)) 127 (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-1640 (($ $ $) 123 (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) 74 (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) 8)) (-1611 (((-703)) 109 (|has| |#2| (-338)))) (-3709 (((-517) $) 121 (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) 52 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-1772 (((-3 (-517) "failed") $) 67 (-4035 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) 64 (-4035 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1003)))) (-3189 (((-517) $) 68 (-4035 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) 65 (-4035 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) 60 (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) 108 (-4035 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 107 (-4035 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 106 (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) 105 (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) 99 (|has| |#2| (-961)))) (-3209 (($) 112 (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) 51)) (-3556 (((-107) $) 119 (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) 30 (|has| $ (-6 -4180)))) (-3848 (((-107) $) 102 (|has| |#2| (-961)))) (-2475 (((-107) $) 120 (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 118 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-2560 (((-583 |#2|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 117 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1433 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) 35)) (-1549 (((-843) $) 111 (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3448 (($ (-843)) 110 (|has| |#2| (-338)))) (-3206 (((-1021) $) 21 (|has| |#2| (-1003)))) (-1647 ((|#2| $) 42 (|has| (-517) (-779)))) (-2565 (($ $ |#2|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ (-517) |#2|) 50) ((|#2| $ (-517)) 49)) (-3501 ((|#2| $ $) 126 (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) 128)) (-3141 (((-125)) 125 (|has| |#2| (-333)))) (-3127 (($ $) 92 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) 90 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) 88 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) 87 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) 86 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) 85 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) 78 (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4180))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-1153 |#2|) $) 129) (((-787) $) 20 (|has| |#2| (-1003))) (($ (-517)) 66 (-3807 (-4035 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) 63 (-4035 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) 62 (|has| |#2| (-1003)))) (-2961 (((-703)) 104 (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4180)))) (-3710 (($ $) 122 (|has| |#2| (-777)))) (-2207 (($ $ (-703)) 100 (|has| |#2| (-961))) (($ $ (-843)) 96 (|has| |#2| (-961)))) (-2396 (($) 71 (|has| |#2| (-123)) CONST)) (-2409 (($) 103 (|has| |#2| (-961)) CONST)) (-2731 (($ $) 91 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) 89 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) 84 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) 83 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) 82 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) 81 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) 80 (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-961)))) (-1606 (((-107) $ $) 115 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1583 (((-107) $ $) 114 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1547 (((-107) $ $) 19 (|has| |#2| (-1003)))) (-1595 (((-107) $ $) 116 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1572 (((-107) $ $) 113 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1667 (($ $ |#2|) 124 (|has| |#2| (-333)))) (-1654 (($ $ $) 94 (|has| |#2| (-961))) (($ $) 93 (|has| |#2| (-961)))) (-1642 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-703)) 101 (|has| |#2| (-961))) (($ $ (-843)) 97 (|has| |#2| (-961)))) (* (($ $ $) 98 (|has| |#2| (-961))) (($ (-517) $) 95 (|has| |#2| (-961))) (($ $ |#2|) 76 (|has| |#2| (-659))) (($ |#2| $) 75 (|has| |#2| (-659))) (($ (-703) $) 73 (|has| |#2| (-123))) (($ (-843) $) 70 (|has| |#2| (-25)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-212 |#1| |#2|) (-1184) (-703) (-1108)) (T -212)) +((-3794 (*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1108)) (-4 *1 (-212 *3 *4)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-212 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1108)))) (-3501 (*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659))))) +(-13 (-550 (-517) |t#2|) (-557 (-1153 |t#2|)) (-10 -8 (-6 -4180) (-15 -3794 ($ (-1153 |t#2|))) (IF (|has| |t#2| (-1003)) (-6 (-381 |t#2|)) |noBranch|) (IF (|has| |t#2| (-961)) (PROGN (-6 (-106 |t#2| |t#2|)) (-6 (-205 |t#2|)) (-6 (-347 |t#2|)) (-15 -2847 ($ (-843))) (-15 -3501 (|t#2| $ $))) |noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |noBranch|) (IF (|has| |t#2| (-123)) (-6 (-123)) |noBranch|) (IF (|has| |t#2| (-659)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |noBranch|) (IF (|has| |t#2| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#2| (-156)) (PROGN (-6 (-37 |t#2|)) (-6 (-156))) |noBranch|) (IF (|has| |t#2| (-6 -4177)) (-6 -4177) |noBranch|) (IF (|has| |t#2| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#2| (-725)) (-6 (-725)) |noBranch|) (IF (|has| |t#2| (-333)) (-6 (-1160 |t#2|)) |noBranch|))) +(((-21) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-23) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-25) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) -3807 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-106 |#2| |#2|) -3807 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-106 $ $) |has| |#2| (-156)) ((-123) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-557 (-787))) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-557 (-1153 |#2|)) . T) ((-156) |has| |#2| (-156)) ((-205 |#2|) |has| |#2| (-961)) ((-207) -12 (|has| |#2| (-207)) (|has| |#2| (-961))) ((-258 (-517) |#2|) . T) ((-260 (-517) |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-338) |has| |#2| (-338)) ((-347 |#2|) |has| |#2| (-961)) ((-381 |#2|) |has| |#2| (-1003)) ((-456 |#2|) . T) ((-550 (-517) |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-585 |#2|) -3807 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-585 $) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-579 (-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))) ((-579 |#2|) |has| |#2| (-961)) ((-650 |#2|) -3807 (|has| |#2| (-333)) (|has| |#2| (-156))) ((-659) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-723) |has| |#2| (-777)) ((-724) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-725) |has| |#2| (-725)) ((-726) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-727) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-777) |has| |#2| (-777)) ((-779) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-822 (-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961))) ((-952 (-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))) ((-952 (-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) ((-952 |#2|) |has| |#2| (-1003)) ((-967 |#2|) -3807 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-967 $) |has| |#2| (-156)) ((-961) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-968) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1015) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1003) -3807 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-1108) . T) ((-1160 |#2|) |has| |#2| (-333))) +((-3905 (((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 21)) (-3225 ((|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 23)) (-1893 (((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)) 18))) +(((-213 |#1| |#2| |#3|) (-10 -7 (-15 -3905 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3225 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1893 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)))) (-703) (-1108) (-1108)) (T -213)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *2 (-1108)) (-5 *1 (-213 *5 *6 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1108)) (-4 *5 (-1108)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5))))) +(-10 -7 (-15 -3905 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3225 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1893 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)))) +((-2750 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2814 (((-107) $) NIL (|has| |#2| (-123)))) (-2847 (($ (-843)) 56 (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) 60 (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) 48 (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) 17)) (-1611 (((-703)) NIL (|has| |#2| (-338)))) (-3709 (((-517) $) NIL (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) 27 (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) 53 (|has| |#2| (-961)))) (-3209 (($) NIL (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) 51)) (-3556 (((-107) $) NIL (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) 15 (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#2| (-961)))) (-2475 (((-107) $) NIL (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 20 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 (((-517) $) 50 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) 41)) (-1549 (((-843) $) NIL (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#2| (-338)))) (-3206 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1647 ((|#2| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) 24 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) 21)) (-3501 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) 18)) (-3141 (((-125)) NIL (|has| |#2| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#2|) $) 10) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) 13 (|has| |#2| (-1003)))) (-2961 (((-703)) NIL (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#2| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2396 (($) 35 (|has| |#2| (-123)) CONST)) (-2409 (($) 38 (|has| |#2| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1547 (((-107) $ $) 26 (|has| |#2| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) 58 (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1642 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) 49 (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) 42 (|has| |#2| (-659))) (($ |#2| $) 43 (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-214 |#1| |#2|) (-212 |#1| |#2|) (-703) (-1108)) (T -214)) +NIL +(-212 |#1| |#2|) +((-2632 (((-517) (-583 (-1056))) 24) (((-517) (-1056)) 19)) (-1678 (((-1158) (-583 (-1056))) 29) (((-1158) (-1056)) 28)) (-2124 (((-1056)) 14)) (-1382 (((-1056) (-517) (-1056)) 16)) (-2986 (((-583 (-1056)) (-583 (-1056)) (-517) (-1056)) 25) (((-1056) (-1056) (-517) (-1056)) 23)) (-2012 (((-583 (-1056)) (-583 (-1056))) 13) (((-583 (-1056)) (-1056)) 11))) +(((-215) (-10 -7 (-15 -2012 ((-583 (-1056)) (-1056))) (-15 -2012 ((-583 (-1056)) (-583 (-1056)))) (-15 -2124 ((-1056))) (-15 -1382 ((-1056) (-517) (-1056))) (-15 -2986 ((-1056) (-1056) (-517) (-1056))) (-15 -2986 ((-583 (-1056)) (-583 (-1056)) (-517) (-1056))) (-15 -1678 ((-1158) (-1056))) (-15 -1678 ((-1158) (-583 (-1056)))) (-15 -2632 ((-517) (-1056))) (-15 -2632 ((-517) (-583 (-1056)))))) (T -215)) +((-2632 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-517)) (-5 *1 (-215)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-215)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1158)) (-5 *1 (-215)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-215)))) (-2986 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1056))) (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *1 (-215)))) (-2986 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215)))) (-1382 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215)))) (-2124 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-215)))) (-2012 (*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)))) (-2012 (*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)) (-5 *3 (-1056))))) +(-10 -7 (-15 -2012 ((-583 (-1056)) (-1056))) (-15 -2012 ((-583 (-1056)) (-583 (-1056)))) (-15 -2124 ((-1056))) (-15 -1382 ((-1056) (-517) (-1056))) (-15 -2986 ((-1056) (-1056) (-517) (-1056))) (-15 -2986 ((-583 (-1056)) (-583 (-1056)) (-517) (-1056))) (-15 -1678 ((-1158) (-1056))) (-15 -1678 ((-1158) (-583 (-1056)))) (-15 -2632 ((-517) (-1056))) (-15 -2632 ((-517) (-583 (-1056))))) +((-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 18)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) 25) (($ $ (-377 (-517))) NIL))) +(((-216 |#1|) (-10 -8 (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2207 (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-217)) (T -216)) +NIL +(-10 -8 (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2207 (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 39)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 44)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 40)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 41)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 43) (($ $ (-377 (-517))) 42))) +(((-217) (-1184)) (T -217)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-4118 (*1 *1 *1) (-4 *1 (-217)))) +(-13 (-262) (-37 (-377 (-517))) (-10 -8 (-15 ** ($ $ (-517))) (-15 -2207 ($ $ (-517))) (-15 -4118 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-262) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-659) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2779 (($ $) 57)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-1254 (($ $ $) 53 (|has| $ (-6 -4181)))) (-3748 (($ $ $) 52 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-2493 (($ $) 56)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3098 (($ $) 55)) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 59)) (-3059 (($ $) 58)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2568 (($ $ $) 54 (|has| $ (-6 -4181)))) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-218 |#1|) (-1184) (-1108)) (T -218)) +((-2068 (*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-3059 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-2493 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-3098 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-1254 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-3748 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108))))) +(-13 (-926 |t#1|) (-10 -8 (-15 -2068 (|t#1| $)) (-15 -3059 ($ $)) (-15 -2779 ($ $)) (-15 -2493 ($ $)) (-15 -3098 ($ $)) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2568 ($ $ $)) (-15 -1254 ($ $ $)) (-15 -3748 ($ $ $))) |noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) 10 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "rest" $) NIL (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1660 (($ $) NIL) (($ $ (-703)) NIL)) (-3483 (($ $) NIL (|has| |#1| (-1003)))) (-1679 (($ $) 7 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3237 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1529 (($ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-703) $ "count") 16)) (-2459 (((-517) $ $) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3891 (($ (-583 |#1|)) 22)) (-2655 (((-107) $) NIL)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2568 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2452 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2256 (($ (-583 |#1|)) 17) (((-583 |#1|) $) 18) (((-787) $) 21 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 14 (|has| $ (-6 -4180))))) +(((-219 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2256 ($ (-583 |#1|))) (-15 -2256 ((-583 |#1|) $)) (-15 -3891 ($ (-583 |#1|))) (-15 -1449 ($ $ "unique")) (-15 -1449 ($ $ "sort")) (-15 -1449 ((-703) $ "count")))) (-779)) (T -219)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-3891 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779))))) +(-13 (-603 |#1|) (-10 -8 (-15 -2256 ($ (-583 |#1|))) (-15 -2256 ((-583 |#1|) $)) (-15 -3891 ($ (-583 |#1|))) (-15 -1449 ($ $ "unique")) (-15 -1449 ($ $ "sort")) (-15 -1449 ((-703) $ "count")))) +((-2063 (((-3 (-703) "failed") |#1| |#1| (-703)) 26))) +(((-220 |#1|) (-10 -7 (-15 -2063 ((-3 (-703) "failed") |#1| |#1| (-703)))) (-13 (-659) (-338) (-10 -7 (-15 ** (|#1| |#1| (-517)))))) (T -220)) +((-2063 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3))))) +(-10 -7 (-15 -2063 ((-3 (-703) "failed") |#1| |#1| (-703)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-789 |#1|)) $) NIL)) (-2352 (((-1069 $) $ (-789 |#1|)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3924 (($ $ (-583 (-517))) NIL)) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-214 (-2296 |#1|) (-703)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) NIL) (($ (-1069 $) (-789 |#1|)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-214 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 (((-214 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-214 (-2296 |#1|) (-703)) (-214 (-2296 |#1|) (-703))) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 (((-214 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-214 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-221 |#1| |#2|) (-13 (-871 |#2| (-214 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) (-583 (-1073)) (-961)) (T -221)) +((-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961))))) +(-13 (-871 |#2| (-214 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) +((-2256 (((-787) $) 7))) +(((-222) (-557 (-787))) (T -222)) +NIL +(-557 (-787)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2847 (($ (-843)) NIL (|has| |#4| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#4| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#4| (-338)))) (-3709 (((-517) $) NIL (|has| |#4| (-777)))) (-2411 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1003))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-3189 ((|#4| $) NIL (|has| |#4| (-1003))) (((-517) $) NIL (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-3355 (((-2 (|:| -2790 (-623 |#4|)) (|:| |vec| (-1153 |#4|))) (-623 $) (-1153 $)) NIL (|has| |#4| (-961))) (((-623 |#4|) (-623 $)) NIL (|has| |#4| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961))))) (-3621 (((-3 $ "failed") $) NIL (|has| |#4| (-961)))) (-3209 (($) NIL (|has| |#4| (-338)))) (-1445 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#4| $ (-517)) NIL)) (-3556 (((-107) $) NIL (|has| |#4| (-777)))) (-1536 (((-583 |#4|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#4| (-961)))) (-2475 (((-107) $) NIL (|has| |#4| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-2560 (((-583 |#4|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1433 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#4| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#4| (-338)))) (-3206 (((-1021) $) NIL)) (-1647 ((|#4| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#4|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1941 (((-583 |#4|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#4| $ (-517) |#4|) NIL) ((|#4| $ (-517)) 12)) (-3501 ((|#4| $ $) NIL (|has| |#4| (-961)))) (-3794 (($ (-1153 |#4|)) NIL)) (-3141 (((-125)) NIL (|has| |#4| (-333)))) (-3127 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-961))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961))))) (-3217 (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#4|) $) NIL) (((-787) $) NIL) (($ |#4|) NIL (|has| |#4| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003))) (|has| |#4| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-2961 (((-703)) NIL (|has| |#4| (-961)))) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#4| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#4| (-961))) (($ $ (-843)) NIL (|has| |#4| (-961)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL (|has| |#4| (-961)) CONST)) (-2731 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-961))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961))))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1572 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1667 (($ $ |#4|) NIL (|has| |#4| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#4| (-961))) (($ $ (-843)) NIL (|has| |#4| (-961)))) (* (($ |#2| $) 14) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-659))) (($ |#4| $) NIL (|has| |#4| (-659))) (($ $ $) NIL (|has| |#4| (-961)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-223 |#1| |#2| |#3| |#4|) (-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|)) (-843) (-961) (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-585 |#2|)) (T -223)) +NIL +(-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2847 (($ (-843)) NIL (|has| |#3| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#3| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#3| (-338)))) (-3709 (((-517) $) NIL (|has| |#3| (-777)))) (-2411 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1003))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-3189 ((|#3| $) NIL (|has| |#3| (-1003))) (((-517) $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-3355 (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) NIL (|has| |#3| (-961))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961))))) (-3621 (((-3 $ "failed") $) NIL (|has| |#3| (-961)))) (-3209 (($) NIL (|has| |#3| (-338)))) (-1445 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#3| $ (-517)) NIL)) (-3556 (((-107) $) NIL (|has| |#3| (-777)))) (-1536 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#3| (-961)))) (-2475 (((-107) $) NIL (|has| |#3| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2560 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1433 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#3| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#3| (-338)))) (-3206 (((-1021) $) NIL)) (-1647 ((|#3| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#3|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-1941 (((-583 |#3|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) 11)) (-3501 ((|#3| $ $) NIL (|has| |#3| (-961)))) (-3794 (($ (-1153 |#3|)) NIL)) (-3141 (((-125)) NIL (|has| |#3| (-333)))) (-3127 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961))))) (-3217 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#3|) $) NIL) (((-787) $) NIL) (($ |#3|) NIL (|has| |#3| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (|has| |#3| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-2961 (((-703)) NIL (|has| |#3| (-961)))) (-3675 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#3| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL (|has| |#3| (-961)) CONST)) (-2731 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961))))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1572 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1667 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (* (($ |#2| $) 13) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ $ $) NIL (|has| |#3| (-961)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-224 |#1| |#2| |#3|) (-13 (-212 |#1| |#3|) (-585 |#2|)) (-703) (-961) (-585 |#2|)) (T -224)) +NIL +(-13 (-212 |#1| |#3|) (-585 |#2|)) +((-3469 (((-583 (-703)) $) 47) (((-583 (-703)) $ |#3|) 50)) (-2932 (((-703) $) 49) (((-703) $ |#3|) 52)) (-3960 (($ $) 65)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3972 (((-703) $ |#3|) 39) (((-703) $) 36)) (-2656 (((-1 $ (-703)) |#3|) 15) (((-1 $ (-703)) $) 77)) (-2133 ((|#4| $) 58)) (-2982 (((-107) $) 56)) (-2604 (($ $) 64)) (-2051 (($ $ (-583 (-265 $))) 96) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-583 |#3|) (-583 |#2|)) 84)) (-3127 (($ $ |#4|) NIL) (($ $ (-583 |#4|)) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) NIL) (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1890 (((-583 |#3|) $) 75)) (-3688 ((|#5| $) NIL) (((-703) $ |#4|) NIL) (((-583 (-703)) $ (-583 |#4|)) NIL) (((-703) $ |#3|) 44)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-377 (-517))) NIL) (($ $) NIL))) +(((-225 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#3| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#3| |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2133 (|#4| |#1|)) (-15 -2982 ((-107) |#1|)) (-15 -2932 ((-703) |#1| |#3|)) (-15 -3469 ((-583 (-703)) |#1| |#3|)) (-15 -2932 ((-703) |#1|)) (-15 -3469 ((-583 (-703)) |#1|)) (-15 -3688 ((-703) |#1| |#3|)) (-15 -3972 ((-703) |#1|)) (-15 -3972 ((-703) |#1| |#3|)) (-15 -1890 ((-583 |#3|) |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#3|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -3688 ((-703) |#1| |#4|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 (|#5| |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3127 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#4| (-703))) (-15 -3127 (|#1| |#1| (-583 |#4|))) (-15 -3127 (|#1| |#1| |#4|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-226 |#2| |#3| |#4| |#5|) (-961) (-779) (-239 |#3|) (-725)) (T -225)) +NIL +(-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#3| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#3| |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2133 (|#4| |#1|)) (-15 -2982 ((-107) |#1|)) (-15 -2932 ((-703) |#1| |#3|)) (-15 -3469 ((-583 (-703)) |#1| |#3|)) (-15 -2932 ((-703) |#1|)) (-15 -3469 ((-583 (-703)) |#1|)) (-15 -3688 ((-703) |#1| |#3|)) (-15 -3972 ((-703) |#1|)) (-15 -3972 ((-703) |#1| |#3|)) (-15 -1890 ((-583 |#3|) |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#3|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -3688 ((-703) |#1| |#4|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 (|#5| |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3127 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#4| (-703))) (-15 -3127 (|#1| |#1| (-583 |#4|))) (-15 -3127 (|#1| |#1| |#4|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3469 (((-583 (-703)) $) 214) (((-583 (-703)) $ |#2|) 212)) (-2932 (((-703) $) 213) (((-703) $ |#2|) 211)) (-1364 (((-583 |#3|) $) 110)) (-2352 (((-1069 $) $ |#3|) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-3960 (($ $) 207)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135) ((|#2| $) 220)) (-3388 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-1212 (($ $) 154)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-1436 (($ $ |#1| |#4| $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ |#2|) 217) (((-703) $) 216)) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1350 (($ (-1069 |#1|) |#3|) 117) (($ (-1069 $) |#3|) 116)) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| |#4|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 120)) (-2349 ((|#4| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 |#4| |#4|) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-2656 (((-1 $ (-703)) |#2|) 219) (((-1 $ (-703)) $) 206 (|has| |#1| (-207)))) (-1409 (((-3 |#3| "failed") $) 123)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148)) (-2133 ((|#3| $) 209)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3985 (((-1056) $) 9)) (-2982 (((-107) $) 210)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) 113)) (-2604 (($ $) 208)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) 204 (|has| |#1| (-207))) (($ $ |#2| |#1|) 203 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) 202 (|has| |#1| (-207)))) (-3010 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-3127 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39) (($ $) 238 (|has| |#1| (-207))) (($ $ (-703)) 236 (|has| |#1| (-207))) (($ $ (-1073)) 234 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 233 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 232 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 231 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1890 (((-583 |#2|) $) 218)) (-3688 ((|#4| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129) (((-703) $ |#2|) 215)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ |#4|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35) (($ $) 237 (|has| |#1| (-207))) (($ $ (-703)) 235 (|has| |#1| (-207))) (($ $ (-1073)) 230 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 229 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 228 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 227 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-226 |#1| |#2| |#3| |#4|) (-1184) (-961) (-779) (-239 |t#2|) (-725)) (T -226)) +((-2656 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))) (-3972 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3688 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3469 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-2932 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))) (-2133 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))) (-2604 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-2656 (*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6))))) +(-13 (-871 |t#1| |t#4| |t#3|) (-205 |t#1|) (-952 |t#2|) (-10 -8 (-15 -2656 ((-1 $ (-703)) |t#2|)) (-15 -1890 ((-583 |t#2|) $)) (-15 -3972 ((-703) $ |t#2|)) (-15 -3972 ((-703) $)) (-15 -3688 ((-703) $ |t#2|)) (-15 -3469 ((-583 (-703)) $)) (-15 -2932 ((-703) $)) (-15 -3469 ((-583 (-703)) $ |t#2|)) (-15 -2932 ((-703) $ |t#2|)) (-15 -2982 ((-107) $)) (-15 -2133 (|t#3| $)) (-15 -2604 ($ $)) (-15 -3960 ($ $)) (IF (|has| |t#1| (-207)) (PROGN (-6 (-478 |t#2| |t#1|)) (-6 (-478 |t#2| $)) (-6 (-280 $)) (-15 -2656 ((-1 $ (-703)) $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#4|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#2| |#1|) |has| |#1| (-207)) ((-478 |#2| $) |has| |#1| (-207)) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-871 |#1| |#4| |#3|) . T) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#2|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) |has| |#1| (-831))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3026 ((|#1| $) 54)) (-4139 ((|#1| $) 44)) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-3186 (($ $) 60)) (-4020 (($ $) 48)) (-2886 ((|#1| |#1| $) 46)) (-1200 ((|#1| $) 45)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-2195 (((-703) $) 61)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-2164 ((|#1| |#1| $) 52)) (-3968 ((|#1| |#1| $) 51)) (-1710 (($ |#1| $) 40)) (-1881 (((-703) $) 55)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2578 ((|#1| $) 62)) (-4018 ((|#1| $) 50)) (-3561 ((|#1| $) 49)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3838 ((|#1| |#1| $) 58)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3129 ((|#1| $) 59)) (-2277 (($) 57) (($ (-583 |#1|)) 56)) (-1694 (((-703) $) 43)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-2738 ((|#1| $) 53)) (-1222 (($ (-583 |#1|)) 42)) (-2028 ((|#1| $) 63)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-227 |#1|) (-1184) (-1108)) (T -227)) +((-2277 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-227 *3)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-2164 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-3968 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-4020 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108))))) +(-13 (-1022 |t#1|) (-911 |t#1|) (-10 -8 (-15 -2277 ($)) (-15 -2277 ($ (-583 |t#1|))) (-15 -1881 ((-703) $)) (-15 -3026 (|t#1| $)) (-15 -2738 (|t#1| $)) (-15 -2164 (|t#1| |t#1| $)) (-15 -3968 (|t#1| |t#1| $)) (-15 -4018 (|t#1| $)) (-15 -3561 (|t#1| $)) (-15 -4020 ($ $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-911 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1022 |#1|) . T) ((-1108) . T)) +((-3612 (((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 139)) (-1907 (((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349))) 160) (((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236))) 158) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349))) 163) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 159) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349))) 150) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 149) (((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349))) 129) (((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236))) 127) (((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349))) 128) (((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 125)) (-1863 (((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349))) 162) (((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236))) 161) (((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349))) 165) (((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 164) (((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349))) 152) (((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 151) (((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349))) 135) (((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236))) 134) (((-1155) (-802 (-1 (-199) (-199))) (-998 (-349))) 133) (((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 132) (((-1154) (-800 (-1 (-199) (-199))) (-998 (-349))) 99) (((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 98) (((-1154) (-1 (-199) (-199)) (-998 (-349))) 95) (((-1154) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236))) 94))) +(((-228) (-10 -7 (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -3612 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -228)) +((-3612 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228))))) +(-10 -7 (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -3612 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))))) +((-1863 (((-1154) (-265 |#2|) (-1073) (-1073) (-583 (-236))) 93))) +(((-229 |#1| |#2|) (-10 -7 (-15 -1863 ((-1154) (-265 |#2|) (-1073) (-1073) (-583 (-236))))) (-13 (-509) (-779) (-952 (-517))) (-400 |#1|)) (T -229)) +((-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1073)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-1154)) (-5 *1 (-229 *6 *7))))) +(-10 -7 (-15 -1863 ((-1154) (-265 |#2|) (-1073) (-1073) (-583 (-236))))) +((-4136 (((-517) (-517)) 50)) (-3574 (((-517) (-517)) 51)) (-2419 (((-199) (-199)) 52)) (-2995 (((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199))) 49)) (-2523 (((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107)) 47))) +(((-230) (-10 -7 (-15 -2523 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107))) (-15 -2995 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)))) (-15 -4136 ((-517) (-517))) (-15 -3574 ((-517) (-517))) (-15 -2419 ((-199) (-199))))) (T -230)) +((-2419 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))) (-3574 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-4136 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-2995 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *2 (-1155)) (-5 *1 (-230)))) (-2523 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *5 (-107)) (-5 *2 (-1155)) (-5 *1 (-230))))) +(-10 -7 (-15 -2523 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107))) (-15 -2995 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)))) (-15 -4136 ((-517) (-517))) (-15 -3574 ((-517) (-517))) (-15 -2419 ((-199) (-199)))) +((-2256 (((-996 (-349)) (-996 (-286 |#1|))) 16))) +(((-231 |#1|) (-10 -7 (-15 -2256 ((-996 (-349)) (-996 (-286 |#1|))))) (-13 (-779) (-509) (-558 (-349)))) (T -231)) +((-2256 (*1 *2 *3) (-12 (-5 *3 (-996 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-996 (-349))) (-5 *1 (-231 *4))))) +(-10 -7 (-15 -2256 ((-996 (-349)) (-996 (-286 |#1|))))) +((-1907 (((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349))) 69) (((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236))) 68) (((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349))) 59) (((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236))) 58) (((-1034 (-199)) (-802 |#1|) (-996 (-349))) 50) (((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236))) 49)) (-1863 (((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349))) 72) (((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236))) 71) (((-1155) |#1| (-996 (-349)) (-996 (-349))) 62) (((-1155) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236))) 61) (((-1155) (-802 |#1|) (-996 (-349))) 54) (((-1155) (-802 |#1|) (-996 (-349)) (-583 (-236))) 53) (((-1154) (-800 |#1|) (-996 (-349))) 41) (((-1154) (-800 |#1|) (-996 (-349)) (-583 (-236))) 40) (((-1154) |#1| (-996 (-349))) 33) (((-1154) |#1| (-996 (-349)) (-583 (-236))) 32))) +(((-232 |#1|) (-10 -7 (-15 -1863 ((-1154) |#1| (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) |#1| (-996 (-349)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349))))) (-13 (-558 (-493)) (-1003))) (T -232)) +((-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *5)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003)))))) +(-10 -7 (-15 -1863 ((-1154) |#1| (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) |#1| (-996 (-349)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349))))) +((-1863 (((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236))) 21) (((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199))) 22) (((-1154) (-583 (-865 (-199))) (-583 (-236))) 13) (((-1154) (-583 (-865 (-199)))) 14) (((-1154) (-583 (-199)) (-583 (-199)) (-583 (-236))) 18) (((-1154) (-583 (-199)) (-583 (-199))) 19))) +(((-233) (-10 -7 (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1863 ((-1154) (-583 (-865 (-199))))) (-15 -1863 ((-1154) (-583 (-865 (-199))) (-583 (-236)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))) (T -233)) +((-1863 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *2 (-1154)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1154)) (-5 *1 (-233))))) +(-10 -7 (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1863 ((-1154) (-583 (-865 (-199))))) (-15 -1863 ((-1154) (-583 (-865 (-199))) (-583 (-236)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236))))) +((-3222 (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 24)) (-1703 (((-843) (-583 (-236)) (-843)) 49)) (-3082 (((-843) (-583 (-236)) (-843)) 48)) (-3029 (((-583 (-349)) (-583 (-236)) (-583 (-349))) 65)) (-3588 (((-349) (-583 (-236)) (-349)) 55)) (-3560 (((-843) (-583 (-236)) (-843)) 50)) (-1591 (((-107) (-583 (-236)) (-107)) 26)) (-4150 (((-1056) (-583 (-236)) (-1056)) 19)) (-3228 (((-1056) (-583 (-236)) (-1056)) 25)) (-1379 (((-1034 (-199)) (-583 (-236))) 43)) (-1868 (((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349)))) 37)) (-2558 (((-797) (-583 (-236)) (-797)) 31)) (-2896 (((-797) (-583 (-236)) (-797)) 32)) (-1499 (((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199)))) 60)) (-2827 (((-107) (-583 (-236)) (-107)) 15)) (-2594 (((-107) (-583 (-236)) (-107)) 14))) +(((-234) (-10 -7 (-15 -2594 ((-107) (-583 (-236)) (-107))) (-15 -2827 ((-107) (-583 (-236)) (-107))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ((-1056) (-583 (-236)) (-1056))) (-15 -3228 ((-1056) (-583 (-236)) (-1056))) (-15 -1591 ((-107) (-583 (-236)) (-107))) (-15 -2558 ((-797) (-583 (-236)) (-797))) (-15 -2896 ((-797) (-583 (-236)) (-797))) (-15 -1868 ((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349))))) (-15 -3082 ((-843) (-583 (-236)) (-843))) (-15 -1703 ((-843) (-583 (-236)) (-843))) (-15 -1379 ((-1034 (-199)) (-583 (-236)))) (-15 -3560 ((-843) (-583 (-236)) (-843))) (-15 -3588 ((-349) (-583 (-236)) (-349))) (-15 -1499 ((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199))))) (-15 -3029 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))) (T -234)) +((-3029 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1499 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3588 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3560 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-234)))) (-1703 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3082 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1868 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2896 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2558 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1591 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3228 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4150 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3222 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2827 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2594 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))) +(-10 -7 (-15 -2594 ((-107) (-583 (-236)) (-107))) (-15 -2827 ((-107) (-583 (-236)) (-107))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ((-1056) (-583 (-236)) (-1056))) (-15 -3228 ((-1056) (-583 (-236)) (-1056))) (-15 -1591 ((-107) (-583 (-236)) (-107))) (-15 -2558 ((-797) (-583 (-236)) (-797))) (-15 -2896 ((-797) (-583 (-236)) (-797))) (-15 -1868 ((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349))))) (-15 -3082 ((-843) (-583 (-236)) (-843))) (-15 -1703 ((-843) (-583 (-236)) (-843))) (-15 -1379 ((-1034 (-199)) (-583 (-236)))) (-15 -3560 ((-843) (-583 (-236)) (-843))) (-15 -3588 ((-349) (-583 (-236)) (-349))) (-15 -1499 ((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199))))) (-15 -3029 ((-583 (-349)) (-583 (-236)) (-583 (-349))))) +((-2075 (((-3 |#1| "failed") (-583 (-236)) (-1073)) 17))) +(((-235 |#1|) (-10 -7 (-15 -2075 ((-3 |#1| "failed") (-583 (-236)) (-1073)))) (-1108)) (T -235)) +((-2075 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *1 (-235 *2)) (-4 *2 (-1108))))) +(-10 -7 (-15 -2075 ((-3 |#1| "failed") (-583 (-236)) (-1073)))) +((-2750 (((-107) $ $) NIL)) (-3222 (($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 14)) (-1703 (($ (-843)) 70)) (-3082 (($ (-843)) 69)) (-3295 (($ (-583 (-349))) 76)) (-3588 (($ (-349)) 55)) (-3560 (($ (-843)) 71)) (-1591 (($ (-107)) 22)) (-4150 (($ (-1056)) 17)) (-3228 (($ (-1056)) 18)) (-1379 (($ (-1034 (-199))) 65)) (-1868 (($ (-583 (-998 (-349)))) 61)) (-2919 (($ (-583 (-998 (-349)))) 56) (($ (-583 (-998 (-377 (-517))))) 60)) (-1480 (($ (-349)) 28) (($ (-797)) 32)) (-2305 (((-107) (-583 $) (-1073)) 85)) (-2075 (((-3 (-51) "failed") (-583 $) (-1073)) 87)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1728 (($ (-349)) 33) (($ (-797)) 34)) (-4114 (($ (-1 (-865 (-199)) (-865 (-199)))) 54)) (-1499 (($ (-1 (-865 (-199)) (-865 (-199)))) 72)) (-3590 (($ (-1 (-199) (-199))) 38) (($ (-1 (-199) (-199) (-199))) 42) (($ (-1 (-199) (-199) (-199) (-199))) 46)) (-2256 (((-787) $) 81)) (-1810 (($ (-107)) 23) (($ (-583 (-998 (-349)))) 50)) (-2594 (($ (-107)) 24)) (-1547 (((-107) $ $) 83))) +(((-236) (-13 (-1003) (-10 -8 (-15 -2594 ($ (-107))) (-15 -1810 ($ (-107))) (-15 -3222 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ($ (-1056))) (-15 -3228 ($ (-1056))) (-15 -1591 ($ (-107))) (-15 -1810 ($ (-583 (-998 (-349))))) (-15 -4114 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1480 ($ (-349))) (-15 -1480 ($ (-797))) (-15 -1728 ($ (-349))) (-15 -1728 ($ (-797))) (-15 -3590 ($ (-1 (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3588 ($ (-349))) (-15 -2919 ($ (-583 (-998 (-349))))) (-15 -2919 ($ (-583 (-998 (-377 (-517)))))) (-15 -1868 ($ (-583 (-998 (-349))))) (-15 -1379 ($ (-1034 (-199)))) (-15 -3082 ($ (-843))) (-15 -1703 ($ (-843))) (-15 -3560 ($ (-843))) (-15 -1499 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -3295 ($ (-583 (-349)))) (-15 -2075 ((-3 (-51) "failed") (-583 $) (-1073))) (-15 -2305 ((-107) (-583 $) (-1073)))))) (T -236)) +((-2594 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-1810 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236)))) (-3228 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-1810 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) (-3588 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-377 (-517))))) (-5 *1 (-236)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-1379 (*1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-236)))) (-3082 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-3560 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) (-3295 (*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) (-2075 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-51)) (-5 *1 (-236)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-107)) (-5 *1 (-236))))) +(-13 (-1003) (-10 -8 (-15 -2594 ($ (-107))) (-15 -1810 ($ (-107))) (-15 -3222 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ($ (-1056))) (-15 -3228 ($ (-1056))) (-15 -1591 ($ (-107))) (-15 -1810 ($ (-583 (-998 (-349))))) (-15 -4114 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1480 ($ (-349))) (-15 -1480 ($ (-797))) (-15 -1728 ($ (-349))) (-15 -1728 ($ (-797))) (-15 -3590 ($ (-1 (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3588 ($ (-349))) (-15 -2919 ($ (-583 (-998 (-349))))) (-15 -2919 ($ (-583 (-998 (-377 (-517)))))) (-15 -1868 ($ (-583 (-998 (-349))))) (-15 -1379 ($ (-1034 (-199)))) (-15 -3082 ($ (-843))) (-15 -1703 ($ (-843))) (-15 -3560 ($ (-843))) (-15 -1499 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -3295 ($ (-583 (-349)))) (-15 -2075 ((-3 (-51) "failed") (-583 $) (-1073))) (-15 -2305 ((-107) (-583 $) (-1073))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3469 (((-583 (-703)) $) NIL) (((-583 (-703)) $ |#2|) NIL)) (-2932 (((-703) $) NIL) (((-703) $ |#2|) NIL)) (-1364 (((-583 |#3|) $) NIL)) (-2352 (((-1069 $) $ |#3|) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 |#3|)) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3960 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1026 |#1| |#2|) "failed") $) 20)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1026 |#1| |#2|) $) NIL)) (-3388 (($ $ $ |#3|) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 |#3|) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))))) (-3972 (((-703) $ |#2|) NIL) (((-703) $) 10)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) |#3|) NIL) (($ (-1069 $) |#3|) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) NIL)) (-2349 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 |#3|) (-489 |#3|)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2656 (((-1 $ (-703)) |#2|) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1409 (((-3 |#3| "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-2133 ((|#3| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2982 (((-107) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) NIL)) (-2604 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-583 |#3|) (-583 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-207))) (($ $ |#2| |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3010 (($ $ |#3|) NIL (|has| |#1| (-156)))) (-3127 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1890 (((-583 |#2|) $) NIL)) (-3688 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL) (((-703) $ |#2|) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1026 |#1| |#2|)) 28) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-237 |#1| |#2| |#3|) (-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-952 (-1026 |#1| |#2|))) (-961) (-779) (-239 |#2|)) (T -237)) +NIL +(-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-952 (-1026 |#1| |#2|))) +((-2932 (((-703) $) 30)) (-1772 (((-3 |#2| "failed") $) 17)) (-3189 ((|#2| $) 27)) (-3127 (($ $) 12) (($ $ (-703)) 15)) (-2256 (((-787) $) 26) (($ |#2|) 10)) (-1547 (((-107) $ $) 20)) (-1572 (((-107) $ $) 29))) +(((-238 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -2932 ((-703) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-239 |#2|) (-779)) (T -238)) +NIL +(-10 -8 (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -2932 ((-703) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2932 (((-703) $) 22)) (-1638 ((|#1| $) 23)) (-1772 (((-3 |#1| "failed") $) 27)) (-3189 ((|#1| $) 26)) (-3972 (((-703) $) 24)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-2656 (($ |#1| (-703)) 25)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $) 21) (($ $ (-703)) 20)) (-2256 (((-787) $) 11) (($ |#1|) 28)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18))) +(((-239 |#1|) (-1184) (-779)) (T -239)) +((-2256 (*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2656 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3127 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779))))) +(-13 (-779) (-952 |t#1|) (-10 -8 (-15 -2656 ($ |t#1| (-703))) (-15 -3972 ((-703) $)) (-15 -1638 (|t#1| $)) (-15 -2932 ((-703) $)) (-15 -3127 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2256 ($ |t#1|)))) +(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-952 |#1|) . T) ((-1003) . T)) +((-1364 (((-583 (-1073)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 40)) (-3463 (((-583 (-1073)) (-286 (-199)) (-703)) 79)) (-2438 (((-3 (-286 (-199)) "failed") (-286 (-199))) 50)) (-2172 (((-286 (-199)) (-286 (-199))) 65)) (-4062 (((-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 26)) (-3648 (((-107) (-583 (-286 (-199)))) 83)) (-2792 (((-107) (-286 (-199))) 24)) (-1815 (((-583 (-1056)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) 104)) (-3162 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 86)) (-3919 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 85)) (-3564 (((-623 (-199)) (-583 (-286 (-199))) (-703)) 93)) (-2035 (((-107) (-286 (-199))) 20) (((-107) (-583 (-286 (-199)))) 84)) (-3795 (((-583 (-199)) (-583 (-772 (-199))) (-199)) 14)) (-2455 (((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 99)) (-3878 (((-950) (-1073) (-950)) 33))) +(((-240) (-10 -7 (-15 -3795 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -4062 ((-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2438 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2172 ((-286 (-199)) (-286 (-199)))) (-15 -3648 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-286 (-199)))) (-15 -3564 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -3919 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3162 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2792 ((-107) (-286 (-199)))) (-15 -1364 ((-583 (-1073)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3463 ((-583 (-1073)) (-286 (-199)) (-703))) (-15 -3878 ((-950) (-1073) (-950))) (-15 -2455 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -1815 ((-583 (-1056)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))))))) (T -240)) +((-1815 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *2 (-583 (-1056))) (-5 *1 (-240)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) (-3878 (*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-240)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3162 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-3564 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2172 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-2438 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-4062 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))) (-3795 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240))))) +(-10 -7 (-15 -3795 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -4062 ((-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2438 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2172 ((-286 (-199)) (-286 (-199)))) (-15 -3648 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-286 (-199)))) (-15 -3564 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -3919 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3162 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2792 ((-107) (-286 (-199)))) (-15 -1364 ((-583 (-1073)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3463 ((-583 (-1073)) (-286 (-199)) (-703))) (-15 -3878 ((-950) (-1073) (-950))) (-15 -2455 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -1815 ((-583 (-1056)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))))) +((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 39)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 20) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-241) (-768)) (T -241)) +NIL +(-768) +((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 54) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 49)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 29) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 31)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-242) (-768)) (T -242)) +NIL +(-768) +((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 73) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 40) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 51)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-243) (-768)) (T -243)) +NIL +(-768) +((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 27) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-244) (-768)) (T -244)) +NIL +(-768) +((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-245) (-768)) (T -245)) +NIL +(-768) +((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-246) (-768)) (T -246)) +NIL +(-768) +((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 73)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 19) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-247) (-768)) (T -247)) +NIL +(-768) +((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3242 (((-583 (-517)) $) 16)) (-3688 (((-703) $) 14)) (-2256 (((-787) $) 20) (($ (-583 (-517))) 12)) (-1384 (($ (-703)) 17)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 9)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 10))) +(((-248) (-13 (-779) (-10 -8 (-15 -2256 ($ (-583 (-517)))) (-15 -3688 ((-703) $)) (-15 -3242 ((-583 (-517)) $)) (-15 -1384 ($ (-703)))))) (T -248)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248))))) +(-13 (-779) (-10 -8 (-15 -2256 ($ (-583 (-517)))) (-15 -3688 ((-703) $)) (-15 -3242 ((-583 (-517)) $)) (-15 -1384 ($ (-703))))) +((-1865 ((|#2| |#2|) 77)) (-1721 ((|#2| |#2|) 65)) (-2857 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107))))) 116)) (-1839 ((|#2| |#2|) 75)) (-1701 ((|#2| |#2|) 63)) (-1887 ((|#2| |#2|) 79)) (-1743 ((|#2| |#2|) 67)) (-2645 ((|#2|) 46)) (-3072 (((-109) (-109)) 95)) (-1867 ((|#2| |#2|) 61)) (-3300 (((-107) |#2|) 134)) (-3638 ((|#2| |#2|) 180)) (-2989 ((|#2| |#2|) 156)) (-3828 ((|#2|) 59)) (-3756 ((|#2|) 58)) (-3523 ((|#2| |#2|) 176)) (-2511 ((|#2| |#2|) 152)) (-2983 ((|#2| |#2|) 184)) (-1682 ((|#2| |#2|) 160)) (-2794 ((|#2| |#2|) 148)) (-1990 ((|#2| |#2|) 150)) (-4095 ((|#2| |#2|) 186)) (-2318 ((|#2| |#2|) 162)) (-3393 ((|#2| |#2|) 182)) (-3276 ((|#2| |#2|) 158)) (-1745 ((|#2| |#2|) 178)) (-2516 ((|#2| |#2|) 154)) (-3772 ((|#2| |#2|) 192)) (-2853 ((|#2| |#2|) 168)) (-2370 ((|#2| |#2|) 188)) (-2143 ((|#2| |#2|) 164)) (-2168 ((|#2| |#2|) 196)) (-1509 ((|#2| |#2|) 172)) (-2622 ((|#2| |#2|) 198)) (-3280 ((|#2| |#2|) 174)) (-2137 ((|#2| |#2|) 194)) (-2019 ((|#2| |#2|) 170)) (-1430 ((|#2| |#2|) 190)) (-3332 ((|#2| |#2|) 166)) (-2624 ((|#2| |#2|) 62)) (-1898 ((|#2| |#2|) 80)) (-1754 ((|#2| |#2|) 68)) (-1876 ((|#2| |#2|) 78)) (-1732 ((|#2| |#2|) 66)) (-1853 ((|#2| |#2|) 76)) (-1711 ((|#2| |#2|) 64)) (-4074 (((-107) (-109)) 93)) (-3707 ((|#2| |#2|) 83)) (-1788 ((|#2| |#2|) 71)) (-3683 ((|#2| |#2|) 81)) (-1765 ((|#2| |#2|) 69)) (-3731 ((|#2| |#2|) 85)) (-1814 ((|#2| |#2|) 73)) (-1492 ((|#2| |#2|) 86)) (-1827 ((|#2| |#2|) 74)) (-3719 ((|#2| |#2|) 84)) (-1802 ((|#2| |#2|) 72)) (-3695 ((|#2| |#2|) 82)) (-1777 ((|#2| |#2|) 70))) +(((-249 |#1| |#2|) (-10 -7 (-15 -2624 (|#2| |#2|)) (-15 -1867 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1711 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1732 (|#2| |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -1765 (|#2| |#2|)) (-15 -1777 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -1814 (|#2| |#2|)) (-15 -1827 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -3683 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -3719 (|#2| |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -2645 (|#2|)) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3756 (|#2|)) (-15 -3828 (|#2|)) (-15 -1990 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2143 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -3523 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -2137 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -2622 (|#2| |#2|)) (-15 -2857 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3300 ((-107) |#2|))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-918))) (T -249)) +((-3300 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-918))))) (-2857 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-918))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))) (-2622 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2137 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1430 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2983 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3523 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3280 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1509 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2019 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2143 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2989 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3828 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3756 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-918))))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-918))))) (-2645 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1827 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1814 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1777 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1765 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1711 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1867 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(-10 -7 (-15 -2624 (|#2| |#2|)) (-15 -1867 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1711 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1732 (|#2| |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -1765 (|#2| |#2|)) (-15 -1777 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -1814 (|#2| |#2|)) (-15 -1827 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -3683 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -3719 (|#2| |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -2645 (|#2|)) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3756 (|#2|)) (-15 -3828 (|#2|)) (-15 -1990 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2143 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -3523 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -2137 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -2622 (|#2| |#2|)) (-15 -2857 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3300 ((-107) |#2|))) +((-3951 (((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1073)) 133)) (-2596 ((|#2| (-377 (-517)) |#2|) 50)) (-2170 ((|#2| |#2| (-556 |#2|)) 126)) (-3133 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1073)) 125)) (-2849 ((|#2| |#2| (-1073)) 19) ((|#2| |#2|) 22)) (-2485 ((|#2| |#2| (-1073)) 139) ((|#2| |#2|) 137))) +(((-250 |#1| |#2|) (-10 -7 (-15 -2485 (|#2| |#2|)) (-15 -2485 (|#2| |#2| (-1073))) (-15 -3133 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1073))) (-15 -2849 (|#2| |#2|)) (-15 -2849 (|#2| |#2| (-1073))) (-15 -3951 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1073))) (-15 -2170 (|#2| |#2| (-556 |#2|))) (-15 -2596 (|#2| (-377 (-517)) |#2|))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -250)) +((-2596 (*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2170 (*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))) (-3951 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1073)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))) (-2849 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2849 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-3133 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2485 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3)))))) +(-10 -7 (-15 -2485 (|#2| |#2|)) (-15 -2485 (|#2| |#2| (-1073))) (-15 -3133 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1073))) (-15 -2849 (|#2| |#2|)) (-15 -2849 (|#2| |#2| (-1073))) (-15 -3951 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1073))) (-15 -2170 (|#2| |#2| (-556 |#2|))) (-15 -2596 (|#2| (-377 (-517)) |#2|))) +((-3885 (((-3 |#3| "failed") |#3|) 110)) (-1865 ((|#3| |#3|) 131)) (-1878 (((-3 |#3| "failed") |#3|) 82)) (-1721 ((|#3| |#3|) 121)) (-4078 (((-3 |#3| "failed") |#3|) 58)) (-1839 ((|#3| |#3|) 129)) (-3113 (((-3 |#3| "failed") |#3|) 46)) (-1701 ((|#3| |#3|) 119)) (-2944 (((-3 |#3| "failed") |#3|) 112)) (-1887 ((|#3| |#3|) 133)) (-3413 (((-3 |#3| "failed") |#3|) 84)) (-1743 ((|#3| |#3|) 123)) (-2492 (((-3 |#3| "failed") |#3| (-703)) 36)) (-2064 (((-3 |#3| "failed") |#3|) 74)) (-1867 ((|#3| |#3|) 118)) (-3930 (((-3 |#3| "failed") |#3|) 44)) (-2624 ((|#3| |#3|) 117)) (-3608 (((-3 |#3| "failed") |#3|) 113)) (-1898 ((|#3| |#3|) 134)) (-2011 (((-3 |#3| "failed") |#3|) 85)) (-1754 ((|#3| |#3|) 124)) (-1779 (((-3 |#3| "failed") |#3|) 111)) (-1876 ((|#3| |#3|) 132)) (-1312 (((-3 |#3| "failed") |#3|) 83)) (-1732 ((|#3| |#3|) 122)) (-1282 (((-3 |#3| "failed") |#3|) 60)) (-1853 ((|#3| |#3|) 130)) (-3518 (((-3 |#3| "failed") |#3|) 48)) (-1711 ((|#3| |#3|) 120)) (-1266 (((-3 |#3| "failed") |#3|) 66)) (-3707 ((|#3| |#3|) 137)) (-3884 (((-3 |#3| "failed") |#3|) 104)) (-1788 ((|#3| |#3|) 142)) (-2460 (((-3 |#3| "failed") |#3|) 62)) (-3683 ((|#3| |#3|) 135)) (-2895 (((-3 |#3| "failed") |#3|) 50)) (-1765 ((|#3| |#3|) 125)) (-3829 (((-3 |#3| "failed") |#3|) 70)) (-3731 ((|#3| |#3|) 139)) (-1778 (((-3 |#3| "failed") |#3|) 54)) (-1814 ((|#3| |#3|) 127)) (-1240 (((-3 |#3| "failed") |#3|) 72)) (-1492 ((|#3| |#3|) 140)) (-3363 (((-3 |#3| "failed") |#3|) 56)) (-1827 ((|#3| |#3|) 128)) (-1403 (((-3 |#3| "failed") |#3|) 68)) (-3719 ((|#3| |#3|) 138)) (-1297 (((-3 |#3| "failed") |#3|) 107)) (-1802 ((|#3| |#3|) 143)) (-2828 (((-3 |#3| "failed") |#3|) 64)) (-3695 ((|#3| |#3|) 136)) (-1247 (((-3 |#3| "failed") |#3|) 52)) (-1777 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333))))) +(((-251 |#1| |#2| |#3|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)))) (-37 (-377 (-517))) (-1145 |#1|) (-1116 |#1| |#2|)) (T -251)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1145 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1116 *4 *5)))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1867 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1711 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1765 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1777 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1814 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1827 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4))))) +(-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)))) +((-3885 (((-3 |#3| "failed") |#3|) 66)) (-1865 ((|#3| |#3|) 133)) (-1878 (((-3 |#3| "failed") |#3|) 50)) (-1721 ((|#3| |#3|) 121)) (-4078 (((-3 |#3| "failed") |#3|) 62)) (-1839 ((|#3| |#3|) 131)) (-3113 (((-3 |#3| "failed") |#3|) 46)) (-1701 ((|#3| |#3|) 119)) (-2944 (((-3 |#3| "failed") |#3|) 70)) (-1887 ((|#3| |#3|) 135)) (-3413 (((-3 |#3| "failed") |#3|) 54)) (-1743 ((|#3| |#3|) 123)) (-2492 (((-3 |#3| "failed") |#3| (-703)) 35)) (-2064 (((-3 |#3| "failed") |#3|) 44)) (-1867 ((|#3| |#3|) 112)) (-3930 (((-3 |#3| "failed") |#3|) 42)) (-2624 ((|#3| |#3|) 118)) (-3608 (((-3 |#3| "failed") |#3|) 72)) (-1898 ((|#3| |#3|) 136)) (-2011 (((-3 |#3| "failed") |#3|) 56)) (-1754 ((|#3| |#3|) 124)) (-1779 (((-3 |#3| "failed") |#3|) 68)) (-1876 ((|#3| |#3|) 134)) (-1312 (((-3 |#3| "failed") |#3|) 52)) (-1732 ((|#3| |#3|) 122)) (-1282 (((-3 |#3| "failed") |#3|) 64)) (-1853 ((|#3| |#3|) 132)) (-3518 (((-3 |#3| "failed") |#3|) 48)) (-1711 ((|#3| |#3|) 120)) (-1266 (((-3 |#3| "failed") |#3|) 78)) (-3707 ((|#3| |#3|) 139)) (-3884 (((-3 |#3| "failed") |#3|) 58)) (-1788 ((|#3| |#3|) 127)) (-2460 (((-3 |#3| "failed") |#3|) 74)) (-3683 ((|#3| |#3|) 137)) (-2895 (((-3 |#3| "failed") |#3|) 102)) (-1765 ((|#3| |#3|) 125)) (-3829 (((-3 |#3| "failed") |#3|) 82)) (-3731 ((|#3| |#3|) 141)) (-1778 (((-3 |#3| "failed") |#3|) 109)) (-1814 ((|#3| |#3|) 129)) (-1240 (((-3 |#3| "failed") |#3|) 84)) (-1492 ((|#3| |#3|) 142)) (-3363 (((-3 |#3| "failed") |#3|) 111)) (-1827 ((|#3| |#3|) 130)) (-1403 (((-3 |#3| "failed") |#3|) 80)) (-3719 ((|#3| |#3|) 140)) (-1297 (((-3 |#3| "failed") |#3|) 60)) (-1802 ((|#3| |#3|) 128)) (-2828 (((-3 |#3| "failed") |#3|) 76)) (-3695 ((|#3| |#3|) 138)) (-1247 (((-3 |#3| "failed") |#3|) 105)) (-1777 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333))))) +(((-252 |#1| |#2| |#3| |#4|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)))) (-37 (-377 (-517))) (-1114 |#1|) (-1137 |#1| |#2|) (-900 |#2|)) (T -252)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1114 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1137 *4 *5)) (-4 *6 (-900 *5)))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1867 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1711 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1765 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1777 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1814 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1827 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4))))) +(-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)))) +((-3536 (($ (-1 (-107) |#2|) $) 23)) (-1679 (($ $) 36)) (-3212 (($ (-1 (-107) |#2|) $) NIL) (($ |#2| $) 34)) (-2052 (($ |#2| $) 31) (($ (-1 (-107) |#2|) $) 17)) (-2797 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2620 (($ |#2| $ (-517)) 19) (($ $ $ (-517)) 21)) (-3750 (($ $ (-517)) 11) (($ $ (-1121 (-517))) 14)) (-2568 (($ $ |#2|) 29) (($ $ $) NIL)) (-2452 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-583 $)) NIL))) +(((-253 |#1| |#2|) (-10 -8 (-15 -2797 (|#1| |#1| |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -1679 (|#1| |#1|))) (-254 |#2|) (-1108)) (T -253)) +NIL +(-10 -8 (-15 -2797 (|#1| |#1| |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -1679 (|#1| |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) 85)) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 83 (|has| |#1| (-1003)))) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ (-1 (-107) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1003)))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2797 (($ (-1 (-107) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-1710 (($ |#1| $ (-517)) 88) (($ $ $ (-517)) 87)) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-2154 (($ $ (-517)) 91) (($ $ (-1121 (-517))) 90)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2568 (($ $ |#1|) 93) (($ $ $) 92)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-254 |#1|) (-1184) (-1108)) (T -254)) +((-2568 (*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-3212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-1710 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1108)))) (-1710 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-2797 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-2337 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-3212 (*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) (-2797 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-779))))) +(-13 (-588 |t#1|) (-10 -8 (-6 -4181) (-15 -2568 ($ $ |t#1|)) (-15 -2568 ($ $ $)) (-15 -2154 ($ $ (-517))) (-15 -2154 ($ $ (-1121 (-517)))) (-15 -3212 ($ (-1 (-107) |t#1|) $)) (-15 -1710 ($ |t#1| $ (-517))) (-15 -1710 ($ $ $ (-517))) (-15 -2797 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -2337 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3212 ($ |t#1| $)) (-15 -3483 ($ $))) |noBranch|) (IF (|has| |t#1| (-779)) (-15 -2797 ($ $ $)) |noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) ((** (($ $ $) 10))) -(((-253 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-254)) (T -253)) +(((-255 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-256)) (T -255)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-1635 (($ $) 6)) (-1989 (($ $) 7)) (** (($ $ $) 8))) -(((-254) (-1180)) (T -254)) -((** (*1 *1 *1 *1) (-4 *1 (-254))) (-1989 (*1 *1 *1) (-4 *1 (-254))) (-1635 (*1 *1 *1) (-4 *1 (-254)))) -(-13 (-10 -8 (-15 -1635 ($ $)) (-15 -1989 ($ $)) (-15 ** ($ $ $)))) -((-2737 (((-578 (-1048 |#1|)) (-1048 |#1|) |#1|) 35)) (-3702 ((|#2| |#2| |#1|) 38)) (-3139 ((|#2| |#2| |#1|) 40)) (-1995 ((|#2| |#2| |#1|) 39))) -(((-255 |#1| |#2|) (-10 -7 (-15 -3702 (|#2| |#2| |#1|)) (-15 -1995 (|#2| |#2| |#1|)) (-15 -3139 (|#2| |#2| |#1|)) (-15 -2737 ((-578 (-1048 |#1|)) (-1048 |#1|) |#1|))) (-331) (-1142 |#1|)) (T -255)) -((-2737 (*1 *2 *3 *4) (-12 (-4 *4 (-331)) (-5 *2 (-578 (-1048 *4))) (-5 *1 (-255 *4 *5)) (-5 *3 (-1048 *4)) (-4 *5 (-1142 *4)))) (-3139 (*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3)))) (-1995 (*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3)))) (-3702 (*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3))))) -(-10 -7 (-15 -3702 (|#2| |#2| |#1|)) (-15 -1995 (|#2| |#2| |#1|)) (-15 -3139 (|#2| |#2| |#1|)) (-15 -2737 ((-578 (-1048 |#1|)) (-1048 |#1|) |#1|))) -((-2007 ((|#2| $ |#1|) 6))) -(((-256 |#1| |#2|) (-1180) (-1001) (-1104)) (T -256)) -((-2007 (*1 *2 *1 *3) (-12 (-4 *1 (-256 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104))))) -(-13 (-10 -8 (-15 -2007 (|t#2| $ |t#1|)))) -((-2156 ((|#3| $ |#2| |#3|) 12)) (-1905 ((|#3| $ |#2|) 10))) -(((-257 |#1| |#2| |#3|) (-10 -8 (-15 -2156 (|#3| |#1| |#2| |#3|)) (-15 -1905 (|#3| |#1| |#2|))) (-258 |#2| |#3|) (-1001) (-1104)) (T -257)) -NIL -(-10 -8 (-15 -2156 (|#3| |#1| |#2| |#3|)) (-15 -1905 (|#3| |#1| |#2|))) -((-3754 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4168)))) (-2156 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) 11)) (-2007 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-258 |#1| |#2|) (-1180) (-1001) (-1104)) (T -258)) -((-2007 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) (-1905 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) (-3754 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) (-2156 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104))))) -(-13 (-256 |t#1| |t#2|) (-10 -8 (-15 -2007 (|t#2| $ |t#1| |t#2|)) (-15 -1905 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4168)) (PROGN (-15 -3754 (|t#2| $ |t#1| |t#2|)) (-15 -2156 (|t#2| $ |t#1| |t#2|))) |noBranch|))) -(((-256 |#1| |#2|) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 34)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 39)) (-2865 (($ $) 37)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) 32)) (-3547 (($ |#2| |#3|) 19)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3121 ((|#3| $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 20)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1626 (((-3 $ "failed") $ $) NIL)) (-1864 (((-701) $) 33)) (-2007 ((|#2| $ |#2|) 41)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 24)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 27 T CONST)) (-1925 (($) 35 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 36))) -(((-259 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-276) (-10 -8 (-15 -3121 (|#3| $)) (-15 -3691 (|#2| $)) (-15 -3547 ($ |#2| |#3|)) (-15 -1626 ((-3 $ "failed") $ $)) (-15 -2174 ((-3 $ "failed") $)) (-15 -3833 ($ $)) (-15 -2007 (|#2| $ |#2|)))) (-156) (-1125 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -259)) -((-2174 (*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3121 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-259 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1125 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3691 (*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-259 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3547 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-259 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1125 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1626 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3833 (*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2007 (*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-259 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1125 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-276) (-10 -8 (-15 -3121 (|#3| $)) (-15 -3691 (|#2| $)) (-15 -3547 ($ |#2| |#3|)) (-15 -1626 ((-3 $ "failed") $ $)) (-15 -2174 ((-3 $ "failed") $)) (-15 -3833 ($ $)) (-15 -2007 (|#2| $ |#2|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-260) (-1180)) (T -260)) -NIL -(-13 (-959) (-106 $ $) (-10 -7 (-6 -4160))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3843 (((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |geneigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|)))) 83)) (-1556 (((-578 (-621 (-375 (-866 |#1|)))) (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|)))))) (-621 (-375 (-866 |#1|)))) 78) (((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|))) (-701) (-701)) 36)) (-3423 (((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|)))) 80)) (-1483 (((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|)))) 60)) (-2528 (((-578 (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (-621 (-375 (-866 |#1|)))) 59)) (-2942 (((-866 |#1|) (-621 (-375 (-866 |#1|)))) 47) (((-866 |#1|) (-621 (-375 (-866 |#1|))) (-1070)) 48))) -(((-261 |#1|) (-10 -7 (-15 -2942 ((-866 |#1|) (-621 (-375 (-866 |#1|))) (-1070))) (-15 -2942 ((-866 |#1|) (-621 (-375 (-866 |#1|))))) (-15 -2528 ((-578 (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (-621 (-375 (-866 |#1|))))) (-15 -1483 ((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|))))) (-15 -1556 ((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|))) (-701) (-701))) (-15 -1556 ((-578 (-621 (-375 (-866 |#1|)))) (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|)))))) (-621 (-375 (-866 |#1|))))) (-15 -3843 ((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |geneigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|))))) (-15 -3423 ((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|)))))) (-419)) (T -261)) -((-3423 (*1 *2 *3) (-12 (-4 *4 (-419)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 *4)))))))) (-5 *1 (-261 *4)) (-5 *3 (-621 (-375 (-866 *4)))))) (-3843 (*1 *2 *3) (-12 (-4 *4 (-419)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4)))) (|:| |geneigvec| (-578 (-621 (-375 (-866 *4)))))))) (-5 *1 (-261 *4)) (-5 *3 (-621 (-375 (-866 *4)))))) (-1556 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-375 (-866 *5)) (-1060 (-1070) (-866 *5)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 *4)))) (-4 *5 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *5))))) (-5 *1 (-261 *5)) (-5 *4 (-621 (-375 (-866 *5)))))) (-1556 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-375 (-866 *6)) (-1060 (-1070) (-866 *6)))) (-5 *5 (-701)) (-4 *6 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *6))))) (-5 *1 (-261 *6)) (-5 *4 (-621 (-375 (-866 *6)))))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-375 (-866 *5)) (-1060 (-1070) (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *5))))) (-5 *1 (-261 *5)) (-5 *4 (-621 (-375 (-866 *5)))))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 *4)))) (-4 *4 (-419)) (-5 *2 (-578 (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4))))) (-5 *1 (-261 *4)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 *4)))) (-5 *2 (-866 *4)) (-5 *1 (-261 *4)) (-4 *4 (-419)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-866 *5)))) (-5 *4 (-1070)) (-5 *2 (-866 *5)) (-5 *1 (-261 *5)) (-4 *5 (-419))))) -(-10 -7 (-15 -2942 ((-866 |#1|) (-621 (-375 (-866 |#1|))) (-1070))) (-15 -2942 ((-866 |#1|) (-621 (-375 (-866 |#1|))))) (-15 -2528 ((-578 (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (-621 (-375 (-866 |#1|))))) (-15 -1483 ((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|))))) (-15 -1556 ((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|))) (-701) (-701))) (-15 -1556 ((-578 (-621 (-375 (-866 |#1|)))) (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|)))))) (-621 (-375 (-866 |#1|))))) (-15 -3843 ((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |geneigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|))))) (-15 -3423 ((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|)))))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3292 (((-107) $) NIL (|has| |#1| (-21)))) (-3018 (($ $) 22)) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3631 (($ $ $) 93 (|has| |#1| (-267)))) (-2540 (($) NIL (-1405 (|has| |#1| (-21)) (|has| |#1| (-657))) CONST)) (-3108 (($ $) 8 (|has| |#1| (-21)))) (-2766 (((-3 $ "failed") $) 68 (|has| |#1| (-657)))) (-2015 ((|#1| $) 21)) (-2174 (((-3 $ "failed") $) 66 (|has| |#1| (-657)))) (-1355 (((-107) $) NIL (|has| |#1| (-657)))) (-1212 (($ (-1 |#1| |#1|) $) 24)) (-2006 ((|#1| $) 9)) (-2141 (($ $) 57 (|has| |#1| (-21)))) (-3157 (((-3 $ "failed") $) 67 (|has| |#1| (-657)))) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3833 (($ $) 70 (-1405 (|has| |#1| (-331)) (|has| |#1| (-440))))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-4049 (((-578 $) $) 19 (|has| |#1| (-508)))) (-3195 (($ $ $) 34 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 $)) 37 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-1070) |#1|) 27 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 31 (|has| |#1| (-476 (-1070) |#1|)))) (-4022 (($ |#1| |#1|) 17)) (-3613 (((-125)) 88 (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) 85 (|has| |#1| (-820 (-1070))))) (-3097 (($ $ $) NIL (|has| |#1| (-440)))) (-2144 (($ $ $) NIL (|has| |#1| (-440)))) (-3691 (($ (-501)) NIL (|has| |#1| (-959))) (((-107) $) 45 (|has| |#1| (-1001))) (((-786) $) 44 (|has| |#1| (-1001)))) (-3965 (((-701)) 73 (|has| |#1| (-959)))) (-3948 (($ $ (-501)) NIL (|has| |#1| (-440))) (($ $ (-701)) NIL (|has| |#1| (-657))) (($ $ (-839)) NIL (|has| |#1| (-1012)))) (-1850 (($) 55 (|has| |#1| (-21)) CONST)) (-1925 (($) 63 (|has| |#1| (-657)) CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070))))) (-3751 (($ |#1| |#1|) 20) (((-107) $ $) 40 (|has| |#1| (-1001)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) 90 (-1405 (|has| |#1| (-331)) (|has| |#1| (-440))))) (-3797 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-3790 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-501)) NIL (|has| |#1| (-440))) (($ $ (-701)) NIL (|has| |#1| (-657))) (($ $ (-839)) NIL (|has| |#1| (-1012)))) (* (($ $ |#1|) 61 (|has| |#1| (-1012))) (($ |#1| $) 60 (|has| |#1| (-1012))) (($ $ $) 59 (|has| |#1| (-1012))) (($ (-501) $) 76 (|has| |#1| (-21))) (($ (-701) $) NIL (|has| |#1| (-21))) (($ (-839) $) NIL (|has| |#1| (-25))))) -(((-262 |#1|) (-13 (-1104) (-10 -8 (-15 -3751 ($ |#1| |#1|)) (-15 -4022 ($ |#1| |#1|)) (-15 -3018 ($ $)) (-15 -2006 (|#1| $)) (-15 -2015 (|#1| $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-476 (-1070) |#1|)) (-6 (-476 (-1070) |#1|)) |noBranch|) (IF (|has| |#1| (-1001)) (PROGN (-6 (-1001)) (-6 (-555 (-107))) (IF (|has| |#1| (-278 |#1|)) (PROGN (-15 -3195 ($ $ $)) (-15 -3195 ($ $ (-578 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3790 ($ |#1| $)) (-15 -3790 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2141 ($ $)) (-15 -3108 ($ $)) (-15 -3797 ($ |#1| $)) (-15 -3797 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1012)) (PROGN (-6 (-1012)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-657)) (PROGN (-6 (-657)) (-15 -3157 ((-3 $ "failed") $)) (-15 -2766 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-440)) (PROGN (-6 (-440)) (-15 -3157 ((-3 $ "failed") $)) (-15 -2766 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-6 (-959)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-648 |#1|)) |noBranch|) (IF (|has| |#1| (-508)) (-15 -4049 ((-578 $) $)) |noBranch|) (IF (|has| |#1| (-820 (-1070))) (-6 (-820 (-1070))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-6 (-1156 |#1|)) (-15 -3803 ($ $ $)) (-15 -3833 ($ $))) |noBranch|) (IF (|has| |#1| (-267)) (-15 -3631 ($ $ $)) |noBranch|))) (-1104)) (T -262)) -((-3751 (*1 *1 *2 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) (-4022 (*1 *1 *2 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) (-3018 (*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) (-2006 (*1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) (-2015 (*1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-262 *3)))) (-3195 (*1 *1 *1 *1) (-12 (-4 *2 (-278 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)) (-5 *1 (-262 *2)))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *3))) (-4 *3 (-278 *3)) (-4 *3 (-1001)) (-4 *3 (-1104)) (-5 *1 (-262 *3)))) (-3790 (*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-25)) (-4 *2 (-1104)))) (-3790 (*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-25)) (-4 *2 (-1104)))) (-2141 (*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) (-3108 (*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) (-3797 (*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) (-3157 (*1 *1 *1) (|partial| -12 (-5 *1 (-262 *2)) (-4 *2 (-657)) (-4 *2 (-1104)))) (-2766 (*1 *1 *1) (|partial| -12 (-5 *1 (-262 *2)) (-4 *2 (-657)) (-4 *2 (-1104)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-578 (-262 *3))) (-5 *1 (-262 *3)) (-4 *3 (-508)) (-4 *3 (-1104)))) (-3631 (*1 *1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-267)) (-4 *2 (-1104)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1012)) (-4 *2 (-1104)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1012)) (-4 *2 (-1104)))) (-3803 (*1 *1 *1 *1) (-1405 (-12 (-5 *1 (-262 *2)) (-4 *2 (-331)) (-4 *2 (-1104))) (-12 (-5 *1 (-262 *2)) (-4 *2 (-440)) (-4 *2 (-1104))))) (-3833 (*1 *1 *1) (-1405 (-12 (-5 *1 (-262 *2)) (-4 *2 (-331)) (-4 *2 (-1104))) (-12 (-5 *1 (-262 *2)) (-4 *2 (-440)) (-4 *2 (-1104)))))) -(-13 (-1104) (-10 -8 (-15 -3751 ($ |#1| |#1|)) (-15 -4022 ($ |#1| |#1|)) (-15 -3018 ($ $)) (-15 -2006 (|#1| $)) (-15 -2015 (|#1| $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-476 (-1070) |#1|)) (-6 (-476 (-1070) |#1|)) |noBranch|) (IF (|has| |#1| (-1001)) (PROGN (-6 (-1001)) (-6 (-555 (-107))) (IF (|has| |#1| (-278 |#1|)) (PROGN (-15 -3195 ($ $ $)) (-15 -3195 ($ $ (-578 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3790 ($ |#1| $)) (-15 -3790 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2141 ($ $)) (-15 -3108 ($ $)) (-15 -3797 ($ |#1| $)) (-15 -3797 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1012)) (PROGN (-6 (-1012)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-657)) (PROGN (-6 (-657)) (-15 -3157 ((-3 $ "failed") $)) (-15 -2766 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-440)) (PROGN (-6 (-440)) (-15 -3157 ((-3 $ "failed") $)) (-15 -2766 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-6 (-959)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-648 |#1|)) |noBranch|) (IF (|has| |#1| (-508)) (-15 -4049 ((-578 $) $)) |noBranch|) (IF (|has| |#1| (-820 (-1070))) (-6 (-820 (-1070))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-6 (-1156 |#1|)) (-15 -3803 ($ $ $)) (-15 -3833 ($ $))) |noBranch|) (IF (|has| |#1| (-267)) (-15 -3631 ($ $ $)) |noBranch|))) -((-1212 (((-262 |#2|) (-1 |#2| |#1|) (-262 |#1|)) 14))) -(((-263 |#1| |#2|) (-10 -7 (-15 -1212 ((-262 |#2|) (-1 |#2| |#1|) (-262 |#1|)))) (-1104) (-1104)) (T -263)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-262 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-262 *6)) (-5 *1 (-263 *5 *6))))) -(-10 -7 (-15 -1212 ((-262 |#2|) (-1 |#2| |#1|) (-262 |#1|)))) -((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) NIL)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) NIL)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-264 |#1| |#2|) (-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) (-1001) (-1001)) (T -264)) -NIL -(-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) -((-2390 (((-280) (-1053) (-578 (-1053))) 16) (((-280) (-1053) (-1053)) 15) (((-280) (-578 (-1053))) 14) (((-280) (-1053)) 12))) -(((-265) (-10 -7 (-15 -2390 ((-280) (-1053))) (-15 -2390 ((-280) (-578 (-1053)))) (-15 -2390 ((-280) (-1053) (-1053))) (-15 -2390 ((-280) (-1053) (-578 (-1053)))))) (T -265)) -((-2390 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1053))) (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265)))) (-2390 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-280)) (-5 *1 (-265)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265))))) -(-10 -7 (-15 -2390 ((-280) (-1053))) (-15 -2390 ((-280) (-578 (-1053)))) (-15 -2390 ((-280) (-1053) (-1053))) (-15 -2390 ((-280) (-1053) (-578 (-1053))))) -((-3709 (((-578 (-553 $)) $) 28)) (-3631 (($ $ (-262 $)) 80) (($ $ (-578 (-262 $))) 120) (($ $ (-578 (-553 $)) (-578 $)) NIL)) (-3765 (((-3 (-553 $) "failed") $) 110)) (-3490 (((-553 $) $) 109)) (-2446 (($ $) 19) (($ (-578 $)) 54)) (-2389 (((-578 (-108)) $) 37)) (-1853 (((-108) (-108)) 90)) (-3729 (((-107) $) 128)) (-1212 (($ (-1 $ $) (-553 $)) 88)) (-2789 (((-3 (-553 $) "failed") $) 92)) (-3136 (($ (-108) $) 60) (($ (-108) (-578 $)) 98)) (-3109 (((-107) $ (-108)) 114) (((-107) $ (-1070)) 113)) (-2696 (((-701) $) 45)) (-2816 (((-107) $ $) 58) (((-107) $ (-1070)) 49)) (-3172 (((-107) $) 126)) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL) (($ $ (-578 (-262 $))) 118) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) 83) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-1070) (-1 $ (-578 $))) 68) (($ $ (-1070) (-1 $ $)) 74) (($ $ (-578 (-108)) (-578 (-1 $ $))) 82) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) 84) (($ $ (-108) (-1 $ (-578 $))) 70) (($ $ (-108) (-1 $ $)) 76)) (-2007 (($ (-108) $) 61) (($ (-108) $ $) 62) (($ (-108) $ $ $) 63) (($ (-108) $ $ $ $) 64) (($ (-108) (-578 $)) 106)) (-4106 (($ $) 51) (($ $ $) 116)) (-1831 (($ $) 17) (($ (-578 $)) 53)) (-3811 (((-107) (-108)) 22))) -(((-266 |#1|) (-10 -8 (-15 -3729 ((-107) |#1|)) (-15 -3172 ((-107) |#1|)) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| |#1|)))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| |#1|)))) (-15 -2816 ((-107) |#1| (-1070))) (-15 -2816 ((-107) |#1| |#1|)) (-15 -1212 (|#1| (-1 |#1| |#1|) (-553 |#1|))) (-15 -3136 (|#1| (-108) (-578 |#1|))) (-15 -3136 (|#1| (-108) |#1|)) (-15 -3109 ((-107) |#1| (-1070))) (-15 -3109 ((-107) |#1| (-108))) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -2389 ((-578 (-108)) |#1|)) (-15 -3709 ((-578 (-553 |#1|)) |#1|)) (-15 -2789 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -2696 ((-701) |#1|)) (-15 -4106 (|#1| |#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2446 (|#1| (-578 |#1|))) (-15 -2446 (|#1| |#1|)) (-15 -1831 (|#1| (-578 |#1|))) (-15 -1831 (|#1| |#1|)) (-15 -3631 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3631 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3631 (|#1| |#1| (-262 |#1|))) (-15 -2007 (|#1| (-108) (-578 |#1|))) (-15 -2007 (|#1| (-108) |#1| |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-553 |#1|) |#1|)) (-15 -3490 ((-553 |#1|) |#1|)) (-15 -3765 ((-3 (-553 |#1|) "failed") |#1|))) (-267)) (T -266)) -((-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-266 *3)) (-4 *3 (-267)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-107)) (-5 *1 (-266 *4)) (-4 *4 (-267))))) -(-10 -8 (-15 -3729 ((-107) |#1|)) (-15 -3172 ((-107) |#1|)) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| |#1|)))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| |#1|)))) (-15 -2816 ((-107) |#1| (-1070))) (-15 -2816 ((-107) |#1| |#1|)) (-15 -1212 (|#1| (-1 |#1| |#1|) (-553 |#1|))) (-15 -3136 (|#1| (-108) (-578 |#1|))) (-15 -3136 (|#1| (-108) |#1|)) (-15 -3109 ((-107) |#1| (-1070))) (-15 -3109 ((-107) |#1| (-108))) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -2389 ((-578 (-108)) |#1|)) (-15 -3709 ((-578 (-553 |#1|)) |#1|)) (-15 -2789 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -2696 ((-701) |#1|)) (-15 -4106 (|#1| |#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2446 (|#1| (-578 |#1|))) (-15 -2446 (|#1| |#1|)) (-15 -1831 (|#1| (-578 |#1|))) (-15 -1831 (|#1| |#1|)) (-15 -3631 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3631 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3631 (|#1| |#1| (-262 |#1|))) (-15 -2007 (|#1| (-108) (-578 |#1|))) (-15 -2007 (|#1| (-108) |#1| |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-553 |#1|) |#1|)) (-15 -3490 ((-553 |#1|) |#1|)) (-15 -3765 ((-3 (-553 |#1|) "failed") |#1|))) -((-3736 (((-107) $ $) 7)) (-3709 (((-578 (-553 $)) $) 47)) (-3631 (($ $ (-262 $)) 59) (($ $ (-578 (-262 $))) 58) (($ $ (-578 (-553 $)) (-578 $)) 57)) (-3765 (((-3 (-553 $) "failed") $) 72)) (-3490 (((-553 $) $) 71)) (-2446 (($ $) 54) (($ (-578 $)) 53)) (-2389 (((-578 (-108)) $) 46)) (-1853 (((-108) (-108)) 45)) (-3729 (((-107) $) 25 (|has| $ (-950 (-501))))) (-1983 (((-1064 $) (-553 $)) 28 (|has| $ (-959)))) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-1212 (($ (-1 $ $) (-553 $)) 39)) (-2789 (((-3 (-553 $) "failed") $) 49)) (-3460 (((-1053) $) 9)) (-3724 (((-578 (-553 $)) $) 48)) (-3136 (($ (-108) $) 41) (($ (-108) (-578 $)) 40)) (-3109 (((-107) $ (-108)) 43) (((-107) $ (-1070)) 42)) (-2696 (((-701) $) 50)) (-3708 (((-1018) $) 10)) (-2816 (((-107) $ $) 38) (((-107) $ (-1070)) 37)) (-3172 (((-107) $) 26 (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) 70) (($ $ (-578 (-553 $)) (-578 $)) 69) (($ $ (-578 (-262 $))) 68) (($ $ (-262 $)) 67) (($ $ $ $) 66) (($ $ (-578 $) (-578 $)) 65) (($ $ (-578 (-1070)) (-578 (-1 $ $))) 36) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) 35) (($ $ (-1070) (-1 $ (-578 $))) 34) (($ $ (-1070) (-1 $ $)) 33) (($ $ (-578 (-108)) (-578 (-1 $ $))) 32) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) 31) (($ $ (-108) (-1 $ (-578 $))) 30) (($ $ (-108) (-1 $ $)) 29)) (-2007 (($ (-108) $) 64) (($ (-108) $ $) 63) (($ (-108) $ $ $) 62) (($ (-108) $ $ $ $) 61) (($ (-108) (-578 $)) 60)) (-4106 (($ $) 52) (($ $ $) 51)) (-2264 (($ $) 27 (|has| $ (-959)))) (-3691 (((-786) $) 11) (($ (-553 $)) 73)) (-1831 (($ $) 56) (($ (-578 $)) 55)) (-3811 (((-107) (-108)) 44)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18))) -(((-267) (-1180)) (T -267)) -((-2007 (*1 *1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-2007 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-2007 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-2007 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 *1)) (-4 *1 (-267)))) (-3631 (*1 *1 *1 *2) (-12 (-5 *2 (-262 *1)) (-4 *1 (-267)))) (-3631 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *1))) (-4 *1 (-267)))) (-3631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-553 *1))) (-5 *3 (-578 *1)) (-4 *1 (-267)))) (-1831 (*1 *1 *1) (-4 *1 (-267))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-267)))) (-2446 (*1 *1 *1) (-4 *1 (-267))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-267)))) (-4106 (*1 *1 *1) (-4 *1 (-267))) (-4106 (*1 *1 *1 *1) (-4 *1 (-267))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-701)))) (-2789 (*1 *2 *1) (|partial| -12 (-5 *2 (-553 *1)) (-4 *1 (-267)))) (-3724 (*1 *2 *1) (-12 (-5 *2 (-578 (-553 *1))) (-4 *1 (-267)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-578 (-553 *1))) (-4 *1 (-267)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-578 (-108))))) (-1853 (*1 *2 *2) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-3811 (*1 *2 *3) (-12 (-4 *1 (-267)) (-5 *3 (-108)) (-5 *2 (-107)))) (-3109 (*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-108)) (-5 *2 (-107)))) (-3109 (*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-1070)) (-5 *2 (-107)))) (-3136 (*1 *1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-3136 (*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 *1)) (-4 *1 (-267)))) (-1212 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-553 *1)) (-4 *1 (-267)))) (-2816 (*1 *2 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-107)))) (-2816 (*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-1070)) (-5 *2 (-107)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1 *1 *1)) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *1 *1)) (-4 *1 (-267)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-553 *1)) (-4 *1 (-959)) (-4 *1 (-267)) (-5 *2 (-1064 *1)))) (-2264 (*1 *1 *1) (-12 (-4 *1 (-959)) (-4 *1 (-267)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-950 (-501))) (-4 *1 (-267)) (-5 *2 (-107)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-950 (-501))) (-4 *1 (-267)) (-5 *2 (-107))))) -(-13 (-777) (-950 (-553 $)) (-476 (-553 $) $) (-278 $) (-10 -8 (-15 -2007 ($ (-108) $)) (-15 -2007 ($ (-108) $ $)) (-15 -2007 ($ (-108) $ $ $)) (-15 -2007 ($ (-108) $ $ $ $)) (-15 -2007 ($ (-108) (-578 $))) (-15 -3631 ($ $ (-262 $))) (-15 -3631 ($ $ (-578 (-262 $)))) (-15 -3631 ($ $ (-578 (-553 $)) (-578 $))) (-15 -1831 ($ $)) (-15 -1831 ($ (-578 $))) (-15 -2446 ($ $)) (-15 -2446 ($ (-578 $))) (-15 -4106 ($ $)) (-15 -4106 ($ $ $)) (-15 -2696 ((-701) $)) (-15 -2789 ((-3 (-553 $) "failed") $)) (-15 -3724 ((-578 (-553 $)) $)) (-15 -3709 ((-578 (-553 $)) $)) (-15 -2389 ((-578 (-108)) $)) (-15 -1853 ((-108) (-108))) (-15 -3811 ((-107) (-108))) (-15 -3109 ((-107) $ (-108))) (-15 -3109 ((-107) $ (-1070))) (-15 -3136 ($ (-108) $)) (-15 -3136 ($ (-108) (-578 $))) (-15 -1212 ($ (-1 $ $) (-553 $))) (-15 -2816 ((-107) $ $)) (-15 -2816 ((-107) $ (-1070))) (-15 -3195 ($ $ (-578 (-1070)) (-578 (-1 $ $)))) (-15 -3195 ($ $ (-578 (-1070)) (-578 (-1 $ (-578 $))))) (-15 -3195 ($ $ (-1070) (-1 $ (-578 $)))) (-15 -3195 ($ $ (-1070) (-1 $ $))) (-15 -3195 ($ $ (-578 (-108)) (-578 (-1 $ $)))) (-15 -3195 ($ $ (-578 (-108)) (-578 (-1 $ (-578 $))))) (-15 -3195 ($ $ (-108) (-1 $ (-578 $)))) (-15 -3195 ($ $ (-108) (-1 $ $))) (IF (|has| $ (-959)) (PROGN (-15 -1983 ((-1064 $) (-553 $))) (-15 -2264 ($ $))) |noBranch|) (IF (|has| $ (-950 (-501))) (PROGN (-15 -3172 ((-107) $)) (-15 -3729 ((-107) $))) |noBranch|))) -(((-97) . T) ((-555 (-786)) . T) ((-278 $) . T) ((-476 (-553 $) $) . T) ((-476 $ $) . T) ((-777) . T) ((-950 (-553 $)) . T) ((-1001) . T)) -((-1212 ((|#2| (-1 |#2| |#1|) (-1053) (-553 |#1|)) 17))) -(((-268 |#1| |#2|) (-10 -7 (-15 -1212 (|#2| (-1 |#2| |#1|) (-1053) (-553 |#1|)))) (-267) (-1104)) (T -268)) -((-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1053)) (-5 *5 (-553 *6)) (-4 *6 (-267)) (-4 *2 (-1104)) (-5 *1 (-268 *6 *2))))) -(-10 -7 (-15 -1212 (|#2| (-1 |#2| |#1|) (-1053) (-553 |#1|)))) -((-1212 ((|#2| (-1 |#2| |#1|) (-553 |#1|)) 17))) -(((-269 |#1| |#2|) (-10 -7 (-15 -1212 (|#2| (-1 |#2| |#1|) (-553 |#1|)))) (-267) (-267)) (T -269)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-553 *5)) (-4 *5 (-267)) (-4 *2 (-267)) (-5 *1 (-269 *5 *2))))) -(-10 -7 (-15 -1212 (|#2| (-1 |#2| |#1|) (-553 |#1|)))) -((-3588 (((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199)))) 88)) (-2206 (((-1048 (-199)) (-1148 (-282 (-199))) (-578 (-1070)) (-991 (-769 (-199)))) 103) (((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199)))) 58)) (-2077 (((-578 (-1053)) (-1048 (-199))) NIL)) (-2094 (((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199)))) 55)) (-3944 (((-578 (-199)) (-866 (-375 (-501))) (-1070) (-991 (-769 (-199)))) 47)) (-3148 (((-578 (-1053)) (-578 (-199))) NIL)) (-3516 (((-199) (-991 (-769 (-199)))) 23)) (-2254 (((-199) (-991 (-769 (-199)))) 24)) (-3472 (((-107) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 51)) (-3630 (((-1053) (-199)) NIL))) -(((-270) (-10 -7 (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -3472 ((-107) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2094 ((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199))))) (-15 -3588 ((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-1148 (-282 (-199))) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -3944 ((-578 (-199)) (-866 (-375 (-501))) (-1070) (-991 (-769 (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199)))))) (T -270)) -((-2077 (*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-270)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-270)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-270)))) (-3944 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-270)))) (-2206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270)))) (-2206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270)))) (-3588 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270)))) (-2094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-270)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-270)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-270)))) (-3516 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-270))))) -(-10 -7 (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -3472 ((-107) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2094 ((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199))))) (-15 -3588 ((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-1148 (-282 (-199))) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -3944 ((-578 (-199)) (-866 (-375 (-501))) (-1070) (-991 (-769 (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199))))) -((-2409 (((-107) (-199)) 10))) -(((-271 |#1| |#2|) (-10 -7 (-15 -2409 ((-107) (-199)))) (-199) (-199)) (T -271)) -((-2409 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-271 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2409 ((-107) (-199)))) -((-3619 (((-1148 (-282 (-346))) (-1148 (-282 (-199)))) 105)) (-1615 (((-991 (-769 (-199))) (-991 (-769 (-346)))) 39)) (-2077 (((-578 (-1053)) (-1048 (-199))) 87)) (-3059 (((-282 (-346)) (-866 (-199))) 49)) (-1555 (((-199) (-866 (-199))) 45)) (-1517 (((-1053) (-346)) 167)) (-3057 (((-769 (-199)) (-769 (-346))) 33)) (-1637 (((-2 (|:| |additions| (-501)) (|:| |multiplications| (-501)) (|:| |exponentiations| (-501)) (|:| |functionCalls| (-501))) (-1148 (-282 (-199)))) 142)) (-3358 (((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) 180) (((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) 178)) (-2978 (((-621 (-199)) (-578 (-199)) (-701)) 13)) (-3456 (((-1148 (-630)) (-578 (-199))) 94)) (-3148 (((-578 (-1053)) (-578 (-199))) 74)) (-2671 (((-3 (-282 (-199)) "failed") (-282 (-199))) 120)) (-2409 (((-107) (-199) (-991 (-769 (-199)))) 109)) (-1649 (((-948) (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))) 198)) (-3516 (((-199) (-991 (-769 (-199)))) 107)) (-2254 (((-199) (-991 (-769 (-199)))) 108)) (-3406 (((-199) (-375 (-501))) 26)) (-3024 (((-1053) (-346)) 72)) (-2348 (((-199) (-346)) 17)) (-1445 (((-346) (-1148 (-282 (-199)))) 153)) (-2314 (((-282 (-199)) (-282 (-346))) 23)) (-1484 (((-375 (-501)) (-282 (-199))) 52)) (-3003 (((-282 (-375 (-501))) (-282 (-199))) 68)) (-2403 (((-282 (-346)) (-282 (-199))) 98)) (-2288 (((-199) (-282 (-199))) 53)) (-3923 (((-578 (-199)) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) 63)) (-2979 (((-991 (-769 (-199))) (-991 (-769 (-199)))) 60)) (-3630 (((-1053) (-199)) 71)) (-3308 (((-630) (-199)) 90)) (-3444 (((-375 (-501)) (-199)) 54)) (-2379 (((-282 (-346)) (-199)) 48)) (-1248 (((-578 (-991 (-769 (-199)))) (-578 (-991 (-769 (-346))))) 42)) (-3934 (((-948) (-578 (-948))) 163) (((-948) (-948) (-948)) 160)) (-3884 (((-948) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194))) -(((-272) (-10 -7 (-15 -2348 ((-199) (-346))) (-15 -2314 ((-282 (-199)) (-282 (-346)))) (-15 -3057 ((-769 (-199)) (-769 (-346)))) (-15 -1615 ((-991 (-769 (-199))) (-991 (-769 (-346))))) (-15 -1248 ((-578 (-991 (-769 (-199)))) (-578 (-991 (-769 (-346)))))) (-15 -3444 ((-375 (-501)) (-199))) (-15 -1484 ((-375 (-501)) (-282 (-199)))) (-15 -2288 ((-199) (-282 (-199)))) (-15 -2671 ((-3 (-282 (-199)) "failed") (-282 (-199)))) (-15 -1445 ((-346) (-1148 (-282 (-199))))) (-15 -1637 ((-2 (|:| |additions| (-501)) (|:| |multiplications| (-501)) (|:| |exponentiations| (-501)) (|:| |functionCalls| (-501))) (-1148 (-282 (-199))))) (-15 -3003 ((-282 (-375 (-501))) (-282 (-199)))) (-15 -2979 ((-991 (-769 (-199))) (-991 (-769 (-199))))) (-15 -3923 ((-578 (-199)) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) (-15 -3308 ((-630) (-199))) (-15 -3456 ((-1148 (-630)) (-578 (-199)))) (-15 -2403 ((-282 (-346)) (-282 (-199)))) (-15 -3619 ((-1148 (-282 (-346))) (-1148 (-282 (-199))))) (-15 -2409 ((-107) (-199) (-991 (-769 (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3024 ((-1053) (-346))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199)))) (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -3934 ((-948) (-948) (-948))) (-15 -3934 ((-948) (-578 (-948)))) (-15 -1517 ((-1053) (-346))) (-15 -3358 ((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))))) (-15 -3358 ((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))))) (-15 -3884 ((-948) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1649 ((-948) (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))) (-15 -3059 ((-282 (-346)) (-866 (-199)))) (-15 -1555 ((-199) (-866 (-199)))) (-15 -2379 ((-282 (-346)) (-199))) (-15 -3406 ((-199) (-375 (-501)))) (-15 -2978 ((-621 (-199)) (-578 (-199)) (-701))))) (T -272)) -((-2978 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-701)) (-5 *2 (-621 (-199))) (-5 *1 (-272)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-375 (-501))) (-5 *2 (-199)) (-5 *1 (-272)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-282 (-346))) (-5 *1 (-272)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-199)) (-5 *1 (-272)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-282 (-346))) (-5 *1 (-272)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))) (-5 *2 (-948)) (-5 *1 (-272)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-948)) (-5 *1 (-272)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *2 (-948)) (-5 *1 (-272)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *2 (-948)) (-5 *1 (-272)))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1053)) (-5 *1 (-272)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-578 (-948))) (-5 *2 (-948)) (-5 *1 (-272)))) (-3934 (*1 *2 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-272)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-272)))) (-3516 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-272)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-272)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-272)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1053)) (-5 *1 (-272)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-272)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *4 (-991 (-769 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-272)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-1148 (-282 (-346)))) (-5 *1 (-272)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-282 (-346))) (-5 *1 (-272)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1148 (-630))) (-5 *1 (-272)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-630)) (-5 *1 (-272)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *2 (-578 (-199))) (-5 *1 (-272)))) (-2979 (*1 *2 *2) (-12 (-5 *2 (-991 (-769 (-199)))) (-5 *1 (-272)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-282 (-375 (-501)))) (-5 *1 (-272)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-2 (|:| |additions| (-501)) (|:| |multiplications| (-501)) (|:| |exponentiations| (-501)) (|:| |functionCalls| (-501)))) (-5 *1 (-272)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-346)) (-5 *1 (-272)))) (-2671 (*1 *2 *2) (|partial| -12 (-5 *2 (-282 (-199))) (-5 *1 (-272)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-199)) (-5 *1 (-272)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-375 (-501))) (-5 *1 (-272)))) (-3444 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-375 (-501))) (-5 *1 (-272)))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-578 (-991 (-769 (-346))))) (-5 *2 (-578 (-991 (-769 (-199))))) (-5 *1 (-272)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-346)))) (-5 *2 (-991 (-769 (-199)))) (-5 *1 (-272)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-769 (-346))) (-5 *2 (-769 (-199))) (-5 *1 (-272)))) (-2314 (*1 *2 *3) (-12 (-5 *3 (-282 (-346))) (-5 *2 (-282 (-199))) (-5 *1 (-272)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-199)) (-5 *1 (-272))))) -(-10 -7 (-15 -2348 ((-199) (-346))) (-15 -2314 ((-282 (-199)) (-282 (-346)))) (-15 -3057 ((-769 (-199)) (-769 (-346)))) (-15 -1615 ((-991 (-769 (-199))) (-991 (-769 (-346))))) (-15 -1248 ((-578 (-991 (-769 (-199)))) (-578 (-991 (-769 (-346)))))) (-15 -3444 ((-375 (-501)) (-199))) (-15 -1484 ((-375 (-501)) (-282 (-199)))) (-15 -2288 ((-199) (-282 (-199)))) (-15 -2671 ((-3 (-282 (-199)) "failed") (-282 (-199)))) (-15 -1445 ((-346) (-1148 (-282 (-199))))) (-15 -1637 ((-2 (|:| |additions| (-501)) (|:| |multiplications| (-501)) (|:| |exponentiations| (-501)) (|:| |functionCalls| (-501))) (-1148 (-282 (-199))))) (-15 -3003 ((-282 (-375 (-501))) (-282 (-199)))) (-15 -2979 ((-991 (-769 (-199))) (-991 (-769 (-199))))) (-15 -3923 ((-578 (-199)) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) (-15 -3308 ((-630) (-199))) (-15 -3456 ((-1148 (-630)) (-578 (-199)))) (-15 -2403 ((-282 (-346)) (-282 (-199)))) (-15 -3619 ((-1148 (-282 (-346))) (-1148 (-282 (-199))))) (-15 -2409 ((-107) (-199) (-991 (-769 (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3024 ((-1053) (-346))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199)))) (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -3934 ((-948) (-948) (-948))) (-15 -3934 ((-948) (-578 (-948)))) (-15 -1517 ((-1053) (-346))) (-15 -3358 ((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))))) (-15 -3358 ((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))))) (-15 -3884 ((-948) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1649 ((-948) (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))) (-15 -3059 ((-282 (-346)) (-866 (-199)))) (-15 -1555 ((-199) (-866 (-199)))) (-15 -2379 ((-282 (-346)) (-199))) (-15 -3406 ((-199) (-375 (-501)))) (-15 -2978 ((-621 (-199)) (-578 (-199)) (-701)))) -((-2018 (((-578 |#1|) (-578 |#1|)) 10))) -(((-273 |#1|) (-10 -7 (-15 -2018 ((-578 |#1|) (-578 |#1|)))) (-775)) (T -273)) -((-2018 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-775)) (-5 *1 (-273 *3))))) -(-10 -7 (-15 -2018 ((-578 |#1|) (-578 |#1|)))) -((-1212 (((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|)) 15))) -(((-274 |#1| |#2|) (-10 -7 (-15 -1212 ((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|)))) (-959) (-959)) (T -274)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-621 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-621 *6)) (-5 *1 (-274 *5 *6))))) -(-10 -7 (-15 -1212 ((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|)))) -((-2781 (((-107) $ $) 11)) (-3023 (($ $ $) 15)) (-3034 (($ $ $) 14)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 43)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-3664 (($ $ $) 20) (($ (-578 $)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-3694 (((-3 $ "failed") $ $) 17)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 45))) -(((-275 |#1|) (-10 -8 (-15 -1234 ((-3 (-578 |#1|) "failed") (-578 |#1|) |#1|)) (-15 -3776 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3776 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| |#1|)) (-15 -2781 ((-107) |#1| |#1|)) (-15 -2648 ((-3 (-578 |#1|) "failed") (-578 |#1|) |#1|)) (-15 -3730 ((-2 (|:| -3189 (-578 |#1|)) (|:| -3987 |#1|)) (-578 |#1|))) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|))) (-276)) (T -275)) -NIL -(-10 -8 (-15 -1234 ((-3 (-578 |#1|) "failed") (-578 |#1|) |#1|)) (-15 -3776 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3776 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| |#1|)) (-15 -2781 ((-107) |#1| |#1|)) (-15 -2648 ((-3 (-578 |#1|) "failed") (-578 |#1|) |#1|)) (-15 -3730 ((-2 (|:| -3189 (-578 |#1|)) (|:| -3987 |#1|)) (-578 |#1|))) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1355 (((-107) $) 31)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-276) (-1180)) (T -276)) -((-2781 (*1 *2 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-107)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-701)))) (-2419 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-276)))) (-3034 (*1 *1 *1 *1) (-4 *1 (-276))) (-3023 (*1 *1 *1 *1) (-4 *1 (-276))) (-3776 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-276)))) (-3776 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-276)))) (-1234 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-276))))) -(-13 (-841) (-10 -8 (-15 -2781 ((-107) $ $)) (-15 -1864 ((-701) $)) (-15 -2419 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -3034 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3776 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $)) (-15 -3776 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1234 ((-3 (-578 $) "failed") (-578 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3195 (($ $ (-578 |#2|) (-578 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-262 |#2|)) 11) (($ $ (-578 (-262 |#2|))) NIL))) -(((-277 |#1| |#2|) (-10 -8 (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|)))) (-278 |#2|) (-1001)) (T -277)) -NIL -(-10 -8 (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|)))) -((-3195 (($ $ (-578 |#1|) (-578 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-262 |#1|)) 11) (($ $ (-578 (-262 |#1|))) 10))) -(((-278 |#1|) (-1180) (-1001)) (T -278)) -((-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-262 *3)) (-4 *1 (-278 *3)) (-4 *3 (-1001)))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *3))) (-4 *1 (-278 *3)) (-4 *3 (-1001))))) -(-13 (-476 |t#1| |t#1|) (-10 -8 (-15 -3195 ($ $ (-262 |t#1|))) (-15 -3195 ($ $ (-578 (-262 |t#1|)))))) -(((-476 |#1| |#1|) . T)) -((-3195 ((|#1| (-1 |#1| (-501)) (-1072 (-375 (-501)))) 24))) -(((-279 |#1|) (-10 -7 (-15 -3195 (|#1| (-1 |#1| (-501)) (-1072 (-375 (-501)))))) (-37 (-375 (-501)))) (T -279)) -((-3195 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-501))) (-5 *4 (-1072 (-375 (-501)))) (-5 *1 (-279 *2)) (-4 *2 (-37 (-375 (-501))))))) -(-10 -7 (-15 -3195 (|#1| (-1 |#1| (-501)) (-1072 (-375 (-501)))))) -((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 7)) (-3751 (((-107) $ $) 9))) -(((-280) (-1001)) (T -280)) -NIL -(-1001) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 62)) (-2197 (((-1136 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-1136 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-501)))) (((-3 (-1130 |#2| |#3| |#4|) "failed") $) 24)) (-3490 (((-1136 |#1| |#2| |#3| |#4|) $) NIL) (((-1070) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-501)))) (((-501) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-501)))) (((-1130 |#2| |#3| |#4|) $) NIL)) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-1136 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1148 (-1136 |#1| |#2| |#3| |#4|)))) (-621 $) (-1148 $)) NIL) (((-621 (-1136 |#1| |#2| |#3| |#4|)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-1136 |#1| |#2| |#3| |#4|) $) 21)) (-3493 (((-3 $ "failed") $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-1046)))) (-4067 (((-107) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-1323 (($ $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-1212 (($ (-1 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) $) NIL)) (-2533 (((-3 (-769 |#2|) "failed") $) 76)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-276)))) (-3383 (((-1136 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-1136 |#1| |#2| |#3| |#4|)) (-578 (-1136 |#1| |#2| |#3| |#4|))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|)))) (($ $ (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|)))) (($ $ (-262 (-1136 |#1| |#2| |#3| |#4|))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|)))) (($ $ (-578 (-262 (-1136 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|)))) (($ $ (-578 (-1070)) (-578 (-1136 |#1| |#2| |#3| |#4|))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-476 (-1070) (-1136 |#1| |#2| |#3| |#4|)))) (($ $ (-1070) (-1136 |#1| |#2| |#3| |#4|)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-476 (-1070) (-1136 |#1| |#2| |#3| |#4|))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-1136 |#1| |#2| |#3| |#4|)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-256 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-206))) (($ $ (-701)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-206))) (($ $ (-1070)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-1 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) (-701)) NIL) (($ $ (-1 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-1136 |#1| |#2| |#3| |#4|) $) 17)) (-1248 (((-810 (-501)) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-556 (-490)))) (((-346) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-933))) (((-199) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-1136 |#1| |#2| |#3| |#4|) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-1136 |#1| |#2| |#3| |#4|)) 28) (($ (-1070)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-1070)))) (($ (-1130 |#2| |#3| |#4|)) 36)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-1136 |#1| |#2| |#3| |#4|) (-830))) (|has| (-1136 |#1| |#2| |#3| |#4|) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-1136 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-500)))) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 41 T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-206))) (($ $ (-701)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-206))) (($ $ (-1070)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-1 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) (-701)) NIL) (($ $ (-1 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-3803 (($ $ $) 33) (($ (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) 30)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-1136 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1136 |#1| |#2| |#3| |#4|)) NIL))) -(((-281 |#1| |#2| |#3| |#4|) (-13 (-906 (-1136 |#1| |#2| |#3| |#4|)) (-950 (-1130 |#2| |#3| |#4|)) (-10 -8 (-15 -2533 ((-3 (-769 |#2|) "failed") $)) (-15 -3691 ($ (-1130 |#2| |#3| |#4|))))) (-13 (-777) (-950 (-501)) (-577 (-501)) (-419)) (-13 (-27) (-1090) (-389 |#1|)) (-1070) |#2|) (T -281)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1130 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4) (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *1 (-281 *3 *4 *5 *6)))) (-2533 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-769 *4)) (-5 *1 (-281 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4)))) -(-13 (-906 (-1136 |#1| |#2| |#3| |#4|)) (-950 (-1130 |#2| |#3| |#4|)) (-10 -8 (-15 -2533 ((-3 (-769 |#2|) "failed") $)) (-15 -3691 ($ (-1130 |#2| |#3| |#4|))))) -((-3736 (((-107) $ $) NIL)) (-3588 (((-578 $) $ (-1070)) NIL (|has| |#1| (-508))) (((-578 $) $) NIL (|has| |#1| (-508))) (((-578 $) (-1064 $) (-1070)) NIL (|has| |#1| (-508))) (((-578 $) (-1064 $)) NIL (|has| |#1| (-508))) (((-578 $) (-866 $)) NIL (|has| |#1| (-508)))) (-3448 (($ $ (-1070)) NIL (|has| |#1| (-508))) (($ $) NIL (|has| |#1| (-508))) (($ (-1064 $) (-1070)) NIL (|has| |#1| (-508))) (($ (-1064 $)) NIL (|has| |#1| (-508))) (($ (-866 $)) NIL (|has| |#1| (-508)))) (-3292 (((-107) $) 27 (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))))) (-3800 (((-578 (-1070)) $) 344)) (-3728 (((-375 (-1064 $)) $ (-553 $)) NIL (|has| |#1| (-508)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3709 (((-578 (-553 $)) $) NIL)) (-3978 (($ $) 154 (|has| |#1| (-508)))) (-3937 (($ $) 130 (|has| |#1| (-508)))) (-3977 (($ $ (-993 $)) 215 (|has| |#1| (-508))) (($ $ (-1070)) 211 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) NIL (-1405 (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))))) (-3631 (($ $ (-262 $)) NIL) (($ $ (-578 (-262 $))) 360) (($ $ (-578 (-553 $)) (-578 $)) 403)) (-3324 (((-373 (-1064 $)) (-1064 $)) 288 (-12 (|has| |#1| (-419)) (|has| |#1| (-508))))) (-3676 (($ $) NIL (|has| |#1| (-508)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-508)))) (-3743 (($ $) NIL (|has| |#1| (-508)))) (-2781 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3970 (($ $) 150 (|has| |#1| (-508)))) (-3929 (($ $) 126 (|has| |#1| (-508)))) (-1384 (($ $ (-501)) 64 (|has| |#1| (-508)))) (-3984 (($ $) 158 (|has| |#1| (-508)))) (-3945 (($ $) 134 (|has| |#1| (-508)))) (-2540 (($) NIL (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))) CONST)) (-1271 (((-578 $) $ (-1070)) NIL (|has| |#1| (-508))) (((-578 $) $) NIL (|has| |#1| (-508))) (((-578 $) (-1064 $) (-1070)) NIL (|has| |#1| (-508))) (((-578 $) (-1064 $)) NIL (|has| |#1| (-508))) (((-578 $) (-866 $)) NIL (|has| |#1| (-508)))) (-2899 (($ $ (-1070)) NIL (|has| |#1| (-508))) (($ $) NIL (|has| |#1| (-508))) (($ (-1064 $) (-1070)) 117 (|has| |#1| (-508))) (($ (-1064 $)) NIL (|has| |#1| (-508))) (($ (-866 $)) NIL (|has| |#1| (-508)))) (-3765 (((-3 (-553 $) "failed") $) 17) (((-3 (-1070) "failed") $) NIL) (((-3 |#1| "failed") $) 412) (((-3 (-47) "failed") $) 317 (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-866 |#1|)) "failed") $) NIL (|has| |#1| (-508))) (((-3 (-866 |#1|) "failed") $) NIL (|has| |#1| (-959))) (((-3 (-375 (-501)) "failed") $) 45 (-1405 (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-3490 (((-553 $) $) 11) (((-1070) $) NIL) ((|#1| $) 394) (((-47) $) NIL (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-866 |#1|)) $) NIL (|has| |#1| (-508))) (((-866 |#1|) $) NIL (|has| |#1| (-959))) (((-375 (-501)) $) 301 (-1405 (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-3023 (($ $ $) NIL (|has| |#1| (-508)))) (-3868 (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 110 (|has| |#1| (-959))) (((-621 |#1|) (-621 $)) 102 (|has| |#1| (-959))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))) (-3547 (($ $) 84 (|has| |#1| (-508)))) (-2174 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))))) (-3034 (($ $ $) NIL (|has| |#1| (-508)))) (-1758 (($ $ (-993 $)) 219 (|has| |#1| (-508))) (($ $ (-1070)) 217 (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-508)))) (-1628 (((-107) $) NIL (|has| |#1| (-508)))) (-2726 (($ $ $) 185 (|has| |#1| (-508)))) (-2003 (($) 120 (|has| |#1| (-508)))) (-2940 (($ $ $) 205 (|has| |#1| (-508)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 366 (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 372 (|has| |#1| (-806 (-346))))) (-2446 (($ $) NIL) (($ (-578 $)) NIL)) (-2389 (((-578 (-108)) $) NIL)) (-1853 (((-108) (-108)) 260)) (-1355 (((-107) $) 25 (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))))) (-3729 (((-107) $) NIL (|has| $ (-950 (-501))))) (-2117 (($ $) 66 (|has| |#1| (-959)))) (-2946 (((-1023 |#1| (-553 $)) $) 79 (|has| |#1| (-959)))) (-2925 (((-107) $) 46 (|has| |#1| (-508)))) (-1342 (($ $ (-501)) NIL (|has| |#1| (-508)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-508)))) (-1983 (((-1064 $) (-553 $)) 261 (|has| $ (-959)))) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 $ $) (-553 $)) 399)) (-2789 (((-3 (-553 $) "failed") $) NIL)) (-1635 (($ $) 124 (|has| |#1| (-508)))) (-2586 (($ $) 230 (|has| |#1| (-508)))) (-1697 (($ (-578 $)) NIL (|has| |#1| (-508))) (($ $ $) NIL (|has| |#1| (-508)))) (-3460 (((-1053) $) NIL)) (-3724 (((-578 (-553 $)) $) 48)) (-3136 (($ (-108) $) NIL) (($ (-108) (-578 $)) 404)) (-2948 (((-3 (-578 $) "failed") $) NIL (|has| |#1| (-1012)))) (-2000 (((-3 (-2 (|:| |val| $) (|:| -3027 (-501))) "failed") $) NIL (|has| |#1| (-959)))) (-1285 (((-3 (-578 $) "failed") $) 407 (|has| |#1| (-25)))) (-3475 (((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 $))) "failed") $) 411 (|has| |#1| (-25)))) (-2551 (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $) NIL (|has| |#1| (-1012))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-108)) NIL (|has| |#1| (-959))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-1070)) NIL (|has| |#1| (-959)))) (-3109 (((-107) $ (-108)) NIL) (((-107) $ (-1070)) 52)) (-3833 (($ $) NIL (-1405 (|has| |#1| (-440)) (|has| |#1| (-508))))) (-3028 (($ $ (-1070)) 234 (|has| |#1| (-508))) (($ $ (-993 $)) 236 (|has| |#1| (-508)))) (-2696 (((-701) $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) 43)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 281 (|has| |#1| (-508)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-508))) (($ $ $) NIL (|has| |#1| (-508)))) (-2816 (((-107) $ $) NIL) (((-107) $ (-1070)) NIL)) (-3332 (($ $ (-1070)) 209 (|has| |#1| (-508))) (($ $) 207 (|has| |#1| (-508)))) (-3260 (($ $) 201 (|has| |#1| (-508)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 286 (-12 (|has| |#1| (-419)) (|has| |#1| (-508))))) (-3739 (((-373 $) $) NIL (|has| |#1| (-508)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-508))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-508)))) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-508)))) (-1989 (($ $) 122 (|has| |#1| (-508)))) (-3172 (((-107) $) NIL (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) 398) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-1070) (-1 $ (-578 $))) NIL) (($ $ (-1070) (-1 $ $)) NIL) (($ $ (-578 (-108)) (-578 (-1 $ $))) 354) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-108) (-1 $ (-578 $))) NIL) (($ $ (-108) (-1 $ $)) NIL) (($ $ (-1070)) NIL (|has| |#1| (-556 (-490)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-556 (-490)))) (($ $) NIL (|has| |#1| (-556 (-490)))) (($ $ (-108) $ (-1070)) 342 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-108)) (-578 $) (-1070)) 341 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ $))) NIL (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ (-578 $)))) NIL (|has| |#1| (-959))) (($ $ (-1070) (-701) (-1 $ (-578 $))) NIL (|has| |#1| (-959))) (($ $ (-1070) (-701) (-1 $ $)) NIL (|has| |#1| (-959)))) (-1864 (((-701) $) NIL (|has| |#1| (-508)))) (-3908 (($ $) 222 (|has| |#1| (-508)))) (-2007 (($ (-108) $) NIL) (($ (-108) $ $) NIL) (($ (-108) $ $ $) NIL) (($ (-108) $ $ $ $) NIL) (($ (-108) (-578 $)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-4106 (($ $) NIL) (($ $ $) NIL)) (-3924 (($ $) 232 (|has| |#1| (-508)))) (-3041 (($ $) 183 (|has| |#1| (-508)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-959))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-959))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-959))) (($ $ (-1070)) NIL (|has| |#1| (-959)))) (-3307 (($ $) 67 (|has| |#1| (-508)))) (-2949 (((-1023 |#1| (-553 $)) $) 81 (|has| |#1| (-508)))) (-2264 (($ $) 299 (|has| $ (-959)))) (-3991 (($ $) 160 (|has| |#1| (-508)))) (-3949 (($ $) 136 (|has| |#1| (-508)))) (-3981 (($ $) 156 (|has| |#1| (-508)))) (-3940 (($ $) 132 (|has| |#1| (-508)))) (-3975 (($ $) 152 (|has| |#1| (-508)))) (-3933 (($ $) 128 (|has| |#1| (-508)))) (-1248 (((-810 (-501)) $) NIL (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| |#1| (-556 (-810 (-346))))) (($ (-373 $)) NIL (|has| |#1| (-508))) (((-490) $) 339 (|has| |#1| (-556 (-490))))) (-3097 (($ $ $) NIL (|has| |#1| (-440)))) (-2144 (($ $ $) NIL (|has| |#1| (-440)))) (-3691 (((-786) $) 397) (($ (-553 $)) 388) (($ (-1070)) 356) (($ |#1|) 318) (($ $) NIL (|has| |#1| (-508))) (($ (-47)) 293 (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501))))) (($ (-1023 |#1| (-553 $))) 83 (|has| |#1| (-959))) (($ (-375 |#1|)) NIL (|has| |#1| (-508))) (($ (-866 (-375 |#1|))) NIL (|has| |#1| (-508))) (($ (-375 (-866 (-375 |#1|)))) NIL (|has| |#1| (-508))) (($ (-375 (-866 |#1|))) NIL (|has| |#1| (-508))) (($ (-866 |#1|)) NIL (|has| |#1| (-959))) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-508)) (|has| |#1| (-950 (-375 (-501)))))) (($ (-501)) 34 (-1405 (|has| |#1| (-950 (-501))) (|has| |#1| (-959))))) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL (|has| |#1| (-959)))) (-1831 (($ $) NIL) (($ (-578 $)) NIL)) (-1299 (($ $ $) 203 (|has| |#1| (-508)))) (-1223 (($ $ $) 189 (|has| |#1| (-508)))) (-3076 (($ $ $) 193 (|has| |#1| (-508)))) (-1730 (($ $ $) 187 (|has| |#1| (-508)))) (-2108 (($ $ $) 191 (|has| |#1| (-508)))) (-3811 (((-107) (-108)) 9)) (-4003 (($ $) 166 (|has| |#1| (-508)))) (-3958 (($ $) 142 (|has| |#1| (-508)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) 162 (|has| |#1| (-508)))) (-3952 (($ $) 138 (|has| |#1| (-508)))) (-4013 (($ $) 170 (|has| |#1| (-508)))) (-3964 (($ $) 146 (|has| |#1| (-508)))) (-4043 (($ (-1070) $) NIL) (($ (-1070) $ $) NIL) (($ (-1070) $ $ $) NIL) (($ (-1070) $ $ $ $) NIL) (($ (-1070) (-578 $)) NIL)) (-2134 (($ $) 197 (|has| |#1| (-508)))) (-2338 (($ $) 195 (|has| |#1| (-508)))) (-3550 (($ $) 172 (|has| |#1| (-508)))) (-3967 (($ $) 148 (|has| |#1| (-508)))) (-4008 (($ $) 168 (|has| |#1| (-508)))) (-3961 (($ $) 144 (|has| |#1| (-508)))) (-3999 (($ $) 164 (|has| |#1| (-508)))) (-3955 (($ $) 140 (|has| |#1| (-508)))) (-1720 (($ $) 175 (|has| |#1| (-508)))) (-3948 (($ $ (-501)) NIL (-1405 (|has| |#1| (-440)) (|has| |#1| (-508)))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012)))) (($ $ (-839)) NIL (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))))) (-1850 (($) 20 (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))) CONST)) (-2909 (($ $) 226 (|has| |#1| (-508)))) (-1925 (($) 22 (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))) CONST)) (-3705 (($ $) 177 (|has| |#1| (-508))) (($ $ $) 179 (|has| |#1| (-508)))) (-3878 (($ $) 224 (|has| |#1| (-508)))) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-959))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-959))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-959))) (($ $ (-1070)) NIL (|has| |#1| (-959)))) (-2043 (($ $) 228 (|has| |#1| (-508)))) (-3360 (($ $ $) 181 (|has| |#1| (-508)))) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 76)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 75)) (-3803 (($ (-1023 |#1| (-553 $)) (-1023 |#1| (-553 $))) 93 (|has| |#1| (-508))) (($ $ $) 42 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508))))) (-3797 (($ $ $) 40 (-1405 (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))) (($ $) 29 (-1405 (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))))) (-3790 (($ $ $) 38 (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))))) (** (($ $ $) 61 (|has| |#1| (-508))) (($ $ (-375 (-501))) 296 (|has| |#1| (-508))) (($ $ (-501)) 71 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508)))) (($ $ (-701)) 68 (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012)))) (($ $ (-839)) 73 (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))))) (* (($ (-375 (-501)) $) NIL (|has| |#1| (-508))) (($ $ (-375 (-501))) NIL (|has| |#1| (-508))) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))) (($ $ $) 36 (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012)))) (($ (-501) $) 32 (-1405 (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))) (($ (-701) $) NIL (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))) (($ (-839) $) NIL (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))))) -(((-282 |#1|) (-13 (-389 |#1|) (-10 -8 (IF (|has| |#1| (-508)) (PROGN (-6 (-29 |#1|)) (-6 (-1090)) (-6 (-145)) (-6 (-568)) (-6 (-1034)) (-15 -3547 ($ $)) (-15 -2925 ((-107) $)) (-15 -1384 ($ $ (-501))) (IF (|has| |#1| (-419)) (PROGN (-15 -2572 ((-373 (-1064 $)) (-1064 $))) (-15 -3324 ((-373 (-1064 $)) (-1064 $)))) |noBranch|) (IF (|has| |#1| (-950 (-501))) (-6 (-950 (-47))) |noBranch|)) |noBranch|))) (-777)) (T -282)) -((-3547 (*1 *1 *1) (-12 (-5 *1 (-282 *2)) (-4 *2 (-508)) (-4 *2 (-777)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-282 *3)) (-4 *3 (-508)) (-4 *3 (-777)))) (-1384 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-282 *3)) (-4 *3 (-508)) (-4 *3 (-777)))) (-2572 (*1 *2 *3) (-12 (-5 *2 (-373 (-1064 *1))) (-5 *1 (-282 *4)) (-5 *3 (-1064 *1)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *4 (-777)))) (-3324 (*1 *2 *3) (-12 (-5 *2 (-373 (-1064 *1))) (-5 *1 (-282 *4)) (-5 *3 (-1064 *1)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *4 (-777))))) -(-13 (-389 |#1|) (-10 -8 (IF (|has| |#1| (-508)) (PROGN (-6 (-29 |#1|)) (-6 (-1090)) (-6 (-145)) (-6 (-568)) (-6 (-1034)) (-15 -3547 ($ $)) (-15 -2925 ((-107) $)) (-15 -1384 ($ $ (-501))) (IF (|has| |#1| (-419)) (PROGN (-15 -2572 ((-373 (-1064 $)) (-1064 $))) (-15 -3324 ((-373 (-1064 $)) (-1064 $)))) |noBranch|) (IF (|has| |#1| (-950 (-501))) (-6 (-950 (-47))) |noBranch|)) |noBranch|))) -((-1212 (((-282 |#2|) (-1 |#2| |#1|) (-282 |#1|)) 13))) -(((-283 |#1| |#2|) (-10 -7 (-15 -1212 ((-282 |#2|) (-1 |#2| |#1|) (-282 |#1|)))) (-777) (-777)) (T -283)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-282 *5)) (-4 *5 (-777)) (-4 *6 (-777)) (-5 *2 (-282 *6)) (-5 *1 (-283 *5 *6))))) -(-10 -7 (-15 -1212 ((-282 |#2|) (-1 |#2| |#1|) (-282 |#1|)))) -((-3818 (((-50) |#2| (-262 |#2|) (-701)) 33) (((-50) |#2| (-262 |#2|)) 24) (((-50) |#2| (-701)) 28) (((-50) |#2|) 25) (((-50) (-1070)) 21)) (-2973 (((-50) |#2| (-262 |#2|) (-375 (-501))) 51) (((-50) |#2| (-262 |#2|)) 48) (((-50) |#2| (-375 (-501))) 50) (((-50) |#2|) 49) (((-50) (-1070)) 47)) (-3826 (((-50) |#2| (-262 |#2|) (-375 (-501))) 46) (((-50) |#2| (-262 |#2|)) 43) (((-50) |#2| (-375 (-501))) 45) (((-50) |#2|) 44) (((-50) (-1070)) 42)) (-3822 (((-50) |#2| (-262 |#2|) (-501)) 39) (((-50) |#2| (-262 |#2|)) 35) (((-50) |#2| (-501)) 38) (((-50) |#2|) 36) (((-50) (-1070)) 34))) -(((-284 |#1| |#2|) (-10 -7 (-15 -3818 ((-50) (-1070))) (-15 -3818 ((-50) |#2|)) (-15 -3818 ((-50) |#2| (-701))) (-15 -3818 ((-50) |#2| (-262 |#2|))) (-15 -3818 ((-50) |#2| (-262 |#2|) (-701))) (-15 -3822 ((-50) (-1070))) (-15 -3822 ((-50) |#2|)) (-15 -3822 ((-50) |#2| (-501))) (-15 -3822 ((-50) |#2| (-262 |#2|))) (-15 -3822 ((-50) |#2| (-262 |#2|) (-501))) (-15 -3826 ((-50) (-1070))) (-15 -3826 ((-50) |#2|)) (-15 -3826 ((-50) |#2| (-375 (-501)))) (-15 -3826 ((-50) |#2| (-262 |#2|))) (-15 -3826 ((-50) |#2| (-262 |#2|) (-375 (-501)))) (-15 -2973 ((-50) (-1070))) (-15 -2973 ((-50) |#2|)) (-15 -2973 ((-50) |#2| (-375 (-501)))) (-15 -2973 ((-50) |#2| (-262 |#2|))) (-15 -2973 ((-50) |#2| (-262 |#2|) (-375 (-501))))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -284)) -((-2973 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) (-2973 (*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) (-2973 (*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-2973 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) (-3826 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3826 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 *5) (-577 *5))) (-5 *5 (-501)) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *5 (-13 (-419) (-777) (-950 *4) (-577 *4))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3822 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-701)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4)))))) -(-10 -7 (-15 -3818 ((-50) (-1070))) (-15 -3818 ((-50) |#2|)) (-15 -3818 ((-50) |#2| (-701))) (-15 -3818 ((-50) |#2| (-262 |#2|))) (-15 -3818 ((-50) |#2| (-262 |#2|) (-701))) (-15 -3822 ((-50) (-1070))) (-15 -3822 ((-50) |#2|)) (-15 -3822 ((-50) |#2| (-501))) (-15 -3822 ((-50) |#2| (-262 |#2|))) (-15 -3822 ((-50) |#2| (-262 |#2|) (-501))) (-15 -3826 ((-50) (-1070))) (-15 -3826 ((-50) |#2|)) (-15 -3826 ((-50) |#2| (-375 (-501)))) (-15 -3826 ((-50) |#2| (-262 |#2|))) (-15 -3826 ((-50) |#2| (-262 |#2|) (-375 (-501)))) (-15 -2973 ((-50) (-1070))) (-15 -2973 ((-50) |#2|)) (-15 -2973 ((-50) |#2| (-375 (-501)))) (-15 -2973 ((-50) |#2| (-262 |#2|))) (-15 -2973 ((-50) |#2| (-262 |#2|) (-375 (-501))))) -((-1740 (((-50) |#2| (-108) (-262 |#2|) (-578 |#2|)) 86) (((-50) |#2| (-108) (-262 |#2|) (-262 |#2|)) 82) (((-50) |#2| (-108) (-262 |#2|) |#2|) 84) (((-50) (-262 |#2|) (-108) (-262 |#2|) |#2|) 85) (((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|))) 78) (((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 |#2|)) 80) (((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 |#2|)) 81) (((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|))) 79) (((-50) (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|)) 87) (((-50) (-262 |#2|) (-108) (-262 |#2|) (-262 |#2|)) 83))) -(((-285 |#1| |#2|) (-10 -7 (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) (-262 |#2|))) (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|)))) (-15 -1740 ((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|)))) (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) |#2|)) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) |#2|)) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) (-262 |#2|))) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) (-578 |#2|)))) (-13 (-777) (-508) (-556 (-490))) (-389 |#1|)) (T -285)) -((-1740 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-5 *6 (-578 *3)) (-4 *3 (-389 *7)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *3)))) (-1740 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-4 *3 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *3)))) (-1740 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-4 *3 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *3)))) (-1740 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-262 *5)) (-5 *4 (-108)) (-4 *5 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *5)))) (-1740 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-108))) (-5 *6 (-578 (-262 *8))) (-4 *8 (-389 *7)) (-5 *5 (-262 *8)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *8)))) (-1740 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-108))) (-5 *5 (-262 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) (-1740 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 (-262 *8))) (-5 *4 (-578 (-108))) (-5 *5 (-262 *8)) (-5 *6 (-578 *8)) (-4 *8 (-389 *7)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *8)))) (-1740 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 (-262 *7))) (-5 *4 (-578 (-108))) (-5 *5 (-262 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) (-1740 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-108)) (-5 *5 (-578 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) (-1740 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-262 *6)) (-5 *4 (-108)) (-4 *6 (-389 *5)) (-4 *5 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *5 *6))))) -(-10 -7 (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) (-262 |#2|))) (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|)))) (-15 -1740 ((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|)))) (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) |#2|)) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) |#2|)) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) (-262 |#2|))) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) (-578 |#2|)))) -((-3002 (((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501) (-1053)) 45) (((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501)) 46) (((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501) (-1053)) 42) (((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501)) 43)) (-2234 (((-1 (-199) (-199)) (-199)) 44))) -(((-286) (-10 -7 (-15 -2234 ((-1 (-199) (-199)) (-199))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501) (-1053))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501) (-1053))))) (T -286)) -((-3002 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-199)) (-5 *7 (-501)) (-5 *8 (-1053)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) (-3002 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-199)) (-5 *7 (-501)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) (-3002 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-501)) (-5 *7 (-1053)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) (-3002 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-501)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) (-2234 (*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-286)) (-5 *3 (-199))))) -(-10 -7 (-15 -2234 ((-1 (-199) (-199)) (-199))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501) (-1053))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501) (-1053)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 24)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) NIL) (($ $ (-375 (-501)) (-375 (-501))) NIL)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) 19)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) 30)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) NIL) (((-375 (-501)) $ (-375 (-501))) 15)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) NIL) (($ $ (-375 (-501))) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-375 (-501))) NIL) (($ $ (-986) (-375 (-501))) NIL) (($ $ (-578 (-986)) (-578 (-375 (-501)))) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090)))))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-3210 (((-375 (-501)) $) 16)) (-1802 (($ (-1130 |#1| |#2| |#3|)) 11)) (-3027 (((-1130 |#1| |#2| |#3|) $) 12)) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) NIL) (($ $ $) NIL (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-1201 (((-375 (-501)) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 10)) (-3691 (((-786) $) 36) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) 28)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) NIL)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 26)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 31)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-287 |#1| |#2| |#3|) (-13 (-1132 |#1|) (-722) (-10 -8 (-15 -1802 ($ (-1130 |#1| |#2| |#3|))) (-15 -3027 ((-1130 |#1| |#2| |#3|) $)) (-15 -3210 ((-375 (-501)) $)))) (-13 (-331) (-777)) (-1070) |#1|) (T -287)) -((-1802 (*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-287 *3 *4 *5)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-1130 *3 *4 *5)) (-5 *1 (-287 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3))) (-3210 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-287 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3)))) -(-13 (-1132 |#1|) (-722) (-10 -8 (-15 -1802 ($ (-1130 |#1| |#2| |#3|))) (-15 -3027 ((-1130 |#1| |#2| |#3|) $)) (-15 -3210 ((-375 (-501)) $)))) -((-1342 (((-2 (|:| -3027 (-701)) (|:| -3189 |#1|) (|:| |radicand| (-578 |#1|))) (-373 |#1|) (-701)) 24)) (-1635 (((-578 (-2 (|:| -3189 (-701)) (|:| |logand| |#1|))) (-373 |#1|)) 28))) -(((-288 |#1|) (-10 -7 (-15 -1342 ((-2 (|:| -3027 (-701)) (|:| -3189 |#1|) (|:| |radicand| (-578 |#1|))) (-373 |#1|) (-701))) (-15 -1635 ((-578 (-2 (|:| -3189 (-701)) (|:| |logand| |#1|))) (-373 |#1|)))) (-508)) (T -288)) -((-1635 (*1 *2 *3) (-12 (-5 *3 (-373 *4)) (-4 *4 (-508)) (-5 *2 (-578 (-2 (|:| -3189 (-701)) (|:| |logand| *4)))) (-5 *1 (-288 *4)))) (-1342 (*1 *2 *3 *4) (-12 (-5 *3 (-373 *5)) (-4 *5 (-508)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *5) (|:| |radicand| (-578 *5)))) (-5 *1 (-288 *5)) (-5 *4 (-701))))) -(-10 -7 (-15 -1342 ((-2 (|:| -3027 (-701)) (|:| -3189 |#1|) (|:| |radicand| (-578 |#1|))) (-373 |#1|) (-701))) (-15 -1635 ((-578 (-2 (|:| -3189 (-701)) (|:| |logand| |#1|))) (-373 |#1|)))) -((-3800 (((-578 |#2|) (-1064 |#4|)) 43)) (-2431 ((|#3| (-501)) 46)) (-3963 (((-1064 |#4|) (-1064 |#3|)) 30)) (-1497 (((-1064 |#4|) (-1064 |#4|) (-501)) 55)) (-1465 (((-1064 |#3|) (-1064 |#4|)) 21)) (-1201 (((-578 (-701)) (-1064 |#4|) (-578 |#2|)) 40)) (-3239 (((-1064 |#3|) (-1064 |#4|) (-578 |#2|) (-578 |#3|)) 35))) -(((-289 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3239 ((-1064 |#3|) (-1064 |#4|) (-578 |#2|) (-578 |#3|))) (-15 -1201 ((-578 (-701)) (-1064 |#4|) (-578 |#2|))) (-15 -3800 ((-578 |#2|) (-1064 |#4|))) (-15 -1465 ((-1064 |#3|) (-1064 |#4|))) (-15 -3963 ((-1064 |#4|) (-1064 |#3|))) (-15 -1497 ((-1064 |#4|) (-1064 |#4|) (-501))) (-15 -2431 (|#3| (-501)))) (-723) (-777) (-959) (-870 |#3| |#1| |#2|)) (T -289)) -((-2431 (*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-959)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *6 (-870 *2 *4 *5)))) (-1497 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 *7)) (-5 *3 (-501)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *1 (-289 *4 *5 *6 *7)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1064 *6)) (-4 *6 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-1064 *7)) (-5 *1 (-289 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-1064 *7)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *2 (-1064 *6)) (-5 *1 (-289 *4 *5 *6 *7)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-1064 *7)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *2 (-578 *5)) (-5 *1 (-289 *4 *5 *6 *7)))) (-1201 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *8)) (-5 *4 (-578 *6)) (-4 *6 (-777)) (-4 *8 (-870 *7 *5 *6)) (-4 *5 (-723)) (-4 *7 (-959)) (-5 *2 (-578 (-701))) (-5 *1 (-289 *5 *6 *7 *8)))) (-3239 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 *8)) (-4 *7 (-777)) (-4 *8 (-959)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-5 *2 (-1064 *8)) (-5 *1 (-289 *6 *7 *8 *9))))) -(-10 -7 (-15 -3239 ((-1064 |#3|) (-1064 |#4|) (-578 |#2|) (-578 |#3|))) (-15 -1201 ((-578 (-701)) (-1064 |#4|) (-578 |#2|))) (-15 -3800 ((-578 |#2|) (-1064 |#4|))) (-15 -1465 ((-1064 |#3|) (-1064 |#4|))) (-15 -3963 ((-1064 |#4|) (-1064 |#3|))) (-15 -1497 ((-1064 |#4|) (-1064 |#4|) (-501))) (-15 -2431 (|#3| (-501)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 14)) (-1395 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-501)))) $) 18)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701) $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2153 ((|#1| $ (-501)) NIL)) (-3301 (((-501) $ (-501)) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2451 (($ (-1 |#1| |#1|) $) NIL)) (-2210 (($ (-1 (-501) (-501)) $) 10)) (-3460 (((-1053) $) NIL)) (-1327 (($ $ $) NIL (|has| (-501) (-722)))) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL) (($ |#1|) NIL)) (-2495 (((-501) |#1| $) NIL)) (-1850 (($) 15 T CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) 21 (|has| |#1| (-777)))) (-3797 (($ $) 11) (($ $ $) 20)) (-3790 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ (-501)) NIL) (($ (-501) |#1|) 19))) -(((-290 |#1|) (-13 (-21) (-648 (-501)) (-291 |#1| (-501)) (-10 -7 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|))) (-1001)) (T -290)) -NIL -(-13 (-21) (-648 (-501)) (-291 |#1| (-501)) (-10 -7 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1395 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))) $) 27)) (-3177 (((-3 $ "failed") $ $) 19)) (-3796 (((-701) $) 28)) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 32)) (-3490 ((|#1| $) 31)) (-2153 ((|#1| $ (-501)) 25)) (-3301 ((|#2| $ (-501)) 26)) (-2451 (($ (-1 |#1| |#1|) $) 22)) (-2210 (($ (-1 |#2| |#2|) $) 23)) (-3460 (((-1053) $) 9)) (-1327 (($ $ $) 21 (|has| |#2| (-722)))) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ |#1|) 33)) (-2495 ((|#2| |#1| $) 24)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3790 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ |#2| |#1|) 29))) -(((-291 |#1| |#2|) (-1180) (-1001) (-123)) (T -291)) -((-3790 (*1 *1 *2 *1) (-12 (-4 *1 (-291 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-123)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-123)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)) (-5 *2 (-701)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)) (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))))) (-3301 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-291 *4 *2)) (-4 *4 (-1001)) (-4 *2 (-123)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-291 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1001)))) (-2495 (*1 *2 *3 *1) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-123)))) (-2210 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)))) (-2451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)))) (-1327 (*1 *1 *1 *1) (-12 (-4 *1 (-291 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-123)) (-4 *3 (-722))))) -(-13 (-123) (-950 |t#1|) (-10 -8 (-15 -3790 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3796 ((-701) $)) (-15 -1395 ((-578 (-2 (|:| |gen| |t#1|) (|:| -1989 |t#2|))) $)) (-15 -3301 (|t#2| $ (-501))) (-15 -2153 (|t#1| $ (-501))) (-15 -2495 (|t#2| |t#1| $)) (-15 -2210 ($ (-1 |t#2| |t#2|) $)) (-15 -2451 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-722)) (-15 -1327 ($ $ $)) |noBranch|))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-950 |#1|) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1395 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701) $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2153 ((|#1| $ (-501)) NIL)) (-3301 (((-701) $ (-501)) NIL)) (-2451 (($ (-1 |#1| |#1|) $) NIL)) (-2210 (($ (-1 (-701) (-701)) $) NIL)) (-3460 (((-1053) $) NIL)) (-1327 (($ $ $) NIL (|has| (-701) (-722)))) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL) (($ |#1|) NIL)) (-2495 (((-701) |#1| $) NIL)) (-1850 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3790 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-701) |#1|) NIL))) -(((-292 |#1|) (-291 |#1| (-701)) (-1001)) (T -292)) -NIL -(-291 |#1| (-701)) -((-3533 (($ $) 52)) (-3503 (($ $ |#2| |#3| $) 14)) (-3515 (($ (-1 |#3| |#3|) $) 35)) (-3837 (((-107) $) 27)) (-3841 ((|#2| $) 29)) (-3694 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 45)) (-1734 ((|#2| $) 48)) (-1303 (((-578 |#2|) $) 38)) (-3771 (($ $ $ (-701)) 23)) (-3803 (($ $ |#2|) 42))) -(((-293 |#1| |#2| |#3|) (-10 -8 (-15 -3533 (|#1| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3771 (|#1| |#1| |#1| (-701))) (-15 -3503 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3515 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1303 ((-578 |#2|) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3837 ((-107) |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3803 (|#1| |#1| |#2|))) (-294 |#2| |#3|) (-959) (-722)) (T -293)) -NIL -(-10 -8 (-15 -3533 (|#1| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3771 (|#1| |#1| |#1| (-701))) (-15 -3503 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3515 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1303 ((-578 |#2|) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3837 ((-107) |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3803 (|#1| |#1| |#2|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 92 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 90 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 89)) (-3490 (((-501) $) 93 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 91 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 88)) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-3533 (($ $) 77 (|has| |#1| (-419)))) (-3503 (($ $ |#1| |#2| $) 81)) (-1355 (((-107) $) 31)) (-3706 (((-701) $) 84)) (-2706 (((-107) $) 64)) (-3787 (($ |#1| |#2|) 63)) (-2285 ((|#2| $) 83)) (-3515 (($ (-1 |#2| |#2|) $) 82)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 87)) (-3841 ((|#1| $) 86)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508))) (((-3 $ "failed") $ |#1|) 79 (|has| |#1| (-508)))) (-1201 ((|#2| $) 66)) (-1734 ((|#1| $) 78 (|has| |#1| (-419)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 51 (|has| |#1| (-508))) (($ |#1|) 49) (($ (-375 (-501))) 59 (-1405 (|has| |#1| (-950 (-375 (-501)))) (|has| |#1| (-37 (-375 (-501))))))) (-1303 (((-578 |#1|) $) 85)) (-2495 ((|#1| $ |#2|) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-3771 (($ $ $ (-701)) 80 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501))))))) -(((-294 |#1| |#2|) (-1180) (-959) (-722)) (T -294)) -((-3837 (*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-107)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-578 *3)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-701)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-3515 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)))) (-3503 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) (-3771 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *3 (-156)))) (-3694 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-508)))) (-1734 (*1 *2 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)) (-4 *2 (-419)))) (-3533 (*1 *1 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-419))))) -(-13 (-46 |t#1| |t#2|) (-380 |t#1|) (-10 -8 (-15 -3837 ((-107) $)) (-15 -3841 (|t#1| $)) (-15 -1303 ((-578 |t#1|) $)) (-15 -3706 ((-701) $)) (-15 -2285 (|t#2| $)) (-15 -3515 ($ (-1 |t#2| |t#2|) $)) (-15 -3503 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-156)) (-15 -3771 ($ $ $ (-701))) |noBranch|) (IF (|has| |t#1| (-508)) (-15 -3694 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-419)) (PROGN (-15 -1734 (|t#1| $)) (-15 -3533 ($ $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-260) |has| |#1| (-508)) ((-380 |#1|) . T) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-2298 (((-107) (-107)) NIL)) (-3754 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) NIL)) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2921 (($ $) NIL (|has| |#1| (-1001)))) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) NIL (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) NIL)) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2489 (($ $ (-501)) NIL)) (-2705 (((-701) $) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2213 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-4114 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1599 (($ (-578 |#1|)) NIL)) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-1386 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-1186 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-295 |#1|) (-13 (-19 |#1|) (-252 |#1|) (-10 -8 (-15 -1599 ($ (-578 |#1|))) (-15 -2705 ((-701) $)) (-15 -2489 ($ $ (-501))) (-15 -2298 ((-107) (-107))))) (-1104)) (T -295)) -((-1599 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-295 *3)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-295 *3)) (-4 *3 (-1104)))) (-2489 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-295 *3)) (-4 *3 (-1104)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-295 *3)) (-4 *3 (-1104))))) -(-13 (-19 |#1|) (-252 |#1|) (-10 -8 (-15 -1599 ($ (-578 |#1|))) (-15 -2705 ((-701) $)) (-15 -2489 ($ $ (-501))) (-15 -2298 ((-107) (-107))))) -((-3590 (((-107) $) 42)) (-1732 (((-701)) 22)) (-2225 ((|#2| $) 46) (($ $ (-839)) 102)) (-3796 (((-701)) 96)) (-3142 (($ (-1148 |#2|)) 20)) (-1928 (((-107) $) 114)) (-2626 ((|#2| $) 48) (($ $ (-839)) 100)) (-1792 (((-1064 |#2|) $) NIL) (((-1064 $) $ (-839)) 93)) (-3721 (((-1064 |#2|) $) 83)) (-1806 (((-1064 |#2|) $) 80) (((-3 (-1064 |#2|) "failed") $ $) 77)) (-2468 (($ $ (-1064 |#2|)) 53)) (-2906 (((-762 (-839))) 28) (((-839)) 43)) (-3613 (((-125)) 25)) (-1201 (((-762 (-839)) $) 30) (((-839) $) 115)) (-3481 (($) 108)) (-2085 (((-1148 |#2|) $) NIL) (((-621 |#2|) (-1148 $)) 39)) (-1274 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2659 (((-107) $) 41))) -(((-296 |#1| |#2|) (-10 -8 (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3796 ((-701))) (-15 -1274 (|#1| |#1|)) (-15 -1806 ((-3 (-1064 |#2|) "failed") |#1| |#1|)) (-15 -1806 ((-1064 |#2|) |#1|)) (-15 -3721 ((-1064 |#2|) |#1|)) (-15 -2468 (|#1| |#1| (-1064 |#2|))) (-15 -1928 ((-107) |#1|)) (-15 -3481 (|#1|)) (-15 -2225 (|#1| |#1| (-839))) (-15 -2626 (|#1| |#1| (-839))) (-15 -1792 ((-1064 |#1|) |#1| (-839))) (-15 -2225 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -1201 ((-839) |#1|)) (-15 -2906 ((-839))) (-15 -1792 ((-1064 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1732 ((-701))) (-15 -2906 ((-762 (-839)))) (-15 -1201 ((-762 (-839)) |#1|)) (-15 -3590 ((-107) |#1|)) (-15 -2659 ((-107) |#1|)) (-15 -3613 ((-125)))) (-297 |#2|) (-331)) (T -296)) -((-3613 (*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-125)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) (-2906 (*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-762 (-839))) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) (-1732 (*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) (-2906 (*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-839)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) (-3796 (*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4))))) -(-10 -8 (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3796 ((-701))) (-15 -1274 (|#1| |#1|)) (-15 -1806 ((-3 (-1064 |#2|) "failed") |#1| |#1|)) (-15 -1806 ((-1064 |#2|) |#1|)) (-15 -3721 ((-1064 |#2|) |#1|)) (-15 -2468 (|#1| |#1| (-1064 |#2|))) (-15 -1928 ((-107) |#1|)) (-15 -3481 (|#1|)) (-15 -2225 (|#1| |#1| (-839))) (-15 -2626 (|#1| |#1| (-839))) (-15 -1792 ((-1064 |#1|) |#1| (-839))) (-15 -2225 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -1201 ((-839) |#1|)) (-15 -2906 ((-839))) (-15 -1792 ((-1064 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1732 ((-701))) (-15 -2906 ((-762 (-839)))) (-15 -1201 ((-762 (-839)) |#1|)) (-15 -3590 ((-107) |#1|)) (-15 -2659 ((-107) |#1|)) (-15 -3613 ((-125)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3590 (((-107) $) 95)) (-1732 (((-701)) 91)) (-2225 ((|#1| $) 141) (($ $ (-839)) 138 (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) 123 (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-2781 (((-107) $ $) 59)) (-3796 (((-701)) 113 (|has| |#1| (-336)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 102)) (-3490 ((|#1| $) 101)) (-3142 (($ (-1148 |#1|)) 147)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-336)))) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-2890 (($) 110 (|has| |#1| (-336)))) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1317 (($) 125 (|has| |#1| (-336)))) (-3521 (((-107) $) 126 (|has| |#1| (-336)))) (-3067 (($ $ (-701)) 88 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) 87 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) 71)) (-3169 (((-839) $) 128 (|has| |#1| (-336))) (((-762 (-839)) $) 85 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) 31)) (-4065 (($) 136 (|has| |#1| (-336)))) (-1928 (((-107) $) 135 (|has| |#1| (-336)))) (-2626 ((|#1| $) 142) (($ $ (-839)) 139 (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) 114 (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1792 (((-1064 |#1|) $) 146) (((-1064 $) $ (-839)) 140 (|has| |#1| (-336)))) (-3104 (((-839) $) 111 (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) 132 (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) 131 (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) 130 (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) 133 (|has| |#1| (-336)))) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3746 (($) 115 (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) 112 (|has| |#1| (-336)))) (-2255 (((-107) $) 94)) (-3708 (((-1018) $) 10)) (-3987 (($) 134 (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 122 (|has| |#1| (-336)))) (-3739 (((-373 $) $) 74)) (-2906 (((-762 (-839))) 92) (((-839)) 144)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-1984 (((-701) $) 127 (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) 86 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) 100)) (-2596 (($ $) 119 (|has| |#1| (-336))) (($ $ (-701)) 117 (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) 93) (((-839) $) 143)) (-2264 (((-1064 |#1|)) 145)) (-1349 (($) 124 (|has| |#1| (-336)))) (-3481 (($) 137 (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) 149) (((-621 |#1|) (-1148 $)) 148)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 121 (|has| |#1| (-336)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ |#1|) 103)) (-1274 (($ $) 120 (|has| |#1| (-336))) (((-3 $ "failed") $) 84 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) 29)) (-4119 (((-1148 $)) 151) (((-1148 $) (-839)) 150)) (-2442 (((-107) $ $) 39)) (-2659 (((-107) $) 96)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3184 (($ $) 90 (|has| |#1| (-336))) (($ $ (-701)) 89 (|has| |#1| (-336)))) (-3584 (($ $) 118 (|has| |#1| (-336))) (($ $ (-701)) 116 (|has| |#1| (-336)))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64) (($ $ |#1|) 99)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66) (($ $ |#1|) 98) (($ |#1| $) 97))) -(((-297 |#1|) (-1180) (-331)) (T -297)) -((-4119 (*1 *2) (-12 (-4 *3 (-331)) (-5 *2 (-1148 *1)) (-4 *1 (-297 *3)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-331)) (-5 *2 (-1148 *1)) (-4 *1 (-297 *4)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1148 *3)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-297 *4)) (-4 *4 (-331)) (-5 *2 (-621 *4)))) (-3142 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-331)) (-4 *1 (-297 *3)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1064 *3)))) (-2264 (*1 *2) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1064 *3)))) (-2906 (*1 *2) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-839)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-839)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-331)))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-331)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-4 *4 (-336)) (-4 *4 (-331)) (-5 *2 (-1064 *1)) (-4 *1 (-297 *4)))) (-2626 (*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)))) (-2225 (*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)))) (-3481 (*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331)))) (-4065 (*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-107)))) (-3987 (*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331)))) (-2468 (*1 *1 *1 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-336)) (-4 *1 (-297 *3)) (-4 *3 (-331)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3)))) (-1806 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3))))) -(-13 (-1165 |t#1|) (-950 |t#1|) (-10 -8 (-15 -4119 ((-1148 $))) (-15 -4119 ((-1148 $) (-839))) (-15 -2085 ((-1148 |t#1|) $)) (-15 -2085 ((-621 |t#1|) (-1148 $))) (-15 -3142 ($ (-1148 |t#1|))) (-15 -1792 ((-1064 |t#1|) $)) (-15 -2264 ((-1064 |t#1|))) (-15 -2906 ((-839))) (-15 -1201 ((-839) $)) (-15 -2626 (|t#1| $)) (-15 -2225 (|t#1| $)) (IF (|has| |t#1| (-336)) (PROGN (-6 (-318)) (-15 -1792 ((-1064 $) $ (-839))) (-15 -2626 ($ $ (-839))) (-15 -2225 ($ $ (-839))) (-15 -3481 ($)) (-15 -4065 ($)) (-15 -1928 ((-107) $)) (-15 -3987 ($)) (-15 -2468 ($ $ (-1064 |t#1|))) (-15 -3721 ((-1064 |t#1|) $)) (-15 -1806 ((-1064 |t#1|) $)) (-15 -1806 ((-3 (-1064 |t#1|) "failed") $ $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -1405 (|has| |#1| (-336)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-206) |has| |#1| (-336)) ((-216) . T) ((-260) . T) ((-276) . T) ((-1165 |#1|) . T) ((-331) . T) ((-370) -1405 (|has| |#1| (-336)) (|has| |#1| (-132))) ((-336) |has| |#1| (-336)) ((-318) |has| |#1| (-336)) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-950 |#1|) . T) ((-964 (-375 (-501))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| |#1| (-336)) ((-1108) . T) ((-1156 |#1|) . T)) -((-3736 (((-107) $ $) NIL)) (-2347 (($ (-1069) $) 88)) (-1515 (($) 76)) (-1187 (((-1018) (-1018)) 11)) (-3245 (($) 77)) (-1745 (($) 90) (($ (-282 (-630))) 96) (($ (-282 (-632))) 93) (($ (-282 (-625))) 99) (($ (-282 (-346))) 105) (($ (-282 (-501))) 102) (($ (-282 (-152 (-346)))) 108)) (-1667 (($ (-1069) $) 89)) (-2273 (($ (-578 (-786))) 79)) (-1768 (((-1154) $) 73)) (-3703 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2950 (($ (-1018)) 45)) (-3171 (((-1003) $) 25)) (-3094 (($ (-993 (-866 (-501))) $) 85) (($ (-993 (-866 (-501))) (-866 (-501)) $) 86)) (-2432 (($ (-1018)) 87)) (-1265 (($ (-1069) $) 110) (($ (-1069) $ $) 111)) (-2620 (($ (-1070) (-578 (-1070))) 75)) (-3046 (($ (-1053)) 82) (($ (-578 (-1053))) 80)) (-3691 (((-786) $) 113)) (-3886 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1070)) (|:| |arrayIndex| (-578 (-866 (-501)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1070)) (|:| |rand| (-786)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1069)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1407 (-107)) (|:| -2150 (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |blockBranch| (-578 $)) (|:| |commentBranch| (-578 (-1053))) (|:| |callBranch| (-1053)) (|:| |forBranch| (-2 (|:| -1505 (-993 (-866 (-501)))) (|:| |span| (-866 (-501))) (|:| |body| $))) (|:| |labelBranch| (-1018)) (|:| |loopBranch| (-2 (|:| |switch| (-1069)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3986 (-1070)) (|:| |contents| (-578 (-1070))))) (|:| |printBranch| (-578 (-786)))) $) 37)) (-2096 (($ (-1053)) 182)) (-1796 (($ (-578 $)) 109)) (-1278 (($ (-1070) (-1053)) 115) (($ (-1070) (-282 (-632))) 155) (($ (-1070) (-282 (-630))) 156) (($ (-1070) (-282 (-625))) 157) (($ (-1070) (-621 (-632))) 118) (($ (-1070) (-621 (-630))) 121) (($ (-1070) (-621 (-625))) 124) (($ (-1070) (-1148 (-632))) 127) (($ (-1070) (-1148 (-630))) 130) (($ (-1070) (-1148 (-625))) 133) (($ (-1070) (-621 (-282 (-632)))) 136) (($ (-1070) (-621 (-282 (-630)))) 139) (($ (-1070) (-621 (-282 (-625)))) 142) (($ (-1070) (-1148 (-282 (-632)))) 145) (($ (-1070) (-1148 (-282 (-630)))) 148) (($ (-1070) (-1148 (-282 (-625)))) 151) (($ (-1070) (-578 (-866 (-501))) (-282 (-632))) 152) (($ (-1070) (-578 (-866 (-501))) (-282 (-630))) 153) (($ (-1070) (-578 (-866 (-501))) (-282 (-625))) 154) (($ (-1070) (-282 (-501))) 179) (($ (-1070) (-282 (-346))) 180) (($ (-1070) (-282 (-152 (-346)))) 181) (($ (-1070) (-621 (-282 (-501)))) 160) (($ (-1070) (-621 (-282 (-346)))) 163) (($ (-1070) (-621 (-282 (-152 (-346))))) 166) (($ (-1070) (-1148 (-282 (-501)))) 169) (($ (-1070) (-1148 (-282 (-346)))) 172) (($ (-1070) (-1148 (-282 (-152 (-346))))) 175) (($ (-1070) (-578 (-866 (-501))) (-282 (-501))) 176) (($ (-1070) (-578 (-866 (-501))) (-282 (-346))) 177) (($ (-1070) (-578 (-866 (-501))) (-282 (-152 (-346)))) 178)) (-3751 (((-107) $ $) NIL))) -(((-298) (-13 (-1001) (-10 -8 (-15 -3691 ((-786) $)) (-15 -3094 ($ (-993 (-866 (-501))) $)) (-15 -3094 ($ (-993 (-866 (-501))) (-866 (-501)) $)) (-15 -2347 ($ (-1069) $)) (-15 -1667 ($ (-1069) $)) (-15 -2950 ($ (-1018))) (-15 -2432 ($ (-1018))) (-15 -3046 ($ (-1053))) (-15 -3046 ($ (-578 (-1053)))) (-15 -2096 ($ (-1053))) (-15 -1745 ($)) (-15 -1745 ($ (-282 (-630)))) (-15 -1745 ($ (-282 (-632)))) (-15 -1745 ($ (-282 (-625)))) (-15 -1745 ($ (-282 (-346)))) (-15 -1745 ($ (-282 (-501)))) (-15 -1745 ($ (-282 (-152 (-346))))) (-15 -1265 ($ (-1069) $)) (-15 -1265 ($ (-1069) $ $)) (-15 -1278 ($ (-1070) (-1053))) (-15 -1278 ($ (-1070) (-282 (-632)))) (-15 -1278 ($ (-1070) (-282 (-630)))) (-15 -1278 ($ (-1070) (-282 (-625)))) (-15 -1278 ($ (-1070) (-621 (-632)))) (-15 -1278 ($ (-1070) (-621 (-630)))) (-15 -1278 ($ (-1070) (-621 (-625)))) (-15 -1278 ($ (-1070) (-1148 (-632)))) (-15 -1278 ($ (-1070) (-1148 (-630)))) (-15 -1278 ($ (-1070) (-1148 (-625)))) (-15 -1278 ($ (-1070) (-621 (-282 (-632))))) (-15 -1278 ($ (-1070) (-621 (-282 (-630))))) (-15 -1278 ($ (-1070) (-621 (-282 (-625))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-632))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-630))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-625))))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-632)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-630)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-625)))) (-15 -1278 ($ (-1070) (-282 (-501)))) (-15 -1278 ($ (-1070) (-282 (-346)))) (-15 -1278 ($ (-1070) (-282 (-152 (-346))))) (-15 -1278 ($ (-1070) (-621 (-282 (-501))))) (-15 -1278 ($ (-1070) (-621 (-282 (-346))))) (-15 -1278 ($ (-1070) (-621 (-282 (-152 (-346)))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-501))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-346))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-152 (-346)))))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-501)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-346)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-152 (-346))))) (-15 -1796 ($ (-578 $))) (-15 -1515 ($)) (-15 -3245 ($)) (-15 -2273 ($ (-578 (-786)))) (-15 -2620 ($ (-1070) (-578 (-1070)))) (-15 -3703 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3886 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1070)) (|:| |arrayIndex| (-578 (-866 (-501)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1070)) (|:| |rand| (-786)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1069)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1407 (-107)) (|:| -2150 (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |blockBranch| (-578 $)) (|:| |commentBranch| (-578 (-1053))) (|:| |callBranch| (-1053)) (|:| |forBranch| (-2 (|:| -1505 (-993 (-866 (-501)))) (|:| |span| (-866 (-501))) (|:| |body| $))) (|:| |labelBranch| (-1018)) (|:| |loopBranch| (-2 (|:| |switch| (-1069)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3986 (-1070)) (|:| |contents| (-578 (-1070))))) (|:| |printBranch| (-578 (-786)))) $)) (-15 -1768 ((-1154) $)) (-15 -3171 ((-1003) $)) (-15 -1187 ((-1018) (-1018)))))) (T -298)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-298)))) (-3094 (*1 *1 *2 *1) (-12 (-5 *2 (-993 (-866 (-501)))) (-5 *1 (-298)))) (-3094 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-993 (-866 (-501)))) (-5 *3 (-866 (-501))) (-5 *1 (-298)))) (-2347 (*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))) (-1667 (*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298)))) (-2432 (*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298)))) (-3046 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-298)))) (-3046 (*1 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-298)))) (-2096 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-298)))) (-1745 (*1 *1) (-5 *1 (-298))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-630))) (-5 *1 (-298)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-632))) (-5 *1 (-298)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-625))) (-5 *1 (-298)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-298)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-298)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-152 (-346)))) (-5 *1 (-298)))) (-1265 (*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))) (-1265 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1053)) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-632))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-630))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-625))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-632))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-630))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-625))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-632))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-630))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-625))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-632)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-630)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-625)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-632)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-630)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-625)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-632))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-630))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-625))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-501))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-346))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-152 (-346)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-501)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-346)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-152 (-346))))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-501)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-346)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-152 (-346))))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-501))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-346))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-152 (-346)))) (-5 *1 (-298)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-5 *1 (-298)))) (-1515 (*1 *1) (-5 *1 (-298))) (-3245 (*1 *1) (-5 *1 (-298))) (-2273 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-298)))) (-2620 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1070)) (-5 *1 (-298)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-298)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1070)) (|:| |arrayIndex| (-578 (-866 (-501)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1070)) (|:| |rand| (-786)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1069)) (|:| |thenClause| (-298)) (|:| |elseClause| (-298)))) (|:| |returnBranch| (-2 (|:| -1407 (-107)) (|:| -2150 (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |blockBranch| (-578 (-298))) (|:| |commentBranch| (-578 (-1053))) (|:| |callBranch| (-1053)) (|:| |forBranch| (-2 (|:| -1505 (-993 (-866 (-501)))) (|:| |span| (-866 (-501))) (|:| |body| (-298)))) (|:| |labelBranch| (-1018)) (|:| |loopBranch| (-2 (|:| |switch| (-1069)) (|:| |body| (-298)))) (|:| |commonBranch| (-2 (|:| -3986 (-1070)) (|:| |contents| (-578 (-1070))))) (|:| |printBranch| (-578 (-786))))) (-5 *1 (-298)))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-298)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-298)))) (-1187 (*1 *2 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298))))) -(-13 (-1001) (-10 -8 (-15 -3691 ((-786) $)) (-15 -3094 ($ (-993 (-866 (-501))) $)) (-15 -3094 ($ (-993 (-866 (-501))) (-866 (-501)) $)) (-15 -2347 ($ (-1069) $)) (-15 -1667 ($ (-1069) $)) (-15 -2950 ($ (-1018))) (-15 -2432 ($ (-1018))) (-15 -3046 ($ (-1053))) (-15 -3046 ($ (-578 (-1053)))) (-15 -2096 ($ (-1053))) (-15 -1745 ($)) (-15 -1745 ($ (-282 (-630)))) (-15 -1745 ($ (-282 (-632)))) (-15 -1745 ($ (-282 (-625)))) (-15 -1745 ($ (-282 (-346)))) (-15 -1745 ($ (-282 (-501)))) (-15 -1745 ($ (-282 (-152 (-346))))) (-15 -1265 ($ (-1069) $)) (-15 -1265 ($ (-1069) $ $)) (-15 -1278 ($ (-1070) (-1053))) (-15 -1278 ($ (-1070) (-282 (-632)))) (-15 -1278 ($ (-1070) (-282 (-630)))) (-15 -1278 ($ (-1070) (-282 (-625)))) (-15 -1278 ($ (-1070) (-621 (-632)))) (-15 -1278 ($ (-1070) (-621 (-630)))) (-15 -1278 ($ (-1070) (-621 (-625)))) (-15 -1278 ($ (-1070) (-1148 (-632)))) (-15 -1278 ($ (-1070) (-1148 (-630)))) (-15 -1278 ($ (-1070) (-1148 (-625)))) (-15 -1278 ($ (-1070) (-621 (-282 (-632))))) (-15 -1278 ($ (-1070) (-621 (-282 (-630))))) (-15 -1278 ($ (-1070) (-621 (-282 (-625))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-632))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-630))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-625))))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-632)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-630)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-625)))) (-15 -1278 ($ (-1070) (-282 (-501)))) (-15 -1278 ($ (-1070) (-282 (-346)))) (-15 -1278 ($ (-1070) (-282 (-152 (-346))))) (-15 -1278 ($ (-1070) (-621 (-282 (-501))))) (-15 -1278 ($ (-1070) (-621 (-282 (-346))))) (-15 -1278 ($ (-1070) (-621 (-282 (-152 (-346)))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-501))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-346))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-152 (-346)))))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-501)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-346)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-152 (-346))))) (-15 -1796 ($ (-578 $))) (-15 -1515 ($)) (-15 -3245 ($)) (-15 -2273 ($ (-578 (-786)))) (-15 -2620 ($ (-1070) (-578 (-1070)))) (-15 -3703 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3886 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1070)) (|:| |arrayIndex| (-578 (-866 (-501)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1070)) (|:| |rand| (-786)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1069)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1407 (-107)) (|:| -2150 (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |blockBranch| (-578 $)) (|:| |commentBranch| (-578 (-1053))) (|:| |callBranch| (-1053)) (|:| |forBranch| (-2 (|:| -1505 (-993 (-866 (-501)))) (|:| |span| (-866 (-501))) (|:| |body| $))) (|:| |labelBranch| (-1018)) (|:| |loopBranch| (-2 (|:| |switch| (-1069)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3986 (-1070)) (|:| |contents| (-578 (-1070))))) (|:| |printBranch| (-578 (-786)))) $)) (-15 -1768 ((-1154) $)) (-15 -3171 ((-1003) $)) (-15 -1187 ((-1018) (-1018))))) -((-3736 (((-107) $ $) NIL)) (-2758 (((-107) $) 11)) (-3929 (($ |#1|) 8)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3933 (($ |#1|) 9)) (-3691 (((-786) $) 17)) (-2992 ((|#1| $) 12)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 19))) -(((-299 |#1|) (-13 (-777) (-10 -8 (-15 -3929 ($ |#1|)) (-15 -3933 ($ |#1|)) (-15 -2758 ((-107) $)) (-15 -2992 (|#1| $)))) (-777)) (T -299)) -((-3929 (*1 *1 *2) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777)))) (-3933 (*1 *1 *2) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-299 *3)) (-4 *3 (-777)))) (-2992 (*1 *2 *1) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777))))) -(-13 (-777) (-10 -8 (-15 -3929 ($ |#1|)) (-15 -3933 ($ |#1|)) (-15 -2758 ((-107) $)) (-15 -2992 (|#1| $)))) -((-1421 (((-298) (-1070) (-866 (-501))) 22)) (-3637 (((-298) (-1070) (-866 (-501))) 26)) (-2457 (((-298) (-1070) (-993 (-866 (-501))) (-993 (-866 (-501)))) 25) (((-298) (-1070) (-866 (-501)) (-866 (-501))) 23)) (-3263 (((-298) (-1070) (-866 (-501))) 30))) -(((-300) (-10 -7 (-15 -1421 ((-298) (-1070) (-866 (-501)))) (-15 -2457 ((-298) (-1070) (-866 (-501)) (-866 (-501)))) (-15 -2457 ((-298) (-1070) (-993 (-866 (-501))) (-993 (-866 (-501))))) (-15 -3637 ((-298) (-1070) (-866 (-501)))) (-15 -3263 ((-298) (-1070) (-866 (-501)))))) (T -300)) -((-3263 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))) (-3637 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))) (-2457 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-993 (-866 (-501)))) (-5 *2 (-298)) (-5 *1 (-300)))) (-2457 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300))))) -(-10 -7 (-15 -1421 ((-298) (-1070) (-866 (-501)))) (-15 -2457 ((-298) (-1070) (-866 (-501)) (-866 (-501)))) (-15 -2457 ((-298) (-1070) (-993 (-866 (-501))) (-993 (-866 (-501))))) (-15 -3637 ((-298) (-1070) (-866 (-501)))) (-15 -3263 ((-298) (-1070) (-866 (-501))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3547 (($ $) 32)) (-2748 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-1197 (((-1148 |#4|) $) 124)) (-3463 (((-381 |#2| (-375 |#2|) |#3| |#4|) $) 30)) (-3708 (((-1018) $) NIL)) (-3987 (((-3 |#4| "failed") $) 35)) (-3662 (((-1148 |#4|) $) 117)) (-1281 (($ (-381 |#2| (-375 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-501)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-1688 (((-2 (|:| -3611 (-381 |#2| (-375 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-3691 (((-786) $) 17)) (-1850 (($) 14 T CONST)) (-3751 (((-107) $ $) 20)) (-3797 (($ $) 27) (($ $ $) NIL)) (-3790 (($ $ $) 25)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 23))) -(((-301 |#1| |#2| |#3| |#4|) (-13 (-304 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3662 ((-1148 |#4|) $)) (-15 -1197 ((-1148 |#4|) $)))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -301)) -((-3662 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *6)) (-5 *1 (-301 *3 *4 *5 *6)) (-4 *6 (-310 *3 *4 *5)))) (-1197 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *6)) (-5 *1 (-301 *3 *4 *5 *6)) (-4 *6 (-310 *3 *4 *5))))) -(-13 (-304 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3662 ((-1148 |#4|) $)) (-15 -1197 ((-1148 |#4|) $)))) -((-1212 (((-301 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-301 |#1| |#2| |#3| |#4|)) 31))) -(((-302 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1212 ((-301 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-301 |#1| |#2| |#3| |#4|)))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|) (-331) (-1125 |#5|) (-1125 (-375 |#6|)) (-310 |#5| |#6| |#7|)) (T -302)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-301 *5 *6 *7 *8)) (-4 *5 (-331)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *9 (-331)) (-4 *10 (-1125 *9)) (-4 *11 (-1125 (-375 *10))) (-5 *2 (-301 *9 *10 *11 *12)) (-5 *1 (-302 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-310 *9 *10 *11))))) -(-10 -7 (-15 -1212 ((-301 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-301 |#1| |#2| |#3| |#4|)))) -((-2748 (((-107) $) 14))) -(((-303 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2748 ((-107) |#1|))) (-304 |#2| |#3| |#4| |#5|) (-331) (-1125 |#2|) (-1125 (-375 |#3|)) (-310 |#2| |#3| |#4|)) (T -303)) -NIL -(-10 -8 (-15 -2748 ((-107) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3547 (($ $) 26)) (-2748 (((-107) $) 25)) (-3460 (((-1053) $) 9)) (-3463 (((-381 |#2| (-375 |#2|) |#3| |#4|) $) 32)) (-3708 (((-1018) $) 10)) (-3987 (((-3 |#4| "failed") $) 24)) (-1281 (($ (-381 |#2| (-375 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-501)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1688 (((-2 (|:| -3611 (-381 |#2| (-375 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20))) -(((-304 |#1| |#2| |#3| |#4|) (-1180) (-331) (-1125 |t#1|) (-1125 (-375 |t#2|)) (-310 |t#1| |t#2| |t#3|)) (T -304)) -((-3463 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-381 *4 (-375 *4) *5 *6)))) (-1281 (*1 *1 *2) (-12 (-5 *2 (-381 *4 (-375 *4) *5 *6)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-4 *3 (-331)) (-4 *1 (-304 *3 *4 *5 *6)))) (-1281 (*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *1 (-304 *3 *4 *5 *2)) (-4 *2 (-310 *3 *4 *5)))) (-1281 (*1 *1 *2 *2) (-12 (-4 *2 (-331)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))) (-4 *1 (-304 *2 *3 *4 *5)) (-4 *5 (-310 *2 *3 *4)))) (-1281 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-501)) (-4 *2 (-331)) (-4 *4 (-1125 *2)) (-4 *5 (-1125 (-375 *4))) (-4 *1 (-304 *2 *4 *5 *6)) (-4 *6 (-310 *2 *4 *5)))) (-1688 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-2 (|:| -3611 (-381 *4 (-375 *4) *5 *6)) (|:| |principalPart| *6))))) (-3547 (*1 *1 *1) (-12 (-4 *1 (-304 *2 *3 *4 *5)) (-4 *2 (-331)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))) (-4 *5 (-310 *2 *3 *4)))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-107)))) (-3987 (*1 *2 *1) (|partial| -12 (-4 *1 (-304 *3 *4 *5 *2)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *2 (-310 *3 *4 *5)))) (-1281 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-331)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-4 *1 (-304 *4 *3 *5 *2)) (-4 *2 (-310 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3463 ((-381 |t#2| (-375 |t#2|) |t#3| |t#4|) $)) (-15 -1281 ($ (-381 |t#2| (-375 |t#2|) |t#3| |t#4|))) (-15 -1281 ($ |t#4|)) (-15 -1281 ($ |t#1| |t#1|)) (-15 -1281 ($ |t#1| |t#1| (-501))) (-15 -1688 ((-2 (|:| -3611 (-381 |t#2| (-375 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3547 ($ $)) (-15 -2748 ((-107) $)) (-15 -3987 ((-3 |t#4| "failed") $)) (-15 -1281 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3195 (($ $ (-1070) |#2|) NIL) (($ $ (-578 (-1070)) (-578 |#2|)) 18) (($ $ (-578 (-262 |#2|))) 14) (($ $ (-262 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-578 |#2|) (-578 |#2|)) NIL)) (-2007 (($ $ |#2|) 11))) -(((-305 |#1| |#2|) (-10 -8 (-15 -2007 (|#1| |#1| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 |#2|))) (-15 -3195 (|#1| |#1| (-1070) |#2|))) (-306 |#2|) (-1001)) (T -305)) -NIL -(-10 -8 (-15 -2007 (|#1| |#1| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 |#2|))) (-15 -3195 (|#1| |#1| (-1070) |#2|))) -((-1212 (($ (-1 |#1| |#1|) $) 6)) (-3195 (($ $ (-1070) |#1|) 17 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 16 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-578 (-262 |#1|))) 15 (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) 14 (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-278 |#1|))) (($ $ (-578 |#1|) (-578 |#1|)) 12 (|has| |#1| (-278 |#1|)))) (-2007 (($ $ |#1|) 11 (|has| |#1| (-256 |#1| |#1|))))) -(((-306 |#1|) (-1180) (-1001)) (T -306)) -((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-306 *3)) (-4 *3 (-1001))))) -(-13 (-10 -8 (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-256 |t#1| |t#1|)) (-6 (-256 |t#1| $)) |noBranch|) (IF (|has| |t#1| (-278 |t#1|)) (-6 (-278 |t#1|)) |noBranch|) (IF (|has| |t#1| (-476 (-1070) |t#1|)) (-6 (-476 (-1070) |t#1|)) |noBranch|))) -(((-256 |#1| $) |has| |#1| (-256 |#1| |#1|)) ((-278 |#1|) |has| |#1| (-278 |#1|)) ((-476 (-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((-476 |#1| |#1|) |has| |#1| (-278 |#1|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-1070)) $) NIL)) (-1270 (((-107)) 87) (((-107) (-107)) 88)) (-3709 (((-578 (-553 $)) $) NIL)) (-3978 (($ $) NIL)) (-3937 (($ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3631 (($ $ (-262 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL)) (-3743 (($ $) NIL)) (-3970 (($ $) NIL)) (-3929 (($ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-553 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-282 |#3|)) 69) (((-3 $ "failed") (-1070)) 93) (((-3 $ "failed") (-282 (-501))) 56 (|has| |#3| (-950 (-501)))) (((-3 $ "failed") (-375 (-866 (-501)))) 62 (|has| |#3| (-950 (-501)))) (((-3 $ "failed") (-866 (-501))) 57 (|has| |#3| (-950 (-501)))) (((-3 $ "failed") (-282 (-346))) 74 (|has| |#3| (-950 (-346)))) (((-3 $ "failed") (-375 (-866 (-346)))) 80 (|has| |#3| (-950 (-346)))) (((-3 $ "failed") (-866 (-346))) 75 (|has| |#3| (-950 (-346))))) (-3490 (((-553 $) $) NIL) ((|#3| $) NIL) (($ (-282 |#3|)) 70) (($ (-1070)) 94) (($ (-282 (-501))) 58 (|has| |#3| (-950 (-501)))) (($ (-375 (-866 (-501)))) 63 (|has| |#3| (-950 (-501)))) (($ (-866 (-501))) 59 (|has| |#3| (-950 (-501)))) (($ (-282 (-346))) 76 (|has| |#3| (-950 (-346)))) (($ (-375 (-866 (-346)))) 81 (|has| |#3| (-950 (-346)))) (($ (-866 (-346))) 77 (|has| |#3| (-950 (-346))))) (-2174 (((-3 $ "failed") $) NIL)) (-2003 (($) 10)) (-2446 (($ $) NIL) (($ (-578 $)) NIL)) (-2389 (((-578 (-108)) $) NIL)) (-1853 (((-108) (-108)) NIL)) (-1355 (((-107) $) NIL)) (-3729 (((-107) $) NIL (|has| $ (-950 (-501))))) (-1983 (((-1064 $) (-553 $)) NIL (|has| $ (-959)))) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 $ $) (-553 $)) NIL)) (-2789 (((-3 (-553 $) "failed") $) NIL)) (-3266 (($ $) 90)) (-1635 (($ $) NIL)) (-3460 (((-1053) $) NIL)) (-3724 (((-578 (-553 $)) $) NIL)) (-3136 (($ (-108) $) 89) (($ (-108) (-578 $)) NIL)) (-3109 (((-107) $ (-108)) NIL) (((-107) $ (-1070)) NIL)) (-2696 (((-701) $) NIL)) (-3708 (((-1018) $) NIL)) (-2816 (((-107) $ $) NIL) (((-107) $ (-1070)) NIL)) (-1989 (($ $) NIL)) (-3172 (((-107) $) NIL (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-1070) (-1 $ (-578 $))) NIL) (($ $ (-1070) (-1 $ $)) NIL) (($ $ (-578 (-108)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-108) (-1 $ (-578 $))) NIL) (($ $ (-108) (-1 $ $)) NIL)) (-2007 (($ (-108) $) NIL) (($ (-108) $ $) NIL) (($ (-108) $ $ $) NIL) (($ (-108) $ $ $ $) NIL) (($ (-108) (-578 $)) NIL)) (-4106 (($ $) NIL) (($ $ $) NIL)) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL)) (-2264 (($ $) NIL (|has| $ (-959)))) (-3975 (($ $) NIL)) (-3933 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-553 $)) NIL) (($ |#3|) NIL) (($ (-501)) NIL) (((-282 |#3|) $) 92)) (-3965 (((-701)) NIL)) (-1831 (($ $) NIL) (($ (-578 $)) NIL)) (-3811 (((-107) (-108)) NIL)) (-3958 (($ $) NIL)) (-3952 (($ $) NIL)) (-3955 (($ $) NIL)) (-1720 (($ $) NIL)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) 91 T CONST)) (-1925 (($) 22 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL))) -(((-307 |#1| |#2| |#3|) (-13 (-267) (-37 |#3|) (-950 |#3|) (-820 (-1070)) (-10 -8 (-15 -3490 ($ (-282 |#3|))) (-15 -3765 ((-3 $ "failed") (-282 |#3|))) (-15 -3490 ($ (-1070))) (-15 -3765 ((-3 $ "failed") (-1070))) (-15 -3691 ((-282 |#3|) $)) (IF (|has| |#3| (-950 (-501))) (PROGN (-15 -3490 ($ (-282 (-501)))) (-15 -3765 ((-3 $ "failed") (-282 (-501)))) (-15 -3490 ($ (-375 (-866 (-501))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-501))))) (-15 -3490 ($ (-866 (-501)))) (-15 -3765 ((-3 $ "failed") (-866 (-501))))) |noBranch|) (IF (|has| |#3| (-950 (-346))) (PROGN (-15 -3490 ($ (-282 (-346)))) (-15 -3765 ((-3 $ "failed") (-282 (-346)))) (-15 -3490 ($ (-375 (-866 (-346))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-346))))) (-15 -3490 ($ (-866 (-346)))) (-15 -3765 ((-3 $ "failed") (-866 (-346))))) |noBranch|) (-15 -1720 ($ $)) (-15 -3743 ($ $)) (-15 -1989 ($ $)) (-15 -1635 ($ $)) (-15 -3266 ($ $)) (-15 -3929 ($ $)) (-15 -3933 ($ $)) (-15 -3937 ($ $)) (-15 -3952 ($ $)) (-15 -3955 ($ $)) (-15 -3958 ($ $)) (-15 -3970 ($ $)) (-15 -3975 ($ $)) (-15 -3978 ($ $)) (-15 -2003 ($)) (-15 -3800 ((-578 (-1070)) $)) (-15 -1270 ((-107))) (-15 -1270 ((-107) (-107))))) (-578 (-1070)) (-578 (-1070)) (-355)) (T -307)) -((-3490 (*1 *1 *2) (-12 (-5 *2 (-282 *5)) (-4 *5 (-355)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-282 *5)) (-4 *5 (-355)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 *2)) (-14 *4 (-578 *2)) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 *2)) (-14 *4 (-578 *2)) (-4 *5 (-355)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-282 *5)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-501)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-501)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-866 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-346)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-346)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-866 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-1720 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3743 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-1989 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-1635 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3266 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3929 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3933 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3952 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3970 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3975 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3978 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-2003 (*1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-307 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-355)))) (-1270 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-1270 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355))))) -(-13 (-267) (-37 |#3|) (-950 |#3|) (-820 (-1070)) (-10 -8 (-15 -3490 ($ (-282 |#3|))) (-15 -3765 ((-3 $ "failed") (-282 |#3|))) (-15 -3490 ($ (-1070))) (-15 -3765 ((-3 $ "failed") (-1070))) (-15 -3691 ((-282 |#3|) $)) (IF (|has| |#3| (-950 (-501))) (PROGN (-15 -3490 ($ (-282 (-501)))) (-15 -3765 ((-3 $ "failed") (-282 (-501)))) (-15 -3490 ($ (-375 (-866 (-501))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-501))))) (-15 -3490 ($ (-866 (-501)))) (-15 -3765 ((-3 $ "failed") (-866 (-501))))) |noBranch|) (IF (|has| |#3| (-950 (-346))) (PROGN (-15 -3490 ($ (-282 (-346)))) (-15 -3765 ((-3 $ "failed") (-282 (-346)))) (-15 -3490 ($ (-375 (-866 (-346))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-346))))) (-15 -3490 ($ (-866 (-346)))) (-15 -3765 ((-3 $ "failed") (-866 (-346))))) |noBranch|) (-15 -1720 ($ $)) (-15 -3743 ($ $)) (-15 -1989 ($ $)) (-15 -1635 ($ $)) (-15 -3266 ($ $)) (-15 -3929 ($ $)) (-15 -3933 ($ $)) (-15 -3937 ($ $)) (-15 -3952 ($ $)) (-15 -3955 ($ $)) (-15 -3958 ($ $)) (-15 -3970 ($ $)) (-15 -3975 ($ $)) (-15 -3978 ($ $)) (-15 -2003 ($)) (-15 -3800 ((-578 (-1070)) $)) (-15 -1270 ((-107))) (-15 -1270 ((-107) (-107))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-826 |#1|) (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| (-826 |#1|) (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-826 |#1|) "failed") $) NIL)) (-3490 (((-826 |#1|) $) NIL)) (-3142 (($ (-1148 (-826 |#1|))) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-826 |#1|) (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-826 |#1|) (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| (-826 |#1|) (-336)))) (-3521 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336)))) (($ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| (-826 |#1|) (-336))) (((-762 (-839)) $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| (-826 |#1|) (-336)))) (-1928 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-2626 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-826 |#1|) (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 (-826 |#1|)) $) NIL) (((-1064 $) $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3104 (((-839) $) NIL (|has| (-826 |#1|) (-336)))) (-3721 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336)))) (-1806 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-1064 (-826 |#1|)) "failed") $ $) NIL (|has| (-826 |#1|) (-336)))) (-2468 (($ $ (-1064 (-826 |#1|))) NIL (|has| (-826 |#1|) (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-826 |#1|) (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL (|has| (-826 |#1|) (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-826 |#1|) (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 (-826 |#1|))) NIL)) (-1349 (($) NIL (|has| (-826 |#1|) (-336)))) (-3481 (($) NIL (|has| (-826 |#1|) (-336)))) (-2085 (((-1148 (-826 |#1|)) $) NIL) (((-621 (-826 |#1|)) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-826 |#1|) (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-826 |#1|)) NIL)) (-1274 (($ $) NIL (|has| (-826 |#1|) (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3584 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ (-826 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-826 |#1|)) NIL) (($ (-826 |#1|) $) NIL))) -(((-308 |#1| |#2|) (-297 (-826 |#1|)) (-839) (-839)) (T -308)) -NIL -(-297 (-826 |#1|)) -((-3767 (((-2 (|:| |num| (-1148 |#3|)) (|:| |den| |#3|)) $) 37)) (-3142 (($ (-1148 (-375 |#3|)) (-1148 $)) NIL) (($ (-1148 (-375 |#3|))) NIL) (($ (-1148 |#3|) |#3|) 158)) (-3566 (((-1148 $) (-1148 $)) 142)) (-1286 (((-578 (-578 |#2|))) 115)) (-2142 (((-107) |#2| |#2|) 71)) (-3533 (($ $) 136)) (-1206 (((-701)) 30)) (-3740 (((-1148 $) (-1148 $)) 195)) (-1607 (((-578 (-866 |#2|)) (-1070)) 108)) (-3672 (((-107) $) 155)) (-2131 (((-107) $) 24) (((-107) $ |#2|) 28) (((-107) $ |#3|) 199)) (-2050 (((-3 |#3| "failed")) 48)) (-4122 (((-701)) 167)) (-2007 ((|#2| $ |#2| |#2|) 129)) (-2435 (((-3 |#3| "failed")) 66)) (-2596 (($ $ (-1 (-375 |#3|) (-375 |#3|)) (-701)) NIL) (($ $ (-1 (-375 |#3|) (-375 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 203) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL)) (-1416 (((-1148 $) (-1148 $)) 148)) (-2548 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 64)) (-2710 (((-107)) 32))) -(((-309 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -1286 ((-578 (-578 |#2|)))) (-15 -1607 ((-578 (-866 |#2|)) (-1070))) (-15 -2548 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2050 ((-3 |#3| "failed"))) (-15 -2435 ((-3 |#3| "failed"))) (-15 -2007 (|#2| |#1| |#2| |#2|)) (-15 -3533 (|#1| |#1|)) (-15 -3142 (|#1| (-1148 |#3|) |#3|)) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2131 ((-107) |#1| |#3|)) (-15 -2131 ((-107) |#1| |#2|)) (-15 -3767 ((-2 (|:| |num| (-1148 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3566 ((-1148 |#1|) (-1148 |#1|))) (-15 -3740 ((-1148 |#1|) (-1148 |#1|))) (-15 -1416 ((-1148 |#1|) (-1148 |#1|))) (-15 -2131 ((-107) |#1|)) (-15 -3672 ((-107) |#1|)) (-15 -2142 ((-107) |#2| |#2|)) (-15 -2710 ((-107))) (-15 -4122 ((-701))) (-15 -1206 ((-701))) (-15 -2596 (|#1| |#1| (-1 (-375 |#3|) (-375 |#3|)))) (-15 -2596 (|#1| |#1| (-1 (-375 |#3|) (-375 |#3|)) (-701))) (-15 -3142 (|#1| (-1148 (-375 |#3|)))) (-15 -3142 (|#1| (-1148 (-375 |#3|)) (-1148 |#1|)))) (-310 |#2| |#3| |#4|) (-1108) (-1125 |#2|) (-1125 (-375 |#3|))) (T -309)) -((-1206 (*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-701)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) (-4122 (*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-701)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) (-2710 (*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) (-2142 (*1 *2 *3 *3) (-12 (-4 *3 (-1108)) (-4 *5 (-1125 *3)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-107)) (-5 *1 (-309 *4 *3 *5 *6)) (-4 *4 (-310 *3 *5 *6)))) (-2435 (*1 *2) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-309 *3 *4 *2 *5)) (-4 *3 (-310 *4 *2 *5)))) (-2050 (*1 *2) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-309 *3 *4 *2 *5)) (-4 *3 (-310 *4 *2 *5)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *5 (-1108)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-578 (-866 *5))) (-5 *1 (-309 *4 *5 *6 *7)) (-4 *4 (-310 *5 *6 *7)))) (-1286 (*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6))))) -(-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -1286 ((-578 (-578 |#2|)))) (-15 -1607 ((-578 (-866 |#2|)) (-1070))) (-15 -2548 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2050 ((-3 |#3| "failed"))) (-15 -2435 ((-3 |#3| "failed"))) (-15 -2007 (|#2| |#1| |#2| |#2|)) (-15 -3533 (|#1| |#1|)) (-15 -3142 (|#1| (-1148 |#3|) |#3|)) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2131 ((-107) |#1| |#3|)) (-15 -2131 ((-107) |#1| |#2|)) (-15 -3767 ((-2 (|:| |num| (-1148 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3566 ((-1148 |#1|) (-1148 |#1|))) (-15 -3740 ((-1148 |#1|) (-1148 |#1|))) (-15 -1416 ((-1148 |#1|) (-1148 |#1|))) (-15 -2131 ((-107) |#1|)) (-15 -3672 ((-107) |#1|)) (-15 -2142 ((-107) |#2| |#2|)) (-15 -2710 ((-107))) (-15 -4122 ((-701))) (-15 -1206 ((-701))) (-15 -2596 (|#1| |#1| (-1 (-375 |#3|) (-375 |#3|)))) (-15 -2596 (|#1| |#1| (-1 (-375 |#3|) (-375 |#3|)) (-701))) (-15 -3142 (|#1| (-1148 (-375 |#3|)))) (-15 -3142 (|#1| (-1148 (-375 |#3|)) (-1148 |#1|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3767 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) 196)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 93 (|has| (-375 |#2|) (-331)))) (-2865 (($ $) 94 (|has| (-375 |#2|) (-331)))) (-1639 (((-107) $) 96 (|has| (-375 |#2|) (-331)))) (-2239 (((-621 (-375 |#2|)) (-1148 $)) 46) (((-621 (-375 |#2|))) 61)) (-2225 (((-375 |#2|) $) 52)) (-3431 (((-1077 (-839) (-701)) (-501)) 147 (|has| (-375 |#2|) (-318)))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 113 (|has| (-375 |#2|) (-331)))) (-1559 (((-373 $) $) 114 (|has| (-375 |#2|) (-331)))) (-2781 (((-107) $ $) 104 (|has| (-375 |#2|) (-331)))) (-3796 (((-701)) 87 (|has| (-375 |#2|) (-336)))) (-3285 (((-107)) 213)) (-2330 (((-107) |#1|) 212) (((-107) |#2|) 211)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 169 (|has| (-375 |#2|) (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 167 (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-3 (-375 |#2|) "failed") $) 166)) (-3490 (((-501) $) 170 (|has| (-375 |#2|) (-950 (-501)))) (((-375 (-501)) $) 168 (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-375 |#2|) $) 165)) (-3142 (($ (-1148 (-375 |#2|)) (-1148 $)) 48) (($ (-1148 (-375 |#2|))) 64) (($ (-1148 |#2|) |#2|) 189)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-375 |#2|) (-318)))) (-3023 (($ $ $) 108 (|has| (-375 |#2|) (-331)))) (-3070 (((-621 (-375 |#2|)) $ (-1148 $)) 53) (((-621 (-375 |#2|)) $) 59)) (-3868 (((-621 (-501)) (-621 $)) 164 (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 163 (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-375 |#2|))) (|:| |vec| (-1148 (-375 |#2|)))) (-621 $) (-1148 $)) 162) (((-621 (-375 |#2|)) (-621 $)) 161)) (-3566 (((-1148 $) (-1148 $)) 201)) (-3547 (($ |#3|) 158) (((-3 $ "failed") (-375 |#3|)) 155 (|has| (-375 |#2|) (-331)))) (-2174 (((-3 $ "failed") $) 34)) (-1286 (((-578 (-578 |#1|))) 182 (|has| |#1| (-336)))) (-2142 (((-107) |#1| |#1|) 217)) (-3689 (((-839)) 54)) (-2890 (($) 90 (|has| (-375 |#2|) (-336)))) (-2516 (((-107)) 210)) (-1436 (((-107) |#1|) 209) (((-107) |#2|) 208)) (-3034 (($ $ $) 107 (|has| (-375 |#2|) (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 102 (|has| (-375 |#2|) (-331)))) (-3533 (($ $) 188)) (-1317 (($) 149 (|has| (-375 |#2|) (-318)))) (-3521 (((-107) $) 150 (|has| (-375 |#2|) (-318)))) (-3067 (($ $ (-701)) 141 (|has| (-375 |#2|) (-318))) (($ $) 140 (|has| (-375 |#2|) (-318)))) (-1628 (((-107) $) 115 (|has| (-375 |#2|) (-331)))) (-3169 (((-839) $) 152 (|has| (-375 |#2|) (-318))) (((-762 (-839)) $) 138 (|has| (-375 |#2|) (-318)))) (-1355 (((-107) $) 31)) (-1206 (((-701)) 220)) (-3740 (((-1148 $) (-1148 $)) 202)) (-2626 (((-375 |#2|) $) 51)) (-1607 (((-578 (-866 |#1|)) (-1070)) 183 (|has| |#1| (-331)))) (-3493 (((-3 $ "failed") $) 142 (|has| (-375 |#2|) (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 111 (|has| (-375 |#2|) (-331)))) (-1792 ((|#3| $) 44 (|has| (-375 |#2|) (-331)))) (-3104 (((-839) $) 89 (|has| (-375 |#2|) (-336)))) (-1316 ((|#3| $) 156)) (-1697 (($ (-578 $)) 100 (|has| (-375 |#2|) (-331))) (($ $ $) 99 (|has| (-375 |#2|) (-331)))) (-3460 (((-1053) $) 9)) (-1275 (((-621 (-375 |#2|))) 197)) (-2368 (((-621 (-375 |#2|))) 199)) (-3833 (($ $) 116 (|has| (-375 |#2|) (-331)))) (-1318 (($ (-1148 |#2|) |#2|) 194)) (-2466 (((-621 (-375 |#2|))) 198)) (-2796 (((-621 (-375 |#2|))) 200)) (-1276 (((-2 (|:| |num| (-621 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-3418 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) 195)) (-2664 (((-1148 $)) 206)) (-1897 (((-1148 $)) 207)) (-3672 (((-107) $) 205)) (-2131 (((-107) $) 204) (((-107) $ |#1|) 192) (((-107) $ |#2|) 191)) (-3746 (($) 143 (|has| (-375 |#2|) (-318)) CONST)) (-3506 (($ (-839)) 88 (|has| (-375 |#2|) (-336)))) (-2050 (((-3 |#2| "failed")) 185)) (-3708 (((-1018) $) 10)) (-4122 (((-701)) 219)) (-3987 (($) 160)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 101 (|has| (-375 |#2|) (-331)))) (-3664 (($ (-578 $)) 98 (|has| (-375 |#2|) (-331))) (($ $ $) 97 (|has| (-375 |#2|) (-331)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 146 (|has| (-375 |#2|) (-318)))) (-3739 (((-373 $) $) 112 (|has| (-375 |#2|) (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-375 |#2|) (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 109 (|has| (-375 |#2|) (-331)))) (-3694 (((-3 $ "failed") $ $) 92 (|has| (-375 |#2|) (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 103 (|has| (-375 |#2|) (-331)))) (-1864 (((-701) $) 105 (|has| (-375 |#2|) (-331)))) (-2007 ((|#1| $ |#1| |#1|) 187)) (-2435 (((-3 |#2| "failed")) 186)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 106 (|has| (-375 |#2|) (-331)))) (-2532 (((-375 |#2|) (-1148 $)) 47) (((-375 |#2|)) 60)) (-1984 (((-701) $) 151 (|has| (-375 |#2|) (-318))) (((-3 (-701) "failed") $ $) 139 (|has| (-375 |#2|) (-318)))) (-2596 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) 123 (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) 122 (|has| (-375 |#2|) (-331))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-578 (-1070)) (-578 (-701))) 130 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-1070) (-701)) 131 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-578 (-1070))) 132 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-1070)) 133 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-701)) 135 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-206))) (-1280 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) 137 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-206))) (-1280 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-2231 (((-621 (-375 |#2|)) (-1148 $) (-1 (-375 |#2|) (-375 |#2|))) 154 (|has| (-375 |#2|) (-331)))) (-2264 ((|#3|) 159)) (-1349 (($) 148 (|has| (-375 |#2|) (-318)))) (-2085 (((-1148 (-375 |#2|)) $ (-1148 $)) 50) (((-621 (-375 |#2|)) (-1148 $) (-1148 $)) 49) (((-1148 (-375 |#2|)) $) 66) (((-621 (-375 |#2|)) (-1148 $)) 65)) (-1248 (((-1148 (-375 |#2|)) $) 63) (($ (-1148 (-375 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 145 (|has| (-375 |#2|) (-318)))) (-1416 (((-1148 $) (-1148 $)) 203)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 |#2|)) 37) (($ (-375 (-501))) 86 (-1405 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-950 (-375 (-501)))))) (($ $) 91 (|has| (-375 |#2|) (-331)))) (-1274 (($ $) 144 (|has| (-375 |#2|) (-318))) (((-3 $ "failed") $) 43 (|has| (-375 |#2|) (-132)))) (-2942 ((|#3| $) 45)) (-3965 (((-701)) 29)) (-2675 (((-107)) 216)) (-3969 (((-107) |#1|) 215) (((-107) |#2|) 214)) (-4119 (((-1148 $)) 67)) (-2442 (((-107) $ $) 95 (|has| (-375 |#2|) (-331)))) (-2548 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-2710 (((-107)) 218)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 117 (|has| (-375 |#2|) (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) 125 (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) 124 (|has| (-375 |#2|) (-331))) (($ $ (-578 (-1070)) (-578 (-701))) 126 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-1070) (-701)) 127 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-578 (-1070))) 128 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-1070)) 129 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-701)) 134 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-206))) (-1280 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) 136 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-206))) (-1280 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 121 (|has| (-375 |#2|) (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 118 (|has| (-375 |#2|) (-331)))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 |#2|)) 39) (($ (-375 |#2|) $) 38) (($ (-375 (-501)) $) 120 (|has| (-375 |#2|) (-331))) (($ $ (-375 (-501))) 119 (|has| (-375 |#2|) (-331))))) -(((-310 |#1| |#2| |#3|) (-1180) (-1108) (-1125 |t#1|) (-1125 (-375 |t#2|))) (T -310)) -((-1206 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-701)))) (-4122 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-701)))) (-2710 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2142 (*1 *2 *3 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2675 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-3969 (*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-3969 (*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) (-3285 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2330 (*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2330 (*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) (-2516 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-1436 (*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-1436 (*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) (-1897 (*1 *2) (-12 (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)))) (-2664 (*1 *2) (-12 (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-1416 (*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))) (-3740 (*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))) (-3566 (*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))) (-2796 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))) (-2368 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))) (-2466 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))) (-1275 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-2 (|:| |num| (-1148 *4)) (|:| |den| *4))))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-2 (|:| |num| (-1148 *4)) (|:| |den| *4))))) (-1318 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1125 *4)) (-4 *4 (-1108)) (-4 *1 (-310 *4 *3 *5)) (-4 *5 (-1125 (-375 *3))))) (-1276 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-310 *4 *5 *6)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-2 (|:| |num| (-621 *5)) (|:| |den| *5))))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))) (-3142 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1125 *4)) (-4 *4 (-1108)) (-4 *1 (-310 *4 *3 *5)) (-4 *5 (-1125 (-375 *3))))) (-3533 (*1 *1 *1) (-12 (-4 *1 (-310 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))))) (-2007 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-310 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))))) (-2435 (*1 *2) (|partial| -12 (-4 *1 (-310 *3 *2 *4)) (-4 *3 (-1108)) (-4 *4 (-1125 (-375 *2))) (-4 *2 (-1125 *3)))) (-2050 (*1 *2) (|partial| -12 (-4 *1 (-310 *3 *2 *4)) (-4 *3 (-1108)) (-4 *4 (-1125 (-375 *2))) (-4 *2 (-1125 *3)))) (-2548 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-1108)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-310 *4 *5 *6)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *1 (-310 *4 *5 *6)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-4 *4 (-331)) (-5 *2 (-578 (-866 *4))))) (-1286 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *3 (-336)) (-5 *2 (-578 (-578 *3)))))) -(-13 (-655 (-375 |t#2|) |t#3|) (-10 -8 (-15 -1206 ((-701))) (-15 -4122 ((-701))) (-15 -2710 ((-107))) (-15 -2142 ((-107) |t#1| |t#1|)) (-15 -2675 ((-107))) (-15 -3969 ((-107) |t#1|)) (-15 -3969 ((-107) |t#2|)) (-15 -3285 ((-107))) (-15 -2330 ((-107) |t#1|)) (-15 -2330 ((-107) |t#2|)) (-15 -2516 ((-107))) (-15 -1436 ((-107) |t#1|)) (-15 -1436 ((-107) |t#2|)) (-15 -1897 ((-1148 $))) (-15 -2664 ((-1148 $))) (-15 -3672 ((-107) $)) (-15 -2131 ((-107) $)) (-15 -1416 ((-1148 $) (-1148 $))) (-15 -3740 ((-1148 $) (-1148 $))) (-15 -3566 ((-1148 $) (-1148 $))) (-15 -2796 ((-621 (-375 |t#2|)))) (-15 -2368 ((-621 (-375 |t#2|)))) (-15 -2466 ((-621 (-375 |t#2|)))) (-15 -1275 ((-621 (-375 |t#2|)))) (-15 -3767 ((-2 (|:| |num| (-1148 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3142 ($ (-1148 |t#2|) |t#2|)) (-15 -3418 ((-2 (|:| |num| (-1148 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1318 ($ (-1148 |t#2|) |t#2|)) (-15 -1276 ((-2 (|:| |num| (-621 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2131 ((-107) $ |t#1|)) (-15 -2131 ((-107) $ |t#2|)) (-15 -2596 ($ $ (-1 |t#2| |t#2|))) (-15 -3142 ($ (-1148 |t#2|) |t#2|)) (-15 -3533 ($ $)) (-15 -2007 (|t#1| $ |t#1| |t#1|)) (-15 -2435 ((-3 |t#2| "failed"))) (-15 -2050 ((-3 |t#2| "failed"))) (-15 -2548 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-331)) (-15 -1607 ((-578 (-866 |t#1|)) (-1070))) |noBranch|) (IF (|has| |t#1| (-336)) (-15 -1286 ((-578 (-578 |t#1|)))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-37 (-375 |#2|)) . T) ((-37 $) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-106 (-375 |#2|) (-375 |#2|)) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-132))) ((-134) |has| (-375 |#2|) (-134)) ((-555 (-786)) . T) ((-156) . T) ((-556 |#3|) . T) ((-204 (-375 |#2|)) |has| (-375 |#2|) (-331)) ((-206) -1405 (|has| (-375 |#2|) (-318)) (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331)))) ((-216) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-260) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-276) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-331) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-370) |has| (-375 |#2|) (-318)) ((-336) -1405 (|has| (-375 |#2|) (-336)) (|has| (-375 |#2|) (-318))) ((-318) |has| (-375 |#2|) (-318)) ((-338 (-375 |#2|) |#3|) . T) ((-378 (-375 |#2|) |#3|) . T) ((-345 (-375 |#2|)) . T) ((-380 (-375 |#2|)) . T) ((-419) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-508) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-583 (-375 (-501))) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-583 (-375 |#2|)) . T) ((-583 $) . T) ((-577 (-375 |#2|)) . T) ((-577 (-501)) |has| (-375 |#2|) (-577 (-501))) ((-648 (-375 (-501))) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-648 (-375 |#2|)) . T) ((-648 $) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-655 (-375 |#2|) |#3|) . T) ((-657) . T) ((-820 (-1070)) -12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) ((-841) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-950 (-375 (-501))) |has| (-375 |#2|) (-950 (-375 (-501)))) ((-950 (-375 |#2|)) . T) ((-950 (-501)) |has| (-375 |#2|) (-950 (-501))) ((-964 (-375 (-501))) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-964 (-375 |#2|)) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| (-375 |#2|) (-318)) ((-1108) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331)))) -((-1212 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-311 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1212 (|#8| (-1 |#5| |#1|) |#4|))) (-1108) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|) (-1108) (-1125 |#5|) (-1125 (-375 |#6|)) (-310 |#5| |#6| |#7|)) (T -311)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1108)) (-4 *8 (-1108)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *9 (-1125 *8)) (-4 *2 (-310 *8 *9 *10)) (-5 *1 (-311 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-310 *5 *6 *7)) (-4 *10 (-1125 (-375 *9)))))) -(-10 -7 (-15 -1212 (|#8| (-1 |#5| |#1|) |#4|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-826 |#1|) (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| (-826 |#1|) (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-826 |#1|) "failed") $) NIL)) (-3490 (((-826 |#1|) $) NIL)) (-3142 (($ (-1148 (-826 |#1|))) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-826 |#1|) (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-826 |#1|) (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| (-826 |#1|) (-336)))) (-3521 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336)))) (($ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| (-826 |#1|) (-336))) (((-762 (-839)) $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| (-826 |#1|) (-336)))) (-1928 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-2626 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-826 |#1|) (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 (-826 |#1|)) $) NIL) (((-1064 $) $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3104 (((-839) $) NIL (|has| (-826 |#1|) (-336)))) (-3721 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336)))) (-1806 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-1064 (-826 |#1|)) "failed") $ $) NIL (|has| (-826 |#1|) (-336)))) (-2468 (($ $ (-1064 (-826 |#1|))) NIL (|has| (-826 |#1|) (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-826 |#1|) (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-2067 (((-877 (-1018))) NIL)) (-3987 (($) NIL (|has| (-826 |#1|) (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-826 |#1|) (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 (-826 |#1|))) NIL)) (-1349 (($) NIL (|has| (-826 |#1|) (-336)))) (-3481 (($) NIL (|has| (-826 |#1|) (-336)))) (-2085 (((-1148 (-826 |#1|)) $) NIL) (((-621 (-826 |#1|)) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-826 |#1|) (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-826 |#1|)) NIL)) (-1274 (($ $) NIL (|has| (-826 |#1|) (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3584 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ (-826 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-826 |#1|)) NIL) (($ (-826 |#1|) $) NIL))) -(((-312 |#1| |#2|) (-13 (-297 (-826 |#1|)) (-10 -7 (-15 -2067 ((-877 (-1018)))))) (-839) (-839)) (T -312)) -((-2067 (*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-312 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839))))) -(-13 (-297 (-826 |#1|)) (-10 -7 (-15 -2067 ((-877 (-1018)))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 46)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) 43 (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 113)) (-3490 ((|#1| $) 84)) (-3142 (($ (-1148 |#1|)) 102)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 93 (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) 96 (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) 128 (|has| |#1| (-336)))) (-3521 (((-107) $) 49 (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) 47 (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) 130 (|has| |#1| (-336)))) (-1928 (((-107) $) NIL (|has| |#1| (-336)))) (-2626 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) 88) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) 138 (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) NIL (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) NIL (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) NIL (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) NIL (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 145)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) 70 (|has| |#1| (-336)))) (-2255 (((-107) $) 116)) (-3708 (((-1018) $) NIL)) (-2067 (((-877 (-1018))) 44)) (-3987 (($) 126 (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 91 (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) 67) (((-839)) 68)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) 129 (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) 123 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 |#1|)) 94)) (-1349 (($) 127 (|has| |#1| (-336)))) (-3481 (($) 135 (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) 59) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) 141) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 74)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) 137)) (-4119 (((-1148 $)) 115) (((-1148 $) (-839)) 72)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 32 T CONST)) (-1925 (($) 19 T CONST)) (-3184 (($ $) 80 (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) 48)) (-3803 (($ $ $) 143) (($ $ |#1|) 144)) (-3797 (($ $) 125) (($ $ $) NIL)) (-3790 (($ $ $) 61)) (** (($ $ (-839)) 147) (($ $ (-701)) 148) (($ $ (-501)) 146)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 76) (($ $ $) 75) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142))) -(((-313 |#1| |#2|) (-13 (-297 |#1|) (-10 -7 (-15 -2067 ((-877 (-1018)))))) (-318) (-1064 |#1|)) (T -313)) -((-2067 (*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-313 *3 *4)) (-4 *3 (-318)) (-14 *4 (-1064 *3))))) -(-13 (-297 |#1|) (-10 -7 (-15 -2067 ((-877 (-1018)))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3142 (($ (-1148 |#1|)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| |#1| (-336)))) (-3521 (((-107) $) NIL (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| |#1| (-336)))) (-1928 (((-107) $) NIL (|has| |#1| (-336)))) (-2626 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) NIL) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) NIL (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) NIL (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) NIL (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) NIL (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-2067 (((-877 (-1018))) NIL)) (-3987 (($) NIL (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 |#1|)) NIL)) (-1349 (($) NIL (|has| |#1| (-336)))) (-3481 (($) NIL (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) NIL) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) NIL)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-314 |#1| |#2|) (-13 (-297 |#1|) (-10 -7 (-15 -2067 ((-877 (-1018)))))) (-318) (-839)) (T -314)) -((-2067 (*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-314 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839))))) -(-13 (-297 |#1|) (-10 -7 (-15 -2067 ((-877 (-1018)))))) -((-1586 (((-701) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) 40)) (-3462 (((-877 (-1018)) (-1064 |#1|)) 84)) (-1803 (((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) (-1064 |#1|)) 77)) (-2827 (((-621 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) 85)) (-1462 (((-3 (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) "failed") (-839)) 10)) (-2068 (((-3 (-1064 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) (-839)) 15))) -(((-315 |#1|) (-10 -7 (-15 -3462 ((-877 (-1018)) (-1064 |#1|))) (-15 -1803 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) (-1064 |#1|))) (-15 -2827 ((-621 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -1586 ((-701) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -1462 ((-3 (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) "failed") (-839))) (-15 -2068 ((-3 (-1064 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) (-839)))) (-318)) (T -315)) -((-2068 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-3 (-1064 *4) (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018))))))) (-5 *1 (-315 *4)) (-4 *4 (-318)))) (-1462 (*1 *2 *3) (|partial| -12 (-5 *3 (-839)) (-5 *2 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-5 *1 (-315 *4)) (-4 *4 (-318)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-701)) (-5 *1 (-315 *4)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-621 *4)) (-5 *1 (-315 *4)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-5 *1 (-315 *4)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-877 (-1018))) (-5 *1 (-315 *4))))) -(-10 -7 (-15 -3462 ((-877 (-1018)) (-1064 |#1|))) (-15 -1803 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) (-1064 |#1|))) (-15 -2827 ((-621 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -1586 ((-701) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -1462 ((-3 (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) "failed") (-839))) (-15 -2068 ((-3 (-1064 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) (-839)))) -((-3691 ((|#1| |#3|) 84) ((|#3| |#1|) 68))) -(((-316 |#1| |#2| |#3|) (-10 -7 (-15 -3691 (|#3| |#1|)) (-15 -3691 (|#1| |#3|))) (-297 |#2|) (-318) (-297 |#2|)) (T -316)) -((-3691 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *2 (-297 *4)) (-5 *1 (-316 *2 *4 *3)) (-4 *3 (-297 *4)))) (-3691 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *2 (-297 *4)) (-5 *1 (-316 *3 *4 *2)) (-4 *3 (-297 *4))))) -(-10 -7 (-15 -3691 (|#3| |#1|)) (-15 -3691 (|#1| |#3|))) -((-3521 (((-107) $) 50)) (-3169 (((-762 (-839)) $) 21) (((-839) $) 51)) (-3493 (((-3 $ "failed") $) 16)) (-3746 (($) 9)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 91)) (-1984 (((-3 (-701) "failed") $ $) 70) (((-701) $) 59)) (-2596 (($ $ (-701)) NIL) (($ $) 8)) (-1349 (($) 44)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 33)) (-1274 (((-3 $ "failed") $) 39) (($ $) 38))) -(((-317 |#1|) (-10 -8 (-15 -3169 ((-839) |#1|)) (-15 -1984 ((-701) |#1|)) (-15 -3521 ((-107) |#1|)) (-15 -1349 (|#1|)) (-15 -2375 ((-3 (-1148 |#1|) "failed") (-621 |#1|))) (-15 -1274 (|#1| |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -1984 ((-3 (-701) "failed") |#1| |#1|)) (-15 -3169 ((-762 (-839)) |#1|)) (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)))) (-318)) (T -317)) -NIL -(-10 -8 (-15 -3169 ((-839) |#1|)) (-15 -1984 ((-701) |#1|)) (-15 -3521 ((-107) |#1|)) (-15 -1349 (|#1|)) (-15 -2375 ((-3 (-1148 |#1|) "failed") (-621 |#1|))) (-15 -1274 (|#1| |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -1984 ((-3 (-701) "failed") |#1| |#1|)) (-15 -3169 ((-762 (-839)) |#1|)) (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3431 (((-1077 (-839) (-701)) (-501)) 93)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-2781 (((-107) $ $) 59)) (-3796 (((-701)) 103)) (-2540 (($) 17 T CONST)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-2890 (($) 106)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1317 (($) 91)) (-3521 (((-107) $) 90)) (-3067 (($ $) 79) (($ $ (-701)) 78)) (-1628 (((-107) $) 71)) (-3169 (((-762 (-839)) $) 81) (((-839) $) 88)) (-1355 (((-107) $) 31)) (-3493 (((-3 $ "failed") $) 102)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-3104 (((-839) $) 105)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3746 (($) 101 T CONST)) (-3506 (($ (-839)) 104)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 94)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-1984 (((-3 (-701) "failed") $ $) 80) (((-701) $) 89)) (-2596 (($ $ (-701)) 99) (($ $) 97)) (-1349 (($) 92)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 95)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65)) (-1274 (((-3 $ "failed") $) 82) (($ $) 96)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-701)) 100) (($ $) 98)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66))) -(((-318) (-1180)) (T -318)) -((-1274 (*1 *1 *1) (-4 *1 (-318))) (-2375 (*1 *2 *3) (|partial| -12 (-5 *3 (-621 *1)) (-4 *1 (-318)) (-5 *2 (-1148 *1)))) (-1295 (*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))))) (-3431 (*1 *2 *3) (-12 (-4 *1 (-318)) (-5 *3 (-501)) (-5 *2 (-1077 (-839) (-701))))) (-1349 (*1 *1) (-4 *1 (-318))) (-1317 (*1 *1) (-4 *1 (-318))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-107)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-701)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-839)))) (-1390 (*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-370) (-336) (-1046) (-206) (-10 -8 (-15 -1274 ($ $)) (-15 -2375 ((-3 (-1148 $) "failed") (-621 $))) (-15 -1295 ((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501)))))) (-15 -3431 ((-1077 (-839) (-701)) (-501))) (-15 -1349 ($)) (-15 -1317 ($)) (-15 -3521 ((-107) $)) (-15 -1984 ((-701) $)) (-15 -3169 ((-839) $)) (-15 -1390 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-555 (-786)) . T) ((-156) . T) ((-206) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-370) . T) ((-336) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) . T) ((-1108) . T)) -((-3819 (((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) |#1|) 51)) (-1897 (((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|)))) 49))) -(((-319 |#1| |#2| |#3|) (-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) |#1|))) (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $)))) (-1125 |#1|) (-378 |#1| |#2|)) (T -319)) -((-3819 (*1 *2 *3) (-12 (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-1897 (*1 *2) (-12 (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-378 *3 *4))))) -(-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) |#1|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-826 |#1|) (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-1586 (((-701)) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| (-826 |#1|) (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-826 |#1|) "failed") $) NIL)) (-3490 (((-826 |#1|) $) NIL)) (-3142 (($ (-1148 (-826 |#1|))) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-826 |#1|) (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-826 |#1|) (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| (-826 |#1|) (-336)))) (-3521 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336)))) (($ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| (-826 |#1|) (-336))) (((-762 (-839)) $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| (-826 |#1|) (-336)))) (-1928 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-2626 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-826 |#1|) (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 (-826 |#1|)) $) NIL) (((-1064 $) $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3104 (((-839) $) NIL (|has| (-826 |#1|) (-336)))) (-3721 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336)))) (-1806 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-1064 (-826 |#1|)) "failed") $ $) NIL (|has| (-826 |#1|) (-336)))) (-2468 (($ $ (-1064 (-826 |#1|))) NIL (|has| (-826 |#1|) (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-826 |#1|) (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-1302 (((-1148 (-578 (-2 (|:| -2150 (-826 |#1|)) (|:| -3506 (-1018)))))) NIL)) (-2485 (((-621 (-826 |#1|))) NIL)) (-3987 (($) NIL (|has| (-826 |#1|) (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-826 |#1|) (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 (-826 |#1|))) NIL)) (-1349 (($) NIL (|has| (-826 |#1|) (-336)))) (-3481 (($) NIL (|has| (-826 |#1|) (-336)))) (-2085 (((-1148 (-826 |#1|)) $) NIL) (((-621 (-826 |#1|)) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-826 |#1|) (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-826 |#1|)) NIL)) (-1274 (($ $) NIL (|has| (-826 |#1|) (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3584 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ (-826 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-826 |#1|)) NIL) (($ (-826 |#1|) $) NIL))) -(((-320 |#1| |#2|) (-13 (-297 (-826 |#1|)) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 (-826 |#1|)) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 (-826 |#1|)))) (-15 -1586 ((-701))))) (-839) (-839)) (T -320)) -((-1302 (*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 (-826 *3)) (|:| -3506 (-1018)))))) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) (-2485 (*1 *2) (-12 (-5 *2 (-621 (-826 *3))) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) (-1586 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839))))) -(-13 (-297 (-826 |#1|)) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 (-826 |#1|)) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 (-826 |#1|)))) (-15 -1586 ((-701))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 74)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) 92) (($ $ (-839)) 90 (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) 148 (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-1586 (((-701)) 89)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) 162 (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 111)) (-3490 ((|#1| $) 91)) (-3142 (($ (-1148 |#1|)) 57)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) 158 (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) 149 (|has| |#1| (-336)))) (-3521 (((-107) $) NIL (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) 97 (|has| |#1| (-336)))) (-1928 (((-107) $) 175 (|has| |#1| (-336)))) (-2626 ((|#1| $) 94) (($ $ (-839)) 93 (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) 188) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) 133 (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) 73 (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) 70 (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) 82 (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) 69 (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 191)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) 136 (|has| |#1| (-336)))) (-2255 (((-107) $) 107)) (-3708 (((-1018) $) NIL)) (-1302 (((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) 83)) (-2485 (((-621 |#1|)) 87)) (-3987 (($) 96 (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 150 (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) 151)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) 62)) (-2264 (((-1064 |#1|)) 152)) (-1349 (($) 132 (|has| |#1| (-336)))) (-3481 (($) NIL (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) 105) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) 123) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 56)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) 156)) (-4119 (((-1148 $)) 172) (((-1148 $) (-839)) 100)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 30 T CONST)) (-1925 (($) 22 T CONST)) (-3184 (($ $) 106 (|has| |#1| (-336))) (($ $ (-701)) 98 (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) 60)) (-3803 (($ $ $) 103) (($ $ |#1|) 104)) (-3797 (($ $) 177) (($ $ $) 181)) (-3790 (($ $ $) 179)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 137)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 185) (($ $ $) 142) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 102))) -(((-321 |#1| |#2|) (-13 (-297 |#1|) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 |#1|))) (-15 -1586 ((-701))))) (-318) (-3 (-1064 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (T -321)) -((-1302 (*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018)))))) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) *2)))) (-2485 (*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018))))))))) (-1586 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018)))))))))) -(-13 (-297 |#1|) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 |#1|))) (-15 -1586 ((-701))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-1586 (((-701)) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3142 (($ (-1148 |#1|)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| |#1| (-336)))) (-3521 (((-107) $) NIL (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| |#1| (-336)))) (-1928 (((-107) $) NIL (|has| |#1| (-336)))) (-2626 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) NIL) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) NIL (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) NIL (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) NIL (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) NIL (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-1302 (((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) NIL)) (-2485 (((-621 |#1|)) NIL)) (-3987 (($) NIL (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 |#1|)) NIL)) (-1349 (($) NIL (|has| |#1| (-336)))) (-3481 (($) NIL (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) NIL) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) NIL)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-322 |#1| |#2|) (-13 (-297 |#1|) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 |#1|))) (-15 -1586 ((-701))))) (-318) (-839)) (T -322)) -((-1302 (*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839)))) (-2485 (*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839)))) (-1586 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839))))) -(-13 (-297 |#1|) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 |#1|))) (-15 -1586 ((-701))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) 119 (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) 138 (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 91)) (-3490 ((|#1| $) 88)) (-3142 (($ (-1148 |#1|)) 83)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) 80 (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) 39 (|has| |#1| (-336)))) (-3521 (((-107) $) NIL (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) 120 (|has| |#1| (-336)))) (-1928 (((-107) $) 72 (|has| |#1| (-336)))) (-2626 ((|#1| $) 38) (($ $ (-839)) 40 (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) 62) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) 95 (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) NIL (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) NIL (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) NIL (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) NIL (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) 93 (|has| |#1| (-336)))) (-2255 (((-107) $) 140)) (-3708 (((-1018) $) NIL)) (-3987 (($) 35 (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 113 (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) 137)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) 56)) (-2264 (((-1064 |#1|)) 86)) (-1349 (($) 125 (|has| |#1| (-336)))) (-3481 (($) NIL (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) 50) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) 136) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 85)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) 142)) (-4119 (((-1148 $)) 107) (((-1148 $) (-839)) 46)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 109 T CONST)) (-1925 (($) 31 T CONST)) (-3184 (($ $) 65 (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) 105)) (-3803 (($ $ $) 97) (($ $ |#1|) 98)) (-3797 (($ $) 78) (($ $ $) 103)) (-3790 (($ $ $) 101)) (** (($ $ (-839)) NIL) (($ $ (-701)) 41) (($ $ (-501)) 128)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 76) (($ $ $) 53) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74))) -(((-323 |#1| |#2|) (-297 |#1|) (-318) (-1064 |#1|)) (T -323)) -NIL -(-297 |#1|) -((-4125 (((-877 (-1064 |#1|)) (-1064 |#1|)) 36)) (-2890 (((-1064 |#1|) (-839) (-839)) 109) (((-1064 |#1|) (-839)) 108)) (-3521 (((-107) (-1064 |#1|)) 81)) (-4074 (((-839) (-839)) 71)) (-3190 (((-839) (-839)) 73)) (-2449 (((-839) (-839)) 69)) (-1928 (((-107) (-1064 |#1|)) 85)) (-3851 (((-3 (-1064 |#1|) "failed") (-1064 |#1|)) 97)) (-3469 (((-3 (-1064 |#1|) "failed") (-1064 |#1|)) 100)) (-2303 (((-3 (-1064 |#1|) "failed") (-1064 |#1|)) 99)) (-3513 (((-3 (-1064 |#1|) "failed") (-1064 |#1|)) 98)) (-4025 (((-3 (-1064 |#1|) "failed") (-1064 |#1|)) 94)) (-1288 (((-1064 |#1|) (-1064 |#1|)) 62)) (-3291 (((-1064 |#1|) (-839)) 103)) (-1943 (((-1064 |#1|) (-839)) 106)) (-2365 (((-1064 |#1|) (-839)) 105)) (-3871 (((-1064 |#1|) (-839)) 104)) (-2821 (((-1064 |#1|) (-839)) 101))) -(((-324 |#1|) (-10 -7 (-15 -3521 ((-107) (-1064 |#1|))) (-15 -1928 ((-107) (-1064 |#1|))) (-15 -2449 ((-839) (-839))) (-15 -4074 ((-839) (-839))) (-15 -3190 ((-839) (-839))) (-15 -2821 ((-1064 |#1|) (-839))) (-15 -3291 ((-1064 |#1|) (-839))) (-15 -3871 ((-1064 |#1|) (-839))) (-15 -2365 ((-1064 |#1|) (-839))) (-15 -1943 ((-1064 |#1|) (-839))) (-15 -4025 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3851 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3513 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -2303 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3469 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -2890 ((-1064 |#1|) (-839))) (-15 -2890 ((-1064 |#1|) (-839) (-839))) (-15 -1288 ((-1064 |#1|) (-1064 |#1|))) (-15 -4125 ((-877 (-1064 |#1|)) (-1064 |#1|)))) (-318)) (T -324)) -((-4125 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-877 (-1064 *4))) (-5 *1 (-324 *4)) (-5 *3 (-1064 *4)))) (-1288 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-2890 (*1 *2 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-3469 (*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-2303 (*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-3513 (*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-3851 (*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-4025 (*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318)))) (-2449 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-324 *4)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-324 *4))))) -(-10 -7 (-15 -3521 ((-107) (-1064 |#1|))) (-15 -1928 ((-107) (-1064 |#1|))) (-15 -2449 ((-839) (-839))) (-15 -4074 ((-839) (-839))) (-15 -3190 ((-839) (-839))) (-15 -2821 ((-1064 |#1|) (-839))) (-15 -3291 ((-1064 |#1|) (-839))) (-15 -3871 ((-1064 |#1|) (-839))) (-15 -2365 ((-1064 |#1|) (-839))) (-15 -1943 ((-1064 |#1|) (-839))) (-15 -4025 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3851 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3513 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -2303 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3469 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -2890 ((-1064 |#1|) (-839))) (-15 -2890 ((-1064 |#1|) (-839) (-839))) (-15 -1288 ((-1064 |#1|) (-1064 |#1|))) (-15 -4125 ((-877 (-1064 |#1|)) (-1064 |#1|)))) -((-2184 ((|#1| (-1064 |#2|)) 51))) -(((-325 |#1| |#2|) (-10 -7 (-15 -2184 (|#1| (-1064 |#2|)))) (-13 (-370) (-10 -7 (-15 -3691 (|#1| |#2|)) (-15 -3104 ((-839) |#1|)) (-15 -4119 ((-1148 |#1|) (-839))) (-15 -3184 (|#1| |#1|)))) (-318)) (T -325)) -((-2184 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-4 *2 (-13 (-370) (-10 -7 (-15 -3691 (*2 *4)) (-15 -3104 ((-839) *2)) (-15 -4119 ((-1148 *2) (-839))) (-15 -3184 (*2 *2))))) (-5 *1 (-325 *2 *4))))) -(-10 -7 (-15 -2184 (|#1| (-1064 |#2|)))) -((-4002 (((-3 (-578 |#3|) "failed") (-578 |#3|) |#3|) 33))) -(((-326 |#1| |#2| |#3|) (-10 -7 (-15 -4002 ((-3 (-578 |#3|) "failed") (-578 |#3|) |#3|))) (-318) (-1125 |#1|) (-1125 |#2|)) (T -326)) -((-4002 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-318)) (-5 *1 (-326 *4 *5 *3))))) -(-10 -7 (-15 -4002 ((-3 (-578 |#3|) "failed") (-578 |#3|) |#3|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3142 (($ (-1148 |#1|)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| |#1| (-336)))) (-3521 (((-107) $) NIL (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| |#1| (-336)))) (-1928 (((-107) $) NIL (|has| |#1| (-336)))) (-2626 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) NIL) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) NIL (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) NIL (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) NIL (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) NIL (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 |#1|)) NIL)) (-1349 (($) NIL (|has| |#1| (-336)))) (-3481 (($) NIL (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) NIL) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) NIL)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-327 |#1| |#2|) (-297 |#1|) (-318) (-839)) (T -327)) -NIL -(-297 |#1|) -((-1551 (((-107) (-578 (-866 |#1|))) 31)) (-3727 (((-578 (-866 |#1|)) (-578 (-866 |#1|))) 42)) (-1872 (((-3 (-578 (-866 |#1|)) "failed") (-578 (-866 |#1|))) 38))) -(((-328 |#1| |#2|) (-10 -7 (-15 -1551 ((-107) (-578 (-866 |#1|)))) (-15 -1872 ((-3 (-578 (-866 |#1|)) "failed") (-578 (-866 |#1|)))) (-15 -3727 ((-578 (-866 |#1|)) (-578 (-866 |#1|))))) (-419) (-578 (-1070))) (T -328)) -((-3727 (*1 *2 *2) (-12 (-5 *2 (-578 (-866 *3))) (-4 *3 (-419)) (-5 *1 (-328 *3 *4)) (-14 *4 (-578 (-1070))))) (-1872 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-866 *3))) (-4 *3 (-419)) (-5 *1 (-328 *3 *4)) (-14 *4 (-578 (-1070))))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-419)) (-5 *2 (-107)) (-5 *1 (-328 *4 *5)) (-14 *5 (-578 (-1070)))))) -(-10 -7 (-15 -1551 ((-107) (-578 (-866 |#1|)))) (-15 -1872 ((-3 (-578 (-866 |#1|)) "failed") (-578 (-866 |#1|)))) (-15 -3727 ((-578 (-866 |#1|)) (-578 (-866 |#1|))))) -((-3736 (((-107) $ $) NIL)) (-3796 (((-701) $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) 14)) (-2153 ((|#1| $ (-501)) NIL)) (-3159 (((-501) $ (-501)) NIL)) (-2451 (($ (-1 |#1| |#1|) $) 32)) (-1620 (($ (-1 (-501) (-501)) $) 24)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 26)) (-3708 (((-1018) $) NIL)) (-1575 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-501)))) $) 28)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) 38) (($ |#1|) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 9 T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL) (($ |#1| (-501)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-329 |#1|) (-13 (-440) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-501))) (-15 -3796 ((-701) $)) (-15 -3159 ((-501) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1620 ($ (-1 (-501) (-501)) $)) (-15 -2451 ($ (-1 |#1| |#1|) $)) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-501)))) $)))) (-1001)) (T -329)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-329 *2)) (-4 *2 (-1001)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-329 *2)) (-4 *2 (-1001)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-329 *2)) (-4 *2 (-1001)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) (-3159 (*1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-329 *2)) (-4 *2 (-1001)))) (-1620 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-501) (-501))) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) (-2451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-329 *3)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-501))))) (-5 *1 (-329 *3)) (-4 *3 (-1001))))) -(-13 (-440) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-501))) (-15 -3796 ((-701) $)) (-15 -3159 ((-501) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1620 ($ (-1 (-501) (-501)) $)) (-15 -2451 ($ (-1 |#1| |#1|) $)) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-501)))) $)))) -((-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 13)) (-2865 (($ $) 14)) (-1559 (((-373 $) $) 29)) (-1628 (((-107) $) 25)) (-3833 (($ $) 18)) (-3664 (($ $ $) 22) (($ (-578 $)) NIL)) (-3739 (((-373 $) $) 30)) (-3694 (((-3 $ "failed") $ $) 21)) (-1864 (((-701) $) 24)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 34)) (-2442 (((-107) $ $) 15)) (-3803 (($ $ $) 32))) -(((-330 |#1|) (-10 -8 (-15 -3803 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -1628 ((-107) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -1864 ((-701) |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|)) (-15 -2442 ((-107) |#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|))) (-331)) (T -330)) -NIL -(-10 -8 (-15 -3803 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -1628 ((-107) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -1864 ((-701) |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|)) (-15 -2442 ((-107) |#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-1355 (((-107) $) 31)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66))) -(((-331) (-1180)) (T -331)) -((-3803 (*1 *1 *1 *1) (-4 *1 (-331)))) -(-13 (-276) (-1108) (-216) (-10 -8 (-15 -3803 ($ $ $)) (-6 -4165) (-6 -4159))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T)) -((-3736 (((-107) $ $) NIL)) (-2186 ((|#1| $ |#1|) 29)) (-1998 (($ $ (-1053)) 22)) (-1225 (((-3 |#1| "failed") $) 28)) (-3505 ((|#1| $) 26)) (-2342 (($ (-356)) 21) (($ (-356) (-1053)) 20)) (-3986 (((-356) $) 24)) (-3460 (((-1053) $) NIL)) (-3947 (((-1053) $) 25)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 19)) (-3371 (($ $) 23)) (-3751 (((-107) $ $) 18))) -(((-332 |#1|) (-13 (-333 (-356) |#1|) (-10 -8 (-15 -1225 ((-3 |#1| "failed") $)))) (-1001)) (T -332)) -((-1225 (*1 *2 *1) (|partial| -12 (-5 *1 (-332 *2)) (-4 *2 (-1001))))) -(-13 (-333 (-356) |#1|) (-10 -8 (-15 -1225 ((-3 |#1| "failed") $)))) -((-3736 (((-107) $ $) 7)) (-2186 ((|#2| $ |#2|) 13)) (-1998 (($ $ (-1053)) 18)) (-3505 ((|#2| $) 14)) (-2342 (($ |#1|) 20) (($ |#1| (-1053)) 19)) (-3986 ((|#1| $) 16)) (-3460 (((-1053) $) 9)) (-3947 (((-1053) $) 15)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3371 (($ $) 17)) (-3751 (((-107) $ $) 6))) -(((-333 |#1| |#2|) (-1180) (-1001) (-1001)) (T -333)) -((-2342 (*1 *1 *2) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-2342 (*1 *1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *1 (-333 *2 *4)) (-4 *2 (-1001)) (-4 *4 (-1001)))) (-1998 (*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-3371 (*1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-1001)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-1053)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) (-2186 (*1 *2 *1 *2) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001))))) -(-13 (-1001) (-10 -8 (-15 -2342 ($ |t#1|)) (-15 -2342 ($ |t#1| (-1053))) (-15 -1998 ($ $ (-1053))) (-15 -3371 ($ $)) (-15 -3986 (|t#1| $)) (-15 -3947 ((-1053) $)) (-15 -3505 (|t#2| $)) (-15 -2186 (|t#2| $ |t#2|)))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-1763 (((-1148 (-621 |#2|)) (-1148 $)) 61)) (-2311 (((-621 |#2|) (-1148 $)) 119)) (-1909 ((|#2| $) 32)) (-3867 (((-621 |#2|) $ (-1148 $)) 123)) (-1887 (((-3 $ "failed") $) 75)) (-3925 ((|#2| $) 35)) (-2292 (((-1064 |#2|) $) 83)) (-2398 ((|#2| (-1148 $)) 106)) (-3333 (((-1064 |#2|) $) 28)) (-3656 (((-107)) 100)) (-3142 (($ (-1148 |#2|) (-1148 $)) 113)) (-2174 (((-3 $ "failed") $) 79)) (-3930 (((-107)) 95)) (-2838 (((-107)) 90)) (-3874 (((-107)) 53)) (-4146 (((-621 |#2|) (-1148 $)) 117)) (-3821 ((|#2| $) 31)) (-1472 (((-621 |#2|) $ (-1148 $)) 122)) (-1992 (((-3 $ "failed") $) 73)) (-3784 ((|#2| $) 34)) (-3474 (((-1064 |#2|) $) 82)) (-1600 ((|#2| (-1148 $)) 104)) (-2270 (((-1064 |#2|) $) 26)) (-2172 (((-107)) 99)) (-3808 (((-107)) 92)) (-2417 (((-107)) 51)) (-2794 (((-107)) 87)) (-2780 (((-107)) 101)) (-2085 (((-1148 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) (-1148 $) (-1148 $)) 111)) (-1977 (((-107)) 97)) (-4102 (((-578 (-1148 |#2|))) 86)) (-1273 (((-107)) 98)) (-2625 (((-107)) 96)) (-3675 (((-107)) 46)) (-3258 (((-107)) 102))) -(((-334 |#1| |#2|) (-10 -8 (-15 -2292 ((-1064 |#2|) |#1|)) (-15 -3474 ((-1064 |#2|) |#1|)) (-15 -4102 ((-578 (-1148 |#2|)))) (-15 -1887 ((-3 |#1| "failed") |#1|)) (-15 -1992 ((-3 |#1| "failed") |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -2838 ((-107))) (-15 -3808 ((-107))) (-15 -3930 ((-107))) (-15 -2417 ((-107))) (-15 -3874 ((-107))) (-15 -2794 ((-107))) (-15 -3258 ((-107))) (-15 -2780 ((-107))) (-15 -3656 ((-107))) (-15 -2172 ((-107))) (-15 -3675 ((-107))) (-15 -1273 ((-107))) (-15 -2625 ((-107))) (-15 -1977 ((-107))) (-15 -3333 ((-1064 |#2|) |#1|)) (-15 -2270 ((-1064 |#2|) |#1|)) (-15 -2311 ((-621 |#2|) (-1148 |#1|))) (-15 -4146 ((-621 |#2|) (-1148 |#1|))) (-15 -2398 (|#2| (-1148 |#1|))) (-15 -1600 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3925 (|#2| |#1|)) (-15 -3784 (|#2| |#1|)) (-15 -1909 (|#2| |#1|)) (-15 -3821 (|#2| |#1|)) (-15 -3867 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1472 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1763 ((-1148 (-621 |#2|)) (-1148 |#1|)))) (-335 |#2|) (-156)) (T -334)) -((-1977 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2625 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-1273 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3675 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2172 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3656 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2780 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3258 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2794 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3874 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2417 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3930 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3808 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2838 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-4102 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-578 (-1148 *4))) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4))))) -(-10 -8 (-15 -2292 ((-1064 |#2|) |#1|)) (-15 -3474 ((-1064 |#2|) |#1|)) (-15 -4102 ((-578 (-1148 |#2|)))) (-15 -1887 ((-3 |#1| "failed") |#1|)) (-15 -1992 ((-3 |#1| "failed") |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -2838 ((-107))) (-15 -3808 ((-107))) (-15 -3930 ((-107))) (-15 -2417 ((-107))) (-15 -3874 ((-107))) (-15 -2794 ((-107))) (-15 -3258 ((-107))) (-15 -2780 ((-107))) (-15 -3656 ((-107))) (-15 -2172 ((-107))) (-15 -3675 ((-107))) (-15 -1273 ((-107))) (-15 -2625 ((-107))) (-15 -1977 ((-107))) (-15 -3333 ((-1064 |#2|) |#1|)) (-15 -2270 ((-1064 |#2|) |#1|)) (-15 -2311 ((-621 |#2|) (-1148 |#1|))) (-15 -4146 ((-621 |#2|) (-1148 |#1|))) (-15 -2398 (|#2| (-1148 |#1|))) (-15 -1600 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3925 (|#2| |#1|)) (-15 -3784 (|#2| |#1|)) (-15 -1909 (|#2| |#1|)) (-15 -3821 (|#2| |#1|)) (-15 -3867 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1472 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1763 ((-1148 (-621 |#2|)) (-1148 |#1|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1738 (((-3 $ "failed")) 37 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) 19)) (-1763 (((-1148 (-621 |#1|)) (-1148 $)) 78)) (-1674 (((-1148 $)) 81)) (-2540 (($) 17 T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 40 (|has| |#1| (-508)))) (-1956 (((-3 $ "failed")) 38 (|has| |#1| (-508)))) (-2311 (((-621 |#1|) (-1148 $)) 65)) (-1909 ((|#1| $) 74)) (-3867 (((-621 |#1|) $ (-1148 $)) 76)) (-1887 (((-3 $ "failed") $) 45 (|has| |#1| (-508)))) (-2911 (($ $ (-839)) 28)) (-3925 ((|#1| $) 72)) (-2292 (((-1064 |#1|) $) 42 (|has| |#1| (-508)))) (-2398 ((|#1| (-1148 $)) 67)) (-3333 (((-1064 |#1|) $) 63)) (-3656 (((-107)) 57)) (-3142 (($ (-1148 |#1|) (-1148 $)) 69)) (-2174 (((-3 $ "failed") $) 47 (|has| |#1| (-508)))) (-3689 (((-839)) 80)) (-3168 (((-107)) 54)) (-3554 (($ $ (-839)) 33)) (-3930 (((-107)) 50)) (-2838 (((-107)) 48)) (-3874 (((-107)) 52)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 41 (|has| |#1| (-508)))) (-2653 (((-3 $ "failed")) 39 (|has| |#1| (-508)))) (-4146 (((-621 |#1|) (-1148 $)) 66)) (-3821 ((|#1| $) 75)) (-1472 (((-621 |#1|) $ (-1148 $)) 77)) (-1992 (((-3 $ "failed") $) 46 (|has| |#1| (-508)))) (-3381 (($ $ (-839)) 29)) (-3784 ((|#1| $) 73)) (-3474 (((-1064 |#1|) $) 43 (|has| |#1| (-508)))) (-1600 ((|#1| (-1148 $)) 68)) (-2270 (((-1064 |#1|) $) 64)) (-2172 (((-107)) 58)) (-3460 (((-1053) $) 9)) (-3808 (((-107)) 49)) (-2417 (((-107)) 51)) (-2794 (((-107)) 53)) (-3708 (((-1018) $) 10)) (-2780 (((-107)) 56)) (-2085 (((-1148 |#1|) $ (-1148 $)) 71) (((-621 |#1|) (-1148 $) (-1148 $)) 70)) (-3056 (((-578 (-866 |#1|)) (-1148 $)) 79)) (-2144 (($ $ $) 25)) (-1977 (((-107)) 62)) (-3691 (((-786) $) 11)) (-4102 (((-578 (-1148 |#1|))) 44 (|has| |#1| (-508)))) (-1363 (($ $ $ $) 26)) (-1273 (((-107)) 60)) (-2033 (($ $ $) 24)) (-2625 (((-107)) 61)) (-3675 (((-107)) 59)) (-3258 (((-107)) 55)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 30)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-335 |#1|) (-1180) (-156)) (T -335)) -((-1674 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1148 *1)) (-4 *1 (-335 *3)))) (-3689 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-839)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-578 (-866 *4))))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-1148 (-621 *4))))) (-1472 (*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-2085 (*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-1148 *4)))) (-2085 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-3142 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-156)) (-4 *1 (-335 *4)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-1064 *3)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-1064 *3)))) (-1977 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2625 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1273 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3675 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2172 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3656 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2780 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3258 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3168 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2794 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3874 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2417 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3930 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3808 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2838 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2174 (*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) (-1992 (*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) (-1887 (*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) (-4102 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-578 (-1148 *3))))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-1064 *3)))) (-2292 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-1064 *3)))) (-1765 (*1 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4119 (-578 *1)))) (-4 *1 (-335 *3)))) (-3054 (*1 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4119 (-578 *1)))) (-4 *1 (-335 *3)))) (-2653 (*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156)))) (-1956 (*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156)))) (-1738 (*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156))))) -(-13 (-675 |t#1|) (-10 -8 (-15 -1674 ((-1148 $))) (-15 -3689 ((-839))) (-15 -3056 ((-578 (-866 |t#1|)) (-1148 $))) (-15 -1763 ((-1148 (-621 |t#1|)) (-1148 $))) (-15 -1472 ((-621 |t#1|) $ (-1148 $))) (-15 -3867 ((-621 |t#1|) $ (-1148 $))) (-15 -3821 (|t#1| $)) (-15 -1909 (|t#1| $)) (-15 -3784 (|t#1| $)) (-15 -3925 (|t#1| $)) (-15 -2085 ((-1148 |t#1|) $ (-1148 $))) (-15 -2085 ((-621 |t#1|) (-1148 $) (-1148 $))) (-15 -3142 ($ (-1148 |t#1|) (-1148 $))) (-15 -1600 (|t#1| (-1148 $))) (-15 -2398 (|t#1| (-1148 $))) (-15 -4146 ((-621 |t#1|) (-1148 $))) (-15 -2311 ((-621 |t#1|) (-1148 $))) (-15 -2270 ((-1064 |t#1|) $)) (-15 -3333 ((-1064 |t#1|) $)) (-15 -1977 ((-107))) (-15 -2625 ((-107))) (-15 -1273 ((-107))) (-15 -3675 ((-107))) (-15 -2172 ((-107))) (-15 -3656 ((-107))) (-15 -2780 ((-107))) (-15 -3258 ((-107))) (-15 -3168 ((-107))) (-15 -2794 ((-107))) (-15 -3874 ((-107))) (-15 -2417 ((-107))) (-15 -3930 ((-107))) (-15 -3808 ((-107))) (-15 -2838 ((-107))) (IF (|has| |t#1| (-508)) (PROGN (-15 -2174 ((-3 $ "failed") $)) (-15 -1992 ((-3 $ "failed") $)) (-15 -1887 ((-3 $ "failed") $)) (-15 -4102 ((-578 (-1148 |t#1|)))) (-15 -3474 ((-1064 |t#1|) $)) (-15 -2292 ((-1064 |t#1|) $)) (-15 -1765 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -3054 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -2653 ((-3 $ "failed"))) (-15 -1956 ((-3 $ "failed"))) (-15 -1738 ((-3 $ "failed"))) (-6 -4164)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-648 |#1|) . T) ((-651) . T) ((-675 |#1|) . T) ((-692) . T) ((-964 |#1|) . T) ((-1001) . T)) -((-3736 (((-107) $ $) 7)) (-3796 (((-701)) 16)) (-2890 (($) 13)) (-3104 (((-839) $) 14)) (-3460 (((-1053) $) 9)) (-3506 (($ (-839)) 15)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6))) -(((-336) (-1180)) (T -336)) -((-3796 (*1 *2) (-12 (-4 *1 (-336)) (-5 *2 (-701)))) (-3506 (*1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-336)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-839)))) (-2890 (*1 *1) (-4 *1 (-336)))) -(-13 (-1001) (-10 -8 (-15 -3796 ((-701))) (-15 -3506 ($ (-839))) (-15 -3104 ((-839) $)) (-15 -2890 ($)))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-2239 (((-621 |#2|) (-1148 $)) 40)) (-3142 (($ (-1148 |#2|) (-1148 $)) 35)) (-3070 (((-621 |#2|) $ (-1148 $)) 43)) (-2532 ((|#2| (-1148 $)) 13)) (-2085 (((-1148 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) (-1148 $) (-1148 $)) 25))) -(((-337 |#1| |#2| |#3|) (-10 -8 (-15 -2239 ((-621 |#2|) (-1148 |#1|))) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3070 ((-621 |#2|) |#1| (-1148 |#1|)))) (-338 |#2| |#3|) (-156) (-1125 |#2|)) (T -337)) -NIL -(-10 -8 (-15 -2239 ((-621 |#2|) (-1148 |#1|))) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3070 ((-621 |#2|) |#1| (-1148 |#1|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2239 (((-621 |#1|) (-1148 $)) 46)) (-2225 ((|#1| $) 52)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3142 (($ (-1148 |#1|) (-1148 $)) 48)) (-3070 (((-621 |#1|) $ (-1148 $)) 53)) (-2174 (((-3 $ "failed") $) 34)) (-3689 (((-839)) 54)) (-1355 (((-107) $) 31)) (-2626 ((|#1| $) 51)) (-1792 ((|#2| $) 44 (|has| |#1| (-331)))) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2532 ((|#1| (-1148 $)) 47)) (-2085 (((-1148 |#1|) $ (-1148 $)) 50) (((-621 |#1|) (-1148 $) (-1148 $)) 49)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37)) (-1274 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-2942 ((|#2| $) 45)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-338 |#1| |#2|) (-1180) (-156) (-1125 |t#1|)) (T -338)) -((-3689 (*1 *2) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-839)))) (-3070 (*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) (-2085 (*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *4)))) (-2085 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) (-3142 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-156)) (-4 *1 (-338 *4 *5)) (-4 *5 (-1125 *4)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *2 *4)) (-4 *4 (-1125 *2)) (-4 *2 (-156)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-156)) (-4 *3 (-331)) (-4 *2 (-1125 *3))))) -(-13 (-37 |t#1|) (-10 -8 (-15 -3689 ((-839))) (-15 -3070 ((-621 |t#1|) $ (-1148 $))) (-15 -2225 (|t#1| $)) (-15 -2626 (|t#1| $)) (-15 -2085 ((-1148 |t#1|) $ (-1148 $))) (-15 -2085 ((-621 |t#1|) (-1148 $) (-1148 $))) (-15 -3142 ($ (-1148 |t#1|) (-1148 $))) (-15 -2532 (|t#1| (-1148 $))) (-15 -2239 ((-621 |t#1|) (-1148 $))) (-15 -2942 (|t#2| $)) (IF (|has| |t#1| (-331)) (-15 -1792 (|t#2| $)) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) . T) ((-657) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-2045 (((-107) (-1 (-107) |#2| |#2|) $) NIL) (((-107) $) 18)) (-3441 (($ (-1 (-107) |#2| |#2|) $) NIL) (($ $) 28)) (-2861 (($ (-1 (-107) |#2| |#2|) $) 27) (($ $) 22)) (-3785 (($ $) 25)) (-1934 (((-501) (-1 (-107) |#2|) $) NIL) (((-501) |#2| $) 11) (((-501) |#2| $ (-501)) NIL)) (-3216 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-339 |#1| |#2|) (-10 -8 (-15 -3441 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2045 ((-107) |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2861 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) (-340 |#2|) (-1104)) (T -339)) -NIL -(-10 -8 (-15 -3441 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2045 ((-107) |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2861 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| |#1| (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-1934 (((-501) (-1 (-107) |#1|) $) 97) (((-501) |#1| $) 96 (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) 95 (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 70)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 84 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 83 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) 85 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 82 (|has| |#1| (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-340 |#1|) (-1180) (-1104)) (T -340)) -((-3216 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) (-3785 (*1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)))) (-2861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) (-2045 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-340 *4)) (-4 *4 (-1104)) (-5 *2 (-107)))) (-1934 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-340 *4)) (-4 *4 (-1104)) (-5 *2 (-501)))) (-1934 (*1 *2 *3 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-501)))) (-1934 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)))) (-3216 (*1 *1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) (-2861 (*1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-777)) (-5 *2 (-107)))) (-2355 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (|has| *1 (-6 -4168)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) (-1375 (*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-340 *2)) (-4 *2 (-1104)))) (-3441 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4168)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) (-3441 (*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777))))) -(-13 (-586 |t#1|) (-10 -8 (-6 -4167) (-15 -3216 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -3785 ($ $)) (-15 -2861 ($ (-1 (-107) |t#1| |t#1|) $)) (-15 -2045 ((-107) (-1 (-107) |t#1| |t#1|) $)) (-15 -1934 ((-501) (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1001)) (PROGN (-15 -1934 ((-501) |t#1| $)) (-15 -1934 ((-501) |t#1| $ (-501)))) |noBranch|) (IF (|has| |t#1| (-777)) (PROGN (-6 (-777)) (-15 -3216 ($ $ $)) (-15 -2861 ($ $)) (-15 -2045 ((-107) $))) |noBranch|) (IF (|has| $ (-6 -4168)) (PROGN (-15 -2355 ($ $ $ (-501))) (-15 -1375 ($ $)) (-15 -3441 ($ (-1 (-107) |t#1| |t#1|) $)) (IF (|has| |t#1| (-777)) (-15 -3441 ($ $)) |noBranch|)) |noBranch|))) -(((-33) . T) ((-97) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-555 (-786)) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-777) |has| |#1| (-777)) ((-1001) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-1104) . T)) -((-3162 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3547 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1212 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3547 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3162 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1104) (-340 |#1|) (-1104) (-340 |#3|)) (T -341)) -((-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-4 *2 (-340 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-340 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-340 *5)) (-4 *6 (-340 *2)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-340 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-340 *5))))) -(-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3547 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3162 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3514 (((-578 |#1|) $) 32)) (-2055 (($ $ (-701)) 33)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2194 (((-1171 |#1| |#2|) (-1171 |#1| |#2|) $) 36)) (-3660 (($ $) 34)) (-3049 (((-1171 |#1| |#2|) (-1171 |#1| |#2|) $) 37)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3195 (($ $ |#1| $) 31) (($ $ (-578 |#1|) (-578 $)) 30)) (-1201 (((-701) $) 38)) (-3699 (($ $ $) 29)) (-3691 (((-786) $) 11) (($ |#1|) 41) (((-1162 |#1| |#2|) $) 40) (((-1171 |#1| |#2|) $) 39)) (-3189 ((|#2| (-1171 |#1| |#2|) $) 42)) (-1850 (($) 18 T CONST)) (-3116 (($ (-606 |#1|)) 35)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#2|) 28 (|has| |#2| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-342 |#1| |#2|) (-1180) (-777) (-156)) (T -342)) -((-3189 (*1 *2 *3 *1) (-12 (-5 *3 (-1171 *4 *2)) (-4 *1 (-342 *4 *2)) (-4 *4 (-777)) (-4 *2 (-156)))) (-3691 (*1 *1 *2) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-1162 *3 *4)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-1171 *3 *4)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-701)))) (-3049 (*1 *2 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-2194 (*1 *2 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-3116 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-4 *1 (-342 *3 *4)) (-4 *4 (-156)))) (-3660 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-578 *3)))) (-3195 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-777)) (-4 *5 (-156))))) -(-13 (-573 |t#2|) (-10 -8 (-15 -3189 (|t#2| (-1171 |t#1| |t#2|) $)) (-15 -3691 ($ |t#1|)) (-15 -3691 ((-1162 |t#1| |t#2|) $)) (-15 -3691 ((-1171 |t#1| |t#2|) $)) (-15 -1201 ((-701) $)) (-15 -3049 ((-1171 |t#1| |t#2|) (-1171 |t#1| |t#2|) $)) (-15 -2194 ((-1171 |t#1| |t#2|) (-1171 |t#1| |t#2|) $)) (-15 -3116 ($ (-606 |t#1|))) (-15 -3660 ($ $)) (-15 -2055 ($ $ (-701))) (-15 -3514 ((-578 |t#1|) $)) (-15 -3195 ($ $ |t#1| $)) (-15 -3195 ($ $ (-578 |t#1|) (-578 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#2|) . T) ((-573 |#2|) . T) ((-648 |#2|) . T) ((-964 |#2|) . T) ((-1001) . T)) -((-3860 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 22)) (-2426 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 12)) (-2503 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 21))) -(((-343 |#1| |#2|) (-10 -7 (-15 -2426 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2503 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -3860 (|#2| (-1 (-107) |#1| |#1|) |#2|))) (-1104) (-13 (-340 |#1|) (-10 -7 (-6 -4168)))) (T -343)) -((-3860 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))))) (-2503 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))))) (-2426 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168))))))) -(-10 -7 (-15 -2426 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2503 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -3860 (|#2| (-1 (-107) |#1| |#1|) |#2|))) -((-3868 (((-621 |#2|) (-621 $)) NIL) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 19) (((-621 (-501)) (-621 $)) 13))) -(((-344 |#1| |#2|) (-10 -8 (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 |#2|) (-621 |#1|)))) (-345 |#2|) (-959)) (T -344)) -NIL -(-10 -8 (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 |#2|) (-621 |#1|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3868 (((-621 |#1|) (-621 $)) 36) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 35) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 43 (|has| |#1| (-577 (-501)))) (((-621 (-501)) (-621 $)) 42 (|has| |#1| (-577 (-501))))) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-345 |#1|) (-1180) (-959)) (T -345)) -NIL -(-13 (-577 |t#1|) (-10 -7 (IF (|has| |t#1| (-577 (-501))) (-6 (-577 (-501))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 32)) (-2197 (((-501) $) 54)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2805 (($ $) 108)) (-3978 (($ $) 80)) (-3937 (($ $) 69)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) 43)) (-2781 (((-107) $ $) NIL)) (-3970 (($ $) 78)) (-3929 (($ $) 67)) (-1417 (((-501) $) 62)) (-1525 (($ $ (-501)) 61)) (-3984 (($ $) NIL)) (-3945 (($ $) NIL)) (-2540 (($) NIL T CONST)) (-1453 (($ $) 110)) (-3765 (((-3 (-501) "failed") $) 187) (((-3 (-375 (-501)) "failed") $) 183)) (-3490 (((-501) $) 185) (((-375 (-501)) $) 181)) (-3023 (($ $ $) NIL)) (-3839 (((-501) $ $) 100)) (-2174 (((-3 $ "failed") $) 112)) (-2693 (((-375 (-501)) $ (-701)) 188) (((-375 (-501)) $ (-701) (-701)) 180)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3943 (((-839)) 71) (((-839) (-839)) 96 (|has| $ (-6 -4158)))) (-2164 (((-107) $) 104)) (-2003 (($) 39)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL)) (-3436 (((-1154) (-701)) 150)) (-2147 (((-1154)) 155) (((-1154) (-701)) 156)) (-1353 (((-1154)) 157) (((-1154) (-701)) 158)) (-1437 (((-1154)) 153) (((-1154) (-701)) 154)) (-3169 (((-501) $) 57)) (-1355 (((-107) $) 102)) (-1342 (($ $ (-501)) NIL)) (-3373 (($ $) 47)) (-2626 (($ $) NIL)) (-4067 (((-107) $) 34)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL) (($) NIL (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-1323 (($ $ $) NIL) (($) 97 (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-1828 (((-501) $) 17)) (-2287 (($) 85) (($ $) 90)) (-3266 (($) 89) (($ $) 91)) (-1635 (($ $) 81)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 114)) (-3039 (((-839) (-501)) 42 (|has| $ (-6 -4158)))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) 52)) (-3383 (($ $) 107)) (-2017 (($ (-501) (-501)) 105) (($ (-501) (-501) (-839)) 106)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3027 (((-501) $) 19)) (-3793 (($) 92)) (-1989 (($ $) 77)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3960 (((-839)) 98) (((-839) (-839)) 99 (|has| $ (-6 -4158)))) (-2596 (($ $ (-701)) NIL) (($ $) 113)) (-1537 (((-839) (-501)) 46 (|has| $ (-6 -4158)))) (-3991 (($ $) NIL)) (-3949 (($ $) NIL)) (-3981 (($ $) NIL)) (-3940 (($ $) NIL)) (-3975 (($ $) 79)) (-3933 (($ $) 68)) (-1248 (((-346) $) 173) (((-199) $) 175) (((-810 (-346)) $) NIL) (((-1053) $) 160) (((-490) $) 171) (($ (-199)) 179)) (-3691 (((-786) $) 162) (($ (-501)) 184) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-501)) 184) (($ (-375 (-501))) NIL) (((-199) $) 176)) (-3965 (((-701)) NIL)) (-2803 (($ $) 109)) (-2751 (((-839)) 53) (((-839) (-839)) 64 (|has| $ (-6 -4158)))) (-1965 (((-839)) 101)) (-4003 (($ $) 84)) (-3958 (($ $) 45) (($ $ $) 51)) (-2442 (((-107) $ $) NIL)) (-3995 (($ $) 82)) (-3952 (($ $) 36)) (-4013 (($ $) NIL)) (-3964 (($ $) NIL)) (-3550 (($ $) NIL)) (-3967 (($ $) NIL)) (-4008 (($ $) NIL)) (-3961 (($ $) NIL)) (-3999 (($ $) 83)) (-3955 (($ $) 48)) (-1720 (($ $) 50)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 33 T CONST)) (-1925 (($) 37 T CONST)) (-3671 (((-1053) $) 27) (((-1053) $ (-107)) 29) (((-1154) (-753) $) 30) (((-1154) (-753) $ (-107)) 31)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 38)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 41)) (-3803 (($ $ $) 44) (($ $ (-501)) 40)) (-3797 (($ $) 35) (($ $ $) 49)) (-3790 (($ $ $) 60)) (** (($ $ (-839)) 65) (($ $ (-701)) NIL) (($ $ (-501)) 86) (($ $ (-375 (-501))) 123) (($ $ $) 115)) (* (($ (-839) $) 63) (($ (-701) $) NIL) (($ (-501) $) 66) (($ $ $) 59) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL))) -(((-346) (-13 (-372) (-206) (-556 (-1053)) (-751) (-555 (-199)) (-1090) (-556 (-490)) (-10 -8 (-15 -3803 ($ $ (-501))) (-15 ** ($ $ $)) (-15 -3373 ($ $)) (-15 -3839 ((-501) $ $)) (-15 -1525 ($ $ (-501))) (-15 -2693 ((-375 (-501)) $ (-701))) (-15 -2693 ((-375 (-501)) $ (-701) (-701))) (-15 -2287 ($)) (-15 -3266 ($)) (-15 -3793 ($)) (-15 -3958 ($ $ $)) (-15 -2287 ($ $)) (-15 -3266 ($ $)) (-15 -1248 ($ (-199))) (-15 -1353 ((-1154))) (-15 -1353 ((-1154) (-701))) (-15 -1437 ((-1154))) (-15 -1437 ((-1154) (-701))) (-15 -2147 ((-1154))) (-15 -2147 ((-1154) (-701))) (-15 -3436 ((-1154) (-701))) (-6 -4158) (-6 -4150)))) (T -346)) -((** (*1 *1 *1 *1) (-5 *1 (-346))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-346)))) (-3373 (*1 *1 *1) (-5 *1 (-346))) (-3839 (*1 *2 *1 *1) (-12 (-5 *2 (-501)) (-5 *1 (-346)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-346)))) (-2693 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-346)))) (-2693 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-346)))) (-2287 (*1 *1) (-5 *1 (-346))) (-3266 (*1 *1) (-5 *1 (-346))) (-3793 (*1 *1) (-5 *1 (-346))) (-3958 (*1 *1 *1 *1) (-5 *1 (-346))) (-2287 (*1 *1 *1) (-5 *1 (-346))) (-3266 (*1 *1 *1) (-5 *1 (-346))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-346)))) (-1353 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) (-1437 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) (-2147 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346))))) -(-13 (-372) (-206) (-556 (-1053)) (-751) (-555 (-199)) (-1090) (-556 (-490)) (-10 -8 (-15 -3803 ($ $ (-501))) (-15 ** ($ $ $)) (-15 -3373 ($ $)) (-15 -3839 ((-501) $ $)) (-15 -1525 ($ $ (-501))) (-15 -2693 ((-375 (-501)) $ (-701))) (-15 -2693 ((-375 (-501)) $ (-701) (-701))) (-15 -2287 ($)) (-15 -3266 ($)) (-15 -3793 ($)) (-15 -3958 ($ $ $)) (-15 -2287 ($ $)) (-15 -3266 ($ $)) (-15 -1248 ($ (-199))) (-15 -1353 ((-1154))) (-15 -1353 ((-1154) (-701))) (-15 -1437 ((-1154))) (-15 -1437 ((-1154) (-701))) (-15 -2147 ((-1154))) (-15 -2147 ((-1154) (-701))) (-15 -3436 ((-1154) (-701))) (-6 -4158) (-6 -4150))) -((-3549 (((-578 (-262 (-866 (-152 |#1|)))) (-262 (-375 (-866 (-152 (-501))))) |#1|) 52) (((-578 (-262 (-866 (-152 |#1|)))) (-375 (-866 (-152 (-501)))) |#1|) 51) (((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-262 (-375 (-866 (-152 (-501)))))) |#1|) 47) (((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-375 (-866 (-152 (-501))))) |#1|) 40)) (-1717 (((-578 (-578 (-152 |#1|))) (-578 (-375 (-866 (-152 (-501))))) (-578 (-1070)) |#1|) 28) (((-578 (-152 |#1|)) (-375 (-866 (-152 (-501)))) |#1|) 15))) -(((-347 |#1|) (-10 -7 (-15 -3549 ((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-375 (-866 (-152 (-501))))) |#1|)) (-15 -3549 ((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-262 (-375 (-866 (-152 (-501)))))) |#1|)) (-15 -3549 ((-578 (-262 (-866 (-152 |#1|)))) (-375 (-866 (-152 (-501)))) |#1|)) (-15 -3549 ((-578 (-262 (-866 (-152 |#1|)))) (-262 (-375 (-866 (-152 (-501))))) |#1|)) (-15 -1717 ((-578 (-152 |#1|)) (-375 (-866 (-152 (-501)))) |#1|)) (-15 -1717 ((-578 (-578 (-152 |#1|))) (-578 (-375 (-866 (-152 (-501))))) (-578 (-1070)) |#1|))) (-13 (-331) (-775))) (T -347)) -((-1717 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-375 (-866 (-152 (-501)))))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 (-152 *5)))) (-5 *1 (-347 *5)) (-4 *5 (-13 (-331) (-775))))) (-1717 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 (-501))))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 (-152 (-501)))))) (-5 *2 (-578 (-262 (-866 (-152 *4))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 (-501))))) (-5 *2 (-578 (-262 (-866 (-152 *4))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 (-152 (-501))))))) (-5 *2 (-578 (-578 (-262 (-866 (-152 *4)))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 (-152 (-501)))))) (-5 *2 (-578 (-578 (-262 (-866 (-152 *4)))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775)))))) -(-10 -7 (-15 -3549 ((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-375 (-866 (-152 (-501))))) |#1|)) (-15 -3549 ((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-262 (-375 (-866 (-152 (-501)))))) |#1|)) (-15 -3549 ((-578 (-262 (-866 (-152 |#1|)))) (-375 (-866 (-152 (-501)))) |#1|)) (-15 -3549 ((-578 (-262 (-866 (-152 |#1|)))) (-262 (-375 (-866 (-152 (-501))))) |#1|)) (-15 -1717 ((-578 (-152 |#1|)) (-375 (-866 (-152 (-501)))) |#1|)) (-15 -1717 ((-578 (-578 (-152 |#1|))) (-578 (-375 (-866 (-152 (-501))))) (-578 (-1070)) |#1|))) -((-2778 (((-578 (-262 (-866 |#1|))) (-262 (-375 (-866 (-501)))) |#1|) 47) (((-578 (-262 (-866 |#1|))) (-375 (-866 (-501))) |#1|) 46) (((-578 (-578 (-262 (-866 |#1|)))) (-578 (-262 (-375 (-866 (-501))))) |#1|) 42) (((-578 (-578 (-262 (-866 |#1|)))) (-578 (-375 (-866 (-501)))) |#1|) 36)) (-2277 (((-578 |#1|) (-375 (-866 (-501))) |#1|) 19) (((-578 (-578 |#1|)) (-578 (-375 (-866 (-501)))) (-578 (-1070)) |#1|) 31))) -(((-348 |#1|) (-10 -7 (-15 -2778 ((-578 (-578 (-262 (-866 |#1|)))) (-578 (-375 (-866 (-501)))) |#1|)) (-15 -2778 ((-578 (-578 (-262 (-866 |#1|)))) (-578 (-262 (-375 (-866 (-501))))) |#1|)) (-15 -2778 ((-578 (-262 (-866 |#1|))) (-375 (-866 (-501))) |#1|)) (-15 -2778 ((-578 (-262 (-866 |#1|))) (-262 (-375 (-866 (-501)))) |#1|)) (-15 -2277 ((-578 (-578 |#1|)) (-578 (-375 (-866 (-501)))) (-578 (-1070)) |#1|)) (-15 -2277 ((-578 |#1|) (-375 (-866 (-501))) |#1|))) (-13 (-775) (-331))) (T -348)) -((-2277 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-501)))) (-5 *2 (-578 *4)) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) (-2277 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-375 (-866 (-501))))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 *5))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-775) (-331))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 (-501))))) (-5 *2 (-578 (-262 (-866 *4)))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-501)))) (-5 *2 (-578 (-262 (-866 *4)))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 (-501)))))) (-5 *2 (-578 (-578 (-262 (-866 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 (-501))))) (-5 *2 (-578 (-578 (-262 (-866 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331)))))) -(-10 -7 (-15 -2778 ((-578 (-578 (-262 (-866 |#1|)))) (-578 (-375 (-866 (-501)))) |#1|)) (-15 -2778 ((-578 (-578 (-262 (-866 |#1|)))) (-578 (-262 (-375 (-866 (-501))))) |#1|)) (-15 -2778 ((-578 (-262 (-866 |#1|))) (-375 (-866 (-501))) |#1|)) (-15 -2778 ((-578 (-262 (-866 |#1|))) (-262 (-375 (-866 (-501)))) |#1|)) (-15 -2277 ((-578 (-578 |#1|)) (-578 (-375 (-866 (-501)))) (-578 (-1070)) |#1|)) (-15 -2277 ((-578 |#1|) (-375 (-866 (-501))) |#1|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-3787 (($ |#1| |#2|) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2668 ((|#2| $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 27)) (-1850 (($) 12 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 18))) -(((-349 |#1| |#2|) (-13 (-106 |#1| |#1|) (-471 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-648 |#1|)) |noBranch|))) (-959) (-777)) (T -349)) -NIL -(-13 (-106 |#1| |#1|) (-471 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-648 |#1|)) |noBranch|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 25)) (-3490 ((|#2| $) 27)) (-3858 (($ $) NIL)) (-3706 (((-701) $) 10)) (-2713 (((-578 $) $) 20)) (-2706 (((-107) $) NIL)) (-2607 (($ |#2| |#1|) 18)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3950 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3845 ((|#2| $) 15)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 43) (($ |#2|) 26)) (-1303 (((-578 |#1|) $) 17)) (-2495 ((|#1| $ |#2|) 45)) (-1850 (($) 28 T CONST)) (-1914 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 33) (($ |#2| |#1|) 34))) -(((-350 |#1| |#2|) (-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-959) (-777)) (T -350)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-350 *3 *2)) (-4 *3 (-959)) (-4 *2 (-777))))) +((-1867 (($ $) 6)) (-2624 (($ $) 7)) (** (($ $ $) 8))) +(((-256) (-1184)) (T -256)) +((** (*1 *1 *1 *1) (-4 *1 (-256))) (-2624 (*1 *1 *1) (-4 *1 (-256))) (-1867 (*1 *1 *1) (-4 *1 (-256)))) +(-13 (-10 -8 (-15 -1867 ($ $)) (-15 -2624 ($ $)) (-15 ** ($ $ $)))) +((-1371 (((-583 (-1054 |#1|)) (-1054 |#1|) |#1|) 35)) (-1535 ((|#2| |#2| |#1|) 38)) (-1932 ((|#2| |#2| |#1|) 40)) (-2456 ((|#2| |#2| |#1|) 39))) +(((-257 |#1| |#2|) (-10 -7 (-15 -1535 (|#2| |#2| |#1|)) (-15 -2456 (|#2| |#2| |#1|)) (-15 -1932 (|#2| |#2| |#1|)) (-15 -1371 ((-583 (-1054 |#1|)) (-1054 |#1|) |#1|))) (-333) (-1145 |#1|)) (T -257)) +((-1371 (*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1054 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1054 *4)) (-4 *5 (-1145 *4)))) (-1932 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))) (-2456 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))) (-1535 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3))))) +(-10 -7 (-15 -1535 (|#2| |#2| |#1|)) (-15 -2456 (|#2| |#2| |#1|)) (-15 -1932 (|#2| |#2| |#1|)) (-15 -1371 ((-583 (-1054 |#1|)) (-1054 |#1|) |#1|))) +((-1449 ((|#2| $ |#1|) 6))) +(((-258 |#1| |#2|) (-1184) (-1003) (-1108)) (T -258)) +((-1449 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108))))) +(-13 (-10 -8 (-15 -1449 (|t#2| $ |t#1|)))) +((-1445 ((|#3| $ |#2| |#3|) 12)) (-1377 ((|#3| $ |#2|) 10))) +(((-259 |#1| |#2| |#3|) (-10 -8 (-15 -1445 (|#3| |#1| |#2| |#3|)) (-15 -1377 (|#3| |#1| |#2|))) (-260 |#2| |#3|) (-1003) (-1108)) (T -259)) +NIL +(-10 -8 (-15 -1445 (|#3| |#1| |#2| |#3|)) (-15 -1377 (|#3| |#1| |#2|))) +((-2411 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4181)))) (-1445 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 11)) (-1449 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-260 |#1| |#2|) (-1184) (-1003) (-1108)) (T -260)) +((-1449 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-1377 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-1445 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108))))) +(-13 (-258 |t#1| |t#2|) (-10 -8 (-15 -1449 (|t#2| $ |t#1| |t#2|)) (-15 -1377 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2411 (|t#2| $ |t#1| |t#2|)) (-15 -1445 (|t#2| $ |t#1| |t#2|))) |noBranch|))) +(((-258 |#1| |#2|) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 34)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 39)) (-1213 (($ $) 37)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) 32)) (-3225 (($ |#2| |#3|) 19)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 ((|#3| $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 20)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3841 (((-3 $ "failed") $ $) NIL)) (-3146 (((-703) $) 33)) (-1449 ((|#2| $ |#2|) 41)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 24)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 27 T CONST)) (-2409 (($) 35 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36))) +(((-261 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-278) (-10 -8 (-15 -1734 (|#3| $)) (-15 -2256 (|#2| $)) (-15 -3225 ($ |#2| |#3|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $)) (-15 -1449 (|#2| $ |#2|)))) (-156) (-1130 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -261)) +((-3621 (*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1734 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1130 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3225 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1130 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3841 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4118 (*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1449 (*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1130 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-278) (-10 -8 (-15 -1734 (|#3| $)) (-15 -2256 (|#2| $)) (-15 -3225 ($ |#2| |#3|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $)) (-15 -1449 (|#2| $ |#2|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-262) (-1184)) (T -262)) +NIL +(-13 (-961) (-106 $ $) (-10 -7 (-6 -4173))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-1357 (((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))) 83)) (-2735 (((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|)))) 78) (((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703)) 36)) (-1850 (((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))) 80)) (-1817 (((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|)))) 60)) (-2964 (((-583 (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (-623 (-377 (-874 |#1|)))) 59)) (-3669 (((-874 |#1|) (-623 (-377 (-874 |#1|)))) 47) (((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1073)) 48))) +(((-263 |#1|) (-10 -7 (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1073))) (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))))) (-15 -2964 ((-583 (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (-623 (-377 (-874 |#1|))))) (-15 -1817 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|))))) (-15 -1357 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))) (-15 -1850 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))))) (-421)) (T -263)) +((-1850 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))) (-1357 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) (-2735 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-874 *6)) (-1063 (-1073) (-874 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-874 *6)))))) (-1817 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4))))) (-5 *1 (-263 *4)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-5 *2 (-874 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-874 *5)))) (-5 *4 (-1073)) (-5 *2 (-874 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421))))) +(-10 -7 (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1073))) (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))))) (-15 -2964 ((-583 (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (-623 (-377 (-874 |#1|))))) (-15 -1817 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|))))) (-15 -1357 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))) (-15 -1850 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))))) +((-1893 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 14))) +(((-264 |#1| |#2|) (-10 -7 (-15 -1893 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1108) (-1108)) (T -264)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6))))) +(-10 -7 (-15 -1893 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2814 (((-107) $) NIL (|has| |#1| (-21)))) (-3137 (($ $) 22)) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2302 (($ $ $) 93 (|has| |#1| (-273)))) (-3092 (($) NIL (-3807 (|has| |#1| (-21)) (|has| |#1| (-659))) CONST)) (-1596 (($ $) 8 (|has| |#1| (-21)))) (-1542 (((-3 $ "failed") $) 68 (|has| |#1| (-659)))) (-3616 ((|#1| $) 21)) (-3621 (((-3 $ "failed") $) 66 (|has| |#1| (-659)))) (-3848 (((-107) $) NIL (|has| |#1| (-659)))) (-1893 (($ (-1 |#1| |#1|) $) 24)) (-3603 ((|#1| $) 9)) (-3375 (($ $) 57 (|has| |#1| (-21)))) (-3862 (((-3 $ "failed") $) 67 (|has| |#1| (-659)))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-4118 (($ $) 70 (-3807 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2367 (((-583 $) $) 19 (|has| |#1| (-509)))) (-2051 (($ $ $) 34 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 $)) 37 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-1073) |#1|) 27 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 31 (|has| |#1| (-478 (-1073) |#1|)))) (-2126 (($ |#1| |#1|) 17)) (-3141 (((-125)) 88 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 85 (|has| |#1| (-822 (-1073))))) (-1487 (($ $ $) NIL (|has| |#1| (-442)))) (-3394 (($ $ $) NIL (|has| |#1| (-442)))) (-2256 (($ (-517)) NIL (|has| |#1| (-961))) (((-107) $) 45 (|has| |#1| (-1003))) (((-787) $) 44 (|has| |#1| (-1003)))) (-2961 (((-703)) 73 (|has| |#1| (-961)))) (-2207 (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-843)) NIL (|has| |#1| (-1015)))) (-2396 (($) 55 (|has| |#1| (-21)) CONST)) (-2409 (($) 63 (|has| |#1| (-659)) CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073))))) (-1547 (($ |#1| |#1|) 20) (((-107) $ $) 40 (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 90 (-3807 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-1654 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1642 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-843)) NIL (|has| |#1| (-1015)))) (* (($ $ |#1|) 61 (|has| |#1| (-1015))) (($ |#1| $) 60 (|has| |#1| (-1015))) (($ $ $) 59 (|has| |#1| (-1015))) (($ (-517) $) 76 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-25))))) +(((-265 |#1|) (-13 (-1108) (-10 -8 (-15 -1547 ($ |#1| |#1|)) (-15 -2126 ($ |#1| |#1|)) (-15 -3137 ($ $)) (-15 -3603 (|#1| $)) (-15 -3616 (|#1| $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1073) |#1|)) (-6 (-478 (-1073) |#1|)) |noBranch|) (IF (|has| |#1| (-1003)) (PROGN (-6 (-1003)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -2051 ($ $ $)) (-15 -2051 ($ $ (-583 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1642 ($ |#1| $)) (-15 -1642 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3375 ($ $)) (-15 -1596 ($ $)) (-15 -1654 ($ |#1| $)) (-15 -1654 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|) (IF (|has| |#1| (-509)) (-15 -2367 ((-583 $) $)) |noBranch|) (IF (|has| |#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1160 |#1|)) (-15 -1667 ($ $ $)) (-15 -4118 ($ $))) |noBranch|) (IF (|has| |#1| (-273)) (-15 -2302 ($ $ $)) |noBranch|))) (-1108)) (T -265)) +((-1547 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-2126 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-3603 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-3616 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) (-2051 (*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)) (-5 *1 (-265 *2)))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) (-1642 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) (-1642 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) (-3375 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-1654 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-1654 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-3862 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108)))) (-1542 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108)))) (-2367 (*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1108)))) (-2302 (*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1108)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) (-1667 (*1 *1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108))))) (-4118 (*1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108)))))) +(-13 (-1108) (-10 -8 (-15 -1547 ($ |#1| |#1|)) (-15 -2126 ($ |#1| |#1|)) (-15 -3137 ($ $)) (-15 -3603 (|#1| $)) (-15 -3616 (|#1| $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1073) |#1|)) (-6 (-478 (-1073) |#1|)) |noBranch|) (IF (|has| |#1| (-1003)) (PROGN (-6 (-1003)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -2051 ($ $ $)) (-15 -2051 ($ $ (-583 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1642 ($ |#1| $)) (-15 -1642 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3375 ($ $)) (-15 -1596 ($ $)) (-15 -1654 ($ |#1| $)) (-15 -1654 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|) (IF (|has| |#1| (-509)) (-15 -2367 ((-583 $) $)) |noBranch|) (IF (|has| |#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1160 |#1|)) (-15 -1667 ($ $ $)) (-15 -4118 ($ $))) |noBranch|) (IF (|has| |#1| (-273)) (-15 -2302 ($ $ $)) |noBranch|))) +((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-266 |#1| |#2|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003)) (T -266)) +NIL +(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) +((-2101 (((-282) (-1056) (-583 (-1056))) 16) (((-282) (-1056) (-1056)) 15) (((-282) (-583 (-1056))) 14) (((-282) (-1056)) 12))) +(((-267) (-10 -7 (-15 -2101 ((-282) (-1056))) (-15 -2101 ((-282) (-583 (-1056)))) (-15 -2101 ((-282) (-1056) (-1056))) (-15 -2101 ((-282) (-1056) (-583 (-1056)))))) (T -267)) +((-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1056))) (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) (-2101 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-282)) (-5 *1 (-267)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267))))) +(-10 -7 (-15 -2101 ((-282) (-1056))) (-15 -2101 ((-282) (-583 (-1056)))) (-15 -2101 ((-282) (-1056) (-1056))) (-15 -2101 ((-282) (-1056) (-583 (-1056))))) +((-1893 ((|#2| (-1 |#2| |#1|) (-1056) (-556 |#1|)) 17))) +(((-268 |#1| |#2|) (-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-1056) (-556 |#1|)))) (-273) (-1108)) (T -268)) +((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1056)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1108)) (-5 *1 (-268 *6 *2))))) +(-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-1056) (-556 |#1|)))) +((-1893 ((|#2| (-1 |#2| |#1|) (-556 |#1|)) 17))) +(((-269 |#1| |#2|) (-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-556 |#1|)))) (-273) (-273)) (T -269)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2))))) +(-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-556 |#1|)))) +((-1204 (((-107) (-199)) 10))) +(((-270 |#1| |#2|) (-10 -7 (-15 -1204 ((-107) (-199)))) (-199) (-199)) (T -270)) +((-1204 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -1204 ((-107) (-199)))) +((-2888 (((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199)))) 88)) (-2743 (((-1054 (-199)) (-1153 (-286 (-199))) (-583 (-1073)) (-998 (-772 (-199)))) 103) (((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199)))) 58)) (-4053 (((-583 (-1056)) (-1054 (-199))) NIL)) (-1218 (((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199)))) 55)) (-2826 (((-583 (-199)) (-874 (-377 (-517))) (-1073) (-998 (-772 (-199)))) 47)) (-2024 (((-583 (-1056)) (-583 (-199))) NIL)) (-3339 (((-199) (-998 (-772 (-199)))) 23)) (-3191 (((-199) (-998 (-772 (-199)))) 24)) (-4096 (((-107) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 51)) (-2129 (((-1056) (-199)) NIL))) +(((-271) (-10 -7 (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -4096 ((-107) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2888 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-1153 (-286 (-199))) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2826 ((-583 (-199)) (-874 (-377 (-517))) (-1073) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))))) (T -271)) +((-4053 (*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-271)))) (-2826 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) (-2888 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) (-1218 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271))))) +(-10 -7 (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -4096 ((-107) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2888 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-1153 (-286 (-199))) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2826 ((-583 (-199)) (-874 (-377 (-517))) (-1073) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199))))) +((-3726 (((-583 (-556 $)) $) 28)) (-2302 (($ $ (-265 $)) 80) (($ $ (-583 (-265 $))) 120) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1772 (((-3 (-556 $) "failed") $) 110)) (-3189 (((-556 $) $) 109)) (-3374 (($ $) 19) (($ (-583 $)) 54)) (-4001 (((-583 (-109)) $) 37)) (-3072 (((-109) (-109)) 90)) (-1769 (((-107) $) 128)) (-1893 (($ (-1 $ $) (-556 $)) 88)) (-1783 (((-3 (-556 $) "failed") $) 92)) (-1851 (($ (-109) $) 60) (($ (-109) (-583 $)) 98)) (-1609 (((-107) $ (-109)) 114) (((-107) $ (-1073)) 113)) (-1881 (((-703) $) 45)) (-3832 (((-107) $ $) 58) (((-107) $ (-1073)) 49)) (-3998 (((-107) $) 126)) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) 118) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 83) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) 68) (($ $ (-1073) (-1 $ $)) 74) (($ $ (-583 (-109)) (-583 (-1 $ $))) 82) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 84) (($ $ (-109) (-1 $ (-583 $))) 70) (($ $ (-109) (-1 $ $)) 76)) (-1449 (($ (-109) $) 61) (($ (-109) $ $) 62) (($ (-109) $ $ $) 63) (($ (-109) $ $ $ $) 64) (($ (-109) (-583 $)) 106)) (-1630 (($ $) 51) (($ $ $) 116)) (-4148 (($ $) 17) (($ (-583 $)) 53)) (-4074 (((-107) (-109)) 22))) +(((-272 |#1|) (-10 -8 (-15 -1769 ((-107) |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -3832 ((-107) |#1| (-1073))) (-15 -3832 ((-107) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1851 (|#1| (-109) (-583 |#1|))) (-15 -1851 (|#1| (-109) |#1|)) (-15 -1609 ((-107) |#1| (-1073))) (-15 -1609 ((-107) |#1| (-109))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -4001 ((-583 (-109)) |#1|)) (-15 -3726 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1881 ((-703) |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -3374 (|#1| (-583 |#1|))) (-15 -3374 (|#1| |#1|)) (-15 -4148 (|#1| (-583 |#1|))) (-15 -4148 (|#1| |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|))) (-273)) (T -272)) +((-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273))))) +(-10 -8 (-15 -1769 ((-107) |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -3832 ((-107) |#1| (-1073))) (-15 -3832 ((-107) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1851 (|#1| (-109) (-583 |#1|))) (-15 -1851 (|#1| (-109) |#1|)) (-15 -1609 ((-107) |#1| (-1073))) (-15 -1609 ((-107) |#1| (-109))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -4001 ((-583 (-109)) |#1|)) (-15 -3726 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1881 ((-703) |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -3374 (|#1| (-583 |#1|))) (-15 -3374 (|#1| |#1|)) (-15 -4148 (|#1| (-583 |#1|))) (-15 -4148 (|#1| |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|))) +((-2750 (((-107) $ $) 7)) (-3726 (((-583 (-556 $)) $) 44)) (-2302 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-1772 (((-3 (-556 $) "failed") $) 69)) (-3189 (((-556 $) $) 68)) (-3374 (($ $) 51) (($ (-583 $)) 50)) (-4001 (((-583 (-109)) $) 43)) (-3072 (((-109) (-109)) 42)) (-1769 (((-107) $) 22 (|has| $ (-952 (-517))))) (-1607 (((-1069 $) (-556 $)) 25 (|has| $ (-961)))) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-1893 (($ (-1 $ $) (-556 $)) 36)) (-1783 (((-3 (-556 $) "failed") $) 46)) (-3985 (((-1056) $) 9)) (-2343 (((-583 (-556 $)) $) 45)) (-1851 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-1609 (((-107) $ (-109)) 40) (((-107) $ (-1073)) 39)) (-1881 (((-703) $) 47)) (-3206 (((-1021) $) 10)) (-3832 (((-107) $ $) 35) (((-107) $ (-1073)) 34)) (-3998 (((-107) $) 23 (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1073) (-1 $ (-583 $))) 31) (($ $ (-1073) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26)) (-1449 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1630 (($ $) 49) (($ $ $) 48)) (-2135 (($ $) 24 (|has| $ (-961)))) (-2256 (((-787) $) 11) (($ (-556 $)) 70)) (-4148 (($ $) 53) (($ (-583 $)) 52)) (-4074 (((-107) (-109)) 41)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18))) +(((-273) (-1184)) (T -273)) +((-1449 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-2302 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))) (-2302 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) (-2302 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-4148 (*1 *1 *1) (-4 *1 (-273))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-3374 (*1 *1 *1) (-4 *1 (-273))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-1630 (*1 *1 *1) (-4 *1 (-273))) (-1630 (*1 *1 *1 *1) (-4 *1 (-273))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) (-1783 (*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))) (-3072 (*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-4074 (*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-1609 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-1609 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) (-1851 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1851 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-1893 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) (-3832 (*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))) (-3832 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-961)) (-4 *1 (-273)) (-5 *2 (-1069 *1)))) (-2135 (*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-273)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107))))) +(-13 (-779) (-952 (-556 $)) (-478 (-556 $) $) (-280 $) (-10 -8 (-15 -1449 ($ (-109) $)) (-15 -1449 ($ (-109) $ $)) (-15 -1449 ($ (-109) $ $ $)) (-15 -1449 ($ (-109) $ $ $ $)) (-15 -1449 ($ (-109) (-583 $))) (-15 -2302 ($ $ (-265 $))) (-15 -2302 ($ $ (-583 (-265 $)))) (-15 -2302 ($ $ (-583 (-556 $)) (-583 $))) (-15 -4148 ($ $)) (-15 -4148 ($ (-583 $))) (-15 -3374 ($ $)) (-15 -3374 ($ (-583 $))) (-15 -1630 ($ $)) (-15 -1630 ($ $ $)) (-15 -1881 ((-703) $)) (-15 -1783 ((-3 (-556 $) "failed") $)) (-15 -2343 ((-583 (-556 $)) $)) (-15 -3726 ((-583 (-556 $)) $)) (-15 -4001 ((-583 (-109)) $)) (-15 -3072 ((-109) (-109))) (-15 -4074 ((-107) (-109))) (-15 -1609 ((-107) $ (-109))) (-15 -1609 ((-107) $ (-1073))) (-15 -1851 ($ (-109) $)) (-15 -1851 ($ (-109) (-583 $))) (-15 -1893 ($ (-1 $ $) (-556 $))) (-15 -3832 ((-107) $ $)) (-15 -3832 ((-107) $ (-1073))) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-1 $ $)))) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-1 $ (-583 $))))) (-15 -2051 ($ $ (-1073) (-1 $ (-583 $)))) (-15 -2051 ($ $ (-1073) (-1 $ $))) (-15 -2051 ($ $ (-583 (-109)) (-583 (-1 $ $)))) (-15 -2051 ($ $ (-583 (-109)) (-583 (-1 $ (-583 $))))) (-15 -2051 ($ $ (-109) (-1 $ (-583 $)))) (-15 -2051 ($ $ (-109) (-1 $ $))) (IF (|has| $ (-961)) (PROGN (-15 -1607 ((-1069 $) (-556 $))) (-15 -2135 ($ $))) |noBranch|) (IF (|has| $ (-952 (-517))) (PROGN (-15 -3998 ((-107) $)) (-15 -1769 ((-107) $))) |noBranch|))) +(((-97) . T) ((-557 (-787)) . T) ((-280 $) . T) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-779) . T) ((-952 (-556 $)) . T) ((-1003) . T)) +((-1841 (((-583 |#1|) (-583 |#1|)) 10))) +(((-274 |#1|) (-10 -7 (-15 -1841 ((-583 |#1|) (-583 |#1|)))) (-777)) (T -274)) +((-1841 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3))))) +(-10 -7 (-15 -1841 ((-583 |#1|) (-583 |#1|)))) +((-1893 (((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)) 15))) +(((-275 |#1| |#2|) (-10 -7 (-15 -1893 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) (-961) (-961)) (T -275)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6))))) +(-10 -7 (-15 -1893 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) +((-3188 (((-1153 (-286 (-349))) (-1153 (-286 (-199)))) 105)) (-2096 (((-998 (-772 (-199))) (-998 (-772 (-349)))) 39)) (-4053 (((-583 (-1056)) (-1054 (-199))) 87)) (-2308 (((-286 (-349)) (-874 (-199))) 49)) (-2721 (((-199) (-874 (-199))) 45)) (-2952 (((-1056) (-349)) 167)) (-2287 (((-772 (-199)) (-772 (-349))) 33)) (-2430 (((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1153 (-286 (-199)))) 142)) (-2326 (((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) 180) (((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) 178)) (-2790 (((-623 (-199)) (-583 (-199)) (-703)) 13)) (-3952 (((-1153 (-632)) (-583 (-199))) 94)) (-2024 (((-583 (-1056)) (-583 (-199))) 74)) (-2966 (((-3 (-286 (-199)) "failed") (-286 (-199))) 120)) (-1204 (((-107) (-199) (-998 (-772 (-199)))) 109)) (-2660 (((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) 198)) (-3339 (((-199) (-998 (-772 (-199)))) 107)) (-3191 (((-199) (-998 (-772 (-199)))) 108)) (-1651 (((-199) (-377 (-517))) 26)) (-3180 (((-1056) (-349)) 72)) (-1836 (((-199) (-349)) 17)) (-2455 (((-349) (-1153 (-286 (-199)))) 153)) (-2648 (((-286 (-199)) (-286 (-349))) 23)) (-1828 (((-377 (-517)) (-286 (-199))) 52)) (-3007 (((-286 (-377 (-517))) (-286 (-199))) 68)) (-4108 (((-286 (-349)) (-286 (-199))) 98)) (-2374 (((-199) (-286 (-199))) 53)) (-3856 (((-583 (-199)) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) 63)) (-2799 (((-998 (-772 (-199))) (-998 (-772 (-199)))) 60)) (-2129 (((-1056) (-199)) 71)) (-2979 (((-632) (-199)) 90)) (-2055 (((-377 (-517)) (-199)) 54)) (-3910 (((-286 (-349)) (-199)) 48)) (-3645 (((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349))))) 42)) (-2452 (((-950) (-583 (-950))) 163) (((-950) (-950) (-950)) 160)) (-3529 (((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194))) +(((-276) (-10 -7 (-15 -1836 ((-199) (-349))) (-15 -2648 ((-286 (-199)) (-286 (-349)))) (-15 -2287 ((-772 (-199)) (-772 (-349)))) (-15 -2096 ((-998 (-772 (-199))) (-998 (-772 (-349))))) (-15 -3645 ((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349)))))) (-15 -2055 ((-377 (-517)) (-199))) (-15 -1828 ((-377 (-517)) (-286 (-199)))) (-15 -2374 ((-199) (-286 (-199)))) (-15 -2966 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2455 ((-349) (-1153 (-286 (-199))))) (-15 -2430 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1153 (-286 (-199))))) (-15 -3007 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -2799 ((-998 (-772 (-199))) (-998 (-772 (-199))))) (-15 -3856 ((-583 (-199)) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-15 -2979 ((-632) (-199))) (-15 -3952 ((-1153 (-632)) (-583 (-199)))) (-15 -4108 ((-286 (-349)) (-286 (-199)))) (-15 -3188 ((-1153 (-286 (-349))) (-1153 (-286 (-199))))) (-15 -1204 ((-107) (-199) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -3180 ((-1056) (-349))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2452 ((-950) (-950) (-950))) (-15 -2452 ((-950) (-583 (-950)))) (-15 -2952 ((-1056) (-349))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))))) (-15 -3529 ((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2660 ((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -2308 ((-286 (-349)) (-874 (-199)))) (-15 -2721 ((-199) (-874 (-199)))) (-15 -3910 ((-286 (-349)) (-199))) (-15 -1651 ((-199) (-377 (-517)))) (-15 -2790 ((-623 (-199)) (-583 (-199)) (-703))))) (T -276)) +((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-950)) (-5 *1 (-276)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-583 (-950))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2452 (*1 *2 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-276)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-276)))) (-1204 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-1153 (-286 (-349)))) (-5 *1 (-276)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1153 (-632))) (-5 *1 (-276)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))) (-2799 (*1 *2 *2) (-12 (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))) (-2966 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-583 (-998 (-772 (-349))))) (-5 *2 (-583 (-998 (-772 (-199))))) (-5 *1 (-276)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-349)))) (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276))))) +(-10 -7 (-15 -1836 ((-199) (-349))) (-15 -2648 ((-286 (-199)) (-286 (-349)))) (-15 -2287 ((-772 (-199)) (-772 (-349)))) (-15 -2096 ((-998 (-772 (-199))) (-998 (-772 (-349))))) (-15 -3645 ((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349)))))) (-15 -2055 ((-377 (-517)) (-199))) (-15 -1828 ((-377 (-517)) (-286 (-199)))) (-15 -2374 ((-199) (-286 (-199)))) (-15 -2966 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2455 ((-349) (-1153 (-286 (-199))))) (-15 -2430 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1153 (-286 (-199))))) (-15 -3007 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -2799 ((-998 (-772 (-199))) (-998 (-772 (-199))))) (-15 -3856 ((-583 (-199)) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-15 -2979 ((-632) (-199))) (-15 -3952 ((-1153 (-632)) (-583 (-199)))) (-15 -4108 ((-286 (-349)) (-286 (-199)))) (-15 -3188 ((-1153 (-286 (-349))) (-1153 (-286 (-199))))) (-15 -1204 ((-107) (-199) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -3180 ((-1056) (-349))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2452 ((-950) (-950) (-950))) (-15 -2452 ((-950) (-583 (-950)))) (-15 -2952 ((-1056) (-349))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))))) (-15 -3529 ((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2660 ((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -2308 ((-286 (-349)) (-874 (-199)))) (-15 -2721 ((-199) (-874 (-199)))) (-15 -3910 ((-286 (-349)) (-199))) (-15 -1651 ((-199) (-377 (-517)))) (-15 -2790 ((-623 (-199)) (-583 (-199)) (-703)))) +((-1707 (((-107) $ $) 11)) (-2518 (($ $ $) 15)) (-2497 (($ $ $) 14)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 43)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1401 (($ $ $) 20) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-2476 (((-3 $ "failed") $ $) 17)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 45))) +(((-277 |#1|) (-10 -8 (-15 -2377 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2069 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2069 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -1707 ((-107) |#1| |#1|)) (-15 -1737 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -1780 ((-2 (|:| -1931 (-583 |#1|)) (|:| -3220 |#1|)) (-583 |#1|))) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|))) (-278)) (T -277)) +NIL +(-10 -8 (-15 -2377 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2069 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2069 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -1707 ((-107) |#1| |#1|)) (-15 -1737 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -1780 ((-2 (|:| -1931 (-583 |#1|)) (|:| -3220 |#1|)) (-583 |#1|))) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-278) (-1184)) (T -278)) +((-1707 (*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))) (-3146 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))) (-1306 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-278)))) (-2497 (*1 *1 *1 *1) (-4 *1 (-278))) (-2518 (*1 *1 *1 *1) (-4 *1 (-278))) (-2069 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-278)))) (-2069 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) (-2377 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278))))) +(-13 (-842) (-10 -8 (-15 -1707 ((-107) $ $)) (-15 -3146 ((-703) $)) (-15 -1306 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2497 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -2069 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $)) (-15 -2069 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2377 ((-3 (-583 $) "failed") (-583 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2051 (($ $ (-583 |#2|) (-583 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-265 |#2|)) 11) (($ $ (-583 (-265 |#2|))) NIL))) +(((-279 |#1| |#2|) (-10 -8 (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-280 |#2|) (-1003)) (T -279)) +NIL +(-10 -8 (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) +((-2051 (($ $ (-583 |#1|) (-583 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-265 |#1|)) 11) (($ $ (-583 (-265 |#1|))) 10))) +(((-280 |#1|) (-1184) (-1003)) (T -280)) +((-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1003))))) +(-13 (-478 |t#1| |t#1|) (-10 -8 (-15 -2051 ($ $ (-265 |t#1|))) (-15 -2051 ($ $ (-583 (-265 |t#1|)))))) +(((-478 |#1| |#1|) . T)) +((-2051 ((|#1| (-1 |#1| (-517)) (-1075 (-377 (-517)))) 24))) +(((-281 |#1|) (-10 -7 (-15 -2051 (|#1| (-1 |#1| (-517)) (-1075 (-377 (-517)))))) (-37 (-377 (-517)))) (T -281)) +((-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1075 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517))))))) +(-10 -7 (-15 -2051 (|#1| (-1 |#1| (-517)) (-1075 (-377 (-517)))))) +((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 7)) (-1547 (((-107) $ $) 9))) +(((-282) (-1003)) (T -282)) +NIL +(-1003) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 62)) (-2668 (((-1140 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1140 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-1139 |#2| |#3| |#4|) "failed") $) 24)) (-3189 (((-1140 |#1| |#2| |#3| |#4|) $) NIL) (((-1073) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-517) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-1139 |#2| |#3| |#4|) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-1140 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1153 (-1140 |#1| |#2| |#3| |#4|)))) (-623 $) (-1153 $)) NIL) (((-623 (-1140 |#1| |#2| |#3| |#4|)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-1140 |#1| |#2| |#3| |#4|) $) 21)) (-1319 (((-3 $ "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-1049)))) (-2475 (((-107) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-3099 (($ $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1893 (($ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) $) NIL)) (-3020 (((-3 (-772 |#2|) "failed") $) 76)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-278)))) (-2597 (((-1140 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-1140 |#1| |#2| |#3| |#4|)) (-583 (-1140 |#1| |#2| |#3| |#4|))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-265 (-1140 |#1| |#2| |#3| |#4|))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-265 (-1140 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-1073)) (-583 (-1140 |#1| |#2| |#3| |#4|))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-478 (-1073) (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-1073) (-1140 |#1| |#2| |#3| |#4|)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-478 (-1073) (-1140 |#1| |#2| |#3| |#4|))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-1140 |#1| |#2| |#3| |#4|)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-258 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1073)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-1140 |#1| |#2| |#3| |#4|) $) 17)) (-3645 (((-814 (-517)) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-558 (-493)))) (((-349) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-937))) (((-199) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1140 |#1| |#2| |#3| |#4|) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-1140 |#1| |#2| |#3| |#4|)) 28) (($ (-1073)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-1073)))) (($ (-1139 |#2| |#3| |#4|)) 36)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-1140 |#1| |#2| |#3| |#4|) (-831))) (|has| (-1140 |#1| |#2| |#3| |#4|) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-1140 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 41 T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1073)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1667 (($ $ $) 33) (($ (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) 30)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-1140 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1140 |#1| |#2| |#3| |#4|)) NIL))) +(((-283 |#1| |#2| |#3| |#4|) (-13 (-909 (-1140 |#1| |#2| |#3| |#4|)) (-952 (-1139 |#2| |#3| |#4|)) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -2256 ($ (-1139 |#2| |#3| |#4|))))) (-13 (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1094) (-400 |#1|)) (-1073) |#2|) (T -283)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1139 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4) (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4)))) +(-13 (-909 (-1140 |#1| |#2| |#3| |#4|)) (-952 (-1139 |#2| |#3| |#4|)) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -2256 ($ (-1139 |#2| |#3| |#4|))))) +((-1893 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 13))) +(((-284 |#1| |#2|) (-10 -7 (-15 -1893 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-779) (-779)) (T -284)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6))))) +(-10 -7 (-15 -1893 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) +((-1590 (((-51) |#2| (-265 |#2|) (-703)) 33) (((-51) |#2| (-265 |#2|)) 24) (((-51) |#2| (-703)) 28) (((-51) |#2|) 25) (((-51) (-1073)) 21)) (-2925 (((-51) |#2| (-265 |#2|) (-377 (-517))) 51) (((-51) |#2| (-265 |#2|)) 48) (((-51) |#2| (-377 (-517))) 50) (((-51) |#2|) 49) (((-51) (-1073)) 47)) (-1613 (((-51) |#2| (-265 |#2|) (-377 (-517))) 46) (((-51) |#2| (-265 |#2|)) 43) (((-51) |#2| (-377 (-517))) 45) (((-51) |#2|) 44) (((-51) (-1073)) 42)) (-1601 (((-51) |#2| (-265 |#2|) (-517)) 39) (((-51) |#2| (-265 |#2|)) 35) (((-51) |#2| (-517)) 38) (((-51) |#2|) 36) (((-51) (-1073)) 34))) +(((-285 |#1| |#2|) (-10 -7 (-15 -1590 ((-51) (-1073))) (-15 -1590 ((-51) |#2|)) (-15 -1590 ((-51) |#2| (-703))) (-15 -1590 ((-51) |#2| (-265 |#2|))) (-15 -1590 ((-51) |#2| (-265 |#2|) (-703))) (-15 -1601 ((-51) (-1073))) (-15 -1601 ((-51) |#2|)) (-15 -1601 ((-51) |#2| (-517))) (-15 -1601 ((-51) |#2| (-265 |#2|))) (-15 -1601 ((-51) |#2| (-265 |#2|) (-517))) (-15 -1613 ((-51) (-1073))) (-15 -1613 ((-51) |#2|)) (-15 -1613 ((-51) |#2| (-377 (-517)))) (-15 -1613 ((-51) |#2| (-265 |#2|))) (-15 -1613 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -2925 ((-51) (-1073))) (-15 -2925 ((-51) |#2|)) (-15 -2925 ((-51) |#2| (-377 (-517)))) (-15 -2925 ((-51) |#2| (-265 |#2|))) (-15 -2925 ((-51) |#2| (-265 |#2|) (-377 (-517))))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -285)) +((-2925 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) (-1613 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1613 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) (-1601 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-952 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4)))))) +(-10 -7 (-15 -1590 ((-51) (-1073))) (-15 -1590 ((-51) |#2|)) (-15 -1590 ((-51) |#2| (-703))) (-15 -1590 ((-51) |#2| (-265 |#2|))) (-15 -1590 ((-51) |#2| (-265 |#2|) (-703))) (-15 -1601 ((-51) (-1073))) (-15 -1601 ((-51) |#2|)) (-15 -1601 ((-51) |#2| (-517))) (-15 -1601 ((-51) |#2| (-265 |#2|))) (-15 -1601 ((-51) |#2| (-265 |#2|) (-517))) (-15 -1613 ((-51) (-1073))) (-15 -1613 ((-51) |#2|)) (-15 -1613 ((-51) |#2| (-377 (-517)))) (-15 -1613 ((-51) |#2| (-265 |#2|))) (-15 -1613 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -2925 ((-51) (-1073))) (-15 -2925 ((-51) |#2|)) (-15 -2925 ((-51) |#2| (-377 (-517)))) (-15 -2925 ((-51) |#2| (-265 |#2|))) (-15 -2925 ((-51) |#2| (-265 |#2|) (-377 (-517))))) +((-2750 (((-107) $ $) NIL)) (-2888 (((-583 $) $ (-1073)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $) (-1073)) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $)) NIL (|has| |#1| (-509))) (((-583 $) (-874 $)) NIL (|has| |#1| (-509)))) (-3869 (($ $ (-1073)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1069 $) (-1073)) NIL (|has| |#1| (-509))) (($ (-1069 $)) NIL (|has| |#1| (-509))) (($ (-874 $)) NIL (|has| |#1| (-509)))) (-2814 (((-107) $) 27 (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1364 (((-583 (-1073)) $) 346)) (-2352 (((-377 (-1069 $)) $ (-556 $)) NIL (|has| |#1| (-509)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-3726 (((-583 (-556 $)) $) NIL)) (-1865 (($ $) 156 (|has| |#1| (-509)))) (-1721 (($ $) 132 (|has| |#1| (-509)))) (-3036 (($ $ (-996 $)) 217 (|has| |#1| (-509))) (($ $ (-1073)) 213 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) 362) (($ $ (-583 (-556 $)) (-583 $)) 405)) (-3143 (((-388 (-1069 $)) (-1069 $)) 290 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-2535 (($ $) NIL (|has| |#1| (-509)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-509)))) (-3766 (($ $) NIL (|has| |#1| (-509)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1839 (($ $) 152 (|has| |#1| (-509)))) (-1701 (($ $) 128 (|has| |#1| (-509)))) (-4081 (($ $ (-517)) 68 (|has| |#1| (-509)))) (-1887 (($ $) 160 (|has| |#1| (-509)))) (-1743 (($ $) 136 (|has| |#1| (-509)))) (-3092 (($) NIL (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))) CONST)) (-1649 (((-583 $) $ (-1073)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $) (-1073)) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $)) NIL (|has| |#1| (-509))) (((-583 $) (-874 $)) NIL (|has| |#1| (-509)))) (-3267 (($ $ (-1073)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1069 $) (-1073)) 119 (|has| |#1| (-509))) (($ (-1069 $)) NIL (|has| |#1| (-509))) (($ (-874 $)) NIL (|has| |#1| (-509)))) (-1772 (((-3 (-556 $) "failed") $) 17) (((-3 (-1073) "failed") $) NIL) (((-3 |#1| "failed") $) 414) (((-3 (-47) "failed") $) 319 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-874 |#1|)) "failed") $) NIL (|has| |#1| (-509))) (((-3 (-874 |#1|) "failed") $) NIL (|has| |#1| (-961))) (((-3 (-377 (-517)) "failed") $) 45 (-3807 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 (((-556 $) $) 11) (((-1073) $) NIL) ((|#1| $) 396) (((-47) $) NIL (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-874 |#1|)) $) NIL (|has| |#1| (-509))) (((-874 |#1|) $) NIL (|has| |#1| (-961))) (((-377 (-517)) $) 303 (-3807 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-2518 (($ $ $) NIL (|has| |#1| (-509)))) (-3355 (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 112 (|has| |#1| (-961))) (((-623 |#1|) (-623 $)) 104 (|has| |#1| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (-3225 (($ $) 86 (|has| |#1| (-509)))) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2497 (($ $ $) NIL (|has| |#1| (-509)))) (-3485 (($ $ (-996 $)) 221 (|has| |#1| (-509))) (($ $ (-1073)) 219 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-509)))) (-3849 (((-107) $) NIL (|has| |#1| (-509)))) (-1264 (($ $ $) 187 (|has| |#1| (-509)))) (-2645 (($) 122 (|has| |#1| (-509)))) (-3647 (($ $ $) 207 (|has| |#1| (-509)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 368 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 374 (|has| |#1| (-808 (-349))))) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) 262)) (-3848 (((-107) $) 25 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1405 (($ $) 67 (|has| |#1| (-961)))) (-1787 (((-1026 |#1| (-556 $)) $) 81 (|has| |#1| (-961)))) (-3509 (((-107) $) 60 (|has| |#1| (-509)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-509)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-1607 (((-1069 $) (-556 $)) 263 (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) 401)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-1867 (($ $) 126 (|has| |#1| (-509)))) (-3139 (($ $) 232 (|has| |#1| (-509)))) (-1365 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) 48)) (-1851 (($ (-109) $) NIL) (($ (-109) (-583 $)) 406)) (-3703 (((-3 (-583 $) "failed") $) NIL (|has| |#1| (-1015)))) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) NIL (|has| |#1| (-961)))) (-3401 (((-3 (-583 $) "failed") $) 409 (|has| |#1| (-25)))) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 413 (|has| |#1| (-25)))) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) NIL (|has| |#1| (-1015))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) NIL (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) NIL (|has| |#1| (-961)))) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) 52)) (-4118 (($ $) NIL (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-2082 (($ $ (-1073)) 236 (|has| |#1| (-509))) (($ $ (-996 $)) 238 (|has| |#1| (-509)))) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 43)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 283 (|has| |#1| (-509)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-3210 (($ $ (-1073)) 211 (|has| |#1| (-509))) (($ $) 209 (|has| |#1| (-509)))) (-3663 (($ $) 203 (|has| |#1| (-509)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 288 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-509)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-2624 (($ $) 124 (|has| |#1| (-509)))) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 400) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) 356) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1073)) NIL (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-558 (-493)))) (($ $) NIL (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1073)) 344 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1073)) 343 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) NIL (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ (-583 $))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ $)) NIL (|has| |#1| (-961)))) (-3146 (((-703) $) NIL (|has| |#1| (-509)))) (-1655 (($ $) 224 (|has| |#1| (-509)))) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-1630 (($ $) NIL) (($ $ $) NIL)) (-1689 (($ $) 234 (|has| |#1| (-509)))) (-2150 (($ $) 185 (|has| |#1| (-509)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-961))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-961))) (($ $ (-1073)) NIL (|has| |#1| (-961)))) (-2971 (($ $) 69 (|has| |#1| (-509)))) (-1800 (((-1026 |#1| (-556 $)) $) 83 (|has| |#1| (-509)))) (-2135 (($ $) 301 (|has| $ (-961)))) (-1898 (($ $) 162 (|has| |#1| (-509)))) (-1754 (($ $) 138 (|has| |#1| (-509)))) (-1876 (($ $) 158 (|has| |#1| (-509)))) (-1732 (($ $) 134 (|has| |#1| (-509)))) (-1853 (($ $) 154 (|has| |#1| (-509)))) (-1711 (($ $) 130 (|has| |#1| (-509)))) (-3645 (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (($ (-388 $)) NIL (|has| |#1| (-509))) (((-493) $) 341 (|has| |#1| (-558 (-493))))) (-1487 (($ $ $) NIL (|has| |#1| (-442)))) (-3394 (($ $ $) NIL (|has| |#1| (-442)))) (-2256 (((-787) $) 399) (($ (-556 $)) 390) (($ (-1073)) 358) (($ |#1|) 320) (($ $) NIL (|has| |#1| (-509))) (($ (-47)) 295 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (($ (-1026 |#1| (-556 $))) 85 (|has| |#1| (-961))) (($ (-377 |#1|)) NIL (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) NIL (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) NIL (|has| |#1| (-509))) (($ (-377 (-874 |#1|))) NIL (|has| |#1| (-509))) (($ (-874 |#1|)) NIL (|has| |#1| (-961))) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-509)) (|has| |#1| (-952 (-377 (-517)))))) (($ (-517)) 34 (-3807 (|has| |#1| (-952 (-517))) (|has| |#1| (-961))))) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL (|has| |#1| (-961)))) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-1270 (($ $ $) 205 (|has| |#1| (-509)))) (-2570 (($ $ $) 191 (|has| |#1| (-509)))) (-2480 (($ $ $) 195 (|has| |#1| (-509)))) (-3233 (($ $ $) 189 (|has| |#1| (-509)))) (-1324 (($ $ $) 193 (|has| |#1| (-509)))) (-4074 (((-107) (-109)) 9)) (-3707 (($ $) 168 (|has| |#1| (-509)))) (-1788 (($ $) 144 (|has| |#1| (-509)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 164 (|has| |#1| (-509)))) (-1765 (($ $) 140 (|has| |#1| (-509)))) (-3731 (($ $) 172 (|has| |#1| (-509)))) (-1814 (($ $) 148 (|has| |#1| (-509)))) (-3760 (($ (-1073) $) NIL) (($ (-1073) $ $) NIL) (($ (-1073) $ $ $) NIL) (($ (-1073) $ $ $ $) NIL) (($ (-1073) (-583 $)) NIL)) (-3312 (($ $) 199 (|has| |#1| (-509)))) (-1730 (($ $) 197 (|has| |#1| (-509)))) (-1492 (($ $) 174 (|has| |#1| (-509)))) (-1827 (($ $) 150 (|has| |#1| (-509)))) (-3719 (($ $) 170 (|has| |#1| (-509)))) (-1802 (($ $) 146 (|has| |#1| (-509)))) (-3695 (($ $) 166 (|has| |#1| (-509)))) (-1777 (($ $) 142 (|has| |#1| (-509)))) (-3710 (($ $) 177 (|has| |#1| (-509)))) (-2207 (($ $ (-517)) NIL (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ $ (-843)) NIL (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2396 (($) 20 (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) CONST)) (-3362 (($ $) 228 (|has| |#1| (-509)))) (-2409 (($) 22 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))) CONST)) (-1564 (($ $) 179 (|has| |#1| (-509))) (($ $ $) 181 (|has| |#1| (-509)))) (-3452 (($ $) 226 (|has| |#1| (-509)))) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-961))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-961))) (($ $ (-1073)) NIL (|has| |#1| (-961)))) (-2037 (($ $) 230 (|has| |#1| (-509)))) (-2350 (($ $ $) 183 (|has| |#1| (-509)))) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 78)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 77)) (-1667 (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 95 (|has| |#1| (-509))) (($ $ $) 42 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1654 (($ $ $) 40 (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ $) 29 (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1642 (($ $ $) 38 (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (** (($ $ $) 62 (|has| |#1| (-509))) (($ $ (-377 (-517))) 298 (|has| |#1| (-509))) (($ $ (-517)) 73 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 70 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ $ (-843)) 75 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (* (($ (-377 (-517)) $) NIL (|has| |#1| (-509))) (($ $ (-377 (-517))) NIL (|has| |#1| (-509))) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))) (($ $ $) 36 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ (-517) $) 32 (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ (-703) $) NIL (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ (-843) $) NIL (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))))) +(((-286 |#1|) (-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1094)) (-6 (-145)) (-6 (-569)) (-6 (-1037)) (-15 -3225 ($ $)) (-15 -3509 ((-107) $)) (-15 -4081 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -2209 ((-388 (-1069 $)) (-1069 $))) (-15 -3143 ((-388 (-1069 $)) (-1069 $)))) |noBranch|) (IF (|has| |#1| (-952 (-517))) (-6 (-952 (-47))) |noBranch|)) |noBranch|))) (-779)) (T -286)) +((-3225 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-4081 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-2209 (*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) (-3143 (*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779))))) +(-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1094)) (-6 (-145)) (-6 (-569)) (-6 (-1037)) (-15 -3225 ($ $)) (-15 -3509 ((-107) $)) (-15 -4081 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -2209 ((-388 (-1069 $)) (-1069 $))) (-15 -3143 ((-388 (-1069 $)) (-1069 $)))) |noBranch|) (IF (|has| |#1| (-952 (-517))) (-6 (-952 (-47))) |noBranch|)) |noBranch|))) +((-3316 (((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)) 86) (((-51) |#2| (-109) (-265 |#2|) (-265 |#2|)) 82) (((-51) |#2| (-109) (-265 |#2|) |#2|) 84) (((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|) 85) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 78) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 80) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 81) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 79) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 87) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|)) 83))) +(((-287 |#1| |#2|) (-10 -7 (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-509) (-558 (-493))) (-400 |#1|)) (T -287)) +((-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))) (-3316 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3316 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3316 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) (-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3316 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3316 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3316 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3316 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6))))) +(-10 -7 (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)))) +((-2996 (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1056)) 45) (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517)) 46) (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1056)) 42) (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517)) 43)) (-3002 (((-1 (-199) (-199)) (-199)) 44))) +(((-288) (-10 -7 (-15 -3002 ((-1 (-199) (-199)) (-199))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1056))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1056))))) (T -288)) +((-2996 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-2996 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-2996 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *7 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-2996 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-3002 (*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199))))) +(-10 -7 (-15 -3002 ((-1 (-199) (-199)) (-199))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1056))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1056)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 24)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 19)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 30)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) 15)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) NIL) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1373 (((-377 (-517)) $) 16)) (-2697 (($ (-1139 |#1| |#2| |#3|)) 11)) (-2077 (((-1139 |#1| |#2| |#3|) $) 12)) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 10)) (-2256 (((-787) $) 36) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 28)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) NIL)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 26)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 31)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-289 |#1| |#2| |#3|) (-13 (-1135 |#1|) (-724) (-10 -8 (-15 -2697 ($ (-1139 |#1| |#2| |#3|))) (-15 -2077 ((-1139 |#1| |#2| |#3|) $)) (-15 -1373 ((-377 (-517)) $)))) (-13 (-333) (-779)) (-1073) |#1|) (T -289)) +((-2697 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-1139 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3)))) +(-13 (-1135 |#1|) (-724) (-10 -8 (-15 -2697 ($ (-1139 |#1| |#2| |#3|))) (-15 -2077 ((-1139 |#1| |#2| |#3|) $)) (-15 -1373 ((-377 (-517)) $)))) +((-3824 (((-2 (|:| -2077 (-703)) (|:| -1931 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703)) 24)) (-1867 (((-583 (-2 (|:| -1931 (-703)) (|:| |logand| |#1|))) (-388 |#1|)) 28))) +(((-290 |#1|) (-10 -7 (-15 -3824 ((-2 (|:| -2077 (-703)) (|:| -1931 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1867 ((-583 (-2 (|:| -1931 (-703)) (|:| |logand| |#1|))) (-388 |#1|)))) (-509)) (T -290)) +((-1867 (*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1931 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703))))) +(-10 -7 (-15 -3824 ((-2 (|:| -2077 (-703)) (|:| -1931 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1867 ((-583 (-2 (|:| -1931 (-703)) (|:| |logand| |#1|))) (-388 |#1|)))) +((-1364 (((-583 |#2|) (-1069 |#4|)) 43)) (-1435 ((|#3| (-517)) 46)) (-2951 (((-1069 |#4|) (-1069 |#3|)) 30)) (-2298 (((-1069 |#4|) (-1069 |#4|) (-517)) 55)) (-3864 (((-1069 |#3|) (-1069 |#4|)) 21)) (-3688 (((-583 (-703)) (-1069 |#4|) (-583 |#2|)) 40)) (-3465 (((-1069 |#3|) (-1069 |#4|) (-583 |#2|) (-583 |#3|)) 35))) +(((-291 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3465 ((-1069 |#3|) (-1069 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3688 ((-583 (-703)) (-1069 |#4|) (-583 |#2|))) (-15 -1364 ((-583 |#2|) (-1069 |#4|))) (-15 -3864 ((-1069 |#3|) (-1069 |#4|))) (-15 -2951 ((-1069 |#4|) (-1069 |#3|))) (-15 -2298 ((-1069 |#4|) (-1069 |#4|) (-517))) (-15 -1435 (|#3| (-517)))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|)) (T -291)) +((-1435 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-961)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-871 *2 *4 *5)))) (-2298 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *7)) (-5 *3 (-517)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *1 (-291 *4 *5 *6 *7)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-1069 *6)) (-4 *6 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-871 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-961)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1069 *8)) (-5 *1 (-291 *6 *7 *8 *9))))) +(-10 -7 (-15 -3465 ((-1069 |#3|) (-1069 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3688 ((-583 (-703)) (-1069 |#4|) (-583 |#2|))) (-15 -1364 ((-583 |#2|) (-1069 |#4|))) (-15 -3864 ((-1069 |#3|) (-1069 |#4|))) (-15 -2951 ((-1069 |#4|) (-1069 |#3|))) (-15 -2298 ((-1069 |#4|) (-1069 |#4|) (-517))) (-15 -1435 (|#3| (-517)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 14)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $) 18)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3466 ((|#1| $ (-517)) NIL)) (-2902 (((-517) $ (-517)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3420 (($ (-1 |#1| |#1|) $) NIL)) (-2777 (($ (-1 (-517) (-517)) $) 10)) (-3985 (((-1056) $) NIL)) (-3299 (($ $ $) NIL (|has| (-517) (-724)))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-2720 (((-517) |#1| $) NIL)) (-2396 (($) 15 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 21 (|has| |#1| (-779)))) (-1654 (($ $) 11) (($ $ $) 20)) (-1642 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL) (($ (-517) |#1|) 19))) +(((-292 |#1|) (-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|))) (-1003)) (T -292)) +NIL +(-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $) 27)) (-4038 (((-3 $ "failed") $ $) 19)) (-1611 (((-703) $) 28)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 32)) (-3189 ((|#1| $) 31)) (-3466 ((|#1| $ (-517)) 25)) (-2902 ((|#2| $ (-517)) 26)) (-3420 (($ (-1 |#1| |#1|) $) 22)) (-2777 (($ (-1 |#2| |#2|) $) 23)) (-3985 (((-1056) $) 9)) (-3299 (($ $ $) 21 (|has| |#2| (-724)))) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ |#1|) 33)) (-2720 ((|#2| |#1| $) 24)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ |#2| |#1|) 29))) +(((-293 |#1| |#2|) (-1184) (-1003) (-123)) (T -293)) +((-1642 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-703)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-123)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1003)))) (-2720 (*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) (-2777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) (-3299 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)) (-4 *3 (-724))))) +(-13 (-123) (-952 |t#1|) (-10 -8 (-15 -1642 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1611 ((-703) $)) (-15 -2223 ((-583 (-2 (|:| |gen| |t#1|) (|:| -2624 |t#2|))) $)) (-15 -2902 (|t#2| $ (-517))) (-15 -3466 (|t#1| $ (-517))) (-15 -2720 (|t#2| |t#1| $)) (-15 -2777 ($ (-1 |t#2| |t#2|) $)) (-15 -3420 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-724)) (-15 -3299 ($ $ $)) |noBranch|))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-952 |#1|) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3466 ((|#1| $ (-517)) NIL)) (-2902 (((-703) $ (-517)) NIL)) (-3420 (($ (-1 |#1| |#1|) $) NIL)) (-2777 (($ (-1 (-703) (-703)) $) NIL)) (-3985 (((-1056) $) NIL)) (-3299 (($ $ $) NIL (|has| (-703) (-724)))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-2720 (((-703) |#1| $) NIL)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-703) |#1|) NIL))) +(((-294 |#1|) (-293 |#1| (-703)) (-1003)) (T -294)) +NIL +(-293 |#1| (-703)) +((-3534 (($ $) 52)) (-1436 (($ $ |#2| |#3| $) 14)) (-3328 (($ (-1 |#3| |#3|) $) 35)) (-4127 (((-107) $) 27)) (-4141 ((|#2| $) 29)) (-2476 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 45)) (-3266 ((|#2| $) 48)) (-1311 (((-583 |#2|) $) 38)) (-2053 (($ $ $ (-703)) 23)) (-1667 (($ $ |#2|) 42))) +(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2053 (|#1| |#1| |#1| (-703))) (-15 -1436 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3328 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1667 (|#1| |#1| |#2|))) (-296 |#2| |#3|) (-961) (-724)) (T -295)) +NIL +(-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2053 (|#1| |#1| |#1| (-703))) (-15 -1436 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3328 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1667 (|#1| |#1| |#2|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 90 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 88 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 87)) (-3189 (((-517) $) 91 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 89 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 86)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 75 (|has| |#1| (-421)))) (-1436 (($ $ |#1| |#2| $) 79)) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 82)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61)) (-2349 ((|#2| $) 81)) (-3328 (($ (-1 |#2| |#2|) $) 80)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 85)) (-4141 ((|#1| $) 84)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-509)))) (-3688 ((|#2| $) 64)) (-3266 ((|#1| $) 76 (|has| |#1| (-421)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47) (($ (-377 (-517))) 57 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-1311 (((-583 |#1|) $) 83)) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 78 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) +(((-296 |#1| |#2|) (-1184) (-961) (-724)) (T -296)) +((-4127 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-703)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-1436 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-2053 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *3 (-156)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-509)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)) (-4 *2 (-421)))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-421))))) +(-13 (-46 |t#1| |t#2|) (-381 |t#1|) (-10 -8 (-15 -4127 ((-107) $)) (-15 -4141 (|t#1| $)) (-15 -1311 ((-583 |t#1|) $)) (-15 -1577 ((-703) $)) (-15 -2349 (|t#2| $)) (-15 -3328 ($ (-1 |t#2| |t#2|) $)) (-15 -1436 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-156)) (-15 -2053 ($ $ $ (-703))) |noBranch|) (IF (|has| |t#1| (-509)) (-15 -2476 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -3266 (|t#1| $)) (-15 -3534 ($ $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-381 |#1|) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2484 (((-107) (-107)) NIL)) (-2411 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3483 (($ $) NIL (|has| |#1| (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3809 (($ $ (-517)) NIL)) (-4019 (((-703) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1977 (($ (-583 |#1|)) NIL)) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2568 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-297 |#1|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107))))) (-1108)) (T -297)) +((-1977 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-297 *3)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1108))))) +(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107))))) +((-2909 (((-107) $) 42)) (-3250 (((-703)) 22)) (-1472 ((|#2| $) 46) (($ $ (-843)) 102)) (-1611 (((-703)) 96)) (-1967 (($ (-1153 |#2|)) 20)) (-2434 (((-107) $) 114)) (-1506 ((|#2| $) 48) (($ $ (-843)) 100)) (-3777 (((-1069 |#2|) $) NIL) (((-1069 $) $ (-843)) 93)) (-1704 (((-1069 |#2|) $) 83)) (-2729 (((-1069 |#2|) $) 80) (((-3 (-1069 |#2|) "failed") $ $) 77)) (-3600 (($ $ (-1069 |#2|)) 53)) (-3327 (((-765 (-843))) 28) (((-843)) 43)) (-3141 (((-125)) 25)) (-3688 (((-765 (-843)) $) 30) (((-843) $) 115)) (-1224 (($) 108)) (-4114 (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $)) 39)) (-1328 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1871 (((-107) $) 41))) +(((-298 |#1| |#2|) (-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1611 ((-703))) (-15 -1328 (|#1| |#1|)) (-15 -2729 ((-3 (-1069 |#2|) "failed") |#1| |#1|)) (-15 -2729 ((-1069 |#2|) |#1|)) (-15 -1704 ((-1069 |#2|) |#1|)) (-15 -3600 (|#1| |#1| (-1069 |#2|))) (-15 -2434 ((-107) |#1|)) (-15 -1224 (|#1|)) (-15 -1472 (|#1| |#1| (-843))) (-15 -1506 (|#1| |#1| (-843))) (-15 -3777 ((-1069 |#1|) |#1| (-843))) (-15 -1472 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3688 ((-843) |#1|)) (-15 -3327 ((-843))) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3250 ((-703))) (-15 -3327 ((-765 (-843)))) (-15 -3688 ((-765 (-843)) |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|)) (-15 -3141 ((-125)))) (-299 |#2|) (-333)) (T -298)) +((-3141 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3327 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-843))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3250 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3327 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-843)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-1611 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4))))) +(-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1611 ((-703))) (-15 -1328 (|#1| |#1|)) (-15 -2729 ((-3 (-1069 |#2|) "failed") |#1| |#1|)) (-15 -2729 ((-1069 |#2|) |#1|)) (-15 -1704 ((-1069 |#2|) |#1|)) (-15 -3600 (|#1| |#1| (-1069 |#2|))) (-15 -2434 ((-107) |#1|)) (-15 -1224 (|#1|)) (-15 -1472 (|#1| |#1| (-843))) (-15 -1506 (|#1| |#1| (-843))) (-15 -3777 ((-1069 |#1|) |#1| (-843))) (-15 -1472 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3688 ((-843) |#1|)) (-15 -3327 ((-843))) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3250 ((-703))) (-15 -3327 ((-765 (-843)))) (-15 -3688 ((-765 (-843)) |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|)) (-15 -3141 ((-125)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-2909 (((-107) $) 94)) (-3250 (((-703)) 90)) (-1472 ((|#1| $) 140) (($ $ (-843)) 137 (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 122 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-1611 (((-703)) 112 (|has| |#1| (-338)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 101)) (-3189 ((|#1| $) 100)) (-1967 (($ (-1153 |#1|)) 146)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-338)))) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-3209 (($) 109 (|has| |#1| (-338)))) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3442 (($) 124 (|has| |#1| (-338)))) (-3391 (((-107) $) 125 (|has| |#1| (-338)))) (-2378 (($ $ (-703)) 87 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) 71)) (-3972 (((-843) $) 127 (|has| |#1| (-338))) (((-765 (-843)) $) 84 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) 31)) (-2453 (($) 135 (|has| |#1| (-338)))) (-2434 (((-107) $) 134 (|has| |#1| (-338)))) (-1506 ((|#1| $) 141) (($ $ (-843)) 138 (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) 113 (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3777 (((-1069 |#1|) $) 145) (((-1069 $) $ (-843)) 139 (|has| |#1| (-338)))) (-1549 (((-843) $) 110 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) 131 (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) 130 (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) 129 (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) 132 (|has| |#1| (-338)))) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2836 (($) 114 (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 111 (|has| |#1| (-338)))) (-3202 (((-107) $) 93)) (-3206 (((-1021) $) 10)) (-3220 (($) 133 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 121 (|has| |#1| (-338)))) (-3755 (((-388 $) $) 74)) (-3327 (((-765 (-843))) 91) (((-843)) 143)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-703) $) 126 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 85 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) 99)) (-3127 (($ $) 118 (|has| |#1| (-338))) (($ $ (-703)) 116 (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) 92) (((-843) $) 142)) (-2135 (((-1069 |#1|)) 144)) (-1766 (($) 123 (|has| |#1| (-338)))) (-1224 (($) 136 (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 148) (((-623 |#1|) (-1153 $)) 147)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 120 (|has| |#1| (-338)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-1328 (($ $) 119 (|has| |#1| (-338))) (((-3 $ "failed") $) 83 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 150) (((-1153 $) (-843)) 149)) (-3329 (((-107) $ $) 39)) (-1871 (((-107) $) 95)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-4103 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-2731 (($ $) 117 (|has| |#1| (-338))) (($ $ (-703)) 115 (|has| |#1| (-338)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64) (($ $ |#1|) 98)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) +(((-299 |#1|) (-1184) (-333)) (T -299)) +((-1753 (*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *3)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *4)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1153 *3)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) (-2135 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) (-3327 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-3777 (*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1069 *1)) (-4 *1 (-299 *4)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-1472 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-1224 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-2453 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) (-3220 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-3600 (*1 *1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))) (-2729 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3))))) +(-13 (-1170 |t#1|) (-952 |t#1|) (-10 -8 (-15 -1753 ((-1153 $))) (-15 -1753 ((-1153 $) (-843))) (-15 -4114 ((-1153 |t#1|) $)) (-15 -4114 ((-623 |t#1|) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|))) (-15 -3777 ((-1069 |t#1|) $)) (-15 -2135 ((-1069 |t#1|))) (-15 -3327 ((-843))) (-15 -3688 ((-843) $)) (-15 -1506 (|t#1| $)) (-15 -1472 (|t#1| $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-319)) (-15 -3777 ((-1069 $) $ (-843))) (-15 -1506 ($ $ (-843))) (-15 -1472 ($ $ (-843))) (-15 -1224 ($)) (-15 -2453 ($)) (-15 -2434 ((-107) $)) (-15 -3220 ($)) (-15 -3600 ($ $ (-1069 |t#1|))) (-15 -1704 ((-1069 |t#1|) $)) (-15 -2729 ((-1069 |t#1|) $)) (-15 -2729 ((-3 (-1069 |t#1|) "failed") $ $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-207) |has| |#1| (-338)) ((-217) . T) ((-262) . T) ((-278) . T) ((-1170 |#1|) . T) ((-333) . T) ((-372) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-338) |has| |#1| (-338)) ((-319) |has| |#1| (-338)) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-338)) ((-1112) . T) ((-1160 |#1|) . T)) +((-2750 (((-107) $ $) NIL)) (-1823 (($ (-1072) $) 88)) (-3646 (($) 76)) (-2576 (((-1021) (-1021)) 11)) (-2338 (($) 77)) (-3361 (($) 90) (($ (-286 (-632))) 96) (($ (-286 (-634))) 93) (($ (-286 (-627))) 99) (($ (-286 (-349))) 105) (($ (-286 (-517))) 102) (($ (-286 (-153 (-349)))) 108)) (-3016 (($ (-1072) $) 89)) (-2220 (($ (-583 (-787))) 79)) (-3578 (((-1158) $) 73)) (-1796 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3715 (($ (-1021)) 45)) (-3986 (((-1007) $) 25)) (-1468 (($ (-996 (-874 (-517))) $) 85) (($ (-996 (-874 (-517))) (-874 (-517)) $) 86)) (-4147 (($ (-1021)) 87)) (-2618 (($ (-1072) $) 110) (($ (-1072) $ $) 111)) (-2537 (($ (-1073) (-583 (-1073))) 75)) (-3104 (($ (-1056)) 82) (($ (-583 (-1056))) 80)) (-2256 (((-787) $) 113)) (-3071 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787)))) $) 37)) (-2341 (($ (-1056)) 182)) (-2652 (($ (-583 $)) 109)) (-1946 (($ (-1073) (-1056)) 115) (($ (-1073) (-286 (-634))) 155) (($ (-1073) (-286 (-632))) 156) (($ (-1073) (-286 (-627))) 157) (($ (-1073) (-623 (-634))) 118) (($ (-1073) (-623 (-632))) 121) (($ (-1073) (-623 (-627))) 124) (($ (-1073) (-1153 (-634))) 127) (($ (-1073) (-1153 (-632))) 130) (($ (-1073) (-1153 (-627))) 133) (($ (-1073) (-623 (-286 (-634)))) 136) (($ (-1073) (-623 (-286 (-632)))) 139) (($ (-1073) (-623 (-286 (-627)))) 142) (($ (-1073) (-1153 (-286 (-634)))) 145) (($ (-1073) (-1153 (-286 (-632)))) 148) (($ (-1073) (-1153 (-286 (-627)))) 151) (($ (-1073) (-583 (-874 (-517))) (-286 (-634))) 152) (($ (-1073) (-583 (-874 (-517))) (-286 (-632))) 153) (($ (-1073) (-583 (-874 (-517))) (-286 (-627))) 154) (($ (-1073) (-286 (-517))) 179) (($ (-1073) (-286 (-349))) 180) (($ (-1073) (-286 (-153 (-349)))) 181) (($ (-1073) (-623 (-286 (-517)))) 160) (($ (-1073) (-623 (-286 (-349)))) 163) (($ (-1073) (-623 (-286 (-153 (-349))))) 166) (($ (-1073) (-1153 (-286 (-517)))) 169) (($ (-1073) (-1153 (-286 (-349)))) 172) (($ (-1073) (-1153 (-286 (-153 (-349))))) 175) (($ (-1073) (-583 (-874 (-517))) (-286 (-517))) 176) (($ (-1073) (-583 (-874 (-517))) (-286 (-349))) 177) (($ (-1073) (-583 (-874 (-517))) (-286 (-153 (-349)))) 178)) (-1547 (((-107) $ $) NIL))) +(((-300) (-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -1468 ($ (-996 (-874 (-517))) $)) (-15 -1468 ($ (-996 (-874 (-517))) (-874 (-517)) $)) (-15 -1823 ($ (-1072) $)) (-15 -3016 ($ (-1072) $)) (-15 -3715 ($ (-1021))) (-15 -4147 ($ (-1021))) (-15 -3104 ($ (-1056))) (-15 -3104 ($ (-583 (-1056)))) (-15 -2341 ($ (-1056))) (-15 -3361 ($)) (-15 -3361 ($ (-286 (-632)))) (-15 -3361 ($ (-286 (-634)))) (-15 -3361 ($ (-286 (-627)))) (-15 -3361 ($ (-286 (-349)))) (-15 -3361 ($ (-286 (-517)))) (-15 -3361 ($ (-286 (-153 (-349))))) (-15 -2618 ($ (-1072) $)) (-15 -2618 ($ (-1072) $ $)) (-15 -1946 ($ (-1073) (-1056))) (-15 -1946 ($ (-1073) (-286 (-634)))) (-15 -1946 ($ (-1073) (-286 (-632)))) (-15 -1946 ($ (-1073) (-286 (-627)))) (-15 -1946 ($ (-1073) (-623 (-634)))) (-15 -1946 ($ (-1073) (-623 (-632)))) (-15 -1946 ($ (-1073) (-623 (-627)))) (-15 -1946 ($ (-1073) (-1153 (-634)))) (-15 -1946 ($ (-1073) (-1153 (-632)))) (-15 -1946 ($ (-1073) (-1153 (-627)))) (-15 -1946 ($ (-1073) (-623 (-286 (-634))))) (-15 -1946 ($ (-1073) (-623 (-286 (-632))))) (-15 -1946 ($ (-1073) (-623 (-286 (-627))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-634))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-632))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-627))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-634)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-632)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-627)))) (-15 -1946 ($ (-1073) (-286 (-517)))) (-15 -1946 ($ (-1073) (-286 (-349)))) (-15 -1946 ($ (-1073) (-286 (-153 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-517))))) (-15 -1946 ($ (-1073) (-623 (-286 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-517))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-349))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-517)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-349)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-153 (-349))))) (-15 -2652 ($ (-583 $))) (-15 -3646 ($)) (-15 -2338 ($)) (-15 -2220 ($ (-583 (-787)))) (-15 -2537 ($ (-1073) (-583 (-1073)))) (-15 -1796 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3071 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3578 ((-1158) $)) (-15 -3986 ((-1007) $)) (-15 -2576 ((-1021) (-1021)))))) (T -300)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) (-1468 (*1 *1 *2 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *1 (-300)))) (-1468 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *3 (-874 (-517))) (-5 *1 (-300)))) (-1823 (*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-3016 (*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-3715 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-300)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300)))) (-3361 (*1 *1) (-5 *1 (-300))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2618 (*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-2618 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-634)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-632)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-627)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-517)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-349)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))) (-3646 (*1 *1) (-5 *1 (-300))) (-2338 (*1 *1) (-5 *1 (-300))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))) (-2537 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-300)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-300)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-300)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300))))) +(-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -1468 ($ (-996 (-874 (-517))) $)) (-15 -1468 ($ (-996 (-874 (-517))) (-874 (-517)) $)) (-15 -1823 ($ (-1072) $)) (-15 -3016 ($ (-1072) $)) (-15 -3715 ($ (-1021))) (-15 -4147 ($ (-1021))) (-15 -3104 ($ (-1056))) (-15 -3104 ($ (-583 (-1056)))) (-15 -2341 ($ (-1056))) (-15 -3361 ($)) (-15 -3361 ($ (-286 (-632)))) (-15 -3361 ($ (-286 (-634)))) (-15 -3361 ($ (-286 (-627)))) (-15 -3361 ($ (-286 (-349)))) (-15 -3361 ($ (-286 (-517)))) (-15 -3361 ($ (-286 (-153 (-349))))) (-15 -2618 ($ (-1072) $)) (-15 -2618 ($ (-1072) $ $)) (-15 -1946 ($ (-1073) (-1056))) (-15 -1946 ($ (-1073) (-286 (-634)))) (-15 -1946 ($ (-1073) (-286 (-632)))) (-15 -1946 ($ (-1073) (-286 (-627)))) (-15 -1946 ($ (-1073) (-623 (-634)))) (-15 -1946 ($ (-1073) (-623 (-632)))) (-15 -1946 ($ (-1073) (-623 (-627)))) (-15 -1946 ($ (-1073) (-1153 (-634)))) (-15 -1946 ($ (-1073) (-1153 (-632)))) (-15 -1946 ($ (-1073) (-1153 (-627)))) (-15 -1946 ($ (-1073) (-623 (-286 (-634))))) (-15 -1946 ($ (-1073) (-623 (-286 (-632))))) (-15 -1946 ($ (-1073) (-623 (-286 (-627))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-634))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-632))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-627))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-634)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-632)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-627)))) (-15 -1946 ($ (-1073) (-286 (-517)))) (-15 -1946 ($ (-1073) (-286 (-349)))) (-15 -1946 ($ (-1073) (-286 (-153 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-517))))) (-15 -1946 ($ (-1073) (-623 (-286 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-517))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-349))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-517)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-349)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-153 (-349))))) (-15 -2652 ($ (-583 $))) (-15 -3646 ($)) (-15 -2338 ($)) (-15 -2220 ($ (-583 (-787)))) (-15 -2537 ($ (-1073) (-583 (-1073)))) (-15 -1796 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3071 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3578 ((-1158) $)) (-15 -3986 ((-1007) $)) (-15 -2576 ((-1021) (-1021))))) +((-2750 (((-107) $ $) NIL)) (-1474 (((-107) $) 11)) (-1701 (($ |#1|) 8)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1711 (($ |#1|) 9)) (-2256 (((-787) $) 17)) (-2921 ((|#1| $) 12)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 19))) +(((-301 |#1|) (-13 (-779) (-10 -8 (-15 -1701 ($ |#1|)) (-15 -1711 ($ |#1|)) (-15 -1474 ((-107) $)) (-15 -2921 (|#1| $)))) (-779)) (T -301)) +((-1701 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1711 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))) (-2921 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779))))) +(-13 (-779) (-10 -8 (-15 -1701 ($ |#1|)) (-15 -1711 ($ |#1|)) (-15 -1474 ((-107) $)) (-15 -2921 (|#1| $)))) +((-2525 (((-300) (-1073) (-874 (-517))) 22)) (-2180 (((-300) (-1073) (-874 (-517))) 26)) (-3486 (((-300) (-1073) (-996 (-874 (-517))) (-996 (-874 (-517)))) 25) (((-300) (-1073) (-874 (-517)) (-874 (-517))) 23)) (-3684 (((-300) (-1073) (-874 (-517))) 30))) +(((-302) (-10 -7 (-15 -2525 ((-300) (-1073) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-874 (-517)) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-996 (-874 (-517))) (-996 (-874 (-517))))) (-15 -2180 ((-300) (-1073) (-874 (-517)))) (-15 -3684 ((-300) (-1073) (-874 (-517)))))) (T -302)) +((-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3486 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-996 (-874 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3486 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302))))) +(-10 -7 (-15 -2525 ((-300) (-1073) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-874 (-517)) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-996 (-874 (-517))) (-996 (-874 (-517))))) (-15 -2180 ((-300) (-1073) (-874 (-517)))) (-15 -3684 ((-300) (-1073) (-874 (-517))))) +((-1893 (((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)) 31))) +(((-303 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-333) (-1130 |#5|) (-1130 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -303)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1130 *9)) (-4 *11 (-1130 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11))))) +(-10 -7 (-15 -1893 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)))) +((-1470 (((-107) $) 14))) +(((-304 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1470 ((-107) |#1|))) (-305 |#2| |#3| |#4| |#5|) (-333) (-1130 |#2|) (-1130 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -304)) +NIL +(-10 -8 (-15 -1470 ((-107) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3225 (($ $) 26)) (-1470 (((-107) $) 25)) (-3985 (((-1056) $) 9)) (-4014 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 32)) (-3206 (((-1021) $) 10)) (-3220 (((-3 |#4| "failed") $) 24)) (-1966 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-517)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2132 (((-2 (|:| -3402 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20))) +(((-305 |#1| |#2| |#3| |#4|) (-1184) (-333) (-1130 |t#1|) (-1130 (-377 |t#2|)) (-312 |t#1| |t#2| |t#3|)) (T -305)) +((-4014 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))) (-1966 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) (-1966 (*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) (-1966 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1130 *2)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3402 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) (-3225 (*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))) (-3220 (*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) (-1966 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -4014 ((-383 |t#2| (-377 |t#2|) |t#3| |t#4|) $)) (-15 -1966 ($ (-383 |t#2| (-377 |t#2|) |t#3| |t#4|))) (-15 -1966 ($ |t#4|)) (-15 -1966 ($ |t#1| |t#1|)) (-15 -1966 ($ |t#1| |t#1| (-517))) (-15 -2132 ((-2 (|:| -3402 (-383 |t#2| (-377 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3225 ($ $)) (-15 -1470 ((-107) $)) (-15 -3220 ((-3 |t#4| "failed") $)) (-15 -1966 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ $) 32)) (-1470 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3651 (((-1153 |#4|) $) 124)) (-4014 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 30)) (-3206 (((-1021) $) NIL)) (-3220 (((-3 |#4| "failed") $) 35)) (-2414 (((-1153 |#4|) $) 117)) (-1966 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-517)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2132 (((-2 (|:| -3402 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2256 (((-787) $) 17)) (-2396 (($) 14 T CONST)) (-1547 (((-107) $ $) 20)) (-1654 (($ $) 27) (($ $ $) NIL)) (-1642 (($ $ $) 25)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 23))) +(((-306 |#1| |#2| |#3| |#4|) (-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2414 ((-1153 |#4|) $)) (-15 -3651 ((-1153 |#4|) $)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -306)) +((-2414 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))) (-3651 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5))))) +(-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2414 ((-1153 |#4|) $)) (-15 -3651 ((-1153 |#4|) $)))) +((-2051 (($ $ (-1073) |#2|) NIL) (($ $ (-583 (-1073)) (-583 |#2|)) 18) (($ $ (-583 (-265 |#2|))) 14) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-1449 (($ $ |#2|) 11))) +(((-307 |#1| |#2|) (-10 -8 (-15 -1449 (|#1| |#1| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-1073) |#2|))) (-308 |#2|) (-1003)) (T -307)) +NIL +(-10 -8 (-15 -1449 (|#1| |#1| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-1073) |#2|))) +((-1893 (($ (-1 |#1| |#1|) $) 6)) (-2051 (($ $ (-1073) |#1|) 17 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 16 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-583 (-265 |#1|))) 15 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 14 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-280 |#1|))) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-280 |#1|)))) (-1449 (($ $ |#1|) 11 (|has| |#1| (-258 |#1| |#1|))))) +(((-308 |#1|) (-1184) (-1003)) (T -308)) +((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1003))))) +(-13 (-10 -8 (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-258 |t#1| |t#1|)) (-6 (-258 |t#1| $)) |noBranch|) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |noBranch|) (IF (|has| |t#1| (-478 (-1073) |t#1|)) (-6 (-478 (-1073) |t#1|)) |noBranch|))) +(((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-1073)) $) NIL)) (-1636 (((-107)) 89) (((-107) (-107)) 90)) (-3726 (((-583 (-556 $)) $) NIL)) (-1865 (($ $) NIL)) (-1721 (($ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3766 (($ $) NIL)) (-1839 (($ $) NIL)) (-1701 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-286 |#3|)) 69) (((-3 $ "failed") (-1073)) 95) (((-3 $ "failed") (-286 (-517))) 56 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-377 (-874 (-517)))) 62 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-874 (-517))) 57 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-286 (-349))) 87 (|has| |#3| (-952 (-349)))) (((-3 $ "failed") (-377 (-874 (-349)))) 80 (|has| |#3| (-952 (-349)))) (((-3 $ "failed") (-874 (-349))) 75 (|has| |#3| (-952 (-349))))) (-3189 (((-556 $) $) NIL) ((|#3| $) NIL) (($ (-286 |#3|)) 70) (($ (-1073)) 96) (($ (-286 (-517))) 58 (|has| |#3| (-952 (-517)))) (($ (-377 (-874 (-517)))) 63 (|has| |#3| (-952 (-517)))) (($ (-874 (-517))) 59 (|has| |#3| (-952 (-517)))) (($ (-286 (-349))) 88 (|has| |#3| (-952 (-349)))) (($ (-377 (-874 (-349)))) 81 (|has| |#3| (-952 (-349)))) (($ (-874 (-349))) 77 (|has| |#3| (-952 (-349))))) (-3621 (((-3 $ "failed") $) NIL)) (-2645 (($) 10)) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) NIL)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1607 (((-1069 $) (-556 $)) NIL (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) NIL)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-3720 (($ $) 92)) (-1867 (($ $) NIL)) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) NIL)) (-1851 (($ (-109) $) 91) (($ (-109) (-583 $)) NIL)) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) NIL)) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-2624 (($ $) NIL)) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1630 (($ $) NIL) (($ $ $) NIL)) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL)) (-2135 (($ $) NIL (|has| $ (-961)))) (-1853 (($ $) NIL)) (-1711 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-556 $)) NIL) (($ |#3|) NIL) (($ (-517)) NIL) (((-286 |#3|) $) 94)) (-2961 (((-703)) NIL)) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-4074 (((-107) (-109)) NIL)) (-1788 (($ $) NIL)) (-1765 (($ $) NIL)) (-1777 (($ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 93 T CONST)) (-2409 (($) 22 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL))) +(((-309 |#1| |#2| |#3|) (-13 (-273) (-37 |#3|) (-952 |#3|) (-822 (-1073)) (-10 -8 (-15 -3189 ($ (-286 |#3|))) (-15 -1772 ((-3 $ "failed") (-286 |#3|))) (-15 -3189 ($ (-1073))) (-15 -1772 ((-3 $ "failed") (-1073))) (-15 -2256 ((-286 |#3|) $)) (IF (|has| |#3| (-952 (-517))) (PROGN (-15 -3189 ($ (-286 (-517)))) (-15 -1772 ((-3 $ "failed") (-286 (-517)))) (-15 -3189 ($ (-377 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-517))))) (-15 -3189 ($ (-874 (-517)))) (-15 -1772 ((-3 $ "failed") (-874 (-517))))) |noBranch|) (IF (|has| |#3| (-952 (-349))) (PROGN (-15 -3189 ($ (-286 (-349)))) (-15 -1772 ((-3 $ "failed") (-286 (-349)))) (-15 -3189 ($ (-377 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3189 ($ (-874 (-349)))) (-15 -1772 ((-3 $ "failed") (-874 (-349))))) |noBranch|) (-15 -3710 ($ $)) (-15 -3766 ($ $)) (-15 -2624 ($ $)) (-15 -1867 ($ $)) (-15 -3720 ($ $)) (-15 -1701 ($ $)) (-15 -1711 ($ $)) (-15 -1721 ($ $)) (-15 -1765 ($ $)) (-15 -1777 ($ $)) (-15 -1788 ($ $)) (-15 -1839 ($ $)) (-15 -1853 ($ $)) (-15 -1865 ($ $)) (-15 -2645 ($)) (-15 -1364 ((-583 (-1073)) $)) (-15 -1636 ((-107))) (-15 -1636 ((-107) (-107))))) (-583 (-1073)) (-583 (-1073)) (-357)) (T -309)) +((-3189 (*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3710 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-2624 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1867 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-3720 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1701 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1711 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1721 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1765 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1777 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1788 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1839 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1853 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1865 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-2645 (*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) (-1636 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357))))) +(-13 (-273) (-37 |#3|) (-952 |#3|) (-822 (-1073)) (-10 -8 (-15 -3189 ($ (-286 |#3|))) (-15 -1772 ((-3 $ "failed") (-286 |#3|))) (-15 -3189 ($ (-1073))) (-15 -1772 ((-3 $ "failed") (-1073))) (-15 -2256 ((-286 |#3|) $)) (IF (|has| |#3| (-952 (-517))) (PROGN (-15 -3189 ($ (-286 (-517)))) (-15 -1772 ((-3 $ "failed") (-286 (-517)))) (-15 -3189 ($ (-377 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-517))))) (-15 -3189 ($ (-874 (-517)))) (-15 -1772 ((-3 $ "failed") (-874 (-517))))) |noBranch|) (IF (|has| |#3| (-952 (-349))) (PROGN (-15 -3189 ($ (-286 (-349)))) (-15 -1772 ((-3 $ "failed") (-286 (-349)))) (-15 -3189 ($ (-377 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3189 ($ (-874 (-349)))) (-15 -1772 ((-3 $ "failed") (-874 (-349))))) |noBranch|) (-15 -3710 ($ $)) (-15 -3766 ($ $)) (-15 -2624 ($ $)) (-15 -1867 ($ $)) (-15 -3720 ($ $)) (-15 -1701 ($ $)) (-15 -1711 ($ $)) (-15 -1721 ($ $)) (-15 -1765 ($ $)) (-15 -1777 ($ $)) (-15 -1788 ($ $)) (-15 -1839 ($ $)) (-15 -1853 ($ $)) (-15 -1865 ($ $)) (-15 -2645 ($)) (-15 -1364 ((-583 (-1073)) $)) (-15 -1636 ((-107))) (-15 -1636 ((-107) (-107))))) +((-1893 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-310 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|))) (-1112) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-1112) (-1130 |#5|) (-1130 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -310)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1112)) (-4 *8 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *9 (-1130 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1130 (-377 *9)))))) +(-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|))) +((-2039 (((-2 (|:| |num| (-1153 |#3|)) (|:| |den| |#3|)) $) 37)) (-1967 (($ (-1153 (-377 |#3|)) (-1153 $)) NIL) (($ (-1153 (-377 |#3|))) NIL) (($ (-1153 |#3|) |#3|) 158)) (-3843 (((-1153 $) (-1153 $)) 142)) (-3407 (((-583 (-583 |#2|))) 115)) (-3384 (((-107) |#2| |#2|) 71)) (-3534 (($ $) 136)) (-1790 (((-703)) 30)) (-1870 (((-1153 $) (-1153 $)) 195)) (-2043 (((-583 (-874 |#2|)) (-1073)) 108)) (-2491 (((-107) $) 155)) (-3291 (((-107) $) 24) (((-107) $ |#2|) 28) (((-107) $ |#3|) 199)) (-3854 (((-3 |#3| "failed")) 48)) (-1786 (((-703)) 167)) (-1449 ((|#2| $ |#2| |#2|) 129)) (-3259 (((-3 |#3| "failed")) 66)) (-3127 (($ $ (-1 (-377 |#3|) (-377 |#3|)) (-703)) NIL) (($ $ (-1 (-377 |#3|) (-377 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 203) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-3696 (((-1153 $) (-1153 $)) 148)) (-3148 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 64)) (-4065 (((-107)) 32))) +(((-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3407 ((-583 (-583 |#2|)))) (-15 -2043 ((-583 (-874 |#2|)) (-1073))) (-15 -3148 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3854 ((-3 |#3| "failed"))) (-15 -3259 ((-3 |#3| "failed"))) (-15 -1449 (|#2| |#1| |#2| |#2|)) (-15 -3534 (|#1| |#1|)) (-15 -1967 (|#1| (-1153 |#3|) |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3291 ((-107) |#1| |#3|)) (-15 -3291 ((-107) |#1| |#2|)) (-15 -2039 ((-2 (|:| |num| (-1153 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3843 ((-1153 |#1|) (-1153 |#1|))) (-15 -1870 ((-1153 |#1|) (-1153 |#1|))) (-15 -3696 ((-1153 |#1|) (-1153 |#1|))) (-15 -3291 ((-107) |#1|)) (-15 -2491 ((-107) |#1|)) (-15 -3384 ((-107) |#2| |#2|)) (-15 -4065 ((-107))) (-15 -1786 ((-703))) (-15 -1790 ((-703))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -1967 (|#1| (-1153 (-377 |#3|)))) (-15 -1967 (|#1| (-1153 (-377 |#3|)) (-1153 |#1|)))) (-312 |#2| |#3| |#4|) (-1112) (-1130 |#2|) (-1130 (-377 |#3|))) (T -311)) +((-1790 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-1786 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-4065 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-3384 (*1 *2 *3 *3) (-12 (-4 *3 (-1112)) (-4 *5 (-1130 *3)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) (-3259 (*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-3854 (*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-583 (-874 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) (-3407 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6))))) +(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3407 ((-583 (-583 |#2|)))) (-15 -2043 ((-583 (-874 |#2|)) (-1073))) (-15 -3148 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3854 ((-3 |#3| "failed"))) (-15 -3259 ((-3 |#3| "failed"))) (-15 -1449 (|#2| |#1| |#2| |#2|)) (-15 -3534 (|#1| |#1|)) (-15 -1967 (|#1| (-1153 |#3|) |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3291 ((-107) |#1| |#3|)) (-15 -3291 ((-107) |#1| |#2|)) (-15 -2039 ((-2 (|:| |num| (-1153 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3843 ((-1153 |#1|) (-1153 |#1|))) (-15 -1870 ((-1153 |#1|) (-1153 |#1|))) (-15 -3696 ((-1153 |#1|) (-1153 |#1|))) (-15 -3291 ((-107) |#1|)) (-15 -2491 ((-107) |#1|)) (-15 -3384 ((-107) |#2| |#2|)) (-15 -4065 ((-107))) (-15 -1786 ((-703))) (-15 -1790 ((-703))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -1967 (|#1| (-1153 (-377 |#3|)))) (-15 -1967 (|#1| (-1153 (-377 |#3|)) (-1153 |#1|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2039 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 196)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 93 (|has| (-377 |#2|) (-333)))) (-1213 (($ $) 94 (|has| (-377 |#2|) (-333)))) (-2454 (((-107) $) 96 (|has| (-377 |#2|) (-333)))) (-3055 (((-623 (-377 |#2|)) (-1153 $)) 46) (((-623 (-377 |#2|))) 61)) (-1472 (((-377 |#2|) $) 52)) (-1926 (((-1082 (-843) (-703)) (-517)) 147 (|has| (-377 |#2|) (-319)))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 113 (|has| (-377 |#2|) (-333)))) (-2759 (((-388 $) $) 114 (|has| (-377 |#2|) (-333)))) (-1707 (((-107) $ $) 104 (|has| (-377 |#2|) (-333)))) (-1611 (((-703)) 87 (|has| (-377 |#2|) (-338)))) (-2752 (((-107)) 213)) (-1639 (((-107) |#1|) 212) (((-107) |#2|) 211)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 169 (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) 166)) (-3189 (((-517) $) 170 (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) 168 (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) 165)) (-1967 (($ (-1153 (-377 |#2|)) (-1153 $)) 48) (($ (-1153 (-377 |#2|))) 64) (($ (-1153 |#2|) |#2|) 189)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-377 |#2|) (-319)))) (-2518 (($ $ $) 108 (|has| (-377 |#2|) (-333)))) (-2410 (((-623 (-377 |#2|)) $ (-1153 $)) 53) (((-623 (-377 |#2|)) $) 59)) (-3355 (((-623 (-517)) (-623 $)) 164 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 163 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-377 |#2|))) (|:| |vec| (-1153 (-377 |#2|)))) (-623 $) (-1153 $)) 162) (((-623 (-377 |#2|)) (-623 $)) 161)) (-3843 (((-1153 $) (-1153 $)) 201)) (-3225 (($ |#3|) 158) (((-3 $ "failed") (-377 |#3|)) 155 (|has| (-377 |#2|) (-333)))) (-3621 (((-3 $ "failed") $) 34)) (-3407 (((-583 (-583 |#1|))) 182 (|has| |#1| (-338)))) (-3384 (((-107) |#1| |#1|) 217)) (-2261 (((-843)) 54)) (-3209 (($) 90 (|has| (-377 |#2|) (-338)))) (-2866 (((-107)) 210)) (-2666 (((-107) |#1|) 209) (((-107) |#2|) 208)) (-2497 (($ $ $) 107 (|has| (-377 |#2|) (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 102 (|has| (-377 |#2|) (-333)))) (-3534 (($ $) 188)) (-3442 (($) 149 (|has| (-377 |#2|) (-319)))) (-3391 (((-107) $) 150 (|has| (-377 |#2|) (-319)))) (-2378 (($ $ (-703)) 141 (|has| (-377 |#2|) (-319))) (($ $) 140 (|has| (-377 |#2|) (-319)))) (-3849 (((-107) $) 115 (|has| (-377 |#2|) (-333)))) (-3972 (((-843) $) 152 (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) 138 (|has| (-377 |#2|) (-319)))) (-3848 (((-107) $) 31)) (-1790 (((-703)) 220)) (-1870 (((-1153 $) (-1153 $)) 202)) (-1506 (((-377 |#2|) $) 51)) (-2043 (((-583 (-874 |#1|)) (-1073)) 183 (|has| |#1| (-333)))) (-1319 (((-3 $ "failed") $) 142 (|has| (-377 |#2|) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| (-377 |#2|) (-333)))) (-3777 ((|#3| $) 44 (|has| (-377 |#2|) (-333)))) (-1549 (((-843) $) 89 (|has| (-377 |#2|) (-338)))) (-3216 ((|#3| $) 156)) (-1365 (($ (-583 $)) 100 (|has| (-377 |#2|) (-333))) (($ $ $) 99 (|has| (-377 |#2|) (-333)))) (-3985 (((-1056) $) 9)) (-1909 (((-623 (-377 |#2|))) 197)) (-2041 (((-623 (-377 |#2|))) 199)) (-4118 (($ $) 116 (|has| (-377 |#2|) (-333)))) (-3454 (($ (-1153 |#2|) |#2|) 194)) (-3580 (((-623 (-377 |#2|))) 198)) (-1872 (((-623 (-377 |#2|))) 200)) (-1920 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-1784 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 195)) (-1924 (((-1153 $)) 206)) (-2216 (((-1153 $)) 207)) (-2491 (((-107) $) 205)) (-3291 (((-107) $) 204) (((-107) $ |#1|) 192) (((-107) $ |#2|) 191)) (-2836 (($) 143 (|has| (-377 |#2|) (-319)) CONST)) (-3448 (($ (-843)) 88 (|has| (-377 |#2|) (-338)))) (-3854 (((-3 |#2| "failed")) 185)) (-3206 (((-1021) $) 10)) (-1786 (((-703)) 219)) (-3220 (($) 160)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 101 (|has| (-377 |#2|) (-333)))) (-1401 (($ (-583 $)) 98 (|has| (-377 |#2|) (-333))) (($ $ $) 97 (|has| (-377 |#2|) (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 146 (|has| (-377 |#2|) (-319)))) (-3755 (((-388 $) $) 112 (|has| (-377 |#2|) (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 109 (|has| (-377 |#2|) (-333)))) (-2476 (((-3 $ "failed") $ $) 92 (|has| (-377 |#2|) (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| (-377 |#2|) (-333)))) (-3146 (((-703) $) 105 (|has| (-377 |#2|) (-333)))) (-1449 ((|#1| $ |#1| |#1|) 187)) (-3259 (((-3 |#2| "failed")) 186)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106 (|has| (-377 |#2|) (-333)))) (-3010 (((-377 |#2|) (-1153 $)) 47) (((-377 |#2|)) 60)) (-1620 (((-703) $) 151 (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) 139 (|has| (-377 |#2|) (-319)))) (-3127 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 123 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 122 (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-583 (-1073)) (-583 (-703))) 130 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073) (-703)) 131 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1073))) 132 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073)) 133 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 135 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 137 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2970 (((-623 (-377 |#2|)) (-1153 $) (-1 (-377 |#2|) (-377 |#2|))) 154 (|has| (-377 |#2|) (-333)))) (-2135 ((|#3|) 159)) (-1766 (($) 148 (|has| (-377 |#2|) (-319)))) (-4114 (((-1153 (-377 |#2|)) $ (-1153 $)) 50) (((-623 (-377 |#2|)) (-1153 $) (-1153 $)) 49) (((-1153 (-377 |#2|)) $) 66) (((-623 (-377 |#2|)) (-1153 $)) 65)) (-3645 (((-1153 (-377 |#2|)) $) 63) (($ (-1153 (-377 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 145 (|has| (-377 |#2|) (-319)))) (-3696 (((-1153 $) (-1153 $)) 203)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 |#2|)) 37) (($ (-377 (-517))) 86 (-3807 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-952 (-377 (-517)))))) (($ $) 91 (|has| (-377 |#2|) (-333)))) (-1328 (($ $) 144 (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) 43 (|has| (-377 |#2|) (-132)))) (-3669 ((|#3| $) 45)) (-2961 (((-703)) 29)) (-2025 (((-107)) 216)) (-2992 (((-107) |#1|) 215) (((-107) |#2|) 214)) (-1753 (((-1153 $)) 67)) (-3329 (((-107) $ $) 95 (|has| (-377 |#2|) (-333)))) (-3148 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-4065 (((-107)) 218)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| (-377 |#2|) (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 125 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 124 (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1073)) (-583 (-703))) 126 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073) (-703)) 127 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1073))) 128 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073)) 129 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 134 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 136 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 121 (|has| (-377 |#2|) (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 |#2|)) 39) (($ (-377 |#2|) $) 38) (($ (-377 (-517)) $) 120 (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) 119 (|has| (-377 |#2|) (-333))))) +(((-312 |#1| |#2| |#3|) (-1184) (-1112) (-1130 |t#1|) (-1130 (-377 |t#2|))) (T -312)) +((-1790 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703)))) (-1786 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703)))) (-4065 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3384 (*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2025 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2992 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2992 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-2752 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-1639 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-1639 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-2866 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2666 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2666 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-2216 (*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)))) (-1924 (*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-1870 (*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-1872 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2041 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-3580 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-1909 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4))))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4))))) (-3454 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3))))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))) (-3291 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3291 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3))))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) (-1449 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) (-3259 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3)))) (-3854 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3)))) (-3148 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-1112)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-874 *4))))) (-3407 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3)))))) +(-13 (-657 (-377 |t#2|) |t#3|) (-10 -8 (-15 -1790 ((-703))) (-15 -1786 ((-703))) (-15 -4065 ((-107))) (-15 -3384 ((-107) |t#1| |t#1|)) (-15 -2025 ((-107))) (-15 -2992 ((-107) |t#1|)) (-15 -2992 ((-107) |t#2|)) (-15 -2752 ((-107))) (-15 -1639 ((-107) |t#1|)) (-15 -1639 ((-107) |t#2|)) (-15 -2866 ((-107))) (-15 -2666 ((-107) |t#1|)) (-15 -2666 ((-107) |t#2|)) (-15 -2216 ((-1153 $))) (-15 -1924 ((-1153 $))) (-15 -2491 ((-107) $)) (-15 -3291 ((-107) $)) (-15 -3696 ((-1153 $) (-1153 $))) (-15 -1870 ((-1153 $) (-1153 $))) (-15 -3843 ((-1153 $) (-1153 $))) (-15 -1872 ((-623 (-377 |t#2|)))) (-15 -2041 ((-623 (-377 |t#2|)))) (-15 -3580 ((-623 (-377 |t#2|)))) (-15 -1909 ((-623 (-377 |t#2|)))) (-15 -2039 ((-2 (|:| |num| (-1153 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1967 ($ (-1153 |t#2|) |t#2|)) (-15 -1784 ((-2 (|:| |num| (-1153 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3454 ($ (-1153 |t#2|) |t#2|)) (-15 -1920 ((-2 (|:| |num| (-623 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3291 ((-107) $ |t#1|)) (-15 -3291 ((-107) $ |t#2|)) (-15 -3127 ($ $ (-1 |t#2| |t#2|))) (-15 -1967 ($ (-1153 |t#2|) |t#2|)) (-15 -3534 ($ $)) (-15 -1449 (|t#1| $ |t#1| |t#1|)) (-15 -3259 ((-3 |t#2| "failed"))) (-15 -3854 ((-3 |t#2| "failed"))) (-15 -3148 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-333)) (-15 -2043 ((-583 (-874 |t#1|)) (-1073))) |noBranch|) (IF (|has| |t#1| (-338)) (-15 -3407 ((-583 (-583 |t#1|)))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-37 (-377 |#2|)) . T) ((-37 $) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-106 (-377 |#2|) (-377 |#2|)) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-132))) ((-134) |has| (-377 |#2|) (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#3|) . T) ((-205 (-377 |#2|)) |has| (-377 |#2|) (-333)) ((-207) -3807 (|has| (-377 |#2|) (-319)) (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333)))) ((-217) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-262) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-278) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-333) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-372) |has| (-377 |#2|) (-319)) ((-338) -3807 (|has| (-377 |#2|) (-338)) (|has| (-377 |#2|) (-319))) ((-319) |has| (-377 |#2|) (-319)) ((-340 (-377 |#2|) |#3|) . T) ((-379 (-377 |#2|) |#3|) . T) ((-347 (-377 |#2|)) . T) ((-381 (-377 |#2|)) . T) ((-421) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-509) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 (-377 |#2|)) . T) ((-585 $) . T) ((-579 (-377 |#2|)) . T) ((-579 (-517)) |has| (-377 |#2|) (-579 (-517))) ((-650 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-650 (-377 |#2|)) . T) ((-650 $) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-657 (-377 |#2|) |#3|) . T) ((-659) . T) ((-822 (-1073)) -12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) ((-842) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-952 (-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) ((-952 (-377 |#2|)) . T) ((-952 (-517)) |has| (-377 |#2|) (-952 (-517))) ((-967 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-967 (-377 |#2|)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| (-377 |#2|) (-319)) ((-1112) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-832 |#1|) "failed") $) NIL)) (-3189 (((-832 |#1|) $) NIL)) (-1967 (($ (-1153 (-832 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-832 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-832 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-832 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-1506 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-832 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-1704 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-2729 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1069 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-3600 (($ $ (-1069 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3978 (((-879 (-1021))) NIL)) (-3220 (($) NIL (|has| (-832 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-832 |#1|))) NIL)) (-1766 (($) NIL (|has| (-832 |#1|) (-338)))) (-1224 (($) NIL (|has| (-832 |#1|) (-338)))) (-4114 (((-1153 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL))) +(((-313 |#1| |#2|) (-13 (-299 (-832 |#1|)) (-10 -7 (-15 -3978 ((-879 (-1021)))))) (-843) (-843)) (T -313)) +((-3978 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-313 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843))))) +(-13 (-299 (-832 |#1|)) (-10 -7 (-15 -3978 ((-879 (-1021)))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 46)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 43 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 113)) (-3189 ((|#1| $) 84)) (-1967 (($ (-1153 |#1|)) 102)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 93 (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) 96 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 128 (|has| |#1| (-338)))) (-3391 (((-107) $) 49 (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) 47 (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) 130 (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) 88) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) 138 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 145)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 70 (|has| |#1| (-338)))) (-3202 (((-107) $) 116)) (-3206 (((-1021) $) NIL)) (-3978 (((-879 (-1021))) 44)) (-3220 (($) 126 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 91 (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) 67) (((-843)) 68)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) 129 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 123 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) 94)) (-1766 (($) 127 (|has| |#1| (-338)))) (-1224 (($) 135 (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 59) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) 141) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 74)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 137)) (-1753 (((-1153 $)) 115) (((-1153 $) (-843)) 72)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 32 T CONST)) (-2409 (($) 19 T CONST)) (-4103 (($ $) 80 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) 48)) (-1667 (($ $ $) 143) (($ $ |#1|) 144)) (-1654 (($ $) 125) (($ $ $) NIL)) (-1642 (($ $ $) 61)) (** (($ $ (-843)) 147) (($ $ (-703)) 148) (($ $ (-517)) 146)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 75) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142))) +(((-314 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021)))))) (-319) (-1069 |#1|)) (T -314)) +((-3978 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1069 *3))))) +(-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021)))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) NIL) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3978 (((-879 (-1021))) NIL)) (-3220 (($) NIL (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-315 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021)))))) (-319) (-843)) (T -315)) +((-3978 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843))))) +(-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021)))))) +((-2987 (((-703) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) 40)) (-4004 (((-879 (-1021)) (-1069 |#1|)) 84)) (-2706 (((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) (-1069 |#1|)) 77)) (-3909 (((-623 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) 85)) (-3584 (((-3 (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) "failed") (-843)) 10)) (-3987 (((-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) (-843)) 15))) +(((-316 |#1|) (-10 -7 (-15 -4004 ((-879 (-1021)) (-1069 |#1|))) (-15 -2706 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) (-1069 |#1|))) (-15 -3909 ((-623 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -2987 ((-703) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3584 ((-3 (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) "failed") (-843))) (-15 -3987 ((-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) (-843)))) (-319)) (T -316)) +((-3987 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-3 (-1069 *4) (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-3584 (*1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-879 (-1021))) (-5 *1 (-316 *4))))) +(-10 -7 (-15 -4004 ((-879 (-1021)) (-1069 |#1|))) (-15 -2706 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) (-1069 |#1|))) (-15 -3909 ((-623 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -2987 ((-703) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3584 ((-3 (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) "failed") (-843))) (-15 -3987 ((-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) (-843)))) +((-2256 ((|#1| |#3|) 84) ((|#3| |#1|) 68))) +(((-317 |#1| |#2| |#3|) (-10 -7 (-15 -2256 (|#3| |#1|)) (-15 -2256 (|#1| |#3|))) (-299 |#2|) (-319) (-299 |#2|)) (T -317)) +((-2256 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) (-2256 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4))))) +(-10 -7 (-15 -2256 (|#3| |#1|)) (-15 -2256 (|#1| |#3|))) +((-3391 (((-107) $) 50)) (-3972 (((-765 (-843)) $) 21) (((-843) $) 51)) (-1319 (((-3 $ "failed") $) 16)) (-2836 (($) 9)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 91)) (-1620 (((-3 (-703) "failed") $ $) 70) (((-703) $) 59)) (-3127 (($ $ (-703)) NIL) (($ $) 8)) (-1766 (($) 44)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 33)) (-1328 (((-3 $ "failed") $) 39) (($ $) 38))) +(((-318 |#1|) (-10 -8 (-15 -3972 ((-843) |#1|)) (-15 -1620 ((-703) |#1|)) (-15 -3391 ((-107) |#1|)) (-15 -1766 (|#1|)) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -1328 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1620 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3972 ((-765 (-843)) |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)))) (-319)) (T -318)) +NIL +(-10 -8 (-15 -3972 ((-843) |#1|)) (-15 -1620 ((-703) |#1|)) (-15 -3391 ((-107) |#1|)) (-15 -1766 (|#1|)) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -1328 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1620 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3972 ((-765 (-843)) |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1926 (((-1082 (-843) (-703)) (-517)) 93)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-1611 (((-703)) 103)) (-3092 (($) 17 T CONST)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-3209 (($) 106)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3442 (($) 91)) (-3391 (((-107) $) 90)) (-2378 (($ $) 79) (($ $ (-703)) 78)) (-3849 (((-107) $) 71)) (-3972 (((-765 (-843)) $) 81) (((-843) $) 88)) (-3848 (((-107) $) 31)) (-1319 (((-3 $ "failed") $) 102)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1549 (((-843) $) 105)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2836 (($) 101 T CONST)) (-3448 (($ (-843)) 104)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 94)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-3 (-703) "failed") $ $) 80) (((-703) $) 89)) (-3127 (($ $ (-703)) 99) (($ $) 97)) (-1766 (($) 92)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 95)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1328 (((-3 $ "failed") $) 82) (($ $) 96)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-703)) 100) (($ $) 98)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) +(((-319) (-1184)) (T -319)) +((-1328 (*1 *1 *1) (-4 *1 (-319))) (-3870 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1153 *1)))) (-1226 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))))) (-1926 (*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1082 (-843) (-703))))) (-1766 (*1 *1) (-4 *1 (-319))) (-3442 (*1 *1) (-4 *1 (-319))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-843)))) (-2174 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-372) (-338) (-1049) (-207) (-10 -8 (-15 -1328 ($ $)) (-15 -3870 ((-3 (-1153 $) "failed") (-623 $))) (-15 -1226 ((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517)))))) (-15 -1926 ((-1082 (-843) (-703)) (-517))) (-15 -1766 ($)) (-15 -3442 ($)) (-15 -3391 ((-107) $)) (-15 -1620 ((-703) $)) (-15 -3972 ((-843) $)) (-15 -2174 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-207) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) . T) ((-338) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) . T) ((-1112) . T)) +((-4140 (((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|) 51)) (-2216 (((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 49))) +(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|))) (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $)))) (-1130 |#1|) (-379 |#1| |#2|)) (T -320)) +((-4140 (*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2216 (*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4))))) +(-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-2987 (((-703)) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-832 |#1|) "failed") $) NIL)) (-3189 (((-832 |#1|) $) NIL)) (-1967 (($ (-1153 (-832 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-832 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-832 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-832 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-1506 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-832 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-1704 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-2729 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1069 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-3600 (($ $ (-1069 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-1298 (((-1153 (-583 (-2 (|:| -3199 (-832 |#1|)) (|:| -3448 (-1021)))))) NIL)) (-3786 (((-623 (-832 |#1|))) NIL)) (-3220 (($) NIL (|has| (-832 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-832 |#1|))) NIL)) (-1766 (($) NIL (|has| (-832 |#1|) (-338)))) (-1224 (($) NIL (|has| (-832 |#1|) (-338)))) (-4114 (((-1153 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL))) +(((-321 |#1| |#2|) (-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 (-832 |#1|)) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 (-832 |#1|)))) (-15 -2987 ((-703))))) (-843) (-843)) (T -321)) +((-1298 (*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 (-832 *3)) (|:| -3448 (-1021)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-3786 (*1 *2) (-12 (-5 *2 (-623 (-832 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2987 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843))))) +(-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 (-832 |#1|)) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 (-832 |#1|)))) (-15 -2987 ((-703))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 74)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) 92) (($ $ (-843)) 90 (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 148 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-2987 (((-703)) 89)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) 162 (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 111)) (-3189 ((|#1| $) 91)) (-1967 (($ (-1153 |#1|)) 57)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) 158 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 149 (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) 97 (|has| |#1| (-338)))) (-2434 (((-107) $) 175 (|has| |#1| (-338)))) (-1506 ((|#1| $) 94) (($ $ (-843)) 93 (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) 188) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) 133 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) 73 (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) 70 (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) 82 (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) 69 (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 191)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 136 (|has| |#1| (-338)))) (-3202 (((-107) $) 107)) (-3206 (((-1021) $) NIL)) (-1298 (((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) 83)) (-3786 (((-623 |#1|)) 87)) (-3220 (($) 96 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 150 (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) 151)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) 62)) (-2135 (((-1069 |#1|)) 152)) (-1766 (($) 132 (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 105) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) 123) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 56)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 156)) (-1753 (((-1153 $)) 172) (((-1153 $) (-843)) 100)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 30 T CONST)) (-2409 (($) 22 T CONST)) (-4103 (($ $) 106 (|has| |#1| (-338))) (($ $ (-703)) 98 (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) 60)) (-1667 (($ $ $) 103) (($ $ |#1|) 104)) (-1654 (($ $) 177) (($ $ $) 181)) (-1642 (($ $ $) 179)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 137)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 185) (($ $ $) 142) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 102))) +(((-322 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703))))) (-319) (-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (T -322)) +((-1298 (*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) *2)))) (-3786 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021))))))))) (-2987 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))))))) +(-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-2987 (((-703)) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) NIL) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-1298 (((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) NIL)) (-3786 (((-623 |#1|)) NIL)) (-3220 (($) NIL (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-323 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703))))) (-319) (-843)) (T -323)) +((-1298 (*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))) (-3786 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))) (-2987 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843))))) +(-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-832 |#1|) "failed") $) NIL)) (-3189 (((-832 |#1|) $) NIL)) (-1967 (($ (-1153 (-832 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-832 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-832 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-832 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-1506 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-832 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-1704 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-2729 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1069 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-3600 (($ $ (-1069 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| (-832 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-832 |#1|))) NIL)) (-1766 (($) NIL (|has| (-832 |#1|) (-338)))) (-1224 (($) NIL (|has| (-832 |#1|) (-338)))) (-4114 (((-1153 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL))) +(((-324 |#1| |#2|) (-299 (-832 |#1|)) (-843) (-843)) (T -324)) +NIL +(-299 (-832 |#1|)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 119 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) 138 (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 91)) (-3189 ((|#1| $) 88)) (-1967 (($ (-1153 |#1|)) 83)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) 80 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 39 (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) 120 (|has| |#1| (-338)))) (-2434 (((-107) $) 72 (|has| |#1| (-338)))) (-1506 ((|#1| $) 38) (($ $ (-843)) 40 (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) 62) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) 95 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 93 (|has| |#1| (-338)))) (-3202 (((-107) $) 140)) (-3206 (((-1021) $) NIL)) (-3220 (($) 35 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 113 (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) 137)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) 56)) (-2135 (((-1069 |#1|)) 86)) (-1766 (($) 125 (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 50) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) 136) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 85)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 142)) (-1753 (((-1153 $)) 107) (((-1153 $) (-843)) 46)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 109 T CONST)) (-2409 (($) 31 T CONST)) (-4103 (($ $) 65 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) 105)) (-1667 (($ $ $) 97) (($ $ |#1|) 98)) (-1654 (($ $) 78) (($ $ $) 103)) (-1642 (($ $ $) 101)) (** (($ $ (-843)) NIL) (($ $ (-703)) 41) (($ $ (-517)) 128)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 53) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74))) +(((-325 |#1| |#2|) (-299 |#1|) (-319) (-1069 |#1|)) (T -325)) +NIL +(-299 |#1|) +((-3708 ((|#1| (-1069 |#2|)) 51))) +(((-326 |#1| |#2|) (-10 -7 (-15 -3708 (|#1| (-1069 |#2|)))) (-13 (-372) (-10 -7 (-15 -2256 (|#1| |#2|)) (-15 -1549 ((-843) |#1|)) (-15 -1753 ((-1153 |#1|) (-843))) (-15 -4103 (|#1| |#1|)))) (-319)) (T -326)) +((-3708 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2256 (*2 *4)) (-15 -1549 ((-843) *2)) (-15 -1753 ((-1153 *2) (-843))) (-15 -4103 (*2 *2))))) (-5 *1 (-326 *2 *4))))) +(-10 -7 (-15 -3708 (|#1| (-1069 |#2|)))) +((-1825 (((-879 (-1069 |#1|)) (-1069 |#1|)) 36)) (-3209 (((-1069 |#1|) (-843) (-843)) 109) (((-1069 |#1|) (-843)) 108)) (-3391 (((-107) (-1069 |#1|)) 81)) (-2540 (((-843) (-843)) 71)) (-1186 (((-843) (-843)) 73)) (-3397 (((-843) (-843)) 69)) (-2434 (((-107) (-1069 |#1|)) 85)) (-1418 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 97)) (-4068 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 100)) (-2538 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 99)) (-3318 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 98)) (-2176 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 94)) (-3428 (((-1069 |#1|) (-1069 |#1|)) 62)) (-2804 (((-1069 |#1|) (-843)) 103)) (-2543 (((-1069 |#1|) (-843)) 106)) (-2020 (((-1069 |#1|) (-843)) 105)) (-3386 (((-1069 |#1|) (-843)) 104)) (-3868 (((-1069 |#1|) (-843)) 101))) +(((-327 |#1|) (-10 -7 (-15 -3391 ((-107) (-1069 |#1|))) (-15 -2434 ((-107) (-1069 |#1|))) (-15 -3397 ((-843) (-843))) (-15 -2540 ((-843) (-843))) (-15 -1186 ((-843) (-843))) (-15 -3868 ((-1069 |#1|) (-843))) (-15 -2804 ((-1069 |#1|) (-843))) (-15 -3386 ((-1069 |#1|) (-843))) (-15 -2020 ((-1069 |#1|) (-843))) (-15 -2543 ((-1069 |#1|) (-843))) (-15 -2176 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -1418 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3318 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -2538 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -4068 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3209 ((-1069 |#1|) (-843))) (-15 -3209 ((-1069 |#1|) (-843) (-843))) (-15 -3428 ((-1069 |#1|) (-1069 |#1|))) (-15 -1825 ((-879 (-1069 |#1|)) (-1069 |#1|)))) (-319)) (T -327)) +((-1825 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-879 (-1069 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1069 *4)))) (-3428 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3209 (*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-4068 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2538 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3318 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1418 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2176 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-1186 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-2540 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-3397 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4))))) +(-10 -7 (-15 -3391 ((-107) (-1069 |#1|))) (-15 -2434 ((-107) (-1069 |#1|))) (-15 -3397 ((-843) (-843))) (-15 -2540 ((-843) (-843))) (-15 -1186 ((-843) (-843))) (-15 -3868 ((-1069 |#1|) (-843))) (-15 -2804 ((-1069 |#1|) (-843))) (-15 -3386 ((-1069 |#1|) (-843))) (-15 -2020 ((-1069 |#1|) (-843))) (-15 -2543 ((-1069 |#1|) (-843))) (-15 -2176 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -1418 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3318 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -2538 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -4068 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3209 ((-1069 |#1|) (-843))) (-15 -3209 ((-1069 |#1|) (-843) (-843))) (-15 -3428 ((-1069 |#1|) (-1069 |#1|))) (-15 -1825 ((-879 (-1069 |#1|)) (-1069 |#1|)))) +((-3179 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 33))) +(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -3179 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-319) (-1130 |#1|) (-1130 |#2|)) (T -328)) +((-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3))))) +(-10 -7 (-15 -3179 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) NIL) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-329 |#1| |#2|) (-299 |#1|) (-319) (-843)) (T -329)) +NIL +(-299 |#1|) +((-3958 (((-107) (-583 (-874 |#1|))) 31)) (-1759 (((-583 (-874 |#1|)) (-583 (-874 |#1|))) 42)) (-2066 (((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|))) 38))) +(((-330 |#1| |#2|) (-10 -7 (-15 -3958 ((-107) (-583 (-874 |#1|)))) (-15 -2066 ((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|)))) (-15 -1759 ((-583 (-874 |#1|)) (-583 (-874 |#1|))))) (-421) (-583 (-1073))) (T -330)) +((-1759 (*1 *2 *2) (-12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) (-2066 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1073)))))) +(-10 -7 (-15 -3958 ((-107) (-583 (-874 |#1|)))) (-15 -2066 ((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|)))) (-15 -1759 ((-583 (-874 |#1|)) (-583 (-874 |#1|))))) +((-2750 (((-107) $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) 14)) (-3466 ((|#1| $ (-517)) NIL)) (-3882 (((-517) $ (-517)) NIL)) (-3420 (($ (-1 |#1| |#1|) $) 32)) (-2125 (($ (-1 (-517) (-517)) $) 24)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 26)) (-3206 (((-1021) $) NIL)) (-2879 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $) 28)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 38) (($ |#1|) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 9 T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ |#1| (-517)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-331 |#1|) (-13 (-442) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -1611 ((-703) $)) (-15 -3882 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-517) (-517)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $)))) (-1003)) (T -331)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-3882 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (-2125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-331 *3)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1003))))) +(-13 (-442) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -1611 ((-703) $)) (-15 -3882 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-517) (-517)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $)))) +((-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 13)) (-1213 (($ $) 14)) (-2759 (((-388 $) $) 29)) (-3849 (((-107) $) 25)) (-4118 (($ $) 18)) (-1401 (($ $ $) 22) (($ (-583 $)) NIL)) (-3755 (((-388 $) $) 30)) (-2476 (((-3 $ "failed") $ $) 21)) (-3146 (((-703) $) 24)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 34)) (-3329 (((-107) $ $) 15)) (-1667 (($ $ $) 32))) +(((-332 |#1|) (-10 -8 (-15 -1667 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|))) (-333)) (T -332)) +NIL +(-10 -8 (-15 -1667 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) +(((-333) (-1184)) (T -333)) +((-1667 (*1 *1 *1 *1) (-4 *1 (-333)))) +(-13 (-278) (-1112) (-217) (-10 -8 (-15 -1667 ($ $ $)) (-6 -4178) (-6 -4172))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T)) +((-2750 (((-107) $ $) 7)) (-3733 ((|#2| $ |#2|) 13)) (-1723 (($ $ (-1056)) 18)) (-1457 ((|#2| $) 14)) (-1513 (($ |#1|) 20) (($ |#1| (-1056)) 19)) (-1207 ((|#1| $) 16)) (-3985 (((-1056) $) 9)) (-2845 (((-1056) $) 15)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2463 (($ $) 17)) (-1547 (((-107) $ $) 6))) +(((-334 |#1| |#2|) (-1184) (-1003) (-1003)) (T -334)) +((-1513 (*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2463 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1056)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3733 (*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) +(-13 (-1003) (-10 -8 (-15 -1513 ($ |t#1|)) (-15 -1513 ($ |t#1| (-1056))) (-15 -1723 ($ $ (-1056))) (-15 -2463 ($ $)) (-15 -1207 (|t#1| $)) (-15 -2845 ((-1056) $)) (-15 -1457 (|t#2| $)) (-15 -3733 (|t#2| $ |t#2|)))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-3733 ((|#1| $ |#1|) 29)) (-1723 (($ $ (-1056)) 22)) (-2595 (((-3 |#1| "failed") $) 28)) (-1457 ((|#1| $) 26)) (-1513 (($ (-358)) 21) (($ (-358) (-1056)) 20)) (-1207 (((-358) $) 24)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) 25)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 19)) (-2463 (($ $) 23)) (-1547 (((-107) $ $) 18))) +(((-335 |#1|) (-13 (-334 (-358) |#1|) (-10 -8 (-15 -2595 ((-3 |#1| "failed") $)))) (-1003)) (T -335)) +((-2595 (*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1003))))) +(-13 (-334 (-358) |#1|) (-10 -8 (-15 -2595 ((-3 |#1| "failed") $)))) +((-3533 (((-1153 (-623 |#2|)) (-1153 $)) 61)) (-2619 (((-623 |#2|) (-1153 $)) 119)) (-2299 ((|#2| $) 32)) (-3343 (((-623 |#2|) $ (-1153 $)) 123)) (-2158 (((-3 $ "failed") $) 75)) (-3866 ((|#2| $) 35)) (-2417 (((-1069 |#2|) $) 83)) (-4069 ((|#2| (-1153 $)) 106)) (-2085 (((-1069 |#2|) $) 28)) (-2362 (((-107)) 100)) (-1967 (($ (-1153 |#2|) (-1153 $)) 113)) (-3621 (((-3 $ "failed") $) 79)) (-2754 (((-107)) 95)) (-3983 (((-107)) 90)) (-3414 (((-107)) 53)) (-2010 (((-623 |#2|) (-1153 $)) 117)) (-1188 ((|#2| $) 31)) (-3914 (((-623 |#2|) $ (-1153 $)) 122)) (-1680 (((-3 $ "failed") $) 73)) (-3913 ((|#2| $) 34)) (-4121 (((-1069 |#2|) $) 82)) (-1988 ((|#2| (-1153 $)) 104)) (-2190 (((-1069 |#2|) $) 26)) (-3606 (((-107)) 99)) (-4045 (((-107)) 92)) (-1286 (((-107)) 51)) (-1848 (((-107)) 87)) (-1697 (((-107)) 101)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) 111)) (-1561 (((-107)) 97)) (-1582 (((-583 (-1153 |#2|))) 86)) (-1316 (((-107)) 98)) (-2687 (((-107)) 96)) (-2524 (((-107)) 46)) (-3642 (((-107)) 102))) +(((-336 |#1| |#2|) (-10 -8 (-15 -2417 ((-1069 |#2|) |#1|)) (-15 -4121 ((-1069 |#2|) |#1|)) (-15 -1582 ((-583 (-1153 |#2|)))) (-15 -2158 ((-3 |#1| "failed") |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -3983 ((-107))) (-15 -4045 ((-107))) (-15 -2754 ((-107))) (-15 -1286 ((-107))) (-15 -3414 ((-107))) (-15 -1848 ((-107))) (-15 -3642 ((-107))) (-15 -1697 ((-107))) (-15 -2362 ((-107))) (-15 -3606 ((-107))) (-15 -2524 ((-107))) (-15 -1316 ((-107))) (-15 -2687 ((-107))) (-15 -1561 ((-107))) (-15 -2085 ((-1069 |#2|) |#1|)) (-15 -2190 ((-1069 |#2|) |#1|)) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3866 (|#2| |#1|)) (-15 -3913 (|#2| |#1|)) (-15 -2299 (|#2| |#1|)) (-15 -1188 (|#2| |#1|)) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|)))) (-337 |#2|) (-156)) (T -336)) +((-1561 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2687 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1316 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2524 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3606 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2362 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1697 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3642 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1848 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3414 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1286 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2754 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4045 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3983 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1582 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1153 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4))))) +(-10 -8 (-15 -2417 ((-1069 |#2|) |#1|)) (-15 -4121 ((-1069 |#2|) |#1|)) (-15 -1582 ((-583 (-1153 |#2|)))) (-15 -2158 ((-3 |#1| "failed") |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -3983 ((-107))) (-15 -4045 ((-107))) (-15 -2754 ((-107))) (-15 -1286 ((-107))) (-15 -3414 ((-107))) (-15 -1848 ((-107))) (-15 -3642 ((-107))) (-15 -1697 ((-107))) (-15 -2362 ((-107))) (-15 -3606 ((-107))) (-15 -2524 ((-107))) (-15 -1316 ((-107))) (-15 -2687 ((-107))) (-15 -1561 ((-107))) (-15 -2085 ((-1069 |#2|) |#1|)) (-15 -2190 ((-1069 |#2|) |#1|)) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3866 (|#2| |#1|)) (-15 -3913 (|#2| |#1|)) (-15 -2299 (|#2| |#1|)) (-15 -1188 (|#2| |#1|)) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3295 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3533 (((-1153 (-623 |#1|)) (-1153 $)) 78)) (-3456 (((-1153 $)) 81)) (-3092 (($) 17 T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1450 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2619 (((-623 |#1|) (-1153 $)) 65)) (-2299 ((|#1| $) 74)) (-3343 (((-623 |#1|) $ (-1153 $)) 76)) (-2158 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-3380 (($ $ (-843)) 28)) (-3866 ((|#1| $) 72)) (-2417 (((-1069 |#1|) $) 42 (|has| |#1| (-509)))) (-4069 ((|#1| (-1153 $)) 67)) (-2085 (((-1069 |#1|) $) 63)) (-2362 (((-107)) 57)) (-1967 (($ (-1153 |#1|) (-1153 $)) 69)) (-3621 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-2261 (((-843)) 80)) (-3962 (((-107)) 54)) (-3730 (($ $ (-843)) 33)) (-2754 (((-107)) 50)) (-3983 (((-107)) 48)) (-3414 (((-107)) 52)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-1793 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-2010 (((-623 |#1|) (-1153 $)) 66)) (-1188 ((|#1| $) 75)) (-3914 (((-623 |#1|) $ (-1153 $)) 77)) (-1680 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-2572 (($ $ (-843)) 29)) (-3913 ((|#1| $) 73)) (-4121 (((-1069 |#1|) $) 43 (|has| |#1| (-509)))) (-1988 ((|#1| (-1153 $)) 68)) (-2190 (((-1069 |#1|) $) 64)) (-3606 (((-107)) 58)) (-3985 (((-1056) $) 9)) (-4045 (((-107)) 49)) (-1286 (((-107)) 51)) (-1848 (((-107)) 53)) (-3206 (((-1021) $) 10)) (-1697 (((-107)) 56)) (-4114 (((-1153 |#1|) $ (-1153 $)) 71) (((-623 |#1|) (-1153 $) (-1153 $)) 70)) (-2278 (((-583 (-874 |#1|)) (-1153 $)) 79)) (-3394 (($ $ $) 25)) (-1561 (((-107)) 62)) (-2256 (((-787) $) 11)) (-1582 (((-583 (-1153 |#1|))) 44 (|has| |#1| (-509)))) (-3917 (($ $ $ $) 26)) (-1316 (((-107)) 60)) (-1956 (($ $ $) 24)) (-2687 (((-107)) 61)) (-2524 (((-107)) 59)) (-3642 (((-107)) 55)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-337 |#1|) (-1184) (-156)) (T -337)) +((-3456 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-337 *3)))) (-2261 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-843)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))))) (-3914 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3343 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1188 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-4114 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 *4)))) (-4114 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3)))) (-1561 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2687 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1316 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2524 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3606 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2362 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1697 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3642 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3962 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1848 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3414 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1286 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2754 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-4045 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3983 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3621 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1680 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2158 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1582 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1153 *3))))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3)))) (-2417 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3)))) (-3550 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) (-2257 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) (-1793 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1450 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-3295 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156))))) +(-13 (-677 |t#1|) (-10 -8 (-15 -3456 ((-1153 $))) (-15 -2261 ((-843))) (-15 -2278 ((-583 (-874 |t#1|)) (-1153 $))) (-15 -3533 ((-1153 (-623 |t#1|)) (-1153 $))) (-15 -3914 ((-623 |t#1|) $ (-1153 $))) (-15 -3343 ((-623 |t#1|) $ (-1153 $))) (-15 -1188 (|t#1| $)) (-15 -2299 (|t#1| $)) (-15 -3913 (|t#1| $)) (-15 -3866 (|t#1| $)) (-15 -4114 ((-1153 |t#1|) $ (-1153 $))) (-15 -4114 ((-623 |t#1|) (-1153 $) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|) (-1153 $))) (-15 -1988 (|t#1| (-1153 $))) (-15 -4069 (|t#1| (-1153 $))) (-15 -2010 ((-623 |t#1|) (-1153 $))) (-15 -2619 ((-623 |t#1|) (-1153 $))) (-15 -2190 ((-1069 |t#1|) $)) (-15 -2085 ((-1069 |t#1|) $)) (-15 -1561 ((-107))) (-15 -2687 ((-107))) (-15 -1316 ((-107))) (-15 -2524 ((-107))) (-15 -3606 ((-107))) (-15 -2362 ((-107))) (-15 -1697 ((-107))) (-15 -3642 ((-107))) (-15 -3962 ((-107))) (-15 -1848 ((-107))) (-15 -3414 ((-107))) (-15 -1286 ((-107))) (-15 -2754 ((-107))) (-15 -4045 ((-107))) (-15 -3983 ((-107))) (IF (|has| |t#1| (-509)) (PROGN (-15 -3621 ((-3 $ "failed") $)) (-15 -1680 ((-3 $ "failed") $)) (-15 -2158 ((-3 $ "failed") $)) (-15 -1582 ((-583 (-1153 |t#1|)))) (-15 -4121 ((-1069 |t#1|) $)) (-15 -2417 ((-1069 |t#1|) $)) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -1793 ((-3 $ "failed"))) (-15 -1450 ((-3 $ "failed"))) (-15 -3295 ((-3 $ "failed"))) (-6 -4177)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T)) +((-2750 (((-107) $ $) 7)) (-1611 (((-703)) 16)) (-3209 (($) 13)) (-1549 (((-843) $) 14)) (-3985 (((-1056) $) 9)) (-3448 (($ (-843)) 15)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6))) +(((-338) (-1184)) (T -338)) +((-1611 (*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-338)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-843)))) (-3209 (*1 *1) (-4 *1 (-338)))) +(-13 (-1003) (-10 -8 (-15 -1611 ((-703))) (-15 -3448 ($ (-843))) (-15 -1549 ((-843) $)) (-15 -3209 ($)))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-3055 (((-623 |#2|) (-1153 $)) 40)) (-1967 (($ (-1153 |#2|) (-1153 $)) 35)) (-2410 (((-623 |#2|) $ (-1153 $)) 43)) (-3010 ((|#2| (-1153 $)) 13)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) 25))) +(((-339 |#1| |#2| |#3|) (-10 -8 (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|)))) (-340 |#2| |#3|) (-156) (-1130 |#2|)) (T -339)) +NIL +(-10 -8 (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3055 (((-623 |#1|) (-1153 $)) 46)) (-1472 ((|#1| $) 52)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48)) (-2410 (((-623 |#1|) $ (-1153 $)) 53)) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-843)) 54)) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 51)) (-3777 ((|#2| $) 44 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3010 ((|#1| (-1153 $)) 47)) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1328 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3669 ((|#2| $) 45)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-340 |#1| |#2|) (-1184) (-156) (-1130 |t#1|)) (T -340)) +((-2261 (*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-843)))) (-2410 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) (-4114 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *4)))) (-4114 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1130 *4)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1130 *2)) (-4 *2 (-156)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1130 *3))))) +(-13 (-37 |t#1|) (-10 -8 (-15 -2261 ((-843))) (-15 -2410 ((-623 |t#1|) $ (-1153 $))) (-15 -1472 (|t#1| $)) (-15 -1506 (|t#1| $)) (-15 -4114 ((-1153 |t#1|) $ (-1153 $))) (-15 -4114 ((-623 |t#1|) (-1153 $) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|) (-1153 $))) (-15 -3010 (|t#1| (-1153 $))) (-15 -3055 ((-623 |t#1|) (-1153 $))) (-15 -3669 (|t#2| $)) (IF (|has| |t#1| (-333)) (-15 -3777 (|t#2| $)) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-3905 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3225 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1893 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1108) (-343 |#1|) (-1108) (-343 |#3|)) (T -341)) +((-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5))))) +(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2044 (((-107) (-1 (-107) |#2| |#2|) $) NIL) (((-107) $) 18)) (-2034 (($ (-1 (-107) |#2| |#2|) $) NIL) (($ $) 28)) (-3166 (($ (-1 (-107) |#2| |#2|) $) 27) (($ $) 22)) (-3093 (($ $) 25)) (-2607 (((-517) (-1 (-107) |#2|) $) NIL) (((-517) |#2| $) 11) (((-517) |#2| $ (-517)) NIL)) (-3237 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-342 |#1| |#2|) (-10 -8 (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3166 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) (-343 |#2|) (-1108)) (T -342)) +NIL +(-10 -8 (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3166 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-343 |#1|) (-1184) (-1108)) (T -343)) +((-3237 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)))) (-3166 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-2044 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-2607 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-517)))) (-2607 (*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-517)))) (-2607 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) (-3166 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-779)) (-5 *2 (-107)))) (-1906 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-4020 (*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)))) (-2034 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-2034 (*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779))))) +(-13 (-588 |t#1|) (-10 -8 (-6 -4180) (-15 -3237 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -3093 ($ $)) (-15 -3166 ($ (-1 (-107) |t#1| |t#1|) $)) (-15 -2044 ((-107) (-1 (-107) |t#1| |t#1|) $)) (-15 -2607 ((-517) (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -2607 ((-517) |t#1| $)) (-15 -2607 ((-517) |t#1| $ (-517)))) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-6 (-779)) (-15 -3237 ($ $ $)) (-15 -3166 ($ $)) (-15 -2044 ((-107) $))) |noBranch|) (IF (|has| $ (-6 -4181)) (PROGN (-15 -1906 ($ $ $ (-517))) (-15 -4020 ($ $)) (-15 -2034 ($ (-1 (-107) |t#1| |t#1|) $)) (IF (|has| |t#1| (-779)) (-15 -2034 ($ $)) |noBranch|)) |noBranch|))) +(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T)) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3463 (((-583 |#1|) $) 32)) (-3883 (($ $ (-703)) 33)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3791 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 36)) (-2402 (($ $) 34)) (-2208 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 37)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2051 (($ $ |#1| $) 31) (($ $ (-583 |#1|) (-583 $)) 30)) (-3688 (((-703) $) 38)) (-2276 (($ $ $) 29)) (-2256 (((-787) $) 11) (($ |#1|) 41) (((-1166 |#1| |#2|) $) 40) (((-1175 |#1| |#2|) $) 39)) (-1931 ((|#2| (-1175 |#1| |#2|) $) 42)) (-2396 (($) 18 T CONST)) (-1691 (($ (-608 |#1|)) 35)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#2|) 28 (|has| |#2| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-344 |#1| |#2|) (-1184) (-779) (-156)) (T -344)) +((-1931 (*1 *2 *3 *1) (-12 (-5 *3 (-1175 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) (-2256 (*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1166 *3 *4)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1175 *3 *4)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) (-2208 (*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3791 (*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))) (-2402 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3883 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) (-2051 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156))))) +(-13 (-574 |t#2|) (-10 -8 (-15 -1931 (|t#2| (-1175 |t#1| |t#2|) $)) (-15 -2256 ($ |t#1|)) (-15 -2256 ((-1166 |t#1| |t#2|) $)) (-15 -2256 ((-1175 |t#1| |t#2|) $)) (-15 -3688 ((-703) $)) (-15 -2208 ((-1175 |t#1| |t#2|) (-1175 |t#1| |t#2|) $)) (-15 -3791 ((-1175 |t#1| |t#2|) (-1175 |t#1| |t#2|) $)) (-15 -1691 ($ (-608 |t#1|))) (-15 -2402 ($ $)) (-15 -3883 ($ $ (-703))) (-15 -3463 ((-583 |t#1|) $)) (-15 -2051 ($ $ |t#1| $)) (-15 -2051 ($ $ (-583 |t#1|) (-583 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-574 |#2|) . T) ((-650 |#2|) . T) ((-967 |#2|) . T) ((-1003) . T)) +((-1489 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 22)) (-1380 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 12)) (-2773 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 21))) +(((-345 |#1| |#2|) (-10 -7 (-15 -1380 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2773 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1489 (|#2| (-1 (-107) |#1| |#1|) |#2|))) (-1108) (-13 (-343 |#1|) (-10 -7 (-6 -4181)))) (T -345)) +((-1489 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))) (-2773 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))) (-1380 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181))))))) +(-10 -7 (-15 -1380 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2773 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1489 (|#2| (-1 (-107) |#1| |#1|) |#2|))) +((-3355 (((-623 |#2|) (-623 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 19) (((-623 (-517)) (-623 $)) 13))) +(((-346 |#1| |#2|) (-10 -8 (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 |#2|) (-623 |#1|)))) (-347 |#2|) (-961)) (T -346)) +NIL +(-10 -8 (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 |#2|) (-623 |#1|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3355 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 35) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 43 (|has| |#1| (-579 (-517)))) (((-623 (-517)) (-623 $)) 42 (|has| |#1| (-579 (-517))))) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-347 |#1|) (-1184) (-961)) (T -347)) +NIL +(-13 (-579 |t#1|) (-10 -7 (IF (|has| |t#1| (-579 (-517))) (-6 (-579 (-517))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-3681 (((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|) 52) (((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|) 51) (((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|) 47) (((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|) 40)) (-3674 (((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1073)) |#1|) 28) (((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|) 15))) +(((-348 |#1|) (-10 -7 (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3674 ((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3674 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1073)) |#1|))) (-13 (-333) (-777))) (T -348)) +((-3674 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777)))))) +(-10 -7 (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3674 ((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3674 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1073)) |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 33)) (-2668 (((-517) $) 55)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-1974 (($ $) 109)) (-1865 (($ $) 81)) (-1721 (($ $) 70)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) 44)) (-1707 (((-107) $ $) NIL)) (-1839 (($ $) 79)) (-1701 (($ $) 68)) (-3709 (((-517) $) 63)) (-1363 (($ $ (-517)) 62)) (-1887 (($ $) NIL)) (-1743 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-2531 (($ $) 111)) (-1772 (((-3 (-517) "failed") $) 187) (((-3 (-377 (-517)) "failed") $) 183)) (-3189 (((-517) $) 185) (((-377 (-517)) $) 181)) (-2518 (($ $ $) NIL)) (-1320 (((-517) $ $) 101)) (-3621 (((-3 $ "failed") $) 113)) (-3934 (((-377 (-517)) $ (-703)) 188) (((-377 (-517)) $ (-703) (-703)) 180)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3554 (((-843)) 72) (((-843) (-843)) 97 (|has| $ (-6 -4171)))) (-3556 (((-107) $) 105)) (-2645 (($) 40)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-1986 (((-1158) (-703)) 150)) (-3424 (((-1158)) 155) (((-1158) (-703)) 156)) (-3789 (((-1158)) 157) (((-1158) (-703)) 158)) (-2678 (((-1158)) 153) (((-1158) (-703)) 154)) (-3972 (((-517) $) 58)) (-3848 (((-107) $) 103)) (-3824 (($ $ (-517)) NIL)) (-2485 (($ $) 48)) (-1506 (($ $) NIL)) (-2475 (((-107) $) 35)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL) (($) NIL (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3099 (($ $ $) NIL) (($) 98 (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3371 (((-517) $) 17)) (-2365 (($) 86) (($ $) 91)) (-3720 (($) 90) (($ $) 92)) (-1867 (($ $) 82)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 115)) (-2138 (((-843) (-517)) 43 (|has| $ (-6 -4171)))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) 53)) (-2597 (($ $) 108)) (-4005 (($ (-517) (-517)) 106) (($ (-517) (-517) (-843)) 107)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2077 (((-517) $) 19)) (-3963 (($) 93)) (-2624 (($ $) 78)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-843)) 99) (((-843) (-843)) 100 (|has| $ (-6 -4171)))) (-3127 (($ $ (-703)) NIL) (($ $) 114)) (-2646 (((-843) (-517)) 47 (|has| $ (-6 -4171)))) (-1898 (($ $) NIL)) (-1754 (($ $) NIL)) (-1876 (($ $) NIL)) (-1732 (($ $) NIL)) (-1853 (($ $) 80)) (-1711 (($ $) 69)) (-3645 (((-349) $) 173) (((-199) $) 175) (((-814 (-349)) $) NIL) (((-1056) $) 160) (((-493) $) 171) (($ (-199)) 179)) (-2256 (((-787) $) 162) (($ (-517)) 184) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 184) (($ (-377 (-517))) NIL) (((-199) $) 176)) (-2961 (((-703)) NIL)) (-1949 (($ $) 110)) (-1398 (((-843)) 54) (((-843) (-843)) 65 (|has| $ (-6 -4171)))) (-2372 (((-843)) 102)) (-3707 (($ $) 85)) (-1788 (($ $) 46) (($ $ $) 52)) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) 83)) (-1765 (($ $) 37)) (-3731 (($ $) NIL)) (-1814 (($ $) NIL)) (-1492 (($ $) NIL)) (-1827 (($ $) NIL)) (-3719 (($ $) NIL)) (-1802 (($ $) NIL)) (-3695 (($ $) 84)) (-1777 (($ $) 49)) (-3710 (($ $) 51)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 34 T CONST)) (-2409 (($) 38 T CONST)) (-2482 (((-1056) $) 27) (((-1056) $ (-107)) 29) (((-1158) (-754) $) 30) (((-1158) (-754) $ (-107)) 31)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 39)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 42)) (-1667 (($ $ $) 45) (($ $ (-517)) 41)) (-1654 (($ $) 36) (($ $ $) 50)) (-1642 (($ $ $) 61)) (** (($ $ (-843)) 66) (($ $ (-703)) NIL) (($ $ (-517)) 87) (($ $ (-377 (-517))) 124) (($ $ $) 116)) (* (($ (-843) $) 64) (($ (-703) $) NIL) (($ (-517) $) 67) (($ $ $) 60) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) +(((-349) (-13 (-374) (-207) (-558 (-1056)) (-760) (-557 (-199)) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2485 ($ $)) (-15 -1320 ((-517) $ $)) (-15 -1363 ($ $ (-517))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703))) (-15 -2365 ($)) (-15 -3720 ($)) (-15 -3963 ($)) (-15 -1788 ($ $ $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -3645 ($ (-199))) (-15 -3789 ((-1158))) (-15 -3789 ((-1158) (-703))) (-15 -2678 ((-1158))) (-15 -2678 ((-1158) (-703))) (-15 -3424 ((-1158))) (-15 -3424 ((-1158) (-703))) (-15 -1986 ((-1158) (-703))) (-6 -4171) (-6 -4163)))) (T -349)) +((** (*1 *1 *1 *1) (-5 *1 (-349))) (-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-2485 (*1 *1 *1) (-5 *1 (-349))) (-1320 (*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-3934 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-3934 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-2365 (*1 *1) (-5 *1 (-349))) (-3720 (*1 *1) (-5 *1 (-349))) (-3963 (*1 *1) (-5 *1 (-349))) (-1788 (*1 *1 *1 *1) (-5 *1 (-349))) (-2365 (*1 *1 *1) (-5 *1 (-349))) (-3720 (*1 *1 *1) (-5 *1 (-349))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) (-3789 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) (-2678 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) (-3424 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349))))) +(-13 (-374) (-207) (-558 (-1056)) (-760) (-557 (-199)) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2485 ($ $)) (-15 -1320 ((-517) $ $)) (-15 -1363 ($ $ (-517))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703))) (-15 -2365 ($)) (-15 -3720 ($)) (-15 -3963 ($)) (-15 -1788 ($ $ $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -3645 ($ (-199))) (-15 -3789 ((-1158))) (-15 -3789 ((-1158) (-703))) (-15 -2678 ((-1158))) (-15 -2678 ((-1158) (-703))) (-15 -3424 ((-1158))) (-15 -3424 ((-1158) (-703))) (-15 -1986 ((-1158) (-703))) (-6 -4171) (-6 -4163))) +((-1674 (((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|) 47) (((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|) 46) (((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|) 42) (((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|) 36)) (-2262 (((-583 |#1|) (-377 (-874 (-517))) |#1|) 19) (((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1073)) |#1|) 31))) +(((-350 |#1|) (-10 -7 (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|)) (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|)) (-15 -2262 ((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1073)) |#1|)) (-15 -2262 ((-583 |#1|) (-377 (-874 (-517))) |#1|))) (-13 (-777) (-333))) (T -350)) +((-2262 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-2262 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-517))))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333)))))) +(-10 -7 (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|)) (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|)) (-15 -2262 ((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1073)) |#1|)) (-15 -2262 ((-583 |#1|) (-377 (-874 (-517))) |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 25)) (-3189 ((|#2| $) 27)) (-1212 (($ $) NIL)) (-1577 (((-703) $) 10)) (-4094 (((-583 $) $) 20)) (-4031 (((-107) $) NIL)) (-3419 (($ |#2| |#1|) 18)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2854 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-4152 ((|#2| $) 15)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 43) (($ |#2|) 26)) (-1311 (((-583 |#1|) $) 17)) (-2720 ((|#1| $ |#2|) 45)) (-2396 (($) 28 T CONST)) (-2332 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 33) (($ |#2| |#1|) 34))) +(((-351 |#1| |#2|) (-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-961) (-779)) (T -351)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779))))) (-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8) (($ (-621 (-630))) 14) (($ (-578 (-298))) 13) (($ (-298)) 12) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 11))) -(((-351) (-1180)) (T -351)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-621 (-630))) (-4 *1 (-351)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-351)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-351)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-351))))) -(-13 (-364) (-10 -8 (-15 -3691 ($ (-621 (-630)))) (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-298))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))))) -(((-555 (-786)) . T) ((-364) . T) ((-1104) . T)) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#2| "failed") $) 44)) (-3490 ((|#2| $) 43)) (-3858 (($ $) 30)) (-3706 (((-701) $) 34)) (-2713 (((-578 $) $) 35)) (-2706 (((-107) $) 38)) (-2607 (($ |#2| |#1|) 39)) (-1212 (($ (-1 |#1| |#1|) $) 40)) (-3950 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3845 ((|#2| $) 33)) (-3850 ((|#1| $) 32)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ |#2|) 45)) (-1303 (((-578 |#1|) $) 36)) (-2495 ((|#1| $ |#2|) 41)) (-1850 (($) 18 T CONST)) (-1914 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-352 |#1| |#2|) (-1180) (-959) (-1001)) (T -352)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1001)))) (-2495 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-959)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)))) (-2607 (*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1001)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-107)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 *3)))) (-2713 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 *1)) (-4 *1 (-352 *3 *4)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-701)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1001)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-959)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1001))))) -(-13 (-106 |t#1| |t#1|) (-950 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2495 (|t#1| $ |t#2|)) (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (-15 -2607 ($ |t#2| |t#1|)) (-15 -2706 ((-107) $)) (-15 -1914 ((-578 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1303 ((-578 |t#1|) $)) (-15 -2713 ((-578 $) $)) (-15 -3706 ((-701) $)) (-15 -3845 (|t#2| $)) (-15 -3850 (|t#1| $)) (-15 -3950 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3858 ($ $)) (IF (|has| |t#1| (-156)) (-6 (-648 |t#1|)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-648 |#1|) |has| |#1| (-156)) ((-950 |#2|) . T) ((-964 |#1|) . T) ((-1001) . T)) -((-3765 (((-3 $ "failed") (-621 (-282 (-346)))) 21) (((-3 $ "failed") (-621 (-282 (-501)))) 19) (((-3 $ "failed") (-621 (-866 (-346)))) 17) (((-3 $ "failed") (-621 (-866 (-501)))) 15) (((-3 $ "failed") (-621 (-375 (-866 (-346))))) 13) (((-3 $ "failed") (-621 (-375 (-866 (-501))))) 11)) (-3490 (($ (-621 (-282 (-346)))) 22) (($ (-621 (-282 (-501)))) 20) (($ (-621 (-866 (-346)))) 18) (($ (-621 (-866 (-501)))) 16) (($ (-621 (-375 (-866 (-346))))) 14) (($ (-621 (-375 (-866 (-501))))) 12)) (-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8) (($ (-578 (-298))) 25) (($ (-298)) 24) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 23))) -(((-353) (-1180)) (T -353)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-353)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-353)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-282 (-346)))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-282 (-346)))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-282 (-501)))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-282 (-501)))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-866 (-346)))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-866 (-346)))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-866 (-501)))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-866 (-501)))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-375 (-866 (-346))))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-375 (-866 (-346))))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-375 (-866 (-501))))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-375 (-866 (-501))))) (-4 *1 (-353))))) -(-13 (-364) (-10 -8 (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-298))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))) (-15 -3490 ($ (-621 (-282 (-346))))) (-15 -3765 ((-3 $ "failed") (-621 (-282 (-346))))) (-15 -3490 ($ (-621 (-282 (-501))))) (-15 -3765 ((-3 $ "failed") (-621 (-282 (-501))))) (-15 -3490 ($ (-621 (-866 (-346))))) (-15 -3765 ((-3 $ "failed") (-621 (-866 (-346))))) (-15 -3490 ($ (-621 (-866 (-501))))) (-15 -3765 ((-3 $ "failed") (-621 (-866 (-501))))) (-15 -3490 ($ (-621 (-375 (-866 (-346)))))) (-15 -3765 ((-3 $ "failed") (-621 (-375 (-866 (-346)))))) (-15 -3490 ($ (-621 (-375 (-866 (-501)))))) (-15 -3765 ((-3 $ "failed") (-621 (-375 (-866 (-501)))))))) -(((-555 (-786)) . T) ((-364) . T) ((-1104) . T)) -((-3736 (((-107) $ $) NIL)) (-3796 (((-701) $) 56)) (-2540 (($) NIL T CONST)) (-2194 (((-3 $ "failed") $ $) 58)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3840 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-1355 (((-107) $) 14)) (-2153 ((|#1| $ (-501)) NIL)) (-3159 (((-701) $ (-501)) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2451 (($ (-1 |#1| |#1|) $) 37)) (-1620 (($ (-1 (-701) (-701)) $) 34)) (-3049 (((-3 $ "failed") $ $) 49)) (-3460 (((-1053) $) NIL)) (-1954 (($ $ $) 25)) (-3650 (($ $ $) 23)) (-3708 (((-1018) $) NIL)) (-1575 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $) 31)) (-2419 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-3691 (((-786) $) 21) (($ |#1|) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1925 (($) 9 T CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 41)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) 60 (|has| |#1| (-777)))) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ |#1| (-701)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27))) -(((-354 |#1|) (-13 (-657) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-701))) (-15 -3650 ($ $ $)) (-15 -1954 ($ $ $)) (-15 -3049 ((-3 $ "failed") $ $)) (-15 -2194 ((-3 $ "failed") $ $)) (-15 -2419 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3840 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3796 ((-701) $)) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $)) (-15 -3159 ((-701) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1620 ($ (-1 (-701) (-701)) $)) (-15 -2451 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|))) (-1001)) (T -354)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-3650 (*1 *1 *1 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-1954 (*1 *1 *1 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-3049 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-2194 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-2419 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-354 *3)) (|:| |rm| (-354 *3)))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) (-3840 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-354 *3)) (|:| |mm| (-354 *3)) (|:| |rm| (-354 *3)))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-701))))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) (-3159 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701)) (-5 *1 (-354 *4)) (-4 *4 (-1001)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-1620 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-701) (-701))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) (-2451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-354 *3))))) -(-13 (-657) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-701))) (-15 -3650 ($ $ $)) (-15 -1954 ($ $ $)) (-15 -3049 ((-3 $ "failed") $ $)) (-15 -2194 ((-3 $ "failed") $ $)) (-15 -2419 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3840 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3796 ((-701) $)) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $)) (-15 -3159 ((-701) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1620 ($ (-1 (-701) (-701)) $)) (-15 -2451 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 47)) (-3490 (((-501) $) 46)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-4111 (($ $ $) 54)) (-1323 (($ $ $) 53)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ $) 42)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-501)) 48)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 51)) (-3768 (((-107) $ $) 50)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 52)) (-3762 (((-107) $ $) 49)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-355) (-1180)) (T -355)) -NIL -(-13 (-508) (-777) (-950 (-501))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-777) . T) ((-950 (-501)) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-2199 (((-107) $) 20)) (-4118 (((-107) $) 19)) (-3634 (($ (-1053) (-1053) (-1053)) 21)) (-3986 (((-1053) $) 16)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1913 (($ (-1053) (-1053) (-1053)) 14)) (-4120 (((-1053) $) 17)) (-3165 (((-107) $) 18)) (-3849 (((-1053) $) 15)) (-3691 (((-786) $) 12) (($ (-1053)) 13) (((-1053) $) 9)) (-3751 (((-107) $ $) 7))) -(((-356) (-357)) (T -356)) -NIL -(-357) -((-3736 (((-107) $ $) 7)) (-2199 (((-107) $) 14)) (-4118 (((-107) $) 15)) (-3634 (($ (-1053) (-1053) (-1053)) 13)) (-3986 (((-1053) $) 18)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-1913 (($ (-1053) (-1053) (-1053)) 20)) (-4120 (((-1053) $) 17)) (-3165 (((-107) $) 16)) (-3849 (((-1053) $) 19)) (-3691 (((-786) $) 11) (($ (-1053)) 22) (((-1053) $) 21)) (-3751 (((-107) $ $) 6))) -(((-357) (-1180)) (T -357)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) (-1913 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107)))) (-4118 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107)))) (-3634 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357))))) -(-13 (-1001) (-10 -8 (-15 -3691 ($ (-1053))) (-15 -3691 ((-1053) $)) (-15 -1913 ($ (-1053) (-1053) (-1053))) (-15 -3849 ((-1053) $)) (-15 -3986 ((-1053) $)) (-15 -4120 ((-1053) $)) (-15 -3165 ((-107) $)) (-15 -4118 ((-107) $)) (-15 -2199 ((-107) $)) (-15 -3634 ($ (-1053) (-1053) (-1053))))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3872 (((-786) $) 50)) (-2540 (($) NIL T CONST)) (-2911 (($ $ (-839)) NIL)) (-3554 (($ $ (-839)) NIL)) (-3381 (($ $ (-839)) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($ (-701)) 26)) (-3613 (((-701)) 15)) (-4050 (((-786) $) 52)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) NIL)) (-1363 (($ $ $ $) NIL)) (-2033 (($ $ $) NIL)) (-1850 (($) 20 T CONST)) (-3751 (((-107) $ $) 28)) (-3797 (($ $) 34) (($ $ $) 36)) (-3790 (($ $ $) 37)) (** (($ $ (-839)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-358 |#1| |#2| |#3|) (-13 (-675 |#3|) (-10 -8 (-15 -3613 ((-701))) (-15 -4050 ((-786) $)) (-15 -3872 ((-786) $)) (-15 -3987 ($ (-701))))) (-701) (-701) (-156)) (T -358)) -((-3613 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-156)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-156)))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156))))) -(-13 (-675 |#3|) (-10 -8 (-15 -3613 ((-701))) (-15 -4050 ((-786) $)) (-15 -3872 ((-786) $)) (-15 -3987 ($ (-701))))) -((-2020 (((-1053)) 10)) (-1530 (((-1042 (-1053))) 28)) (-2505 (((-1154) (-1053)) 25) (((-1154) (-356)) 24)) (-2514 (((-1154)) 26)) (-3898 (((-1042 (-1053))) 27))) -(((-359) (-10 -7 (-15 -3898 ((-1042 (-1053)))) (-15 -1530 ((-1042 (-1053)))) (-15 -2514 ((-1154))) (-15 -2505 ((-1154) (-356))) (-15 -2505 ((-1154) (-1053))) (-15 -2020 ((-1053))))) (T -359)) -((-2020 (*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-359)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-359)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-356)) (-5 *2 (-1154)) (-5 *1 (-359)))) (-2514 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-359)))) (-1530 (*1 *2) (-12 (-5 *2 (-1042 (-1053))) (-5 *1 (-359)))) (-3898 (*1 *2) (-12 (-5 *2 (-1042 (-1053))) (-5 *1 (-359))))) -(-10 -7 (-15 -3898 ((-1042 (-1053)))) (-15 -1530 ((-1042 (-1053)))) (-15 -2514 ((-1154))) (-15 -2505 ((-1154) (-356))) (-15 -2505 ((-1154) (-1053))) (-15 -2020 ((-1053)))) -((-3169 (((-701) (-301 |#1| |#2| |#3| |#4|)) 16))) -(((-360 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3169 ((-701) (-301 |#1| |#2| |#3| |#4|)))) (-13 (-336) (-331)) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -360)) -((-3169 (*1 *2 *3) (-12 (-5 *3 (-301 *4 *5 *6 *7)) (-4 *4 (-13 (-336) (-331))) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-4 *7 (-310 *4 *5 *6)) (-5 *2 (-701)) (-5 *1 (-360 *4 *5 *6 *7))))) -(-10 -7 (-15 -3169 ((-701) (-301 |#1| |#2| |#3| |#4|)))) -((-3736 (((-107) $ $) NIL)) (-4103 (((-578 (-1053)) $ (-578 (-1053))) 37)) (-2291 (((-578 (-1053)) $ (-578 (-1053))) 38)) (-3232 (((-578 (-1053)) $ (-578 (-1053))) 39)) (-3615 (((-578 (-1053)) $) 34)) (-3634 (($) 23)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3772 (((-578 (-1053)) $) 35)) (-2680 (((-578 (-1053)) $) 36)) (-2125 (((-1154) $ (-501)) 32) (((-1154) $) 33)) (-1248 (($ (-786) (-501)) 29)) (-3691 (((-786) $) 41) (($ (-786)) 25)) (-3751 (((-107) $ $) NIL))) -(((-361) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-786))) (-15 -1248 ($ (-786) (-501))) (-15 -2125 ((-1154) $ (-501))) (-15 -2125 ((-1154) $)) (-15 -2680 ((-578 (-1053)) $)) (-15 -3772 ((-578 (-1053)) $)) (-15 -3634 ($)) (-15 -3615 ((-578 (-1053)) $)) (-15 -3232 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -2291 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -4103 ((-578 (-1053)) $ (-578 (-1053))))))) (T -361)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-361)))) (-1248 (*1 *1 *2 *3) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-361)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-361)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-361)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) (-3634 (*1 *1) (-5 *1 (-361))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) (-3232 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) (-2291 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) (-4103 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361))))) -(-13 (-1001) (-10 -8 (-15 -3691 ($ (-786))) (-15 -1248 ($ (-786) (-501))) (-15 -2125 ((-1154) $ (-501))) (-15 -2125 ((-1154) $)) (-15 -2680 ((-578 (-1053)) $)) (-15 -3772 ((-578 (-1053)) $)) (-15 -3634 ($)) (-15 -3615 ((-578 (-1053)) $)) (-15 -3232 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -2291 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -4103 ((-578 (-1053)) $ (-578 (-1053)))))) -((-3691 (((-361) |#1|) 11))) -(((-362 |#1|) (-10 -7 (-15 -3691 ((-361) |#1|))) (-1001)) (T -362)) -((-3691 (*1 *2 *3) (-12 (-5 *2 (-361)) (-5 *1 (-362 *3)) (-4 *3 (-1001))))) -(-10 -7 (-15 -3691 ((-361) |#1|))) -((-3282 (((-578 (-1053)) (-578 (-1053))) 8)) (-2522 (((-1154) (-356)) 27)) (-2708 (((-1003) (-1070) (-578 (-1070)) (-1073) (-578 (-1070))) 59) (((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070)) (-1070)) 35) (((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070))) 34))) -(((-363) (-10 -7 (-15 -2708 ((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070)))) (-15 -2708 ((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070)) (-1070))) (-15 -2708 ((-1003) (-1070) (-578 (-1070)) (-1073) (-578 (-1070)))) (-15 -2522 ((-1154) (-356))) (-15 -3282 ((-578 (-1053)) (-578 (-1053)))))) (T -363)) -((-3282 (*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-363)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-356)) (-5 *2 (-1154)) (-5 *1 (-363)))) (-2708 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *5 (-1073)) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363)))) (-2708 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-578 (-578 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-578 (-3 (|:| |array| (-578 *3)) (|:| |scalar| (-1070))))) (-5 *6 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363)))) (-2708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-578 (-578 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-578 (-3 (|:| |array| (-578 *3)) (|:| |scalar| (-1070))))) (-5 *6 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363))))) -(-10 -7 (-15 -2708 ((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070)))) (-15 -2708 ((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070)) (-1070))) (-15 -2708 ((-1003) (-1070) (-578 (-1070)) (-1073) (-578 (-1070)))) (-15 -2522 ((-1154) (-356))) (-15 -3282 ((-578 (-1053)) (-578 (-1053))))) -((-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8))) -(((-364) (-1180)) (T -364)) -((-2522 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1154))))) -(-13 (-1104) (-555 (-786)) (-10 -8 (-15 -2522 ((-1154) $)))) -(((-555 (-786)) . T) ((-1104) . T)) -((-3765 (((-3 $ "failed") (-282 (-346))) 21) (((-3 $ "failed") (-282 (-501))) 19) (((-3 $ "failed") (-866 (-346))) 17) (((-3 $ "failed") (-866 (-501))) 15) (((-3 $ "failed") (-375 (-866 (-346)))) 13) (((-3 $ "failed") (-375 (-866 (-501)))) 11)) (-3490 (($ (-282 (-346))) 22) (($ (-282 (-501))) 20) (($ (-866 (-346))) 18) (($ (-866 (-501))) 16) (($ (-375 (-866 (-346)))) 14) (($ (-375 (-866 (-501)))) 12)) (-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8) (($ (-578 (-298))) 25) (($ (-298)) 24) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 23))) -(((-365) (-1180)) (T -365)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-365)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-365)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-346))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-501))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-866 (-346))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-346))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-501))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-346)))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-346)))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-501)))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-501)))) (-4 *1 (-365))))) -(-13 (-364) (-10 -8 (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-298))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))) (-15 -3490 ($ (-282 (-346)))) (-15 -3765 ((-3 $ "failed") (-282 (-346)))) (-15 -3490 ($ (-282 (-501)))) (-15 -3765 ((-3 $ "failed") (-282 (-501)))) (-15 -3490 ($ (-866 (-346)))) (-15 -3765 ((-3 $ "failed") (-866 (-346)))) (-15 -3490 ($ (-866 (-501)))) (-15 -3765 ((-3 $ "failed") (-866 (-501)))) (-15 -3490 ($ (-375 (-866 (-346))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-346))))) (-15 -3490 ($ (-375 (-866 (-501))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-501))))))) -(((-555 (-786)) . T) ((-364) . T) ((-1104) . T)) -((-2522 (((-1154) $) 37)) (-3691 (((-786) $) 89) (($ (-298)) 92) (($ (-578 (-298))) 91) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 88) (($ (-282 (-632))) 52) (($ (-282 (-630))) 66) (($ (-282 (-625))) 78) (($ (-262 (-282 (-632)))) 62) (($ (-262 (-282 (-630)))) 74) (($ (-262 (-282 (-625)))) 86) (($ (-282 (-501))) 96) (($ (-282 (-346))) 108) (($ (-282 (-152 (-346)))) 120) (($ (-262 (-282 (-501)))) 104) (($ (-262 (-282 (-346)))) 116) (($ (-262 (-282 (-152 (-346))))) 128))) -(((-366 |#1| |#2| |#3| |#4|) (-13 (-364) (-10 -8 (-15 -3691 ($ (-298))) (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))) (-15 -3691 ($ (-282 (-632)))) (-15 -3691 ($ (-282 (-630)))) (-15 -3691 ($ (-282 (-625)))) (-15 -3691 ($ (-262 (-282 (-632))))) (-15 -3691 ($ (-262 (-282 (-630))))) (-15 -3691 ($ (-262 (-282 (-625))))) (-15 -3691 ($ (-282 (-501)))) (-15 -3691 ($ (-282 (-346)))) (-15 -3691 ($ (-282 (-152 (-346))))) (-15 -3691 ($ (-262 (-282 (-501))))) (-15 -3691 ($ (-262 (-282 (-346))))) (-15 -3691 ($ (-262 (-282 (-152 (-346)))))))) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-1070)) (-1074)) (T -366)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-632))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-630))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-625))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-632)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-630)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-625)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-152 (-346)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-501)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-346)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-152 (-346))))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074))))) -(-13 (-364) (-10 -8 (-15 -3691 ($ (-298))) (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))) (-15 -3691 ($ (-282 (-632)))) (-15 -3691 ($ (-282 (-630)))) (-15 -3691 ($ (-282 (-625)))) (-15 -3691 ($ (-262 (-282 (-632))))) (-15 -3691 ($ (-262 (-282 (-630))))) (-15 -3691 ($ (-262 (-282 (-625))))) (-15 -3691 ($ (-282 (-501)))) (-15 -3691 ($ (-282 (-346)))) (-15 -3691 ($ (-282 (-152 (-346))))) (-15 -3691 ($ (-262 (-282 (-501))))) (-15 -3691 ($ (-262 (-282 (-346))))) (-15 -3691 ($ (-262 (-282 (-152 (-346)))))))) -((-3736 (((-107) $ $) NIL)) (-3499 ((|#2| $) 36)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1886 (($ (-375 |#2|)) 84)) (-3677 (((-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|))) $) 37)) (-2596 (($ $) 32) (($ $ (-701)) 34)) (-1248 (((-375 |#2|) $) 46)) (-3699 (($ (-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|)))) 31)) (-3691 (((-786) $) 120)) (-3584 (($ $) 33) (($ $ (-701)) 35)) (-3751 (((-107) $ $) NIL)) (-3790 (($ |#2| $) 39))) -(((-367 |#1| |#2|) (-13 (-1001) (-556 (-375 |#2|)) (-10 -8 (-15 -3790 ($ |#2| $)) (-15 -1886 ($ (-375 |#2|))) (-15 -3499 (|#2| $)) (-15 -3677 ((-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|))) $)) (-15 -3699 ($ (-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|))))) (-15 -2596 ($ $)) (-15 -3584 ($ $)) (-15 -2596 ($ $ (-701))) (-15 -3584 ($ $ (-701))))) (-13 (-331) (-134)) (-1125 |#1|)) (T -367)) -((-3790 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *2)) (-4 *2 (-1125 *3)))) (-1886 (*1 *1 *2) (-12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)))) (-3499 (*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-367 *3 *2)) (-4 *3 (-13 (-331) (-134))))) (-3677 (*1 *2 *1) (-12 (-4 *3 (-13 (-331) (-134))) (-5 *2 (-578 (-2 (|:| -3027 (-701)) (|:| -2896 *4) (|:| |num| *4)))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3)))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3027 (-701)) (|:| -2896 *4) (|:| |num| *4)))) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)))) (-2596 (*1 *1 *1) (-12 (-4 *2 (-13 (-331) (-134))) (-5 *1 (-367 *2 *3)) (-4 *3 (-1125 *2)))) (-3584 (*1 *1 *1) (-12 (-4 *2 (-13 (-331) (-134))) (-5 *1 (-367 *2 *3)) (-4 *3 (-1125 *2)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3))))) -(-13 (-1001) (-556 (-375 |#2|)) (-10 -8 (-15 -3790 ($ |#2| $)) (-15 -1886 ($ (-375 |#2|))) (-15 -3499 (|#2| $)) (-15 -3677 ((-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|))) $)) (-15 -3699 ($ (-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|))))) (-15 -2596 ($ $)) (-15 -3584 ($ $)) (-15 -2596 ($ $ (-701))) (-15 -3584 ($ $ (-701))))) -((-3736 (((-107) $ $) 9 (-1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))))) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 15 (|has| |#1| (-806 (-346)))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 14 (|has| |#1| (-806 (-501))))) (-3460 (((-1053) $) 13 (-1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))))) (-3708 (((-1018) $) 12 (-1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))))) (-3691 (((-786) $) 11 (-1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))))) (-3751 (((-107) $ $) 10 (-1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346))))))) -(((-368 |#1|) (-1180) (-1104)) (T -368)) -NIL -(-13 (-1104) (-10 -7 (IF (|has| |t#1| (-806 (-501))) (-6 (-806 (-501))) |noBranch|) (IF (|has| |t#1| (-806 (-346))) (-6 (-806 (-346))) |noBranch|))) -(((-97) -1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))) ((-555 (-786)) -1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))) ((-806 (-346)) |has| |#1| (-806 (-346))) ((-806 (-501)) |has| |#1| (-806 (-501))) ((-1001) -1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))) ((-1104) . T)) -((-3067 (($ $) 10) (($ $ (-701)) 11))) -(((-369 |#1|) (-10 -8 (-15 -3067 (|#1| |#1| (-701))) (-15 -3067 (|#1| |#1|))) (-370)) (T -369)) -NIL -(-10 -8 (-15 -3067 (|#1| |#1| (-701))) (-15 -3067 (|#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-3067 (($ $) 79) (($ $ (-701)) 78)) (-1628 (((-107) $) 71)) (-3169 (((-762 (-839)) $) 81)) (-1355 (((-107) $) 31)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-1984 (((-3 (-701) "failed") $ $) 80)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65)) (-1274 (((-3 $ "failed") $) 82)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66))) -(((-370) (-1180)) (T -370)) -((-3169 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-762 (-839))))) (-1984 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-370)) (-5 *2 (-701)))) (-3067 (*1 *1 *1) (-4 *1 (-370))) (-3067 (*1 *1 *1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-701))))) -(-13 (-331) (-132) (-10 -8 (-15 -3169 ((-762 (-839)) $)) (-15 -1984 ((-3 (-701) "failed") $ $)) (-15 -3067 ($ $)) (-15 -3067 ($ $ (-701))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-555 (-786)) . T) ((-156) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T)) -((-2017 (($ (-501) (-501)) 11) (($ (-501) (-501) (-839)) NIL)) (-3960 (((-839)) 16) (((-839) (-839)) NIL))) -(((-371 |#1|) (-10 -8 (-15 -3960 ((-839) (-839))) (-15 -3960 ((-839))) (-15 -2017 (|#1| (-501) (-501) (-839))) (-15 -2017 (|#1| (-501) (-501)))) (-372)) (T -371)) -((-3960 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-371 *3)) (-4 *3 (-372)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-371 *3)) (-4 *3 (-372))))) -(-10 -8 (-15 -3960 ((-839) (-839))) (-15 -3960 ((-839))) (-15 -2017 (|#1| (-501) (-501) (-839))) (-15 -2017 (|#1| (-501) (-501)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2197 (((-501) $) 89)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-2805 (($ $) 87)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-3743 (($ $) 97)) (-2781 (((-107) $ $) 59)) (-1417 (((-501) $) 114)) (-2540 (($) 17 T CONST)) (-1453 (($ $) 86)) (-3765 (((-3 (-501) "failed") $) 102) (((-3 (-375 (-501)) "failed") $) 99)) (-3490 (((-501) $) 101) (((-375 (-501)) $) 98)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-3943 (((-839)) 130) (((-839) (-839)) 127 (|has| $ (-6 -4158)))) (-2164 (((-107) $) 112)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 93)) (-3169 (((-501) $) 136)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 96)) (-2626 (($ $) 92)) (-4067 (((-107) $) 113)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-4111 (($ $ $) 111) (($) 124 (-12 (-3031 (|has| $ (-6 -4158))) (-3031 (|has| $ (-6 -4150)))))) (-1323 (($ $ $) 110) (($) 123 (-12 (-3031 (|has| $ (-6 -4158))) (-3031 (|has| $ (-6 -4150)))))) (-1828 (((-501) $) 133)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3039 (((-839) (-501)) 126 (|has| $ (-6 -4158)))) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-2801 (($ $) 88)) (-3383 (($ $) 90)) (-2017 (($ (-501) (-501)) 138) (($ (-501) (-501) (-839)) 137)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-3027 (((-501) $) 134)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-3960 (((-839)) 131) (((-839) (-839)) 128 (|has| $ (-6 -4158)))) (-1537 (((-839) (-501)) 125 (|has| $ (-6 -4158)))) (-1248 (((-346) $) 105) (((-199) $) 104) (((-810 (-346)) $) 94)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ (-501)) 103) (($ (-375 (-501))) 100)) (-3965 (((-701)) 29)) (-2803 (($ $) 91)) (-2751 (((-839)) 132) (((-839) (-839)) 129 (|has| $ (-6 -4158)))) (-1965 (((-839)) 135)) (-2442 (((-107) $ $) 39)) (-1720 (($ $) 115)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 108)) (-3768 (((-107) $ $) 107)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 109)) (-3762 (((-107) $ $) 106)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68) (($ $ (-375 (-501))) 95)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66))) -(((-372) (-1180)) (T -372)) -((-2017 (*1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-372)))) (-2017 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-839)) (-4 *1 (-372)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) (-1965 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) (-3027 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) (-1828 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) (-2751 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) (-3960 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) (-3943 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-501)) (|has| *1 (-6 -4158)) (-4 *1 (-372)) (-5 *2 (-839)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-501)) (|has| *1 (-6 -4158)) (-4 *1 (-372)) (-5 *2 (-839)))) (-4111 (*1 *1) (-12 (-4 *1 (-372)) (-3031 (|has| *1 (-6 -4158))) (-3031 (|has| *1 (-6 -4150))))) (-1323 (*1 *1) (-12 (-4 *1 (-372)) (-3031 (|has| *1 (-6 -4158))) (-3031 (|has| *1 (-6 -4150)))))) -(-13 (-967) (-10 -8 (-6 -2391) (-15 -2017 ($ (-501) (-501))) (-15 -2017 ($ (-501) (-501) (-839))) (-15 -3169 ((-501) $)) (-15 -1965 ((-839))) (-15 -3027 ((-501) $)) (-15 -1828 ((-501) $)) (-15 -2751 ((-839))) (-15 -3960 ((-839))) (-15 -3943 ((-839))) (IF (|has| $ (-6 -4158)) (PROGN (-15 -2751 ((-839) (-839))) (-15 -3960 ((-839) (-839))) (-15 -3943 ((-839) (-839))) (-15 -3039 ((-839) (-501))) (-15 -1537 ((-839) (-501)))) |noBranch|) (IF (|has| $ (-6 -4150)) |noBranch| (IF (|has| $ (-6 -4158)) |noBranch| (PROGN (-15 -4111 ($)) (-15 -1323 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-555 (-786)) . T) ((-156) . T) ((-556 (-199)) . T) ((-556 (-346)) . T) ((-556 (-810 (-346))) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-775) . T) ((-777) . T) ((-806 (-346)) . T) ((-841) . T) ((-916) . T) ((-933) . T) ((-967) . T) ((-950 (-375 (-501))) . T) ((-950 (-501)) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 40)) (-3568 (($ $) 55)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 142)) (-2865 (($ $) NIL)) (-1639 (((-107) $) 34)) (-1738 ((|#1| $) 12)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-1108)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-1108)))) (-4093 (($ |#1| (-501)) 30)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 112)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 53)) (-2174 (((-3 $ "failed") $) 127)) (-2870 (((-3 (-375 (-501)) "failed") $) 61 (|has| |#1| (-500)))) (-1696 (((-107) $) 57 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 59 (|has| |#1| (-500)))) (-1829 (($ |#1| (-501)) 32)) (-1628 (((-107) $) 148 (|has| |#1| (-1108)))) (-1355 (((-107) $) 41)) (-3364 (((-701) $) 36)) (-3048 (((-3 "nil" "sqfr" "irred" "prime") $ (-501)) 133)) (-2153 ((|#1| $ (-501)) 132)) (-2724 (((-501) $ (-501)) 131)) (-1988 (($ |#1| (-501)) 29)) (-1212 (($ (-1 |#1| |#1|) $) 139)) (-1726 (($ |#1| (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501))))) 56)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3594 (($ |#1| (-501)) 31)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) 143 (|has| |#1| (-419)))) (-2756 (($ |#1| (-501) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-1575 (((-578 (-2 (|:| -3739 |#1|) (|:| -3027 (-501)))) $) 52)) (-3328 (((-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501)))) $) 11)) (-3739 (((-373 $) $) NIL (|has| |#1| (-1108)))) (-3694 (((-3 $ "failed") $ $) 134)) (-3027 (((-501) $) 128)) (-1967 ((|#1| $) 54)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) 76 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 81 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) $) NIL (|has| |#1| (-476 (-1070) $))) (($ $ (-578 (-1070)) (-578 $)) 82 (|has| |#1| (-476 (-1070) $))) (($ $ (-578 (-262 $))) 78 (|has| |#1| (-278 $))) (($ $ (-262 $)) NIL (|has| |#1| (-278 $))) (($ $ $ $) NIL (|has| |#1| (-278 $))) (($ $ (-578 $) (-578 $)) NIL (|has| |#1| (-278 $)))) (-2007 (($ $ |#1|) 68 (|has| |#1| (-256 |#1| |#1|))) (($ $ $) 69 (|has| |#1| (-256 $ $)))) (-2596 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) 138)) (-1248 (((-490) $) 26 (|has| |#1| (-556 (-490)))) (((-346) $) 88 (|has| |#1| (-933))) (((-199) $) 91 (|has| |#1| (-933)))) (-3691 (((-786) $) 110) (($ (-501)) 44) (($ $) NIL) (($ |#1|) 43) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501)))))) (-3965 (((-701)) 46)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 38 T CONST)) (-1925 (($) 37 T CONST)) (-3584 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3751 (((-107) $ $) 92)) (-3797 (($ $) 124) (($ $ $) NIL)) (-3790 (($ $ $) 136)) (** (($ $ (-839)) NIL) (($ $ (-701)) 98)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 48) (($ $ $) 47) (($ |#1| $) 49) (($ $ |#1|) NIL))) -(((-373 |#1|) (-13 (-508) (-204 |#1|) (-37 |#1|) (-306 |#1|) (-380 |#1|) (-10 -8 (-15 -1967 (|#1| $)) (-15 -3027 ((-501) $)) (-15 -1726 ($ |#1| (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501)))))) (-15 -3328 ((-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501)))) $)) (-15 -1988 ($ |#1| (-501))) (-15 -1575 ((-578 (-2 (|:| -3739 |#1|) (|:| -3027 (-501)))) $)) (-15 -3594 ($ |#1| (-501))) (-15 -2724 ((-501) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -3048 ((-3 "nil" "sqfr" "irred" "prime") $ (-501))) (-15 -3364 ((-701) $)) (-15 -1829 ($ |#1| (-501))) (-15 -4093 ($ |#1| (-501))) (-15 -2756 ($ |#1| (-501) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1738 (|#1| $)) (-15 -3568 ($ $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-419)) (-6 (-419)) |noBranch|) (IF (|has| |#1| (-933)) (-6 (-933)) |noBranch|) (IF (|has| |#1| (-1108)) (-6 (-1108)) |noBranch|) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|) (IF (|has| |#1| (-256 $ $)) (-6 (-256 $ $)) |noBranch|) (IF (|has| |#1| (-278 $)) (-6 (-278 $)) |noBranch|) (IF (|has| |#1| (-476 (-1070) $)) (-6 (-476 (-1070) $)) |noBranch|))) (-508)) (T -373)) -((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-508)) (-5 *1 (-373 *3)))) (-1967 (*1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-373 *3)) (-4 *3 (-508)))) (-1726 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-501))))) (-4 *2 (-508)) (-5 *1 (-373 *2)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-501))))) (-5 *1 (-373 *3)) (-4 *3 (-508)))) (-1988 (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3739 *3) (|:| -3027 (-501))))) (-5 *1 (-373 *3)) (-4 *3 (-508)))) (-3594 (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-2724 (*1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-373 *3)) (-4 *3 (-508)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-3048 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-373 *4)) (-4 *4 (-508)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-373 *3)) (-4 *3 (-508)))) (-1829 (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-4093 (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-2756 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-1738 (*1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-3568 (*1 *1 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508)))) (-2870 (*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508))))) -(-13 (-508) (-204 |#1|) (-37 |#1|) (-306 |#1|) (-380 |#1|) (-10 -8 (-15 -1967 (|#1| $)) (-15 -3027 ((-501) $)) (-15 -1726 ($ |#1| (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501)))))) (-15 -3328 ((-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501)))) $)) (-15 -1988 ($ |#1| (-501))) (-15 -1575 ((-578 (-2 (|:| -3739 |#1|) (|:| -3027 (-501)))) $)) (-15 -3594 ($ |#1| (-501))) (-15 -2724 ((-501) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -3048 ((-3 "nil" "sqfr" "irred" "prime") $ (-501))) (-15 -3364 ((-701) $)) (-15 -1829 ($ |#1| (-501))) (-15 -4093 ($ |#1| (-501))) (-15 -2756 ($ |#1| (-501) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1738 (|#1| $)) (-15 -3568 ($ $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-419)) (-6 (-419)) |noBranch|) (IF (|has| |#1| (-933)) (-6 (-933)) |noBranch|) (IF (|has| |#1| (-1108)) (-6 (-1108)) |noBranch|) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|) (IF (|has| |#1| (-256 $ $)) (-6 (-256 $ $)) |noBranch|) (IF (|has| |#1| (-278 $)) (-6 (-278 $)) |noBranch|) (IF (|has| |#1| (-476 (-1070) $)) (-6 (-476 (-1070) $)) |noBranch|))) -((-1212 (((-373 |#2|) (-1 |#2| |#1|) (-373 |#1|)) 20))) -(((-374 |#1| |#2|) (-10 -7 (-15 -1212 ((-373 |#2|) (-1 |#2| |#1|) (-373 |#1|)))) (-508) (-508)) (T -374)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-373 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-5 *2 (-373 *6)) (-5 *1 (-374 *5 *6))))) -(-10 -7 (-15 -1212 ((-373 |#2|) (-1 |#2| |#1|) (-373 |#1|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 13)) (-2197 ((|#1| $) 21 (|has| |#1| (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| |#1| (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 17) (((-3 (-1070) "failed") $) NIL (|has| |#1| (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) 70 (|has| |#1| (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501))))) (-3490 ((|#1| $) 15) (((-1070) $) NIL (|has| |#1| (-950 (-1070)))) (((-375 (-501)) $) 67 (|has| |#1| (-950 (-501)))) (((-501) $) NIL (|has| |#1| (-950 (-501))))) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) 50)) (-2890 (($) NIL (|has| |#1| (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| |#1| (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| |#1| (-806 (-346))))) (-1355 (((-107) $) 64)) (-2117 (($ $) NIL)) (-2946 ((|#1| $) 71)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-1046)))) (-4067 (((-107) $) NIL (|has| |#1| (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| |#1| (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 97)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| |#1| (-276)))) (-3383 ((|#1| $) 28 (|has| |#1| (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 133 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 129 (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-476 (-1070) |#1|)))) (-1864 (((-701) $) NIL)) (-2007 (($ $ |#1|) NIL (|has| |#1| (-256 |#1| |#1|)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3307 (($ $) NIL)) (-2949 ((|#1| $) 73)) (-1248 (((-810 (-501)) $) NIL (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| |#1| (-556 (-810 (-346))))) (((-490) $) NIL (|has| |#1| (-556 (-490)))) (((-346) $) NIL (|has| |#1| (-933))) (((-199) $) NIL (|has| |#1| (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 113 (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 10) (($ (-1070)) NIL (|has| |#1| (-950 (-1070))))) (-1274 (((-3 $ "failed") $) 99 (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 100)) (-2803 ((|#1| $) 26 (|has| |#1| (-500)))) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| |#1| (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 22 T CONST)) (-1925 (($) 8 T CONST)) (-3671 (((-1053) $) 43 (-12 (|has| |#1| (-500)) (|has| |#1| (-751)))) (((-1053) $ (-107)) 44 (-12 (|has| |#1| (-500)) (|has| |#1| (-751)))) (((-1154) (-753) $) 45 (-12 (|has| |#1| (-500)) (|has| |#1| (-751)))) (((-1154) (-753) $ (-107)) 46 (-12 (|has| |#1| (-500)) (|has| |#1| (-751))))) (-3584 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 56)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) 24 (|has| |#1| (-777)))) (-3803 (($ $ $) 124) (($ |#1| |#1|) 52)) (-3797 (($ $) 25) (($ $ $) 55)) (-3790 (($ $ $) 53)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 123)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 60) (($ $ $) 57) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-375 |#1|) (-13 (-906 |#1|) (-10 -7 (IF (|has| |#1| (-500)) (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4154)) (IF (|has| |#1| (-419)) (IF (|has| |#1| (-6 -4165)) (-6 -4154) |noBranch|) |noBranch|) |noBranch|))) (-508)) (T -375)) -NIL -(-13 (-906 |#1|) (-10 -7 (IF (|has| |#1| (-500)) (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4154)) (IF (|has| |#1| (-419)) (IF (|has| |#1| (-6 -4165)) (-6 -4154) |noBranch|) |noBranch|) |noBranch|))) -((-1212 (((-375 |#2|) (-1 |#2| |#1|) (-375 |#1|)) 13))) -(((-376 |#1| |#2|) (-10 -7 (-15 -1212 ((-375 |#2|) (-1 |#2| |#1|) (-375 |#1|)))) (-508) (-508)) (T -376)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-375 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-5 *2 (-375 *6)) (-5 *1 (-376 *5 *6))))) -(-10 -7 (-15 -1212 ((-375 |#2|) (-1 |#2| |#1|) (-375 |#1|)))) -((-2239 (((-621 |#2|) (-1148 $)) NIL) (((-621 |#2|)) 18)) (-3142 (($ (-1148 |#2|) (-1148 $)) NIL) (($ (-1148 |#2|)) 26)) (-3070 (((-621 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) $) 22)) (-1792 ((|#3| $) 59)) (-2532 ((|#2| (-1148 $)) NIL) ((|#2|) 20)) (-2085 (((-1148 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) (-1148 $) (-1148 $)) NIL) (((-1148 |#2|) $) NIL) (((-621 |#2|) (-1148 $)) 24)) (-1248 (((-1148 |#2|) $) 11) (($ (-1148 |#2|)) 13)) (-2942 ((|#3| $) 51))) -(((-377 |#1| |#2| |#3|) (-10 -8 (-15 -3070 ((-621 |#2|) |#1|)) (-15 -2532 (|#2|)) (-15 -2239 ((-621 |#2|))) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1792 (|#3| |#1|)) (-15 -2942 (|#3| |#1|)) (-15 -2239 ((-621 |#2|) (-1148 |#1|))) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3070 ((-621 |#2|) |#1| (-1148 |#1|)))) (-378 |#2| |#3|) (-156) (-1125 |#2|)) (T -377)) -((-2239 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)) (-5 *1 (-377 *3 *4 *5)) (-4 *3 (-378 *4 *5)))) (-2532 (*1 *2) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-156)) (-5 *1 (-377 *3 *2 *4)) (-4 *3 (-378 *2 *4))))) -(-10 -8 (-15 -3070 ((-621 |#2|) |#1|)) (-15 -2532 (|#2|)) (-15 -2239 ((-621 |#2|))) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1792 (|#3| |#1|)) (-15 -2942 (|#3| |#1|)) (-15 -2239 ((-621 |#2|) (-1148 |#1|))) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3070 ((-621 |#2|) |#1| (-1148 |#1|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2239 (((-621 |#1|) (-1148 $)) 46) (((-621 |#1|)) 61)) (-2225 ((|#1| $) 52)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3142 (($ (-1148 |#1|) (-1148 $)) 48) (($ (-1148 |#1|)) 64)) (-3070 (((-621 |#1|) $ (-1148 $)) 53) (((-621 |#1|) $) 59)) (-2174 (((-3 $ "failed") $) 34)) (-3689 (((-839)) 54)) (-1355 (((-107) $) 31)) (-2626 ((|#1| $) 51)) (-1792 ((|#2| $) 44 (|has| |#1| (-331)))) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2532 ((|#1| (-1148 $)) 47) ((|#1|) 60)) (-2085 (((-1148 |#1|) $ (-1148 $)) 50) (((-621 |#1|) (-1148 $) (-1148 $)) 49) (((-1148 |#1|) $) 66) (((-621 |#1|) (-1148 $)) 65)) (-1248 (((-1148 |#1|) $) 63) (($ (-1148 |#1|)) 62)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37)) (-1274 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-2942 ((|#2| $) 45)) (-3965 (((-701)) 29)) (-4119 (((-1148 $)) 67)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-378 |#1| |#2|) (-1180) (-156) (-1125 |t#1|)) (T -378)) -((-4119 (*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *1)) (-4 *1 (-378 *3 *4)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *3)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) (-3142 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-378 *3 *4)) (-4 *4 (-1125 *3)))) (-1248 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *3)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-378 *3 *4)) (-4 *4 (-1125 *3)))) (-2239 (*1 *2) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-621 *3)))) (-2532 (*1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) (-3070 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-621 *3))))) -(-13 (-338 |t#1| |t#2|) (-10 -8 (-15 -4119 ((-1148 $))) (-15 -2085 ((-1148 |t#1|) $)) (-15 -2085 ((-621 |t#1|) (-1148 $))) (-15 -3142 ($ (-1148 |t#1|))) (-15 -1248 ((-1148 |t#1|) $)) (-15 -1248 ($ (-1148 |t#1|))) (-15 -2239 ((-621 |t#1|))) (-15 -2532 (|t#1|)) (-15 -3070 ((-621 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-338 |#1| |#2|) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) . T) ((-657) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) 27) (((-3 (-501) "failed") $) 19)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) 24) (((-501) $) 14)) (-3691 (($ |#2|) NIL) (($ (-375 (-501))) 22) (($ (-501)) 11))) -(((-379 |#1| |#2|) (-10 -8 (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|))) (-380 |#2|) (-1104)) (T -379)) -NIL -(-10 -8 (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|))) -((-3765 (((-3 |#1| "failed") $) 7) (((-3 (-375 (-501)) "failed") $) 16 (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) 13 (|has| |#1| (-950 (-501))))) (-3490 ((|#1| $) 8) (((-375 (-501)) $) 15 (|has| |#1| (-950 (-375 (-501))))) (((-501) $) 12 (|has| |#1| (-950 (-501))))) (-3691 (($ |#1|) 6) (($ (-375 (-501))) 17 (|has| |#1| (-950 (-375 (-501))))) (($ (-501)) 14 (|has| |#1| (-950 (-501)))))) -(((-380 |#1|) (-1180) (-1104)) (T -380)) -NIL -(-13 (-950 |t#1|) (-10 -7 (IF (|has| |t#1| (-950 (-501))) (-6 (-950 (-501))) |noBranch|) (IF (|has| |t#1| (-950 (-375 (-501)))) (-6 (-950 (-375 (-501)))) |noBranch|))) -(((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T)) -((-3736 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-3127 ((|#4| (-701) (-1148 |#4|)) 55)) (-1355 (((-107) $) NIL)) (-2946 (((-1148 |#4|) $) 17)) (-2626 ((|#2| $) 53)) (-1743 (($ $) 136)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 98)) (-3463 (($ (-1148 |#4|)) 97)) (-3708 (((-1018) $) NIL)) (-2949 ((|#1| $) 18)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) 131)) (-4119 (((-1148 |#4|) $) 126)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 11 T CONST)) (-3751 (((-107) $ $) 39)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 119)) (* (($ $ $) 118))) -(((-381 |#1| |#2| |#3| |#4|) (-13 (-440) (-10 -8 (-15 -3463 ($ (-1148 |#4|))) (-15 -4119 ((-1148 |#4|) $)) (-15 -2626 (|#2| $)) (-15 -2946 ((-1148 |#4|) $)) (-15 -2949 (|#1| $)) (-15 -1743 ($ $)) (-15 -3127 (|#4| (-701) (-1148 |#4|))))) (-276) (-906 |#1|) (-1125 |#2|) (-13 (-378 |#2| |#3|) (-950 |#2|))) (T -381)) -((-3463 (*1 *1 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *3 (-276)) (-5 *1 (-381 *3 *4 *5 *6)))) (-4119 (*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-381 *3 *4 *5 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))))) (-2626 (*1 *2 *1) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-906 *3)) (-5 *1 (-381 *3 *2 *4 *5)) (-4 *3 (-276)) (-4 *5 (-13 (-378 *2 *4) (-950 *2))))) (-2946 (*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-381 *3 *4 *5 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))))) (-2949 (*1 *2 *1) (-12 (-4 *3 (-906 *2)) (-4 *4 (-1125 *3)) (-4 *2 (-276)) (-5 *1 (-381 *2 *3 *4 *5)) (-4 *5 (-13 (-378 *3 *4) (-950 *3))))) (-1743 (*1 *1 *1) (-12 (-4 *2 (-276)) (-4 *3 (-906 *2)) (-4 *4 (-1125 *3)) (-5 *1 (-381 *2 *3 *4 *5)) (-4 *5 (-13 (-378 *3 *4) (-950 *3))))) (-3127 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-1148 *2)) (-4 *5 (-276)) (-4 *6 (-906 *5)) (-4 *2 (-13 (-378 *6 *7) (-950 *6))) (-5 *1 (-381 *5 *6 *7 *2)) (-4 *7 (-1125 *6))))) -(-13 (-440) (-10 -8 (-15 -3463 ($ (-1148 |#4|))) (-15 -4119 ((-1148 |#4|) $)) (-15 -2626 (|#2| $)) (-15 -2946 ((-1148 |#4|) $)) (-15 -2949 (|#1| $)) (-15 -1743 ($ $)) (-15 -3127 (|#4| (-701) (-1148 |#4|))))) -((-1212 (((-381 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-381 |#1| |#2| |#3| |#4|)) 33))) -(((-382 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1212 ((-381 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-381 |#1| |#2| |#3| |#4|)))) (-276) (-906 |#1|) (-1125 |#2|) (-13 (-378 |#2| |#3|) (-950 |#2|)) (-276) (-906 |#5|) (-1125 |#6|) (-13 (-378 |#6| |#7|) (-950 |#6|))) (T -382)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-381 *5 *6 *7 *8)) (-4 *5 (-276)) (-4 *6 (-906 *5)) (-4 *7 (-1125 *6)) (-4 *8 (-13 (-378 *6 *7) (-950 *6))) (-4 *9 (-276)) (-4 *10 (-906 *9)) (-4 *11 (-1125 *10)) (-5 *2 (-381 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-378 *10 *11) (-950 *10)))))) -(-10 -7 (-15 -1212 ((-381 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-381 |#1| |#2| |#3| |#4|)))) -((-3736 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-2626 ((|#2| $) 60)) (-1356 (($ (-1148 |#4|)) 25) (($ (-381 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-950 |#2|)))) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 34)) (-4119 (((-1148 |#4|) $) 26)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1925 (($) 23 T CONST)) (-3751 (((-107) $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ $ $) 72))) -(((-383 |#1| |#2| |#3| |#4| |#5|) (-13 (-657) (-10 -8 (-15 -4119 ((-1148 |#4|) $)) (-15 -2626 (|#2| $)) (-15 -1356 ($ (-1148 |#4|))) (IF (|has| |#4| (-950 |#2|)) (-15 -1356 ($ (-381 |#1| |#2| |#3| |#4|))) |noBranch|))) (-276) (-906 |#1|) (-1125 |#2|) (-378 |#2| |#3|) (-1148 |#4|)) (T -383)) -((-4119 (*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-383 *3 *4 *5 *6 *7)) (-4 *6 (-378 *4 *5)) (-14 *7 *2))) (-2626 (*1 *2 *1) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-906 *3)) (-5 *1 (-383 *3 *2 *4 *5 *6)) (-4 *3 (-276)) (-4 *5 (-378 *2 *4)) (-14 *6 (-1148 *5)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-378 *4 *5)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *3 (-276)) (-5 *1 (-383 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-381 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *6 (-378 *4 *5)) (-14 *7 (-1148 *6)) (-5 *1 (-383 *3 *4 *5 *6 *7))))) -(-13 (-657) (-10 -8 (-15 -4119 ((-1148 |#4|) $)) (-15 -2626 (|#2| $)) (-15 -1356 ($ (-1148 |#4|))) (IF (|has| |#4| (-950 |#2|)) (-15 -1356 ($ (-381 |#1| |#2| |#3| |#4|))) |noBranch|))) -((-1212 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-384 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|))) (-386 |#2|) (-156) (-386 |#4|) (-156)) (T -384)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-386 *6)) (-5 *1 (-384 *4 *5 *2 *6)) (-4 *4 (-386 *5))))) -(-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|))) -((-1738 (((-3 $ "failed")) 85)) (-1763 (((-1148 (-621 |#2|)) (-1148 $)) NIL) (((-1148 (-621 |#2|))) 90)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 84)) (-1956 (((-3 $ "failed")) 83)) (-2311 (((-621 |#2|) (-1148 $)) NIL) (((-621 |#2|)) 101)) (-3867 (((-621 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) $) 109)) (-3665 (((-1064 (-866 |#2|))) 54)) (-2398 ((|#2| (-1148 $)) NIL) ((|#2|) 105)) (-3142 (($ (-1148 |#2|) (-1148 $)) NIL) (($ (-1148 |#2|)) 112)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 82)) (-2653 (((-3 $ "failed")) 74)) (-4146 (((-621 |#2|) (-1148 $)) NIL) (((-621 |#2|)) 99)) (-1472 (((-621 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) $) 107)) (-2582 (((-1064 (-866 |#2|))) 53)) (-1600 ((|#2| (-1148 $)) NIL) ((|#2|) 103)) (-2085 (((-1148 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) (-1148 $) (-1148 $)) NIL) (((-1148 |#2|) $) NIL) (((-621 |#2|) (-1148 $)) 111)) (-1248 (((-1148 |#2|) $) 95) (($ (-1148 |#2|)) 97)) (-3056 (((-578 (-866 |#2|)) (-1148 $)) NIL) (((-578 (-866 |#2|))) 93)) (-1183 (($ (-621 |#2|) $) 89))) -(((-385 |#1| |#2|) (-10 -8 (-15 -1183 (|#1| (-621 |#2|) |#1|)) (-15 -3665 ((-1064 (-866 |#2|)))) (-15 -2582 ((-1064 (-866 |#2|)))) (-15 -3867 ((-621 |#2|) |#1|)) (-15 -1472 ((-621 |#2|) |#1|)) (-15 -2311 ((-621 |#2|))) (-15 -4146 ((-621 |#2|))) (-15 -2398 (|#2|)) (-15 -1600 (|#2|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -3056 ((-578 (-866 |#2|)))) (-15 -1763 ((-1148 (-621 |#2|)))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1738 ((-3 |#1| "failed"))) (-15 -1956 ((-3 |#1| "failed"))) (-15 -2653 ((-3 |#1| "failed"))) (-15 -3054 ((-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed"))) (-15 -1765 ((-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed"))) (-15 -2311 ((-621 |#2|) (-1148 |#1|))) (-15 -4146 ((-621 |#2|) (-1148 |#1|))) (-15 -2398 (|#2| (-1148 |#1|))) (-15 -1600 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3867 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1472 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1763 ((-1148 (-621 |#2|)) (-1148 |#1|))) (-15 -3056 ((-578 (-866 |#2|)) (-1148 |#1|)))) (-386 |#2|) (-156)) (T -385)) -((-1763 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) (-3056 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-578 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) (-1600 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-385 *3 *2)) (-4 *3 (-386 *2)))) (-2398 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-385 *3 *2)) (-4 *3 (-386 *2)))) (-4146 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-621 *4)) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) (-2311 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-621 *4)) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) (-2582 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) (-3665 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4))))) -(-10 -8 (-15 -1183 (|#1| (-621 |#2|) |#1|)) (-15 -3665 ((-1064 (-866 |#2|)))) (-15 -2582 ((-1064 (-866 |#2|)))) (-15 -3867 ((-621 |#2|) |#1|)) (-15 -1472 ((-621 |#2|) |#1|)) (-15 -2311 ((-621 |#2|))) (-15 -4146 ((-621 |#2|))) (-15 -2398 (|#2|)) (-15 -1600 (|#2|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -3056 ((-578 (-866 |#2|)))) (-15 -1763 ((-1148 (-621 |#2|)))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1738 ((-3 |#1| "failed"))) (-15 -1956 ((-3 |#1| "failed"))) (-15 -2653 ((-3 |#1| "failed"))) (-15 -3054 ((-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed"))) (-15 -1765 ((-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed"))) (-15 -2311 ((-621 |#2|) (-1148 |#1|))) (-15 -4146 ((-621 |#2|) (-1148 |#1|))) (-15 -2398 (|#2| (-1148 |#1|))) (-15 -1600 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3867 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1472 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1763 ((-1148 (-621 |#2|)) (-1148 |#1|))) (-15 -3056 ((-578 (-866 |#2|)) (-1148 |#1|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1738 (((-3 $ "failed")) 37 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) 19)) (-1763 (((-1148 (-621 |#1|)) (-1148 $)) 78) (((-1148 (-621 |#1|))) 100)) (-1674 (((-1148 $)) 81)) (-2540 (($) 17 T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 40 (|has| |#1| (-508)))) (-1956 (((-3 $ "failed")) 38 (|has| |#1| (-508)))) (-2311 (((-621 |#1|) (-1148 $)) 65) (((-621 |#1|)) 92)) (-1909 ((|#1| $) 74)) (-3867 (((-621 |#1|) $ (-1148 $)) 76) (((-621 |#1|) $) 90)) (-1887 (((-3 $ "failed") $) 45 (|has| |#1| (-508)))) (-3665 (((-1064 (-866 |#1|))) 88 (|has| |#1| (-331)))) (-2911 (($ $ (-839)) 28)) (-3925 ((|#1| $) 72)) (-2292 (((-1064 |#1|) $) 42 (|has| |#1| (-508)))) (-2398 ((|#1| (-1148 $)) 67) ((|#1|) 94)) (-3333 (((-1064 |#1|) $) 63)) (-3656 (((-107)) 57)) (-3142 (($ (-1148 |#1|) (-1148 $)) 69) (($ (-1148 |#1|)) 98)) (-2174 (((-3 $ "failed") $) 47 (|has| |#1| (-508)))) (-3689 (((-839)) 80)) (-3168 (((-107)) 54)) (-3554 (($ $ (-839)) 33)) (-3930 (((-107)) 50)) (-2838 (((-107)) 48)) (-3874 (((-107)) 52)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 41 (|has| |#1| (-508)))) (-2653 (((-3 $ "failed")) 39 (|has| |#1| (-508)))) (-4146 (((-621 |#1|) (-1148 $)) 66) (((-621 |#1|)) 93)) (-3821 ((|#1| $) 75)) (-1472 (((-621 |#1|) $ (-1148 $)) 77) (((-621 |#1|) $) 91)) (-1992 (((-3 $ "failed") $) 46 (|has| |#1| (-508)))) (-2582 (((-1064 (-866 |#1|))) 89 (|has| |#1| (-331)))) (-3381 (($ $ (-839)) 29)) (-3784 ((|#1| $) 73)) (-3474 (((-1064 |#1|) $) 43 (|has| |#1| (-508)))) (-1600 ((|#1| (-1148 $)) 68) ((|#1|) 95)) (-2270 (((-1064 |#1|) $) 64)) (-2172 (((-107)) 58)) (-3460 (((-1053) $) 9)) (-3808 (((-107)) 49)) (-2417 (((-107)) 51)) (-2794 (((-107)) 53)) (-3708 (((-1018) $) 10)) (-2780 (((-107)) 56)) (-2007 ((|#1| $ (-501)) 101)) (-2085 (((-1148 |#1|) $ (-1148 $)) 71) (((-621 |#1|) (-1148 $) (-1148 $)) 70) (((-1148 |#1|) $) 103) (((-621 |#1|) (-1148 $)) 102)) (-1248 (((-1148 |#1|) $) 97) (($ (-1148 |#1|)) 96)) (-3056 (((-578 (-866 |#1|)) (-1148 $)) 79) (((-578 (-866 |#1|))) 99)) (-2144 (($ $ $) 25)) (-1977 (((-107)) 62)) (-3691 (((-786) $) 11)) (-4119 (((-1148 $)) 104)) (-4102 (((-578 (-1148 |#1|))) 44 (|has| |#1| (-508)))) (-1363 (($ $ $ $) 26)) (-1273 (((-107)) 60)) (-1183 (($ (-621 |#1|) $) 87)) (-2033 (($ $ $) 24)) (-2625 (((-107)) 61)) (-3675 (((-107)) 59)) (-3258 (((-107)) 55)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 30)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-386 |#1|) (-1180) (-156)) (T -386)) -((-4119 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1148 *1)) (-4 *1 (-386 *3)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 *3)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-386 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-386 *2)) (-4 *2 (-156)))) (-1763 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 (-621 *3))))) (-3056 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-578 (-866 *3))))) (-3142 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-386 *3)))) (-1248 (*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 *3)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-386 *3)))) (-1600 (*1 *2) (-12 (-4 *1 (-386 *2)) (-4 *2 (-156)))) (-2398 (*1 *2) (-12 (-4 *1 (-386 *2)) (-4 *2 (-156)))) (-4146 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))) (-2311 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))) (-2582 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-4 *3 (-331)) (-5 *2 (-1064 (-866 *3))))) (-3665 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-4 *3 (-331)) (-5 *2 (-1064 (-866 *3))))) (-1183 (*1 *1 *2 *1) (-12 (-5 *2 (-621 *3)) (-4 *1 (-386 *3)) (-4 *3 (-156))))) -(-13 (-335 |t#1|) (-10 -8 (-15 -4119 ((-1148 $))) (-15 -2085 ((-1148 |t#1|) $)) (-15 -2085 ((-621 |t#1|) (-1148 $))) (-15 -2007 (|t#1| $ (-501))) (-15 -1763 ((-1148 (-621 |t#1|)))) (-15 -3056 ((-578 (-866 |t#1|)))) (-15 -3142 ($ (-1148 |t#1|))) (-15 -1248 ((-1148 |t#1|) $)) (-15 -1248 ($ (-1148 |t#1|))) (-15 -1600 (|t#1|)) (-15 -2398 (|t#1|)) (-15 -4146 ((-621 |t#1|))) (-15 -2311 ((-621 |t#1|))) (-15 -1472 ((-621 |t#1|) $)) (-15 -3867 ((-621 |t#1|) $)) (IF (|has| |t#1| (-331)) (PROGN (-15 -2582 ((-1064 (-866 |t#1|)))) (-15 -3665 ((-1064 (-866 |t#1|))))) |noBranch|) (-15 -1183 ($ (-621 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-335 |#1|) . T) ((-583 |#1|) . T) ((-648 |#1|) . T) ((-651) . T) ((-675 |#1|) . T) ((-692) . T) ((-964 |#1|) . T) ((-1001) . T)) -((-3237 (((-373 |#1|) (-373 |#1|) (-1 (-373 |#1|) |#1|)) 20)) (-4029 (((-373 |#1|) (-373 |#1|) (-373 |#1|)) 15))) -(((-387 |#1|) (-10 -7 (-15 -3237 ((-373 |#1|) (-373 |#1|) (-1 (-373 |#1|) |#1|))) (-15 -4029 ((-373 |#1|) (-373 |#1|) (-373 |#1|)))) (-508)) (T -387)) -((-4029 (*1 *2 *2 *2) (-12 (-5 *2 (-373 *3)) (-4 *3 (-508)) (-5 *1 (-387 *3)))) (-3237 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-373 *4) *4)) (-4 *4 (-508)) (-5 *2 (-373 *4)) (-5 *1 (-387 *4))))) -(-10 -7 (-15 -3237 ((-373 |#1|) (-373 |#1|) (-1 (-373 |#1|) |#1|))) (-15 -4029 ((-373 |#1|) (-373 |#1|) (-373 |#1|)))) -((-3800 (((-578 (-1070)) $) 72)) (-3728 (((-375 (-1064 $)) $ (-553 $)) 268)) (-3631 (($ $ (-262 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-578 (-553 $)) (-578 $)) 233)) (-3765 (((-3 (-553 $) "failed") $) NIL) (((-3 (-1070) "failed") $) 75) (((-3 (-501) "failed") $) NIL) (((-3 |#2| "failed") $) 229) (((-3 (-375 (-866 |#2|)) "failed") $) 319) (((-3 (-866 |#2|) "failed") $) 231) (((-3 (-375 (-501)) "failed") $) NIL)) (-3490 (((-553 $) $) NIL) (((-1070) $) 30) (((-501) $) NIL) ((|#2| $) 227) (((-375 (-866 |#2|)) $) 300) (((-866 |#2|) $) 228) (((-375 (-501)) $) NIL)) (-1853 (((-108) (-108)) 47)) (-2117 (($ $) 87)) (-2789 (((-3 (-553 $) "failed") $) 224)) (-3724 (((-578 (-553 $)) $) 225)) (-2948 (((-3 (-578 $) "failed") $) 243)) (-2000 (((-3 (-2 (|:| |val| $) (|:| -3027 (-501))) "failed") $) 250)) (-1285 (((-3 (-578 $) "failed") $) 241)) (-3475 (((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 $))) "failed") $) 259)) (-2551 (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $) 247) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-108)) 214) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-1070)) 216)) (-3837 (((-107) $) 19)) (-3841 ((|#2| $) 21)) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) 232) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) 96) (($ $ (-1070) (-1 $ (-578 $))) NIL) (($ $ (-1070) (-1 $ $)) NIL) (($ $ (-578 (-108)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-108) (-1 $ (-578 $))) NIL) (($ $ (-108) (-1 $ $)) NIL) (($ $ (-1070)) 57) (($ $ (-578 (-1070))) 236) (($ $) 237) (($ $ (-108) $ (-1070)) 60) (($ $ (-578 (-108)) (-578 $) (-1070)) 67) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ $))) 107) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ (-578 $)))) 238) (($ $ (-1070) (-701) (-1 $ (-578 $))) 94) (($ $ (-1070) (-701) (-1 $ $)) 93)) (-2007 (($ (-108) $) NIL) (($ (-108) $ $) NIL) (($ (-108) $ $ $) NIL) (($ (-108) $ $ $ $) NIL) (($ (-108) (-578 $)) 106)) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) 234)) (-3307 (($ $) 279)) (-1248 (((-810 (-501)) $) 253) (((-810 (-346)) $) 256) (($ (-373 $)) 315) (((-490) $) NIL)) (-3691 (((-786) $) 235) (($ (-553 $)) 84) (($ (-1070)) 26) (($ |#2|) NIL) (($ (-1023 |#2| (-553 $))) NIL) (($ (-375 |#2|)) 284) (($ (-866 (-375 |#2|))) 324) (($ (-375 (-866 (-375 |#2|)))) 296) (($ (-375 (-866 |#2|))) 290) (($ $) NIL) (($ (-866 |#2|)) 183) (($ (-375 (-501))) 329) (($ (-501)) NIL)) (-3965 (((-701)) 79)) (-3811 (((-107) (-108)) 41)) (-4043 (($ (-1070) $) 33) (($ (-1070) $ $) 34) (($ (-1070) $ $ $) 35) (($ (-1070) $ $ $ $) 36) (($ (-1070) (-578 $)) 39)) (* (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL) (($ |#2| $) 261) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL))) -(((-388 |#1| |#2|) (-10 -8 (-15 * (|#1| (-839) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3965 ((-701))) (-15 -3691 (|#1| (-501))) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-866 |#2|) |#1|)) (-15 -3765 ((-3 (-866 |#2|) "failed") |#1|)) (-15 -3691 (|#1| (-866 |#2|))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3691 (|#1| |#1|)) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3490 ((-375 (-866 |#2|)) |#1|)) (-15 -3765 ((-3 (-375 (-866 |#2|)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-866 |#2|)))) (-15 -3728 ((-375 (-1064 |#1|)) |#1| (-553 |#1|))) (-15 -3691 (|#1| (-375 (-866 (-375 |#2|))))) (-15 -3691 (|#1| (-866 (-375 |#2|)))) (-15 -3691 (|#1| (-375 |#2|))) (-15 -3307 (|#1| |#1|)) (-15 -1248 (|#1| (-373 |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-701) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-701) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-701)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-701)) (-578 (-1 |#1| |#1|)))) (-15 -2000 ((-3 (-2 (|:| |val| |#1|) (|:| -3027 (-501))) "failed") |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1| (-1070))) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1| (-108))) (-15 -2117 (|#1| |#1|)) (-15 -3691 (|#1| (-1023 |#2| (-553 |#1|)))) (-15 -3475 ((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 |#1|))) "failed") |#1|)) (-15 -1285 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1|)) (-15 -2948 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 |#1|) (-1070))) (-15 -3195 (|#1| |#1| (-108) |#1| (-1070))) (-15 -3195 (|#1| |#1|)) (-15 -3195 (|#1| |#1| (-578 (-1070)))) (-15 -3195 (|#1| |#1| (-1070))) (-15 -4043 (|#1| (-1070) (-578 |#1|))) (-15 -4043 (|#1| (-1070) |#1| |#1| |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1| |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1|)) (-15 -3800 ((-578 (-1070)) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3837 ((-107) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3691 (|#1| (-1070))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| |#1|)))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| |#1|)))) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -3724 ((-578 (-553 |#1|)) |#1|)) (-15 -2789 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -3631 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3631 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3631 (|#1| |#1| (-262 |#1|))) (-15 -2007 (|#1| (-108) (-578 |#1|))) (-15 -2007 (|#1| (-108) |#1| |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-553 |#1|) |#1|)) (-15 -3490 ((-553 |#1|) |#1|)) (-15 -3765 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -3691 (|#1| (-553 |#1|))) (-15 -3691 ((-786) |#1|))) (-389 |#2|) (-777)) (T -388)) -((-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *4 (-777)) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-388 *4 *5)) (-4 *4 (-389 *5)))) (-3965 (*1 *2) (-12 (-4 *4 (-777)) (-5 *2 (-701)) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4))))) -(-10 -8 (-15 * (|#1| (-839) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3965 ((-701))) (-15 -3691 (|#1| (-501))) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-866 |#2|) |#1|)) (-15 -3765 ((-3 (-866 |#2|) "failed") |#1|)) (-15 -3691 (|#1| (-866 |#2|))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3691 (|#1| |#1|)) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3490 ((-375 (-866 |#2|)) |#1|)) (-15 -3765 ((-3 (-375 (-866 |#2|)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-866 |#2|)))) (-15 -3728 ((-375 (-1064 |#1|)) |#1| (-553 |#1|))) (-15 -3691 (|#1| (-375 (-866 (-375 |#2|))))) (-15 -3691 (|#1| (-866 (-375 |#2|)))) (-15 -3691 (|#1| (-375 |#2|))) (-15 -3307 (|#1| |#1|)) (-15 -1248 (|#1| (-373 |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-701) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-701) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-701)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-701)) (-578 (-1 |#1| |#1|)))) (-15 -2000 ((-3 (-2 (|:| |val| |#1|) (|:| -3027 (-501))) "failed") |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1| (-1070))) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1| (-108))) (-15 -2117 (|#1| |#1|)) (-15 -3691 (|#1| (-1023 |#2| (-553 |#1|)))) (-15 -3475 ((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 |#1|))) "failed") |#1|)) (-15 -1285 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1|)) (-15 -2948 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 |#1|) (-1070))) (-15 -3195 (|#1| |#1| (-108) |#1| (-1070))) (-15 -3195 (|#1| |#1|)) (-15 -3195 (|#1| |#1| (-578 (-1070)))) (-15 -3195 (|#1| |#1| (-1070))) (-15 -4043 (|#1| (-1070) (-578 |#1|))) (-15 -4043 (|#1| (-1070) |#1| |#1| |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1| |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1|)) (-15 -3800 ((-578 (-1070)) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3837 ((-107) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3691 (|#1| (-1070))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| |#1|)))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| |#1|)))) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -3724 ((-578 (-553 |#1|)) |#1|)) (-15 -2789 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -3631 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3631 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3631 (|#1| |#1| (-262 |#1|))) (-15 -2007 (|#1| (-108) (-578 |#1|))) (-15 -2007 (|#1| (-108) |#1| |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-553 |#1|) |#1|)) (-15 -3490 ((-553 |#1|) |#1|)) (-15 -3765 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -3691 (|#1| (-553 |#1|))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 116 (|has| |#1| (-25)))) (-3800 (((-578 (-1070)) $) 203)) (-3728 (((-375 (-1064 $)) $ (-553 $)) 171 (|has| |#1| (-508)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 143 (|has| |#1| (-508)))) (-2865 (($ $) 144 (|has| |#1| (-508)))) (-1639 (((-107) $) 146 (|has| |#1| (-508)))) (-3709 (((-578 (-553 $)) $) 44)) (-3177 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3631 (($ $ (-262 $)) 56) (($ $ (-578 (-262 $))) 55) (($ $ (-578 (-553 $)) (-578 $)) 54)) (-3676 (($ $) 163 (|has| |#1| (-508)))) (-1559 (((-373 $) $) 164 (|has| |#1| (-508)))) (-2781 (((-107) $ $) 154 (|has| |#1| (-508)))) (-2540 (($) 102 (-1405 (|has| |#1| (-1012)) (|has| |#1| (-25))) CONST)) (-3765 (((-3 (-553 $) "failed") $) 69) (((-3 (-1070) "failed") $) 216) (((-3 (-501) "failed") $) 209 (|has| |#1| (-950 (-501)))) (((-3 |#1| "failed") $) 207) (((-3 (-375 (-866 |#1|)) "failed") $) 169 (|has| |#1| (-508))) (((-3 (-866 |#1|) "failed") $) 123 (|has| |#1| (-959))) (((-3 (-375 (-501)) "failed") $) 95 (-1405 (-12 (|has| |#1| (-950 (-501))) (|has| |#1| (-508))) (|has| |#1| (-950 (-375 (-501))))))) (-3490 (((-553 $) $) 68) (((-1070) $) 215) (((-501) $) 210 (|has| |#1| (-950 (-501)))) ((|#1| $) 206) (((-375 (-866 |#1|)) $) 168 (|has| |#1| (-508))) (((-866 |#1|) $) 122 (|has| |#1| (-959))) (((-375 (-501)) $) 94 (-1405 (-12 (|has| |#1| (-950 (-501))) (|has| |#1| (-508))) (|has| |#1| (-950 (-375 (-501))))))) (-3023 (($ $ $) 158 (|has| |#1| (-508)))) (-3868 (((-621 (-501)) (-621 $)) 137 (-1280 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 136 (-1280 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 135 (|has| |#1| (-959))) (((-621 |#1|) (-621 $)) 134 (|has| |#1| (-959)))) (-2174 (((-3 $ "failed") $) 105 (|has| |#1| (-1012)))) (-3034 (($ $ $) 157 (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 152 (|has| |#1| (-508)))) (-1628 (((-107) $) 165 (|has| |#1| (-508)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 212 (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 211 (|has| |#1| (-806 (-346))))) (-2446 (($ $) 51) (($ (-578 $)) 50)) (-2389 (((-578 (-108)) $) 43)) (-1853 (((-108) (-108)) 42)) (-1355 (((-107) $) 103 (|has| |#1| (-1012)))) (-3729 (((-107) $) 22 (|has| $ (-950 (-501))))) (-2117 (($ $) 186 (|has| |#1| (-959)))) (-2946 (((-1023 |#1| (-553 $)) $) 187 (|has| |#1| (-959)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 161 (|has| |#1| (-508)))) (-1983 (((-1064 $) (-553 $)) 25 (|has| $ (-959)))) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-1212 (($ (-1 $ $) (-553 $)) 36)) (-2789 (((-3 (-553 $) "failed") $) 46)) (-1697 (($ (-578 $)) 150 (|has| |#1| (-508))) (($ $ $) 149 (|has| |#1| (-508)))) (-3460 (((-1053) $) 9)) (-3724 (((-578 (-553 $)) $) 45)) (-3136 (($ (-108) $) 38) (($ (-108) (-578 $)) 37)) (-2948 (((-3 (-578 $) "failed") $) 192 (|has| |#1| (-1012)))) (-2000 (((-3 (-2 (|:| |val| $) (|:| -3027 (-501))) "failed") $) 183 (|has| |#1| (-959)))) (-1285 (((-3 (-578 $) "failed") $) 190 (|has| |#1| (-25)))) (-3475 (((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2551 (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $) 191 (|has| |#1| (-1012))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-108)) 185 (|has| |#1| (-959))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-1070)) 184 (|has| |#1| (-959)))) (-3109 (((-107) $ (-108)) 40) (((-107) $ (-1070)) 39)) (-3833 (($ $) 107 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508))))) (-2696 (((-701) $) 47)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 205)) (-3841 ((|#1| $) 204)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 151 (|has| |#1| (-508)))) (-3664 (($ (-578 $)) 148 (|has| |#1| (-508))) (($ $ $) 147 (|has| |#1| (-508)))) (-2816 (((-107) $ $) 35) (((-107) $ (-1070)) 34)) (-3739 (((-373 $) $) 162 (|has| |#1| (-508)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-508))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 159 (|has| |#1| (-508)))) (-3694 (((-3 $ "failed") $ $) 142 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 153 (|has| |#1| (-508)))) (-3172 (((-107) $) 23 (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) 67) (($ $ (-578 (-553 $)) (-578 $)) 66) (($ $ (-578 (-262 $))) 65) (($ $ (-262 $)) 64) (($ $ $ $) 63) (($ $ (-578 $) (-578 $)) 62) (($ $ (-578 (-1070)) (-578 (-1 $ $))) 33) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) 32) (($ $ (-1070) (-1 $ (-578 $))) 31) (($ $ (-1070) (-1 $ $)) 30) (($ $ (-578 (-108)) (-578 (-1 $ $))) 29) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) 28) (($ $ (-108) (-1 $ (-578 $))) 27) (($ $ (-108) (-1 $ $)) 26) (($ $ (-1070)) 197 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-1070))) 196 (|has| |#1| (-556 (-490)))) (($ $) 195 (|has| |#1| (-556 (-490)))) (($ $ (-108) $ (-1070)) 194 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-108)) (-578 $) (-1070)) 193 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ $))) 182 (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ (-578 $)))) 181 (|has| |#1| (-959))) (($ $ (-1070) (-701) (-1 $ (-578 $))) 180 (|has| |#1| (-959))) (($ $ (-1070) (-701) (-1 $ $)) 179 (|has| |#1| (-959)))) (-1864 (((-701) $) 155 (|has| |#1| (-508)))) (-2007 (($ (-108) $) 61) (($ (-108) $ $) 60) (($ (-108) $ $ $) 59) (($ (-108) $ $ $ $) 58) (($ (-108) (-578 $)) 57)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 156 (|has| |#1| (-508)))) (-4106 (($ $) 49) (($ $ $) 48)) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 128 (|has| |#1| (-959))) (($ $ (-1070) (-701)) 127 (|has| |#1| (-959))) (($ $ (-578 (-1070))) 126 (|has| |#1| (-959))) (($ $ (-1070)) 125 (|has| |#1| (-959)))) (-3307 (($ $) 176 (|has| |#1| (-508)))) (-2949 (((-1023 |#1| (-553 $)) $) 177 (|has| |#1| (-508)))) (-2264 (($ $) 24 (|has| $ (-959)))) (-1248 (((-810 (-501)) $) 214 (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) 213 (|has| |#1| (-556 (-810 (-346))))) (($ (-373 $)) 178 (|has| |#1| (-508))) (((-490) $) 97 (|has| |#1| (-556 (-490))))) (-3097 (($ $ $) 111 (|has| |#1| (-440)))) (-2144 (($ $ $) 112 (|has| |#1| (-440)))) (-3691 (((-786) $) 11) (($ (-553 $)) 70) (($ (-1070)) 217) (($ |#1|) 208) (($ (-1023 |#1| (-553 $))) 188 (|has| |#1| (-959))) (($ (-375 |#1|)) 174 (|has| |#1| (-508))) (($ (-866 (-375 |#1|))) 173 (|has| |#1| (-508))) (($ (-375 (-866 (-375 |#1|)))) 172 (|has| |#1| (-508))) (($ (-375 (-866 |#1|))) 170 (|has| |#1| (-508))) (($ $) 141 (|has| |#1| (-508))) (($ (-866 |#1|)) 124 (|has| |#1| (-959))) (($ (-375 (-501))) 96 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-950 (-501))) (|has| |#1| (-508))) (|has| |#1| (-950 (-375 (-501)))))) (($ (-501)) 93 (-1405 (|has| |#1| (-959)) (|has| |#1| (-950 (-501)))))) (-1274 (((-3 $ "failed") $) 138 (|has| |#1| (-132)))) (-3965 (((-701)) 133 (|has| |#1| (-959)))) (-1831 (($ $) 53) (($ (-578 $)) 52)) (-3811 (((-107) (-108)) 41)) (-2442 (((-107) $ $) 145 (|has| |#1| (-508)))) (-4043 (($ (-1070) $) 202) (($ (-1070) $ $) 201) (($ (-1070) $ $ $) 200) (($ (-1070) $ $ $ $) 199) (($ (-1070) (-578 $)) 198)) (-3948 (($ $ (-501)) 110 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508)))) (($ $ (-701)) 104 (|has| |#1| (-1012))) (($ $ (-839)) 100 (|has| |#1| (-1012)))) (-1850 (($) 115 (|has| |#1| (-25)) CONST)) (-1925 (($) 101 (|has| |#1| (-1012)) CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 132 (|has| |#1| (-959))) (($ $ (-1070) (-701)) 131 (|has| |#1| (-959))) (($ $ (-578 (-1070))) 130 (|has| |#1| (-959))) (($ $ (-1070)) 129 (|has| |#1| (-959)))) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3803 (($ (-1023 |#1| (-553 $)) (-1023 |#1| (-553 $))) 175 (|has| |#1| (-508))) (($ $ $) 108 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508))))) (-3797 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-3790 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-501)) 109 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508)))) (($ $ (-701)) 106 (|has| |#1| (-1012))) (($ $ (-839)) 99 (|has| |#1| (-1012)))) (* (($ (-375 (-501)) $) 167 (|has| |#1| (-508))) (($ $ (-375 (-501))) 166 (|has| |#1| (-508))) (($ |#1| $) 140 (|has| |#1| (-156))) (($ $ |#1|) 139 (|has| |#1| (-156))) (($ (-501) $) 121 (|has| |#1| (-21))) (($ (-701) $) 117 (|has| |#1| (-25))) (($ (-839) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1012))))) -(((-389 |#1|) (-1180) (-777)) (T -389)) -((-3837 (*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-777)) (-5 *2 (-107)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-777)) (-5 *2 (-578 (-1070))))) (-4043 (*1 *1 *2 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) (-4043 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) (-4043 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) (-4043 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) (-4043 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-578 *1)) (-4 *1 (-389 *4)) (-4 *4 (-777)))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-556 (-490))))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1070))) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-556 (-490))))) (-3195 (*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-556 (-490))))) (-3195 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1070)) (-4 *1 (-389 *4)) (-4 *4 (-777)) (-4 *4 (-556 (-490))))) (-3195 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 *1)) (-5 *4 (-1070)) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-556 (-490))))) (-2948 (*1 *2 *1) (|partial| -12 (-4 *3 (-1012)) (-4 *3 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-389 *3)))) (-2551 (*1 *2 *1) (|partial| -12 (-4 *3 (-1012)) (-4 *3 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *3)))) (-1285 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-389 *3)))) (-3475 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 (-501)) (|:| |var| (-553 *1)))) (-4 *1 (-389 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1023 *3 (-553 *1))) (-4 *3 (-959)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) (-2946 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *3 (-777)) (-5 *2 (-1023 *3 (-553 *1))) (-4 *1 (-389 *3)))) (-2117 (*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-959)))) (-2551 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-108)) (-4 *4 (-959)) (-4 *4 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *4)))) (-2551 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-959)) (-4 *4 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *4)))) (-2000 (*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *3 (-777)) (-5 *2 (-2 (|:| |val| *1) (|:| -3027 (-501)))) (-4 *1 (-389 *3)))) (-3195 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-701))) (-5 *4 (-578 (-1 *1 *1))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) (-3195 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-701))) (-5 *4 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) (-3195 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *4 (-1 *1 (-578 *1))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) (-3195 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *4 (-1 *1 *1)) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-373 *1)) (-4 *1 (-389 *3)) (-4 *3 (-508)) (-4 *3 (-777)))) (-2949 (*1 *2 *1) (-12 (-4 *3 (-508)) (-4 *3 (-777)) (-5 *2 (-1023 *3 (-553 *1))) (-4 *1 (-389 *3)))) (-3307 (*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-508)))) (-3803 (*1 *1 *2 *2) (-12 (-5 *2 (-1023 *3 (-553 *1))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-375 *3)) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-866 (-375 *3))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-375 *3)))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-553 *1)) (-4 *1 (-389 *4)) (-4 *4 (-777)) (-4 *4 (-508)) (-5 *2 (-375 (-1064 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-1012))))) -(-13 (-267) (-950 (-1070)) (-804 |t#1|) (-368 |t#1|) (-380 |t#1|) (-10 -8 (-15 -3837 ((-107) $)) (-15 -3841 (|t#1| $)) (-15 -3800 ((-578 (-1070)) $)) (-15 -4043 ($ (-1070) $)) (-15 -4043 ($ (-1070) $ $)) (-15 -4043 ($ (-1070) $ $ $)) (-15 -4043 ($ (-1070) $ $ $ $)) (-15 -4043 ($ (-1070) (-578 $))) (IF (|has| |t#1| (-556 (-490))) (PROGN (-6 (-556 (-490))) (-15 -3195 ($ $ (-1070))) (-15 -3195 ($ $ (-578 (-1070)))) (-15 -3195 ($ $)) (-15 -3195 ($ $ (-108) $ (-1070))) (-15 -3195 ($ $ (-578 (-108)) (-578 $) (-1070)))) |noBranch|) (IF (|has| |t#1| (-1012)) (PROGN (-6 (-657)) (-15 ** ($ $ (-701))) (-15 -2948 ((-3 (-578 $) "failed") $)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-440)) (-6 (-440)) |noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1285 ((-3 (-578 $) "failed") $)) (-15 -3475 ((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 $))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |t#1| (-959)) (PROGN (-6 (-959)) (-6 (-950 (-866 |t#1|))) (-6 (-820 (-1070))) (-6 (-345 |t#1|)) (-15 -3691 ($ (-1023 |t#1| (-553 $)))) (-15 -2946 ((-1023 |t#1| (-553 $)) $)) (-15 -2117 ($ $)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-108))) (-15 -2551 ((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-1070))) (-15 -2000 ((-3 (-2 (|:| |val| $) (|:| -3027 (-501))) "failed") $)) (-15 -3195 ($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ $)))) (-15 -3195 ($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ (-578 $))))) (-15 -3195 ($ $ (-1070) (-701) (-1 $ (-578 $)))) (-15 -3195 ($ $ (-1070) (-701) (-1 $ $)))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-6 (-331)) (-6 (-950 (-375 (-866 |t#1|)))) (-15 -1248 ($ (-373 $))) (-15 -2949 ((-1023 |t#1| (-553 $)) $)) (-15 -3307 ($ $)) (-15 -3803 ($ (-1023 |t#1| (-553 $)) (-1023 |t#1| (-553 $)))) (-15 -3691 ($ (-375 |t#1|))) (-15 -3691 ($ (-866 (-375 |t#1|)))) (-15 -3691 ($ (-375 (-866 (-375 |t#1|))))) (-15 -3728 ((-375 (-1064 $)) $ (-553 $))) (IF (|has| |t#1| (-950 (-501))) (-6 (-950 (-375 (-501)))) |noBranch|)) |noBranch|))) -(((-21) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-23) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 (-375 (-501))) |has| |#1| (-508)) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-508)) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) |has| |#1| (-508)) ((-123) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) |has| |#1| (-508)) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-556 (-810 (-346))) |has| |#1| (-556 (-810 (-346)))) ((-556 (-810 (-501))) |has| |#1| (-556 (-810 (-501)))) ((-216) |has| |#1| (-508)) ((-260) |has| |#1| (-508)) ((-276) |has| |#1| (-508)) ((-278 $) . T) ((-267) . T) ((-331) |has| |#1| (-508)) ((-345 |#1|) |has| |#1| (-959)) ((-368 |#1|) . T) ((-380 |#1|) . T) ((-419) |has| |#1| (-508)) ((-440) |has| |#1| (-440)) ((-476 (-553 $) $) . T) ((-476 $ $) . T) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-508)) ((-583 |#1|) |has| |#1| (-156)) ((-583 $) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-577 (-501)) -12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) ((-577 |#1|) |has| |#1| (-959)) ((-648 (-375 (-501))) |has| |#1| (-508)) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) -1405 (|has| |#1| (-1012)) (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-440)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-777) . T) ((-820 (-1070)) |has| |#1| (-959)) ((-806 (-346)) |has| |#1| (-806 (-346))) ((-806 (-501)) |has| |#1| (-806 (-501))) ((-804 |#1|) . T) ((-841) |has| |#1| (-508)) ((-950 (-375 (-501))) -1405 (|has| |#1| (-950 (-375 (-501)))) (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501))))) ((-950 (-375 (-866 |#1|))) |has| |#1| (-508)) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 (-553 $)) . T) ((-950 (-866 |#1|)) |has| |#1| (-959)) ((-950 (-1070)) . T) ((-950 |#1|) . T) ((-964 (-375 (-501))) |has| |#1| (-508)) ((-964 |#1|) |has| |#1| (-156)) ((-964 $) |has| |#1| (-508)) ((-959) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-965) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1012) -1405 (|has| |#1| (-1012)) (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-440)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1001) . T) ((-1104) . T) ((-1108) |has| |#1| (-508))) -((-1212 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-959) (-777)) (-389 |#1|) (-13 (-959) (-777)) (-389 |#3|)) (T -390)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-959) (-777))) (-4 *6 (-13 (-959) (-777))) (-4 *2 (-389 *6)) (-5 *1 (-390 *5 *4 *6 *2)) (-4 *4 (-389 *5))))) -(-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|))) -((-1410 ((|#2| |#2|) 160)) (-2356 (((-3 (|:| |%expansion| (-281 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107)) 55))) -(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2356 ((-3 (|:| |%expansion| (-281 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107))) (-15 -1410 (|#2| |#2|))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|)) (-1070) |#2|) (T -391)) -((-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-391 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1090) (-389 *3))) (-14 *4 (-1070)) (-14 *5 *2))) (-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |%expansion| (-281 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-391 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-14 *6 (-1070)) (-14 *7 *3)))) -(-10 -7 (-15 -2356 ((-3 (|:| |%expansion| (-281 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107))) (-15 -1410 (|#2| |#2|))) -((-1410 ((|#2| |#2|) 87)) (-1294 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053)) 46)) (-3126 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053)) 152))) -(((-392 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1294 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053))) (-15 -3126 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053))) (-15 -1410 (|#2| |#2|))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|) (-10 -8 (-15 -3691 ($ |#3|)))) (-775) (-13 (-1128 |#2| |#3|) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $)))) (-898 |#4|) (-1070)) (T -392)) -((-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *2 (-13 (-27) (-1090) (-389 *3) (-10 -8 (-15 -3691 ($ *4))))) (-4 *4 (-775)) (-4 *5 (-13 (-1128 *2 *4) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-898 *5)) (-14 *7 (-1070)))) (-3126 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-27) (-1090) (-389 *6) (-10 -8 (-15 -3691 ($ *7))))) (-4 *7 (-775)) (-4 *8 (-13 (-1128 *3 *7) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1053)) (-4 *9 (-898 *8)) (-14 *10 (-1070)))) (-1294 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-27) (-1090) (-389 *6) (-10 -8 (-15 -3691 ($ *7))))) (-4 *7 (-775)) (-4 *8 (-13 (-1128 *3 *7) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1053)) (-4 *9 (-898 *8)) (-14 *10 (-1070))))) -(-10 -7 (-15 -1294 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053))) (-15 -3126 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053))) (-15 -1410 (|#2| |#2|))) -((-3524 (($) 44)) (-1442 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3217 (($ $ $) 39)) (-3599 (((-107) $ $) 28)) (-3796 (((-701)) 47)) (-2198 (($ (-578 |#2|)) 20) (($) NIL)) (-2890 (($) 53)) (-4111 ((|#2| $) 61)) (-1323 ((|#2| $) 59)) (-3104 (((-839) $) 55)) (-3420 (($ $ $) 35)) (-3506 (($ (-839)) 50)) (-3327 (($ $ |#2|) NIL) (($ $ $) 38)) (-3713 (((-701) (-1 (-107) |#2|) $) NIL) (((-701) |#2| $) 26)) (-3699 (($ (-578 |#2|)) 24)) (-2655 (($ $) 46)) (-3691 (((-786) $) 33)) (-1393 (((-701) $) 21)) (-3910 (($ (-578 |#2|)) 19) (($) NIL)) (-3751 (((-107) $ $) 16)) (-3762 (((-107) $ $) 13))) -(((-393 |#1| |#2|) (-10 -8 (-15 -3796 ((-701))) (-15 -3506 (|#1| (-839))) (-15 -3104 ((-839) |#1|)) (-15 -2890 (|#1|)) (-15 -4111 (|#2| |#1|)) (-15 -1323 (|#2| |#1|)) (-15 -3524 (|#1|)) (-15 -2655 (|#1| |#1|)) (-15 -1393 ((-701) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3910 (|#1|)) (-15 -3910 (|#1| (-578 |#2|))) (-15 -2198 (|#1|)) (-15 -2198 (|#1| (-578 |#2|))) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#2|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -3599 ((-107) |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#2| |#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|))) (-394 |#2|) (-1001)) (T -393)) -((-3796 (*1 *2) (-12 (-4 *4 (-1001)) (-5 *2 (-701)) (-5 *1 (-393 *3 *4)) (-4 *3 (-394 *4))))) -(-10 -8 (-15 -3796 ((-701))) (-15 -3506 (|#1| (-839))) (-15 -3104 ((-839) |#1|)) (-15 -2890 (|#1|)) (-15 -4111 (|#2| |#1|)) (-15 -1323 (|#2| |#1|)) (-15 -3524 (|#1|)) (-15 -2655 (|#1| |#1|)) (-15 -1393 ((-701) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3910 (|#1|)) (-15 -3910 (|#1| (-578 |#2|))) (-15 -2198 (|#1|)) (-15 -2198 (|#1| (-578 |#2|))) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#2|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -3599 ((-107) |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#2| |#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|))) -((-3736 (((-107) $ $) 18)) (-3524 (($) 67 (|has| |#1| (-336)))) (-1442 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3217 (($ $ $) 78)) (-3599 (((-107) $ $) 79)) (-2997 (((-107) $ (-701)) 8)) (-3796 (((-701)) 61 (|has| |#1| (-336)))) (-2198 (($ (-578 |#1|)) 74) (($) 73)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2890 (($) 64 (|has| |#1| (-336)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-4111 ((|#1| $) 65 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1323 ((|#1| $) 66 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3104 (((-839) $) 63 (|has| |#1| (-336)))) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22)) (-3420 (($ $ $) 75)) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3506 (($ (-839)) 62 (|has| |#1| (-336)))) (-3708 (((-1018) $) 21)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3327 (($ $ |#1|) 77) (($ $ $) 76)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-2655 (($ $) 68 (|has| |#1| (-336)))) (-3691 (((-786) $) 20)) (-1393 (((-701) $) 69)) (-3910 (($ (-578 |#1|)) 72) (($) 71)) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19)) (-3762 (((-107) $ $) 70)) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-394 |#1|) (-1180) (-1001)) (T -394)) -((-1393 (*1 *2 *1) (-12 (-4 *1 (-394 *3)) (-4 *3 (-1001)) (-5 *2 (-701)))) (-2655 (*1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-336)))) (-3524 (*1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-336)) (-4 *2 (-1001)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-777)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-777))))) -(-13 (-202 |t#1|) (-999 |t#1|) (-10 -8 (-6 -4167) (-15 -1393 ((-701) $)) (IF (|has| |t#1| (-336)) (PROGN (-6 (-336)) (-15 -2655 ($ $)) (-15 -3524 ($))) |noBranch|) (IF (|has| |t#1| (-777)) (PROGN (-15 -1323 (|t#1| $)) (-15 -4111 (|t#1| $))) |noBranch|))) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-202 |#1|) . T) ((-208 |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-336) |has| |#1| (-336)) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-999 |#1|) . T) ((-1001) . T) ((-1104) . T)) -((-3162 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3547 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1212 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3547 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3162 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1001) (-394 |#1|) (-1001) (-394 |#3|)) (T -395)) -((-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1001)) (-4 *5 (-1001)) (-4 *2 (-394 *5)) (-5 *1 (-395 *6 *4 *5 *2)) (-4 *4 (-394 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1001)) (-4 *2 (-1001)) (-5 *1 (-395 *5 *4 *2 *6)) (-4 *4 (-394 *5)) (-4 *6 (-394 *2)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-394 *6)) (-5 *1 (-395 *5 *4 *6 *2)) (-4 *4 (-394 *5))))) -(-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3547 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3162 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2377 (((-530 |#2|) |#2| (-1070)) 35)) (-3009 (((-530 |#2|) |#2| (-1070)) 19)) (-3279 ((|#2| |#2| (-1070)) 24))) -(((-396 |#1| |#2|) (-10 -7 (-15 -3009 ((-530 |#2|) |#2| (-1070))) (-15 -2377 ((-530 |#2|) |#2| (-1070))) (-15 -3279 (|#2| |#2| (-1070)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-29 |#1|))) (T -396)) -((-3279 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1090) (-29 *4))))) (-2377 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1090) (-29 *5))))) (-3009 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1090) (-29 *5)))))) -(-10 -7 (-15 -3009 ((-530 |#2|) |#2| (-1070))) (-15 -2377 ((-530 |#2|) |#2| (-1070))) (-15 -3279 (|#2| |#2| (-1070)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3992 (($ |#2| |#1|) 35)) (-2204 (($ |#2| |#1|) 33)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-299 |#2|)) 25)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 10 T CONST)) (-1925 (($) 16 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 34)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-397 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4154)) (IF (|has| |#1| (-6 -4154)) (-6 -4154) |noBranch|) |noBranch|) (-15 -3691 ($ |#1|)) (-15 -3691 ($ (-299 |#2|))) (-15 -3992 ($ |#2| |#1|)) (-15 -2204 ($ |#2| |#1|)))) (-13 (-156) (-37 (-375 (-501)))) (-13 (-777) (-21))) (T -397)) -((-3691 (*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-375 (-501))))) (-4 *3 (-13 (-777) (-21))))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-299 *4)) (-4 *4 (-13 (-777) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))))) (-3992 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))) (-4 *2 (-13 (-777) (-21))))) (-2204 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))) (-4 *2 (-13 (-777) (-21)))))) -(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4154)) (IF (|has| |#1| (-6 -4154)) (-6 -4154) |noBranch|) |noBranch|) (-15 -3691 ($ |#1|)) (-15 -3691 ($ (-299 |#2|))) (-15 -3992 ($ |#2| |#1|)) (-15 -2204 ($ |#2| |#1|)))) -((-3188 (((-3 |#2| (-578 |#2|)) |#2| (-1070)) 104))) -(((-398 |#1| |#2|) (-10 -7 (-15 -3188 ((-3 |#2| (-578 |#2|)) |#2| (-1070)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-879) (-29 |#1|))) (T -398)) -((-3188 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 *3 (-578 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1090) (-879) (-29 *5)))))) -(-10 -7 (-15 -3188 ((-3 |#2| (-578 |#2|)) |#2| (-1070)))) -((-2726 ((|#2| |#2| |#2|) 33)) (-1853 (((-108) (-108)) 44)) (-4048 ((|#2| |#2|) 66)) (-3254 ((|#2| |#2|) 69)) (-3041 ((|#2| |#2|) 32)) (-1223 ((|#2| |#2| |#2|) 35)) (-3076 ((|#2| |#2| |#2|) 37)) (-1730 ((|#2| |#2| |#2|) 34)) (-2108 ((|#2| |#2| |#2|) 36)) (-3811 (((-107) (-108)) 42)) (-2134 ((|#2| |#2|) 39)) (-2338 ((|#2| |#2|) 38)) (-1720 ((|#2| |#2|) 27)) (-3705 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3360 ((|#2| |#2| |#2|) 31))) -(((-399 |#1| |#2|) (-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -1720 (|#2| |#2|)) (-15 -3705 (|#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3360 (|#2| |#2| |#2|)) (-15 -3041 (|#2| |#2|)) (-15 -2726 (|#2| |#2| |#2|)) (-15 -1730 (|#2| |#2| |#2|)) (-15 -1223 (|#2| |#2| |#2|)) (-15 -2108 (|#2| |#2| |#2|)) (-15 -3076 (|#2| |#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2134 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -4048 (|#2| |#2|))) (-13 (-777) (-508)) (-389 |#1|)) (T -399)) -((-4048 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3254 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-2134 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-2338 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3076 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-2108 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-1223 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-1730 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-2726 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3041 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3360 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3705 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3705 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-1720 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *4)) (-4 *4 (-389 *3)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *5 (-389 *4))))) -(-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -1720 (|#2| |#2|)) (-15 -3705 (|#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3360 (|#2| |#2| |#2|)) (-15 -3041 (|#2| |#2|)) (-15 -2726 (|#2| |#2| |#2|)) (-15 -1730 (|#2| |#2| |#2|)) (-15 -1223 (|#2| |#2| |#2|)) (-15 -2108 (|#2| |#2| |#2|)) (-15 -3076 (|#2| |#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2134 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -4048 (|#2| |#2|))) -((-1317 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1064 |#2|)) (|:| |pol2| (-1064 |#2|)) (|:| |prim| (-1064 |#2|))) |#2| |#2|) 93 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-578 (-1064 |#2|))) (|:| |prim| (-1064 |#2|))) (-578 |#2|)) 58))) -(((-400 |#1| |#2|) (-10 -7 (-15 -1317 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-578 (-1064 |#2|))) (|:| |prim| (-1064 |#2|))) (-578 |#2|))) (IF (|has| |#2| (-27)) (-15 -1317 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1064 |#2|)) (|:| |pol2| (-1064 |#2|)) (|:| |prim| (-1064 |#2|))) |#2| |#2|)) |noBranch|)) (-13 (-508) (-777) (-134)) (-389 |#1|)) (T -400)) -((-1317 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-508) (-777) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1064 *3)) (|:| |pol2| (-1064 *3)) (|:| |prim| (-1064 *3)))) (-5 *1 (-400 *4 *3)) (-4 *3 (-27)) (-4 *3 (-389 *4)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-389 *4)) (-4 *4 (-13 (-508) (-777) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-578 (-1064 *5))) (|:| |prim| (-1064 *5)))) (-5 *1 (-400 *4 *5))))) -(-10 -7 (-15 -1317 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-578 (-1064 |#2|))) (|:| |prim| (-1064 |#2|))) (-578 |#2|))) (IF (|has| |#2| (-27)) (-15 -1317 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1064 |#2|)) (|:| |pol2| (-1064 |#2|)) (|:| |prim| (-1064 |#2|))) |#2| |#2|)) |noBranch|)) -((-3231 (((-1154)) 18)) (-3542 (((-1064 (-375 (-501))) |#2| (-553 |#2|)) 40) (((-375 (-501)) |#2|) 23))) -(((-401 |#1| |#2|) (-10 -7 (-15 -3542 ((-375 (-501)) |#2|)) (-15 -3542 ((-1064 (-375 (-501))) |#2| (-553 |#2|))) (-15 -3231 ((-1154)))) (-13 (-777) (-508) (-950 (-501))) (-389 |#1|)) (T -401)) -((-3231 (*1 *2) (-12 (-4 *3 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-1154)) (-5 *1 (-401 *3 *4)) (-4 *4 (-389 *3)))) (-3542 (*1 *2 *3 *4) (-12 (-5 *4 (-553 *3)) (-4 *3 (-389 *5)) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-401 *5 *3)))) (-3542 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-401 *4 *3)) (-4 *3 (-389 *4))))) -(-10 -7 (-15 -3542 ((-375 (-501)) |#2|)) (-15 -3542 ((-1064 (-375 (-501))) |#2| (-553 |#2|))) (-15 -3231 ((-1154)))) -((-4133 (((-107) $) 28)) (-1787 (((-107) $) 30)) (-1680 (((-107) $) 31)) (-2276 (((-107) $) 34)) (-1244 (((-107) $) 29)) (-2881 (((-107) $) 33)) (-3691 (((-786) $) 18) (($ (-1053)) 27) (($ (-1070)) 23) (((-1070) $) 22) (((-1003) $) 21)) (-1362 (((-107) $) 32)) (-3751 (((-107) $ $) 15))) -(((-402) (-13 (-555 (-786)) (-10 -8 (-15 -3691 ($ (-1053))) (-15 -3691 ($ (-1070))) (-15 -3691 ((-1070) $)) (-15 -3691 ((-1003) $)) (-15 -4133 ((-107) $)) (-15 -1244 ((-107) $)) (-15 -1680 ((-107) $)) (-15 -2881 ((-107) $)) (-15 -2276 ((-107) $)) (-15 -1362 ((-107) $)) (-15 -1787 ((-107) $)) (-15 -3751 ((-107) $ $))))) (T -402)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-402)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-402)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-402)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-402)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-1244 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-3751 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402))))) -(-13 (-555 (-786)) (-10 -8 (-15 -3691 ($ (-1053))) (-15 -3691 ($ (-1070))) (-15 -3691 ((-1070) $)) (-15 -3691 ((-1003) $)) (-15 -4133 ((-107) $)) (-15 -1244 ((-107) $)) (-15 -1680 ((-107) $)) (-15 -2881 ((-107) $)) (-15 -2276 ((-107) $)) (-15 -1362 ((-107) $)) (-15 -1787 ((-107) $)) (-15 -3751 ((-107) $ $)))) -((-2458 (((-3 (-373 (-1064 (-375 (-501)))) "failed") |#3|) 68)) (-2832 (((-373 |#3|) |#3|) 33)) (-3642 (((-3 (-373 (-1064 (-47))) "failed") |#3|) 27 (|has| |#2| (-950 (-47))))) (-4097 (((-3 (|:| |overq| (-1064 (-375 (-501)))) (|:| |overan| (-1064 (-47))) (|:| -4142 (-107))) |#3|) 35))) -(((-403 |#1| |#2| |#3|) (-10 -7 (-15 -2832 ((-373 |#3|) |#3|)) (-15 -2458 ((-3 (-373 (-1064 (-375 (-501)))) "failed") |#3|)) (-15 -4097 ((-3 (|:| |overq| (-1064 (-375 (-501)))) (|:| |overan| (-1064 (-47))) (|:| -4142 (-107))) |#3|)) (IF (|has| |#2| (-950 (-47))) (-15 -3642 ((-3 (-373 (-1064 (-47))) "failed") |#3|)) |noBranch|)) (-13 (-508) (-777) (-950 (-501))) (-389 |#1|) (-1125 |#2|)) (T -403)) -((-3642 (*1 *2 *3) (|partial| -12 (-4 *5 (-950 (-47))) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 (-1064 (-47)))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5)))) (-4097 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-3 (|:| |overq| (-1064 (-375 (-501)))) (|:| |overan| (-1064 (-47))) (|:| -4142 (-107)))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5)))) (-2458 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 (-1064 (-375 (-501))))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5)))) (-2832 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 *3)) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5))))) -(-10 -7 (-15 -2832 ((-373 |#3|) |#3|)) (-15 -2458 ((-3 (-373 (-1064 (-375 (-501)))) "failed") |#3|)) (-15 -4097 ((-3 (|:| |overq| (-1064 (-375 (-501)))) (|:| |overan| (-1064 (-47))) (|:| -4142 (-107))) |#3|)) (IF (|has| |#2| (-950 (-47))) (-15 -3642 ((-3 (-373 (-1064 (-47))) "failed") |#3|)) |noBranch|)) -((-3736 (((-107) $ $) NIL)) (-2936 (((-3 (|:| |fst| (-402)) (|:| -2645 "void")) $) 10)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2384 (($) 31)) (-3544 (($) 37)) (-3068 (($) 33)) (-3362 (($) 35)) (-2350 (($) 32)) (-1719 (($) 34)) (-3480 (($) 36)) (-3152 (((-107) $) 8)) (-2261 (((-578 (-866 (-501))) $) 16)) (-3699 (($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-1070)) (-107)) 25) (($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-866 (-501))) (-107)) 26)) (-3691 (((-786) $) 21) (($ (-402)) 28)) (-3751 (((-107) $ $) NIL))) -(((-404) (-13 (-1001) (-10 -8 (-15 -3691 ((-786) $)) (-15 -3691 ($ (-402))) (-15 -2936 ((-3 (|:| |fst| (-402)) (|:| -2645 "void")) $)) (-15 -2261 ((-578 (-866 (-501))) $)) (-15 -3152 ((-107) $)) (-15 -3699 ($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-1070)) (-107))) (-15 -3699 ($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-866 (-501))) (-107))) (-15 -2384 ($)) (-15 -2350 ($)) (-15 -3068 ($)) (-15 -3544 ($)) (-15 -1719 ($)) (-15 -3362 ($)) (-15 -3480 ($))))) (T -404)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-404)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-404)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *1 (-404)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-578 (-866 (-501)))) (-5 *1 (-404)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3699 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *3 (-578 (-1070))) (-5 *4 (-107)) (-5 *1 (-404)))) (-3699 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-107)) (-5 *1 (-404)))) (-2384 (*1 *1) (-5 *1 (-404))) (-2350 (*1 *1) (-5 *1 (-404))) (-3068 (*1 *1) (-5 *1 (-404))) (-3544 (*1 *1) (-5 *1 (-404))) (-1719 (*1 *1) (-5 *1 (-404))) (-3362 (*1 *1) (-5 *1 (-404))) (-3480 (*1 *1) (-5 *1 (-404)))) -(-13 (-1001) (-10 -8 (-15 -3691 ((-786) $)) (-15 -3691 ($ (-402))) (-15 -2936 ((-3 (|:| |fst| (-402)) (|:| -2645 "void")) $)) (-15 -2261 ((-578 (-866 (-501))) $)) (-15 -3152 ((-107) $)) (-15 -3699 ($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-1070)) (-107))) (-15 -3699 ($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-866 (-501))) (-107))) (-15 -2384 ($)) (-15 -2350 ($)) (-15 -3068 ($)) (-15 -3544 ($)) (-15 -1719 ($)) (-15 -3362 ($)) (-15 -3480 ($)))) -((-3736 (((-107) $ $) NIL)) (-2186 (((-1053) $ (-1053)) NIL)) (-1998 (($ $ (-1053)) NIL)) (-3505 (((-1053) $) NIL)) (-2542 (((-356) (-356) (-356)) 17) (((-356) (-356)) 15)) (-2342 (($ (-356)) NIL) (($ (-356) (-1053)) NIL)) (-3986 (((-356) $) NIL)) (-3460 (((-1053) $) NIL)) (-3947 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3219 (((-1154) (-1053)) 9)) (-3931 (((-1154) (-1053)) 10)) (-1531 (((-1154)) 11)) (-3691 (((-786) $) NIL)) (-3371 (($ $) 34)) (-3751 (((-107) $ $) NIL))) -(((-405) (-13 (-333 (-356) (-1053)) (-10 -7 (-15 -2542 ((-356) (-356) (-356))) (-15 -2542 ((-356) (-356))) (-15 -3219 ((-1154) (-1053))) (-15 -3931 ((-1154) (-1053))) (-15 -1531 ((-1154)))))) (T -405)) -((-2542 (*1 *2 *2 *2) (-12 (-5 *2 (-356)) (-5 *1 (-405)))) (-2542 (*1 *2 *2) (-12 (-5 *2 (-356)) (-5 *1 (-405)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-405)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-405)))) (-1531 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-405))))) -(-13 (-333 (-356) (-1053)) (-10 -7 (-15 -2542 ((-356) (-356) (-356))) (-15 -2542 ((-356) (-356))) (-15 -3219 ((-1154) (-1053))) (-15 -3931 ((-1154) (-1053))) (-15 -1531 ((-1154))))) -((-3736 (((-107) $ $) NIL)) (-3986 (((-1070) $) 8)) (-3460 (((-1053) $) 16)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 13))) -(((-406 |#1|) (-13 (-1001) (-10 -8 (-15 -3986 ((-1070) $)))) (-1070)) (T -406)) -((-3986 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-406 *3)) (-14 *3 *2)))) -(-13 (-1001) (-10 -8 (-15 -3986 ((-1070) $)))) -((-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8) (($ (-1148 (-630))) 14) (($ (-578 (-298))) 13) (($ (-298)) 12) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 11))) -(((-407) (-1180)) (T -407)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-630))) (-4 *1 (-407)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-407)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-407)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-407))))) -(-13 (-364) (-10 -8 (-15 -3691 ($ (-1148 (-630)))) (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-298))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))))) -(((-555 (-786)) . T) ((-364) . T) ((-1104) . T)) -((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 21) (((-3 $ "failed") (-1148 (-282 (-501)))) 19) (((-3 $ "failed") (-1148 (-866 (-346)))) 17) (((-3 $ "failed") (-1148 (-866 (-501)))) 15) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 13) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 11)) (-3490 (($ (-1148 (-282 (-346)))) 22) (($ (-1148 (-282 (-501)))) 20) (($ (-1148 (-866 (-346)))) 18) (($ (-1148 (-866 (-501)))) 16) (($ (-1148 (-375 (-866 (-346))))) 14) (($ (-1148 (-375 (-866 (-501))))) 12)) (-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8) (($ (-578 (-298))) 25) (($ (-298)) 24) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 23))) -(((-408) (-1180)) (T -408)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-408)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-408)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-282 (-346)))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-282 (-346)))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-282 (-501)))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-282 (-501)))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-866 (-346)))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-866 (-346)))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-866 (-501)))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-866 (-501)))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 (-346))))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-375 (-866 (-346))))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 (-501))))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-375 (-866 (-501))))) (-4 *1 (-408))))) -(-13 (-364) (-10 -8 (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-298))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))) (-15 -3490 ($ (-1148 (-282 (-346))))) (-15 -3765 ((-3 $ "failed") (-1148 (-282 (-346))))) (-15 -3490 ($ (-1148 (-282 (-501))))) (-15 -3765 ((-3 $ "failed") (-1148 (-282 (-501))))) (-15 -3490 ($ (-1148 (-866 (-346))))) (-15 -3765 ((-3 $ "failed") (-1148 (-866 (-346))))) (-15 -3490 ($ (-1148 (-866 (-501))))) (-15 -3765 ((-3 $ "failed") (-1148 (-866 (-501))))) (-15 -3490 ($ (-1148 (-375 (-866 (-346)))))) (-15 -3765 ((-3 $ "failed") (-1148 (-375 (-866 (-346)))))) (-15 -3490 ($ (-1148 (-375 (-866 (-501)))))) (-15 -3765 ((-3 $ "failed") (-1148 (-375 (-866 (-501)))))))) -(((-555 (-786)) . T) ((-364) . T) ((-1104) . T)) -((-1546 (((-107)) 17)) (-3605 (((-107) (-107)) 18)) (-2202 (((-107)) 13)) (-3877 (((-107) (-107)) 14)) (-3842 (((-107)) 15)) (-2657 (((-107) (-107)) 16)) (-2878 (((-839) (-839)) 21) (((-839)) 20)) (-3364 (((-701) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501))))) 41)) (-2185 (((-839) (-839)) 23) (((-839)) 22)) (-2302 (((-2 (|:| -1451 (-501)) (|:| -1575 (-578 |#1|))) |#1|) 61)) (-1726 (((-373 |#1|) (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501))))))) 125)) (-3120 (((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107)) 151)) (-2452 (((-373 |#1|) |#1| (-701) (-701)) 164) (((-373 |#1|) |#1| (-578 (-701)) (-701)) 161) (((-373 |#1|) |#1| (-578 (-701))) 163) (((-373 |#1|) |#1| (-701)) 162) (((-373 |#1|) |#1|) 160)) (-3452 (((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701) (-107)) 166) (((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701)) 167) (((-3 |#1| "failed") (-839) |#1| (-578 (-701))) 169) (((-3 |#1| "failed") (-839) |#1| (-701)) 168) (((-3 |#1| "failed") (-839) |#1|) 170)) (-3739 (((-373 |#1|) |#1| (-701) (-701)) 159) (((-373 |#1|) |#1| (-578 (-701)) (-701)) 155) (((-373 |#1|) |#1| (-578 (-701))) 157) (((-373 |#1|) |#1| (-701)) 156) (((-373 |#1|) |#1|) 154)) (-3562 (((-107) |#1|) 36)) (-3968 (((-667 (-701)) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501))))) 66)) (-1926 (((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107) (-997 (-701)) (-701)) 153))) -(((-409 |#1|) (-10 -7 (-15 -1726 ((-373 |#1|) (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))))) (-15 -3968 ((-667 (-701)) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))))) (-15 -2185 ((-839))) (-15 -2185 ((-839) (-839))) (-15 -2878 ((-839))) (-15 -2878 ((-839) (-839))) (-15 -3364 ((-701) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))))) (-15 -2302 ((-2 (|:| -1451 (-501)) (|:| -1575 (-578 |#1|))) |#1|)) (-15 -1546 ((-107))) (-15 -3605 ((-107) (-107))) (-15 -2202 ((-107))) (-15 -3877 ((-107) (-107))) (-15 -3562 ((-107) |#1|)) (-15 -3842 ((-107))) (-15 -2657 ((-107) (-107))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3739 ((-373 |#1|) |#1| (-701))) (-15 -3739 ((-373 |#1|) |#1| (-578 (-701)))) (-15 -3739 ((-373 |#1|) |#1| (-578 (-701)) (-701))) (-15 -3739 ((-373 |#1|) |#1| (-701) (-701))) (-15 -2452 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1| (-701))) (-15 -2452 ((-373 |#1|) |#1| (-578 (-701)))) (-15 -2452 ((-373 |#1|) |#1| (-578 (-701)) (-701))) (-15 -2452 ((-373 |#1|) |#1| (-701) (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1|)) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701) (-107))) (-15 -3120 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107))) (-15 -1926 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107) (-997 (-701)) (-701)))) (-1125 (-501))) (T -409)) -((-1926 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-997 (-701))) (-5 *6 (-701)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3120 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3452 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *6 (-107)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) (-3452 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) (-3452 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) (-3452 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-701)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) (-3452 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-839)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) (-2452 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2452 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-701))) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2452 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-701))) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2657 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3842 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3562 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2202 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3605 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-1546 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2302 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1451 (-501)) (|:| -1575 (-578 *3)))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 *4) (|:| -1201 (-501))))) (-4 *4 (-1125 (-501))) (-5 *2 (-701)) (-5 *1 (-409 *4)))) (-2878 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2878 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2185 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2185 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 *4) (|:| -1201 (-501))))) (-4 *4 (-1125 (-501))) (-5 *2 (-667 (-701))) (-5 *1 (-409 *4)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *4) (|:| -3257 (-501))))))) (-4 *4 (-1125 (-501))) (-5 *2 (-373 *4)) (-5 *1 (-409 *4))))) -(-10 -7 (-15 -1726 ((-373 |#1|) (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))))) (-15 -3968 ((-667 (-701)) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))))) (-15 -2185 ((-839))) (-15 -2185 ((-839) (-839))) (-15 -2878 ((-839))) (-15 -2878 ((-839) (-839))) (-15 -3364 ((-701) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))))) (-15 -2302 ((-2 (|:| -1451 (-501)) (|:| -1575 (-578 |#1|))) |#1|)) (-15 -1546 ((-107))) (-15 -3605 ((-107) (-107))) (-15 -2202 ((-107))) (-15 -3877 ((-107) (-107))) (-15 -3562 ((-107) |#1|)) (-15 -3842 ((-107))) (-15 -2657 ((-107) (-107))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3739 ((-373 |#1|) |#1| (-701))) (-15 -3739 ((-373 |#1|) |#1| (-578 (-701)))) (-15 -3739 ((-373 |#1|) |#1| (-578 (-701)) (-701))) (-15 -3739 ((-373 |#1|) |#1| (-701) (-701))) (-15 -2452 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1| (-701))) (-15 -2452 ((-373 |#1|) |#1| (-578 (-701)))) (-15 -2452 ((-373 |#1|) |#1| (-578 (-701)) (-701))) (-15 -2452 ((-373 |#1|) |#1| (-701) (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1|)) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701) (-107))) (-15 -3120 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107))) (-15 -1926 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107) (-997 (-701)) (-701)))) -((-1630 (((-501) |#2|) 48) (((-501) |#2| (-701)) 47)) (-1485 (((-501) |#2|) 55)) (-2476 ((|#3| |#2|) 25)) (-2626 ((|#3| |#2| (-839)) 14)) (-4139 ((|#3| |#2|) 15)) (-3435 ((|#3| |#2|) 9)) (-2696 ((|#3| |#2|) 10)) (-3652 ((|#3| |#2| (-839)) 62) ((|#3| |#2|) 30)) (-2378 (((-501) |#2|) 57))) -(((-410 |#1| |#2| |#3|) (-10 -7 (-15 -2378 ((-501) |#2|)) (-15 -3652 (|#3| |#2|)) (-15 -3652 (|#3| |#2| (-839))) (-15 -1485 ((-501) |#2|)) (-15 -1630 ((-501) |#2| (-701))) (-15 -1630 ((-501) |#2|)) (-15 -2626 (|#3| |#2| (-839))) (-15 -2476 (|#3| |#2|)) (-15 -3435 (|#3| |#2|)) (-15 -2696 (|#3| |#2|)) (-15 -4139 (|#3| |#2|))) (-959) (-1125 |#1|) (-13 (-372) (-950 |#1|) (-331) (-1090) (-254))) (T -410)) -((-4139 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) (-2696 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) (-3435 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) (-2476 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-959)) (-4 *2 (-13 (-372) (-950 *5) (-331) (-1090) (-254))) (-5 *1 (-410 *5 *3 *2)) (-4 *3 (-1125 *5)))) (-1630 (*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *5 *3 *6)) (-4 *3 (-1125 *5)) (-4 *6 (-13 (-372) (-950 *5) (-331) (-1090) (-254))))) (-1485 (*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254))))) (-3652 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-959)) (-4 *2 (-13 (-372) (-950 *5) (-331) (-1090) (-254))) (-5 *1 (-410 *5 *3 *2)) (-4 *3 (-1125 *5)))) (-3652 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) (-2378 (*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254)))))) -(-10 -7 (-15 -2378 ((-501) |#2|)) (-15 -3652 (|#3| |#2|)) (-15 -3652 (|#3| |#2| (-839))) (-15 -1485 ((-501) |#2|)) (-15 -1630 ((-501) |#2| (-701))) (-15 -1630 ((-501) |#2|)) (-15 -2626 (|#3| |#2| (-839))) (-15 -2476 (|#3| |#2|)) (-15 -3435 (|#3| |#2|)) (-15 -2696 (|#3| |#2|)) (-15 -4139 (|#3| |#2|))) -((-2296 ((|#2| (-1148 |#1|)) 36)) (-2110 ((|#2| |#2| |#1|) 49)) (-1444 ((|#2| |#2| |#1|) 41)) (-3785 ((|#2| |#2|) 38)) (-1257 (((-107) |#2|) 30)) (-2828 (((-578 |#2|) (-839) (-373 |#2|)) 16)) (-3452 ((|#2| (-839) (-373 |#2|)) 21)) (-3968 (((-667 (-701)) (-373 |#2|)) 25))) -(((-411 |#1| |#2|) (-10 -7 (-15 -1257 ((-107) |#2|)) (-15 -2296 (|#2| (-1148 |#1|))) (-15 -3785 (|#2| |#2|)) (-15 -1444 (|#2| |#2| |#1|)) (-15 -2110 (|#2| |#2| |#1|)) (-15 -3968 ((-667 (-701)) (-373 |#2|))) (-15 -3452 (|#2| (-839) (-373 |#2|))) (-15 -2828 ((-578 |#2|) (-839) (-373 |#2|)))) (-959) (-1125 |#1|)) (T -411)) -((-2828 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-373 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-959)) (-5 *2 (-578 *6)) (-5 *1 (-411 *5 *6)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-373 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-411 *5 *2)) (-4 *5 (-959)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-373 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-959)) (-5 *2 (-667 (-701))) (-5 *1 (-411 *4 *5)))) (-2110 (*1 *2 *2 *3) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3)))) (-1444 (*1 *2 *2 *3) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-959)) (-4 *2 (-1125 *4)) (-5 *1 (-411 *4 *2)))) (-1257 (*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-107)) (-5 *1 (-411 *4 *3)) (-4 *3 (-1125 *4))))) -(-10 -7 (-15 -1257 ((-107) |#2|)) (-15 -2296 (|#2| (-1148 |#1|))) (-15 -3785 (|#2| |#2|)) (-15 -1444 (|#2| |#2| |#1|)) (-15 -2110 (|#2| |#2| |#1|)) (-15 -3968 ((-667 (-701)) (-373 |#2|))) (-15 -3452 (|#2| (-839) (-373 |#2|))) (-15 -2828 ((-578 |#2|) (-839) (-373 |#2|)))) -((-3880 (((-701)) 41)) (-1297 (((-701)) 23 (|has| |#1| (-372))) (((-701) (-701)) 22 (|has| |#1| (-372)))) (-2145 (((-501) |#1|) 18 (|has| |#1| (-372)))) (-2336 (((-501) |#1|) 20 (|has| |#1| (-372)))) (-1813 (((-701)) 40) (((-701) (-701)) 39)) (-2444 ((|#1| (-701) (-501)) 29)) (-3047 (((-1154)) 43))) -(((-412 |#1|) (-10 -7 (-15 -2444 (|#1| (-701) (-501))) (-15 -1813 ((-701) (-701))) (-15 -1813 ((-701))) (-15 -3880 ((-701))) (-15 -3047 ((-1154))) (IF (|has| |#1| (-372)) (PROGN (-15 -2336 ((-501) |#1|)) (-15 -2145 ((-501) |#1|)) (-15 -1297 ((-701) (-701))) (-15 -1297 ((-701)))) |noBranch|)) (-959)) (T -412)) -((-1297 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))) (-1297 (*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))) (-2145 (*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))) (-2336 (*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))) (-3047 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-412 *3)) (-4 *3 (-959)))) (-3880 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959)))) (-1813 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959)))) (-1813 (*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-501)) (-5 *1 (-412 *2)) (-4 *2 (-959))))) -(-10 -7 (-15 -2444 (|#1| (-701) (-501))) (-15 -1813 ((-701) (-701))) (-15 -1813 ((-701))) (-15 -3880 ((-701))) (-15 -3047 ((-1154))) (IF (|has| |#1| (-372)) (PROGN (-15 -2336 ((-501) |#1|)) (-15 -2145 ((-501) |#1|)) (-15 -1297 ((-701) (-701))) (-15 -1297 ((-701)))) |noBranch|)) -((-2208 (((-578 (-501)) (-501)) 57)) (-1628 (((-107) (-152 (-501))) 61)) (-3739 (((-373 (-152 (-501))) (-152 (-501))) 56))) -(((-413) (-10 -7 (-15 -3739 ((-373 (-152 (-501))) (-152 (-501)))) (-15 -2208 ((-578 (-501)) (-501))) (-15 -1628 ((-107) (-152 (-501)))))) (T -413)) -((-1628 (*1 *2 *3) (-12 (-5 *3 (-152 (-501))) (-5 *2 (-107)) (-5 *1 (-413)))) (-2208 (*1 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-413)) (-5 *3 (-501)))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 (-152 (-501)))) (-5 *1 (-413)) (-5 *3 (-152 (-501)))))) -(-10 -7 (-15 -3739 ((-373 (-152 (-501))) (-152 (-501)))) (-15 -2208 ((-578 (-501)) (-501))) (-15 -1628 ((-107) (-152 (-501))))) -((-1315 ((|#4| |#4| (-578 |#4|)) 22 (|has| |#1| (-331)))) (-3727 (((-578 |#4|) (-578 |#4|) (-1053) (-1053)) 41) (((-578 |#4|) (-578 |#4|) (-1053)) 40) (((-578 |#4|) (-578 |#4|)) 35))) -(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3727 ((-578 |#4|) (-578 |#4|))) (-15 -3727 ((-578 |#4|) (-578 |#4|) (-1053))) (-15 -3727 ((-578 |#4|) (-578 |#4|) (-1053) (-1053))) (IF (|has| |#1| (-331)) (-15 -1315 (|#4| |#4| (-578 |#4|))) |noBranch|)) (-419) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -414)) -((-1315 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-331)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *2)))) (-3727 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *7)))) (-3727 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *7)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-414 *3 *4 *5 *6))))) -(-10 -7 (-15 -3727 ((-578 |#4|) (-578 |#4|))) (-15 -3727 ((-578 |#4|) (-578 |#4|) (-1053))) (-15 -3727 ((-578 |#4|) (-578 |#4|) (-1053) (-1053))) (IF (|has| |#1| (-331)) (-15 -1315 (|#4| |#4| (-578 |#4|))) |noBranch|)) -((-1930 ((|#4| |#4| (-578 |#4|)) 57)) (-2603 (((-578 |#4|) (-578 |#4|) (-1053) (-1053)) 17) (((-578 |#4|) (-578 |#4|) (-1053)) 16) (((-578 |#4|) (-578 |#4|)) 11))) -(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1930 (|#4| |#4| (-578 |#4|))) (-15 -2603 ((-578 |#4|) (-578 |#4|))) (-15 -2603 ((-578 |#4|) (-578 |#4|) (-1053))) (-15 -2603 ((-578 |#4|) (-578 |#4|) (-1053) (-1053)))) (-276) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -415)) -((-2603 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *7)))) (-2603 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *7)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-415 *3 *4 *5 *6)))) (-1930 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *2))))) -(-10 -7 (-15 -1930 (|#4| |#4| (-578 |#4|))) (-15 -2603 ((-578 |#4|) (-578 |#4|))) (-15 -2603 ((-578 |#4|) (-578 |#4|) (-1053))) (-15 -2603 ((-578 |#4|) (-578 |#4|) (-1053) (-1053)))) -((-2257 (((-578 (-578 |#4|)) (-578 |#4|) (-107)) 70) (((-578 (-578 |#4|)) (-578 |#4|)) 69) (((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|) (-107)) 63) (((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|)) 64)) (-2691 (((-578 (-578 |#4|)) (-578 |#4|) (-107)) 40) (((-578 (-578 |#4|)) (-578 |#4|)) 60))) -(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2691 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -2691 ((-578 (-578 |#4|)) (-578 |#4|) (-107))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|) (-107))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-107)))) (-13 (-276) (-134)) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -416)) -((-2257 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-2257 (*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2257 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-2257 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2691 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-2691 (*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) -(-10 -7 (-15 -2691 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -2691 ((-578 (-578 |#4|)) (-578 |#4|) (-107))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|) (-107))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-107)))) -((-1878 (((-701) |#4|) 12)) (-4051 (((-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|))) |#4| (-701) (-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|)))) 31)) (-3829 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3012 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-1403 ((|#4| |#4| (-578 |#4|)) 39)) (-2012 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-578 |#4|)) 68)) (-1558 (((-1154) |#4|) 41)) (-3545 (((-1154) (-578 |#4|)) 50)) (-2319 (((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501)) 47)) (-2583 (((-1154) (-501)) 75)) (-3696 (((-578 |#4|) (-578 |#4|)) 73)) (-2885 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|)) |#4| (-701)) 25)) (-2407 (((-501) |#4|) 74)) (-2487 ((|#4| |#4|) 29)) (-2028 (((-578 |#4|) (-578 |#4|) (-501) (-501)) 54)) (-3725 (((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501) (-501)) 85)) (-2615 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2465 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 57)) (-3316 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 56)) (-2578 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-1710 (((-107) |#2| |#2|) 55)) (-2536 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2594 (((-107) |#2| |#2| |#2| |#2|) 58)) (-3734 ((|#4| |#4| (-578 |#4|)) 69))) -(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 (|#4| |#4| (-578 |#4|))) (-15 -1403 (|#4| |#4| (-578 |#4|))) (-15 -2028 ((-578 |#4|) (-578 |#4|) (-501) (-501))) (-15 -2465 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1710 ((-107) |#2| |#2|)) (-15 -2594 ((-107) |#2| |#2| |#2| |#2|)) (-15 -2536 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2578 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3316 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2012 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-578 |#4|))) (-15 -2487 (|#4| |#4|)) (-15 -4051 ((-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|))) |#4| (-701) (-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|))))) (-15 -3012 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3829 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3696 ((-578 |#4|) (-578 |#4|))) (-15 -2407 ((-501) |#4|)) (-15 -1558 ((-1154) |#4|)) (-15 -2319 ((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501))) (-15 -3725 ((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501) (-501))) (-15 -3545 ((-1154) (-578 |#4|))) (-15 -2583 ((-1154) (-501))) (-15 -2615 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2885 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|)) |#4| (-701))) (-15 -1878 ((-701) |#4|))) (-419) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -417)) -((-1878 (*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-701)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))) (-2885 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-701)) (|:| -2663 *4))) (-5 *5 (-701)) (-4 *4 (-870 *6 *7 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-417 *6 *7 *8 *4)))) (-2615 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-723)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *5 *6 *7)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *7)))) (-3725 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-701)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-723)) (-4 *4 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *4)))) (-2319 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-701)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-723)) (-4 *4 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *4)))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))) (-2407 (*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-501)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6)))) (-3829 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-723)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-723)) (-4 *2 (-870 *4 *5 *6)) (-5 *1 (-417 *4 *5 *6 *2)) (-4 *4 (-419)) (-4 *6 (-777)))) (-4051 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 *3)))) (-5 *4 (-701)) (-4 *3 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *3)))) (-2487 (*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-417 *5 *6 *7 *3)))) (-3316 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-723)) (-4 *6 (-870 *4 *3 *5)) (-4 *4 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *4 *3 *5 *6)))) (-2578 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-723)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6)))) (-2536 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-723)) (-4 *3 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *3)))) (-2594 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-419)) (-4 *3 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *3 *5 *6)) (-4 *6 (-870 *4 *3 *5)))) (-1710 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *3 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *3 *5 *6)) (-4 *6 (-870 *4 *3 *5)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-723)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *5 *6 *7)))) (-2028 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-501)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *7)))) (-1403 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *2)))) (-3734 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *2))))) -(-10 -7 (-15 -3734 (|#4| |#4| (-578 |#4|))) (-15 -1403 (|#4| |#4| (-578 |#4|))) (-15 -2028 ((-578 |#4|) (-578 |#4|) (-501) (-501))) (-15 -2465 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1710 ((-107) |#2| |#2|)) (-15 -2594 ((-107) |#2| |#2| |#2| |#2|)) (-15 -2536 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2578 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3316 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2012 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-578 |#4|))) (-15 -2487 (|#4| |#4|)) (-15 -4051 ((-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|))) |#4| (-701) (-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|))))) (-15 -3012 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3829 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3696 ((-578 |#4|) (-578 |#4|))) (-15 -2407 ((-501) |#4|)) (-15 -1558 ((-1154) |#4|)) (-15 -2319 ((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501))) (-15 -3725 ((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501) (-501))) (-15 -3545 ((-1154) (-578 |#4|))) (-15 -2583 ((-1154) (-501))) (-15 -2615 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2885 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|)) |#4| (-701))) (-15 -1878 ((-701) |#4|))) -((-1697 (($ $ $) 14) (($ (-578 $)) 21)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 41)) (-3664 (($ $ $) NIL) (($ (-578 $)) 22))) -(((-418 |#1|) (-10 -8 (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1697 (|#1| (-578 |#1|))) (-15 -1697 (|#1| |#1| |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|))) (-419)) (T -418)) -NIL -(-10 -8 (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1697 (|#1| (-578 |#1|))) (-15 -1697 (|#1| |#1| |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3694 (((-3 $ "failed") $ $) 42)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-419) (-1180)) (T -419)) -((-3664 (*1 *1 *1 *1) (-4 *1 (-419))) (-3664 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-419)))) (-1697 (*1 *1 *1 *1) (-4 *1 (-419))) (-1697 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-419)))) (-3424 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-419))))) -(-13 (-508) (-10 -8 (-15 -3664 ($ $ $)) (-15 -3664 ($ (-578 $))) (-15 -1697 ($ $ $)) (-15 -1697 ($ (-578 $))) (-15 -3424 ((-1064 $) (-1064 $) (-1064 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1738 (((-3 $ "failed")) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-1763 (((-1148 (-621 (-375 (-866 |#1|)))) (-1148 $)) NIL) (((-1148 (-621 (-375 (-866 |#1|))))) NIL)) (-1674 (((-1148 $)) NIL)) (-2540 (($) NIL T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL)) (-1956 (((-3 $ "failed")) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-2311 (((-621 (-375 (-866 |#1|))) (-1148 $)) NIL) (((-621 (-375 (-866 |#1|)))) NIL)) (-1909 (((-375 (-866 |#1|)) $) NIL)) (-3867 (((-621 (-375 (-866 |#1|))) $ (-1148 $)) NIL) (((-621 (-375 (-866 |#1|))) $) NIL)) (-1887 (((-3 $ "failed") $) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-3665 (((-1064 (-866 (-375 (-866 |#1|))))) NIL (|has| (-375 (-866 |#1|)) (-331))) (((-1064 (-375 (-866 |#1|)))) 79 (|has| |#1| (-508)))) (-2911 (($ $ (-839)) NIL)) (-3925 (((-375 (-866 |#1|)) $) NIL)) (-2292 (((-1064 (-375 (-866 |#1|))) $) 77 (|has| (-375 (-866 |#1|)) (-508)))) (-2398 (((-375 (-866 |#1|)) (-1148 $)) NIL) (((-375 (-866 |#1|))) NIL)) (-3333 (((-1064 (-375 (-866 |#1|))) $) NIL)) (-3656 (((-107)) NIL)) (-3142 (($ (-1148 (-375 (-866 |#1|))) (-1148 $)) 97) (($ (-1148 (-375 (-866 |#1|)))) NIL)) (-2174 (((-3 $ "failed") $) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-3689 (((-839)) NIL)) (-3168 (((-107)) NIL)) (-3554 (($ $ (-839)) NIL)) (-3930 (((-107)) NIL)) (-2838 (((-107)) NIL)) (-3874 (((-107)) NIL)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL)) (-2653 (((-3 $ "failed")) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-4146 (((-621 (-375 (-866 |#1|))) (-1148 $)) NIL) (((-621 (-375 (-866 |#1|)))) NIL)) (-3821 (((-375 (-866 |#1|)) $) NIL)) (-1472 (((-621 (-375 (-866 |#1|))) $ (-1148 $)) NIL) (((-621 (-375 (-866 |#1|))) $) NIL)) (-1992 (((-3 $ "failed") $) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-2582 (((-1064 (-866 (-375 (-866 |#1|))))) NIL (|has| (-375 (-866 |#1|)) (-331))) (((-1064 (-375 (-866 |#1|)))) 78 (|has| |#1| (-508)))) (-3381 (($ $ (-839)) NIL)) (-3784 (((-375 (-866 |#1|)) $) NIL)) (-3474 (((-1064 (-375 (-866 |#1|))) $) 72 (|has| (-375 (-866 |#1|)) (-508)))) (-1600 (((-375 (-866 |#1|)) (-1148 $)) NIL) (((-375 (-866 |#1|))) NIL)) (-2270 (((-1064 (-375 (-866 |#1|))) $) NIL)) (-2172 (((-107)) NIL)) (-3460 (((-1053) $) NIL)) (-3808 (((-107)) NIL)) (-2417 (((-107)) NIL)) (-2794 (((-107)) NIL)) (-3708 (((-1018) $) NIL)) (-1325 (((-375 (-866 |#1|)) $ $) 66 (|has| |#1| (-508)))) (-2492 (((-375 (-866 |#1|)) $) 65 (|has| |#1| (-508)))) (-2959 (((-375 (-866 |#1|)) $) 89 (|has| |#1| (-508)))) (-1498 (((-1064 (-375 (-866 |#1|))) $) 83 (|has| |#1| (-508)))) (-3138 (((-375 (-866 |#1|))) 67 (|has| |#1| (-508)))) (-1874 (((-375 (-866 |#1|)) $ $) 54 (|has| |#1| (-508)))) (-3467 (((-375 (-866 |#1|)) $) 53 (|has| |#1| (-508)))) (-3899 (((-375 (-866 |#1|)) $) 88 (|has| |#1| (-508)))) (-2729 (((-1064 (-375 (-866 |#1|))) $) 82 (|has| |#1| (-508)))) (-3178 (((-375 (-866 |#1|))) 64 (|has| |#1| (-508)))) (-3020 (($) 95) (($ (-1070)) 101) (($ (-1148 (-1070))) 100) (($ (-1148 $)) 90) (($ (-1070) (-1148 $)) 99) (($ (-1148 (-1070)) (-1148 $)) 98)) (-2780 (((-107)) NIL)) (-2007 (((-375 (-866 |#1|)) $ (-501)) NIL)) (-2085 (((-1148 (-375 (-866 |#1|))) $ (-1148 $)) 92) (((-621 (-375 (-866 |#1|))) (-1148 $) (-1148 $)) NIL) (((-1148 (-375 (-866 |#1|))) $) 37) (((-621 (-375 (-866 |#1|))) (-1148 $)) NIL)) (-1248 (((-1148 (-375 (-866 |#1|))) $) NIL) (($ (-1148 (-375 (-866 |#1|)))) 34)) (-3056 (((-578 (-866 (-375 (-866 |#1|)))) (-1148 $)) NIL) (((-578 (-866 (-375 (-866 |#1|))))) NIL) (((-578 (-866 |#1|)) (-1148 $)) 93 (|has| |#1| (-508))) (((-578 (-866 |#1|))) 94 (|has| |#1| (-508)))) (-2144 (($ $ $) NIL)) (-1977 (((-107)) NIL)) (-3691 (((-786) $) NIL) (($ (-1148 (-375 (-866 |#1|)))) NIL)) (-4119 (((-1148 $)) 56)) (-4102 (((-578 (-1148 (-375 (-866 |#1|))))) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-1363 (($ $ $ $) NIL)) (-1273 (((-107)) NIL)) (-1183 (($ (-621 (-375 (-866 |#1|))) $) NIL)) (-2033 (($ $ $) NIL)) (-2625 (((-107)) NIL)) (-3675 (((-107)) NIL)) (-3258 (((-107)) NIL)) (-1850 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) 91)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 52) (($ $ (-375 (-866 |#1|))) NIL) (($ (-375 (-866 |#1|)) $) NIL) (($ (-1037 |#2| (-375 (-866 |#1|))) $) NIL))) -(((-420 |#1| |#2| |#3| |#4|) (-13 (-386 (-375 (-866 |#1|))) (-583 (-1037 |#2| (-375 (-866 |#1|)))) (-10 -8 (-15 -3691 ($ (-1148 (-375 (-866 |#1|))))) (-15 -1765 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -3054 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -3020 ($)) (-15 -3020 ($ (-1070))) (-15 -3020 ($ (-1148 (-1070)))) (-15 -3020 ($ (-1148 $))) (-15 -3020 ($ (-1070) (-1148 $))) (-15 -3020 ($ (-1148 (-1070)) (-1148 $))) (IF (|has| |#1| (-508)) (PROGN (-15 -2582 ((-1064 (-375 (-866 |#1|))))) (-15 -2729 ((-1064 (-375 (-866 |#1|))) $)) (-15 -3467 ((-375 (-866 |#1|)) $)) (-15 -3899 ((-375 (-866 |#1|)) $)) (-15 -3665 ((-1064 (-375 (-866 |#1|))))) (-15 -1498 ((-1064 (-375 (-866 |#1|))) $)) (-15 -2492 ((-375 (-866 |#1|)) $)) (-15 -2959 ((-375 (-866 |#1|)) $)) (-15 -1874 ((-375 (-866 |#1|)) $ $)) (-15 -3178 ((-375 (-866 |#1|)))) (-15 -1325 ((-375 (-866 |#1|)) $ $)) (-15 -3138 ((-375 (-866 |#1|)))) (-15 -3056 ((-578 (-866 |#1|)) (-1148 $))) (-15 -3056 ((-578 (-866 |#1|))))) |noBranch|))) (-156) (-839) (-578 (-1070)) (-1148 (-621 |#1|))) (T -420)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 *3)))) (-4 *3 (-156)) (-14 *6 (-1148 (-621 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))))) (-1765 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-420 *3 *4 *5 *6)) (|:| -4119 (-578 (-420 *3 *4 *5 *6))))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3054 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-420 *3 *4 *5 *6)) (|:| -4119 (-578 (-420 *3 *4 *5 *6))))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3020 (*1 *1) (-12 (-5 *1 (-420 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-839)) (-14 *4 (-578 (-1070))) (-14 *5 (-1148 (-621 *2))))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 *2)) (-14 *6 (-1148 (-621 *3))))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-1148 (-1070))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-1148 (-420 *3 *4 *5 *6))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3020 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 *2)) (-14 *7 (-1148 (-621 *4))))) (-3020 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 (-1070))) (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 (-1070))) (-14 *7 (-1148 (-621 *4))))) (-2582 (*1 *2) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3665 (*1 *2) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-1874 (*1 *2 *1 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3178 (*1 *2) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-1325 (*1 *2 *1 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3138 (*1 *2) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *2 (-578 (-866 *4))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-508)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 (-1070))) (-14 *7 (-1148 (-621 *4))))) (-3056 (*1 *2) (-12 (-5 *2 (-578 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(-13 (-386 (-375 (-866 |#1|))) (-583 (-1037 |#2| (-375 (-866 |#1|)))) (-10 -8 (-15 -3691 ($ (-1148 (-375 (-866 |#1|))))) (-15 -1765 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -3054 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -3020 ($)) (-15 -3020 ($ (-1070))) (-15 -3020 ($ (-1148 (-1070)))) (-15 -3020 ($ (-1148 $))) (-15 -3020 ($ (-1070) (-1148 $))) (-15 -3020 ($ (-1148 (-1070)) (-1148 $))) (IF (|has| |#1| (-508)) (PROGN (-15 -2582 ((-1064 (-375 (-866 |#1|))))) (-15 -2729 ((-1064 (-375 (-866 |#1|))) $)) (-15 -3467 ((-375 (-866 |#1|)) $)) (-15 -3899 ((-375 (-866 |#1|)) $)) (-15 -3665 ((-1064 (-375 (-866 |#1|))))) (-15 -1498 ((-1064 (-375 (-866 |#1|))) $)) (-15 -2492 ((-375 (-866 |#1|)) $)) (-15 -2959 ((-375 (-866 |#1|)) $)) (-15 -1874 ((-375 (-866 |#1|)) $ $)) (-15 -3178 ((-375 (-866 |#1|)))) (-15 -1325 ((-375 (-866 |#1|)) $ $)) (-15 -3138 ((-375 (-866 |#1|)))) (-15 -3056 ((-578 (-866 |#1|)) (-1148 $))) (-15 -3056 ((-578 (-866 |#1|))))) |noBranch|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 13)) (-3800 (((-578 (-787 |#1|)) $) 73)) (-3728 (((-1064 $) $ (-787 |#1|)) 46) (((-1064 |#2|) $) 115)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-508)))) (-2865 (($ $) NIL (|has| |#2| (-508)))) (-1639 (((-107) $) NIL (|has| |#2| (-508)))) (-1699 (((-701) $) 21) (((-701) $ (-578 (-787 |#1|))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL (|has| |#2| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 44) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-787 |#1|) "failed") $) NIL)) (-3490 ((|#2| $) 42) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-787 |#1|) $) NIL)) (-1749 (($ $ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-1474 (($ $ (-578 (-501))) 78)) (-3858 (($ $) 67)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#2| (-830)))) (-3503 (($ $ |#2| |#3| $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) 58)) (-3794 (($ (-1064 |#2|) (-787 |#1|)) 120) (($ (-1064 $) (-787 |#1|)) 52)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) 59)) (-3787 (($ |#2| |#3|) 28) (($ $ (-787 |#1|) (-701)) 30) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-787 |#1|)) NIL)) (-2285 ((|#3| $) NIL) (((-701) $ (-787 |#1|)) 50) (((-578 (-701)) $ (-578 (-787 |#1|))) 57)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-3515 (($ (-1 |#3| |#3|) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-2752 (((-3 (-787 |#1|) "failed") $) 39)) (-3845 (($ $) NIL)) (-3850 ((|#2| $) 41)) (-1697 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-787 |#1|)) (|:| -3027 (-701))) "failed") $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) 40)) (-3841 ((|#2| $) 113)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) 125 (|has| |#2| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-830)))) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-787 |#1|) |#2|) 85) (($ $ (-578 (-787 |#1|)) (-578 |#2|)) 88) (($ $ (-787 |#1|) $) 83) (($ $ (-578 (-787 |#1|)) (-578 $)) 104)) (-2532 (($ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-2596 (($ $ (-787 |#1|)) 53) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1201 ((|#3| $) 66) (((-701) $ (-787 |#1|)) 37) (((-578 (-701)) $ (-578 (-787 |#1|))) 56)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-787 |#1|) (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#2| $) 122 (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3691 (((-786) $) 141) (($ (-501)) NIL) (($ |#2|) 84) (($ (-787 |#1|)) 31) (($ (-375 (-501))) NIL (-1405 (|has| |#2| (-37 (-375 (-501)))) (|has| |#2| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#2| (-508)))) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ |#3|) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#2| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#2| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 16 T CONST)) (-1925 (($) 25 T CONST)) (-3584 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ |#2|) 64 (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 109)) (** (($ $ (-839)) NIL) (($ $ (-701)) 107)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 29) (($ $ (-375 (-501))) NIL (|has| |#2| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#2| (-37 (-375 (-501))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-421 |#1| |#2| |#3|) (-13 (-870 |#2| |#3| (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501)))))) (-578 (-1070)) (-959) (-211 (-3581 |#1|) (-701))) (T -421)) -((-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-14 *3 (-578 (-1070))) (-5 *1 (-421 *3 *4 *5)) (-4 *4 (-959)) (-4 *5 (-211 (-3581 *3) (-701)))))) -(-13 (-870 |#2| |#3| (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501)))))) -((-2422 (((-107) |#1| (-578 |#2|)) 65)) (-3741 (((-3 (-1148 (-578 |#2|)) "failed") (-701) |#1| (-578 |#2|)) 74)) (-3240 (((-3 (-578 |#2|) "failed") |#2| |#1| (-1148 (-578 |#2|))) 76)) (-3220 ((|#2| |#2| |#1|) 28)) (-3350 (((-701) |#2| (-578 |#2|)) 20))) -(((-422 |#1| |#2|) (-10 -7 (-15 -3220 (|#2| |#2| |#1|)) (-15 -3350 ((-701) |#2| (-578 |#2|))) (-15 -3741 ((-3 (-1148 (-578 |#2|)) "failed") (-701) |#1| (-578 |#2|))) (-15 -3240 ((-3 (-578 |#2|) "failed") |#2| |#1| (-1148 (-578 |#2|)))) (-15 -2422 ((-107) |#1| (-578 |#2|)))) (-276) (-1125 |#1|)) (T -422)) -((-2422 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-1125 *3)) (-4 *3 (-276)) (-5 *2 (-107)) (-5 *1 (-422 *3 *5)))) (-3240 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1148 (-578 *3))) (-4 *4 (-276)) (-5 *2 (-578 *3)) (-5 *1 (-422 *4 *3)) (-4 *3 (-1125 *4)))) (-3741 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-276)) (-4 *6 (-1125 *4)) (-5 *2 (-1148 (-578 *6))) (-5 *1 (-422 *4 *6)) (-5 *5 (-578 *6)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-276)) (-5 *2 (-701)) (-5 *1 (-422 *5 *3)))) (-3220 (*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-5 *1 (-422 *3 *2)) (-4 *2 (-1125 *3))))) -(-10 -7 (-15 -3220 (|#2| |#2| |#1|)) (-15 -3350 ((-701) |#2| (-578 |#2|))) (-15 -3741 ((-3 (-1148 (-578 |#2|)) "failed") (-701) |#1| (-578 |#2|))) (-15 -3240 ((-3 (-578 |#2|) "failed") |#2| |#1| (-1148 (-578 |#2|)))) (-15 -2422 ((-107) |#1| (-578 |#2|)))) -((-3739 (((-373 |#5|) |#5|) 24))) -(((-423 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3739 ((-373 |#5|) |#5|))) (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070))))) (-723) (-508) (-508) (-870 |#4| |#2| |#1|)) (T -423)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *5 (-723)) (-4 *7 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-423 *4 *5 *6 *7 *3)) (-4 *6 (-508)) (-4 *3 (-870 *7 *5 *4))))) -(-10 -7 (-15 -3739 ((-373 |#5|) |#5|))) -((-3959 ((|#3|) 36)) (-3424 (((-1064 |#4|) (-1064 |#4|) (-1064 |#4|)) 32))) -(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3424 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -3959 (|#3|))) (-723) (-777) (-830) (-870 |#3| |#1| |#2|)) (T -424)) -((-3959 (*1 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-830)) (-5 *1 (-424 *3 *4 *2 *5)) (-4 *5 (-870 *2 *3 *4)))) (-3424 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-830)) (-5 *1 (-424 *3 *4 *5 *6))))) -(-10 -7 (-15 -3424 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -3959 (|#3|))) -((-3739 (((-373 (-1064 |#1|)) (-1064 |#1|)) 41))) -(((-425 |#1|) (-10 -7 (-15 -3739 ((-373 (-1064 |#1|)) (-1064 |#1|)))) (-276)) (T -425)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-276)) (-5 *2 (-373 (-1064 *4))) (-5 *1 (-425 *4)) (-5 *3 (-1064 *4))))) -(-10 -7 (-15 -3739 ((-373 (-1064 |#1|)) (-1064 |#1|)))) -((-3818 (((-50) |#2| (-1070) (-262 |#2|) (-1116 (-701))) 42) (((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-701))) 41) (((-50) |#2| (-1070) (-262 |#2|)) 35) (((-50) (-1 |#2| (-501)) (-262 |#2|)) 27)) (-2973 (((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501))) 80) (((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501))) 79) (((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501))) 78) (((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501))) 77) (((-50) |#2| (-1070) (-262 |#2|)) 72) (((-50) (-1 |#2| (-501)) (-262 |#2|)) 71)) (-3826 (((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501))) 66) (((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501))) 64)) (-3822 (((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501))) 48) (((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501))) 47))) -(((-426 |#1| |#2|) (-10 -7 (-15 -3818 ((-50) (-1 |#2| (-501)) (-262 |#2|))) (-15 -3818 ((-50) |#2| (-1070) (-262 |#2|))) (-15 -3818 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-701)))) (-15 -3818 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-701)))) (-15 -3822 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501)))) (-15 -3822 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501)))) (-15 -3826 ((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -3826 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -2973 ((-50) (-1 |#2| (-501)) (-262 |#2|))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|))) (-15 -2973 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501)))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501)))) (-15 -2973 ((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501))))) (-13 (-508) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -426)) -((-2973 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-375 (-501)))) (-5 *7 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *8))) (-4 *8 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *8 *3)))) (-2973 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-375 (-501)))) (-5 *4 (-262 *8)) (-5 *5 (-1116 (-375 (-501)))) (-5 *6 (-375 (-501))) (-4 *8 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *8)))) (-2973 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) (-2973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-501))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) (-2973 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *3)))) (-2973 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-501))) (-5 *4 (-262 *6)) (-4 *6 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *5 *6)))) (-3826 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-375 (-501)))) (-5 *7 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *8))) (-4 *8 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *8 *3)))) (-3826 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-375 (-501)))) (-5 *4 (-262 *8)) (-5 *5 (-1116 (-375 (-501)))) (-5 *6 (-375 (-501))) (-4 *8 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *8)))) (-3822 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-501))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) (-3818 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-701))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-701))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-501))) (-5 *4 (-262 *6)) (-4 *6 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *5 *6))))) -(-10 -7 (-15 -3818 ((-50) (-1 |#2| (-501)) (-262 |#2|))) (-15 -3818 ((-50) |#2| (-1070) (-262 |#2|))) (-15 -3818 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-701)))) (-15 -3818 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-701)))) (-15 -3822 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501)))) (-15 -3822 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501)))) (-15 -3826 ((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -3826 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -2973 ((-50) (-1 |#2| (-501)) (-262 |#2|))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|))) (-15 -2973 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501)))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501)))) (-15 -2973 ((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501))))) -((-3220 ((|#2| |#2| |#1|) 15)) (-2699 (((-578 |#2|) |#2| (-578 |#2|) |#1| (-839)) 65)) (-1718 (((-2 (|:| |plist| (-578 |#2|)) (|:| |modulo| |#1|)) |#2| (-578 |#2|) |#1| (-839)) 58))) -(((-427 |#1| |#2|) (-10 -7 (-15 -1718 ((-2 (|:| |plist| (-578 |#2|)) (|:| |modulo| |#1|)) |#2| (-578 |#2|) |#1| (-839))) (-15 -2699 ((-578 |#2|) |#2| (-578 |#2|) |#1| (-839))) (-15 -3220 (|#2| |#2| |#1|))) (-276) (-1125 |#1|)) (T -427)) -((-3220 (*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1125 *3)))) (-2699 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-578 *3)) (-5 *5 (-839)) (-4 *3 (-1125 *4)) (-4 *4 (-276)) (-5 *1 (-427 *4 *3)))) (-1718 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-839)) (-4 *5 (-276)) (-4 *3 (-1125 *5)) (-5 *2 (-2 (|:| |plist| (-578 *3)) (|:| |modulo| *5))) (-5 *1 (-427 *5 *3)) (-5 *4 (-578 *3))))) -(-10 -7 (-15 -1718 ((-2 (|:| |plist| (-578 |#2|)) (|:| |modulo| |#1|)) |#2| (-578 |#2|) |#1| (-839))) (-15 -2699 ((-578 |#2|) |#2| (-578 |#2|) |#1| (-839))) (-15 -3220 (|#2| |#2| |#1|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 28)) (-1822 (($ |#3|) 25)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) 32)) (-1769 (($ |#2| |#4| $) 33)) (-3787 (($ |#2| (-644 |#3| |#4| |#5|)) 24)) (-3845 (((-644 |#3| |#4| |#5|) $) 15)) (-2965 ((|#3| $) 19)) (-3372 ((|#4| $) 17)) (-3850 ((|#2| $) 29)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-2774 (($ |#2| |#3| |#4|) 26)) (-1850 (($) 36 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 34)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-428 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-648 |#6|) (-648 |#2|) (-10 -8 (-15 -3850 (|#2| $)) (-15 -3845 ((-644 |#3| |#4| |#5|) $)) (-15 -3372 (|#4| $)) (-15 -2965 (|#3| $)) (-15 -3858 ($ $)) (-15 -3787 ($ |#2| (-644 |#3| |#4| |#5|))) (-15 -1822 ($ |#3|)) (-15 -2774 ($ |#2| |#3| |#4|)) (-15 -1769 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-578 (-1070)) (-156) (-777) (-211 (-3581 |#1|) (-701)) (-1 (-107) (-2 (|:| -3506 |#3|) (|:| -3027 |#4|)) (-2 (|:| -3506 |#3|) (|:| -3027 |#4|))) (-870 |#2| |#4| (-787 |#1|))) (T -428)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *6 (-211 (-3581 *3) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-5 *1 (-428 *3 *4 *5 *6 *7 *2)) (-4 *5 (-777)) (-4 *2 (-870 *4 *6 (-787 *3))))) (-3850 (*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *4) (|:| -3027 *5)) (-2 (|:| -3506 *4) (|:| -3027 *5)))) (-4 *2 (-156)) (-5 *1 (-428 *3 *2 *4 *5 *6 *7)) (-4 *4 (-777)) (-4 *7 (-870 *2 *5 (-787 *3))))) (-3845 (*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *6 (-211 (-3581 *3) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-5 *2 (-644 *5 *6 *7)) (-5 *1 (-428 *3 *4 *5 *6 *7 *8)) (-4 *5 (-777)) (-4 *8 (-870 *4 *6 (-787 *3))))) (-3372 (*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *2)) (-2 (|:| -3506 *5) (|:| -3027 *2)))) (-4 *2 (-211 (-3581 *3) (-701))) (-5 *1 (-428 *3 *4 *5 *2 *6 *7)) (-4 *5 (-777)) (-4 *7 (-870 *4 *2 (-787 *3))))) (-2965 (*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *5)) (-2 (|:| -3506 *2) (|:| -3027 *5)))) (-4 *2 (-777)) (-5 *1 (-428 *3 *4 *2 *5 *6 *7)) (-4 *7 (-870 *4 *5 (-787 *3))))) (-3858 (*1 *1 *1) (-12 (-14 *2 (-578 (-1070))) (-4 *3 (-156)) (-4 *5 (-211 (-3581 *2) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *4) (|:| -3027 *5)) (-2 (|:| -3506 *4) (|:| -3027 *5)))) (-5 *1 (-428 *2 *3 *4 *5 *6 *7)) (-4 *4 (-777)) (-4 *7 (-870 *3 *5 (-787 *2))))) (-3787 (*1 *1 *2 *3) (-12 (-5 *3 (-644 *5 *6 *7)) (-4 *5 (-777)) (-4 *6 (-211 (-3581 *4) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-14 *4 (-578 (-1070))) (-4 *2 (-156)) (-5 *1 (-428 *4 *2 *5 *6 *7 *8)) (-4 *8 (-870 *2 *6 (-787 *4))))) (-1822 (*1 *1 *2) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *5)) (-2 (|:| -3506 *2) (|:| -3027 *5)))) (-5 *1 (-428 *3 *4 *2 *5 *6 *7)) (-4 *2 (-777)) (-4 *7 (-870 *4 *5 (-787 *3))))) (-2774 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-578 (-1070))) (-4 *2 (-156)) (-4 *4 (-211 (-3581 *5) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *3) (|:| -3027 *4)) (-2 (|:| -3506 *3) (|:| -3027 *4)))) (-5 *1 (-428 *5 *2 *3 *4 *6 *7)) (-4 *3 (-777)) (-4 *7 (-870 *2 *4 (-787 *5))))) (-1769 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-578 (-1070))) (-4 *2 (-156)) (-4 *3 (-211 (-3581 *4) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *3)) (-2 (|:| -3506 *5) (|:| -3027 *3)))) (-5 *1 (-428 *4 *2 *5 *3 *6 *7)) (-4 *5 (-777)) (-4 *7 (-870 *2 *3 (-787 *4)))))) -(-13 (-648 |#6|) (-648 |#2|) (-10 -8 (-15 -3850 (|#2| $)) (-15 -3845 ((-644 |#3| |#4| |#5|) $)) (-15 -3372 (|#4| $)) (-15 -2965 (|#3| $)) (-15 -3858 ($ $)) (-15 -3787 ($ |#2| (-644 |#3| |#4| |#5|))) (-15 -1822 ($ |#3|)) (-15 -2774 ($ |#2| |#3| |#4|)) (-15 -1769 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2824 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35))) -(((-429 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2824 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-723) (-777) (-508) (-870 |#3| |#1| |#2|) (-13 (-950 (-375 (-501))) (-331) (-10 -8 (-15 -3691 ($ |#4|)) (-15 -2946 (|#4| $)) (-15 -2949 (|#4| $))))) (T -429)) -((-2824 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-777)) (-4 *5 (-723)) (-4 *6 (-508)) (-4 *7 (-870 *6 *5 *3)) (-5 *1 (-429 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-950 (-375 (-501))) (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $)))))))) -(-10 -7 (-15 -2824 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-3736 (((-107) $ $) NIL)) (-3800 (((-578 |#3|) $) 41)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) NIL (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4110 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 47)) (-3490 (($ (-578 |#4|)) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1526 (($ |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4167)))) (-2732 (((-578 |#4|) $) 18 (|has| $ (-6 -4167)))) (-2361 ((|#3| $) 45)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#4|) $) 14 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 26 (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-2519 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 21)) (-3453 (((-578 |#3|) $) NIL)) (-1479 (((-107) |#3| $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-3708 (((-1018) $) NIL)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 39)) (-3122 (($) 17)) (-3713 (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) 16)) (-1248 (((-490) $) NIL (|has| |#4| (-556 (-490)))) (($ (-578 |#4|)) 49)) (-3699 (($ (-578 |#4|)) 13)) (-1638 (($ $ |#3|) NIL)) (-2482 (($ $ |#3|) NIL)) (-3737 (($ $ |#3|) NIL)) (-3691 (((-786) $) 38) (((-578 |#4|) $) 48)) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 30)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-430 |#1| |#2| |#3| |#4|) (-13 (-891 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1248 ($ (-578 |#4|))) (-6 -4167) (-6 -4168))) (-959) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -430)) -((-1248 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-430 *3 *4 *5 *6))))) -(-13 (-891 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1248 ($ (-578 |#4|))) (-6 -4167) (-6 -4168))) -((-1850 (($) 11)) (-1925 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-431 |#1| |#2| |#3|) (-10 -8 (-15 -1925 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1850 (|#1|))) (-432 |#2| |#3|) (-156) (-23)) (T -431)) -NIL -(-10 -8 (-15 -1925 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1850 (|#1|))) -((-3736 (((-107) $ $) 7)) (-3765 (((-3 |#1| "failed") $) 26)) (-3490 ((|#1| $) 25)) (-1758 (($ $ $) 23)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-1201 ((|#2| $) 19)) (-3691 (((-786) $) 11) (($ |#1|) 27)) (-1850 (($) 18 T CONST)) (-1925 (($) 24 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 15) (($ $ $) 13)) (-3790 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-432 |#1| |#2|) (-1180) (-156) (-23)) (T -432)) -((-1925 (*1 *1) (-12 (-4 *1 (-432 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1758 (*1 *1 *1 *1) (-12 (-4 *1 (-432 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))) -(-13 (-437 |t#1| |t#2|) (-950 |t#1|) (-10 -8 (-15 (-1925) ($) -3897) (-15 -1758 ($ $ $)))) -(((-97) . T) ((-555 (-786)) . T) ((-437 |#1| |#2|) . T) ((-950 |#1|) . T) ((-1001) . T)) -((-1655 (((-1148 (-1148 (-501))) (-1148 (-1148 (-501))) (-839)) 18)) (-2328 (((-1148 (-1148 (-501))) (-839)) 16))) -(((-433) (-10 -7 (-15 -1655 ((-1148 (-1148 (-501))) (-1148 (-1148 (-501))) (-839))) (-15 -2328 ((-1148 (-1148 (-501))) (-839))))) (T -433)) -((-2328 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 (-1148 (-501)))) (-5 *1 (-433)))) (-1655 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-1148 (-501)))) (-5 *3 (-839)) (-5 *1 (-433))))) -(-10 -7 (-15 -1655 ((-1148 (-1148 (-501))) (-1148 (-1148 (-501))) (-839))) (-15 -2328 ((-1148 (-1148 (-501))) (-839)))) -((-3536 (((-501) (-501)) 30) (((-501)) 22)) (-3286 (((-501) (-501)) 26) (((-501)) 18)) (-2709 (((-501) (-501)) 28) (((-501)) 20)) (-2932 (((-107) (-107)) 12) (((-107)) 10)) (-1724 (((-107) (-107)) 11) (((-107)) 9)) (-1428 (((-107) (-107)) 24) (((-107)) 15))) -(((-434) (-10 -7 (-15 -1724 ((-107))) (-15 -2932 ((-107))) (-15 -1724 ((-107) (-107))) (-15 -2932 ((-107) (-107))) (-15 -1428 ((-107))) (-15 -2709 ((-501))) (-15 -3286 ((-501))) (-15 -3536 ((-501))) (-15 -1428 ((-107) (-107))) (-15 -2709 ((-501) (-501))) (-15 -3286 ((-501) (-501))) (-15 -3536 ((-501) (-501))))) (T -434)) -((-3536 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-2709 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-1428 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) (-3536 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-3286 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-2709 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-1428 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) (-1724 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) (-2932 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) (-1724 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434))))) -(-10 -7 (-15 -1724 ((-107))) (-15 -2932 ((-107))) (-15 -1724 ((-107) (-107))) (-15 -2932 ((-107) (-107))) (-15 -1428 ((-107))) (-15 -2709 ((-501))) (-15 -3286 ((-501))) (-15 -3536 ((-501))) (-15 -1428 ((-107) (-107))) (-15 -2709 ((-501) (-501))) (-15 -3286 ((-501) (-501))) (-15 -3536 ((-501) (-501)))) -((-3736 (((-107) $ $) NIL)) (-3876 (((-578 (-346)) $) 27) (((-578 (-346)) $ (-578 (-346))) 90)) (-1487 (((-578 (-991 (-346))) $) 14) (((-578 (-991 (-346))) $ (-578 (-991 (-346)))) 87)) (-2479 (((-578 (-578 (-863 (-199)))) (-578 (-578 (-863 (-199)))) (-578 (-795))) 42)) (-2806 (((-578 (-578 (-863 (-199)))) $) 83)) (-1801 (((-1154) $ (-863 (-199)) (-795)) 103)) (-2746 (($ $) 82) (($ (-578 (-578 (-863 (-199))))) 93) (($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839))) 92) (($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839)) (-578 (-232))) 94)) (-3460 (((-1053) $) NIL)) (-3626 (((-501) $) 65)) (-3708 (((-1018) $) NIL)) (-1876 (($) 91)) (-3055 (((-578 (-199)) (-578 (-578 (-863 (-199))))) 52)) (-2278 (((-1154) $ (-578 (-863 (-199))) (-795) (-795) (-839)) 97) (((-1154) $ (-863 (-199))) 99) (((-1154) $ (-863 (-199)) (-795) (-795) (-839)) 98)) (-3691 (((-786) $) 109) (($ (-578 (-578 (-863 (-199))))) 104)) (-2140 (((-1154) $ (-863 (-199))) 102)) (-3751 (((-107) $ $) NIL))) -(((-435) (-13 (-1001) (-10 -8 (-15 -1876 ($)) (-15 -2746 ($ $)) (-15 -2746 ($ (-578 (-578 (-863 (-199)))))) (-15 -2746 ($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839)))) (-15 -2746 ($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839)) (-578 (-232)))) (-15 -2806 ((-578 (-578 (-863 (-199)))) $)) (-15 -3626 ((-501) $)) (-15 -1487 ((-578 (-991 (-346))) $)) (-15 -1487 ((-578 (-991 (-346))) $ (-578 (-991 (-346))))) (-15 -3876 ((-578 (-346)) $)) (-15 -3876 ((-578 (-346)) $ (-578 (-346)))) (-15 -2278 ((-1154) $ (-578 (-863 (-199))) (-795) (-795) (-839))) (-15 -2278 ((-1154) $ (-863 (-199)))) (-15 -2278 ((-1154) $ (-863 (-199)) (-795) (-795) (-839))) (-15 -2140 ((-1154) $ (-863 (-199)))) (-15 -1801 ((-1154) $ (-863 (-199)) (-795))) (-15 -3691 ($ (-578 (-578 (-863 (-199)))))) (-15 -3691 ((-786) $)) (-15 -2479 ((-578 (-578 (-863 (-199)))) (-578 (-578 (-863 (-199)))) (-578 (-795)))) (-15 -3055 ((-578 (-199)) (-578 (-578 (-863 (-199))))))))) (T -435)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-435)))) (-1876 (*1 *1) (-5 *1 (-435))) (-2746 (*1 *1 *1) (-5 *1 (-435))) (-2746 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435)))) (-2746 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *4 (-578 (-839))) (-5 *1 (-435)))) (-2746 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *4 (-578 (-839))) (-5 *5 (-578 (-232))) (-5 *1 (-435)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-435)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-435)))) (-1487 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-435)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-435)))) (-3876 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-435)))) (-2278 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *2 (-1154)) (-5 *1 (-435)))) (-2278 (*1 *2 *1 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-435)))) (-2278 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-863 (-199))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *2 (-1154)) (-5 *1 (-435)))) (-2140 (*1 *2 *1 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-435)))) (-1801 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-863 (-199))) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-435)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435)))) (-2479 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *1 (-435)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-578 (-199))) (-5 *1 (-435))))) -(-13 (-1001) (-10 -8 (-15 -1876 ($)) (-15 -2746 ($ $)) (-15 -2746 ($ (-578 (-578 (-863 (-199)))))) (-15 -2746 ($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839)))) (-15 -2746 ($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839)) (-578 (-232)))) (-15 -2806 ((-578 (-578 (-863 (-199)))) $)) (-15 -3626 ((-501) $)) (-15 -1487 ((-578 (-991 (-346))) $)) (-15 -1487 ((-578 (-991 (-346))) $ (-578 (-991 (-346))))) (-15 -3876 ((-578 (-346)) $)) (-15 -3876 ((-578 (-346)) $ (-578 (-346)))) (-15 -2278 ((-1154) $ (-578 (-863 (-199))) (-795) (-795) (-839))) (-15 -2278 ((-1154) $ (-863 (-199)))) (-15 -2278 ((-1154) $ (-863 (-199)) (-795) (-795) (-839))) (-15 -2140 ((-1154) $ (-863 (-199)))) (-15 -1801 ((-1154) $ (-863 (-199)) (-795))) (-15 -3691 ($ (-578 (-578 (-863 (-199)))))) (-15 -3691 ((-786) $)) (-15 -2479 ((-578 (-578 (-863 (-199)))) (-578 (-578 (-863 (-199)))) (-578 (-795)))) (-15 -3055 ((-578 (-199)) (-578 (-578 (-863 (-199)))))))) -((-3797 (($ $) NIL) (($ $ $) 11))) -(((-436 |#1| |#2| |#3|) (-10 -8 (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|))) (-437 |#2| |#3|) (-156) (-23)) (T -436)) -NIL -(-10 -8 (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-1201 ((|#2| $) 19)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 15) (($ $ $) 13)) (-3790 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-437 |#1| |#2|) (-1180) (-156) (-23)) (T -437)) -((-1201 (*1 *2 *1) (-12 (-4 *1 (-437 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) (-1850 (*1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-3790 (*1 *1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-3797 (*1 *1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))) -(-13 (-1001) (-10 -8 (-15 -1201 (|t#2| $)) (-15 (-1850) ($) -3897) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3797 ($ $)) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $)))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3290 (((-3 (-578 (-447 |#1| |#2|)) "failed") (-578 (-447 |#1| |#2|)) (-578 (-787 |#1|))) 88)) (-1430 (((-578 (-578 (-220 |#1| |#2|))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|))) 86)) (-1668 (((-2 (|:| |dpolys| (-578 (-220 |#1| |#2|))) (|:| |coords| (-578 (-501)))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|))) 58))) -(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -1430 ((-578 (-578 (-220 |#1| |#2|))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|)))) (-15 -3290 ((-3 (-578 (-447 |#1| |#2|)) "failed") (-578 (-447 |#1| |#2|)) (-578 (-787 |#1|)))) (-15 -1668 ((-2 (|:| |dpolys| (-578 (-220 |#1| |#2|))) (|:| |coords| (-578 (-501)))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|))))) (-578 (-1070)) (-419) (-419)) (T -438)) -((-1668 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-787 *5))) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-2 (|:| |dpolys| (-578 (-220 *5 *6))) (|:| |coords| (-578 (-501))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-578 (-220 *5 *6))) (-4 *7 (-419)))) (-3290 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-447 *4 *5))) (-5 *3 (-578 (-787 *4))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-438 *4 *5 *6)) (-4 *6 (-419)))) (-1430 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-787 *5))) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-578 (-578 (-220 *5 *6)))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-578 (-220 *5 *6))) (-4 *7 (-419))))) -(-10 -7 (-15 -1430 ((-578 (-578 (-220 |#1| |#2|))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|)))) (-15 -3290 ((-3 (-578 (-447 |#1| |#2|)) "failed") (-578 (-447 |#1| |#2|)) (-578 (-787 |#1|)))) (-15 -1668 ((-2 (|:| |dpolys| (-578 (-220 |#1| |#2|))) (|:| |coords| (-578 (-501)))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|))))) -((-2174 (((-3 $ "failed") $) 11)) (-3097 (($ $ $) 20)) (-2144 (($ $ $) 21)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 14)) (-3803 (($ $ $) 9)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 19))) -(((-439 |#1|) (-10 -8 (-15 -2144 (|#1| |#1| |#1|)) (-15 -3097 (|#1| |#1| |#1|)) (-15 -3948 (|#1| |#1| (-501))) (-15 ** (|#1| |#1| (-501))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -3948 (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-701))) (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839)))) (-440)) (T -439)) -NIL -(-10 -8 (-15 -2144 (|#1| |#1| |#1|)) (-15 -3097 (|#1| |#1| |#1|)) (-15 -3948 (|#1| |#1| (-501))) (-15 ** (|#1| |#1| (-501))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -3948 (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-701))) (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839)))) -((-3736 (((-107) $ $) 7)) (-2540 (($) 20 T CONST)) (-2174 (((-3 $ "failed") $) 16)) (-1355 (((-107) $) 19)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 27)) (-3708 (((-1018) $) 10)) (-3097 (($ $ $) 23)) (-2144 (($ $ $) 22)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-839)) 13) (($ $ (-701)) 17) (($ $ (-501)) 24)) (-1925 (($) 21 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 26)) (** (($ $ (-839)) 14) (($ $ (-701)) 18) (($ $ (-501)) 25)) (* (($ $ $) 15))) -(((-440) (-1180)) (T -440)) -((-3833 (*1 *1 *1) (-4 *1 (-440))) (-3803 (*1 *1 *1 *1) (-4 *1 (-440))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-440)) (-5 *2 (-501)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-440)) (-5 *2 (-501)))) (-3097 (*1 *1 *1 *1) (-4 *1 (-440))) (-2144 (*1 *1 *1 *1) (-4 *1 (-440)))) -(-13 (-657) (-10 -8 (-15 -3833 ($ $)) (-15 -3803 ($ $ $)) (-15 ** ($ $ (-501))) (-15 -3948 ($ $ (-501))) (-6 -4164) (-15 -3097 ($ $ $)) (-15 -2144 ($ $ $)))) -(((-97) . T) ((-555 (-786)) . T) ((-657) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 17)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) NIL) (($ $ (-375 (-501)) (-375 (-501))) NIL)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) NIL)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) NIL) (((-375 (-501)) $ (-375 (-501))) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) NIL) (($ $ (-375 (-501))) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-375 (-501))) NIL) (($ $ (-986) (-375 (-501))) NIL) (($ $ (-578 (-986)) (-578 (-375 (-501)))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) 22)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) 26 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 33 (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 27 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) NIL) (($ $ $) NIL (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) 25 (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $ (-1145 |#2|)) 15)) (-1201 (((-375 (-501)) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1145 |#2|)) NIL) (($ (-1130 |#1| |#2| |#3|)) 9) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 18)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) 24)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-441 |#1| |#2| |#3|) (-13 (-1132 |#1|) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -3691 ($ (-1130 |#1| |#2| |#3|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -441)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-441 *3 *4 *5)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3)))) -(-13 (-1132 |#1|) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -3691 ($ (-1130 |#1| |#2| |#3|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) -((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) 18)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) 19)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 16)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) NIL)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-442 |#1| |#2| |#3| |#4|) (-1081 |#1| |#2|) (-1001) (-1001) (-1081 |#1| |#2|) |#2|) (T -442)) -NIL -(-1081 |#1| |#2|) -((-3736 (((-107) $ $) NIL)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) NIL)) (-2073 (((-578 $) (-578 |#4|)) NIL)) (-3800 (((-578 |#3|) $) NIL)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2599 ((|#4| |#4| $) NIL)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) 26 (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4110 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) NIL)) (-3490 (($ (-578 |#4|)) NIL)) (-1199 (((-3 $ "failed") $) 39)) (-1778 ((|#4| |#4| $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1526 (($ |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1379 ((|#4| |#4| $) NIL)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) NIL)) (-2732 (((-578 |#4|) $) 16 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2361 ((|#3| $) 33)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#4|) $) 17 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-2519 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 21)) (-3453 (((-578 |#3|) $) NIL)) (-1479 (((-107) |#3| $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1383 (((-3 |#4| "failed") $) 37)) (-3574 (((-578 |#4|) $) NIL)) (-1590 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1762 ((|#4| |#4| $) NIL)) (-3523 (((-107) $ $) NIL)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3618 ((|#4| |#4| $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-3 |#4| "failed") $) 35)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3478 (((-3 $ "failed") $ |#4|) 46)) (-3718 (($ $ |#4|) NIL)) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 15)) (-3122 (($) 13)) (-1201 (((-701) $) NIL)) (-3713 (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) 12)) (-1248 (((-490) $) NIL (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 20)) (-1638 (($ $ |#3|) 42)) (-2482 (($ $ |#3|) 43)) (-1218 (($ $) NIL)) (-3737 (($ $ |#3|) NIL)) (-3691 (((-786) $) 31) (((-578 |#4|) $) 40)) (-4104 (((-701) $) NIL (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) NIL)) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) NIL)) (-2659 (((-107) |#3| $) NIL)) (-3751 (((-107) $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-443 |#1| |#2| |#3| |#4|) (-1099 |#1| |#2| |#3| |#4|) (-508) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -443)) -NIL -(-1099 |#1| |#2| |#3| |#4|) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2003 (($) 18)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1248 (((-346) $) 22) (((-199) $) 25) (((-375 (-1064 (-501))) $) 19) (((-490) $) 52)) (-3691 (((-786) $) 50) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (((-199) $) 24) (((-346) $) 21)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 36 T CONST)) (-1925 (($) 11 T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL))) -(((-444) (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))) (-933) (-555 (-199)) (-555 (-346)) (-556 (-375 (-1064 (-501)))) (-556 (-490)) (-10 -8 (-15 -2003 ($))))) (T -444)) -((-2003 (*1 *1) (-5 *1 (-444)))) -(-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))) (-933) (-555 (-199)) (-555 (-346)) (-556 (-375 (-1064 (-501)))) (-556 (-490)) (-10 -8 (-15 -2003 ($)))) -((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) 16)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) 20)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 18)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) 13)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 19)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 11 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) 15 (|has| $ (-6 -4167))))) -(((-445 |#1| |#2| |#3|) (-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) (-1001) (-1001) (-1053)) (T -445)) -NIL -(-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) -((-2036 (((-501) (-501) (-501)) 7)) (-2999 (((-107) (-501) (-501) (-501) (-501)) 11)) (-1949 (((-1148 (-578 (-501))) (-701) (-701)) 22))) -(((-446) (-10 -7 (-15 -2036 ((-501) (-501) (-501))) (-15 -2999 ((-107) (-501) (-501) (-501) (-501))) (-15 -1949 ((-1148 (-578 (-501))) (-701) (-701))))) (T -446)) -((-1949 (*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1148 (-578 (-501)))) (-5 *1 (-446)))) (-2999 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-107)) (-5 *1 (-446)))) (-2036 (*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-446))))) -(-10 -7 (-15 -2036 ((-501) (-501) (-501))) (-15 -2999 ((-107) (-501) (-501) (-501) (-501))) (-15 -1949 ((-1148 (-578 (-501))) (-701) (-701)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-787 |#1|)) $) NIL)) (-3728 (((-1064 $) $ (-787 |#1|)) NIL) (((-1064 |#2|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-508)))) (-2865 (($ $) NIL (|has| |#2| (-508)))) (-1639 (((-107) $) NIL (|has| |#2| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-787 |#1|))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL (|has| |#2| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-787 |#1|) "failed") $) NIL)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-787 |#1|) $) NIL)) (-1749 (($ $ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-1474 (($ $ (-578 (-501))) NIL)) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#2| (-830)))) (-3503 (($ $ |#2| (-448 (-3581 |#1|) (-701)) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#2|) (-787 |#1|)) NIL) (($ (-1064 $) (-787 |#1|)) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#2| (-448 (-3581 |#1|) (-701))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-787 |#1|)) NIL)) (-2285 (((-448 (-3581 |#1|) (-701)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-3515 (($ (-1 (-448 (-3581 |#1|) (-701)) (-448 (-3581 |#1|) (-701))) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-2752 (((-3 (-787 |#1|) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#2| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-787 |#1|)) (|:| -3027 (-701))) "failed") $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#2| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-830)))) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-787 |#1|) |#2|) NIL) (($ $ (-578 (-787 |#1|)) (-578 |#2|)) NIL) (($ $ (-787 |#1|) $) NIL) (($ $ (-578 (-787 |#1|)) (-578 $)) NIL)) (-2532 (($ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-2596 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1201 (((-448 (-3581 |#1|) (-701)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-787 |#1|) (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#2| $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-787 |#1|)) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#2| (-37 (-375 (-501)))) (|has| |#2| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#2| (-508)))) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-448 (-3581 |#1|) (-701))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#2| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#2| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#2| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#2| (-37 (-375 (-501))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-447 |#1| |#2|) (-13 (-870 |#2| (-448 (-3581 |#1|) (-701)) (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501)))))) (-578 (-1070)) (-959)) (T -447)) -((-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-447 *3 *4)) (-14 *3 (-578 (-1070))) (-4 *4 (-959))))) -(-13 (-870 |#2| (-448 (-3581 |#1|) (-701)) (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501)))))) -((-3736 (((-107) $ $) NIL (|has| |#2| (-1001)))) (-3292 (((-107) $) NIL (|has| |#2| (-123)))) (-1822 (($ (-839)) NIL (|has| |#2| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) NIL (|has| |#2| (-723)))) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#2| (-336)))) (-1417 (((-501) $) NIL (|has| |#2| (-775)))) (-3754 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1001)))) (-3490 (((-501) $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) ((|#2| $) NIL (|has| |#2| (-1001)))) (-3868 (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL (|has| |#2| (-959))) (((-621 |#2|) (-621 $)) NIL (|has| |#2| (-959)))) (-2174 (((-3 $ "failed") $) NIL (|has| |#2| (-959)))) (-2890 (($) NIL (|has| |#2| (-336)))) (-2156 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ (-501)) 11)) (-2164 (((-107) $) NIL (|has| |#2| (-775)))) (-2732 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#2| (-959)))) (-4067 (((-107) $) NIL (|has| |#2| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3380 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-2519 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#2| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#2| (-1001)))) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#2| (-336)))) (-3708 (((-1018) $) NIL (|has| |#2| (-1001)))) (-1190 ((|#2| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ (-501) |#2|) NIL) ((|#2| $ (-501)) NIL)) (-1293 ((|#2| $ $) NIL (|has| |#2| (-959)))) (-3759 (($ (-1148 |#2|)) NIL)) (-3613 (((-125)) NIL (|has| |#2| (-331)))) (-2596 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3713 (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#2|) $) NIL) (((-786) $) NIL (|has| |#2| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (|has| |#2| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (($ |#2|) NIL (|has| |#2| (-1001)))) (-3965 (((-701)) NIL (|has| |#2| (-959)))) (-1200 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#2| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (-1850 (($) NIL (|has| |#2| (-123)) CONST)) (-1925 (($) NIL (|has| |#2| (-959)) CONST)) (-3584 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3751 (((-107) $ $) NIL (|has| |#2| (-1001)))) (-3773 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3762 (((-107) $ $) 15 (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $ $) NIL (|has| |#2| (-959))) (($ $) NIL (|has| |#2| (-959)))) (-3790 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (* (($ $ $) NIL (|has| |#2| (-959))) (($ (-501) $) NIL (|has| |#2| (-959))) (($ $ |#2|) NIL (|has| |#2| (-657))) (($ |#2| $) NIL (|has| |#2| (-657))) (($ (-701) $) NIL (|has| |#2| (-123))) (($ (-839) $) NIL (|has| |#2| (-25)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-448 |#1| |#2|) (-211 |#1| |#2|) (-701) (-723)) (T -448)) -NIL -(-211 |#1| |#2|) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-2213 (($ $ $) 32)) (-3216 (($ $ $) 31)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1323 ((|#1| $) 26)) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) 27)) (-4114 (($ |#1| $) 10)) (-2719 (($ (-578 |#1|)) 12)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1251 ((|#1| $) 23)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 9)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 29)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) 21 (|has| $ (-6 -4167))))) -(((-449 |#1|) (-13 (-884 |#1|) (-10 -8 (-15 -2719 ($ (-578 |#1|))))) (-777)) (T -449)) -((-2719 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-449 *3))))) -(-13 (-884 |#1|) (-10 -8 (-15 -2719 ($ (-578 |#1|))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3547 (($ $) 69)) (-2748 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-3463 (((-381 |#2| (-375 |#2|) |#3| |#4|) $) 43)) (-3708 (((-1018) $) NIL)) (-3987 (((-3 |#4| "failed") $) 105)) (-1281 (($ (-381 |#2| (-375 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-501)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-1688 (((-2 (|:| -3611 (-381 |#2| (-375 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-3691 (((-786) $) 100)) (-1850 (($) 33 T CONST)) (-3751 (((-107) $ $) 107)) (-3797 (($ $) 72) (($ $ $) NIL)) (-3790 (($ $ $) 70)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 73))) -(((-450 |#1| |#2| |#3| |#4|) (-304 |#1| |#2| |#3| |#4|) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -450)) -NIL -(-304 |#1| |#2| |#3| |#4|) -((-3638 (((-501) (-578 (-501))) 28)) (-3553 ((|#1| (-578 |#1|)) 54)) (-2280 (((-578 |#1|) (-578 |#1|)) 55)) (-1213 (((-578 |#1|) (-578 |#1|)) 57)) (-3664 ((|#1| (-578 |#1|)) 56)) (-1734 (((-578 (-501)) (-578 |#1|)) 31))) -(((-451 |#1|) (-10 -7 (-15 -3664 (|#1| (-578 |#1|))) (-15 -3553 (|#1| (-578 |#1|))) (-15 -1213 ((-578 |#1|) (-578 |#1|))) (-15 -2280 ((-578 |#1|) (-578 |#1|))) (-15 -1734 ((-578 (-501)) (-578 |#1|))) (-15 -3638 ((-501) (-578 (-501))))) (-1125 (-501))) (T -451)) -((-3638 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-501)) (-5 *1 (-451 *4)) (-4 *4 (-1125 *2)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1125 (-501))) (-5 *2 (-578 (-501))) (-5 *1 (-451 *4)))) (-2280 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1125 (-501))) (-5 *1 (-451 *3)))) (-1213 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1125 (-501))) (-5 *1 (-451 *3)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-451 *2)) (-4 *2 (-1125 (-501))))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-451 *2)) (-4 *2 (-1125 (-501)))))) -(-10 -7 (-15 -3664 (|#1| (-578 |#1|))) (-15 -3553 (|#1| (-578 |#1|))) (-15 -1213 ((-578 |#1|) (-578 |#1|))) (-15 -2280 ((-578 |#1|) (-578 |#1|))) (-15 -1734 ((-578 (-501)) (-578 |#1|))) (-15 -3638 ((-501) (-578 (-501))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-501) $) NIL (|has| (-501) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-501) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-501) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-501) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-501) (-950 (-501))))) (-3490 (((-501) $) NIL) (((-1070) $) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-501) (-950 (-501)))) (((-501) $) NIL (|has| (-501) (-950 (-501))))) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-501) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-501) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-501) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-501) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-501) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-501) (-1046)))) (-4067 (((-107) $) NIL (|has| (-501) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-501) (-777)))) (-1212 (($ (-1 (-501) (-501)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-501) (-1046)) CONST)) (-3827 (($ (-375 (-501))) 8)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-501) (-276))) (((-375 (-501)) $) NIL)) (-3383 (((-501) $) NIL (|has| (-501) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-501)) (-578 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-501) (-501)) NIL (|has| (-501) (-278 (-501)))) (($ $ (-262 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-262 (-501)))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-1070)) (-578 (-501))) NIL (|has| (-501) (-476 (-1070) (-501)))) (($ $ (-1070) (-501)) NIL (|has| (-501) (-476 (-1070) (-501))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-501)) NIL (|has| (-501) (-256 (-501) (-501))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-501) $) NIL)) (-1248 (((-810 (-501)) $) NIL (|has| (-501) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-501) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-501) (-556 (-490)))) (((-346) $) NIL (|has| (-501) (-933))) (((-199) $) NIL (|has| (-501) (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-501) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) 7) (($ (-501)) NIL) (($ (-1070)) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL) (((-918 16) $) 9)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-501) (-830))) (|has| (-501) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-501) $) NIL (|has| (-501) (-500)))) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| (-501) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3803 (($ $ $) NIL) (($ (-501) (-501)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-501) $) NIL) (($ $ (-501)) NIL))) -(((-452) (-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 16) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -3827 ($ (-375 (-501))))))) (T -452)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-918 16)) (-5 *1 (-452)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452)))) (-3827 (*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452))))) -(-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 16) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -3827 ($ (-375 (-501)))))) -((-3380 (((-578 |#2|) $) 22)) (-2211 (((-107) |#2| $) 27)) (-2369 (((-107) (-1 (-107) |#2|) $) 20)) (-3195 (($ $ (-578 (-262 |#2|))) 12) (($ $ (-262 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-578 |#2|) (-578 |#2|)) NIL)) (-3713 (((-701) (-1 (-107) |#2|) $) 21) (((-701) |#2| $) 25)) (-3691 (((-786) $) 36)) (-1200 (((-107) (-1 (-107) |#2|) $) 19)) (-3751 (((-107) $ $) 30)) (-3581 (((-701) $) 16))) -(((-453 |#1| |#2|) (-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3380 ((-578 |#2|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|))) (-454 |#2|) (-1104)) (T -453)) -NIL -(-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3380 ((-578 |#2|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-454 |#1|) (-1180) (-1104)) (T -454)) -((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-454 *3)) (-4 *3 (-1104)))) (-2519 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4168)) (-4 *1 (-454 *3)) (-4 *3 (-1104)))) (-1200 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-107)))) (-2369 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-107)))) (-3713 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-701)))) (-2732 (*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3)))) (-3380 (*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3)))) (-3713 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-701)))) (-2211 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107))))) -(-13 (-33) (-10 -8 (IF (|has| |t#1| (-1001)) (-6 (-1001)) |noBranch|) (IF (|has| |t#1| (-1001)) (IF (|has| |t#1| (-278 |t#1|)) (-6 (-278 |t#1|)) |noBranch|) |noBranch|) (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4168)) (-15 -2519 ($ (-1 |t#1| |t#1|) $)) |noBranch|) (IF (|has| $ (-6 -4167)) (PROGN (-15 -1200 ((-107) (-1 (-107) |t#1|) $)) (-15 -2369 ((-107) (-1 (-107) |t#1|) $)) (-15 -3713 ((-701) (-1 (-107) |t#1|) $)) (-15 -2732 ((-578 |t#1|) $)) (-15 -3380 ((-578 |t#1|) $)) (IF (|has| |t#1| (-1001)) (PROGN (-15 -3713 ((-701) |t#1| $)) (-15 -2211 ((-107) |t#1| $))) |noBranch|)) |noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-3978 (($ $) 15)) (-3970 (($ $) 24)) (-3984 (($ $) 12)) (-3991 (($ $) 10)) (-3981 (($ $) 17)) (-3975 (($ $) 22))) -(((-455 |#1|) (-10 -8 (-15 -3975 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|))) (-456)) (T -455)) -NIL -(-10 -8 (-15 -3975 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|))) -((-3978 (($ $) 11)) (-3970 (($ $) 10)) (-3984 (($ $) 9)) (-3991 (($ $) 8)) (-3981 (($ $) 7)) (-3975 (($ $) 6))) -(((-456) (-1180)) (T -456)) -((-3978 (*1 *1 *1) (-4 *1 (-456))) (-3970 (*1 *1 *1) (-4 *1 (-456))) (-3984 (*1 *1 *1) (-4 *1 (-456))) (-3991 (*1 *1 *1) (-4 *1 (-456))) (-3981 (*1 *1 *1) (-4 *1 (-456))) (-3975 (*1 *1 *1) (-4 *1 (-456)))) -(-13 (-10 -8 (-15 -3975 ($ $)) (-15 -3981 ($ $)) (-15 -3991 ($ $)) (-15 -3984 ($ $)) (-15 -3970 ($ $)) (-15 -3978 ($ $)))) -((-3739 (((-373 |#4|) |#4| (-1 (-373 |#2|) |#2|)) 42))) -(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4| (-1 (-373 |#2|) |#2|)))) (-331) (-1125 |#1|) (-13 (-331) (-134) (-655 |#1| |#2|)) (-1125 |#3|)) (T -457)) -((-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-4 *7 (-13 (-331) (-134) (-655 *5 *6))) (-5 *2 (-373 *3)) (-5 *1 (-457 *5 *6 *7 *3)) (-4 *3 (-1125 *7))))) -(-10 -7 (-15 -3739 ((-373 |#4|) |#4| (-1 (-373 |#2|) |#2|)))) -((-3736 (((-107) $ $) NIL)) (-3588 (((-578 $) (-1064 $) (-1070)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-866 $)) NIL)) (-3448 (($ (-1064 $) (-1070)) NIL) (($ (-1064 $)) NIL) (($ (-866 $)) NIL)) (-3292 (((-107) $) 36)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-1358 (((-107) $ $) 62)) (-3709 (((-578 (-553 $)) $) 46)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3631 (($ $ (-262 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-1271 (((-578 $) (-1064 $) (-1070)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-866 $)) NIL)) (-2899 (($ (-1064 $) (-1070)) NIL) (($ (-1064 $)) NIL) (($ (-866 $)) NIL)) (-3765 (((-3 (-553 $) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL)) (-3490 (((-553 $) $) NIL) (((-501) $) NIL) (((-375 (-501)) $) 48)) (-3023 (($ $ $) NIL)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-375 (-501)))) (|:| |vec| (-1148 (-375 (-501))))) (-621 $) (-1148 $)) NIL) (((-621 (-375 (-501))) (-621 $)) NIL)) (-3547 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2446 (($ $) NIL) (($ (-578 $)) NIL)) (-2389 (((-578 (-108)) $) NIL)) (-1853 (((-108) (-108)) NIL)) (-1355 (((-107) $) 39)) (-3729 (((-107) $) NIL (|has| $ (-950 (-501))))) (-2946 (((-1023 (-501) (-553 $)) $) 34)) (-1342 (($ $ (-501)) NIL)) (-2626 (((-1064 $) (-1064 $) (-553 $)) 77) (((-1064 $) (-1064 $) (-578 (-553 $))) 53) (($ $ (-553 $)) 66) (($ $ (-578 (-553 $))) 67)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1983 (((-1064 $) (-553 $)) 64 (|has| $ (-959)))) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 $ $) (-553 $)) NIL)) (-2789 (((-3 (-553 $) "failed") $) NIL)) (-1697 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3724 (((-578 (-553 $)) $) NIL)) (-3136 (($ (-108) $) NIL) (($ (-108) (-578 $)) NIL)) (-3109 (((-107) $ (-108)) NIL) (((-107) $ (-1070)) NIL)) (-3833 (($ $) NIL)) (-2696 (((-701) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ (-578 $)) NIL) (($ $ $) NIL)) (-2816 (((-107) $ $) NIL) (((-107) $ (-1070)) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-1070) (-1 $ (-578 $))) NIL) (($ $ (-1070) (-1 $ $)) NIL) (($ $ (-578 (-108)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-108) (-1 $ (-578 $))) NIL) (($ $ (-108) (-1 $ $)) NIL)) (-1864 (((-701) $) NIL)) (-2007 (($ (-108) $) NIL) (($ (-108) $ $) NIL) (($ (-108) $ $ $) NIL) (($ (-108) $ $ $ $) NIL) (($ (-108) (-578 $)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-4106 (($ $) NIL) (($ $ $) NIL)) (-2596 (($ $ (-701)) NIL) (($ $) 33)) (-2949 (((-1023 (-501) (-553 $)) $) 17)) (-2264 (($ $) NIL (|has| $ (-959)))) (-1248 (((-346) $) 91) (((-199) $) 99) (((-152 (-346)) $) 107)) (-3691 (((-786) $) NIL) (($ (-553 $)) NIL) (($ (-375 (-501))) NIL) (($ $) NIL) (($ (-501)) NIL) (($ (-1023 (-501) (-553 $))) 18)) (-3965 (((-701)) NIL)) (-1831 (($ $) NIL) (($ (-578 $)) NIL)) (-3811 (((-107) (-108)) 83)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-501)) NIL) (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) 9 T CONST)) (-1925 (($) 19 T CONST)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 21)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3803 (($ $ $) 41)) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-375 (-501))) NIL) (($ $ (-501)) 44) (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL) (($ $ $) 24) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL))) -(((-458) (-13 (-267) (-27) (-950 (-501)) (-950 (-375 (-501))) (-577 (-501)) (-933) (-577 (-375 (-501))) (-134) (-556 (-152 (-346))) (-206) (-10 -8 (-15 -3691 ($ (-1023 (-501) (-553 $)))) (-15 -2946 ((-1023 (-501) (-553 $)) $)) (-15 -2949 ((-1023 (-501) (-553 $)) $)) (-15 -3547 ($ $)) (-15 -1358 ((-107) $ $)) (-15 -2626 ((-1064 $) (-1064 $) (-553 $))) (-15 -2626 ((-1064 $) (-1064 $) (-578 (-553 $)))) (-15 -2626 ($ $ (-553 $))) (-15 -2626 ($ $ (-578 (-553 $))))))) (T -458)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) (-3547 (*1 *1 *1) (-5 *1 (-458))) (-1358 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-458)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-458))) (-5 *3 (-553 (-458))) (-5 *1 (-458)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-458))) (-5 *3 (-578 (-553 (-458)))) (-5 *1 (-458)))) (-2626 (*1 *1 *1 *2) (-12 (-5 *2 (-553 (-458))) (-5 *1 (-458)))) (-2626 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-553 (-458)))) (-5 *1 (-458))))) -(-13 (-267) (-27) (-950 (-501)) (-950 (-375 (-501))) (-577 (-501)) (-933) (-577 (-375 (-501))) (-134) (-556 (-152 (-346))) (-206) (-10 -8 (-15 -3691 ($ (-1023 (-501) (-553 $)))) (-15 -2946 ((-1023 (-501) (-553 $)) $)) (-15 -2949 ((-1023 (-501) (-553 $)) $)) (-15 -3547 ($ $)) (-15 -1358 ((-107) $ $)) (-15 -2626 ((-1064 $) (-1064 $) (-553 $))) (-15 -2626 ((-1064 $) (-1064 $) (-578 (-553 $)))) (-15 -2626 ($ $ (-553 $))) (-15 -2626 ($ $ (-578 (-553 $)))))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) 25 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 22 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 21)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 14)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 12 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) 23 (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) 10 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 13)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) 24) (($ $ (-1116 (-501))) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) 9 (|has| $ (-6 -4167))))) -(((-459 |#1| |#2|) (-19 |#1|) (-1104) (-501)) (T -459)) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#2| "failed") $) 44)) (-3189 ((|#2| $) 43)) (-1212 (($ $) 30)) (-1577 (((-703) $) 34)) (-4094 (((-583 $) $) 35)) (-4031 (((-107) $) 38)) (-3419 (($ |#2| |#1|) 39)) (-1893 (($ (-1 |#1| |#1|) $) 40)) (-2854 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-4152 ((|#2| $) 33)) (-1191 ((|#1| $) 32)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ |#2|) 45)) (-1311 (((-583 |#1|) $) 36)) (-2720 ((|#1| $ |#2|) 41)) (-2396 (($) 18 T CONST)) (-2332 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-352 |#1| |#2|) (-1184) (-961) (-1003)) (T -352)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) (-2720 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)))) (-3419 (*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-107)))) (-2332 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) (-4094 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-703)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) (-2854 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003))))) +(-13 (-106 |t#1| |t#1|) (-952 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2720 (|t#1| $ |t#2|)) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -3419 ($ |t#2| |t#1|)) (-15 -4031 ((-107) $)) (-15 -2332 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1311 ((-583 |t#1|) $)) (-15 -4094 ((-583 $) $)) (-15 -1577 ((-703) $)) (-15 -4152 (|t#2| $)) (-15 -1191 (|t#1| $)) (-15 -2854 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1212 ($ $)) (IF (|has| |t#1| (-156)) (-6 (-650 |t#1|)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) |has| |#1| (-156)) ((-952 |#2|) . T) ((-967 |#1|) . T) ((-1003) . T)) +((-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-623 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 11))) +(((-353) (-1184)) (T -353)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-353))))) +(-13 (-365) (-10 -8 (-15 -2256 ($ (-623 (-632)))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))))) +(((-557 (-787)) . T) ((-365) . T) ((-1108) . T)) +((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 21) (((-3 $ "failed") (-623 (-286 (-517)))) 19) (((-3 $ "failed") (-623 (-874 (-349)))) 17) (((-3 $ "failed") (-623 (-874 (-517)))) 15) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 13) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 11)) (-3189 (($ (-623 (-286 (-349)))) 22) (($ (-623 (-286 (-517)))) 20) (($ (-623 (-874 (-349)))) 18) (($ (-623 (-874 (-517)))) 16) (($ (-623 (-377 (-874 (-349))))) 14) (($ (-623 (-377 (-874 (-517))))) 12)) (-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 23))) +(((-354) (-1184)) (T -354)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354))))) +(-13 (-365) (-10 -8 (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -3189 ($ (-623 (-286 (-349))))) (-15 -1772 ((-3 $ "failed") (-623 (-286 (-349))))) (-15 -3189 ($ (-623 (-286 (-517))))) (-15 -1772 ((-3 $ "failed") (-623 (-286 (-517))))) (-15 -3189 ($ (-623 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-623 (-874 (-349))))) (-15 -3189 ($ (-623 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-623 (-874 (-517))))) (-15 -3189 ($ (-623 (-377 (-874 (-349)))))) (-15 -1772 ((-3 $ "failed") (-623 (-377 (-874 (-349)))))) (-15 -3189 ($ (-623 (-377 (-874 (-517)))))) (-15 -1772 ((-3 $ "failed") (-623 (-377 (-874 (-517)))))))) +(((-557 (-787)) . T) ((-365) . T) ((-1108) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 27)) (-2396 (($) 12 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 18))) +(((-355 |#1| |#2|) (-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|))) (-961) (-779)) (T -355)) +NIL +(-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|))) +((-2750 (((-107) $ $) NIL)) (-1611 (((-703) $) 56)) (-3092 (($) NIL T CONST)) (-3791 (((-3 $ "failed") $ $) 58)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1337 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-3848 (((-107) $) 14)) (-3466 ((|#1| $ (-517)) NIL)) (-3882 (((-703) $ (-517)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3420 (($ (-1 |#1| |#1|) $) 37)) (-2125 (($ (-1 (-703) (-703)) $) 34)) (-2208 (((-3 $ "failed") $ $) 49)) (-3985 (((-1056) $) NIL)) (-2611 (($ $ $) 25)) (-2301 (($ $ $) 23)) (-3206 (((-1021) $) NIL)) (-2879 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $) 31)) (-1306 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-2256 (((-787) $) 21) (($ |#1|) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2409 (($) 9 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 41)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 60 (|has| |#1| (-779)))) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ |#1| (-703)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27))) +(((-356 |#1|) (-13 (-659) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -1306 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-703) (-703)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|))) (-1003)) (T -356)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2301 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2611 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2208 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-3791 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-1306 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-1337 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1003)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-356 *3))))) +(-13 (-659) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -1306 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-703) (-703)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 47)) (-3189 (((-517) $) 46)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-2967 (($ $ $) 54)) (-3099 (($ $ $) 53)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 48)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 51)) (-1583 (((-107) $ $) 50)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 52)) (-1572 (((-107) $ $) 49)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-357) (-1184)) (T -357)) +NIL +(-13 (-509) (-779) (-952 (-517))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2680 (((-107) $) 20)) (-1742 (((-107) $) 19)) (-3462 (($ (-1056) (-1056) (-1056)) 21)) (-1207 (((-1056) $) 16)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1502 (($ (-1056) (-1056) (-1056)) 14)) (-1764 (((-1056) $) 17)) (-3935 (((-107) $) 18)) (-2173 (((-1056) $) 15)) (-2256 (((-787) $) 12) (($ (-1056)) 13) (((-1056) $) 9)) (-1547 (((-107) $ $) 7))) +(((-358) (-359)) (T -358)) +NIL +(-359) +((-2750 (((-107) $ $) 7)) (-2680 (((-107) $) 14)) (-1742 (((-107) $) 15)) (-3462 (($ (-1056) (-1056) (-1056)) 13)) (-1207 (((-1056) $) 18)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1502 (($ (-1056) (-1056) (-1056)) 20)) (-1764 (((-1056) $) 17)) (-3935 (((-107) $) 16)) (-2173 (((-1056) $) 19)) (-2256 (((-787) $) 11) (($ (-1056)) 22) (((-1056) $) 21)) (-1547 (((-107) $ $) 6))) +(((-359) (-1184)) (T -359)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-1502 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-2680 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3462 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359))))) +(-13 (-1003) (-10 -8 (-15 -2256 ($ (-1056))) (-15 -2256 ((-1056) $)) (-15 -1502 ($ (-1056) (-1056) (-1056))) (-15 -2173 ((-1056) $)) (-15 -1207 ((-1056) $)) (-15 -1764 ((-1056) $)) (-15 -3935 ((-107) $)) (-15 -1742 ((-107) $)) (-15 -2680 ((-107) $)) (-15 -3462 ($ (-1056) (-1056) (-1056))))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3395 (((-787) $) 50)) (-3092 (($) NIL T CONST)) (-3380 (($ $ (-843)) NIL)) (-3730 (($ $ (-843)) NIL)) (-2572 (($ $ (-843)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($ (-703)) 26)) (-3141 (((-703)) 15)) (-2376 (((-787) $) 52)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) NIL)) (-3917 (($ $ $ $) NIL)) (-1956 (($ $ $) NIL)) (-2396 (($) 20 T CONST)) (-1547 (((-107) $ $) 28)) (-1654 (($ $) 34) (($ $ $) 36)) (-1642 (($ $ $) 37)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-360 |#1| |#2| |#3|) (-13 (-677 |#3|) (-10 -8 (-15 -3141 ((-703))) (-15 -2376 ((-787) $)) (-15 -3395 ((-787) $)) (-15 -3220 ($ (-703))))) (-703) (-703) (-156)) (T -360)) +((-3141 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156))))) +(-13 (-677 |#3|) (-10 -8 (-15 -3141 ((-703))) (-15 -2376 ((-787) $)) (-15 -3395 ((-787) $)) (-15 -3220 ($ (-703))))) +((-1866 (((-1056)) 10)) (-4012 (((-1045 (-1056))) 28)) (-4124 (((-1158) (-1056)) 25) (((-1158) (-358)) 24)) (-4137 (((-1158)) 26)) (-3657 (((-1045 (-1056))) 27))) +(((-361) (-10 -7 (-15 -3657 ((-1045 (-1056)))) (-15 -4012 ((-1045 (-1056)))) (-15 -4137 ((-1158))) (-15 -4124 ((-1158) (-358))) (-15 -4124 ((-1158) (-1056))) (-15 -1866 ((-1056))))) (T -361)) +((-1866 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-361)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-361)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-361)))) (-4137 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-361)))) (-4012 (*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361)))) (-3657 (*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361))))) +(-10 -7 (-15 -3657 ((-1045 (-1056)))) (-15 -4012 ((-1045 (-1056)))) (-15 -4137 ((-1158))) (-15 -4124 ((-1158) (-358))) (-15 -4124 ((-1158) (-1056))) (-15 -1866 ((-1056)))) +((-3972 (((-703) (-306 |#1| |#2| |#3| |#4|)) 16))) +(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|)))) (-13 (-338) (-333)) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -362)) +((-3972 (*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7))))) +(-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|)))) +((-2256 (((-364) |#1|) 11))) +(((-363 |#1|) (-10 -7 (-15 -2256 ((-364) |#1|))) (-1003)) (T -363)) +((-2256 (*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1003))))) +(-10 -7 (-15 -2256 ((-364) |#1|))) +((-2750 (((-107) $ $) NIL)) (-1594 (((-583 (-1056)) $ (-583 (-1056))) 37)) (-2404 (((-583 (-1056)) $ (-583 (-1056))) 38)) (-3385 (((-583 (-1056)) $ (-583 (-1056))) 39)) (-3157 (((-583 (-1056)) $) 34)) (-3462 (($) 23)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1415 (((-583 (-1056)) $) 35)) (-2054 (((-583 (-1056)) $) 36)) (-1242 (((-1158) $ (-517)) 32) (((-1158) $) 33)) (-3645 (($ (-787) (-517)) 29)) (-2256 (((-787) $) 41) (($ (-787)) 25)) (-1547 (((-107) $ $) NIL))) +(((-364) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -1415 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -2404 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056))))))) (T -364)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) (-3645 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) (-1242 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-364)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-364)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-3462 (*1 *1) (-5 *1 (-364))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-3385 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-2404 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-1594 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364))))) +(-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -1415 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -2404 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056)))))) +((-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8))) +(((-365) (-1184)) (T -365)) +((-4155 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1158))))) +(-13 (-1108) (-557 (-787)) (-10 -8 (-15 -4155 ((-1158) $)))) +(((-557 (-787)) . T) ((-1108) . T)) +((-1772 (((-3 $ "failed") (-286 (-349))) 21) (((-3 $ "failed") (-286 (-517))) 19) (((-3 $ "failed") (-874 (-349))) 17) (((-3 $ "failed") (-874 (-517))) 15) (((-3 $ "failed") (-377 (-874 (-349)))) 13) (((-3 $ "failed") (-377 (-874 (-517)))) 11)) (-3189 (($ (-286 (-349))) 22) (($ (-286 (-517))) 20) (($ (-874 (-349))) 18) (($ (-874 (-517))) 16) (($ (-377 (-874 (-349)))) 14) (($ (-377 (-874 (-517)))) 12)) (-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 23))) +(((-366) (-1184)) (T -366)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366))))) +(-13 (-365) (-10 -8 (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -3189 ($ (-286 (-349)))) (-15 -1772 ((-3 $ "failed") (-286 (-349)))) (-15 -3189 ($ (-286 (-517)))) (-15 -1772 ((-3 $ "failed") (-286 (-517)))) (-15 -3189 ($ (-874 (-349)))) (-15 -1772 ((-3 $ "failed") (-874 (-349)))) (-15 -3189 ($ (-874 (-517)))) (-15 -1772 ((-3 $ "failed") (-874 (-517)))) (-15 -3189 ($ (-377 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3189 ($ (-377 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-517))))))) +(((-557 (-787)) . T) ((-365) . T) ((-1108) . T)) +((-2736 (((-583 (-1056)) (-583 (-1056))) 8)) (-4155 (((-1158) (-358)) 27)) (-4048 (((-1007) (-1073) (-583 (-1073)) (-1076) (-583 (-1073))) 59) (((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)) (-1073)) 35) (((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073))) 34))) +(((-367) (-10 -7 (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)))) (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)) (-1073))) (-15 -4048 ((-1007) (-1073) (-583 (-1073)) (-1076) (-583 (-1073)))) (-15 -4155 ((-1158) (-358))) (-15 -2736 ((-583 (-1056)) (-583 (-1056)))))) (T -367)) +((-2736 (*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-367)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-367)))) (-4048 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *5 (-1076)) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) (-4048 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) (-4048 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367))))) +(-10 -7 (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)))) (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)) (-1073))) (-15 -4048 ((-1007) (-1073) (-583 (-1073)) (-1076) (-583 (-1073)))) (-15 -4155 ((-1158) (-358))) (-15 -2736 ((-583 (-1056)) (-583 (-1056))))) +((-4155 (((-1158) $) 37)) (-2256 (((-787) $) 89) (($ (-300)) 92) (($ (-583 (-300))) 91) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 88) (($ (-286 (-634))) 52) (($ (-286 (-632))) 66) (($ (-286 (-627))) 78) (($ (-265 (-286 (-634)))) 62) (($ (-265 (-286 (-632)))) 74) (($ (-265 (-286 (-627)))) 86) (($ (-286 (-517))) 96) (($ (-286 (-349))) 108) (($ (-286 (-153 (-349)))) 120) (($ (-265 (-286 (-517)))) 104) (($ (-265 (-286 (-349)))) 116) (($ (-265 (-286 (-153 (-349))))) 128))) +(((-368 |#1| |#2| |#3| |#4|) (-13 (-365) (-10 -8 (-15 -2256 ($ (-300))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -2256 ($ (-286 (-634)))) (-15 -2256 ($ (-286 (-632)))) (-15 -2256 ($ (-286 (-627)))) (-15 -2256 ($ (-265 (-286 (-634))))) (-15 -2256 ($ (-265 (-286 (-632))))) (-15 -2256 ($ (-265 (-286 (-627))))) (-15 -2256 ($ (-286 (-517)))) (-15 -2256 ($ (-286 (-349)))) (-15 -2256 ($ (-286 (-153 (-349))))) (-15 -2256 ($ (-265 (-286 (-517))))) (-15 -2256 ($ (-265 (-286 (-349))))) (-15 -2256 ($ (-265 (-286 (-153 (-349)))))))) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-1077)) (T -368)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077))))) +(-13 (-365) (-10 -8 (-15 -2256 ($ (-300))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -2256 ($ (-286 (-634)))) (-15 -2256 ($ (-286 (-632)))) (-15 -2256 ($ (-286 (-627)))) (-15 -2256 ($ (-265 (-286 (-634))))) (-15 -2256 ($ (-265 (-286 (-632))))) (-15 -2256 ($ (-265 (-286 (-627))))) (-15 -2256 ($ (-286 (-517)))) (-15 -2256 ($ (-286 (-349)))) (-15 -2256 ($ (-286 (-153 (-349))))) (-15 -2256 ($ (-265 (-286 (-517))))) (-15 -2256 ($ (-265 (-286 (-349))))) (-15 -2256 ($ (-265 (-286 (-153 (-349)))))))) +((-2750 (((-107) $ $) NIL)) (-1388 ((|#2| $) 36)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2149 (($ (-377 |#2|)) 84)) (-2544 (((-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))) $) 37)) (-3127 (($ $) 32) (($ $ (-703)) 34)) (-3645 (((-377 |#2|) $) 46)) (-2276 (($ (-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|)))) 31)) (-2256 (((-787) $) 120)) (-2731 (($ $) 33) (($ $ (-703)) 35)) (-1547 (((-107) $ $) NIL)) (-1642 (($ |#2| $) 39))) +(((-369 |#1| |#2|) (-13 (-1003) (-558 (-377 |#2|)) (-10 -8 (-15 -1642 ($ |#2| $)) (-15 -2149 ($ (-377 |#2|))) (-15 -1388 (|#2| $)) (-15 -2544 ((-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))))) (-15 -3127 ($ $)) (-15 -2731 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2731 ($ $ (-703))))) (-13 (-333) (-134)) (-1130 |#1|)) (T -369)) +((-1642 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1130 *3)))) (-2149 (*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-1388 (*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))) (-2544 (*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-3127 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) (-2731 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3))))) +(-13 (-1003) (-558 (-377 |#2|)) (-10 -8 (-15 -1642 ($ |#2| $)) (-15 -2149 ($ (-377 |#2|))) (-15 -1388 (|#2| $)) (-15 -2544 ((-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))))) (-15 -3127 ($ $)) (-15 -2731 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2731 ($ $ (-703))))) +((-2750 (((-107) $ $) 9 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 15 (|has| |#1| (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 14 (|has| |#1| (-808 (-517))))) (-3985 (((-1056) $) 13 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-3206 (((-1021) $) 12 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-2256 (((-787) $) 11 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-1547 (((-107) $ $) 10 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349))))))) +(((-370 |#1|) (-1184) (-1108)) (T -370)) +NIL +(-13 (-1108) (-10 -7 (IF (|has| |t#1| (-808 (-517))) (-6 (-808 (-517))) |noBranch|) (IF (|has| |t#1| (-808 (-349))) (-6 (-808 (-349))) |noBranch|))) +(((-97) -3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-557 (-787)) -3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-1003) -3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-1108) . T)) +((-2378 (($ $) 10) (($ $ (-703)) 11))) +(((-371 |#1|) (-10 -8 (-15 -2378 (|#1| |#1| (-703))) (-15 -2378 (|#1| |#1|))) (-372)) (T -371)) +NIL +(-10 -8 (-15 -2378 (|#1| |#1| (-703))) (-15 -2378 (|#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-2378 (($ $) 79) (($ $ (-703)) 78)) (-3849 (((-107) $) 71)) (-3972 (((-765 (-843)) $) 81)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-3 (-703) "failed") $ $) 80)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1328 (((-3 $ "failed") $) 82)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) +(((-372) (-1184)) (T -372)) +((-3972 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-843))))) (-1620 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))) (-2378 (*1 *1 *1) (-4 *1 (-372))) (-2378 (*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703))))) +(-13 (-333) (-132) (-10 -8 (-15 -3972 ((-765 (-843)) $)) (-15 -1620 ((-3 (-703) "failed") $ $)) (-15 -2378 ($ $)) (-15 -2378 ($ $ (-703))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T)) +((-4005 (($ (-517) (-517)) 11) (($ (-517) (-517) (-843)) NIL)) (-2930 (((-843)) 16) (((-843) (-843)) NIL))) +(((-373 |#1|) (-10 -8 (-15 -2930 ((-843) (-843))) (-15 -2930 ((-843))) (-15 -4005 (|#1| (-517) (-517) (-843))) (-15 -4005 (|#1| (-517) (-517)))) (-374)) (T -373)) +((-2930 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374))))) +(-10 -8 (-15 -2930 ((-843) (-843))) (-15 -2930 ((-843))) (-15 -4005 (|#1| (-517) (-517) (-843))) (-15 -4005 (|#1| (-517) (-517)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 (((-517) $) 89)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1974 (($ $) 87)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 97)) (-1707 (((-107) $ $) 59)) (-3709 (((-517) $) 114)) (-3092 (($) 17 T CONST)) (-2531 (($ $) 86)) (-1772 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3189 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3554 (((-843)) 130) (((-843) (-843)) 127 (|has| $ (-6 -4171)))) (-3556 (((-107) $) 112)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 93)) (-3972 (((-517) $) 136)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 96)) (-1506 (($ $) 92)) (-2475 (((-107) $) 113)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2967 (($ $ $) 111) (($) 124 (-12 (-2630 (|has| $ (-6 -4171))) (-2630 (|has| $ (-6 -4163)))))) (-3099 (($ $ $) 110) (($) 123 (-12 (-2630 (|has| $ (-6 -4171))) (-2630 (|has| $ (-6 -4163)))))) (-3371 (((-517) $) 133)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2138 (((-843) (-517)) 126 (|has| $ (-6 -4171)))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1927 (($ $) 88)) (-2597 (($ $) 90)) (-4005 (($ (-517) (-517)) 138) (($ (-517) (-517) (-843)) 137)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2077 (((-517) $) 134)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2930 (((-843)) 131) (((-843) (-843)) 128 (|has| $ (-6 -4171)))) (-2646 (((-843) (-517)) 125 (|has| $ (-6 -4171)))) (-3645 (((-349) $) 105) (((-199) $) 104) (((-814 (-349)) $) 94)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-2961 (((-703)) 29)) (-1949 (($ $) 91)) (-1398 (((-843)) 132) (((-843) (-843)) 129 (|has| $ (-6 -4171)))) (-2372 (((-843)) 135)) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 115)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 108)) (-1583 (((-107) $ $) 107)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 109)) (-1572 (((-107) $ $) 106)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) +(((-374) (-1184)) (T -374)) +((-4005 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) (-4005 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-4 *1 (-374)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-2372 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-1398 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-2930 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-3554 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) (-3554 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843)))) (-2967 (*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163))))) (-3099 (*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163)))))) +(-13 (-970) (-10 -8 (-6 -3383) (-15 -4005 ($ (-517) (-517))) (-15 -4005 ($ (-517) (-517) (-843))) (-15 -3972 ((-517) $)) (-15 -2372 ((-843))) (-15 -2077 ((-517) $)) (-15 -3371 ((-517) $)) (-15 -1398 ((-843))) (-15 -2930 ((-843))) (-15 -3554 ((-843))) (IF (|has| $ (-6 -4171)) (PROGN (-15 -1398 ((-843) (-843))) (-15 -2930 ((-843) (-843))) (-15 -3554 ((-843) (-843))) (-15 -2138 ((-843) (-517))) (-15 -2646 ((-843) (-517)))) |noBranch|) (IF (|has| $ (-6 -4163)) |noBranch| (IF (|has| $ (-6 -4171)) |noBranch| (PROGN (-15 -2967 ($)) (-15 -3099 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-814 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-808 (-349)) . T) ((-842) . T) ((-918) . T) ((-937) . T) ((-970) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T)) +((-1893 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 20))) +(((-375 |#1| |#2|) (-10 -7 (-15 -1893 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-509) (-509)) (T -375)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6))))) +(-10 -7 (-15 -1893 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) +((-1893 (((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)) 13))) +(((-376 |#1| |#2|) (-10 -7 (-15 -1893 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)))) (-509) (-509)) (T -376)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6))))) +(-10 -7 (-15 -1893 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 13)) (-2668 ((|#1| $) 21 (|has| |#1| (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| |#1| (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 17) (((-3 (-1073) "failed") $) NIL (|has| |#1| (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) 70 (|has| |#1| (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517))))) (-3189 ((|#1| $) 15) (((-1073) $) NIL (|has| |#1| (-952 (-1073)))) (((-377 (-517)) $) 67 (|has| |#1| (-952 (-517)))) (((-517) $) NIL (|has| |#1| (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 50)) (-3209 (($) NIL (|has| |#1| (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| |#1| (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#1| (-808 (-349))))) (-3848 (((-107) $) 64)) (-1405 (($ $) NIL)) (-1787 ((|#1| $) 71)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-2475 (((-107) $) NIL (|has| |#1| (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 97)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| |#1| (-278)))) (-2597 ((|#1| $) 28 (|has| |#1| (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 133 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 129 (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) NIL)) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2971 (($ $) NIL)) (-1800 ((|#1| $) 73)) (-3645 (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (((-493) $) NIL (|has| |#1| (-558 (-493)))) (((-349) $) NIL (|has| |#1| (-937))) (((-199) $) NIL (|has| |#1| (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 113 (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 10) (($ (-1073)) NIL (|has| |#1| (-952 (-1073))))) (-1328 (((-3 $ "failed") $) 99 (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 100)) (-1949 ((|#1| $) 26 (|has| |#1| (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| |#1| (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 22 T CONST)) (-2409 (($) 8 T CONST)) (-2482 (((-1056) $) 43 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1056) $ (-107)) 44 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1158) (-754) $) 45 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1158) (-754) $ (-107)) 46 (-12 (|has| |#1| (-502)) (|has| |#1| (-760))))) (-2731 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 56)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 24 (|has| |#1| (-779)))) (-1667 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1654 (($ $) 25) (($ $ $) 55)) (-1642 (($ $ $) 53)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 123)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 60) (($ $ $) 57) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-377 |#1|) (-13 (-909 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4167)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4178)) (-6 -4167) |noBranch|) |noBranch|) |noBranch|))) (-509)) (T -377)) +NIL +(-13 (-909 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4167)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4178)) (-6 -4167) |noBranch|) |noBranch|) |noBranch|))) +((-3055 (((-623 |#2|) (-1153 $)) NIL) (((-623 |#2|)) 18)) (-1967 (($ (-1153 |#2|) (-1153 $)) NIL) (($ (-1153 |#2|)) 26)) (-2410 (((-623 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) $) 22)) (-3777 ((|#3| $) 59)) (-3010 ((|#2| (-1153 $)) NIL) ((|#2|) 20)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $)) 24)) (-3645 (((-1153 |#2|) $) 11) (($ (-1153 |#2|)) 13)) (-3669 ((|#3| $) 51))) +(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -2410 ((-623 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3055 ((-623 |#2|))) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 (|#3| |#1|)) (-15 -3669 (|#3| |#1|)) (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|)))) (-379 |#2| |#3|) (-156) (-1130 |#2|)) (T -378)) +((-3055 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) (-3010 (*1 *2) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4))))) +(-10 -8 (-15 -2410 ((-623 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3055 ((-623 |#2|))) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 (|#3| |#1|)) (-15 -3669 (|#3| |#1|)) (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3055 (((-623 |#1|) (-1153 $)) 46) (((-623 |#1|)) 61)) (-1472 ((|#1| $) 52)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48) (($ (-1153 |#1|)) 64)) (-2410 (((-623 |#1|) $ (-1153 $)) 53) (((-623 |#1|) $) 59)) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-843)) 54)) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 51)) (-3777 ((|#2| $) 44 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3010 ((|#1| (-1153 $)) 47) ((|#1|) 60)) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49) (((-1153 |#1|) $) 66) (((-623 |#1|) (-1153 $)) 65)) (-3645 (((-1153 |#1|) $) 63) (($ (-1153 |#1|)) 62)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1328 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3669 ((|#2| $) 45)) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 67)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-379 |#1| |#2|) (-1184) (-156) (-1130 |t#1|)) (T -379)) +((-1753 (*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *1)) (-4 *1 (-379 *3 *4)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) (-3055 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3)))) (-3010 (*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3))))) +(-13 (-340 |t#1| |t#2|) (-10 -8 (-15 -1753 ((-1153 $))) (-15 -4114 ((-1153 |t#1|) $)) (-15 -4114 ((-623 |t#1|) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|))) (-15 -3645 ((-1153 |t#1|) $)) (-15 -3645 ($ (-1153 |t#1|))) (-15 -3055 ((-623 |t#1|))) (-15 -3010 (|t#1|)) (-15 -2410 ((-623 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-340 |#1| |#2|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) 27) (((-3 (-517) "failed") $) 19)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) 24) (((-517) $) 14)) (-2256 (($ |#2|) NIL) (($ (-377 (-517))) 22) (($ (-517)) 11))) +(((-380 |#1| |#2|) (-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|))) (-381 |#2|) (-1108)) (T -380)) +NIL +(-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|))) +((-1772 (((-3 |#1| "failed") $) 7) (((-3 (-377 (-517)) "failed") $) 16 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 13 (|has| |#1| (-952 (-517))))) (-3189 ((|#1| $) 8) (((-377 (-517)) $) 15 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 12 (|has| |#1| (-952 (-517))))) (-2256 (($ |#1|) 6) (($ (-377 (-517))) 17 (|has| |#1| (-952 (-377 (-517))))) (($ (-517)) 14 (|has| |#1| (-952 (-517)))))) +(((-381 |#1|) (-1184) (-1108)) (T -381)) +NIL +(-13 (-952 |t#1|) (-10 -7 (IF (|has| |t#1| (-952 (-517))) (-6 (-952 (-517))) |noBranch|) (IF (|has| |t#1| (-952 (-377 (-517)))) (-6 (-952 (-377 (-517)))) |noBranch|))) +(((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T)) +((-1893 (((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)) 33))) +(((-382 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)))) (-278) (-909 |#1|) (-1130 |#2|) (-13 (-379 |#2| |#3|) (-952 |#2|)) (-278) (-909 |#5|) (-1130 |#6|) (-13 (-379 |#6| |#7|) (-952 |#6|))) (T -382)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *7 (-1130 *6)) (-4 *8 (-13 (-379 *6 *7) (-952 *6))) (-4 *9 (-278)) (-4 *10 (-909 *9)) (-4 *11 (-1130 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-952 *10)))))) +(-10 -7 (-15 -1893 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)))) +((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-1803 ((|#4| (-703) (-1153 |#4|)) 55)) (-3848 (((-107) $) NIL)) (-1787 (((-1153 |#4|) $) 17)) (-1506 ((|#2| $) 53)) (-3349 (($ $) 136)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 98)) (-4014 (($ (-1153 |#4|)) 97)) (-3206 (((-1021) $) NIL)) (-1800 ((|#1| $) 18)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 131)) (-1753 (((-1153 |#4|) $) 126)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 11 T CONST)) (-1547 (((-107) $ $) 39)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 119)) (* (($ $ $) 118))) +(((-383 |#1| |#2| |#3| |#4|) (-13 (-442) (-10 -8 (-15 -4014 ($ (-1153 |#4|))) (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -1787 ((-1153 |#4|) $)) (-15 -1800 (|#1| $)) (-15 -3349 ($ $)) (-15 -1803 (|#4| (-703) (-1153 |#4|))))) (-278) (-909 |#1|) (-1130 |#2|) (-13 (-379 |#2| |#3|) (-952 |#2|))) (T -383)) +((-4014 (*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) (-1753 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) (-1506 (*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-952 *2))))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) (-1800 (*1 *2 *1) (-12 (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) (-3349 (*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) (-1803 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1153 *2)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *2 (-13 (-379 *6 *7) (-952 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1130 *6))))) +(-13 (-442) (-10 -8 (-15 -4014 ($ (-1153 |#4|))) (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -1787 ((-1153 |#4|) $)) (-15 -1800 (|#1| $)) (-15 -3349 ($ $)) (-15 -1803 (|#4| (-703) (-1153 |#4|))))) +((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-1506 ((|#2| $) 60)) (-3855 (($ (-1153 |#4|)) 25) (($ (-383 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-952 |#2|)))) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 34)) (-1753 (((-1153 |#4|) $) 26)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2409 (($) 23 T CONST)) (-1547 (((-107) $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ $ $) 72))) +(((-384 |#1| |#2| |#3| |#4| |#5|) (-13 (-659) (-10 -8 (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -3855 ($ (-1153 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -3855 ($ (-383 |#1| |#2| |#3| |#4|))) |noBranch|))) (-278) (-909 |#1|) (-1130 |#2|) (-379 |#2| |#3|) (-1153 |#4|)) (T -384)) +((-1753 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) (-1506 (*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1153 *5)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7))))) +(-13 (-659) (-10 -8 (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -3855 ($ (-1153 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -3855 ($ (-383 |#1| |#2| |#3| |#4|))) |noBranch|))) +((-1893 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) (-387 |#2|) (-156) (-387 |#4|) (-156)) (T -385)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5))))) +(-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) +((-3295 (((-3 $ "failed")) 85)) (-3533 (((-1153 (-623 |#2|)) (-1153 $)) NIL) (((-1153 (-623 |#2|))) 90)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 84)) (-1450 (((-3 $ "failed")) 83)) (-2619 (((-623 |#2|) (-1153 $)) NIL) (((-623 |#2|)) 101)) (-3343 (((-623 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) $) 109)) (-2436 (((-1069 (-874 |#2|))) 54)) (-4069 ((|#2| (-1153 $)) NIL) ((|#2|) 105)) (-1967 (($ (-1153 |#2|) (-1153 $)) NIL) (($ (-1153 |#2|)) 112)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 82)) (-1793 (((-3 $ "failed")) 74)) (-2010 (((-623 |#2|) (-1153 $)) NIL) (((-623 |#2|)) 99)) (-3914 (((-623 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) $) 107)) (-2300 (((-1069 (-874 |#2|))) 53)) (-1988 ((|#2| (-1153 $)) NIL) ((|#2|) 103)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $)) 111)) (-3645 (((-1153 |#2|) $) 95) (($ (-1153 |#2|)) 97)) (-2278 (((-583 (-874 |#2|)) (-1153 $)) NIL) (((-583 (-874 |#2|))) 93)) (-1587 (($ (-623 |#2|) $) 89))) +(((-386 |#1| |#2|) (-10 -8 (-15 -1587 (|#1| (-623 |#2|) |#1|)) (-15 -2436 ((-1069 (-874 |#2|)))) (-15 -2300 ((-1069 (-874 |#2|)))) (-15 -3343 ((-623 |#2|) |#1|)) (-15 -3914 ((-623 |#2|) |#1|)) (-15 -2619 ((-623 |#2|))) (-15 -2010 ((-623 |#2|))) (-15 -4069 (|#2|)) (-15 -1988 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -2278 ((-583 (-874 |#2|)))) (-15 -3533 ((-1153 (-623 |#2|)))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3295 ((-3 |#1| "failed"))) (-15 -1450 ((-3 |#1| "failed"))) (-15 -1793 ((-3 |#1| "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -3550 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|))) (-15 -2278 ((-583 (-874 |#2|)) (-1153 |#1|)))) (-387 |#2|) (-156)) (T -386)) +((-3533 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2278 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1988 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-4069 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-2010 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2619 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2300 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2436 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4))))) +(-10 -8 (-15 -1587 (|#1| (-623 |#2|) |#1|)) (-15 -2436 ((-1069 (-874 |#2|)))) (-15 -2300 ((-1069 (-874 |#2|)))) (-15 -3343 ((-623 |#2|) |#1|)) (-15 -3914 ((-623 |#2|) |#1|)) (-15 -2619 ((-623 |#2|))) (-15 -2010 ((-623 |#2|))) (-15 -4069 (|#2|)) (-15 -1988 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -2278 ((-583 (-874 |#2|)))) (-15 -3533 ((-1153 (-623 |#2|)))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3295 ((-3 |#1| "failed"))) (-15 -1450 ((-3 |#1| "failed"))) (-15 -1793 ((-3 |#1| "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -3550 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|))) (-15 -2278 ((-583 (-874 |#2|)) (-1153 |#1|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3295 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3533 (((-1153 (-623 |#1|)) (-1153 $)) 78) (((-1153 (-623 |#1|))) 100)) (-3456 (((-1153 $)) 81)) (-3092 (($) 17 T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1450 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2619 (((-623 |#1|) (-1153 $)) 65) (((-623 |#1|)) 92)) (-2299 ((|#1| $) 74)) (-3343 (((-623 |#1|) $ (-1153 $)) 76) (((-623 |#1|) $) 90)) (-2158 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-2436 (((-1069 (-874 |#1|))) 88 (|has| |#1| (-333)))) (-3380 (($ $ (-843)) 28)) (-3866 ((|#1| $) 72)) (-2417 (((-1069 |#1|) $) 42 (|has| |#1| (-509)))) (-4069 ((|#1| (-1153 $)) 67) ((|#1|) 94)) (-2085 (((-1069 |#1|) $) 63)) (-2362 (((-107)) 57)) (-1967 (($ (-1153 |#1|) (-1153 $)) 69) (($ (-1153 |#1|)) 98)) (-3621 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-2261 (((-843)) 80)) (-3962 (((-107)) 54)) (-3730 (($ $ (-843)) 33)) (-2754 (((-107)) 50)) (-3983 (((-107)) 48)) (-3414 (((-107)) 52)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-1793 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-2010 (((-623 |#1|) (-1153 $)) 66) (((-623 |#1|)) 93)) (-1188 ((|#1| $) 75)) (-3914 (((-623 |#1|) $ (-1153 $)) 77) (((-623 |#1|) $) 91)) (-1680 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-2300 (((-1069 (-874 |#1|))) 89 (|has| |#1| (-333)))) (-2572 (($ $ (-843)) 29)) (-3913 ((|#1| $) 73)) (-4121 (((-1069 |#1|) $) 43 (|has| |#1| (-509)))) (-1988 ((|#1| (-1153 $)) 68) ((|#1|) 95)) (-2190 (((-1069 |#1|) $) 64)) (-3606 (((-107)) 58)) (-3985 (((-1056) $) 9)) (-4045 (((-107)) 49)) (-1286 (((-107)) 51)) (-1848 (((-107)) 53)) (-3206 (((-1021) $) 10)) (-1697 (((-107)) 56)) (-1449 ((|#1| $ (-517)) 101)) (-4114 (((-1153 |#1|) $ (-1153 $)) 71) (((-623 |#1|) (-1153 $) (-1153 $)) 70) (((-1153 |#1|) $) 103) (((-623 |#1|) (-1153 $)) 102)) (-3645 (((-1153 |#1|) $) 97) (($ (-1153 |#1|)) 96)) (-2278 (((-583 (-874 |#1|)) (-1153 $)) 79) (((-583 (-874 |#1|))) 99)) (-3394 (($ $ $) 25)) (-1561 (((-107)) 62)) (-2256 (((-787) $) 11)) (-1753 (((-1153 $)) 104)) (-1582 (((-583 (-1153 |#1|))) 44 (|has| |#1| (-509)))) (-3917 (($ $ $ $) 26)) (-1316 (((-107)) 60)) (-1587 (($ (-623 |#1|) $) 87)) (-1956 (($ $ $) 24)) (-2687 (((-107)) 61)) (-2524 (((-107)) 59)) (-3642 (((-107)) 55)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-387 |#1|) (-1184) (-156)) (T -387)) +((-1753 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-387 *3)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-3533 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 (-623 *3))))) (-2278 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-874 *3))))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-1988 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-4069 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-2010 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2619 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2300 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) (-2436 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) (-1587 (*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156))))) +(-13 (-337 |t#1|) (-10 -8 (-15 -1753 ((-1153 $))) (-15 -4114 ((-1153 |t#1|) $)) (-15 -4114 ((-623 |t#1|) (-1153 $))) (-15 -1449 (|t#1| $ (-517))) (-15 -3533 ((-1153 (-623 |t#1|)))) (-15 -2278 ((-583 (-874 |t#1|)))) (-15 -1967 ($ (-1153 |t#1|))) (-15 -3645 ((-1153 |t#1|) $)) (-15 -3645 ($ (-1153 |t#1|))) (-15 -1988 (|t#1|)) (-15 -4069 (|t#1|)) (-15 -2010 ((-623 |t#1|))) (-15 -2619 ((-623 |t#1|))) (-15 -3914 ((-623 |t#1|) $)) (-15 -3343 ((-623 |t#1|) $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -2300 ((-1069 (-874 |t#1|)))) (-15 -2436 ((-1069 (-874 |t#1|))))) |noBranch|) (-15 -1587 ($ (-623 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-337 |#1|) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 40)) (-2719 (($ $) 55)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 143)) (-1213 (($ $) NIL)) (-2454 (((-107) $) 34)) (-3295 ((|#1| $) 12)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-1112)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-1112)))) (-2693 (($ |#1| (-517)) 30)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 113)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 53)) (-3621 (((-3 $ "failed") $) 128)) (-1256 (((-3 (-377 (-517)) "failed") $) 61 (|has| |#1| (-502)))) (-1355 (((-107) $) 57 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 68 (|has| |#1| (-502)))) (-2897 (($ |#1| (-517)) 32)) (-3849 (((-107) $) 149 (|has| |#1| (-1112)))) (-3848 (((-107) $) 41)) (-2383 (((-703) $) 36)) (-2196 (((-3 "nil" "sqfr" "irred" "prime") $ (-517)) 134)) (-3466 ((|#1| $ (-517)) 133)) (-1238 (((-517) $ (-517)) 132)) (-1645 (($ |#1| (-517)) 29)) (-1893 (($ (-1 |#1| |#1|) $) 140)) (-3204 (($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517))))) 56)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2955 (($ |#1| (-517)) 31)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 144 (|has| |#1| (-421)))) (-1456 (($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-2879 (((-583 (-2 (|:| -3755 |#1|) (|:| -2077 (-517)))) $) 52)) (-3176 (((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $) 11)) (-3755 (((-388 $) $) NIL (|has| |#1| (-1112)))) (-2476 (((-3 $ "failed") $ $) 135)) (-2077 (((-517) $) 129)) (-3502 ((|#1| $) 54)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 77 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 82 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) $) NIL (|has| |#1| (-478 (-1073) $))) (($ $ (-583 (-1073)) (-583 $)) 83 (|has| |#1| (-478 (-1073) $))) (($ $ (-583 (-265 $))) 79 (|has| |#1| (-280 $))) (($ $ (-265 $)) NIL (|has| |#1| (-280 $))) (($ $ $ $) NIL (|has| |#1| (-280 $))) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-280 $)))) (-1449 (($ $ |#1|) 69 (|has| |#1| (-258 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-258 $ $)))) (-3127 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3645 (((-493) $) 26 (|has| |#1| (-558 (-493)))) (((-349) $) 89 (|has| |#1| (-937))) (((-199) $) 92 (|has| |#1| (-937)))) (-2256 (((-787) $) 111) (($ (-517)) 44) (($ $) NIL) (($ |#1|) 43) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517)))))) (-2961 (((-703)) 46)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 38 T CONST)) (-2409 (($) 37 T CONST)) (-2731 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1547 (((-107) $ $) 93)) (-1654 (($ $) 125) (($ $ $) NIL)) (-1642 (($ $ $) 137)) (** (($ $ (-843)) NIL) (($ $ (-703)) 99)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 48) (($ $ $) 47) (($ |#1| $) 49) (($ $ |#1|) NIL))) +(((-388 |#1|) (-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -3502 (|#1| $)) (-15 -2077 ((-517) $)) (-15 -3204 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -3176 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1645 ($ |#1| (-517))) (-15 -2879 ((-583 (-2 (|:| -3755 |#1|) (|:| -2077 (-517)))) $)) (-15 -2955 ($ |#1| (-517))) (-15 -1238 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2196 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2383 ((-703) $)) (-15 -2897 ($ |#1| (-517))) (-15 -2693 ($ |#1| (-517))) (-15 -1456 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3295 (|#1| $)) (-15 -2719 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |noBranch|) (IF (|has| |#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |#1| (-1112)) (-6 (-1112)) |noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |noBranch|) (IF (|has| |#1| (-478 (-1073) $)) (-6 (-478 (-1073) $)) |noBranch|))) (-509)) (T -388)) +((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) (-3502 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3204 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1645 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -2077 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2955 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1238 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2897 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2693 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1456 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3295 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2719 (*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-1256 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509))))) +(-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -3502 (|#1| $)) (-15 -2077 ((-517) $)) (-15 -3204 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -3176 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1645 ($ |#1| (-517))) (-15 -2879 ((-583 (-2 (|:| -3755 |#1|) (|:| -2077 (-517)))) $)) (-15 -2955 ($ |#1| (-517))) (-15 -1238 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2196 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2383 ((-703) $)) (-15 -2897 ($ |#1| (-517))) (-15 -2693 ($ |#1| (-517))) (-15 -1456 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3295 (|#1| $)) (-15 -2719 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |noBranch|) (IF (|has| |#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |#1| (-1112)) (-6 (-1112)) |noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |noBranch|) (IF (|has| |#1| (-478 (-1073) $)) (-6 (-478 (-1073) $)) |noBranch|))) +((-3437 (((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|)) 20)) (-2203 (((-388 |#1|) (-388 |#1|) (-388 |#1|)) 15))) +(((-389 |#1|) (-10 -7 (-15 -3437 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2203 ((-388 |#1|) (-388 |#1|) (-388 |#1|)))) (-509)) (T -389)) +((-2203 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))) (-3437 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4))))) +(-10 -7 (-15 -3437 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2203 ((-388 |#1|) (-388 |#1|) (-388 |#1|)))) +((-3653 ((|#2| |#2|) 160)) (-1916 (((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107)) 55))) +(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107))) (-15 -3653 (|#2| |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|)) (-1073) |#2|) (T -390)) +((-3653 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1094) (-400 *3))) (-14 *4 (-1073)) (-14 *5 *2))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-14 *6 (-1073)) (-14 *7 *3)))) +(-10 -7 (-15 -1916 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107))) (-15 -3653 (|#2| |#2|))) +((-1893 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-961) (-779)) (-400 |#1|) (-13 (-961) (-779)) (-400 |#3|)) (T -391)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-961) (-779))) (-4 *6 (-13 (-961) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5))))) +(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|))) +((-3653 ((|#2| |#2|) 87)) (-1217 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056)) 46)) (-1791 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056)) 152))) +(((-392 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1217 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -1791 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -3653 (|#2| |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|) (-10 -8 (-15 -2256 ($ |#3|)))) (-777) (-13 (-1132 |#2| |#3|) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $)))) (-900 |#4|) (-1073)) (T -392)) +((-3653 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1094) (-400 *3) (-10 -8 (-15 -2256 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1132 *2 *4) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1073)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073)))) (-1217 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073))))) +(-10 -7 (-15 -1217 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -1791 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -3653 (|#2| |#2|))) +((-3905 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3225 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1893 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1003) (-395 |#1|) (-1003) (-395 |#3|)) (T -393)) +((-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5))))) +(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3416 (($) 44)) (-1413 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3245 (($ $ $) 39)) (-3009 (((-107) $ $) 28)) (-1611 (((-703)) 47)) (-1362 (($ (-583 |#2|)) 20) (($) NIL)) (-3209 (($) 53)) (-2967 ((|#2| $) 61)) (-3099 ((|#2| $) 59)) (-1549 (((-843) $) 55)) (-1812 (($ $ $) 35)) (-3448 (($ (-843)) 50)) (-3170 (($ $ |#2|) NIL) (($ $ $) 38)) (-3217 (((-703) (-1 (-107) |#2|) $) NIL) (((-703) |#2| $) 26)) (-2276 (($ (-583 |#2|)) 24)) (-1819 (($ $) 46)) (-2256 (((-787) $) 33)) (-2201 (((-703) $) 21)) (-3167 (($ (-583 |#2|)) 19) (($) NIL)) (-1547 (((-107) $ $) 16)) (-1572 (((-107) $ $) 13))) +(((-394 |#1| |#2|) (-10 -8 (-15 -1611 ((-703))) (-15 -3448 (|#1| (-843))) (-15 -1549 ((-843) |#1|)) (-15 -3209 (|#1|)) (-15 -2967 (|#2| |#1|)) (-15 -3099 (|#2| |#1|)) (-15 -3416 (|#1|)) (-15 -1819 (|#1| |#1|)) (-15 -2201 ((-703) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3167 (|#1|)) (-15 -3167 (|#1| (-583 |#2|))) (-15 -1362 (|#1|)) (-15 -1362 (|#1| (-583 |#2|))) (-15 -1812 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3009 ((-107) |#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#2| |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|))) (-395 |#2|) (-1003)) (T -394)) +((-1611 (*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4))))) +(-10 -8 (-15 -1611 ((-703))) (-15 -3448 (|#1| (-843))) (-15 -1549 ((-843) |#1|)) (-15 -3209 (|#1|)) (-15 -2967 (|#2| |#1|)) (-15 -3099 (|#2| |#1|)) (-15 -3416 (|#1|)) (-15 -1819 (|#1| |#1|)) (-15 -2201 ((-703) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3167 (|#1|)) (-15 -3167 (|#1| (-583 |#2|))) (-15 -1362 (|#1|)) (-15 -1362 (|#1| (-583 |#2|))) (-15 -1812 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3009 ((-107) |#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#2| |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|))) +((-2750 (((-107) $ $) 18)) (-3416 (($) 67 (|has| |#1| (-338)))) (-1413 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3245 (($ $ $) 78)) (-3009 (((-107) $ $) 79)) (-2953 (((-107) $ (-703)) 8)) (-1611 (((-703)) 61 (|has| |#1| (-338)))) (-1362 (($ (-583 |#1|)) 74) (($) 73)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-3209 (($) 64 (|has| |#1| (-338)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2967 ((|#1| $) 65 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3099 ((|#1| $) 66 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-1549 (((-843) $) 63 (|has| |#1| (-338)))) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22)) (-1812 (($ $ $) 75)) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3448 (($ (-843)) 62 (|has| |#1| (-338)))) (-3206 (((-1021) $) 21)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3170 (($ $ |#1|) 77) (($ $ $) 76)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-1819 (($ $) 68 (|has| |#1| (-338)))) (-2256 (((-787) $) 20)) (-2201 (((-703) $) 69)) (-3167 (($ (-583 |#1|)) 72) (($) 71)) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-1572 (((-107) $ $) 70)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-395 |#1|) (-1184) (-1003)) (T -395)) +((-2201 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1003)) (-5 *2 (-703)))) (-1819 (*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-338)))) (-3416 (*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1003)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-2967 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779))))) +(-13 (-203 |t#1|) (-1001 |t#1|) (-10 -8 (-6 -4180) (-15 -2201 ((-703) $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-338)) (-15 -1819 ($ $)) (-15 -3416 ($))) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -3099 (|t#1| $)) (-15 -2967 (|t#1| $))) |noBranch|))) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-203 |#1|) . T) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-338) |has| |#1| (-338)) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1001 |#1|) . T) ((-1003) . T) ((-1108) . T)) +((-3889 (((-534 |#2|) |#2| (-1073)) 35)) (-3050 (((-534 |#2|) |#2| (-1073)) 19)) (-2701 ((|#2| |#2| (-1073)) 24))) +(((-396 |#1| |#2|) (-10 -7 (-15 -3050 ((-534 |#2|) |#2| (-1073))) (-15 -3889 ((-534 |#2|) |#2| (-1073))) (-15 -2701 (|#2| |#2| (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-29 |#1|))) (T -396)) +((-2701 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1094) (-29 *4))))) (-3889 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5)))))) +(-10 -7 (-15 -3050 ((-534 |#2|) |#2| (-1073))) (-15 -3889 ((-534 |#2|) |#2| (-1073))) (-15 -2701 (|#2| |#2| (-1073)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3117 (($ |#2| |#1|) 35)) (-2725 (($ |#2| |#1|) 33)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-301 |#2|)) 25)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 10 T CONST)) (-2409 (($) 16 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 34)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-397 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4167)) (IF (|has| |#1| (-6 -4167)) (-6 -4167) |noBranch|) |noBranch|) (-15 -2256 ($ |#1|)) (-15 -2256 ($ (-301 |#2|))) (-15 -3117 ($ |#2| |#1|)) (-15 -2725 ($ |#2| |#1|)))) (-13 (-156) (-37 (-377 (-517)))) (-13 (-779) (-21))) (T -397)) +((-2256 (*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) (-3117 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))) (-2725 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21)))))) +(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4167)) (IF (|has| |#1| (-6 -4167)) (-6 -4167) |noBranch|) |noBranch|) (-15 -2256 ($ |#1|)) (-15 -2256 ($ (-301 |#2|))) (-15 -3117 ($ |#2| |#1|)) (-15 -2725 ($ |#2| |#1|)))) +((-4151 (((-3 |#2| (-583 |#2|)) |#2| (-1073)) 104))) +(((-398 |#1| |#2|) (-10 -7 (-15 -4151 ((-3 |#2| (-583 |#2|)) |#2| (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-29 |#1|))) (T -398)) +((-4151 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1094) (-880) (-29 *5)))))) +(-10 -7 (-15 -4151 ((-3 |#2| (-583 |#2|)) |#2| (-1073)))) +((-1364 (((-583 (-1073)) $) 72)) (-2352 (((-377 (-1069 $)) $ (-556 $)) 268)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) 233)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 (-1073) "failed") $) 75) (((-3 (-517) "failed") $) NIL) (((-3 |#2| "failed") $) 229) (((-3 (-377 (-874 |#2|)) "failed") $) 319) (((-3 (-874 |#2|) "failed") $) 231) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-556 $) $) NIL) (((-1073) $) 30) (((-517) $) NIL) ((|#2| $) 227) (((-377 (-874 |#2|)) $) 300) (((-874 |#2|) $) 228) (((-377 (-517)) $) NIL)) (-3072 (((-109) (-109)) 47)) (-1405 (($ $) 87)) (-1783 (((-3 (-556 $) "failed") $) 224)) (-2343 (((-583 (-556 $)) $) 225)) (-3703 (((-3 (-583 $) "failed") $) 243)) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) 250)) (-3401 (((-3 (-583 $) "failed") $) 241)) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 259)) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) 247) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) 214) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) 216)) (-4127 (((-107) $) 19)) (-4141 ((|#2| $) 21)) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 232) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 96) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1073)) 57) (($ $ (-583 (-1073))) 236) (($ $) 237) (($ $ (-109) $ (-1073)) 60) (($ $ (-583 (-109)) (-583 $) (-1073)) 67) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) 107) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 238) (($ $ (-1073) (-703) (-1 $ (-583 $))) 94) (($ $ (-1073) (-703) (-1 $ $)) 93)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) 106)) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) 234)) (-2971 (($ $) 279)) (-3645 (((-814 (-517)) $) 253) (((-814 (-349)) $) 256) (($ (-388 $)) 315) (((-493) $) NIL)) (-2256 (((-787) $) 235) (($ (-556 $)) 84) (($ (-1073)) 26) (($ |#2|) NIL) (($ (-1026 |#2| (-556 $))) NIL) (($ (-377 |#2|)) 284) (($ (-874 (-377 |#2|))) 324) (($ (-377 (-874 (-377 |#2|)))) 296) (($ (-377 (-874 |#2|))) 290) (($ $) NIL) (($ (-874 |#2|)) 183) (($ (-377 (-517))) 329) (($ (-517)) NIL)) (-2961 (((-703)) 79)) (-4074 (((-107) (-109)) 41)) (-3760 (($ (-1073) $) 33) (($ (-1073) $ $) 34) (($ (-1073) $ $ $) 35) (($ (-1073) $ $ $ $) 36) (($ (-1073) (-583 $)) 39)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#2| $) 261) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL))) +(((-399 |#1| |#2|) (-10 -8 (-15 * (|#1| (-843) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2961 ((-703))) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-874 |#2|) |#1|)) (-15 -1772 ((-3 (-874 |#2|) "failed") |#1|)) (-15 -2256 (|#1| (-874 |#2|))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3189 ((-377 (-874 |#2|)) |#1|)) (-15 -1772 ((-3 (-377 (-874 |#2|)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-874 |#2|)))) (-15 -2352 ((-377 (-1069 |#1|)) |#1| (-556 |#1|))) (-15 -2256 (|#1| (-377 (-874 (-377 |#2|))))) (-15 -2256 (|#1| (-874 (-377 |#2|)))) (-15 -2256 (|#1| (-377 |#2|))) (-15 -2971 (|#1| |#1|)) (-15 -3645 (|#1| (-388 |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1735 ((-3 (-2 (|:| |val| |#1|) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-1073))) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-109))) (-15 -1405 (|#1| |#1|)) (-15 -2256 (|#1| (-1026 |#2| (-556 |#1|)))) (-15 -4133 ((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1073))) (-15 -2051 (|#1| |#1| (-109) |#1| (-1073))) (-15 -2051 (|#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 (-1073)))) (-15 -2051 (|#1| |#1| (-1073))) (-15 -3760 (|#1| (-1073) (-583 |#1|))) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1|)) (-15 -1364 ((-583 (-1073)) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -2343 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2256 (|#1| (-556 |#1|))) (-15 -2256 ((-787) |#1|))) (-400 |#2|) (-779)) (T -399)) +((-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) (-2961 (*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4))))) +(-10 -8 (-15 * (|#1| (-843) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2961 ((-703))) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-874 |#2|) |#1|)) (-15 -1772 ((-3 (-874 |#2|) "failed") |#1|)) (-15 -2256 (|#1| (-874 |#2|))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3189 ((-377 (-874 |#2|)) |#1|)) (-15 -1772 ((-3 (-377 (-874 |#2|)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-874 |#2|)))) (-15 -2352 ((-377 (-1069 |#1|)) |#1| (-556 |#1|))) (-15 -2256 (|#1| (-377 (-874 (-377 |#2|))))) (-15 -2256 (|#1| (-874 (-377 |#2|)))) (-15 -2256 (|#1| (-377 |#2|))) (-15 -2971 (|#1| |#1|)) (-15 -3645 (|#1| (-388 |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1735 ((-3 (-2 (|:| |val| |#1|) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-1073))) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-109))) (-15 -1405 (|#1| |#1|)) (-15 -2256 (|#1| (-1026 |#2| (-556 |#1|)))) (-15 -4133 ((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1073))) (-15 -2051 (|#1| |#1| (-109) |#1| (-1073))) (-15 -2051 (|#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 (-1073)))) (-15 -2051 (|#1| |#1| (-1073))) (-15 -3760 (|#1| (-1073) (-583 |#1|))) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1|)) (-15 -1364 ((-583 (-1073)) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -2343 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2256 (|#1| (-556 |#1|))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 116 (|has| |#1| (-25)))) (-1364 (((-583 (-1073)) $) 203)) (-2352 (((-377 (-1069 $)) $ (-556 $)) 171 (|has| |#1| (-509)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 143 (|has| |#1| (-509)))) (-1213 (($ $) 144 (|has| |#1| (-509)))) (-2454 (((-107) $) 146 (|has| |#1| (-509)))) (-3726 (((-583 (-556 $)) $) 44)) (-4038 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2302 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-2535 (($ $) 163 (|has| |#1| (-509)))) (-2759 (((-388 $) $) 164 (|has| |#1| (-509)))) (-1707 (((-107) $ $) 154 (|has| |#1| (-509)))) (-3092 (($) 102 (-3807 (|has| |#1| (-1015)) (|has| |#1| (-25))) CONST)) (-1772 (((-3 (-556 $) "failed") $) 69) (((-3 (-1073) "failed") $) 216) (((-3 (-517) "failed") $) 209 (|has| |#1| (-952 (-517)))) (((-3 |#1| "failed") $) 207) (((-3 (-377 (-874 |#1|)) "failed") $) 169 (|has| |#1| (-509))) (((-3 (-874 |#1|) "failed") $) 123 (|has| |#1| (-961))) (((-3 (-377 (-517)) "failed") $) 95 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 (((-556 $) $) 68) (((-1073) $) 215) (((-517) $) 210 (|has| |#1| (-952 (-517)))) ((|#1| $) 206) (((-377 (-874 |#1|)) $) 168 (|has| |#1| (-509))) (((-874 |#1|) $) 122 (|has| |#1| (-961))) (((-377 (-517)) $) 94 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-2518 (($ $ $) 158 (|has| |#1| (-509)))) (-3355 (((-623 (-517)) (-623 $)) 137 (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 136 (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 135 (|has| |#1| (-961))) (((-623 |#1|) (-623 $)) 134 (|has| |#1| (-961)))) (-3621 (((-3 $ "failed") $) 105 (|has| |#1| (-1015)))) (-2497 (($ $ $) 157 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 152 (|has| |#1| (-509)))) (-3849 (((-107) $) 165 (|has| |#1| (-509)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 212 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 211 (|has| |#1| (-808 (-349))))) (-3374 (($ $) 51) (($ (-583 $)) 50)) (-4001 (((-583 (-109)) $) 43)) (-3072 (((-109) (-109)) 42)) (-3848 (((-107) $) 103 (|has| |#1| (-1015)))) (-1769 (((-107) $) 22 (|has| $ (-952 (-517))))) (-1405 (($ $) 186 (|has| |#1| (-961)))) (-1787 (((-1026 |#1| (-556 $)) $) 187 (|has| |#1| (-961)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 161 (|has| |#1| (-509)))) (-1607 (((-1069 $) (-556 $)) 25 (|has| $ (-961)))) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-1893 (($ (-1 $ $) (-556 $)) 36)) (-1783 (((-3 (-556 $) "failed") $) 46)) (-1365 (($ (-583 $)) 150 (|has| |#1| (-509))) (($ $ $) 149 (|has| |#1| (-509)))) (-3985 (((-1056) $) 9)) (-2343 (((-583 (-556 $)) $) 45)) (-1851 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-3703 (((-3 (-583 $) "failed") $) 192 (|has| |#1| (-1015)))) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) 183 (|has| |#1| (-961)))) (-3401 (((-3 (-583 $) "failed") $) 190 (|has| |#1| (-25)))) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) 191 (|has| |#1| (-1015))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) 185 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) 184 (|has| |#1| (-961)))) (-1609 (((-107) $ (-109)) 40) (((-107) $ (-1073)) 39)) (-4118 (($ $) 107 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1881 (((-703) $) 47)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 205)) (-4141 ((|#1| $) 204)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 151 (|has| |#1| (-509)))) (-1401 (($ (-583 $)) 148 (|has| |#1| (-509))) (($ $ $) 147 (|has| |#1| (-509)))) (-3832 (((-107) $ $) 35) (((-107) $ (-1073)) 34)) (-3755 (((-388 $) $) 162 (|has| |#1| (-509)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 159 (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ $) 142 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 153 (|has| |#1| (-509)))) (-3998 (((-107) $) 23 (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1073) (-1 $ (-583 $))) 31) (($ $ (-1073) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26) (($ $ (-1073)) 197 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073))) 196 (|has| |#1| (-558 (-493)))) (($ $) 195 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1073)) 194 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1073)) 193 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) 182 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 181 (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ (-583 $))) 180 (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ $)) 179 (|has| |#1| (-961)))) (-3146 (((-703) $) 155 (|has| |#1| (-509)))) (-1449 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 156 (|has| |#1| (-509)))) (-1630 (($ $) 49) (($ $ $) 48)) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 128 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 127 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 126 (|has| |#1| (-961))) (($ $ (-1073)) 125 (|has| |#1| (-961)))) (-2971 (($ $) 176 (|has| |#1| (-509)))) (-1800 (((-1026 |#1| (-556 $)) $) 177 (|has| |#1| (-509)))) (-2135 (($ $) 24 (|has| $ (-961)))) (-3645 (((-814 (-517)) $) 214 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 213 (|has| |#1| (-558 (-814 (-349))))) (($ (-388 $)) 178 (|has| |#1| (-509))) (((-493) $) 97 (|has| |#1| (-558 (-493))))) (-1487 (($ $ $) 111 (|has| |#1| (-442)))) (-3394 (($ $ $) 112 (|has| |#1| (-442)))) (-2256 (((-787) $) 11) (($ (-556 $)) 70) (($ (-1073)) 217) (($ |#1|) 208) (($ (-1026 |#1| (-556 $))) 188 (|has| |#1| (-961))) (($ (-377 |#1|)) 174 (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) 173 (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) 172 (|has| |#1| (-509))) (($ (-377 (-874 |#1|))) 170 (|has| |#1| (-509))) (($ $) 141 (|has| |#1| (-509))) (($ (-874 |#1|)) 124 (|has| |#1| (-961))) (($ (-377 (-517))) 96 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517)))))) (($ (-517)) 93 (-3807 (|has| |#1| (-961)) (|has| |#1| (-952 (-517)))))) (-1328 (((-3 $ "failed") $) 138 (|has| |#1| (-132)))) (-2961 (((-703)) 133 (|has| |#1| (-961)))) (-4148 (($ $) 53) (($ (-583 $)) 52)) (-4074 (((-107) (-109)) 41)) (-3329 (((-107) $ $) 145 (|has| |#1| (-509)))) (-3760 (($ (-1073) $) 202) (($ (-1073) $ $) 201) (($ (-1073) $ $ $) 200) (($ (-1073) $ $ $ $) 199) (($ (-1073) (-583 $)) 198)) (-2207 (($ $ (-517)) 110 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 104 (|has| |#1| (-1015))) (($ $ (-843)) 100 (|has| |#1| (-1015)))) (-2396 (($) 115 (|has| |#1| (-25)) CONST)) (-2409 (($) 101 (|has| |#1| (-1015)) CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 132 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 131 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 130 (|has| |#1| (-961))) (($ $ (-1073)) 129 (|has| |#1| (-961)))) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1667 (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 175 (|has| |#1| (-509))) (($ $ $) 108 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1654 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1642 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-517)) 109 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 106 (|has| |#1| (-1015))) (($ $ (-843)) 99 (|has| |#1| (-1015)))) (* (($ (-377 (-517)) $) 167 (|has| |#1| (-509))) (($ $ (-377 (-517))) 166 (|has| |#1| (-509))) (($ |#1| $) 140 (|has| |#1| (-156))) (($ $ |#1|) 139 (|has| |#1| (-156))) (($ (-517) $) 121 (|has| |#1| (-21))) (($ (-703) $) 117 (|has| |#1| (-25))) (($ (-843) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1015))))) +(((-400 |#1|) (-1184) (-779)) (T -400)) +((-4127 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1073))))) (-3760 (*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-2051 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) (-2051 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1073)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1073)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) (-3703 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-3174 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-4133 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-961)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-1405 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-961)))) (-3174 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) (-3174 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) (-1735 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-1800 (*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-2971 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) (-1667 (*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2352 (*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1069 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1015))))) +(-13 (-273) (-952 (-1073)) (-806 |t#1|) (-370 |t#1|) (-381 |t#1|) (-10 -8 (-15 -4127 ((-107) $)) (-15 -4141 (|t#1| $)) (-15 -1364 ((-583 (-1073)) $)) (-15 -3760 ($ (-1073) $)) (-15 -3760 ($ (-1073) $ $)) (-15 -3760 ($ (-1073) $ $ $)) (-15 -3760 ($ (-1073) $ $ $ $)) (-15 -3760 ($ (-1073) (-583 $))) (IF (|has| |t#1| (-558 (-493))) (PROGN (-6 (-558 (-493))) (-15 -2051 ($ $ (-1073))) (-15 -2051 ($ $ (-583 (-1073)))) (-15 -2051 ($ $)) (-15 -2051 ($ $ (-109) $ (-1073))) (-15 -2051 ($ $ (-583 (-109)) (-583 $) (-1073)))) |noBranch|) (IF (|has| |t#1| (-1015)) (PROGN (-6 (-659)) (-15 ** ($ $ (-703))) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-442)) (-6 (-442)) |noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -4133 ((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-6 (-961)) (-6 (-952 (-874 |t#1|))) (-6 (-822 (-1073))) (-6 (-347 |t#1|)) (-15 -2256 ($ (-1026 |t#1| (-556 $)))) (-15 -1787 ((-1026 |t#1| (-556 $)) $)) (-15 -1405 ($ $)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109))) (-15 -3174 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073))) (-15 -1735 ((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $)) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $)))) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $))))) (-15 -2051 ($ $ (-1073) (-703) (-1 $ (-583 $)))) (-15 -2051 ($ $ (-1073) (-703) (-1 $ $)))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-333)) (-6 (-952 (-377 (-874 |t#1|)))) (-15 -3645 ($ (-388 $))) (-15 -1800 ((-1026 |t#1| (-556 $)) $)) (-15 -2971 ($ $)) (-15 -1667 ($ (-1026 |t#1| (-556 $)) (-1026 |t#1| (-556 $)))) (-15 -2256 ($ (-377 |t#1|))) (-15 -2256 ($ (-874 (-377 |t#1|)))) (-15 -2256 ($ (-377 (-874 (-377 |t#1|))))) (-15 -2352 ((-377 (-1069 $)) $ (-556 $))) (IF (|has| |t#1| (-952 (-517))) (-6 (-952 (-377 (-517)))) |noBranch|)) |noBranch|))) +(((-21) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-23) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 (-377 (-517))) |has| |#1| (-509)) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-509)) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) |has| |#1| (-509)) ((-123) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) |has| |#1| (-509)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-217) |has| |#1| (-509)) ((-262) |has| |#1| (-509)) ((-278) |has| |#1| (-509)) ((-280 $) . T) ((-273) . T) ((-333) |has| |#1| (-509)) ((-347 |#1|) |has| |#1| (-961)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) |has| |#1| (-509)) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-509)) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) ((-579 |#1|) |has| |#1| (-961)) ((-650 (-377 (-517))) |has| |#1| (-509)) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) -3807 (|has| |#1| (-1015)) (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-779) . T) ((-822 (-1073)) |has| |#1| (-961)) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-842) |has| |#1| (-509)) ((-952 (-377 (-517))) -3807 (|has| |#1| (-952 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) ((-952 (-377 (-874 |#1|))) |has| |#1| (-509)) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-556 $)) . T) ((-952 (-874 |#1|)) |has| |#1| (-961)) ((-952 (-1073)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-509)) ((-967 |#1|) |has| |#1| (-156)) ((-967 $) |has| |#1| (-509)) ((-961) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-968) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1015) -3807 (|has| |#1| (-1015)) (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1003) . T) ((-1108) . T) ((-1112) |has| |#1| (-509))) +((-1264 ((|#2| |#2| |#2|) 33)) (-3072 (((-109) (-109)) 44)) (-2359 ((|#2| |#2|) 66)) (-3597 ((|#2| |#2|) 69)) (-2150 ((|#2| |#2|) 32)) (-2570 ((|#2| |#2| |#2|) 35)) (-2480 ((|#2| |#2| |#2|) 37)) (-3233 ((|#2| |#2| |#2|) 34)) (-1324 ((|#2| |#2| |#2|) 36)) (-4074 (((-107) (-109)) 42)) (-3312 ((|#2| |#2|) 39)) (-1730 ((|#2| |#2|) 38)) (-3710 ((|#2| |#2|) 27)) (-1564 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2350 ((|#2| |#2| |#2|) 31))) +(((-401 |#1| |#2|) (-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3710 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1564 (|#2| |#2| |#2|)) (-15 -2350 (|#2| |#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -1264 (|#2| |#2| |#2|)) (-15 -3233 (|#2| |#2| |#2|)) (-15 -2570 (|#2| |#2| |#2|)) (-15 -1324 (|#2| |#2| |#2|)) (-15 -2480 (|#2| |#2| |#2|)) (-15 -1730 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -3597 (|#2| |#2|)) (-15 -2359 (|#2| |#2|))) (-13 (-779) (-509)) (-400 |#1|)) (T -401)) +((-2359 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3597 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3312 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1730 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2480 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1324 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2570 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3233 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1264 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2150 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2350 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1564 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4))))) +(-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3710 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1564 (|#2| |#2| |#2|)) (-15 -2350 (|#2| |#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -1264 (|#2| |#2| |#2|)) (-15 -3233 (|#2| |#2| |#2|)) (-15 -2570 (|#2| |#2| |#2|)) (-15 -1324 (|#2| |#2| |#2|)) (-15 -2480 (|#2| |#2| |#2|)) (-15 -1730 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -3597 (|#2| |#2|)) (-15 -2359 (|#2| |#2|))) +((-3442 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1069 |#2|)) (|:| |pol2| (-1069 |#2|)) (|:| |prim| (-1069 |#2|))) |#2| |#2|) 93 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1069 |#2|))) (|:| |prim| (-1069 |#2|))) (-583 |#2|)) 58))) +(((-402 |#1| |#2|) (-10 -7 (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1069 |#2|))) (|:| |prim| (-1069 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1069 |#2|)) (|:| |pol2| (-1069 |#2|)) (|:| |prim| (-1069 |#2|))) |#2| |#2|)) |noBranch|)) (-13 (-509) (-779) (-134)) (-400 |#1|)) (T -402)) +((-3442 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1069 *3)) (|:| |pol2| (-1069 *3)) (|:| |prim| (-1069 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-402 *4 *5))))) +(-10 -7 (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1069 |#2|))) (|:| |prim| (-1069 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1069 |#2|)) (|:| |pol2| (-1069 |#2|)) (|:| |prim| (-1069 |#2|))) |#2| |#2|)) |noBranch|)) +((-3376 (((-1158)) 18)) (-3613 (((-1069 (-377 (-517))) |#2| (-556 |#2|)) 40) (((-377 (-517)) |#2|) 23))) +(((-403 |#1| |#2|) (-10 -7 (-15 -3613 ((-377 (-517)) |#2|)) (-15 -3613 ((-1069 (-377 (-517))) |#2| (-556 |#2|))) (-15 -3376 ((-1158)))) (-13 (-779) (-509) (-952 (-517))) (-400 |#1|)) (T -403)) +((-3376 (*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1158)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-403 *5 *3)))) (-3613 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4))))) +(-10 -7 (-15 -3613 ((-377 (-517)) |#2|)) (-15 -3613 ((-1069 (-377 (-517))) |#2| (-556 |#2|))) (-15 -3376 ((-1158)))) +((-1908 (((-107) $) 28)) (-3737 (((-107) $) 30)) (-1973 (((-107) $) 31)) (-2251 (((-107) $) 34)) (-2427 (((-107) $) 29)) (-1340 (((-107) $) 33)) (-2256 (((-787) $) 18) (($ (-1056)) 27) (($ (-1073)) 23) (((-1073) $) 22) (((-1007) $) 21)) (-3902 (((-107) $) 32)) (-1547 (((-107) $ $) 15))) +(((-404) (-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1056))) (-15 -2256 ($ (-1073))) (-15 -2256 ((-1073) $)) (-15 -2256 ((-1007) $)) (-15 -1908 ((-107) $)) (-15 -2427 ((-107) $)) (-15 -1973 ((-107) $)) (-15 -1340 ((-107) $)) (-15 -2251 ((-107) $)) (-15 -3902 ((-107) $)) (-15 -3737 ((-107) $)) (-15 -1547 ((-107) $ $))))) (T -404)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-404)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-404)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1547 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) +(-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1056))) (-15 -2256 ($ (-1073))) (-15 -2256 ((-1073) $)) (-15 -2256 ((-1007) $)) (-15 -1908 ((-107) $)) (-15 -2427 ((-107) $)) (-15 -1973 ((-107) $)) (-15 -1340 ((-107) $)) (-15 -2251 ((-107) $)) (-15 -3902 ((-107) $)) (-15 -3737 ((-107) $)) (-15 -1547 ((-107) $ $)))) +((-3494 (((-3 (-388 (-1069 (-377 (-517)))) "failed") |#3|) 69)) (-3950 (((-388 |#3|) |#3|) 33)) (-2229 (((-3 (-388 (-1069 (-47))) "failed") |#3|) 44 (|has| |#2| (-952 (-47))))) (-2728 (((-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107))) |#3|) 35))) +(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -3950 ((-388 |#3|) |#3|)) (-15 -3494 ((-3 (-388 (-1069 (-377 (-517)))) "failed") |#3|)) (-15 -2728 ((-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107))) |#3|)) (IF (|has| |#2| (-952 (-47))) (-15 -2229 ((-3 (-388 (-1069 (-47))) "failed") |#3|)) |noBranch|)) (-13 (-509) (-779) (-952 (-517))) (-400 |#1|) (-1130 |#2|)) (T -405)) +((-2229 (*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-47))) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-2728 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-3494 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-3950 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5))))) +(-10 -7 (-15 -3950 ((-388 |#3|) |#3|)) (-15 -3494 ((-3 (-388 (-1069 (-377 (-517)))) "failed") |#3|)) (-15 -2728 ((-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107))) |#3|)) (IF (|has| |#2| (-952 (-47))) (-15 -2229 ((-3 (-388 (-1069 (-47))) "failed") |#3|)) |noBranch|)) +((-2750 (((-107) $ $) NIL)) (-3733 (((-1056) $ (-1056)) NIL)) (-1723 (($ $ (-1056)) NIL)) (-1457 (((-1056) $) NIL)) (-3112 (((-358) (-358) (-358)) 17) (((-358) (-358)) 15)) (-1513 (($ (-358)) NIL) (($ (-358) (-1056)) NIL)) (-1207 (((-358) $) NIL)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3262 (((-1158) (-1056)) 9)) (-2762 (((-1158) (-1056)) 10)) (-2593 (((-1158)) 11)) (-2256 (((-787) $) NIL)) (-2463 (($ $) 34)) (-1547 (((-107) $ $) NIL))) +(((-406) (-13 (-334 (-358) (-1056)) (-10 -7 (-15 -3112 ((-358) (-358) (-358))) (-15 -3112 ((-358) (-358))) (-15 -3262 ((-1158) (-1056))) (-15 -2762 ((-1158) (-1056))) (-15 -2593 ((-1158)))))) (T -406)) +((-3112 (*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-3112 (*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406)))) (-2593 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-406))))) +(-13 (-334 (-358) (-1056)) (-10 -7 (-15 -3112 ((-358) (-358) (-358))) (-15 -3112 ((-358) (-358))) (-15 -3262 ((-1158) (-1056))) (-15 -2762 ((-1158) (-1056))) (-15 -2593 ((-1158))))) +((-2750 (((-107) $ $) NIL)) (-3614 (((-3 (|:| |fst| (-404)) (|:| -2677 "void")) $) 10)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3961 (($) 31)) (-3637 (($) 37)) (-2386 (($) 33)) (-2366 (($) 35)) (-1861 (($) 32)) (-3697 (($) 34)) (-1215 (($) 36)) (-2045 (((-107) $) 8)) (-2108 (((-583 (-874 (-517))) $) 16)) (-2276 (($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-107)) 25) (($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-874 (-517))) (-107)) 26)) (-2256 (((-787) $) 21) (($ (-404)) 28)) (-1547 (((-107) $ $) NIL))) +(((-407) (-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -2256 ($ (-404))) (-15 -3614 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2108 ((-583 (-874 (-517))) $)) (-15 -2045 ((-107) $)) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-107))) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-874 (-517))) (-107))) (-15 -3961 ($)) (-15 -1861 ($)) (-15 -2386 ($)) (-15 -3637 ($)) (-15 -3697 ($)) (-15 -2366 ($)) (-15 -1215 ($))))) (T -407)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-407)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-583 (-874 (-517)))) (-5 *1 (-407)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-1073))) (-5 *4 (-107)) (-5 *1 (-407)))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) (-3961 (*1 *1) (-5 *1 (-407))) (-1861 (*1 *1) (-5 *1 (-407))) (-2386 (*1 *1) (-5 *1 (-407))) (-3637 (*1 *1) (-5 *1 (-407))) (-3697 (*1 *1) (-5 *1 (-407))) (-2366 (*1 *1) (-5 *1 (-407))) (-1215 (*1 *1) (-5 *1 (-407)))) +(-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -2256 ($ (-404))) (-15 -3614 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2108 ((-583 (-874 (-517))) $)) (-15 -2045 ((-107) $)) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-107))) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-874 (-517))) (-107))) (-15 -3961 ($)) (-15 -1861 ($)) (-15 -2386 ($)) (-15 -3637 ($)) (-15 -3697 ($)) (-15 -2366 ($)) (-15 -1215 ($)))) +((-2750 (((-107) $ $) NIL)) (-1207 (((-1073) $) 8)) (-3985 (((-1056) $) 16)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 13))) +(((-408 |#1|) (-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $)))) (-1073)) (T -408)) +((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-408 *3)) (-14 *3 *2)))) +(-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $)))) +((-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-1153 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 11))) +(((-409) (-1184)) (T -409)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-632))) (-4 *1 (-409)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-409))))) +(-13 (-365) (-10 -8 (-15 -2256 ($ (-1153 (-632)))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))))) +(((-557 (-787)) . T) ((-365) . T) ((-1108) . T)) +((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 21) (((-3 $ "failed") (-1153 (-286 (-517)))) 19) (((-3 $ "failed") (-1153 (-874 (-349)))) 17) (((-3 $ "failed") (-1153 (-874 (-517)))) 15) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 13) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 11)) (-3189 (($ (-1153 (-286 (-349)))) 22) (($ (-1153 (-286 (-517)))) 20) (($ (-1153 (-874 (-349)))) 18) (($ (-1153 (-874 (-517)))) 16) (($ (-1153 (-377 (-874 (-349))))) 14) (($ (-1153 (-377 (-874 (-517))))) 12)) (-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 23))) +(((-410) (-1184)) (T -410)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410))))) +(-13 (-365) (-10 -8 (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -3189 ($ (-1153 (-286 (-349))))) (-15 -1772 ((-3 $ "failed") (-1153 (-286 (-349))))) (-15 -3189 ($ (-1153 (-286 (-517))))) (-15 -1772 ((-3 $ "failed") (-1153 (-286 (-517))))) (-15 -3189 ($ (-1153 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-1153 (-874 (-349))))) (-15 -3189 ($ (-1153 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-1153 (-874 (-517))))) (-15 -3189 ($ (-1153 (-377 (-874 (-349)))))) (-15 -1772 ((-3 $ "failed") (-1153 (-377 (-874 (-349)))))) (-15 -3189 ($ (-1153 (-377 (-874 (-517)))))) (-15 -1772 ((-3 $ "failed") (-1153 (-377 (-874 (-517)))))))) +(((-557 (-787)) . T) ((-365) . T) ((-1108) . T)) +((-2823 (((-107)) 17)) (-3073 (((-107) (-107)) 18)) (-2713 (((-107)) 13)) (-3438 (((-107) (-107)) 14)) (-1344 (((-107)) 15)) (-1845 (((-107) (-107)) 16)) (-1317 (((-843) (-843)) 21) (((-843)) 20)) (-2383 (((-703) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517))))) 41)) (-3723 (((-843) (-843)) 23) (((-843)) 22)) (-2526 (((-2 (|:| -2508 (-517)) (|:| -2879 (-583 |#1|))) |#1|) 61)) (-3204 (((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517))))))) 125)) (-1724 (((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107)) 151)) (-3432 (((-388 |#1|) |#1| (-703) (-703)) 164) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 161) (((-388 |#1|) |#1| (-583 (-703))) 163) (((-388 |#1|) |#1| (-703)) 162) (((-388 |#1|) |#1|) 160)) (-3911 (((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107)) 166) (((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703)) 167) (((-3 |#1| "failed") (-843) |#1| (-583 (-703))) 169) (((-3 |#1| "failed") (-843) |#1| (-703)) 168) (((-3 |#1| "failed") (-843) |#1|) 170)) (-3755 (((-388 |#1|) |#1| (-703) (-703)) 159) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 155) (((-388 |#1|) |#1| (-583 (-703))) 157) (((-388 |#1|) |#1| (-703)) 156) (((-388 |#1|) |#1|) 154)) (-3808 (((-107) |#1|) 36)) (-2981 (((-670 (-703)) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517))))) 66)) (-2412 (((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107) (-1005 (-703)) (-703)) 153))) +(((-411 |#1|) (-10 -7 (-15 -3204 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))))) (-15 -2981 ((-670 (-703)) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -3723 ((-843))) (-15 -3723 ((-843) (-843))) (-15 -1317 ((-843))) (-15 -1317 ((-843) (-843))) (-15 -2383 ((-703) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -2526 ((-2 (|:| -2508 (-517)) (|:| -2879 (-583 |#1|))) |#1|)) (-15 -2823 ((-107))) (-15 -3073 ((-107) (-107))) (-15 -2713 ((-107))) (-15 -3438 ((-107) (-107))) (-15 -3808 ((-107) |#1|)) (-15 -1344 ((-107))) (-15 -1845 ((-107) (-107))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1| (-703))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3755 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1| (-703))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3432 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1|)) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107))) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107))) (-15 -2412 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107) (-1005 (-703)) (-703)))) (-1130 (-517))) (T -411)) +((-2412 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1005 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-843)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3432 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1344 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3808 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3438 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2713 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2823 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2526 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2508 (-517)) (|:| -2879 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))) (-1317 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1317 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3723 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3723 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *4) (|:| -3631 (-517))))))) (-4 *4 (-1130 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4))))) +(-10 -7 (-15 -3204 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))))) (-15 -2981 ((-670 (-703)) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -3723 ((-843))) (-15 -3723 ((-843) (-843))) (-15 -1317 ((-843))) (-15 -1317 ((-843) (-843))) (-15 -2383 ((-703) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -2526 ((-2 (|:| -2508 (-517)) (|:| -2879 (-583 |#1|))) |#1|)) (-15 -2823 ((-107))) (-15 -3073 ((-107) (-107))) (-15 -2713 ((-107))) (-15 -3438 ((-107) (-107))) (-15 -3808 ((-107) |#1|)) (-15 -1344 ((-107))) (-15 -1845 ((-107) (-107))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1| (-703))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3755 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1| (-703))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3432 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1|)) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107))) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107))) (-15 -2412 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107) (-1005 (-703)) (-703)))) +((-3867 (((-517) |#2|) 48) (((-517) |#2| (-703)) 47)) (-1843 (((-517) |#2|) 55)) (-3693 ((|#3| |#2|) 25)) (-1506 ((|#3| |#2| (-843)) 14)) (-2195 ((|#3| |#2|) 15)) (-1975 ((|#3| |#2|) 9)) (-1881 ((|#3| |#2|) 10)) (-2322 ((|#3| |#2| (-843)) 62) ((|#3| |#2|) 30)) (-3898 (((-517) |#2|) 57))) +(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -3898 ((-517) |#2|)) (-15 -2322 (|#3| |#2|)) (-15 -2322 (|#3| |#2| (-843))) (-15 -1843 ((-517) |#2|)) (-15 -3867 ((-517) |#2| (-703))) (-15 -3867 ((-517) |#2|)) (-15 -1506 (|#3| |#2| (-843))) (-15 -3693 (|#3| |#2|)) (-15 -1975 (|#3| |#2|)) (-15 -1881 (|#3| |#2|)) (-15 -2195 (|#3| |#2|))) (-961) (-1130 |#1|) (-13 (-374) (-952 |#1|) (-333) (-1094) (-256))) (T -412)) +((-2195 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-1881 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-1975 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5)))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1130 *5)) (-4 *6 (-13 (-374) (-952 *5) (-333) (-1094) (-256))))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))) (-2322 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5)))) (-2322 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256)))))) +(-10 -7 (-15 -3898 ((-517) |#2|)) (-15 -2322 (|#3| |#2|)) (-15 -2322 (|#3| |#2| (-843))) (-15 -1843 ((-517) |#2|)) (-15 -3867 ((-517) |#2| (-703))) (-15 -3867 ((-517) |#2|)) (-15 -1506 (|#3| |#2| (-843))) (-15 -3693 (|#3| |#2|)) (-15 -1975 (|#3| |#2|)) (-15 -1881 (|#3| |#2|)) (-15 -2195 (|#3| |#2|))) +((-2464 ((|#2| (-1153 |#1|)) 36)) (-1335 ((|#2| |#2| |#1|) 49)) (-2443 ((|#2| |#2| |#1|) 41)) (-3093 ((|#2| |#2|) 38)) (-4156 (((-107) |#2|) 30)) (-3920 (((-583 |#2|) (-843) (-388 |#2|)) 16)) (-3911 ((|#2| (-843) (-388 |#2|)) 21)) (-2981 (((-670 (-703)) (-388 |#2|)) 25))) +(((-413 |#1| |#2|) (-10 -7 (-15 -4156 ((-107) |#2|)) (-15 -2464 (|#2| (-1153 |#1|))) (-15 -3093 (|#2| |#2|)) (-15 -2443 (|#2| |#2| |#1|)) (-15 -1335 (|#2| |#2| |#1|)) (-15 -2981 ((-670 (-703)) (-388 |#2|))) (-15 -3911 (|#2| (-843) (-388 |#2|))) (-15 -3920 ((-583 |#2|) (-843) (-388 |#2|)))) (-961) (-1130 |#1|)) (T -413)) +((-3920 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-961)))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))) (-1335 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) (-2443 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-961)) (-4 *2 (-1130 *4)) (-5 *1 (-413 *4 *2)))) (-4156 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1130 *4))))) +(-10 -7 (-15 -4156 ((-107) |#2|)) (-15 -2464 (|#2| (-1153 |#1|))) (-15 -3093 (|#2| |#2|)) (-15 -2443 (|#2| |#2| |#1|)) (-15 -1335 (|#2| |#2| |#1|)) (-15 -2981 ((-670 (-703)) (-388 |#2|))) (-15 -3911 (|#2| (-843) (-388 |#2|))) (-15 -3920 ((-583 |#2|) (-843) (-388 |#2|)))) +((-3479 (((-703)) 41)) (-1248 (((-703)) 23 (|has| |#1| (-374))) (((-703) (-703)) 22 (|has| |#1| (-374)))) (-3403 (((-517) |#1|) 18 (|has| |#1| (-374)))) (-1708 (((-517) |#1|) 20 (|has| |#1| (-374)))) (-2780 (((-703)) 40) (((-703) (-703)) 39)) (-3351 ((|#1| (-703) (-517)) 29)) (-2186 (((-1158)) 43))) +(((-414 |#1|) (-10 -7 (-15 -3351 (|#1| (-703) (-517))) (-15 -2780 ((-703) (-703))) (-15 -2780 ((-703))) (-15 -3479 ((-703))) (-15 -2186 ((-1158))) (IF (|has| |#1| (-374)) (PROGN (-15 -1708 ((-517) |#1|)) (-15 -3403 ((-517) |#1|)) (-15 -1248 ((-703) (-703))) (-15 -1248 ((-703)))) |noBranch|)) (-961)) (T -414)) +((-1248 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-1248 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-3403 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-1708 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-2186 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-3479 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-2780 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-961))))) +(-10 -7 (-15 -3351 (|#1| (-703) (-517))) (-15 -2780 ((-703) (-703))) (-15 -2780 ((-703))) (-15 -3479 ((-703))) (-15 -2186 ((-1158))) (IF (|has| |#1| (-374)) (PROGN (-15 -1708 ((-517) |#1|)) (-15 -3403 ((-517) |#1|)) (-15 -1248 ((-703) (-703))) (-15 -1248 ((-703)))) |noBranch|)) +((-2760 (((-583 (-517)) (-517)) 57)) (-3849 (((-107) (-153 (-517))) 61)) (-3755 (((-388 (-153 (-517))) (-153 (-517))) 56))) +(((-415) (-10 -7 (-15 -3755 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -2760 ((-583 (-517)) (-517))) (-15 -3849 ((-107) (-153 (-517)))))) (T -415)) +((-3849 (*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) (-2760 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517)))))) +(-10 -7 (-15 -3755 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -2760 ((-583 (-517)) (-517))) (-15 -3849 ((-107) (-153 (-517))))) +((-2446 ((|#4| |#4| (-583 |#4|)) 57)) (-2481 (((-583 |#4|) (-583 |#4|) (-1056) (-1056)) 17) (((-583 |#4|) (-583 |#4|) (-1056)) 16) (((-583 |#4|) (-583 |#4|)) 11))) +(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2446 (|#4| |#4| (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056) (-1056)))) (-278) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -416)) +((-2481 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) (-2446 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2))))) +(-10 -7 (-15 -2446 (|#4| |#4| (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056) (-1056)))) +((-2086 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 70) (((-583 (-583 |#4|)) (-583 |#4|)) 69) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107)) 63) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 64)) (-3923 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 40) (((-583 (-583 |#4|)) (-583 |#4|)) 60))) +(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-107)))) (-13 (-278) (-134)) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -417)) +((-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2086 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2086 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2086 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3923 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) +(-10 -7 (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-107)))) +((-2097 (((-703) |#4|) 12)) (-2385 (((-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)))) 31)) (-1249 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3080 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-3595 ((|#4| |#4| (-583 |#4|)) 39)) (-1805 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 68)) (-2751 (((-1158) |#4|) 41)) (-3649 (((-1158) (-583 |#4|)) 50)) (-1510 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517)) 47)) (-2309 (((-1158) (-517)) 75)) (-1505 (((-583 |#4|) (-583 |#4|)) 73)) (-1378 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)) |#4| (-703)) 25)) (-4159 (((-517) |#4|) 74)) (-3798 ((|#4| |#4|) 29)) (-1921 (((-583 |#4|) (-583 |#4|) (-517) (-517)) 54)) (-1736 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517)) 85)) (-2587 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3572 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 57)) (-3065 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 56)) (-2259 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-3607 (((-107) |#2| |#2|) 55)) (-3052 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2390 (((-107) |#2| |#2| |#2| |#2|) 58)) (-1820 ((|#4| |#4| (-583 |#4|)) 69))) +(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 (|#4| |#4| (-583 |#4|))) (-15 -3595 (|#4| |#4| (-583 |#4|))) (-15 -1921 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -3572 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3607 ((-107) |#2| |#2|)) (-15 -2390 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3052 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2259 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3065 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1805 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3798 (|#4| |#4|)) (-15 -2385 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))))) (-15 -3080 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1249 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1505 ((-583 |#4|) (-583 |#4|))) (-15 -4159 ((-517) |#4|)) (-15 -2751 ((-1158) |#4|)) (-15 -1510 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -1736 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -3649 ((-1158) (-583 |#4|))) (-15 -2309 ((-1158) (-517))) (-15 -2587 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1378 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)) |#4| (-703))) (-15 -2097 ((-703) |#4|))) (-421) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -418)) +((-2097 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-1378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1913 *4))) (-5 *5 (-703)) (-4 *4 (-871 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))) (-2587 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7)))) (-1736 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-1510 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-1249 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-871 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))) (-2385 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 *3)))) (-5 *4 (-703)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-1805 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))) (-3065 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-871 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))) (-2259 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3052 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))) (-2390 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))) (-3607 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-1921 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3595 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))) (-1820 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2))))) +(-10 -7 (-15 -1820 (|#4| |#4| (-583 |#4|))) (-15 -3595 (|#4| |#4| (-583 |#4|))) (-15 -1921 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -3572 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3607 ((-107) |#2| |#2|)) (-15 -2390 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3052 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2259 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3065 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1805 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3798 (|#4| |#4|)) (-15 -2385 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))))) (-15 -3080 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1249 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1505 ((-583 |#4|) (-583 |#4|))) (-15 -4159 ((-517) |#4|)) (-15 -2751 ((-1158) |#4|)) (-15 -1510 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -1736 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -3649 ((-1158) (-583 |#4|))) (-15 -2309 ((-1158) (-517))) (-15 -2587 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1378 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)) |#4| (-703))) (-15 -2097 ((-703) |#4|))) +((-1441 ((|#4| |#4| (-583 |#4|)) 22 (|has| |#1| (-333)))) (-1759 (((-583 |#4|) (-583 |#4|) (-1056) (-1056)) 41) (((-583 |#4|) (-583 |#4|) (-1056)) 40) (((-583 |#4|) (-583 |#4|)) 35))) +(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1759 ((-583 |#4|) (-583 |#4|))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056) (-1056))) (IF (|has| |#1| (-333)) (-15 -1441 (|#4| |#4| (-583 |#4|))) |noBranch|)) (-421) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -419)) +((-1441 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) (-1759 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1759 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6))))) +(-10 -7 (-15 -1759 ((-583 |#4|) (-583 |#4|))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056) (-1056))) (IF (|has| |#1| (-333)) (-15 -1441 (|#4| |#4| (-583 |#4|))) |noBranch|)) +((-1365 (($ $ $) 14) (($ (-583 $)) 21)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 41)) (-1401 (($ $ $) NIL) (($ (-583 $)) 22))) +(((-420 |#1|) (-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -1365 (|#1| (-583 |#1|))) (-15 -1365 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|))) (-421)) (T -420)) +NIL +(-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -1365 (|#1| (-583 |#1|))) (-15 -1365 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-421) (-1184)) (T -421)) +((-1401 (*1 *1 *1 *1) (-4 *1 (-421))) (-1401 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-1365 (*1 *1 *1 *1) (-4 *1 (-421))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-1862 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-421))))) +(-13 (-509) (-10 -8 (-15 -1401 ($ $ $)) (-15 -1401 ($ (-583 $))) (-15 -1365 ($ $ $)) (-15 -1365 ($ (-583 $))) (-15 -1862 ((-1069 $) (-1069 $) (-1069 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 (-377 (-874 |#1|)))) (-1153 $)) NIL) (((-1153 (-623 (-377 (-874 |#1|))))) NIL)) (-3456 (((-1153 $)) NIL)) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL)) (-1450 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2619 (((-623 (-377 (-874 |#1|))) (-1153 $)) NIL) (((-623 (-377 (-874 |#1|)))) NIL)) (-2299 (((-377 (-874 |#1|)) $) NIL)) (-3343 (((-623 (-377 (-874 |#1|))) $ (-1153 $)) NIL) (((-623 (-377 (-874 |#1|))) $) NIL)) (-2158 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2436 (((-1069 (-874 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-333))) (((-1069 (-377 (-874 |#1|)))) 81 (|has| |#1| (-509)))) (-3380 (($ $ (-843)) NIL)) (-3866 (((-377 (-874 |#1|)) $) NIL)) (-2417 (((-1069 (-377 (-874 |#1|))) $) 79 (|has| (-377 (-874 |#1|)) (-509)))) (-4069 (((-377 (-874 |#1|)) (-1153 $)) NIL) (((-377 (-874 |#1|))) NIL)) (-2085 (((-1069 (-377 (-874 |#1|))) $) NIL)) (-2362 (((-107)) NIL)) (-1967 (($ (-1153 (-377 (-874 |#1|))) (-1153 $)) 101) (($ (-1153 (-377 (-874 |#1|)))) NIL)) (-3621 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2261 (((-843)) NIL)) (-3962 (((-107)) NIL)) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL)) (-3983 (((-107)) NIL)) (-3414 (((-107)) NIL)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL)) (-1793 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2010 (((-623 (-377 (-874 |#1|))) (-1153 $)) NIL) (((-623 (-377 (-874 |#1|)))) NIL)) (-1188 (((-377 (-874 |#1|)) $) NIL)) (-3914 (((-623 (-377 (-874 |#1|))) $ (-1153 $)) NIL) (((-623 (-377 (-874 |#1|))) $) NIL)) (-1680 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2300 (((-1069 (-874 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-333))) (((-1069 (-377 (-874 |#1|)))) 80 (|has| |#1| (-509)))) (-2572 (($ $ (-843)) NIL)) (-3913 (((-377 (-874 |#1|)) $) NIL)) (-4121 (((-1069 (-377 (-874 |#1|))) $) 74 (|has| (-377 (-874 |#1|)) (-509)))) (-1988 (((-377 (-874 |#1|)) (-1153 $)) NIL) (((-377 (-874 |#1|))) NIL)) (-2190 (((-1069 (-377 (-874 |#1|))) $) NIL)) (-3606 (((-107)) NIL)) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL)) (-1286 (((-107)) NIL)) (-1848 (((-107)) NIL)) (-3206 (((-1021) $) NIL)) (-3281 (((-377 (-874 |#1|)) $ $) 68 (|has| |#1| (-509)))) (-3834 (((-377 (-874 |#1|)) $) 91 (|has| |#1| (-509)))) (-3776 (((-377 (-874 |#1|)) $) 93 (|has| |#1| (-509)))) (-2311 (((-1069 (-377 (-874 |#1|))) $) 85 (|has| |#1| (-509)))) (-1922 (((-377 (-874 |#1|))) 69 (|has| |#1| (-509)))) (-2076 (((-377 (-874 |#1|)) $ $) 60 (|has| |#1| (-509)))) (-4051 (((-377 (-874 |#1|)) $) 90 (|has| |#1| (-509)))) (-3668 (((-377 (-874 |#1|)) $) 92 (|has| |#1| (-509)))) (-1293 (((-1069 (-377 (-874 |#1|))) $) 84 (|has| |#1| (-509)))) (-4046 (((-377 (-874 |#1|))) 65 (|has| |#1| (-509)))) (-3154 (($) 99) (($ (-1073)) 105) (($ (-1153 (-1073))) 104) (($ (-1153 $)) 94) (($ (-1073) (-1153 $)) 103) (($ (-1153 (-1073)) (-1153 $)) 102)) (-1697 (((-107)) NIL)) (-1449 (((-377 (-874 |#1|)) $ (-517)) NIL)) (-4114 (((-1153 (-377 (-874 |#1|))) $ (-1153 $)) 96) (((-623 (-377 (-874 |#1|))) (-1153 $) (-1153 $)) NIL) (((-1153 (-377 (-874 |#1|))) $) 37) (((-623 (-377 (-874 |#1|))) (-1153 $)) NIL)) (-3645 (((-1153 (-377 (-874 |#1|))) $) NIL) (($ (-1153 (-377 (-874 |#1|)))) 34)) (-2278 (((-583 (-874 (-377 (-874 |#1|)))) (-1153 $)) NIL) (((-583 (-874 (-377 (-874 |#1|))))) NIL) (((-583 (-874 |#1|)) (-1153 $)) 97 (|has| |#1| (-509))) (((-583 (-874 |#1|))) 98 (|has| |#1| (-509)))) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL)) (-2256 (((-787) $) NIL) (($ (-1153 (-377 (-874 |#1|)))) NIL)) (-1753 (((-1153 $)) 56)) (-1582 (((-583 (-1153 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL)) (-1587 (($ (-623 (-377 (-874 |#1|))) $) NIL)) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL)) (-2524 (((-107)) NIL)) (-3642 (((-107)) NIL)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) 95)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 52) (($ $ (-377 (-874 |#1|))) NIL) (($ (-377 (-874 |#1|)) $) NIL) (($ (-1040 |#2| (-377 (-874 |#1|))) $) NIL))) +(((-422 |#1| |#2| |#3| |#4|) (-13 (-387 (-377 (-874 |#1|))) (-585 (-1040 |#2| (-377 (-874 |#1|)))) (-10 -8 (-15 -2256 ($ (-1153 (-377 (-874 |#1|))))) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -3154 ($)) (-15 -3154 ($ (-1073))) (-15 -3154 ($ (-1153 (-1073)))) (-15 -3154 ($ (-1153 $))) (-15 -3154 ($ (-1073) (-1153 $))) (-15 -3154 ($ (-1153 (-1073)) (-1153 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -2300 ((-1069 (-377 (-874 |#1|))))) (-15 -1293 ((-1069 (-377 (-874 |#1|))) $)) (-15 -4051 ((-377 (-874 |#1|)) $)) (-15 -3668 ((-377 (-874 |#1|)) $)) (-15 -2436 ((-1069 (-377 (-874 |#1|))))) (-15 -2311 ((-1069 (-377 (-874 |#1|))) $)) (-15 -3834 ((-377 (-874 |#1|)) $)) (-15 -3776 ((-377 (-874 |#1|)) $)) (-15 -2076 ((-377 (-874 |#1|)) $ $)) (-15 -4046 ((-377 (-874 |#1|)))) (-15 -3281 ((-377 (-874 |#1|)) $ $)) (-15 -1922 ((-377 (-874 |#1|)))) (-15 -2278 ((-583 (-874 |#1|)) (-1153 $))) (-15 -2278 ((-583 (-874 |#1|))))) |noBranch|))) (-156) (-843) (-583 (-1073)) (-1153 (-623 |#1|))) (T -422)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 *3)))) (-4 *3 (-156)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))))) (-3550 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2257 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-843)) (-14 *4 (-583 (-1073))) (-14 *5 (-1153 (-623 *2))))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 *2)) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-1153 (-1073))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-1153 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 *2)) (-14 *7 (-1153 (-623 *4))))) (-3154 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 (-1073))) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4))))) (-2300 (*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2436 (*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2076 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-4046 (*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3281 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-1922 (*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-874 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4))))) (-2278 (*1 *2) (-12 (-5 *2 (-583 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(-13 (-387 (-377 (-874 |#1|))) (-585 (-1040 |#2| (-377 (-874 |#1|)))) (-10 -8 (-15 -2256 ($ (-1153 (-377 (-874 |#1|))))) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -3154 ($)) (-15 -3154 ($ (-1073))) (-15 -3154 ($ (-1153 (-1073)))) (-15 -3154 ($ (-1153 $))) (-15 -3154 ($ (-1073) (-1153 $))) (-15 -3154 ($ (-1153 (-1073)) (-1153 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -2300 ((-1069 (-377 (-874 |#1|))))) (-15 -1293 ((-1069 (-377 (-874 |#1|))) $)) (-15 -4051 ((-377 (-874 |#1|)) $)) (-15 -3668 ((-377 (-874 |#1|)) $)) (-15 -2436 ((-1069 (-377 (-874 |#1|))))) (-15 -2311 ((-1069 (-377 (-874 |#1|))) $)) (-15 -3834 ((-377 (-874 |#1|)) $)) (-15 -3776 ((-377 (-874 |#1|)) $)) (-15 -2076 ((-377 (-874 |#1|)) $ $)) (-15 -4046 ((-377 (-874 |#1|)))) (-15 -3281 ((-377 (-874 |#1|)) $ $)) (-15 -1922 ((-377 (-874 |#1|)))) (-15 -2278 ((-583 (-874 |#1|)) (-1153 $))) (-15 -2278 ((-583 (-874 |#1|))))) |noBranch|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 13)) (-1364 (((-583 (-789 |#1|)) $) 73)) (-2352 (((-1069 $) $ (-789 |#1|)) 46) (((-1069 |#2|) $) 115)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) 21) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 44) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) 42) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3924 (($ $ (-583 (-517))) 78)) (-1212 (($ $) 67)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| |#3| $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 58)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) 120) (($ (-1069 $) (-789 |#1|)) 52)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) 59)) (-1339 (($ |#2| |#3|) 28) (($ $ (-789 |#1|) (-703)) 30) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 ((|#3| $) NIL) (((-703) $ (-789 |#1|)) 50) (((-583 (-703)) $ (-583 (-789 |#1|))) 57)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 |#3| |#3|) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) 39)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) 41)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 40)) (-4141 ((|#2| $) 113)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) 125 (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) 85) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) 88) (($ $ (-789 |#1|) $) 83) (($ $ (-583 (-789 |#1|)) (-583 $)) 104)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) 53) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 ((|#3| $) 66) (((-703) $ (-789 |#1|)) 37) (((-583 (-703)) $ (-583 (-789 |#1|))) 56)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) 122 (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) 141) (($ (-517)) NIL) (($ |#2|) 84) (($ (-789 |#1|)) 31) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ |#3|) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 16 T CONST)) (-2409 (($) 25 T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) 64 (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 109)) (** (($ $ (-843)) NIL) (($ $ (-703)) 107)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 29) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-423 |#1| |#2| |#3|) (-13 (-871 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) (-583 (-1073)) (-961) (-212 (-2296 |#1|) (-703))) (T -423)) +((-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1073))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-212 (-2296 *3) (-703)))))) +(-13 (-871 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) +((-1341 (((-107) |#1| (-583 |#2|)) 65)) (-1877 (((-3 (-1153 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|)) 74)) (-3477 (((-3 (-583 |#2|) "failed") |#2| |#1| (-1153 (-583 |#2|))) 76)) (-3271 ((|#2| |#2| |#1|) 28)) (-2242 (((-703) |#2| (-583 |#2|)) 20))) +(((-424 |#1| |#2|) (-10 -7 (-15 -3271 (|#2| |#2| |#1|)) (-15 -2242 ((-703) |#2| (-583 |#2|))) (-15 -1877 ((-3 (-1153 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -3477 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1153 (-583 |#2|)))) (-15 -1341 ((-107) |#1| (-583 |#2|)))) (-278) (-1130 |#1|)) (T -424)) +((-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1130 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))) (-3477 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1153 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1130 *4)))) (-1877 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1130 *4)) (-5 *2 (-1153 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))) (-3271 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1130 *3))))) +(-10 -7 (-15 -3271 (|#2| |#2| |#1|)) (-15 -2242 ((-703) |#2| (-583 |#2|))) (-15 -1877 ((-3 (-1153 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -3477 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1153 (-583 |#2|)))) (-15 -1341 ((-107) |#1| (-583 |#2|)))) +((-3755 (((-388 |#5|) |#5|) 24))) +(((-425 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3755 ((-388 |#5|) |#5|))) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073))))) (-725) (-509) (-509) (-871 |#4| |#2| |#1|)) (T -425)) +((-3755 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-871 *7 *5 *4))))) +(-10 -7 (-15 -3755 ((-388 |#5|) |#5|))) +((-2916 ((|#3|) 36)) (-1862 (((-1069 |#4|) (-1069 |#4|) (-1069 |#4|)) 32))) +(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1862 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2916 (|#3|))) (-725) (-779) (-831) (-871 |#3| |#1| |#2|)) (T -426)) +((-2916 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-871 *2 *3 *4)))) (-1862 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-831)) (-5 *1 (-426 *3 *4 *5 *6))))) +(-10 -7 (-15 -1862 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2916 (|#3|))) +((-3755 (((-388 (-1069 |#1|)) (-1069 |#1|)) 41))) +(((-427 |#1|) (-10 -7 (-15 -3755 ((-388 (-1069 |#1|)) (-1069 |#1|)))) (-278)) (T -427)) +((-3755 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1069 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1069 *4))))) +(-10 -7 (-15 -3755 ((-388 (-1069 |#1|)) (-1069 |#1|)))) +((-1590 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-703))) 42) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-703))) 41) (((-51) |#2| (-1073) (-265 |#2|)) 35) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 27)) (-2925 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 80) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 79) (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517))) 78) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517))) 77) (((-51) |#2| (-1073) (-265 |#2|)) 72) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 71)) (-1613 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 66) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 64)) (-1601 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517))) 48) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517))) 47))) +(((-428 |#1| |#2|) (-10 -7 (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-703)))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-703)))) (-15 -1601 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -1601 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -1613 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -1613 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -428)) +((-2925 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-2925 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-2925 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) (-1613 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-1613 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-1601 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-1601 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-1590 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-703))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-703))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6))))) +(-10 -7 (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-703)))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-703)))) (-15 -1601 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -1601 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -1613 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -1613 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))))) +((-3271 ((|#2| |#2| |#1|) 15)) (-3965 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-843)) 65)) (-3685 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843)) 58))) +(((-429 |#1| |#2|) (-10 -7 (-15 -3685 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843))) (-15 -3965 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-843))) (-15 -3271 (|#2| |#2| |#1|))) (-278) (-1130 |#1|)) (T -429)) +((-3271 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1130 *3)))) (-3965 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-843)) (-4 *3 (-1130 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))) (-3685 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-843)) (-4 *5 (-278)) (-4 *3 (-1130 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3))))) +(-10 -7 (-15 -3685 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843))) (-15 -3965 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-843))) (-15 -3271 (|#2| |#2| |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 28)) (-2847 (($ |#3|) 25)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) 32)) (-3589 (($ |#2| |#4| $) 33)) (-1339 (($ |#2| (-646 |#3| |#4| |#5|)) 24)) (-4152 (((-646 |#3| |#4| |#5|) $) 15)) (-2684 ((|#3| $) 19)) (-2472 ((|#4| $) 17)) (-1191 ((|#2| $) 29)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1637 (($ |#2| |#3| |#4|) 26)) (-2396 (($) 36 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 34)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-430 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -1191 (|#2| $)) (-15 -4152 ((-646 |#3| |#4| |#5|) $)) (-15 -2472 (|#4| $)) (-15 -2684 (|#3| $)) (-15 -1212 ($ $)) (-15 -1339 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -2847 ($ |#3|)) (-15 -1637 ($ |#2| |#3| |#4|)) (-15 -3589 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1073)) (-156) (-779) (-212 (-2296 |#1|) (-703)) (-1 (-107) (-2 (|:| -3448 |#3|) (|:| -2077 |#4|)) (-2 (|:| -3448 |#3|) (|:| -2077 |#4|))) (-871 |#2| |#4| (-789 |#1|))) (T -430)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-871 *4 *6 (-789 *3))))) (-1191 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *2 *5 (-789 *3))))) (-4152 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-871 *4 *6 (-789 *3))))) (-2472 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *2)) (-2 (|:| -3448 *5) (|:| -2077 *2)))) (-4 *2 (-212 (-2296 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *4 *2 (-789 *3))))) (-2684 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-871 *4 *5 (-789 *3))))) (-1212 (*1 *1 *1) (-12 (-14 *2 (-583 (-1073))) (-4 *3 (-156)) (-4 *5 (-212 (-2296 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *3 *5 (-789 *2))))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-2296 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-871 *2 *6 (-789 *4))))) (-2847 (*1 *1 *2) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-871 *4 *5 (-789 *3))))) (-1637 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1073))) (-4 *2 (-156)) (-4 *4 (-212 (-2296 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *4)) (-2 (|:| -3448 *3) (|:| -2077 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-871 *2 *4 (-789 *5))))) (-3589 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-4 *3 (-212 (-2296 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *3)) (-2 (|:| -3448 *5) (|:| -2077 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *2 *3 (-789 *4)))))) +(-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -1191 (|#2| $)) (-15 -4152 ((-646 |#3| |#4| |#5|) $)) (-15 -2472 (|#4| $)) (-15 -2684 (|#3| $)) (-15 -1212 ($ $)) (-15 -1339 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -2847 ($ |#3|)) (-15 -1637 ($ |#2| |#3| |#4|)) (-15 -3589 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3899 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35))) +(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3899 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|) (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2256 ($ |#4|)) (-15 -1787 (|#4| $)) (-15 -1800 (|#4| $))))) (T -431)) +((-3899 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-871 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $)))))))) +(-10 -7 (-15 -3899 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2750 (((-107) $ $) NIL)) (-1364 (((-583 |#3|) $) 41)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) NIL (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 47)) (-3189 (($ (-583 |#4|)) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180)))) (-1536 (((-583 |#4|) $) 18 (|has| $ (-6 -4180)))) (-1976 ((|#3| $) 45)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 14 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 26 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3206 (((-1021) $) NIL)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 39)) (-1746 (($) 17)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 16)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493)))) (($ (-583 |#4|)) 49)) (-2276 (($ (-583 |#4|)) 13)) (-2442 (($ $ |#3|) NIL)) (-3759 (($ $ |#3|) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 38) (((-583 |#4|) $) 48)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 30)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-432 |#1| |#2| |#3| |#4|) (-13 (-893 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3645 ($ (-583 |#4|))) (-6 -4180) (-6 -4181))) (-961) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -432)) +((-3645 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6))))) +(-13 (-893 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3645 ($ (-583 |#4|))) (-6 -4180) (-6 -4181))) +((-2396 (($) 11)) (-2409 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-433 |#1| |#2| |#3|) (-10 -8 (-15 -2409 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2396 (|#1|))) (-434 |#2| |#3|) (-156) (-23)) (T -433)) +NIL +(-10 -8 (-15 -2409 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2396 (|#1|))) +((-2750 (((-107) $ $) 7)) (-1772 (((-3 |#1| "failed") $) 26)) (-3189 ((|#1| $) 25)) (-3485 (($ $ $) 23)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 ((|#2| $) 19)) (-2256 (((-787) $) 11) (($ |#1|) 27)) (-2396 (($) 18 T CONST)) (-2409 (($) 24 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 15) (($ $ $) 13)) (-1642 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-434 |#1| |#2|) (-1184) (-156) (-23)) (T -434)) +((-2409 (*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-3485 (*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))) +(-13 (-439 |t#1| |t#2|) (-952 |t#1|) (-10 -8 (-15 (-2409) ($) -1619) (-15 -3485 ($ $ $)))) +(((-97) . T) ((-557 (-787)) . T) ((-439 |#1| |#2|) . T) ((-952 |#1|) . T) ((-1003) . T)) +((-3049 (((-1153 (-1153 (-517))) (-1153 (-1153 (-517))) (-843)) 18)) (-1614 (((-1153 (-1153 (-517))) (-843)) 16))) +(((-435) (-10 -7 (-15 -3049 ((-1153 (-1153 (-517))) (-1153 (-1153 (-517))) (-843))) (-15 -1614 ((-1153 (-1153 (-517))) (-843))))) (T -435)) +((-1614 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 (-517)))) (-5 *1 (-435)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 (-1153 (-517)))) (-5 *3 (-843)) (-5 *1 (-435))))) +(-10 -7 (-15 -3049 ((-1153 (-1153 (-517))) (-1153 (-1153 (-517))) (-843))) (-15 -1614 ((-1153 (-1153 (-517))) (-843)))) +((-3553 (((-517) (-517)) 30) (((-517)) 22)) (-2761 (((-517) (-517)) 26) (((-517)) 18)) (-4056 (((-517) (-517)) 28) (((-517)) 20)) (-3579 (((-107) (-107)) 12) (((-107)) 10)) (-3742 (((-107) (-107)) 11) (((-107)) 9)) (-2594 (((-107) (-107)) 24) (((-107)) 15))) +(((-436) (-10 -7 (-15 -3742 ((-107))) (-15 -3579 ((-107))) (-15 -3742 ((-107) (-107))) (-15 -3579 ((-107) (-107))) (-15 -2594 ((-107))) (-15 -4056 ((-517))) (-15 -2761 ((-517))) (-15 -3553 ((-517))) (-15 -2594 ((-107) (-107))) (-15 -4056 ((-517) (-517))) (-15 -2761 ((-517) (-517))) (-15 -3553 ((-517) (-517))))) (T -436)) +((-3553 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-4056 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2594 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3553 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2761 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-4056 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2594 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3742 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3579 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3742 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))) +(-10 -7 (-15 -3742 ((-107))) (-15 -3579 ((-107))) (-15 -3742 ((-107) (-107))) (-15 -3579 ((-107) (-107))) (-15 -2594 ((-107))) (-15 -4056 ((-517))) (-15 -2761 ((-517))) (-15 -3553 ((-517))) (-15 -2594 ((-107) (-107))) (-15 -4056 ((-517) (-517))) (-15 -2761 ((-517) (-517))) (-15 -3553 ((-517) (-517)))) +((-2750 (((-107) $ $) NIL)) (-3029 (((-583 (-349)) $) 27) (((-583 (-349)) $ (-583 (-349))) 90)) (-1868 (((-583 (-998 (-349))) $) 14) (((-583 (-998 (-349))) $ (-583 (-998 (-349)))) 87)) (-3729 (((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797))) 42)) (-1985 (((-583 (-583 (-865 (-199)))) $) 83)) (-2889 (((-1158) $ (-865 (-199)) (-797)) 103)) (-1452 (($ $) 82) (($ (-583 (-583 (-865 (-199))))) 93) (($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843))) 92) (($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236))) 94)) (-3985 (((-1056) $) NIL)) (-3435 (((-517) $) 65)) (-3206 (((-1021) $) NIL)) (-2089 (($) 91)) (-2267 (((-583 (-199)) (-583 (-583 (-865 (-199))))) 52)) (-2271 (((-1158) $ (-583 (-865 (-199))) (-797) (-797) (-843)) 97) (((-1158) $ (-865 (-199))) 99) (((-1158) $ (-865 (-199)) (-797) (-797) (-843)) 98)) (-2256 (((-787) $) 109) (($ (-583 (-583 (-865 (-199))))) 104)) (-3366 (((-1158) $ (-865 (-199))) 102)) (-1547 (((-107) $ $) NIL))) +(((-437) (-13 (-1003) (-10 -8 (-15 -2089 ($)) (-15 -1452 ($ $)) (-15 -1452 ($ (-583 (-583 (-865 (-199)))))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236)))) (-15 -1985 ((-583 (-583 (-865 (-199)))) $)) (-15 -3435 ((-517) $)) (-15 -1868 ((-583 (-998 (-349))) $)) (-15 -1868 ((-583 (-998 (-349))) $ (-583 (-998 (-349))))) (-15 -3029 ((-583 (-349)) $)) (-15 -3029 ((-583 (-349)) $ (-583 (-349)))) (-15 -2271 ((-1158) $ (-583 (-865 (-199))) (-797) (-797) (-843))) (-15 -2271 ((-1158) $ (-865 (-199)))) (-15 -2271 ((-1158) $ (-865 (-199)) (-797) (-797) (-843))) (-15 -3366 ((-1158) $ (-865 (-199)))) (-15 -2889 ((-1158) $ (-865 (-199)) (-797))) (-15 -2256 ($ (-583 (-583 (-865 (-199)))))) (-15 -2256 ((-787) $)) (-15 -3729 ((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797)))) (-15 -2267 ((-583 (-199)) (-583 (-583 (-865 (-199))))))))) (T -437)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) (-2089 (*1 *1) (-5 *1 (-437))) (-1452 (*1 *1 *1) (-5 *1 (-437))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-1452 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *1 (-437)))) (-1452 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) (-1985 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) (-1868 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) (-3029 (*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-3029 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-2271 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2271 (*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2271 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437)))) (-3366 (*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2889 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-3729 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437))))) +(-13 (-1003) (-10 -8 (-15 -2089 ($)) (-15 -1452 ($ $)) (-15 -1452 ($ (-583 (-583 (-865 (-199)))))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236)))) (-15 -1985 ((-583 (-583 (-865 (-199)))) $)) (-15 -3435 ((-517) $)) (-15 -1868 ((-583 (-998 (-349))) $)) (-15 -1868 ((-583 (-998 (-349))) $ (-583 (-998 (-349))))) (-15 -3029 ((-583 (-349)) $)) (-15 -3029 ((-583 (-349)) $ (-583 (-349)))) (-15 -2271 ((-1158) $ (-583 (-865 (-199))) (-797) (-797) (-843))) (-15 -2271 ((-1158) $ (-865 (-199)))) (-15 -2271 ((-1158) $ (-865 (-199)) (-797) (-797) (-843))) (-15 -3366 ((-1158) $ (-865 (-199)))) (-15 -2889 ((-1158) $ (-865 (-199)) (-797))) (-15 -2256 ($ (-583 (-583 (-865 (-199)))))) (-15 -2256 ((-787) $)) (-15 -3729 ((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797)))) (-15 -2267 ((-583 (-199)) (-583 (-583 (-865 (-199)))))))) +((-1654 (($ $) NIL) (($ $ $) 11))) +(((-438 |#1| |#2| |#3|) (-10 -8 (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|))) (-439 |#2| |#3|) (-156) (-23)) (T -438)) +NIL +(-10 -8 (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 ((|#2| $) 19)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 15) (($ $ $) 13)) (-1642 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-439 |#1| |#2|) (-1184) (-156) (-23)) (T -439)) +((-3688 (*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) (-2396 (*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1654 (*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1642 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1654 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))) +(-13 (-1003) (-10 -8 (-15 -3688 (|t#2| $)) (-15 (-2396) ($) -1619) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1654 ($ $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2796 (((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|))) 88)) (-2615 (((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 86)) (-3285 (((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 58))) +(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -2615 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2796 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -3285 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))))) (-583 (-1073)) (-421) (-421)) (T -440)) +((-3285 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))) (-2796 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421))))) +(-10 -7 (-15 -2615 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2796 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -3285 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))))) +((-3621 (((-3 $ "failed") $) 11)) (-1487 (($ $ $) 20)) (-3394 (($ $ $) 21)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 14)) (-1667 (($ $ $) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 19))) +(((-441 |#1|) (-10 -8 (-15 -3394 (|#1| |#1| |#1|)) (-15 -1487 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-442)) (T -441)) +NIL +(-10 -8 (-15 -3394 (|#1| |#1| |#1|)) (-15 -1487 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) +((-2750 (((-107) $ $) 7)) (-3092 (($) 20 T CONST)) (-3621 (((-3 $ "failed") $) 16)) (-3848 (((-107) $) 19)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 27)) (-3206 (((-1021) $) 10)) (-1487 (($ $ $) 23)) (-3394 (($ $ $) 22)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-2409 (($) 21 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 26)) (** (($ $ (-843)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15))) +(((-442) (-1184)) (T -442)) +((-4118 (*1 *1 *1) (-4 *1 (-442))) (-1667 (*1 *1 *1 *1) (-4 *1 (-442))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-1487 (*1 *1 *1 *1) (-4 *1 (-442))) (-3394 (*1 *1 *1 *1) (-4 *1 (-442)))) +(-13 (-659) (-10 -8 (-15 -4118 ($ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ (-517))) (-15 -2207 ($ $ (-517))) (-6 -4177) (-15 -1487 ($ $ $)) (-15 -3394 ($ $ $)))) +(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 17)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) NIL) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 22)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 26 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 33 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 27 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) 25 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1149 |#2|)) 15)) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1149 |#2|)) NIL) (($ (-1139 |#1| |#2| |#3|)) 9) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 18)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 24)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-443 |#1| |#2| |#3|) (-13 (-1135 |#1|) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -2256 ($ (-1139 |#1| |#2| |#3|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -443)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3)))) +(-13 (-1135 |#1|) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -2256 ($ (-1139 |#1| |#2| |#3|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) +((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) 18)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 19)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 16)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-444 |#1| |#2| |#3| |#4|) (-1085 |#1| |#2|) (-1003) (-1003) (-1085 |#1| |#2|) |#2|) (T -444)) +NIL +(-1085 |#1| |#2|) +((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) NIL)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) 26 (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 39)) (-3659 ((|#4| |#4| $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-1536 (((-583 |#4|) $) 16 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 17 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2068 (((-3 |#4| "failed") $) 37)) (-2774 (((-583 |#4|) $) NIL)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) 46)) (-1672 (($ $ |#4|) NIL)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 13)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 12)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 20)) (-2442 (($ $ |#3|) 42)) (-3759 (($ $ |#3|) 43)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-1871 (((-107) |#3| $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-445 |#1| |#2| |#3| |#4|) (-1102 |#1| |#2| |#3| |#4|) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -445)) +NIL +(-1102 |#1| |#2| |#3| |#4|) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-2645 (($) 18)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3645 (((-349) $) 22) (((-199) $) 25) (((-377 (-1069 (-517))) $) 19) (((-493) $) 52)) (-2256 (((-787) $) 50) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (((-199) $) 24) (((-349) $) 21)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 36 T CONST)) (-2409 (($) 11 T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) +(((-446) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))) (-937) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1069 (-517)))) (-558 (-493)) (-10 -8 (-15 -2645 ($))))) (T -446)) +((-2645 (*1 *1) (-5 *1 (-446)))) +(-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))) (-937) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1069 (-517)))) (-558 (-493)) (-10 -8 (-15 -2645 ($)))) +((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) 16)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 20)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 18)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) 13)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 19)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 11 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) 15 (|has| $ (-6 -4180))))) +(((-447 |#1| |#2| |#3|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003) (-1056)) (T -447)) +NIL +(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) +((-1991 (((-517) (-517) (-517)) 7)) (-2973 (((-107) (-517) (-517) (-517) (-517)) 11)) (-3464 (((-1153 (-583 (-517))) (-703) (-703)) 22))) +(((-448) (-10 -7 (-15 -1991 ((-517) (-517) (-517))) (-15 -2973 ((-107) (-517) (-517) (-517) (-517))) (-15 -3464 ((-1153 (-583 (-517))) (-703) (-703))))) (T -448)) +((-3464 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1153 (-583 (-517)))) (-5 *1 (-448)))) (-2973 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))) (-1991 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448))))) +(-10 -7 (-15 -1991 ((-517) (-517) (-517))) (-15 -2973 ((-107) (-517) (-517) (-517) (-517))) (-15 -3464 ((-1153 (-583 (-517))) (-703) (-703)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-789 |#1|)) $) NIL)) (-2352 (((-1069 $) $ (-789 |#1|)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3924 (($ $ (-583 (-517))) NIL)) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-450 (-2296 |#1|) (-703)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) NIL) (($ (-1069 $) (-789 |#1|)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-450 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 (((-450 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-450 (-2296 |#1|) (-703)) (-450 (-2296 |#1|) (-703))) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 (((-450 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-450 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-449 |#1| |#2|) (-13 (-871 |#2| (-450 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) (-583 (-1073)) (-961)) (T -449)) +((-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961))))) +(-13 (-871 |#2| (-450 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) +((-2750 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2814 (((-107) $) NIL (|has| |#2| (-123)))) (-2847 (($ (-843)) NIL (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#2| (-338)))) (-3709 (((-517) $) NIL (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) NIL (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) NIL (|has| |#2| (-961)))) (-3209 (($) NIL (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) 11)) (-3556 (((-107) $) NIL (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#2| (-961)))) (-2475 (((-107) $) NIL (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#2| (-338)))) (-3206 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1647 ((|#2| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3501 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) NIL)) (-3141 (((-125)) NIL (|has| |#2| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#2|) $) NIL) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) NIL (|has| |#2| (-1003)))) (-2961 (((-703)) NIL (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#2| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2396 (($) NIL (|has| |#2| (-123)) CONST)) (-2409 (($) NIL (|has| |#2| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1547 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) 15 (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1642 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) NIL (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-450 |#1| |#2|) (-212 |#1| |#2|) (-703) (-725)) (T -450)) +NIL +(-212 |#1| |#2|) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2797 (($ $ $) 32)) (-3237 (($ $ $) 31)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3099 ((|#1| $) 26)) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 27)) (-1710 (($ |#1| $) 10)) (-1189 (($ (-583 |#1|)) 12)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4006 ((|#1| $) 23)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 9)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 29)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) 21 (|has| $ (-6 -4180))))) +(((-451 |#1|) (-13 (-886 |#1|) (-10 -8 (-15 -1189 ($ (-583 |#1|))))) (-779)) (T -451)) +((-1189 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3))))) +(-13 (-886 |#1|) (-10 -8 (-15 -1189 ($ (-583 |#1|))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ $) 69)) (-1470 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-4014 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 43)) (-3206 (((-1021) $) NIL)) (-3220 (((-3 |#4| "failed") $) 105)) (-1966 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-517)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2132 (((-2 (|:| -3402 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2256 (((-787) $) 100)) (-2396 (($) 33 T CONST)) (-1547 (((-107) $ $) 107)) (-1654 (($ $) 72) (($ $ $) NIL)) (-1642 (($ $ $) 70)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 73))) +(((-452 |#1| |#2| |#3| |#4|) (-305 |#1| |#2| |#3| |#4|) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -452)) +NIL +(-305 |#1| |#2| |#3| |#4|) +((-2189 (((-517) (-583 (-517))) 28)) (-3717 ((|#1| (-583 |#1|)) 54)) (-2292 (((-583 |#1|) (-583 |#1|)) 55)) (-3315 (((-583 |#1|) (-583 |#1|)) 57)) (-1401 ((|#1| (-583 |#1|)) 56)) (-3266 (((-583 (-517)) (-583 |#1|)) 31))) +(((-453 |#1|) (-10 -7 (-15 -1401 (|#1| (-583 |#1|))) (-15 -3717 (|#1| (-583 |#1|))) (-15 -3315 ((-583 |#1|) (-583 |#1|))) (-15 -2292 ((-583 |#1|) (-583 |#1|))) (-15 -3266 ((-583 (-517)) (-583 |#1|))) (-15 -2189 ((-517) (-583 (-517))))) (-1130 (-517))) (T -453)) +((-2189 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1130 *2)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1130 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3)))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517))))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517)))))) +(-10 -7 (-15 -1401 (|#1| (-583 |#1|))) (-15 -3717 (|#1| (-583 |#1|))) (-15 -3315 ((-583 |#1|) (-583 |#1|))) (-15 -2292 ((-583 |#1|) (-583 |#1|))) (-15 -3266 ((-583 (-517)) (-583 |#1|))) (-15 -2189 ((-517) (-583 (-517))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-517) $) NIL (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-1229 (($ (-377 (-517))) 8)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2597 (((-517) $) NIL (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL) (((-920 16) $) 9)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-517) $) NIL (|has| (-517) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1667 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL))) +(((-454) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 16) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1229 ($ (-377 (-517))))))) (T -454)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-920 16)) (-5 *1 (-454)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-1229 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454))))) +(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 16) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1229 ($ (-377 (-517)))))) +((-2560 (((-583 |#2|) $) 22)) (-2787 (((-107) |#2| $) 27)) (-2048 (((-107) (-1 (-107) |#2|) $) 20)) (-2051 (($ $ (-583 (-265 |#2|))) 12) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-3217 (((-703) (-1 (-107) |#2|) $) 21) (((-703) |#2| $) 25)) (-2256 (((-787) $) 36)) (-3675 (((-107) (-1 (-107) |#2|) $) 19)) (-1547 (((-107) $ $) 30)) (-2296 (((-703) $) 16))) +(((-455 |#1| |#2|) (-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -2560 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|))) (-456 |#2|) (-1108)) (T -455)) +NIL +(-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -2560 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|))) +((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-456 |#1|) (-1184) (-1108)) (T -456)) +((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1108)))) (-1433 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-456 *3)) (-4 *3 (-1108)))) (-3675 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-2048 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-3217 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-703)))) (-1536 (*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) (-2560 (*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) (-3217 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-703)))) (-2787 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107))))) +(-13 (-33) (-10 -8 (IF (|has| |t#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |t#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |t#1| (-1003)) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |noBranch|) |noBranch|) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4181)) (-15 -1433 ($ (-1 |t#1| |t#1|) $)) |noBranch|) (IF (|has| $ (-6 -4180)) (PROGN (-15 -3675 ((-107) (-1 (-107) |t#1|) $)) (-15 -2048 ((-107) (-1 (-107) |t#1|) $)) (-15 -3217 ((-703) (-1 (-107) |t#1|) $)) (-15 -1536 ((-583 |t#1|) $)) (-15 -2560 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3217 ((-703) |t#1| $)) (-15 -2787 ((-107) |t#1| $))) |noBranch|)) |noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-1865 (($ $) 15)) (-1839 (($ $) 24)) (-1887 (($ $) 12)) (-1898 (($ $) 10)) (-1876 (($ $) 17)) (-1853 (($ $) 22))) +(((-457 |#1|) (-10 -8 (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|))) (-458)) (T -457)) +NIL +(-10 -8 (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|))) +((-1865 (($ $) 11)) (-1839 (($ $) 10)) (-1887 (($ $) 9)) (-1898 (($ $) 8)) (-1876 (($ $) 7)) (-1853 (($ $) 6))) +(((-458) (-1184)) (T -458)) +((-1865 (*1 *1 *1) (-4 *1 (-458))) (-1839 (*1 *1 *1) (-4 *1 (-458))) (-1887 (*1 *1 *1) (-4 *1 (-458))) (-1898 (*1 *1 *1) (-4 *1 (-458))) (-1876 (*1 *1 *1) (-4 *1 (-458))) (-1853 (*1 *1 *1) (-4 *1 (-458)))) +(-13 (-10 -8 (-15 -1853 ($ $)) (-15 -1876 ($ $)) (-15 -1898 ($ $)) (-15 -1887 ($ $)) (-15 -1839 ($ $)) (-15 -1865 ($ $)))) +((-3755 (((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)) 42))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)))) (-333) (-1130 |#1|) (-13 (-333) (-134) (-657 |#1| |#2|)) (-1130 |#3|)) (T -459)) +((-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1130 *7))))) +(-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)))) +((-2750 (((-107) $ $) NIL)) (-2888 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3869 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-2814 (((-107) $) 36)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-3865 (((-107) $ $) 62)) (-3726 (((-583 (-556 $)) $) 46)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-1649 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3267 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) 48)) (-2518 (($ $ $) NIL)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-377 (-517)))) (|:| |vec| (-1153 (-377 (-517))))) (-623 $) (-1153 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-3225 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) NIL)) (-3848 (((-107) $) 39)) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1787 (((-1026 (-517) (-556 $)) $) 34)) (-3824 (($ $ (-517)) NIL)) (-1506 (((-1069 $) (-1069 $) (-556 $)) 77) (((-1069 $) (-1069 $) (-583 (-556 $))) 53) (($ $ (-556 $)) 66) (($ $ (-583 (-556 $))) 67)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1607 (((-1069 $) (-556 $)) 64 (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) NIL)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) NIL)) (-1851 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) NIL)) (-4118 (($ $) NIL)) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3146 (((-703) $) NIL)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1630 (($ $) NIL) (($ $ $) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) 33)) (-1800 (((-1026 (-517) (-556 $)) $) 17)) (-2135 (($ $) NIL (|has| $ (-961)))) (-3645 (((-349) $) 91) (((-199) $) 99) (((-153 (-349)) $) 107)) (-2256 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1026 (-517) (-556 $))) 18)) (-2961 (((-703)) NIL)) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-4074 (((-107) (-109)) 83)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 9 T CONST)) (-2409 (($) 19 T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 21)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1667 (($ $ $) 41)) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) 44) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) 24) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL))) +(((-460) (-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -3865 ((-107) $ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $))))))) (T -460)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-3225 (*1 *1 *1) (-5 *1 (-460))) (-3865 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460))))) +(-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -3865 ((-107) $ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $)))))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 25 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 22 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 21)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 14)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 12 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) 23 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) 10 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 13)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 24) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 9 (|has| $ (-6 -4180))))) +(((-461 |#1| |#2|) (-19 |#1|) (-1108) (-517)) (T -461)) NIL (-19 |#1|) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) (-501) |#1|) NIL)) (-2400 (($ $ (-501) (-459 |#1| |#3|)) NIL)) (-2480 (($ $ (-501) (-459 |#1| |#2|)) NIL)) (-2540 (($) NIL T CONST)) (-2358 (((-459 |#1| |#3|) $ (-501)) NIL)) (-2156 ((|#1| $ (-501) (-501) |#1|) NIL)) (-1905 ((|#1| $ (-501) (-501)) NIL)) (-2732 (((-578 |#1|) $) NIL)) (-1648 (((-701) $) NIL)) (-3634 (($ (-701) (-701) |#1|) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-1567 (((-501) $) NIL)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2969 (((-501) $) NIL)) (-3491 (((-501) $) NIL)) (-2519 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) (-501)) NIL) ((|#1| $ (-501) (-501) |#1|) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-2952 (((-459 |#1| |#2|) $ (-501)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-460 |#1| |#2| |#3|) (-55 |#1| (-459 |#1| |#3|) (-459 |#1| |#2|)) (-1104) (-501) (-501)) (T -460)) -NIL -(-55 |#1| (-459 |#1| |#3|) (-459 |#1| |#2|)) -((-1985 (((-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-701) (-701)) 27)) (-3328 (((-578 (-1064 |#1|)) |#1| (-701) (-701) (-701)) 34)) (-3716 (((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-578 |#3|) (-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-701)) 83))) -(((-461 |#1| |#2| |#3|) (-10 -7 (-15 -3328 ((-578 (-1064 |#1|)) |#1| (-701) (-701) (-701))) (-15 -1985 ((-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-701) (-701))) (-15 -3716 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-578 |#3|) (-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-701)))) (-318) (-1125 |#1|) (-1125 |#2|)) (T -461)) -((-3716 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-2 (|:| -4119 (-621 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-621 *7))))) (-5 *5 (-701)) (-4 *8 (-1125 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-318)) (-5 *2 (-2 (|:| -4119 (-621 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-621 *7)))) (-5 *1 (-461 *6 *7 *8)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-4 *5 (-318)) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -4119 (-621 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-621 *6))))) (-5 *1 (-461 *5 *6 *7)) (-5 *3 (-2 (|:| -4119 (-621 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-621 *6)))) (-4 *7 (-1125 *6)))) (-3328 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-701)) (-4 *3 (-318)) (-4 *5 (-1125 *3)) (-5 *2 (-578 (-1064 *3))) (-5 *1 (-461 *3 *5 *6)) (-4 *6 (-1125 *5))))) -(-10 -7 (-15 -3328 ((-578 (-1064 |#1|)) |#1| (-701) (-701) (-701))) (-15 -1985 ((-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-701) (-701))) (-15 -3716 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-578 |#3|) (-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-701)))) -((-1335 (((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|)))) 60)) (-1307 ((|#1| (-621 |#1|) |#1| (-701)) 25)) (-2575 (((-701) (-701) (-701)) 30)) (-3753 (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 42)) (-3066 (((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|) 50) (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 47)) (-4026 ((|#1| (-621 |#1|) (-621 |#1|) |#1| (-501)) 29)) (-1651 ((|#1| (-621 |#1|)) 18))) -(((-462 |#1| |#2| |#3|) (-10 -7 (-15 -1651 (|#1| (-621 |#1|))) (-15 -1307 (|#1| (-621 |#1|) |#1| (-701))) (-15 -4026 (|#1| (-621 |#1|) (-621 |#1|) |#1| (-501))) (-15 -2575 ((-701) (-701) (-701))) (-15 -3066 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3066 ((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|)) (-15 -3753 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -1335 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|)))))) (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $)))) (-1125 |#1|) (-378 |#1| |#2|)) (T -462)) -((-1335 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-3753 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-3066 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-3066 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-2575 (*1 *2 *2 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-4026 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-621 *2)) (-5 *4 (-501)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *5 (-1125 *2)) (-5 *1 (-462 *2 *5 *6)) (-4 *6 (-378 *2 *5)))) (-1307 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-621 *2)) (-5 *4 (-701)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *5 (-1125 *2)) (-5 *1 (-462 *2 *5 *6)) (-4 *6 (-378 *2 *5)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *4 (-1125 *2)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-5 *1 (-462 *2 *4 *5)) (-4 *5 (-378 *2 *4))))) -(-10 -7 (-15 -1651 (|#1| (-621 |#1|))) (-15 -1307 (|#1| (-621 |#1|) |#1| (-701))) (-15 -4026 (|#1| (-621 |#1|) (-621 |#1|) |#1| (-501))) (-15 -2575 ((-701) (-701) (-701))) (-15 -3066 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3066 ((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|)) (-15 -3753 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -1335 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|)))))) -((-3736 (((-107) $ $) NIL)) (-2308 (($ $) NIL)) (-1950 (($ $ $) 36)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) $) NIL (|has| (-107) (-777))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-3441 (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| (-107) (-777)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4168)))) (-2861 (($ $) NIL (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3754 (((-107) $ (-1116 (-501)) (-107)) NIL (|has| $ (-6 -4168))) (((-107) $ (-501) (-107)) 37 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-1526 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-3547 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-2156 (((-107) $ (-501) (-107)) NIL (|has| $ (-6 -4168)))) (-1905 (((-107) $ (-501)) NIL)) (-1934 (((-501) (-107) $ (-501)) NIL (|has| (-107) (-1001))) (((-501) (-107) $) NIL (|has| (-107) (-1001))) (((-501) (-1 (-107) (-107)) $) NIL)) (-2732 (((-578 (-107)) $) NIL (|has| $ (-6 -4167)))) (-4057 (($ $ $) 34)) (-3031 (($ $) NIL)) (-3134 (($ $ $) NIL)) (-3634 (($ (-701) (-107)) 24)) (-1969 (($ $ $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 8 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL)) (-3216 (($ $ $) NIL (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-3380 (((-578 (-107)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL)) (-2519 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-107) (-107) (-107)) $ $) 31) (($ (-1 (-107) (-107)) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ (-107) $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-107) $) NIL (|has| (-501) (-777)))) (-2520 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-3084 (($ $ (-107)) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-107)) (-578 (-107))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-262 (-107))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-578 (-262 (-107)))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-4137 (((-578 (-107)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 25)) (-2007 (($ $ (-1116 (-501))) NIL) (((-107) $ (-501)) 19) (((-107) $ (-501) (-107)) NIL)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-3713 (((-701) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001)))) (((-701) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) 26)) (-1248 (((-490) $) NIL (|has| (-107) (-556 (-490))))) (-3699 (($ (-578 (-107))) NIL)) (-3934 (($ (-578 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-3691 (((-786) $) 23)) (-1200 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-1280 (($ $ $) 32)) (-3948 (($ $) NIL)) (-3099 (($ $ $) NIL)) (-3038 (($ $ $) 40)) (-3045 (($ $) 38)) (-3032 (($ $ $) 39)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 27)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 28)) (-3092 (($ $ $) NIL)) (-3581 (((-701) $) 10 (|has| $ (-6 -4167))))) -(((-463 |#1|) (-13 (-118) (-10 -8 (-15 -3045 ($ $)) (-15 -3038 ($ $ $)) (-15 -3032 ($ $ $)))) (-501)) (T -463)) -((-3045 (*1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501)))) (-3038 (*1 *1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501)))) (-3032 (*1 *1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501))))) -(-13 (-118) (-10 -8 (-15 -3045 ($ $)) (-15 -3038 ($ $ $)) (-15 -3032 ($ $ $)))) -((-3370 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1064 |#4|)) 34)) (-3412 (((-1064 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1064 |#4|)) 21)) (-2052 (((-3 (-621 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-621 (-1064 |#4|))) 45)) (-1863 (((-1064 (-1064 |#4|)) (-1 |#4| |#1|) |#3|) 54))) -(((-464 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3412 (|#2| (-1 |#1| |#4|) (-1064 |#4|))) (-15 -3412 ((-1064 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3370 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1064 |#4|))) (-15 -2052 ((-3 (-621 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-621 (-1064 |#4|)))) (-15 -1863 ((-1064 (-1064 |#4|)) (-1 |#4| |#1|) |#3|))) (-959) (-1125 |#1|) (-1125 |#2|) (-959)) (T -464)) -((-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *6 (-1125 *5)) (-5 *2 (-1064 (-1064 *7))) (-5 *1 (-464 *5 *6 *4 *7)) (-4 *4 (-1125 *6)))) (-2052 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-621 (-1064 *8))) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-1125 *5)) (-5 *2 (-621 *6)) (-5 *1 (-464 *5 *6 *7 *8)) (-4 *7 (-1125 *6)))) (-3370 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1064 *7)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-464 *5 *2 *6 *7)) (-4 *6 (-1125 *2)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *4 (-1125 *5)) (-5 *2 (-1064 *7)) (-5 *1 (-464 *5 *4 *6 *7)) (-4 *6 (-1125 *4)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1064 *7)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-464 *5 *2 *6 *7)) (-4 *6 (-1125 *2))))) -(-10 -7 (-15 -3412 (|#2| (-1 |#1| |#4|) (-1064 |#4|))) (-15 -3412 ((-1064 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3370 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1064 |#4|))) (-15 -2052 ((-3 (-621 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-621 (-1064 |#4|)))) (-15 -1863 ((-1064 (-1064 |#4|)) (-1 |#4| |#1|) |#3|))) -((-3736 (((-107) $ $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3512 (((-1154) $) 18)) (-2007 (((-1053) $ (-1070)) 22)) (-2125 (((-1154) $) 14)) (-3691 (((-786) $) 20) (($ (-1053)) 19)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 8)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 7))) -(((-465) (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $)) (-15 -3691 ($ (-1053)))))) (T -465)) -((-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1053)) (-5 *1 (-465)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-465)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-465)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-465))))) -(-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $)) (-15 -3691 ($ (-1053))))) -((-3473 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1644 ((|#1| |#4|) 10)) (-4132 ((|#3| |#4|) 17))) -(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1644 (|#1| |#4|)) (-15 -4132 (|#3| |#4|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-508) (-906 |#1|) (-340 |#1|) (-340 |#2|)) (T -466)) -((-3473 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-466 *4 *5 *6 *3)) (-4 *6 (-340 *4)) (-4 *3 (-340 *5)))) (-4132 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-4 *2 (-340 *4)) (-5 *1 (-466 *4 *5 *2 *3)) (-4 *3 (-340 *5)))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-466 *2 *4 *5 *3)) (-4 *5 (-340 *2)) (-4 *3 (-340 *4))))) -(-10 -7 (-15 -1644 (|#1| |#4|)) (-15 -4132 (|#3| |#4|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-3736 (((-107) $ $) NIL)) (-3681 (((-107) $ (-578 |#3|)) 101) (((-107) $) 102)) (-3292 (((-107) $) 144)) (-3476 (($ $ |#4|) 93) (($ $ |#4| (-578 |#3|)) 97)) (-3520 (((-1060 (-578 (-866 |#1|)) (-578 (-262 (-866 |#1|)))) (-578 |#4|)) 137 (|has| |#3| (-556 (-1070))))) (-3236 (($ $ $) 87) (($ $ |#4|) 85)) (-1355 (((-107) $) 143)) (-2483 (($ $) 105)) (-3460 (((-1053) $) NIL)) (-3420 (($ $ $) 79) (($ (-578 $)) 81)) (-2304 (((-107) |#4| $) 104)) (-2409 (((-107) $ $) 68)) (-3463 (($ (-578 |#4|)) 86)) (-3708 (((-1018) $) NIL)) (-2397 (($ (-578 |#4|)) 141)) (-3928 (((-107) $) 142)) (-3727 (($ $) 70)) (-3983 (((-578 |#4|) $) 55)) (-2119 (((-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $)) $ (-578 |#3|)) NIL)) (-4031 (((-107) |#4| $) 73)) (-3613 (((-501) $ (-578 |#3|)) 106) (((-501) $) 107)) (-3691 (((-786) $) 140) (($ (-578 |#4|)) 82)) (-3025 (($ (-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $))) NIL)) (-3751 (((-107) $ $) 69)) (-3790 (($ $ $) 89)) (** (($ $ (-701)) 92)) (* (($ $ $) 91))) -(((-467 |#1| |#2| |#3| |#4|) (-13 (-1001) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-701))) (-15 -3790 ($ $ $)) (-15 -1355 ((-107) $)) (-15 -3292 ((-107) $)) (-15 -4031 ((-107) |#4| $)) (-15 -2409 ((-107) $ $)) (-15 -2304 ((-107) |#4| $)) (-15 -3681 ((-107) $ (-578 |#3|))) (-15 -3681 ((-107) $)) (-15 -3420 ($ $ $)) (-15 -3420 ($ (-578 $))) (-15 -3236 ($ $ $)) (-15 -3236 ($ $ |#4|)) (-15 -3727 ($ $)) (-15 -2119 ((-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $)) $ (-578 |#3|))) (-15 -3025 ($ (-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $)))) (-15 -3613 ((-501) $ (-578 |#3|))) (-15 -3613 ((-501) $)) (-15 -2483 ($ $)) (-15 -3463 ($ (-578 |#4|))) (-15 -2397 ($ (-578 |#4|))) (-15 -3928 ((-107) $)) (-15 -3983 ((-578 |#4|) $)) (-15 -3691 ($ (-578 |#4|))) (-15 -3476 ($ $ |#4|)) (-15 -3476 ($ $ |#4| (-578 |#3|))) (IF (|has| |#3| (-556 (-1070))) (-15 -3520 ((-1060 (-578 (-866 |#1|)) (-578 (-262 (-866 |#1|)))) (-578 |#4|))) |noBranch|))) (-331) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -467)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3790 (*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-1355 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3292 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-4031 (*1 *2 *3 *1) (-12 (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))) (-2409 (*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-2304 (*1 *2 *3 *1) (-12 (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))) (-3681 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))) (-3681 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3420 (*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-578 (-467 *3 *4 *5 *6))) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-3236 (*1 *1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5)))) (-3727 (*1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-2119 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-2 (|:| |mval| (-621 *4)) (|:| |invmval| (-621 *4)) (|:| |genIdeal| (-467 *4 *5 *6 *7)))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))) (-3025 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-621 *3)) (|:| |invmval| (-621 *3)) (|:| |genIdeal| (-467 *3 *4 *5 *6)))) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3613 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-501)) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))) (-3613 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-501)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-2483 (*1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-3463 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)))) (-2397 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)))) (-3928 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3983 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *6)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)))) (-3476 (*1 *1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5)))) (-3476 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *1 (-467 *4 *5 *6 *2)) (-4 *2 (-870 *4 *5 *6)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *6 (-556 (-1070))) (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1060 (-578 (-866 *4)) (-578 (-262 (-866 *4))))) (-5 *1 (-467 *4 *5 *6 *7))))) -(-13 (-1001) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-701))) (-15 -3790 ($ $ $)) (-15 -1355 ((-107) $)) (-15 -3292 ((-107) $)) (-15 -4031 ((-107) |#4| $)) (-15 -2409 ((-107) $ $)) (-15 -2304 ((-107) |#4| $)) (-15 -3681 ((-107) $ (-578 |#3|))) (-15 -3681 ((-107) $)) (-15 -3420 ($ $ $)) (-15 -3420 ($ (-578 $))) (-15 -3236 ($ $ $)) (-15 -3236 ($ $ |#4|)) (-15 -3727 ($ $)) (-15 -2119 ((-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $)) $ (-578 |#3|))) (-15 -3025 ($ (-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $)))) (-15 -3613 ((-501) $ (-578 |#3|))) (-15 -3613 ((-501) $)) (-15 -2483 ($ $)) (-15 -3463 ($ (-578 |#4|))) (-15 -2397 ($ (-578 |#4|))) (-15 -3928 ((-107) $)) (-15 -3983 ((-578 |#4|) $)) (-15 -3691 ($ (-578 |#4|))) (-15 -3476 ($ $ |#4|)) (-15 -3476 ($ $ |#4| (-578 |#3|))) (IF (|has| |#3| (-556 (-1070))) (-15 -3520 ((-1060 (-578 (-866 |#1|)) (-578 (-262 (-866 |#1|)))) (-578 |#4|))) |noBranch|))) -((-1982 (((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) 144)) (-2550 (((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) 145)) (-2893 (((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) 103)) (-1628 (((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) NIL)) (-2387 (((-578 (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) 147)) (-3591 (((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-578 (-787 |#1|))) 159))) -(((-468 |#1| |#2|) (-10 -7 (-15 -1982 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2550 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -1628 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2893 ((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2387 ((-578 (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -3591 ((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-578 (-787 |#1|))))) (-578 (-1070)) (-701)) (T -468)) -((-3591 (*1 *2 *2 *3) (-12 (-5 *2 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-5 *3 (-578 (-787 *4))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *1 (-468 *4 *5)))) (-2387 (*1 *2 *3) (-12 (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-578 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501)))))) (-5 *1 (-468 *4 *5)) (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-467 (-375 (-501)) (-212 *4 (-701)) (-787 *3) (-220 *3 (-375 (-501))))) (-14 *3 (-578 (-1070))) (-14 *4 (-701)) (-5 *1 (-468 *3 *4)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5)))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5))))) -(-10 -7 (-15 -1982 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2550 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -1628 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2893 ((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2387 ((-578 (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -3591 ((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-578 (-787 |#1|))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-3787 (($ |#1| |#2|) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2668 ((|#2| $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1850 (($) 12 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) 11) (($ $ $) 23)) (-3790 (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 18))) -(((-469 |#1| |#2|) (-13 (-21) (-471 |#1| |#2|)) (-21) (-777)) (T -469)) -NIL -(-13 (-21) (-471 |#1| |#2|)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 12)) (-2540 (($) NIL T CONST)) (-3858 (($ $) 26)) (-3787 (($ |#1| |#2|) 23)) (-1212 (($ (-1 |#1| |#1|) $) 25)) (-2668 ((|#2| $) NIL)) (-3850 ((|#1| $) 27)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1850 (($) 10 T CONST)) (-3751 (((-107) $ $) NIL)) (-3790 (($ $ $) 17)) (* (($ (-839) $) NIL) (($ (-701) $) 22))) -(((-470 |#1| |#2|) (-13 (-23) (-471 |#1| |#2|)) (-23) (-777)) (T -470)) -NIL -(-13 (-23) (-471 |#1| |#2|)) -((-3736 (((-107) $ $) 7)) (-3858 (($ $) 13)) (-3787 (($ |#1| |#2|) 16)) (-1212 (($ (-1 |#1| |#1|) $) 17)) (-2668 ((|#2| $) 14)) (-3850 ((|#1| $) 15)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6))) -(((-471 |#1| |#2|) (-1180) (-1001) (-777)) (T -471)) -((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-471 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-777)))) (-3787 (*1 *1 *2 *3) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-777)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1001)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-471 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-777)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-777))))) -(-13 (-1001) (-10 -8 (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (-15 -3787 ($ |t#1| |t#2|)) (-15 -3850 (|t#1| $)) (-15 -2668 (|t#2| $)) (-15 -3858 ($ $)))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3858 (($ $) 24)) (-3787 (($ |#1| |#2|) 21)) (-1212 (($ (-1 |#1| |#1|) $) 23)) (-2668 ((|#2| $) 26)) (-3850 ((|#1| $) 25)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 20)) (-3751 (((-107) $ $) 13))) -(((-472 |#1| |#2|) (-471 |#1| |#2|) (-1001) (-777)) (T -472)) -NIL -(-471 |#1| |#2|) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-3787 (($ |#1| |#2|) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2668 ((|#2| $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1850 (($) NIL T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 13)) (-3790 (($ $ $) NIL)) (* (($ (-701) $) NIL) (($ (-839) $) NIL))) -(((-473 |#1| |#2|) (-13 (-722) (-471 |#1| |#2|)) (-722) (-777)) (T -473)) -NIL -(-13 (-722) (-471 |#1| |#2|)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3405 (($ $ $) 16)) (-3177 (((-3 $ "failed") $ $) 13)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-3787 (($ |#1| |#2|) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2668 ((|#2| $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1850 (($) NIL T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-701) $) NIL) (($ (-839) $) NIL))) -(((-474 |#1| |#2|) (-13 (-723) (-471 |#1| |#2|)) (-723) (-777)) (T -474)) -NIL -(-13 (-723) (-471 |#1| |#2|)) -((-3195 (($ $ (-578 |#2|) (-578 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-475 |#1| |#2| |#3|) (-10 -8 (-15 -3195 (|#1| |#1| |#2| |#3|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#3|)))) (-476 |#2| |#3|) (-1001) (-1104)) (T -475)) -NIL -(-10 -8 (-15 -3195 (|#1| |#1| |#2| |#3|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#3|)))) -((-3195 (($ $ (-578 |#1|) (-578 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-476 |#1| |#2|) (-1180) (-1001) (-1104)) (T -476)) -((-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *5)) (-4 *1 (-476 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1104)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1104))))) -(-13 (-10 -8 (-15 -3195 ($ $ |t#1| |t#2|)) (-15 -3195 ($ $ (-578 |t#1|) (-578 |t#2|))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 16)) (-1395 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))) $) 18)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701) $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2153 ((|#1| $ (-501)) 23)) (-3301 ((|#2| $ (-501)) 21)) (-2451 (($ (-1 |#1| |#1|) $) 46)) (-2210 (($ (-1 |#2| |#2|) $) 43)) (-3460 (((-1053) $) NIL)) (-1327 (($ $ $) 53 (|has| |#2| (-722)))) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 42) (($ |#1|) NIL)) (-2495 ((|#2| |#1| $) 49)) (-1850 (($) 11 T CONST)) (-3751 (((-107) $ $) 29)) (-3790 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-839) $) NIL) (($ (-701) $) 36) (($ |#2| |#1|) 31))) -(((-477 |#1| |#2| |#3|) (-291 |#1| |#2|) (-1001) (-123) |#2|) (T -477)) -NIL -(-291 |#1| |#2|) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-2298 (((-107) (-107)) 24)) (-3754 ((|#1| $ (-501) |#1|) 27 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) 51)) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2921 (($ $) 54 (|has| |#1| (-1001)))) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) NIL (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) 43)) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2489 (($ $ (-501)) 13)) (-2705 (((-701) $) 11)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 22)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 20 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2213 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) 34)) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) 19 (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-4114 (($ $ $ (-501)) 50) (($ |#1| $ (-501)) 36)) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1599 (($ (-578 |#1|)) 28)) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) 18 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 39)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 14)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) 32) (($ $ (-1116 (-501))) NIL)) (-1386 (($ $ (-1116 (-501))) 49) (($ $ (-501)) 44)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) 40 (|has| $ (-6 -4168)))) (-3764 (($ $) 31)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-1186 (($ $ $) 41) (($ $ |#1|) 38)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) 15 (|has| $ (-6 -4167))))) -(((-478 |#1| |#2|) (-13 (-19 |#1|) (-252 |#1|) (-10 -8 (-15 -1599 ($ (-578 |#1|))) (-15 -2705 ((-701) $)) (-15 -2489 ($ $ (-501))) (-15 -2298 ((-107) (-107))))) (-1104) (-501)) (T -478)) -((-1599 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-478 *3 *4)) (-14 *4 (-501)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 (-501)))) (-2489 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 *2))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 (-501))))) -(-13 (-19 |#1|) (-252 |#1|) (-10 -8 (-15 -1599 ($ (-578 |#1|))) (-15 -2705 ((-701) $)) (-15 -2489 ($ $ (-501))) (-15 -2298 ((-107) (-107))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (((-528 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-528 |#1|) (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-528 |#1|) (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| (-528 |#1|) (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-528 |#1|) "failed") $) NIL)) (-3490 (((-528 |#1|) $) NIL)) (-3142 (($ (-1148 (-528 |#1|))) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-528 |#1|) (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-528 |#1|) (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| (-528 |#1|) (-336)))) (-3521 (((-107) $) NIL (|has| (-528 |#1|) (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| (-528 |#1|) (-132)) (|has| (-528 |#1|) (-336)))) (($ $) NIL (-1405 (|has| (-528 |#1|) (-132)) (|has| (-528 |#1|) (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| (-528 |#1|) (-336))) (((-762 (-839)) $) NIL (-1405 (|has| (-528 |#1|) (-132)) (|has| (-528 |#1|) (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| (-528 |#1|) (-336)))) (-1928 (((-107) $) NIL (|has| (-528 |#1|) (-336)))) (-2626 (((-528 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-528 |#1|) (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-528 |#1|) (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 (-528 |#1|)) $) NIL) (((-1064 $) $ (-839)) NIL (|has| (-528 |#1|) (-336)))) (-3104 (((-839) $) NIL (|has| (-528 |#1|) (-336)))) (-3721 (((-1064 (-528 |#1|)) $) NIL (|has| (-528 |#1|) (-336)))) (-1806 (((-1064 (-528 |#1|)) $) NIL (|has| (-528 |#1|) (-336))) (((-3 (-1064 (-528 |#1|)) "failed") $ $) NIL (|has| (-528 |#1|) (-336)))) (-2468 (($ $ (-1064 (-528 |#1|))) NIL (|has| (-528 |#1|) (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-528 |#1|) (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| (-528 |#1|) (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL (|has| (-528 |#1|) (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-528 |#1|) (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| (-528 |#1|) (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| (-528 |#1|) (-132)) (|has| (-528 |#1|) (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| (-528 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-528 |#1|) (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 (-528 |#1|))) NIL)) (-1349 (($) NIL (|has| (-528 |#1|) (-336)))) (-3481 (($) NIL (|has| (-528 |#1|) (-336)))) (-2085 (((-1148 (-528 |#1|)) $) NIL) (((-621 (-528 |#1|)) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-528 |#1|) (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-528 |#1|)) NIL)) (-1274 (($ $) NIL (|has| (-528 |#1|) (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| (-528 |#1|) (-132)) (|has| (-528 |#1|) (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| (-528 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-528 |#1|) (-336)))) (-3584 (($ $) NIL (|has| (-528 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-528 |#1|) (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ (-528 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-528 |#1|)) NIL) (($ (-528 |#1|) $) NIL))) -(((-479 |#1| |#2|) (-297 (-528 |#1|)) (-839) (-839)) (T -479)) -NIL -(-297 (-528 |#1|)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) (-501) |#1|) 33)) (-2400 (($ $ (-501) |#4|) NIL)) (-2480 (($ $ (-501) |#5|) NIL)) (-2540 (($) NIL T CONST)) (-2358 ((|#4| $ (-501)) NIL)) (-2156 ((|#1| $ (-501) (-501) |#1|) 32)) (-1905 ((|#1| $ (-501) (-501)) 30)) (-2732 (((-578 |#1|) $) NIL)) (-1648 (((-701) $) 26)) (-3634 (($ (-701) (-701) |#1|) 23)) (-3248 (((-701) $) 28)) (-3379 (((-107) $ (-701)) NIL)) (-1567 (((-501) $) 24)) (-2734 (((-501) $) 25)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2969 (((-501) $) 27)) (-3491 (((-501) $) 29)) (-2519 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) 36 (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 14)) (-3122 (($) 15)) (-2007 ((|#1| $ (-501) (-501)) 31) ((|#1| $ (-501) (-501) |#1|) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-2952 ((|#5| $ (-501)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-480 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1104) (-501) (-501) (-340 |#1|) (-340 |#1|)) (T -480)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL)) (-4087 (($ $ (-517) (-461 |#1| |#3|)) NIL)) (-3739 (($ $ (-517) (-461 |#1| |#2|)) NIL)) (-3092 (($) NIL T CONST)) (-1939 (((-461 |#1| |#3|) $ (-517)) NIL)) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-461 |#1| |#2|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-462 |#1| |#2| |#3|) (-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) (-1108) (-517) (-517)) (T -462)) +NIL +(-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) +((-1631 (((-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703)) 27)) (-3176 (((-583 (-1069 |#1|)) |#1| (-703) (-703) (-703)) 34)) (-1659 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)) 83))) +(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -3176 ((-583 (-1069 |#1|)) |#1| (-703) (-703) (-703))) (-15 -1631 ((-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -1659 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)))) (-319) (-1130 |#1|) (-1130 |#2|)) (T -463)) +((-1659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1130 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) (-1631 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1130 *6)))) (-3176 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1130 *3)) (-5 *2 (-583 (-1069 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1130 *5))))) +(-10 -7 (-15 -3176 ((-583 (-1069 |#1|)) |#1| (-703) (-703) (-703))) (-15 -1631 ((-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -1659 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)))) +((-2293 (((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 60)) (-1358 ((|#1| (-623 |#1|) |#1| (-703)) 25)) (-2240 (((-703) (-703) (-703)) 30)) (-1954 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 42)) (-2368 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 50) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 47)) (-2184 ((|#1| (-623 |#1|) (-623 |#1|) |#1| (-517)) 29)) (-2671 ((|#1| (-623 |#1|)) 18))) +(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -2671 (|#1| (-623 |#1|))) (-15 -1358 (|#1| (-623 |#1|) |#1| (-703))) (-15 -2184 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2240 ((-703) (-703) (-703))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1954 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2293 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))))) (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $)))) (-1130 |#1|) (-379 |#1| |#2|)) (T -464)) +((-2293 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-1954 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2368 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2368 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2240 (*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2184 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-1358 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1130 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4))))) +(-10 -7 (-15 -2671 (|#1| (-623 |#1|))) (-15 -1358 (|#1| (-623 |#1|) |#1| (-703))) (-15 -2184 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2240 ((-703) (-703) (-703))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1954 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2293 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))))) +((-2750 (((-107) $ $) NIL)) (-1460 (($ $) NIL)) (-2775 (($ $ $) 35)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-107) $ (-1121 (-517)) (-107)) NIL (|has| $ (-6 -4181))) (((-107) $ (-517) (-107)) 36 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-2052 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3225 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1445 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4181)))) (-1377 (((-107) $ (-517)) NIL)) (-2607 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1003))) (((-517) (-107) $) NIL (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1536 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-4025 (($ $ $) 33)) (-2630 (($ $) NIL)) (-1888 (($ $ $) NIL)) (-3462 (($ (-703) (-107)) 23)) (-1514 (($ $ $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 8 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL)) (-3237 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-2560 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL)) (-1433 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-107) (-107) (-107)) $ $) 30) (($ (-1 (-107) (-107)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-107) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2565 (($ $ (-107)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1941 (((-583 (-107)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 24)) (-1449 (($ $ (-1121 (-517))) NIL) (((-107) $ (-517)) 18) (((-107) $ (-517) (-107)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3217 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) 25)) (-3645 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2276 (($ (-583 (-107))) NIL)) (-2452 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2256 (((-787) $) 22)) (-3675 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-4035 (($ $ $) 31)) (-2207 (($ $) NIL)) (-2391 (($ $ $) NIL)) (-3555 (($ $ $) 39)) (-3563 (($ $) 37)) (-3545 (($ $ $) 38)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 26)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 27)) (-2382 (($ $ $) NIL)) (-2296 (((-703) $) 10 (|has| $ (-6 -4180))))) +(((-465 |#1|) (-13 (-118) (-10 -8 (-15 -3563 ($ $)) (-15 -3555 ($ $ $)) (-15 -3545 ($ $ $)))) (-517)) (T -465)) +((-3563 (*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3555 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3545 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517))))) +(-13 (-118) (-10 -8 (-15 -3563 ($ $)) (-15 -3555 ($ $ $)) (-15 -3545 ($ $ $)))) +((-2449 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1069 |#4|)) 34)) (-1718 (((-1069 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1069 |#4|)) 21)) (-3863 (((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1069 |#4|))) 45)) (-3138 (((-1069 (-1069 |#4|)) (-1 |#4| |#1|) |#3|) 54))) +(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1718 (|#2| (-1 |#1| |#4|) (-1069 |#4|))) (-15 -1718 ((-1069 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2449 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1069 |#4|))) (-15 -3863 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1069 |#4|)))) (-15 -3138 ((-1069 (-1069 |#4|)) (-1 |#4| |#1|) |#3|))) (-961) (-1130 |#1|) (-1130 |#2|) (-961)) (T -466)) +((-3138 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1130 *6)))) (-3863 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1069 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1130 *6)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2)))) (-1718 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1130 *5)) (-5 *2 (-1069 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1130 *4)))) (-1718 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2))))) +(-10 -7 (-15 -1718 (|#2| (-1 |#1| |#4|) (-1069 |#4|))) (-15 -1718 ((-1069 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2449 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1069 |#4|))) (-15 -3863 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1069 |#4|)))) (-15 -3138 ((-1069 (-1069 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3307 (((-1158) $) 18)) (-1449 (((-1056) $ (-1073)) 22)) (-1242 (((-1158) $) 14)) (-2256 (((-787) $) 20) (($ (-1056)) 19)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 8)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 7))) +(((-467) (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -2256 ($ (-1056)))))) (T -467)) +((-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1056)) (-5 *1 (-467)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-467))))) +(-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -2256 ($ (-1056))))) +((-4112 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3484 ((|#1| |#4|) 10)) (-1897 ((|#3| |#4|) 17))) +(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3484 (|#1| |#4|)) (-15 -1897 (|#3| |#4|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-509) (-909 |#1|) (-343 |#1|) (-343 |#2|)) (T -468)) +((-4112 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) (-1897 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4))))) +(-10 -7 (-15 -3484 (|#1| |#4|)) (-15 -1897 (|#3| |#4|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2750 (((-107) $ $) NIL)) (-2591 (((-107) $ (-583 |#3|)) 101) (((-107) $) 102)) (-2814 (((-107) $) 144)) (-4145 (($ $ |#4|) 93) (($ $ |#4| (-583 |#3|)) 97)) (-3382 (((-1063 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|)) 137 (|has| |#3| (-558 (-1073))))) (-3425 (($ $ $) 87) (($ $ |#4|) 85)) (-3848 (((-107) $) 143)) (-3769 (($ $) 105)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 79) (($ (-583 $)) 81)) (-2549 (((-107) |#4| $) 104)) (-1204 (((-107) $ $) 68)) (-4014 (($ (-583 |#4|)) 86)) (-3206 (((-1021) $) NIL)) (-4060 (($ (-583 |#4|)) 141)) (-2745 (((-107) $) 142)) (-1759 (($ $) 70)) (-3079 (((-583 |#4|) $) 55)) (-1419 (((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL)) (-2224 (((-107) |#4| $) 73)) (-3141 (((-517) $ (-583 |#3|)) 106) (((-517) $) 107)) (-2256 (((-787) $) 140) (($ (-583 |#4|)) 82)) (-2058 (($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $))) NIL)) (-1547 (((-107) $ $) 69)) (-1642 (($ $ $) 89)) (** (($ $ (-703)) 92)) (* (($ $ $) 91))) +(((-469 |#1| |#2| |#3| |#4|) (-13 (-1003) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1642 ($ $ $)) (-15 -3848 ((-107) $)) (-15 -2814 ((-107) $)) (-15 -2224 ((-107) |#4| $)) (-15 -1204 ((-107) $ $)) (-15 -2549 ((-107) |#4| $)) (-15 -2591 ((-107) $ (-583 |#3|))) (-15 -2591 ((-107) $)) (-15 -1812 ($ $ $)) (-15 -1812 ($ (-583 $))) (-15 -3425 ($ $ $)) (-15 -3425 ($ $ |#4|)) (-15 -1759 ($ $)) (-15 -1419 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -2058 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -3141 ((-517) $ (-583 |#3|))) (-15 -3141 ((-517) $)) (-15 -3769 ($ $)) (-15 -4014 ($ (-583 |#4|))) (-15 -4060 ($ (-583 |#4|))) (-15 -2745 ((-107) $)) (-15 -3079 ((-583 |#4|) $)) (-15 -2256 ($ (-583 |#4|))) (-15 -4145 ($ $ |#4|)) (-15 -4145 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1073))) (-15 -3382 ((-1063 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|))) |noBranch|))) (-333) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -469)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-1642 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3848 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2814 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2224 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-1204 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2549 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-2591 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-1812 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-1812 (*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3425 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3425 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-1759 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-1419 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3141 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-3141 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3769 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-4014 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-4060 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-2745 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3079 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-4145 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-871 *4 *5 *6)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *6 (-558 (-1073))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1063 (-583 (-874 *4)) (-583 (-265 (-874 *4))))) (-5 *1 (-469 *4 *5 *6 *7))))) +(-13 (-1003) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1642 ($ $ $)) (-15 -3848 ((-107) $)) (-15 -2814 ((-107) $)) (-15 -2224 ((-107) |#4| $)) (-15 -1204 ((-107) $ $)) (-15 -2549 ((-107) |#4| $)) (-15 -2591 ((-107) $ (-583 |#3|))) (-15 -2591 ((-107) $)) (-15 -1812 ($ $ $)) (-15 -1812 ($ (-583 $))) (-15 -3425 ($ $ $)) (-15 -3425 ($ $ |#4|)) (-15 -1759 ($ $)) (-15 -1419 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -2058 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -3141 ((-517) $ (-583 |#3|))) (-15 -3141 ((-517) $)) (-15 -3769 ($ $)) (-15 -4014 ($ (-583 |#4|))) (-15 -4060 ($ (-583 |#4|))) (-15 -2745 ((-107) $)) (-15 -3079 ((-583 |#4|) $)) (-15 -2256 ($ (-583 |#4|))) (-15 -4145 ($ $ |#4|)) (-15 -4145 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1073))) (-15 -3382 ((-1063 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|))) |noBranch|))) +((-1597 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 144)) (-3164 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 145)) (-3702 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 103)) (-3849 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) NIL)) (-3984 (((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 147)) (-2920 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))) 159))) +(((-470 |#1| |#2|) (-10 -7 (-15 -1597 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3164 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3849 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3702 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3984 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2920 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))))) (-583 (-1073)) (-703)) (T -470)) +((-2920 (*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))) (-3984 (*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5))))) +(-10 -7 (-15 -1597 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3164 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3849 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3702 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3984 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2920 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) 12 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) 11) (($ $ $) 23)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 18))) +(((-471 |#1| |#2|) (-13 (-21) (-473 |#1| |#2|)) (-21) (-779)) (T -471)) +NIL +(-13 (-21) (-473 |#1| |#2|)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 12)) (-3092 (($) NIL T CONST)) (-1212 (($ $) 26)) (-1339 (($ |#1| |#2|) 23)) (-1893 (($ (-1 |#1| |#1|) $) 25)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) 10 T CONST)) (-1547 (((-107) $ $) NIL)) (-1642 (($ $ $) 17)) (* (($ (-843) $) NIL) (($ (-703) $) 22))) +(((-472 |#1| |#2|) (-13 (-23) (-473 |#1| |#2|)) (-23) (-779)) (T -472)) +NIL +(-13 (-23) (-473 |#1| |#2|)) +((-2750 (((-107) $ $) 7)) (-1212 (($ $) 13)) (-1339 (($ |#1| |#2|) 16)) (-1893 (($ (-1 |#1| |#1|) $) 17)) (-1968 ((|#2| $) 14)) (-1191 ((|#1| $) 15)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6))) +(((-473 |#1| |#2|) (-1184) (-1003) (-779)) (T -473)) +((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-779)))) (-1339 (*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1003)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-779)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779))))) +(-13 (-1003) (-10 -8 (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -1339 ($ |t#1| |t#2|)) (-15 -1191 (|t#1| $)) (-15 -1968 (|t#2| $)) (-15 -1212 ($ $)))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 13)) (-1642 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL))) +(((-474 |#1| |#2|) (-13 (-724) (-473 |#1| |#2|)) (-724) (-779)) (T -474)) +NIL +(-13 (-724) (-473 |#1| |#2|)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1640 (($ $ $) 16)) (-4038 (((-3 $ "failed") $ $) 13)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL))) +(((-475 |#1| |#2|) (-13 (-725) (-473 |#1| |#2|)) (-725) (-779)) (T -475)) +NIL +(-13 (-725) (-473 |#1| |#2|)) +((-2750 (((-107) $ $) NIL)) (-1212 (($ $) 24)) (-1339 (($ |#1| |#2|) 21)) (-1893 (($ (-1 |#1| |#1|) $) 23)) (-1968 ((|#2| $) 26)) (-1191 ((|#1| $) 25)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 20)) (-1547 (((-107) $ $) 13))) +(((-476 |#1| |#2|) (-473 |#1| |#2|) (-1003) (-779)) (T -476)) +NIL +(-473 |#1| |#2|) +((-2051 (($ $ (-583 |#2|) (-583 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -2051 (|#1| |#1| |#2| |#3|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-478 |#2| |#3|) (-1003) (-1108)) (T -477)) +NIL +(-10 -8 (-15 -2051 (|#1| |#1| |#2| |#3|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) +((-2051 (($ $ (-583 |#1|) (-583 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-478 |#1| |#2|) (-1184) (-1003) (-1108)) (T -478)) +((-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1108)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1108))))) +(-13 (-10 -8 (-15 -2051 ($ $ |t#1| |t#2|)) (-15 -2051 ($ $ (-583 |t#1|) (-583 |t#2|))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 16)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $) 18)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3466 ((|#1| $ (-517)) 23)) (-2902 ((|#2| $ (-517)) 21)) (-3420 (($ (-1 |#1| |#1|) $) 46)) (-2777 (($ (-1 |#2| |#2|) $) 43)) (-3985 (((-1056) $) NIL)) (-3299 (($ $ $) 53 (|has| |#2| (-724)))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 42) (($ |#1|) NIL)) (-2720 ((|#2| |#1| $) 49)) (-2396 (($) 11 T CONST)) (-1547 (((-107) $ $) 29)) (-1642 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-843) $) NIL) (($ (-703) $) 36) (($ |#2| |#1|) 31))) +(((-479 |#1| |#2| |#3|) (-293 |#1| |#2|) (-1003) (-123) |#2|) (T -479)) +NIL +(-293 |#1| |#2|) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2484 (((-107) (-107)) 24)) (-2411 ((|#1| $ (-517) |#1|) 27 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) 51)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3483 (($ $) 54 (|has| |#1| (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) 43)) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3809 (($ $ (-517)) 13)) (-4019 (((-703) $) 11)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 22)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 20 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 34)) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) 19 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-1710 (($ $ $ (-517)) 50) (($ |#1| $ (-517)) 36)) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1977 (($ (-583 |#1|)) 28)) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) 18 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 39)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 14)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 32) (($ $ (-1121 (-517))) NIL)) (-2154 (($ $ (-1121 (-517))) 49) (($ $ (-517)) 44)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) 40 (|has| $ (-6 -4181)))) (-2433 (($ $) 31)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2568 (($ $ $) 41) (($ $ |#1|) 38)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 15 (|has| $ (-6 -4180))))) +(((-480 |#1| |#2|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107))))) (-1108) (-517)) (T -480)) +((-1977 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 *2))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517))))) +(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-530 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-530 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-530 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-530 |#1|) "failed") $) NIL)) (-3189 (((-530 |#1|) $) NIL)) (-1967 (($ (-1153 (-530 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-530 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-530 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-530 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-530 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-530 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-1506 (((-530 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-530 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-530 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-530 |#1|) (-338)))) (-1704 (((-1069 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338)))) (-2729 (((-1069 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-1069 (-530 |#1|)) "failed") $ $) NIL (|has| (-530 |#1|) (-338)))) (-3600 (($ $ (-1069 (-530 |#1|))) NIL (|has| (-530 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-530 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| (-530 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-530 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-530 |#1|))) NIL)) (-1766 (($) NIL (|has| (-530 |#1|) (-338)))) (-1224 (($) NIL (|has| (-530 |#1|) (-338)))) (-4114 (((-1153 (-530 |#1|)) $) NIL) (((-623 (-530 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-530 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-530 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-530 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-530 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-530 |#1|)) NIL) (($ (-530 |#1|) $) NIL))) +(((-481 |#1| |#2|) (-299 (-530 |#1|)) (-843) (-843)) (T -481)) +NIL +(-299 (-530 |#1|)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) 33)) (-4087 (($ $ (-517) |#4|) NIL)) (-3739 (($ $ (-517) |#5|) NIL)) (-3092 (($) NIL T CONST)) (-1939 ((|#4| $ (-517)) NIL)) (-1445 ((|#1| $ (-517) (-517) |#1|) 32)) (-1377 ((|#1| $ (-517) (-517)) 30)) (-1536 (((-583 |#1|) $) NIL)) (-1477 (((-703) $) 26)) (-3462 (($ (-703) (-703) |#1|) 23)) (-1486 (((-703) $) 28)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) 24)) (-1338 (((-517) $) 25)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) 27)) (-1307 (((-517) $) 29)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) 36 (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 15)) (-1449 ((|#1| $ (-517) (-517)) 31) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 ((|#5| $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-482 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1108) (-517) (-517) (-343 |#1|) (-343 |#1|)) (T -482)) NIL (-55 |#1| |#4| |#5|) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) NIL)) (-2786 ((|#1| $) NIL)) (-1511 (($ $) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 57 (|has| $ (-6 -4168)))) (-2045 (((-107) $) NIL (|has| |#1| (-777))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3441 (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777)))) (($ (-1 (-107) |#1| |#1|) $) 55 (|has| $ (-6 -4168)))) (-2861 (($ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3319 (($ $ $) 23 (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 21 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4168))) (($ $ "rest" $) 24 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) NIL)) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-1564 ((|#1| $) NIL)) (-2540 (($) NIL T CONST)) (-1375 (($ $) 28 (|has| $ (-6 -4168)))) (-3785 (($ $) 29)) (-1199 (($ $) 18) (($ $ (-701)) 32)) (-2921 (($ $) 53 (|has| |#1| (-1001)))) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) NIL (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) NIL)) (-1526 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-3275 (((-107) $) NIL)) (-1934 (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001))) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) (-1 (-107) |#1|) $) NIL)) (-2732 (((-578 |#1|) $) 27 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 31 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2213 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) 56)) (-3216 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 51 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3143 (($ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) 50 (|has| |#1| (-1001)))) (-1383 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-4114 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) 13) (($ $ (-701)) NIL)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-3654 (((-107) $) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 12)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) 17)) (-3122 (($) 16)) (-2007 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1116 (-501))) NIL) ((|#1| $ (-501)) NIL) ((|#1| $ (-501) |#1|) NIL)) (-1932 (((-501) $ $) NIL)) (-1386 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-2622 (((-107) $) 33)) (-1455 (($ $) NIL)) (-3873 (($ $) NIL (|has| $ (-6 -4168)))) (-3278 (((-701) $) NIL)) (-2787 (($ $) 35)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) 34)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 26)) (-1186 (($ $ $) 52) (($ $ |#1|) NIL)) (-3934 (($ $ $) NIL) (($ |#1| $) 10) (($ (-578 $)) NIL) (($ $ |#1|) NIL)) (-3691 (((-786) $) 45 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 47 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) 9 (|has| $ (-6 -4167))))) -(((-481 |#1| |#2|) (-601 |#1|) (-1104) (-501)) (T -481)) -NIL -(-601 |#1|) -((-1933 ((|#4| |#4|) 26)) (-3689 (((-701) |#4|) 31)) (-3752 (((-701) |#4|) 32)) (-3552 (((-578 |#3|) |#4|) 37 (|has| |#3| (-6 -4168)))) (-1616 (((-3 |#4| "failed") |#4|) 47)) (-3852 ((|#4| |#4|) 40)) (-3315 ((|#1| |#4|) 39))) -(((-482 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1933 (|#4| |#4|)) (-15 -3689 ((-701) |#4|)) (-15 -3752 ((-701) |#4|)) (IF (|has| |#3| (-6 -4168)) (-15 -3552 ((-578 |#3|) |#4|)) |noBranch|) (-15 -3315 (|#1| |#4|)) (-15 -3852 (|#4| |#4|)) (-15 -1616 ((-3 |#4| "failed") |#4|))) (-331) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|)) (T -482)) -((-1616 (*1 *2 *2) (|partial| -12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3315 (*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-331)) (-5 *1 (-482 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5)))) (-3552 (*1 *2 *3) (-12 (|has| *6 (-6 -4168)) (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-578 *6)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5))))) -(-10 -7 (-15 -1933 (|#4| |#4|)) (-15 -3689 ((-701) |#4|)) (-15 -3752 ((-701) |#4|)) (IF (|has| |#3| (-6 -4168)) (-15 -3552 ((-578 |#3|) |#4|)) |noBranch|) (-15 -3315 (|#1| |#4|)) (-15 -3852 (|#4| |#4|)) (-15 -1616 ((-3 |#4| "failed") |#4|))) -((-1933 ((|#8| |#4|) 20)) (-3552 (((-578 |#3|) |#4|) 29 (|has| |#7| (-6 -4168)))) (-1616 (((-3 |#8| "failed") |#4|) 23))) -(((-483 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1933 (|#8| |#4|)) (-15 -1616 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4168)) (-15 -3552 ((-578 |#3|) |#4|)) |noBranch|)) (-508) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|) (-906 |#1|) (-340 |#5|) (-340 |#5|) (-618 |#5| |#6| |#7|)) (T -483)) -((-3552 (*1 *2 *3) (-12 (|has| *9 (-6 -4168)) (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7)) (-5 *2 (-578 *6)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-618 *4 *5 *6)) (-4 *10 (-618 *7 *8 *9)))) (-1616 (*1 *2 *3) (|partial| -12 (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *2 (-618 *7 *8 *9)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-618 *4 *5 *6)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *2 (-618 *7 *8 *9)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-618 *4 *5 *6)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7))))) -(-10 -7 (-15 -1933 (|#8| |#4|)) (-15 -1616 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4168)) (-15 -3552 ((-578 |#3|) |#4|)) |noBranch|)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2563 (($ (-701) (-701)) NIL)) (-2412 (($ $ $) NIL)) (-2676 (($ (-546 |#1| |#3|)) NIL) (($ $) NIL)) (-2981 (((-107) $) NIL)) (-1198 (($ $ (-501) (-501)) 12)) (-3935 (($ $ (-501) (-501)) NIL)) (-3548 (($ $ (-501) (-501) (-501) (-501)) NIL)) (-3173 (($ $) NIL)) (-4007 (((-107) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3251 (($ $ (-501) (-501) $) NIL)) (-3754 ((|#1| $ (-501) (-501) |#1|) NIL) (($ $ (-578 (-501)) (-578 (-501)) $) NIL)) (-2400 (($ $ (-501) (-546 |#1| |#3|)) NIL)) (-2480 (($ $ (-501) (-546 |#1| |#2|)) NIL)) (-1292 (($ (-701) |#1|) NIL)) (-2540 (($) NIL T CONST)) (-1933 (($ $) 19 (|has| |#1| (-276)))) (-2358 (((-546 |#1| |#3|) $ (-501)) NIL)) (-3689 (((-701) $) 22 (|has| |#1| (-508)))) (-2156 ((|#1| $ (-501) (-501) |#1|) NIL)) (-1905 ((|#1| $ (-501) (-501)) NIL)) (-2732 (((-578 |#1|) $) NIL)) (-3752 (((-701) $) 24 (|has| |#1| (-508)))) (-3552 (((-578 (-546 |#1| |#2|)) $) 27 (|has| |#1| (-508)))) (-1648 (((-701) $) NIL)) (-3634 (($ (-701) (-701) |#1|) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3572 ((|#1| $) 17 (|has| |#1| (-6 (-4169 "*"))))) (-1567 (((-501) $) 10)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2969 (((-501) $) 11)) (-3491 (((-501) $) NIL)) (-2630 (($ (-578 (-578 |#1|))) NIL)) (-2519 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2237 (((-578 (-578 |#1|)) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1616 (((-3 $ "failed") $) 31 (|has| |#1| (-331)))) (-1452 (($ $ $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) (-501)) NIL) ((|#1| $ (-501) (-501) |#1|) NIL) (($ $ (-578 (-501)) (-578 (-501))) NIL)) (-3133 (($ (-578 |#1|)) NIL) (($ (-578 $)) NIL)) (-3697 (((-107) $) NIL)) (-3315 ((|#1| $) 15 (|has| |#1| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-2952 (((-546 |#1| |#2|) $ (-501)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001))) (($ (-546 |#1| |#2|)) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3719 (((-107) $) NIL)) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-501) $) NIL) (((-546 |#1| |#2|) $ (-546 |#1| |#2|)) NIL) (((-546 |#1| |#3|) (-546 |#1| |#3|) $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-484 |#1| |#2| |#3|) (-618 |#1| (-546 |#1| |#3|) (-546 |#1| |#2|)) (-959) (-501) (-501)) (T -484)) -NIL -(-618 |#1| (-546 |#1| |#3|) (-546 |#1| |#2|)) -((-3758 (((-1064 |#1|) (-701)) 74)) (-2225 (((-1148 |#1|) (-1148 |#1|) (-839)) 67)) (-2396 (((-1154) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) |#1|) 82)) (-3863 (((-1148 |#1|) (-1148 |#1|) (-701)) 36)) (-2890 (((-1148 |#1|) (-839)) 69)) (-3610 (((-1148 |#1|) (-1148 |#1|) (-501)) 24)) (-2663 (((-1064 |#1|) (-1148 |#1|)) 75)) (-4065 (((-1148 |#1|) (-839)) 93)) (-1928 (((-107) (-1148 |#1|)) 78)) (-2626 (((-1148 |#1|) (-1148 |#1|) (-839)) 59)) (-1792 (((-1064 |#1|) (-1148 |#1|)) 87)) (-3104 (((-839) (-1148 |#1|)) 56)) (-3833 (((-1148 |#1|) (-1148 |#1|)) 30)) (-3506 (((-1148 |#1|) (-839) (-839)) 95)) (-2307 (((-1148 |#1|) (-1148 |#1|) (-1018) (-1018)) 23)) (-2493 (((-1148 |#1|) (-1148 |#1|) (-701) (-1018)) 37)) (-4119 (((-1148 (-1148 |#1|)) (-839)) 92)) (-3803 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 79)) (** (((-1148 |#1|) (-1148 |#1|) (-501)) 43)) (* (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 25))) -(((-485 |#1|) (-10 -7 (-15 -2396 ((-1154) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) |#1|)) (-15 -2890 ((-1148 |#1|) (-839))) (-15 -3506 ((-1148 |#1|) (-839) (-839))) (-15 -2663 ((-1064 |#1|) (-1148 |#1|))) (-15 -3758 ((-1064 |#1|) (-701))) (-15 -2493 ((-1148 |#1|) (-1148 |#1|) (-701) (-1018))) (-15 -3863 ((-1148 |#1|) (-1148 |#1|) (-701))) (-15 -2307 ((-1148 |#1|) (-1148 |#1|) (-1018) (-1018))) (-15 -3610 ((-1148 |#1|) (-1148 |#1|) (-501))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-501))) (-15 * ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -3803 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2626 ((-1148 |#1|) (-1148 |#1|) (-839))) (-15 -2225 ((-1148 |#1|) (-1148 |#1|) (-839))) (-15 -3833 ((-1148 |#1|) (-1148 |#1|))) (-15 -3104 ((-839) (-1148 |#1|))) (-15 -1928 ((-107) (-1148 |#1|))) (-15 -4119 ((-1148 (-1148 |#1|)) (-839))) (-15 -4065 ((-1148 |#1|) (-839))) (-15 -1792 ((-1064 |#1|) (-1148 |#1|)))) (-318)) (T -485)) -((-1792 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 (-1148 *4))) (-5 *1 (-485 *4)) (-4 *4 (-318)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-485 *4)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-839)) (-5 *1 (-485 *4)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) (-2225 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-839)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-839)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-3803 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-501)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-3610 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-501)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-2307 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1018)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-3863 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-2493 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1148 *5)) (-5 *3 (-701)) (-5 *4 (-1018)) (-4 *5 (-318)) (-5 *1 (-485 *5)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4)))) (-3506 (*1 *2 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-1154)) (-5 *1 (-485 *4))))) -(-10 -7 (-15 -2396 ((-1154) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) |#1|)) (-15 -2890 ((-1148 |#1|) (-839))) (-15 -3506 ((-1148 |#1|) (-839) (-839))) (-15 -2663 ((-1064 |#1|) (-1148 |#1|))) (-15 -3758 ((-1064 |#1|) (-701))) (-15 -2493 ((-1148 |#1|) (-1148 |#1|) (-701) (-1018))) (-15 -3863 ((-1148 |#1|) (-1148 |#1|) (-701))) (-15 -2307 ((-1148 |#1|) (-1148 |#1|) (-1018) (-1018))) (-15 -3610 ((-1148 |#1|) (-1148 |#1|) (-501))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-501))) (-15 * ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -3803 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2626 ((-1148 |#1|) (-1148 |#1|) (-839))) (-15 -2225 ((-1148 |#1|) (-1148 |#1|) (-839))) (-15 -3833 ((-1148 |#1|) (-1148 |#1|))) (-15 -3104 ((-839) (-1148 |#1|))) (-15 -1928 ((-107) (-1148 |#1|))) (-15 -4119 ((-1148 (-1148 |#1|)) (-839))) (-15 -4065 ((-1148 |#1|) (-839))) (-15 -1792 ((-1064 |#1|) (-1148 |#1|)))) -((-1957 (((-1 |#1| |#1|) |#1|) 11)) (-1309 (((-1 |#1| |#1|)) 10))) -(((-486 |#1|) (-10 -7 (-15 -1309 ((-1 |#1| |#1|))) (-15 -1957 ((-1 |#1| |#1|) |#1|))) (-13 (-657) (-25))) (T -486)) -((-1957 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-486 *3)) (-4 *3 (-13 (-657) (-25))))) (-1309 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-486 *3)) (-4 *3 (-13 (-657) (-25)))))) -(-10 -7 (-15 -1309 ((-1 |#1| |#1|))) (-15 -1957 ((-1 |#1| |#1|) |#1|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3405 (($ $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-3787 (($ (-701) |#1|) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 (-701) (-701)) $) NIL)) (-2668 ((|#1| $) NIL)) (-3850 (((-701) $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 20)) (-1850 (($) NIL T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-701) $) NIL) (($ (-839) $) NIL))) -(((-487 |#1|) (-13 (-723) (-471 (-701) |#1|)) (-777)) (T -487)) -NIL -(-13 (-723) (-471 (-701) |#1|)) -((-2640 (((-578 |#2|) (-1064 |#1|) |#3|) 83)) (-2725 (((-578 (-2 (|:| |outval| |#2|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#2|))))) (-621 |#1|) |#3| (-1 (-373 (-1064 |#1|)) (-1064 |#1|))) 99)) (-2712 (((-1064 |#1|) (-621 |#1|)) 95))) -(((-488 |#1| |#2| |#3|) (-10 -7 (-15 -2712 ((-1064 |#1|) (-621 |#1|))) (-15 -2640 ((-578 |#2|) (-1064 |#1|) |#3|)) (-15 -2725 ((-578 (-2 (|:| |outval| |#2|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#2|))))) (-621 |#1|) |#3| (-1 (-373 (-1064 |#1|)) (-1064 |#1|))))) (-331) (-331) (-13 (-331) (-775))) (T -488)) -((-2725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *6)) (-5 *5 (-1 (-373 (-1064 *6)) (-1064 *6))) (-4 *6 (-331)) (-5 *2 (-578 (-2 (|:| |outval| *7) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 *7)))))) (-5 *1 (-488 *6 *7 *4)) (-4 *7 (-331)) (-4 *4 (-13 (-331) (-775))))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *5)) (-4 *5 (-331)) (-5 *2 (-578 *6)) (-5 *1 (-488 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775))))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-331)) (-5 *2 (-1064 *4)) (-5 *1 (-488 *4 *5 *6)) (-4 *5 (-331)) (-4 *6 (-13 (-331) (-775)))))) -(-10 -7 (-15 -2712 ((-1064 |#1|) (-621 |#1|))) (-15 -2640 ((-578 |#2|) (-1064 |#1|) |#3|)) (-15 -2725 ((-578 (-2 (|:| |outval| |#2|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#2|))))) (-621 |#1|) |#3| (-1 (-373 (-1064 |#1|)) (-1064 |#1|))))) -((-2040 (((-769 (-501))) 11)) (-2051 (((-769 (-501))) 13)) (-2029 (((-762 (-501))) 8))) -(((-489) (-10 -7 (-15 -2029 ((-762 (-501)))) (-15 -2040 ((-769 (-501)))) (-15 -2051 ((-769 (-501)))))) (T -489)) -((-2051 (*1 *2) (-12 (-5 *2 (-769 (-501))) (-5 *1 (-489)))) (-2040 (*1 *2) (-12 (-5 *2 (-769 (-501))) (-5 *1 (-489)))) (-2029 (*1 *2) (-12 (-5 *2 (-762 (-501))) (-5 *1 (-489))))) -(-10 -7 (-15 -2029 ((-762 (-501)))) (-15 -2040 ((-769 (-501)))) (-15 -2051 ((-769 (-501))))) -((-3736 (((-107) $ $) NIL)) (-2066 (((-1053) $) 46)) (-2494 (((-107) $) 43)) (-2892 (((-1070) $) 44)) (-2588 (((-107) $) 41)) (-2011 (((-1053) $) 42)) (-2321 (((-107) $) NIL)) (-1536 (((-107) $) NIL)) (-3889 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-1682 (($ $ (-578 (-1070))) 20)) (-1771 (((-50) $) 22)) (-1680 (((-107) $) NIL)) (-2004 (((-501) $) NIL)) (-3708 (((-1018) $) NIL)) (-1684 (($ $ (-578 (-1070)) (-1070)) 58)) (-2370 (((-107) $) NIL)) (-2017 (((-199) $) NIL)) (-2591 (($ $) 38)) (-4055 (((-786) $) NIL)) (-2499 (((-107) $ $) NIL)) (-2007 (($ $ (-501)) NIL) (($ $ (-578 (-501))) NIL)) (-3770 (((-578 $) $) 28)) (-2351 (((-1070) (-578 $)) 47)) (-1248 (($ (-578 $)) 51) (($ (-1053)) NIL) (($ (-1070)) 18) (($ (-501)) 8) (($ (-199)) 25) (($ (-786)) NIL) (((-1003) $) 11) (($ (-1003)) 12)) (-3701 (((-1070) (-1070) (-578 $)) 50)) (-3691 (((-786) $) NIL)) (-1329 (($ $) 49)) (-1321 (($ $) 48)) (-2406 (($ $ (-578 $)) 55)) (-2750 (((-107) $) 27)) (-1850 (($) 9 T CONST)) (-1925 (($) 10 T CONST)) (-3751 (((-107) $ $) 59)) (-3803 (($ $ $) 64)) (-3790 (($ $ $) 60)) (** (($ $ (-701)) 63) (($ $ (-501)) 62)) (* (($ $ $) 61)) (-3581 (((-501) $) NIL))) -(((-490) (-13 (-1004 (-1053) (-1070) (-501) (-199) (-786)) (-556 (-1003)) (-10 -8 (-15 -1771 ((-50) $)) (-15 -1248 ($ (-1003))) (-15 -2406 ($ $ (-578 $))) (-15 -1684 ($ $ (-578 (-1070)) (-1070))) (-15 -1682 ($ $ (-578 (-1070)))) (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 -3803 ($ $ $)) (-15 ** ($ $ (-701))) (-15 ** ($ $ (-501))) (-15 0 ($) -3897) (-15 1 ($) -3897) (-15 -2591 ($ $)) (-15 -2066 ((-1053) $)) (-15 -2351 ((-1070) (-578 $))) (-15 -3701 ((-1070) (-1070) (-578 $)))))) (T -490)) -((-1771 (*1 *2 *1) (-12 (-5 *2 (-50)) (-5 *1 (-490)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-1003)) (-5 *1 (-490)))) (-2406 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-490))) (-5 *1 (-490)))) (-1684 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-1070)) (-5 *1 (-490)))) (-1682 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-490)))) (-3790 (*1 *1 *1 *1) (-5 *1 (-490))) (* (*1 *1 *1 *1) (-5 *1 (-490))) (-3803 (*1 *1 *1 *1) (-5 *1 (-490))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-490)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-490)))) (-1850 (*1 *1) (-5 *1 (-490))) (-1925 (*1 *1) (-5 *1 (-490))) (-2591 (*1 *1 *1) (-5 *1 (-490))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-490)))) (-2351 (*1 *2 *3) (-12 (-5 *3 (-578 (-490))) (-5 *2 (-1070)) (-5 *1 (-490)))) (-3701 (*1 *2 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-490))) (-5 *1 (-490))))) -(-13 (-1004 (-1053) (-1070) (-501) (-199) (-786)) (-556 (-1003)) (-10 -8 (-15 -1771 ((-50) $)) (-15 -1248 ($ (-1003))) (-15 -2406 ($ $ (-578 $))) (-15 -1684 ($ $ (-578 (-1070)) (-1070))) (-15 -1682 ($ $ (-578 (-1070)))) (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 -3803 ($ $ $)) (-15 ** ($ $ (-701))) (-15 ** ($ $ (-501))) (-15 (-1850) ($) -3897) (-15 (-1925) ($) -3897) (-15 -2591 ($ $)) (-15 -2066 ((-1053) $)) (-15 -2351 ((-1070) (-578 $))) (-15 -3701 ((-1070) (-1070) (-578 $))))) -((-2161 (((-490) (-1070)) 15)) (-1771 ((|#1| (-490)) 20))) -(((-491 |#1|) (-10 -7 (-15 -2161 ((-490) (-1070))) (-15 -1771 (|#1| (-490)))) (-1104)) (T -491)) -((-1771 (*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *1 (-491 *2)) (-4 *2 (-1104)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-490)) (-5 *1 (-491 *4)) (-4 *4 (-1104))))) -(-10 -7 (-15 -2161 ((-490) (-1070))) (-15 -1771 (|#1| (-490)))) -((-1677 ((|#2| |#2|) 17)) (-3892 ((|#2| |#2|) 13)) (-1540 ((|#2| |#2| (-501) (-501)) 20)) (-2216 ((|#2| |#2|) 15))) -(((-492 |#1| |#2|) (-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1540 (|#2| |#2| (-501) (-501)))) (-13 (-508) (-134)) (-1142 |#1|)) (T -492)) -((-1540 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-492 *4 *2)) (-4 *2 (-1142 *4)))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3)))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3))))) -(-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1540 (|#2| |#2| (-501) (-501)))) -((-3227 (((-578 (-262 (-866 |#2|))) (-578 |#2|) (-578 (-1070))) 32)) (-1706 (((-578 |#2|) (-866 |#1|) |#3|) 53) (((-578 |#2|) (-1064 |#1|) |#3|) 52)) (-1753 (((-578 (-578 |#2|)) (-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070)) |#3|) 87))) -(((-493 |#1| |#2| |#3|) (-10 -7 (-15 -1706 ((-578 |#2|) (-1064 |#1|) |#3|)) (-15 -1706 ((-578 |#2|) (-866 |#1|) |#3|)) (-15 -1753 ((-578 (-578 |#2|)) (-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070)) |#3|)) (-15 -3227 ((-578 (-262 (-866 |#2|))) (-578 |#2|) (-578 (-1070))))) (-419) (-331) (-13 (-331) (-775))) (T -493)) -((-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1070))) (-4 *6 (-331)) (-5 *2 (-578 (-262 (-866 *6)))) (-5 *1 (-493 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-13 (-331) (-775))))) (-1753 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-493 *6 *7 *5)) (-4 *7 (-331)) (-4 *5 (-13 (-331) (-775))))) (-1706 (*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-4 *5 (-419)) (-5 *2 (-578 *6)) (-5 *1 (-493 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775))))) (-1706 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *5)) (-4 *5 (-419)) (-5 *2 (-578 *6)) (-5 *1 (-493 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775)))))) -(-10 -7 (-15 -1706 ((-578 |#2|) (-1064 |#1|) |#3|)) (-15 -1706 ((-578 |#2|) (-866 |#1|) |#3|)) (-15 -1753 ((-578 (-578 |#2|)) (-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070)) |#3|)) (-15 -3227 ((-578 (-262 (-866 |#2|))) (-578 |#2|) (-578 (-1070))))) -((-3220 ((|#2| |#2| |#1|) 17)) (-2057 ((|#2| (-578 |#2|)) 26)) (-1588 ((|#2| (-578 |#2|)) 45))) -(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2057 (|#2| (-578 |#2|))) (-15 -1588 (|#2| (-578 |#2|))) (-15 -3220 (|#2| |#2| |#1|))) (-276) (-1125 |#1|) |#1| (-1 |#1| |#1| (-701))) (T -494)) -((-3220 (*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-701))) (-5 *1 (-494 *3 *2 *4 *5)) (-4 *2 (-1125 *3)))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-494 *4 *2 *5 *6)) (-4 *4 (-276)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-701))))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-494 *4 *2 *5 *6)) (-4 *4 (-276)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-701)))))) -(-10 -7 (-15 -2057 (|#2| (-578 |#2|))) (-15 -1588 (|#2| (-578 |#2|))) (-15 -3220 (|#2| |#2| |#1|))) -((-3739 (((-373 (-1064 |#4|)) (-1064 |#4|) (-1 (-373 (-1064 |#3|)) (-1064 |#3|))) 79) (((-373 |#4|) |#4| (-1 (-373 (-1064 |#3|)) (-1064 |#3|))) 164))) -(((-495 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4| (-1 (-373 (-1064 |#3|)) (-1064 |#3|)))) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|) (-1 (-373 (-1064 |#3|)) (-1064 |#3|))))) (-777) (-723) (-13 (-276) (-134)) (-870 |#3| |#2| |#1|)) (T -495)) -((-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 (-1064 *7)) (-1064 *7))) (-4 *7 (-13 (-276) (-134))) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *8 (-870 *7 *6 *5)) (-5 *2 (-373 (-1064 *8))) (-5 *1 (-495 *5 *6 *7 *8)) (-5 *3 (-1064 *8)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 (-1064 *7)) (-1064 *7))) (-4 *7 (-13 (-276) (-134))) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *2 (-373 *3)) (-5 *1 (-495 *5 *6 *7 *3)) (-4 *3 (-870 *7 *6 *5))))) -(-10 -7 (-15 -3739 ((-373 |#4|) |#4| (-1 (-373 (-1064 |#3|)) (-1064 |#3|)))) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|) (-1 (-373 (-1064 |#3|)) (-1064 |#3|))))) -((-1677 ((|#4| |#4|) 73)) (-3892 ((|#4| |#4|) 69)) (-1540 ((|#4| |#4| (-501) (-501)) 75)) (-2216 ((|#4| |#4|) 71))) -(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3892 (|#4| |#4|)) (-15 -2216 (|#4| |#4|)) (-15 -1677 (|#4| |#4|)) (-15 -1540 (|#4| |#4| (-501) (-501)))) (-13 (-331) (-336) (-556 (-501))) (-1125 |#1|) (-655 |#1| |#2|) (-1142 |#3|)) (T -496)) -((-1540 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-331) (-336) (-556 *3))) (-4 *5 (-1125 *4)) (-4 *6 (-655 *4 *5)) (-5 *1 (-496 *4 *5 *6 *2)) (-4 *2 (-1142 *6)))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5)))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5))))) -(-10 -7 (-15 -3892 (|#4| |#4|)) (-15 -2216 (|#4| |#4|)) (-15 -1677 (|#4| |#4|)) (-15 -1540 (|#4| |#4| (-501) (-501)))) -((-1677 ((|#2| |#2|) 27)) (-3892 ((|#2| |#2|) 23)) (-1540 ((|#2| |#2| (-501) (-501)) 29)) (-2216 ((|#2| |#2|) 25))) -(((-497 |#1| |#2|) (-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1540 (|#2| |#2| (-501) (-501)))) (-13 (-331) (-336) (-556 (-501))) (-1142 |#1|)) (T -497)) -((-1540 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-331) (-336) (-556 *3))) (-5 *1 (-497 *4 *2)) (-4 *2 (-1142 *4)))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3)))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3))))) -(-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1540 (|#2| |#2| (-501) (-501)))) -((-3339 (((-3 (-501) "failed") |#2| |#1| (-1 (-3 (-501) "failed") |#1|)) 14) (((-3 (-501) "failed") |#2| |#1| (-501) (-1 (-3 (-501) "failed") |#1|)) 13) (((-3 (-501) "failed") |#2| (-501) (-1 (-3 (-501) "failed") |#1|)) 26))) -(((-498 |#1| |#2|) (-10 -7 (-15 -3339 ((-3 (-501) "failed") |#2| (-501) (-1 (-3 (-501) "failed") |#1|))) (-15 -3339 ((-3 (-501) "failed") |#2| |#1| (-501) (-1 (-3 (-501) "failed") |#1|))) (-15 -3339 ((-3 (-501) "failed") |#2| |#1| (-1 (-3 (-501) "failed") |#1|)))) (-959) (-1125 |#1|)) (T -498)) -((-3339 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-501) "failed") *4)) (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *4 *3)) (-4 *3 (-1125 *4)))) (-3339 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-501) "failed") *4)) (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *4 *3)) (-4 *3 (-1125 *4)))) (-3339 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-501) "failed") *5)) (-4 *5 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *5 *3)) (-4 *3 (-1125 *5))))) -(-10 -7 (-15 -3339 ((-3 (-501) "failed") |#2| (-501) (-1 (-3 (-501) "failed") |#1|))) (-15 -3339 ((-3 (-501) "failed") |#2| |#1| (-501) (-1 (-3 (-501) "failed") |#1|))) (-15 -3339 ((-3 (-501) "failed") |#2| |#1| (-1 (-3 (-501) "failed") |#1|)))) -((-2619 (($ $ $) 78)) (-1559 (((-373 $) $) 46)) (-3765 (((-3 (-501) "failed") $) 58)) (-3490 (((-501) $) 36)) (-2870 (((-3 (-375 (-501)) "failed") $) 73)) (-1696 (((-107) $) 23)) (-3518 (((-375 (-501)) $) 71)) (-1628 (((-107) $) 49)) (-3185 (($ $ $ $) 85)) (-2164 (((-107) $) 15)) (-2940 (($ $ $) 56)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 68)) (-3493 (((-3 $ "failed") $) 63)) (-4100 (($ $) 22)) (-3437 (($ $ $) 83)) (-3746 (($) 59)) (-3260 (($ $) 52)) (-3739 (((-373 $) $) 44)) (-3172 (((-107) $) 13)) (-1864 (((-701) $) 27)) (-2596 (($ $ (-701)) NIL) (($ $) 10)) (-3764 (($ $) 16)) (-1248 (((-501) $) NIL) (((-490) $) 35) (((-810 (-501)) $) 39) (((-346) $) 30) (((-199) $) 32)) (-3965 (((-701)) 8)) (-1808 (((-107) $ $) 19)) (-1299 (($ $ $) 54))) -(((-499 |#1|) (-10 -8 (-15 -3437 (|#1| |#1| |#1|)) (-15 -3185 (|#1| |#1| |#1| |#1|)) (-15 -4100 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -2619 (|#1| |#1| |#1|)) (-15 -1808 ((-107) |#1| |#1|)) (-15 -3172 ((-107) |#1|)) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -1299 (|#1| |#1| |#1|)) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -1248 ((-501) |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2164 ((-107) |#1|)) (-15 -1864 ((-701) |#1|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -1628 ((-107) |#1|)) (-15 -3965 ((-701)))) (-500)) (T -499)) -((-3965 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-499 *3)) (-4 *3 (-500))))) -(-10 -8 (-15 -3437 (|#1| |#1| |#1|)) (-15 -3185 (|#1| |#1| |#1| |#1|)) (-15 -4100 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -2619 (|#1| |#1| |#1|)) (-15 -1808 ((-107) |#1| |#1|)) (-15 -3172 ((-107) |#1|)) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -1299 (|#1| |#1| |#1|)) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -1248 ((-501) |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2164 ((-107) |#1|)) (-15 -1864 ((-701) |#1|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -1628 ((-107) |#1|)) (-15 -3965 ((-701)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-2619 (($ $ $) 100)) (-3177 (((-3 $ "failed") $ $) 19)) (-3887 (($ $ $ $) 88)) (-3676 (($ $) 51)) (-1559 (((-373 $) $) 52)) (-2781 (((-107) $ $) 140)) (-1417 (((-501) $) 129)) (-1525 (($ $ $) 103)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 121)) (-3490 (((-501) $) 120)) (-3023 (($ $ $) 144)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 119) (((-621 (-501)) (-621 $)) 118)) (-2174 (((-3 $ "failed") $) 34)) (-2870 (((-3 (-375 (-501)) "failed") $) 97)) (-1696 (((-107) $) 99)) (-3518 (((-375 (-501)) $) 98)) (-2890 (($) 96) (($ $) 95)) (-3034 (($ $ $) 143)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 138)) (-1628 (((-107) $) 53)) (-3185 (($ $ $ $) 86)) (-2002 (($ $ $) 101)) (-2164 (((-107) $) 131)) (-2940 (($ $ $) 112)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 115)) (-1355 (((-107) $) 31)) (-3729 (((-107) $) 107)) (-3493 (((-3 $ "failed") $) 109)) (-4067 (((-107) $) 130)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 147)) (-4124 (($ $ $ $) 87)) (-4111 (($ $ $) 132)) (-1323 (($ $ $) 133)) (-4100 (($ $) 90)) (-4139 (($ $) 104)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3437 (($ $ $) 85)) (-3746 (($) 108 T CONST)) (-2170 (($ $) 92)) (-3708 (((-1018) $) 10) (($ $) 94)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3260 (($ $) 113)) (-3739 (((-373 $) $) 50)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 146) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 145)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 139)) (-3172 (((-107) $) 106)) (-1864 (((-701) $) 141)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 142)) (-2596 (($ $ (-701)) 126) (($ $) 124)) (-2565 (($ $) 91)) (-3764 (($ $) 93)) (-1248 (((-501) $) 123) (((-490) $) 117) (((-810 (-501)) $) 116) (((-346) $) 111) (((-199) $) 110)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-501)) 122)) (-3965 (((-701)) 29)) (-1808 (((-107) $ $) 102)) (-1299 (($ $ $) 114)) (-1965 (($) 105)) (-2442 (((-107) $ $) 39)) (-3429 (($ $ $ $) 89)) (-1720 (($ $) 128)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-701)) 127) (($ $) 125)) (-3778 (((-107) $ $) 135)) (-3768 (((-107) $ $) 136)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 134)) (-3762 (((-107) $ $) 137)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-500) (-1180)) (T -500)) -((-3729 (*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) (-1965 (*1 *1) (-4 *1 (-500))) (-4139 (*1 *1 *1) (-4 *1 (-500))) (-1525 (*1 *1 *1 *1) (-4 *1 (-500))) (-1808 (*1 *2 *1 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) (-2002 (*1 *1 *1 *1) (-4 *1 (-500))) (-2619 (*1 *1 *1 *1) (-4 *1 (-500))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-375 (-501))))) (-2870 (*1 *2 *1) (|partial| -12 (-4 *1 (-500)) (-5 *2 (-375 (-501))))) (-2890 (*1 *1) (-4 *1 (-500))) (-2890 (*1 *1 *1) (-4 *1 (-500))) (-3708 (*1 *1 *1) (-4 *1 (-500))) (-3764 (*1 *1 *1) (-4 *1 (-500))) (-2170 (*1 *1 *1) (-4 *1 (-500))) (-2565 (*1 *1 *1) (-4 *1 (-500))) (-4100 (*1 *1 *1) (-4 *1 (-500))) (-3429 (*1 *1 *1 *1 *1) (-4 *1 (-500))) (-3887 (*1 *1 *1 *1 *1) (-4 *1 (-500))) (-4124 (*1 *1 *1 *1 *1) (-4 *1 (-500))) (-3185 (*1 *1 *1 *1 *1) (-4 *1 (-500))) (-3437 (*1 *1 *1 *1) (-4 *1 (-500)))) -(-13 (-1108) (-276) (-750) (-206) (-556 (-501)) (-950 (-501)) (-577 (-501)) (-556 (-490)) (-556 (-810 (-501))) (-806 (-501)) (-130) (-933) (-134) (-1046) (-10 -8 (-15 -3729 ((-107) $)) (-15 -3172 ((-107) $)) (-6 -4166) (-15 -1965 ($)) (-15 -4139 ($ $)) (-15 -1525 ($ $ $)) (-15 -1808 ((-107) $ $)) (-15 -2002 ($ $ $)) (-15 -2619 ($ $ $)) (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $)) (-15 -2890 ($)) (-15 -2890 ($ $)) (-15 -3708 ($ $)) (-15 -3764 ($ $)) (-15 -2170 ($ $)) (-15 -2565 ($ $)) (-15 -4100 ($ $)) (-15 -3429 ($ $ $ $)) (-15 -3887 ($ $ $ $)) (-15 -4124 ($ $ $ $)) (-15 -3185 ($ $ $ $)) (-15 -3437 ($ $ $)) (-6 -4165))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-555 (-786)) . T) ((-130) . T) ((-156) . T) ((-556 (-199)) . T) ((-556 (-346)) . T) ((-556 (-490)) . T) ((-556 (-501)) . T) ((-556 (-810 (-501))) . T) ((-206) . T) ((-260) . T) ((-276) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-577 (-501)) . T) ((-648 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-750) . T) ((-775) . T) ((-777) . T) ((-806 (-501)) . T) ((-841) . T) ((-933) . T) ((-950 (-501)) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) . T) ((-1108) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 25)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 86)) (-2865 (($ $) 87)) (-1639 (((-107) $) NIL)) (-2619 (($ $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) 42)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL)) (-1525 (($ $ $) 80)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL)) (-3490 (((-501) $) NIL)) (-3023 (($ $ $) 79)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 60) (((-621 (-501)) (-621 $)) 57)) (-2174 (((-3 $ "failed") $) 83)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL)) (-1696 (((-107) $) NIL)) (-3518 (((-375 (-501)) $) NIL)) (-2890 (($) 62) (($ $) 63)) (-3034 (($ $ $) 78)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3185 (($ $ $ $) NIL)) (-2002 (($ $ $) 54)) (-2164 (((-107) $) NIL)) (-2940 (($ $ $) NIL)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL)) (-1355 (((-107) $) 26)) (-3729 (((-107) $) 73)) (-3493 (((-3 $ "failed") $) NIL)) (-4067 (((-107) $) 34)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4124 (($ $ $ $) 43)) (-4111 (($ $ $) 75)) (-1323 (($ $ $) 74)) (-4100 (($ $) NIL)) (-4139 (($ $) 40)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) 53)) (-3437 (($ $ $) NIL)) (-3746 (($) NIL T CONST)) (-2170 (($ $) 31)) (-3708 (((-1018) $) NIL) (($ $) 33)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 117)) (-3664 (($ $ $) 84) (($ (-578 $)) NIL)) (-3260 (($ $) NIL)) (-3739 (((-373 $) $) 103)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) 82)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 77)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-2565 (($ $) 32)) (-3764 (($ $) 30)) (-1248 (((-501) $) 39) (((-490) $) 51) (((-810 (-501)) $) NIL) (((-346) $) 46) (((-199) $) 48) (((-1053) $) 52)) (-3691 (((-786) $) 37) (($ (-501)) 38) (($ $) NIL) (($ (-501)) 38)) (-3965 (((-701)) NIL)) (-1808 (((-107) $ $) NIL)) (-1299 (($ $ $) NIL)) (-1965 (($) 29)) (-2442 (((-107) $ $) NIL)) (-3429 (($ $ $ $) 41)) (-1720 (($ $) 61)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 27 T CONST)) (-1925 (($) 28 T CONST)) (-3671 (((-1053) $) 20) (((-1053) $ (-107)) 22) (((-1154) (-753) $) 23) (((-1154) (-753) $ (-107)) 24)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 64)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 65)) (-3797 (($ $) 66) (($ $ $) 68)) (-3790 (($ $ $) 67)) (** (($ $ (-839)) NIL) (($ $ (-701)) 72)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 70) (($ $ $) 69))) -(((-501) (-13 (-500) (-556 (-1053)) (-751) (-10 -8 (-15 -2890 ($ $)) (-6 -4154) (-6 -4159) (-6 -4155) (-6 -4149)))) (T -501)) -((-2890 (*1 *1 *1) (-5 *1 (-501)))) -(-13 (-500) (-556 (-1053)) (-751) (-10 -8 (-15 -2890 ($ $)) (-6 -4154) (-6 -4159) (-6 -4155) (-6 -4149))) -((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) NIL)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) NIL)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-502 |#1| |#2| |#3|) (-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) (-1001) (-1001) (-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167)))) (T -502)) -NIL -(-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) -((-4128 (((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-1 (-1064 |#2|) (-1064 |#2|))) 49))) -(((-503 |#1| |#2|) (-10 -7 (-15 -4128 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-1 (-1064 |#2|) (-1064 |#2|))))) (-13 (-777) (-508)) (-13 (-27) (-389 |#1|))) (T -503)) -((-4128 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-1 (-1064 *3) (-1064 *3))) (-4 *3 (-13 (-27) (-389 *6))) (-4 *6 (-13 (-777) (-508))) (-5 *2 (-530 *3)) (-5 *1 (-503 *6 *3))))) -(-10 -7 (-15 -4128 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-1 (-1064 |#2|) (-1064 |#2|))))) -((-2163 (((-530 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-4046 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-1545 (((-530 |#5|) |#5| (-1 |#3| |#3|)) 198))) -(((-504 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1545 ((-530 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2163 ((-530 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4046 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-777) (-508) (-950 (-501))) (-13 (-27) (-389 |#1|)) (-1125 |#2|) (-1125 (-375 |#3|)) (-310 |#2| |#3| |#4|)) (T -504)) -((-4046 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-27) (-389 *4))) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-4 *7 (-1125 (-375 *6))) (-5 *1 (-504 *4 *5 *6 *7 *2)) (-4 *2 (-310 *5 *6 *7)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-27) (-389 *5))) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-4 *8 (-1125 (-375 *7))) (-5 *2 (-530 *3)) (-5 *1 (-504 *5 *6 *7 *8 *3)) (-4 *3 (-310 *6 *7 *8)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-27) (-389 *5))) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-4 *8 (-1125 (-375 *7))) (-5 *2 (-530 *3)) (-5 *1 (-504 *5 *6 *7 *8 *3)) (-4 *3 (-310 *6 *7 *8))))) -(-10 -7 (-15 -1545 ((-530 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2163 ((-530 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4046 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-1550 (((-107) (-501) (-501)) 10)) (-2561 (((-501) (-501)) 7)) (-1521 (((-501) (-501) (-501)) 8))) -(((-505) (-10 -7 (-15 -2561 ((-501) (-501))) (-15 -1521 ((-501) (-501) (-501))) (-15 -1550 ((-107) (-501) (-501))))) (T -505)) -((-1550 (*1 *2 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-107)) (-5 *1 (-505)))) (-1521 (*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-505)))) (-2561 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-505))))) -(-10 -7 (-15 -2561 ((-501) (-501))) (-15 -1521 ((-501) (-501) (-501))) (-15 -1550 ((-107) (-501) (-501)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1783 ((|#1| $) 61)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3978 (($ $) 91)) (-3937 (($ $) 74)) (-3405 ((|#1| $) 62)) (-3177 (((-3 $ "failed") $ $) 19)) (-3743 (($ $) 73)) (-3970 (($ $) 90)) (-3929 (($ $) 75)) (-3984 (($ $) 89)) (-3945 (($ $) 76)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 69)) (-3490 (((-501) $) 68)) (-2174 (((-3 $ "failed") $) 34)) (-3074 (($ |#1| |#1|) 66)) (-2164 (((-107) $) 60)) (-2003 (($) 101)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 72)) (-4067 (((-107) $) 59)) (-4111 (($ $ $) 107)) (-1323 (($ $ $) 106)) (-1635 (($ $) 98)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-2392 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-375 (-501))) 64)) (-1277 ((|#1| $) 63)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3694 (((-3 $ "failed") $ $) 42)) (-1989 (($ $) 99)) (-3991 (($ $) 88)) (-3949 (($ $) 77)) (-3981 (($ $) 87)) (-3940 (($ $) 78)) (-3975 (($ $) 86)) (-3933 (($ $) 79)) (-3684 (((-107) $ |#1|) 58)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-501)) 70)) (-3965 (((-701)) 29)) (-4003 (($ $) 97)) (-3958 (($ $) 85)) (-2442 (((-107) $ $) 39)) (-3995 (($ $) 96)) (-3952 (($ $) 84)) (-4013 (($ $) 95)) (-3964 (($ $) 83)) (-3550 (($ $) 94)) (-3967 (($ $) 82)) (-4008 (($ $) 93)) (-3961 (($ $) 81)) (-3999 (($ $) 92)) (-3955 (($ $) 80)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 104)) (-3768 (((-107) $ $) 103)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 105)) (-3762 (((-107) $ $) 102)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ $) 100) (($ $ (-375 (-501))) 71)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-506 |#1|) (-1180) (-13 (-372) (-1090))) (T -506)) -((-2392 (*1 *1 *2 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-3074 (*1 *1 *2 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-2392 (*1 *1 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-2392 (*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107)))) (-3684 (*1 *2 *1 *3) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107))))) -(-13 (-419) (-777) (-1090) (-916) (-950 (-501)) (-10 -8 (-6 -2391) (-15 -2392 ($ |t#1| |t#1|)) (-15 -3074 ($ |t#1| |t#1|)) (-15 -2392 ($ |t#1|)) (-15 -2392 ($ (-375 (-501)))) (-15 -1277 (|t#1| $)) (-15 -3405 (|t#1| $)) (-15 -1783 (|t#1| $)) (-15 -2164 ((-107) $)) (-15 -4067 ((-107) $)) (-15 -3684 ((-107) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-254) . T) ((-260) . T) ((-419) . T) ((-456) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-777) . T) ((-916) . T) ((-950 (-501)) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) . T) ((-1093) . T)) -((-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 9)) (-2865 (($ $) 11)) (-1639 (((-107) $) 18)) (-2174 (((-3 $ "failed") $) 16)) (-2442 (((-107) $ $) 20))) -(((-507 |#1|) (-10 -8 (-15 -1639 ((-107) |#1|)) (-15 -2442 ((-107) |#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|))) (-508)) (T -507)) -NIL -(-10 -8 (-15 -1639 ((-107) |#1|)) (-15 -2442 ((-107) |#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 42)) (-2865 (($ $) 41)) (-1639 (((-107) $) 39)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ $) 43)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 44)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 40)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-508) (-1180)) (T -508)) -((-3694 (*1 *1 *1 *1) (|partial| -4 *1 (-508))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1738 *1) (|:| -4154 *1) (|:| |associate| *1))) (-4 *1 (-508)))) (-2865 (*1 *1 *1) (-4 *1 (-508))) (-2442 (*1 *2 *1 *1) (-12 (-4 *1 (-508)) (-5 *2 (-107)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-107))))) -(-13 (-156) (-37 $) (-260) (-10 -8 (-15 -3694 ((-3 $ "failed") $ $)) (-15 -1516 ((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $)) (-15 -2865 ($ $)) (-15 -2442 ((-107) $ $)) (-15 -1639 ((-107) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-1875 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1070) (-578 |#2|)) 35)) (-1791 (((-530 |#2|) |#2| (-1070)) 58)) (-3707 (((-3 |#2| "failed") |#2| (-1070)) 148)) (-2433 (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) (-553 |#2|) (-578 (-553 |#2|))) 151)) (-1733 (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) |#2|) 38))) -(((-509 |#1| |#2|) (-10 -7 (-15 -1733 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) |#2|)) (-15 -1875 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1070) (-578 |#2|))) (-15 -3707 ((-3 |#2| "failed") |#2| (-1070))) (-15 -1791 ((-530 |#2|) |#2| (-1070))) (-15 -2433 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) (-553 |#2|) (-578 (-553 |#2|))))) (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -509)) -((-2433 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1070)) (-5 *6 (-578 (-553 *3))) (-5 *5 (-553 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-509 *7 *3)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-509 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3707 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-509 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-1875 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-509 *6 *3)))) (-1733 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-509 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5)))))) -(-10 -7 (-15 -1733 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) |#2|)) (-15 -1875 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1070) (-578 |#2|))) (-15 -3707 ((-3 |#2| "failed") |#2| (-1070))) (-15 -1791 ((-530 |#2|) |#2| (-1070))) (-15 -2433 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) (-553 |#2|) (-578 (-553 |#2|))))) -((-1559 (((-373 |#1|) |#1|) 18)) (-3739 (((-373 |#1|) |#1|) 33)) (-3354 (((-3 |#1| "failed") |#1|) 44)) (-3369 (((-373 |#1|) |#1|) 51))) -(((-510 |#1|) (-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3369 ((-373 |#1|) |#1|)) (-15 -3354 ((-3 |#1| "failed") |#1|))) (-500)) (T -510)) -((-3354 (*1 *2 *2) (|partial| -12 (-5 *1 (-510 *2)) (-4 *2 (-500)))) (-3369 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500)))) (-1559 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500)))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500))))) -(-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3369 ((-373 |#1|) |#1|)) (-15 -3354 ((-3 |#1| "failed") |#1|))) -((-3060 (($) 9)) (-4129 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-1500 (((-578 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 26)) (-4114 (($ (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2372 (($ (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-2922 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)) (-4137 (((-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-3682 (((-1154)) 12))) -(((-511) (-10 -8 (-15 -3060 ($)) (-15 -3682 ((-1154))) (-15 -1500 ((-578 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2372 ($ (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4114 ($ (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4129 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4137 ((-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2922 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -511)) -((-2922 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-511)))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-511)))) (-4129 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-511)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-511)))) (-2372 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-511)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-511)))) (-3682 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-511)))) (-3060 (*1 *1) (-5 *1 (-511)))) -(-10 -8 (-15 -3060 ($)) (-15 -3682 ((-1154))) (-15 -1500 ((-578 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2372 ($ (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4114 ($ (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4129 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4137 ((-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2922 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) -((-3728 (((-1064 (-375 (-1064 |#2|))) |#2| (-553 |#2|) (-553 |#2|) (-1064 |#2|)) 28)) (-3649 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) |#2| (-1064 |#2|)) 106)) (-2286 (((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|))) 78) (((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|)) 50)) (-1891 (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| (-553 |#2|) |#2| (-375 (-1064 |#2|))) 85) (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| |#2| (-1064 |#2|)) 105)) (-2650 (((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) (-553 |#2|) |#2| (-375 (-1064 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) |#2| (-1064 |#2|)) 107)) (-2272 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|))) 124 (|has| |#3| (-593 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|)) 123 (|has| |#3| (-593 |#2|)))) (-3794 ((|#2| (-1064 (-375 (-1064 |#2|))) (-553 |#2|) |#2|) 48)) (-1316 (((-1064 (-375 (-1064 |#2|))) (-1064 |#2|) (-553 |#2|)) 27))) -(((-512 |#1| |#2| |#3|) (-10 -7 (-15 -2286 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|))) (-15 -2286 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -1891 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| |#2| (-1064 |#2|))) (-15 -1891 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -3649 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) |#2| (-1064 |#2|))) (-15 -3649 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -2650 ((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) |#2| (-1064 |#2|))) (-15 -2650 ((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -3728 ((-1064 (-375 (-1064 |#2|))) |#2| (-553 |#2|) (-553 |#2|) (-1064 |#2|))) (-15 -3794 (|#2| (-1064 (-375 (-1064 |#2|))) (-553 |#2|) |#2|)) (-15 -1316 ((-1064 (-375 (-1064 |#2|))) (-1064 |#2|) (-553 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2272 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|))) (-15 -2272 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|))))) |noBranch|)) (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501))) (-13 (-389 |#1|) (-27) (-1090)) (-1001)) (T -512)) -((-2272 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-375 (-1064 *4))) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-512 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001)))) (-2272 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-1064 *4)) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-512 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001)))) (-1316 (*1 *2 *3 *4) (-12 (-5 *4 (-553 *6)) (-4 *6 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-1064 (-375 (-1064 *6)))) (-5 *1 (-512 *5 *6 *7)) (-5 *3 (-1064 *6)) (-4 *7 (-1001)))) (-3794 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1064 (-375 (-1064 *2)))) (-5 *4 (-553 *2)) (-4 *2 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *5 *2 *6)) (-4 *6 (-1001)))) (-3728 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-1064 (-375 (-1064 *3)))) (-5 *1 (-512 *6 *3 *7)) (-5 *5 (-1064 *3)) (-4 *7 (-1001)))) (-2650 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-5 *5 (-375 (-1064 *2))) (-4 *2 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *6 *2 *7)) (-4 *7 (-1001)))) (-2650 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-5 *5 (-1064 *2)) (-4 *2 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *6 *2 *7)) (-4 *7 (-1001)))) (-3649 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-5 *6 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-512 *7 *3 *8)) (-4 *8 (-1001)))) (-3649 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-5 *6 (-1064 *3)) (-4 *3 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-512 *7 *3 *8)) (-4 *8 (-1001)))) (-1891 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))) (-1891 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-1064 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))) (-2286 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))) (-2286 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-1064 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001))))) -(-10 -7 (-15 -2286 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|))) (-15 -2286 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -1891 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| |#2| (-1064 |#2|))) (-15 -1891 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -3649 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) |#2| (-1064 |#2|))) (-15 -3649 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -2650 ((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) |#2| (-1064 |#2|))) (-15 -2650 ((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -3728 ((-1064 (-375 (-1064 |#2|))) |#2| (-553 |#2|) (-553 |#2|) (-1064 |#2|))) (-15 -3794 (|#2| (-1064 (-375 (-1064 |#2|))) (-553 |#2|) |#2|)) (-15 -1316 ((-1064 (-375 (-1064 |#2|))) (-1064 |#2|) (-553 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2272 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|))) (-15 -2272 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|))))) |noBranch|)) -((-2558 (((-501) (-501) (-701)) 65)) (-3561 (((-501) (-501)) 64)) (-1978 (((-501) (-501)) 63)) (-1867 (((-501) (-501)) 68)) (-3228 (((-501) (-501) (-501)) 48)) (-1334 (((-501) (-501) (-501)) 45)) (-1610 (((-375 (-501)) (-501)) 20)) (-3378 (((-501) (-501)) 21)) (-3988 (((-501) (-501)) 57)) (-2955 (((-501) (-501)) 32)) (-1919 (((-578 (-501)) (-501)) 62)) (-3716 (((-501) (-501) (-501) (-501) (-501)) 43)) (-2652 (((-375 (-501)) (-501)) 41))) -(((-513) (-10 -7 (-15 -2652 ((-375 (-501)) (-501))) (-15 -3716 ((-501) (-501) (-501) (-501) (-501))) (-15 -1919 ((-578 (-501)) (-501))) (-15 -2955 ((-501) (-501))) (-15 -3988 ((-501) (-501))) (-15 -3378 ((-501) (-501))) (-15 -1610 ((-375 (-501)) (-501))) (-15 -1334 ((-501) (-501) (-501))) (-15 -3228 ((-501) (-501) (-501))) (-15 -1867 ((-501) (-501))) (-15 -1978 ((-501) (-501))) (-15 -3561 ((-501) (-501))) (-15 -2558 ((-501) (-501) (-701))))) (T -513)) -((-2558 (*1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-701)) (-5 *1 (-513)))) (-3561 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-3228 (*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-1334 (*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-1610 (*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-513)) (-5 *3 (-501)))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-3988 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-2955 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-1919 (*1 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-513)) (-5 *3 (-501)))) (-3716 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-2652 (*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-513)) (-5 *3 (-501))))) -(-10 -7 (-15 -2652 ((-375 (-501)) (-501))) (-15 -3716 ((-501) (-501) (-501) (-501) (-501))) (-15 -1919 ((-578 (-501)) (-501))) (-15 -2955 ((-501) (-501))) (-15 -3988 ((-501) (-501))) (-15 -3378 ((-501) (-501))) (-15 -1610 ((-375 (-501)) (-501))) (-15 -1334 ((-501) (-501) (-501))) (-15 -3228 ((-501) (-501) (-501))) (-15 -1867 ((-501) (-501))) (-15 -1978 ((-501) (-501))) (-15 -3561 ((-501) (-501))) (-15 -2558 ((-501) (-501) (-701)))) -((-2721 (((-2 (|:| |answer| |#4|) (|:| -3540 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2721 ((-2 (|:| |answer| |#4|) (|:| -3540 |#4|)) |#4| (-1 |#2| |#2|)))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -514)) -((-2721 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3540 *3))) (-5 *1 (-514 *5 *6 *7 *3)) (-4 *3 (-310 *5 *6 *7))))) -(-10 -7 (-15 -2721 ((-2 (|:| |answer| |#4|) (|:| -3540 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2721 (((-2 (|:| |answer| (-375 |#2|)) (|:| -3540 (-375 |#2|)) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|)) 18))) -(((-515 |#1| |#2|) (-10 -7 (-15 -2721 ((-2 (|:| |answer| (-375 |#2|)) (|:| -3540 (-375 |#2|)) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|)))) (-331) (-1125 |#1|)) (T -515)) -((-2721 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |answer| (-375 *6)) (|:| -3540 (-375 *6)) (|:| |specpart| (-375 *6)) (|:| |polypart| *6))) (-5 *1 (-515 *5 *6)) (-5 *3 (-375 *6))))) -(-10 -7 (-15 -2721 ((-2 (|:| |answer| (-375 |#2|)) (|:| -3540 (-375 |#2|)) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|)))) -((-3492 (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699) (-970)) 103) (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699)) 105)) (-3188 (((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1070)) 168) (((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1053)) 167) (((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346) (-970)) 173) (((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346)) 174) (((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346)) 175) (((-948) (-282 (-346)) (-578 (-991 (-769 (-346))))) 176) (((-948) (-282 (-346)) (-991 (-769 (-346)))) 163) (((-948) (-282 (-346)) (-991 (-769 (-346))) (-346)) 162) (((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346)) 158) (((-948) (-699)) 150) (((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346) (-970)) 157))) -(((-516) (-10 -7 (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346) (-970))) (-15 -3188 ((-948) (-699))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346) (-970))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699) (-970))) (-15 -3188 ((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1053))) (-15 -3188 ((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1070))))) (T -516)) -((-3188 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-282 (-346))) (-5 *4 (-993 (-769 (-346)))) (-5 *5 (-1070)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-282 (-346))) (-5 *4 (-993 (-769 (-346)))) (-5 *5 (-1053)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-699)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *1 (-516)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-699)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *6 (-970)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-699)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *6 (-970)) (-5 *2 (-948)) (-5 *1 (-516))))) -(-10 -7 (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346) (-970))) (-15 -3188 ((-948) (-699))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346) (-970))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699) (-970))) (-15 -3188 ((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1053))) (-15 -3188 ((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1070)))) -((-2733 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|)) 180)) (-3522 (((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|)) 98)) (-1843 (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2|) 176)) (-4070 (((-3 |#2| "failed") |#2| |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070))) 185)) (-1848 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-1070)) 193 (|has| |#3| (-593 |#2|))))) -(((-517 |#1| |#2| |#3|) (-10 -7 (-15 -3522 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|))) (-15 -1843 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2|)) (-15 -2733 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|))) (-15 -4070 ((-3 |#2| "failed") |#2| |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)))) (IF (|has| |#3| (-593 |#2|)) (-15 -1848 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-1070))) |noBranch|)) (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501))) (-13 (-389 |#1|) (-27) (-1090)) (-1001)) (T -517)) -((-1848 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-1070)) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001)))) (-4070 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-4 *2 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1001)))) (-2733 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1001)))) (-1843 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1001)))) (-3522 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1001))))) -(-10 -7 (-15 -3522 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|))) (-15 -1843 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2|)) (-15 -2733 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|))) (-15 -4070 ((-3 |#2| "failed") |#2| |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)))) (IF (|has| |#3| (-593 |#2|)) (-15 -1848 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-1070))) |noBranch|)) -((-3299 (((-2 (|:| -1711 |#2|) (|:| |nconst| |#2|)) |#2| (-1070)) 62)) (-4130 (((-3 |#2| "failed") |#2| (-1070) (-769 |#2|) (-769 |#2|)) 159 (-12 (|has| |#2| (-1034)) (|has| |#1| (-556 (-810 (-501)))) (|has| |#1| (-806 (-501))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)) 133 (-12 (|has| |#2| (-568)) (|has| |#1| (-556 (-810 (-501)))) (|has| |#1| (-806 (-501)))))) (-2527 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)) 142 (-12 (|has| |#2| (-568)) (|has| |#1| (-556 (-810 (-501)))) (|has| |#1| (-806 (-501))))))) -(((-518 |#1| |#2|) (-10 -7 (-15 -3299 ((-2 (|:| -1711 |#2|) (|:| |nconst| |#2|)) |#2| (-1070))) (IF (|has| |#1| (-556 (-810 (-501)))) (IF (|has| |#1| (-806 (-501))) (PROGN (IF (|has| |#2| (-568)) (PROGN (-15 -2527 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070))) (-15 -4130 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)))) |noBranch|) (IF (|has| |#2| (-1034)) (-15 -4130 ((-3 |#2| "failed") |#2| (-1070) (-769 |#2|) (-769 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) (-13 (-777) (-950 (-501)) (-419) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -518)) -((-4130 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1070)) (-5 *4 (-769 *2)) (-4 *2 (-1034)) (-4 *2 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *1 (-518 *5 *2)))) (-4130 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-2527 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3299 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| -1711 *3) (|:| |nconst| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5)))))) -(-10 -7 (-15 -3299 ((-2 (|:| -1711 |#2|) (|:| |nconst| |#2|)) |#2| (-1070))) (IF (|has| |#1| (-556 (-810 (-501)))) (IF (|has| |#1| (-806 (-501))) (PROGN (IF (|has| |#2| (-568)) (PROGN (-15 -2527 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070))) (-15 -4130 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)))) |noBranch|) (IF (|has| |#2| (-1034)) (-15 -4130 ((-3 |#2| "failed") |#2| (-1070) (-769 |#2|) (-769 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) -((-3798 (((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-578 (-375 |#2|))) 39)) (-3188 (((-530 (-375 |#2|)) (-375 |#2|)) 27)) (-2685 (((-3 (-375 |#2|) "failed") (-375 |#2|)) 16)) (-3537 (((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-375 |#2|)) 46))) -(((-519 |#1| |#2|) (-10 -7 (-15 -3188 ((-530 (-375 |#2|)) (-375 |#2|))) (-15 -2685 ((-3 (-375 |#2|) "failed") (-375 |#2|))) (-15 -3537 ((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-375 |#2|))) (-15 -3798 ((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-578 (-375 |#2|))))) (-13 (-331) (-134) (-950 (-501))) (-1125 |#1|)) (T -519)) -((-3798 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-578 (-375 *6))) (-5 *3 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *5 *6)))) (-3537 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3071 (-375 *5)) (|:| |coeff| (-375 *5)))) (-5 *1 (-519 *4 *5)) (-5 *3 (-375 *5)))) (-2685 (*1 *2 *2) (|partial| -12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134) (-950 (-501)))) (-5 *1 (-519 *3 *4)))) (-3188 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-530 (-375 *5))) (-5 *1 (-519 *4 *5)) (-5 *3 (-375 *5))))) -(-10 -7 (-15 -3188 ((-530 (-375 |#2|)) (-375 |#2|))) (-15 -2685 ((-3 (-375 |#2|) "failed") (-375 |#2|))) (-15 -3537 ((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-375 |#2|))) (-15 -3798 ((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-578 (-375 |#2|))))) -((-1491 (((-3 (-501) "failed") |#1|) 14)) (-1680 (((-107) |#1|) 13)) (-2004 (((-501) |#1|) 9))) -(((-520 |#1|) (-10 -7 (-15 -2004 ((-501) |#1|)) (-15 -1680 ((-107) |#1|)) (-15 -1491 ((-3 (-501) "failed") |#1|))) (-950 (-501))) (T -520)) -((-1491 (*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-520 *3)) (-4 *3 (-950 *2)))) (-1680 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-520 *3)) (-4 *3 (-950 (-501))))) (-2004 (*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-520 *3)) (-4 *3 (-950 *2))))) -(-10 -7 (-15 -2004 ((-501) |#1|)) (-15 -1680 ((-107) |#1|)) (-15 -1491 ((-3 (-501) "failed") |#1|))) -((-1376 (((-3 (-2 (|:| |mainpart| (-375 (-866 |#1|))) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 (-866 |#1|))) (|:| |logand| (-375 (-866 |#1|))))))) "failed") (-375 (-866 |#1|)) (-1070) (-578 (-375 (-866 |#1|)))) 43)) (-3009 (((-530 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-1070)) 25)) (-1494 (((-3 (-375 (-866 |#1|)) "failed") (-375 (-866 |#1|)) (-1070)) 20)) (-4040 (((-3 (-2 (|:| -3071 (-375 (-866 |#1|))) (|:| |coeff| (-375 (-866 |#1|)))) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|))) 32))) -(((-521 |#1|) (-10 -7 (-15 -3009 ((-530 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -1494 ((-3 (-375 (-866 |#1|)) "failed") (-375 (-866 |#1|)) (-1070))) (-15 -1376 ((-3 (-2 (|:| |mainpart| (-375 (-866 |#1|))) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 (-866 |#1|))) (|:| |logand| (-375 (-866 |#1|))))))) "failed") (-375 (-866 |#1|)) (-1070) (-578 (-375 (-866 |#1|))))) (-15 -4040 ((-3 (-2 (|:| -3071 (-375 (-866 |#1|))) (|:| |coeff| (-375 (-866 |#1|)))) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|))))) (-13 (-508) (-950 (-501)) (-134))) (T -521)) -((-4040 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-2 (|:| -3071 (-375 (-866 *5))) (|:| |coeff| (-375 (-866 *5))))) (-5 *1 (-521 *5)) (-5 *3 (-375 (-866 *5))))) (-1376 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 (-375 (-866 *6)))) (-5 *3 (-375 (-866 *6))) (-4 *6 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *6)))) (-1494 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-375 (-866 *4))) (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-950 (-501)) (-134))) (-5 *1 (-521 *4)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-530 (-375 (-866 *5)))) (-5 *1 (-521 *5)) (-5 *3 (-375 (-866 *5)))))) -(-10 -7 (-15 -3009 ((-530 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -1494 ((-3 (-375 (-866 |#1|)) "failed") (-375 (-866 |#1|)) (-1070))) (-15 -1376 ((-3 (-2 (|:| |mainpart| (-375 (-866 |#1|))) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 (-866 |#1|))) (|:| |logand| (-375 (-866 |#1|))))))) "failed") (-375 (-866 |#1|)) (-1070) (-578 (-375 (-866 |#1|))))) (-15 -4040 ((-3 (-2 (|:| -3071 (-375 (-866 |#1|))) (|:| |coeff| (-375 (-866 |#1|)))) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|))))) -((-3736 (((-107) $ $) 59)) (-3292 (((-107) $) 36)) (-1783 ((|#1| $) 30)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) 63)) (-3978 (($ $) 123)) (-3937 (($ $) 103)) (-3405 ((|#1| $) 28)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $) NIL)) (-3970 (($ $) 125)) (-3929 (($ $) 99)) (-3984 (($ $) 127)) (-3945 (($ $) 107)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) 78)) (-3490 (((-501) $) 80)) (-2174 (((-3 $ "failed") $) 62)) (-3074 (($ |#1| |#1|) 26)) (-2164 (((-107) $) 33)) (-2003 (($) 89)) (-1355 (((-107) $) 43)) (-1342 (($ $ (-501)) NIL)) (-4067 (((-107) $) 34)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1635 (($ $) 91)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-2392 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-375 (-501))) 77)) (-1277 ((|#1| $) 27)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) 65) (($ (-578 $)) NIL)) (-3694 (((-3 $ "failed") $ $) 64)) (-1989 (($ $) 93)) (-3991 (($ $) 131)) (-3949 (($ $) 105)) (-3981 (($ $) 133)) (-3940 (($ $) 109)) (-3975 (($ $) 129)) (-3933 (($ $) 101)) (-3684 (((-107) $ |#1|) 31)) (-3691 (((-786) $) 85) (($ (-501)) 67) (($ $) NIL) (($ (-501)) 67)) (-3965 (((-701)) 87)) (-4003 (($ $) 145)) (-3958 (($ $) 115)) (-2442 (((-107) $ $) NIL)) (-3995 (($ $) 143)) (-3952 (($ $) 111)) (-4013 (($ $) 141)) (-3964 (($ $) 121)) (-3550 (($ $) 139)) (-3967 (($ $) 119)) (-4008 (($ $) 137)) (-3961 (($ $) 117)) (-3999 (($ $) 135)) (-3955 (($ $) 113)) (-3948 (($ $ (-839)) 55) (($ $ (-701)) NIL)) (-1850 (($) 21 T CONST)) (-1925 (($) 10 T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 37)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 35)) (-3797 (($ $) 41) (($ $ $) 42)) (-3790 (($ $ $) 40)) (** (($ $ (-839)) 54) (($ $ (-701)) NIL) (($ $ $) 95) (($ $ (-375 (-501))) 147)) (* (($ (-839) $) 51) (($ (-701) $) NIL) (($ (-501) $) 50) (($ $ $) 48))) -(((-522 |#1|) (-506 |#1|) (-13 (-372) (-1090))) (T -522)) -NIL -(-506 |#1|) -((-4002 (((-3 (-578 (-1064 (-501))) "failed") (-578 (-1064 (-501))) (-1064 (-501))) 24))) -(((-523) (-10 -7 (-15 -4002 ((-3 (-578 (-1064 (-501))) "failed") (-578 (-1064 (-501))) (-1064 (-501)))))) (T -523)) -((-4002 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 (-501)))) (-5 *3 (-1064 (-501))) (-5 *1 (-523))))) -(-10 -7 (-15 -4002 ((-3 (-578 (-1064 (-501))) "failed") (-578 (-1064 (-501))) (-1064 (-501))))) -((-3387 (((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-1070)) 18)) (-2104 (((-578 (-553 |#2|)) (-578 |#2|) (-1070)) 23)) (-1442 (((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-578 (-553 |#2|))) 10)) (-1921 ((|#2| |#2| (-1070)) 51 (|has| |#1| (-508)))) (-1579 ((|#2| |#2| (-1070)) 76 (-12 (|has| |#2| (-254)) (|has| |#1| (-419))))) (-2116 (((-553 |#2|) (-553 |#2|) (-578 (-553 |#2|)) (-1070)) 25)) (-1339 (((-553 |#2|) (-578 (-553 |#2|))) 24)) (-1182 (((-530 |#2|) |#2| (-1070) (-1 (-530 |#2|) |#2| (-1070)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070))) 100 (-12 (|has| |#2| (-254)) (|has| |#2| (-568)) (|has| |#2| (-950 (-1070))) (|has| |#1| (-556 (-810 (-501)))) (|has| |#1| (-419)) (|has| |#1| (-806 (-501))))))) -(((-524 |#1| |#2|) (-10 -7 (-15 -3387 ((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-1070))) (-15 -1339 ((-553 |#2|) (-578 (-553 |#2|)))) (-15 -2116 ((-553 |#2|) (-553 |#2|) (-578 (-553 |#2|)) (-1070))) (-15 -1442 ((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-578 (-553 |#2|)))) (-15 -2104 ((-578 (-553 |#2|)) (-578 |#2|) (-1070))) (IF (|has| |#1| (-508)) (-15 -1921 (|#2| |#2| (-1070))) |noBranch|) (IF (|has| |#1| (-419)) (IF (|has| |#2| (-254)) (PROGN (-15 -1579 (|#2| |#2| (-1070))) (IF (|has| |#1| (-556 (-810 (-501)))) (IF (|has| |#1| (-806 (-501))) (IF (|has| |#2| (-568)) (IF (|has| |#2| (-950 (-1070))) (-15 -1182 ((-530 |#2|) |#2| (-1070) (-1 (-530 |#2|) |#2| (-1070)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) (-777) (-389 |#1|)) (T -524)) -((-1182 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-530 *3) *3 (-1070))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1070))) (-4 *3 (-254)) (-4 *3 (-568)) (-4 *3 (-950 *4)) (-4 *3 (-389 *7)) (-5 *4 (-1070)) (-4 *7 (-556 (-810 (-501)))) (-4 *7 (-419)) (-4 *7 (-806 (-501))) (-4 *7 (-777)) (-5 *2 (-530 *3)) (-5 *1 (-524 *7 *3)))) (-1579 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-419)) (-4 *4 (-777)) (-5 *1 (-524 *4 *2)) (-4 *2 (-254)) (-4 *2 (-389 *4)))) (-1921 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-508)) (-4 *4 (-777)) (-5 *1 (-524 *4 *2)) (-4 *2 (-389 *4)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-1070)) (-4 *6 (-389 *5)) (-4 *5 (-777)) (-5 *2 (-578 (-553 *6))) (-5 *1 (-524 *5 *6)))) (-1442 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-553 *4))) (-4 *4 (-389 *3)) (-4 *3 (-777)) (-5 *1 (-524 *3 *4)))) (-2116 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-553 *6))) (-5 *4 (-1070)) (-5 *2 (-553 *6)) (-4 *6 (-389 *5)) (-4 *5 (-777)) (-5 *1 (-524 *5 *6)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-578 (-553 *5))) (-4 *4 (-777)) (-5 *2 (-553 *5)) (-5 *1 (-524 *4 *5)) (-4 *5 (-389 *4)))) (-3387 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-553 *5))) (-5 *3 (-1070)) (-4 *5 (-389 *4)) (-4 *4 (-777)) (-5 *1 (-524 *4 *5))))) -(-10 -7 (-15 -3387 ((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-1070))) (-15 -1339 ((-553 |#2|) (-578 (-553 |#2|)))) (-15 -2116 ((-553 |#2|) (-553 |#2|) (-578 (-553 |#2|)) (-1070))) (-15 -1442 ((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-578 (-553 |#2|)))) (-15 -2104 ((-578 (-553 |#2|)) (-578 |#2|) (-1070))) (IF (|has| |#1| (-508)) (-15 -1921 (|#2| |#2| (-1070))) |noBranch|) (IF (|has| |#1| (-419)) (IF (|has| |#2| (-254)) (PROGN (-15 -1579 (|#2| |#2| (-1070))) (IF (|has| |#1| (-556 (-810 (-501)))) (IF (|has| |#1| (-806 (-501))) (IF (|has| |#2| (-568)) (IF (|has| |#2| (-950 (-1070))) (-15 -1182 ((-530 |#2|) |#2| (-1070) (-1 (-530 |#2|) |#2| (-1070)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) -((-3069 (((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-578 |#1|) "failed") (-501) |#1| |#1|)) 167)) (-2775 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-578 (-375 |#2|))) 143)) (-3810 (((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-578 (-375 |#2|))) 140)) (-1298 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 129)) (-2331 (((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 153)) (-2986 (((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-375 |#2|)) 170)) (-3080 (((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-375 |#2|)) 173)) (-2088 (((-2 (|:| |ir| (-530 (-375 |#2|))) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|)) 81)) (-2782 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 88)) (-1261 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-578 (-375 |#2|))) 147)) (-1548 (((-3 (-562 |#1| |#2|) "failed") (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|)) 133)) (-2016 (((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|)) 157)) (-2223 (((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-375 |#2|)) 178))) -(((-525 |#1| |#2|) (-10 -7 (-15 -2331 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2016 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|))) (-15 -3069 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-578 |#1|) "failed") (-501) |#1| |#1|))) (-15 -3080 ((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-375 |#2|))) (-15 -2223 ((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-375 |#2|))) (-15 -2775 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-578 (-375 |#2|)))) (-15 -1261 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-578 (-375 |#2|)))) (-15 -2986 ((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-375 |#2|))) (-15 -3810 ((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-578 (-375 |#2|)))) (-15 -1298 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1548 ((-3 (-562 |#1| |#2|) "failed") (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|))) (-15 -2088 ((-2 (|:| |ir| (-530 (-375 |#2|))) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|))) (-15 -2782 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-331) (-1125 |#1|)) (T -525)) -((-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-525 *5 *3)))) (-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |ir| (-530 (-375 *6))) (|:| |specpart| (-375 *6)) (|:| |polypart| *6))) (-5 *1 (-525 *5 *6)) (-5 *3 (-375 *6)))) (-1548 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-562 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1320 *4) (|:| |sol?| (-107))) (-501) *4)) (-4 *4 (-331)) (-4 *5 (-1125 *4)) (-5 *1 (-525 *4 *5)))) (-1298 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-331)) (-5 *1 (-525 *4 *2)) (-4 *2 (-1125 *4)))) (-3810 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-578 (-375 *7))) (-4 *7 (-1125 *6)) (-5 *3 (-375 *7)) (-4 *6 (-331)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *6 *7)))) (-2986 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -3071 (-375 *6)) (|:| |coeff| (-375 *6)))) (-5 *1 (-525 *5 *6)) (-5 *3 (-375 *6)))) (-1261 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1320 *7) (|:| |sol?| (-107))) (-501) *7)) (-5 *6 (-578 (-375 *8))) (-4 *7 (-331)) (-4 *8 (-1125 *7)) (-5 *3 (-375 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8)))) (-2775 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-578 (-375 *8))) (-4 *7 (-331)) (-4 *8 (-1125 *7)) (-5 *3 (-375 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8)))) (-2223 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1320 *6) (|:| |sol?| (-107))) (-501) *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-375 *7)) (|:| |a0| *6)) (-2 (|:| -3071 (-375 *7)) (|:| |coeff| (-375 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))) (-3080 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-375 *7)) (|:| |a0| *6)) (-2 (|:| -3071 (-375 *7)) (|:| |coeff| (-375 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))) (-3069 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-578 *6) "failed") (-501) *6 *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))) (-2016 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1320 *6) (|:| |sol?| (-107))) (-501) *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))) (-2331 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7))))) -(-10 -7 (-15 -2331 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2016 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|))) (-15 -3069 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-578 |#1|) "failed") (-501) |#1| |#1|))) (-15 -3080 ((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-375 |#2|))) (-15 -2223 ((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-375 |#2|))) (-15 -2775 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-578 (-375 |#2|)))) (-15 -1261 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-578 (-375 |#2|)))) (-15 -2986 ((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-375 |#2|))) (-15 -3810 ((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-578 (-375 |#2|)))) (-15 -1298 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1548 ((-3 (-562 |#1| |#2|) "failed") (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|))) (-15 -2088 ((-2 (|:| |ir| (-530 (-375 |#2|))) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|))) (-15 -2782 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1194 (((-3 |#2| "failed") |#2| (-1070) (-1070)) 10))) -(((-526 |#1| |#2|) (-10 -7 (-15 -1194 ((-3 |#2| "failed") |#2| (-1070) (-1070)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-879) (-1034) (-29 |#1|))) (T -526)) -((-1194 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-526 *4 *2)) (-4 *2 (-13 (-1090) (-879) (-1034) (-29 *4)))))) -(-10 -7 (-15 -1194 ((-3 |#2| "failed") |#2| (-1070) (-1070)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $ (-501)) 65)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2833 (($ (-1064 (-501)) (-501)) 71)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) 57)) (-1529 (($ $) 33)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-3169 (((-701) $) 15)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3121 (((-501)) 27)) (-2443 (((-501) $) 31)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3718 (($ $ (-501)) 21)) (-3694 (((-3 $ "failed") $ $) 58)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) 16)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 60)) (-3960 (((-1048 (-501)) $) 18)) (-1267 (($ $) 23)) (-3691 (((-786) $) 85) (($ (-501)) 51) (($ $) NIL)) (-3965 (((-701)) 14)) (-2442 (((-107) $ $) NIL)) (-2391 (((-501) $ (-501)) 35)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 34 T CONST)) (-1925 (($) 19 T CONST)) (-3751 (((-107) $ $) 38)) (-3797 (($ $) 50) (($ $ $) 36)) (-3790 (($ $ $) 49)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 53) (($ $ $) 54))) -(((-527 |#1| |#2|) (-792 |#1|) (-501) (-107)) (T -527)) -NIL -(-792 |#1|) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 18)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (($ $ (-839)) NIL (|has| $ (-336))) (($ $) NIL)) (-3431 (((-1077 (-839) (-701)) (-501)) 47)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 $ "failed") $) 75)) (-3490 (($ $) 74)) (-3142 (($ (-1148 $)) 73)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) 30)) (-2890 (($) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) 49)) (-3521 (((-107) $) NIL)) (-3067 (($ $) NIL) (($ $ (-701)) NIL)) (-1628 (((-107) $) NIL)) (-3169 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-1355 (((-107) $) NIL)) (-4065 (($) 35 (|has| $ (-336)))) (-1928 (((-107) $) NIL (|has| $ (-336)))) (-2626 (($ $ (-839)) NIL (|has| $ (-336))) (($ $) NIL)) (-3493 (((-3 $ "failed") $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 $) $ (-839)) NIL (|has| $ (-336))) (((-1064 $) $) 83)) (-3104 (((-839) $) 55)) (-3721 (((-1064 $) $) NIL (|has| $ (-336)))) (-1806 (((-3 (-1064 $) "failed") $ $) NIL (|has| $ (-336))) (((-1064 $) $) NIL (|has| $ (-336)))) (-2468 (($ $ (-1064 $)) NIL (|has| $ (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL T CONST)) (-3506 (($ (-839)) 48)) (-2255 (((-107) $) 67)) (-3708 (((-1018) $) NIL)) (-3987 (($) 16 (|has| $ (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 40)) (-3739 (((-373 $) $) NIL)) (-2906 (((-839)) 66) (((-762 (-839))) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-3 (-701) "failed") $ $) NIL) (((-701) $) NIL)) (-3613 (((-125)) NIL)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-1201 (((-839) $) 65) (((-762 (-839)) $) NIL)) (-2264 (((-1064 $)) 82)) (-1349 (($) 54)) (-3481 (($) 36 (|has| $ (-336)))) (-2085 (((-621 $) (-1148 $)) NIL) (((-1148 $) $) 71)) (-1248 (((-501) $) 26)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) 28) (($ $) NIL) (($ (-375 (-501))) NIL)) (-1274 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3965 (((-701)) 37)) (-4119 (((-1148 $) (-839)) 77) (((-1148 $)) 76)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 19 T CONST)) (-1925 (($) 15 T CONST)) (-3184 (($ $ (-701)) NIL (|has| $ (-336))) (($ $) NIL (|has| $ (-336)))) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 24)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 61) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL))) -(((-528 |#1|) (-13 (-318) (-297 $) (-556 (-501))) (-839)) (T -528)) -NIL -(-13 (-318) (-297 $) (-556 (-501))) -((-3395 (((-1154) (-1053)) 10))) -(((-529) (-10 -7 (-15 -3395 ((-1154) (-1053))))) (T -529)) -((-3395 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-529))))) -(-10 -7 (-15 -3395 ((-1154) (-1053)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 68)) (-3490 ((|#1| $) NIL)) (-3071 ((|#1| $) 24)) (-2415 (((-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-2428 (($ |#1| (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) (-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-3540 (((-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) $) 25)) (-3460 (((-1053) $) NIL)) (-3028 (($ |#1| |#1|) 32) (($ |#1| (-1070)) 43 (|has| |#1| (-950 (-1070))))) (-3708 (((-1018) $) NIL)) (-3962 (((-107) $) 28)) (-2596 ((|#1| $ (-1 |#1| |#1|)) 80) ((|#1| $ (-1070)) 81 (|has| |#1| (-820 (-1070))))) (-3691 (((-786) $) 95) (($ |#1|) 23)) (-1850 (($) 16 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) 15) (($ $ $) NIL)) (-3790 (($ $ $) 77)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 14) (($ (-375 (-501)) $) 35) (($ $ (-375 (-501))) NIL))) -(((-530 |#1|) (-13 (-648 (-375 (-501))) (-950 |#1|) (-10 -8 (-15 -2428 ($ |#1| (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) (-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3071 (|#1| $)) (-15 -3540 ((-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) $)) (-15 -2415 ((-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3962 ((-107) $)) (-15 -3028 ($ |#1| |#1|)) (-15 -2596 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-820 (-1070))) (-15 -2596 (|#1| $ (-1070))) |noBranch|) (IF (|has| |#1| (-950 (-1070))) (-15 -3028 ($ |#1| (-1070))) |noBranch|))) (-331)) (T -530)) -((-2428 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 *2)) (|:| |logand| (-1064 *2))))) (-5 *4 (-578 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-331)) (-5 *1 (-530 *2)))) (-3071 (*1 *2 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-331)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 *3)) (|:| |logand| (-1064 *3))))) (-5 *1 (-530 *3)) (-4 *3 (-331)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-530 *3)) (-4 *3 (-331)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-530 *3)) (-4 *3 (-331)))) (-3028 (*1 *1 *2 *2) (-12 (-5 *1 (-530 *2)) (-4 *2 (-331)))) (-2596 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-530 *2)) (-4 *2 (-331)))) (-2596 (*1 *2 *1 *3) (-12 (-4 *2 (-331)) (-4 *2 (-820 *3)) (-5 *1 (-530 *2)) (-5 *3 (-1070)))) (-3028 (*1 *1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *1 (-530 *2)) (-4 *2 (-950 *3)) (-4 *2 (-331))))) -(-13 (-648 (-375 (-501))) (-950 |#1|) (-10 -8 (-15 -2428 ($ |#1| (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) (-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3071 (|#1| $)) (-15 -3540 ((-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) $)) (-15 -2415 ((-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3962 ((-107) $)) (-15 -3028 ($ |#1| |#1|)) (-15 -2596 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-820 (-1070))) (-15 -2596 (|#1| $ (-1070))) |noBranch|) (IF (|has| |#1| (-950 (-1070))) (-15 -3028 ($ |#1| (-1070))) |noBranch|))) -((-1212 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-530 |#2|) (-1 |#2| |#1|) (-530 |#1|)) 26))) -(((-531 |#1| |#2|) (-10 -7 (-15 -1212 ((-530 |#2|) (-1 |#2| |#1|) (-530 |#1|))) (-15 -1212 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1212 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1212 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-331) (-331)) (T -531)) -((-1212 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-531 *5 *6)))) (-1212 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-331)) (-4 *2 (-331)) (-5 *1 (-531 *5 *2)))) (-1212 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3071 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-2 (|:| -3071 *6) (|:| |coeff| *6))) (-5 *1 (-531 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-530 *5)) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-530 *6)) (-5 *1 (-531 *5 *6))))) -(-10 -7 (-15 -1212 ((-530 |#2|) (-1 |#2| |#1|) (-530 |#1|))) (-15 -1212 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1212 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1212 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3205 (((-530 |#2|) (-530 |#2|)) 37)) (-1967 (((-578 |#2|) (-530 |#2|)) 39)) (-1605 ((|#2| (-530 |#2|)) 46))) -(((-532 |#1| |#2|) (-10 -7 (-15 -3205 ((-530 |#2|) (-530 |#2|))) (-15 -1967 ((-578 |#2|) (-530 |#2|))) (-15 -1605 (|#2| (-530 |#2|)))) (-13 (-419) (-950 (-501)) (-777) (-577 (-501))) (-13 (-29 |#1|) (-1090))) (T -532)) -((-1605 (*1 *2 *3) (-12 (-5 *3 (-530 *2)) (-4 *2 (-13 (-29 *4) (-1090))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-530 *5)) (-4 *5 (-13 (-29 *4) (-1090))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-578 *5)) (-5 *1 (-532 *4 *5)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-530 *4)) (-4 *4 (-13 (-29 *3) (-1090))) (-4 *3 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *1 (-532 *3 *4))))) -(-10 -7 (-15 -3205 ((-530 |#2|) (-530 |#2|))) (-15 -1967 ((-578 |#2|) (-530 |#2|))) (-15 -1605 (|#2| (-530 |#2|)))) -((-3848 (((-107) |#1|) 16)) (-2325 (((-3 |#1| "failed") |#1|) 14)) (-3137 (((-2 (|:| -1965 |#1|) (|:| -3027 (-701))) |#1|) 30) (((-3 |#1| "failed") |#1| (-701)) 18)) (-2916 (((-107) |#1| (-701)) 19)) (-1495 ((|#1| |#1|) 31)) (-2395 ((|#1| |#1| (-701)) 33))) -(((-533 |#1|) (-10 -7 (-15 -2916 ((-107) |#1| (-701))) (-15 -3137 ((-3 |#1| "failed") |#1| (-701))) (-15 -3137 ((-2 (|:| -1965 |#1|) (|:| -3027 (-701))) |#1|)) (-15 -2395 (|#1| |#1| (-701))) (-15 -3848 ((-107) |#1|)) (-15 -2325 ((-3 |#1| "failed") |#1|)) (-15 -1495 (|#1| |#1|))) (-500)) (T -533)) -((-1495 (*1 *2 *2) (-12 (-5 *1 (-533 *2)) (-4 *2 (-500)))) (-2325 (*1 *2 *2) (|partial| -12 (-5 *1 (-533 *2)) (-4 *2 (-500)))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-533 *3)) (-4 *3 (-500)))) (-2395 (*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-533 *2)) (-4 *2 (-500)))) (-3137 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1965 *3) (|:| -3027 (-701)))) (-5 *1 (-533 *3)) (-4 *3 (-500)))) (-3137 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-5 *1 (-533 *2)) (-4 *2 (-500)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-107)) (-5 *1 (-533 *3)) (-4 *3 (-500))))) -(-10 -7 (-15 -2916 ((-107) |#1| (-701))) (-15 -3137 ((-3 |#1| "failed") |#1| (-701))) (-15 -3137 ((-2 (|:| -1965 |#1|) (|:| -3027 (-701))) |#1|)) (-15 -2395 (|#1| |#1| (-701))) (-15 -3848 ((-107) |#1|)) (-15 -2325 ((-3 |#1| "failed") |#1|)) (-15 -1495 (|#1| |#1|))) -((-1215 (((-1064 |#1|) (-839)) 26))) -(((-534 |#1|) (-10 -7 (-15 -1215 ((-1064 |#1|) (-839)))) (-318)) (T -534)) -((-1215 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-534 *4)) (-4 *4 (-318))))) -(-10 -7 (-15 -1215 ((-1064 |#1|) (-839)))) -((-3205 (((-530 (-375 (-866 |#1|))) (-530 (-375 (-866 |#1|)))) 26)) (-3188 (((-3 (-282 |#1|) (-578 (-282 |#1|))) (-375 (-866 |#1|)) (-1070)) 32 (|has| |#1| (-134)))) (-1967 (((-578 (-282 |#1|)) (-530 (-375 (-866 |#1|)))) 18)) (-3279 (((-282 |#1|) (-375 (-866 |#1|)) (-1070)) 30 (|has| |#1| (-134)))) (-1605 (((-282 |#1|) (-530 (-375 (-866 |#1|)))) 20))) -(((-535 |#1|) (-10 -7 (-15 -3205 ((-530 (-375 (-866 |#1|))) (-530 (-375 (-866 |#1|))))) (-15 -1967 ((-578 (-282 |#1|)) (-530 (-375 (-866 |#1|))))) (-15 -1605 ((-282 |#1|) (-530 (-375 (-866 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -3188 ((-3 (-282 |#1|) (-578 (-282 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -3279 ((-282 |#1|) (-375 (-866 |#1|)) (-1070)))) |noBranch|)) (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (T -535)) -((-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-134)) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-282 *5)) (-5 *1 (-535 *5)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-134)) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-3 (-282 *5) (-578 (-282 *5)))) (-5 *1 (-535 *5)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-530 (-375 (-866 *4)))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-535 *4)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-530 (-375 (-866 *4)))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-578 (-282 *4))) (-5 *1 (-535 *4)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-530 (-375 (-866 *3)))) (-4 *3 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *1 (-535 *3))))) -(-10 -7 (-15 -3205 ((-530 (-375 (-866 |#1|))) (-530 (-375 (-866 |#1|))))) (-15 -1967 ((-578 (-282 |#1|)) (-530 (-375 (-866 |#1|))))) (-15 -1605 ((-282 |#1|) (-530 (-375 (-866 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -3188 ((-3 (-282 |#1|) (-578 (-282 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -3279 ((-282 |#1|) (-375 (-866 |#1|)) (-1070)))) |noBranch|)) -((-3015 (((-578 (-621 (-501))) (-578 (-501)) (-578 (-822 (-501)))) 45) (((-578 (-621 (-501))) (-578 (-501))) 46) (((-621 (-501)) (-578 (-501)) (-822 (-501))) 41)) (-1804 (((-701) (-578 (-501))) 39))) -(((-536) (-10 -7 (-15 -1804 ((-701) (-578 (-501)))) (-15 -3015 ((-621 (-501)) (-578 (-501)) (-822 (-501)))) (-15 -3015 ((-578 (-621 (-501))) (-578 (-501)))) (-15 -3015 ((-578 (-621 (-501))) (-578 (-501)) (-578 (-822 (-501))))))) (T -536)) -((-3015 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-501))) (-5 *4 (-578 (-822 (-501)))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-536)))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-536)))) (-3015 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-501))) (-5 *4 (-822 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-536)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-701)) (-5 *1 (-536))))) -(-10 -7 (-15 -1804 ((-701) (-578 (-501)))) (-15 -3015 ((-621 (-501)) (-578 (-501)) (-822 (-501)))) (-15 -3015 ((-578 (-621 (-501))) (-578 (-501)))) (-15 -3015 ((-578 (-621 (-501))) (-578 (-501)) (-578 (-822 (-501)))))) -((-2078 (((-578 |#5|) |#5| (-107)) 72)) (-2103 (((-107) |#5| (-578 |#5|)) 30))) -(((-537 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2078 ((-578 |#5|) |#5| (-107))) (-15 -2103 ((-107) |#5| (-578 |#5|)))) (-13 (-276) (-134)) (-723) (-777) (-972 |#1| |#2| |#3|) (-1009 |#1| |#2| |#3| |#4|)) (T -537)) -((-2103 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1009 *5 *6 *7 *8)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-537 *5 *6 *7 *8 *3)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-578 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3)) (-4 *3 (-1009 *5 *6 *7 *8))))) -(-10 -7 (-15 -2078 ((-578 |#5|) |#5| (-107))) (-15 -2103 ((-107) |#5| (-578 |#5|)))) -((-3736 (((-107) $ $) NIL (|has| (-131) (-1001)))) (-3449 (($ $) 34)) (-3612 (($ $) NIL)) (-2474 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-4042 (((-107) $ $) 51)) (-4032 (((-107) $ $ (-501)) 46)) (-3205 (((-578 $) $ (-131)) 59) (((-578 $) $ (-128)) 60)) (-2045 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-777)))) (-3441 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| (-131) (-777))))) (-2861 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 (((-131) $ (-501) (-131)) 45 (|has| $ (-6 -4168))) (((-131) $ (-1116 (-501)) (-131)) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-4089 (($ $ (-131)) 63) (($ $ (-128)) 64)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-3834 (($ $ (-1116 (-501)) $) 44)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-1526 (($ (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4167)))) (-2156 (((-131) $ (-501) (-131)) NIL (|has| $ (-6 -4168)))) (-1905 (((-131) $ (-501)) NIL)) (-4056 (((-107) $ $) 70)) (-1934 (((-501) (-1 (-107) (-131)) $) NIL) (((-501) (-131) $) NIL (|has| (-131) (-1001))) (((-501) (-131) $ (-501)) 48 (|has| (-131) (-1001))) (((-501) $ $ (-501)) 47) (((-501) (-128) $ (-501)) 50)) (-2732 (((-578 (-131)) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) (-131)) 9)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 28 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| (-131) (-777)))) (-3216 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-777)))) (-3380 (((-578 (-131)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-1522 (((-501) $) 42 (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-131) (-777)))) (-3990 (((-107) $ $ (-131)) 71)) (-3921 (((-701) $ $ (-131)) 69)) (-2519 (($ (-1 (-131) (-131)) $) 33 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-1666 (($ $) 37)) (-2874 (($ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-4082 (($ $ (-131)) 61) (($ $ (-128)) 62)) (-3460 (((-1053) $) 38 (|has| (-131) (-1001)))) (-1473 (($ (-131) $ (-501)) NIL) (($ $ $ (-501)) 23)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-501) $) 68) (((-1018) $) NIL (|has| (-131) (-1001)))) (-1190 (((-131) $) NIL (|has| (-501) (-777)))) (-2520 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-3084 (($ $ (-131)) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-131)))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-262 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-578 (-131)) (-578 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-4137 (((-578 (-131)) $) NIL)) (-1407 (((-107) $) 12)) (-3122 (($) 10)) (-2007 (((-131) $ (-501) (-131)) NIL) (((-131) $ (-501)) 52) (($ $ (-1116 (-501))) 21) (($ $ $) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167))) (((-701) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-2355 (($ $ $ (-501)) 65 (|has| $ (-6 -4168)))) (-3764 (($ $) 17)) (-1248 (((-490) $) NIL (|has| (-131) (-556 (-490))))) (-3699 (($ (-578 (-131))) NIL)) (-3934 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) 16) (($ (-578 $)) 66)) (-3691 (($ (-131)) NIL) (((-786) $) 27 (|has| (-131) (-1001)))) (-1200 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3751 (((-107) $ $) 14 (|has| (-131) (-1001)))) (-3773 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3762 (((-107) $ $) 15 (|has| (-131) (-777)))) (-3581 (((-701) $) 13 (|has| $ (-6 -4167))))) -(((-538 |#1|) (-13 (-1039) (-10 -8 (-15 -3708 ((-501) $)))) (-501)) (T -538)) -((-3708 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-538 *3)) (-14 *3 *2)))) -(-13 (-1039) (-10 -8 (-15 -3708 ((-501) $)))) -((-4063 (((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2| (-991 |#4|)) 32))) -(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4063 ((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2| (-991 |#4|))) (-15 -4063 ((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2|))) (-723) (-777) (-508) (-870 |#3| |#1| |#2|)) (T -539)) -((-4063 (*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-501)))) (-5 *1 (-539 *5 *4 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) (-4063 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-991 *3)) (-4 *3 (-870 *7 *6 *4)) (-4 *6 (-723)) (-4 *4 (-777)) (-4 *7 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-501)))) (-5 *1 (-539 *6 *4 *7 *3))))) -(-10 -7 (-15 -4063 ((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2| (-991 |#4|))) (-15 -4063 ((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 63)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-501)) 54) (($ $ (-501) (-501)) 55)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) 60)) (-3359 (($ $) 99)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3061 (((-786) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) (-939 (-769 (-501))) (-1070) |#1| (-375 (-501))) 214)) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) 34)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3331 (((-107) $) NIL)) (-3169 (((-501) $) 58) (((-501) $ (-501)) 59)) (-1355 (((-107) $) NIL)) (-2917 (($ $ (-839)) 76)) (-3608 (($ (-1 |#1| (-501)) $) 73)) (-2706 (((-107) $) 25)) (-3787 (($ |#1| (-501)) 22) (($ $ (-986) (-501)) NIL) (($ $ (-578 (-986)) (-578 (-501))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) 67)) (-1238 (($ (-939 (-769 (-501))) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) 11)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3188 (($ $) 111 (|has| |#1| (-37 (-375 (-501)))))) (-2573 (((-3 $ "failed") $ $ (-107)) 98)) (-2790 (($ $ $) 107)) (-3708 (((-1018) $) NIL)) (-1826 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) 13)) (-3256 (((-939 (-769 (-501))) $) 12)) (-3718 (($ $ (-501)) 45)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-501)))))) (-2007 ((|#1| $ (-501)) 57) (($ $ $) NIL (|has| (-501) (-1012)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-501) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (-1201 (((-501) $) NIL)) (-1267 (($ $) 46)) (-3691 (((-786) $) NIL) (($ (-501)) 28) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508))) (($ |#1|) 27 (|has| |#1| (-156)))) (-2495 ((|#1| $ (-501)) 56)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) 37)) (-2896 ((|#1| $) NIL)) (-3181 (($ $) 179 (|has| |#1| (-37 (-375 (-501)))))) (-3663 (($ $) 155 (|has| |#1| (-37 (-375 (-501)))))) (-3685 (($ $) 176 (|has| |#1| (-37 (-375 (-501)))))) (-3397 (($ $) 152 (|has| |#1| (-37 (-375 (-501)))))) (-2571 (($ $) 181 (|has| |#1| (-37 (-375 (-501)))))) (-3130 (($ $) 158 (|has| |#1| (-37 (-375 (-501)))))) (-1690 (($ $ (-375 (-501))) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3194 (($ $ |#1|) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3777 (($ $) 149 (|has| |#1| (-37 (-375 (-501)))))) (-1475 (($ $) 147 (|has| |#1| (-37 (-375 (-501)))))) (-2720 (($ $) 182 (|has| |#1| (-37 (-375 (-501)))))) (-3106 (($ $) 159 (|has| |#1| (-37 (-375 (-501)))))) (-1797 (($ $) 180 (|has| |#1| (-37 (-375 (-501)))))) (-2214 (($ $) 157 (|has| |#1| (-37 (-375 (-501)))))) (-3019 (($ $) 177 (|has| |#1| (-37 (-375 (-501)))))) (-3556 (($ $) 153 (|has| |#1| (-37 (-375 (-501)))))) (-2089 (($ $) 187 (|has| |#1| (-37 (-375 (-501)))))) (-2440 (($ $) 167 (|has| |#1| (-37 (-375 (-501)))))) (-3404 (($ $) 184 (|has| |#1| (-37 (-375 (-501)))))) (-2769 (($ $) 162 (|has| |#1| (-37 (-375 (-501)))))) (-3365 (($ $) 191 (|has| |#1| (-37 (-375 (-501)))))) (-2991 (($ $) 171 (|has| |#1| (-37 (-375 (-501)))))) (-2629 (($ $) 193 (|has| |#1| (-37 (-375 (-501)))))) (-3668 (($ $) 173 (|has| |#1| (-37 (-375 (-501)))))) (-2236 (($ $) 189 (|has| |#1| (-37 (-375 (-501)))))) (-3330 (($ $) 169 (|has| |#1| (-37 (-375 (-501)))))) (-3037 (($ $) 186 (|has| |#1| (-37 (-375 (-501)))))) (-1235 (($ $) 165 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-2391 ((|#1| $ (-501)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 29 T CONST)) (-1925 (($) 38 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-501) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (-3751 (((-107) $ $) 65)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) 84) (($ $ $) 64)) (-3790 (($ $ $) 81)) (** (($ $ (-839)) NIL) (($ $ (-701)) 102)) (* (($ (-839) $) 89) (($ (-701) $) 87) (($ (-501) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-540 |#1|) (-13 (-1128 |#1| (-501)) (-10 -8 (-15 -1238 ($ (-939 (-769 (-501))) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))))) (-15 -3256 ((-939 (-769 (-501))) $)) (-15 -1826 ((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $)) (-15 -2973 ($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))))) (-15 -2706 ((-107) $)) (-15 -3608 ($ (-1 |#1| (-501)) $)) (-15 -2573 ((-3 $ "failed") $ $ (-107))) (-15 -3359 ($ $)) (-15 -2790 ($ $ $)) (-15 -3061 ((-786) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) (-939 (-769 (-501))) (-1070) |#1| (-375 (-501)))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $)) (-15 -3194 ($ $ |#1|)) (-15 -1690 ($ $ (-375 (-501)))) (-15 -1475 ($ $)) (-15 -3777 ($ $)) (-15 -3397 ($ $)) (-15 -3556 ($ $)) (-15 -3663 ($ $)) (-15 -2214 ($ $)) (-15 -3130 ($ $)) (-15 -3106 ($ $)) (-15 -2769 ($ $)) (-15 -1235 ($ $)) (-15 -2440 ($ $)) (-15 -3330 ($ $)) (-15 -2991 ($ $)) (-15 -3668 ($ $)) (-15 -3685 ($ $)) (-15 -3019 ($ $)) (-15 -3181 ($ $)) (-15 -1797 ($ $)) (-15 -2571 ($ $)) (-15 -2720 ($ $)) (-15 -3404 ($ $)) (-15 -3037 ($ $)) (-15 -2089 ($ $)) (-15 -2236 ($ $)) (-15 -3365 ($ $)) (-15 -2629 ($ $))) |noBranch|))) (-959)) (T -540)) -((-2706 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-540 *3)) (-4 *3 (-959)))) (-1238 (*1 *1 *2 *3) (-12 (-5 *2 (-939 (-769 (-501)))) (-5 *3 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *4)))) (-4 *4 (-959)) (-5 *1 (-540 *4)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-939 (-769 (-501)))) (-5 *1 (-540 *3)) (-4 *3 (-959)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-5 *1 (-540 *3)) (-4 *3 (-959)))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-4 *3 (-959)) (-5 *1 (-540 *3)))) (-3608 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *3 (-959)) (-5 *1 (-540 *3)))) (-2573 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-540 *3)) (-4 *3 (-959)))) (-3359 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-959)))) (-2790 (*1 *1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-959)))) (-3061 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *6)))) (-5 *4 (-939 (-769 (-501)))) (-5 *5 (-1070)) (-5 *7 (-375 (-501))) (-4 *6 (-959)) (-5 *2 (-786)) (-5 *1 (-540 *6)))) (-3188 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3194 (*1 *1 *1 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-1690 (*1 *1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-540 *3)) (-4 *3 (-37 *2)) (-4 *3 (-959)))) (-1475 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3777 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3556 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3663 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2214 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3130 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3106 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2769 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-1235 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2440 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3330 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2991 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3668 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3685 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3019 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3181 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-1797 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2571 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2720 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3404 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3037 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2089 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2236 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3365 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2629 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(-13 (-1128 |#1| (-501)) (-10 -8 (-15 -1238 ($ (-939 (-769 (-501))) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))))) (-15 -3256 ((-939 (-769 (-501))) $)) (-15 -1826 ((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $)) (-15 -2973 ($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))))) (-15 -2706 ((-107) $)) (-15 -3608 ($ (-1 |#1| (-501)) $)) (-15 -2573 ((-3 $ "failed") $ $ (-107))) (-15 -3359 ($ $)) (-15 -2790 ($ $ $)) (-15 -3061 ((-786) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) (-939 (-769 (-501))) (-1070) |#1| (-375 (-501)))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $)) (-15 -3194 ($ $ |#1|)) (-15 -1690 ($ $ (-375 (-501)))) (-15 -1475 ($ $)) (-15 -3777 ($ $)) (-15 -3397 ($ $)) (-15 -3556 ($ $)) (-15 -3663 ($ $)) (-15 -2214 ($ $)) (-15 -3130 ($ $)) (-15 -3106 ($ $)) (-15 -2769 ($ $)) (-15 -1235 ($ $)) (-15 -2440 ($ $)) (-15 -3330 ($ $)) (-15 -2991 ($ $)) (-15 -3668 ($ $)) (-15 -3685 ($ $)) (-15 -3019 ($ $)) (-15 -3181 ($ $)) (-15 -1797 ($ $)) (-15 -2571 ($ $)) (-15 -2720 ($ $)) (-15 -3404 ($ $)) (-15 -3037 ($ $)) (-15 -2089 ($ $)) (-15 -2236 ($ $)) (-15 -3365 ($ $)) (-15 -2629 ($ $))) |noBranch|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2973 (($ (-1048 |#1|)) 9)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) 42)) (-3331 (((-107) $) 52)) (-3169 (((-701) $) 55) (((-701) $ (-701)) 54)) (-1355 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ $) 44 (|has| |#1| (-508)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-1048 |#1|) $) 23)) (-3965 (((-701)) 51)) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 10 T CONST)) (-1925 (($) 14 T CONST)) (-3751 (((-107) $ $) 22)) (-3797 (($ $) 30) (($ $ $) 16)) (-3790 (($ $ $) 25)) (** (($ $ (-839)) NIL) (($ $ (-701)) 49)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-501)) 36))) -(((-541 |#1|) (-13 (-959) (-10 -8 (-15 -1303 ((-1048 |#1|) $)) (-15 -2973 ($ (-1048 |#1|))) (-15 -3331 ((-107) $)) (-15 -3169 ((-701) $)) (-15 -3169 ((-701) $ (-701))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-501))) (IF (|has| |#1| (-508)) (-6 (-508)) |noBranch|))) (-959)) (T -541)) -((-1303 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-541 *3)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) (-3169 (*1 *2 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-541 *2)) (-4 *2 (-959)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-541 *2)) (-4 *2 (-959)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-541 *3)) (-4 *3 (-959))))) -(-13 (-959) (-10 -8 (-15 -1303 ((-1048 |#1|) $)) (-15 -2973 ($ (-1048 |#1|))) (-15 -3331 ((-107) $)) (-15 -3169 ((-701) $)) (-15 -3169 ((-701) $ (-701))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-501))) (IF (|has| |#1| (-508)) (-6 (-508)) |noBranch|))) -((-1212 (((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|)) 15))) -(((-542 |#1| |#2|) (-10 -7 (-15 -1212 ((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|)))) (-1104) (-1104)) (T -542)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-545 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-545 *6)) (-5 *1 (-542 *5 *6))))) -(-10 -7 (-15 -1212 ((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|)))) -((-1212 (((-1048 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-1048 |#2|)) 20) (((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-545 |#2|)) 19) (((-545 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-545 |#2|)) 18))) -(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -1212 ((-545 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-545 |#2|))) (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-545 |#2|))) (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-1048 |#2|)))) (-1104) (-1104) (-1104)) (T -543)) -((-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-545 *6)) (-5 *5 (-1048 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-543 *6 *7 *8)))) (-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1048 *6)) (-5 *5 (-545 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-543 *6 *7 *8)))) (-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-545 *6)) (-5 *5 (-545 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-545 *8)) (-5 *1 (-543 *6 *7 *8))))) -(-10 -7 (-15 -1212 ((-545 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-545 |#2|))) (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-545 |#2|))) (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-1048 |#2|)))) -((-4096 ((|#3| |#3| (-578 (-553 |#3|)) (-578 (-1070))) 55)) (-2711 (((-152 |#2|) |#3|) 116)) (-3956 ((|#3| (-152 |#2|)) 43)) (-3391 ((|#2| |#3|) 19)) (-3731 ((|#3| |#2|) 32))) -(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -3956 (|#3| (-152 |#2|))) (-15 -3391 (|#2| |#3|)) (-15 -3731 (|#3| |#2|)) (-15 -2711 ((-152 |#2|) |#3|)) (-15 -4096 (|#3| |#3| (-578 (-553 |#3|)) (-578 (-1070))))) (-13 (-508) (-777)) (-13 (-389 |#1|) (-916) (-1090)) (-13 (-389 (-152 |#1|)) (-916) (-1090))) (T -544)) -((-4096 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-553 *2))) (-5 *4 (-578 (-1070))) (-4 *2 (-13 (-389 (-152 *5)) (-916) (-1090))) (-4 *5 (-13 (-508) (-777))) (-5 *1 (-544 *5 *6 *2)) (-4 *6 (-13 (-389 *5) (-916) (-1090))))) (-2711 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-5 *2 (-152 *5)) (-5 *1 (-544 *4 *5 *3)) (-4 *5 (-13 (-389 *4) (-916) (-1090))) (-4 *3 (-13 (-389 (-152 *4)) (-916) (-1090))))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 (-152 *4)) (-916) (-1090))) (-5 *1 (-544 *4 *3 *2)) (-4 *3 (-13 (-389 *4) (-916) (-1090))))) (-3391 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 *4) (-916) (-1090))) (-5 *1 (-544 *4 *2 *3)) (-4 *3 (-13 (-389 (-152 *4)) (-916) (-1090))))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-152 *5)) (-4 *5 (-13 (-389 *4) (-916) (-1090))) (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 (-152 *4)) (-916) (-1090))) (-5 *1 (-544 *4 *5 *2))))) -(-10 -7 (-15 -3956 (|#3| (-152 |#2|))) (-15 -3391 (|#2| |#3|)) (-15 -3731 (|#3| |#2|)) (-15 -2711 ((-152 |#2|) |#3|)) (-15 -4096 (|#3| |#3| (-578 (-553 |#3|)) (-578 (-1070))))) -((-1987 (($ (-1 (-107) |#1|) $) 16)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1949 (($ (-1 |#1| |#1|) |#1|) 9)) (-1974 (($ (-1 (-107) |#1|) $) 12)) (-1981 (($ (-1 (-107) |#1|) $) 14)) (-3699 (((-1048 |#1|) $) 17)) (-3691 (((-786) $) NIL))) -(((-545 |#1|) (-13 (-555 (-786)) (-10 -8 (-15 -1212 ($ (-1 |#1| |#1|) $)) (-15 -1974 ($ (-1 (-107) |#1|) $)) (-15 -1981 ($ (-1 (-107) |#1|) $)) (-15 -1987 ($ (-1 (-107) |#1|) $)) (-15 -1949 ($ (-1 |#1| |#1|) |#1|)) (-15 -3699 ((-1048 |#1|) $)))) (-1104)) (T -545)) -((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) (-1974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) (-1981 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) (-1987 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) (-1949 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-545 *3)) (-4 *3 (-1104))))) -(-13 (-555 (-786)) (-10 -8 (-15 -1212 ($ (-1 |#1| |#1|) $)) (-15 -1974 ($ (-1 (-107) |#1|) $)) (-15 -1981 ($ (-1 (-107) |#1|) $)) (-15 -1987 ($ (-1 (-107) |#1|) $)) (-15 -1949 ($ (-1 |#1| |#1|) |#1|)) (-15 -3699 ((-1048 |#1|) $)))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2563 (($ (-701)) NIL (|has| |#1| (-23)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2123 (((-621 |#1|) $ $) NIL (|has| |#1| (-959)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3203 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3155 (((-107) $ (-701)) NIL)) (-4139 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-1293 ((|#1| $ $) NIL (|has| |#1| (-959)))) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-2220 (($ $ $) NIL (|has| |#1| (-959)))) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3797 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3790 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-501) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-657))) (($ $ |#1|) NIL (|has| |#1| (-657)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-546 |#1| |#2|) (-1147 |#1|) (-1104) (-501)) (T -546)) -NIL -(-1147 |#1|) -((-1991 (((-1154) $ |#2| |#2|) 36)) (-3627 ((|#2| $) 23)) (-1522 ((|#2| $) 21)) (-2519 (($ (-1 |#3| |#3|) $) 32)) (-1212 (($ (-1 |#3| |#3|) $) 30)) (-1190 ((|#3| $) 26)) (-3084 (($ $ |#3|) 33)) (-2845 (((-107) |#3| $) 17)) (-4137 (((-578 |#3|) $) 15)) (-2007 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-547 |#1| |#2| |#3|) (-10 -8 (-15 -1991 ((-1154) |#1| |#2| |#2|)) (-15 -3084 (|#1| |#1| |#3|)) (-15 -1190 (|#3| |#1|)) (-15 -3627 (|#2| |#1|)) (-15 -1522 (|#2| |#1|)) (-15 -2845 ((-107) |#3| |#1|)) (-15 -4137 ((-578 |#3|) |#1|)) (-15 -2007 (|#3| |#1| |#2|)) (-15 -2007 (|#3| |#1| |#2| |#3|)) (-15 -2519 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1212 (|#1| (-1 |#3| |#3|) |#1|))) (-548 |#2| |#3|) (-1001) (-1104)) (T -547)) -NIL -(-10 -8 (-15 -1991 ((-1154) |#1| |#2| |#2|)) (-15 -3084 (|#1| |#1| |#3|)) (-15 -1190 (|#3| |#1|)) (-15 -3627 (|#2| |#1|)) (-15 -1522 (|#2| |#1|)) (-15 -2845 ((-107) |#3| |#1|)) (-15 -4137 ((-578 |#3|) |#1|)) (-15 -2007 (|#3| |#1| |#2|)) (-15 -2007 (|#3| |#1| |#2| |#3|)) (-15 -2519 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1212 (|#1| (-1 |#3| |#3|) |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#2| (-1001)))) (-1991 (((-1154) $ |#1| |#1|) 40 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-2156 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) 51)) (-2732 (((-578 |#2|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3627 ((|#1| $) 43 (|has| |#1| (-777)))) (-3380 (((-578 |#2|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-1522 ((|#1| $) 44 (|has| |#1| (-777)))) (-2519 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#2| (-1001)))) (-2658 (((-578 |#1|) $) 46)) (-2852 (((-107) |#1| $) 47)) (-3708 (((-1018) $) 21 (|has| |#2| (-1001)))) (-1190 ((|#2| $) 42 (|has| |#1| (-777)))) (-3084 (($ $ |#2|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) 26 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) 25 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) 23 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3713 (((-701) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4167))) (((-701) |#2| $) 28 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#2| (-1001)))) (-1200 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#2| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-548 |#1| |#2|) (-1180) (-1001) (-1104)) (T -548)) -((-4137 (*1 *2 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-578 *4)))) (-2852 (*1 *2 *3 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-107)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-578 *3)))) (-2845 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-548 *4 *3)) (-4 *4 (-1001)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-548 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1001)) (-4 *2 (-777)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-548 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1001)) (-4 *2 (-777)))) (-1190 (*1 *2 *1) (-12 (-4 *1 (-548 *3 *2)) (-4 *3 (-1001)) (-4 *3 (-777)) (-4 *2 (-1104)))) (-3084 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-548 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) (-1991 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-1154))))) -(-13 (-454 |t#2|) (-258 |t#1| |t#2|) (-10 -8 (-15 -4137 ((-578 |t#2|) $)) (-15 -2852 ((-107) |t#1| $)) (-15 -2658 ((-578 |t#1|) $)) (IF (|has| |t#2| (-1001)) (IF (|has| $ (-6 -4167)) (-15 -2845 ((-107) |t#2| $)) |noBranch|) |noBranch|) (IF (|has| |t#1| (-777)) (PROGN (-15 -1522 (|t#1| $)) (-15 -3627 (|t#1| $)) (-15 -1190 (|t#2| $))) |noBranch|) (IF (|has| $ (-6 -4168)) (PROGN (-15 -3084 ($ $ |t#2|)) (-15 -1991 ((-1154) $ |t#1| |t#1|))) |noBranch|))) -(((-33) . T) ((-97) |has| |#2| (-1001)) ((-555 (-786)) |has| |#2| (-1001)) ((-256 |#1| |#2|) . T) ((-258 |#1| |#2|) . T) ((-278 |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-454 |#2|) . T) ((-476 |#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-1001) |has| |#2| (-1001)) ((-1104) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1738 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-1763 (((-1148 (-621 |#1|))) NIL (|has| |#2| (-386 |#1|))) (((-1148 (-621 |#1|)) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1674 (((-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2540 (($) NIL T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1956 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2311 (((-621 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1909 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-3867 (((-621 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1887 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3665 (((-1064 (-866 |#1|))) NIL (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-331))))) (-2911 (($ $ (-839)) NIL)) (-3925 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-2292 (((-1064 |#1|) $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2398 ((|#1|) NIL (|has| |#2| (-386 |#1|))) ((|#1| (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-3333 (((-1064 |#1|) $) NIL (|has| |#2| (-335 |#1|)))) (-3656 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3142 (($ (-1148 |#1|)) NIL (|has| |#2| (-386 |#1|))) (($ (-1148 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2174 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3689 (((-839)) NIL (|has| |#2| (-335 |#1|)))) (-3168 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3554 (($ $ (-839)) NIL)) (-3930 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2838 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3874 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2653 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-4146 (((-621 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-3821 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-1472 (((-621 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1992 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2582 (((-1064 (-866 |#1|))) NIL (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-331))))) (-3381 (($ $ (-839)) NIL)) (-3784 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-3474 (((-1064 |#1|) $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1600 ((|#1|) NIL (|has| |#2| (-386 |#1|))) ((|#1| (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2270 (((-1064 |#1|) $) NIL (|has| |#2| (-335 |#1|)))) (-2172 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3460 (((-1053) $) NIL)) (-3808 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2417 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2794 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3708 (((-1018) $) NIL)) (-2780 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2007 ((|#1| $ (-501)) NIL (|has| |#2| (-386 |#1|)))) (-2085 (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-386 |#1|))) (((-1148 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $) (-1148 $)) NIL (|has| |#2| (-335 |#1|))) (((-1148 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1248 (($ (-1148 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-1148 |#1|) $) NIL (|has| |#2| (-386 |#1|)))) (-3056 (((-578 (-866 |#1|))) NIL (|has| |#2| (-386 |#1|))) (((-578 (-866 |#1|)) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2144 (($ $ $) NIL)) (-1977 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3691 (((-786) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4119 (((-1148 $)) NIL (|has| |#2| (-386 |#1|)))) (-4102 (((-578 (-1148 |#1|))) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1363 (($ $ $ $) NIL)) (-1273 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1183 (($ (-621 |#1|) $) NIL (|has| |#2| (-386 |#1|)))) (-2033 (($ $ $) NIL)) (-2625 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3675 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3258 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1850 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) 24)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-549 |#1| |#2|) (-13 (-675 |#1|) (-555 |#2|) (-10 -8 (-15 -3691 ($ |#2|)) (IF (|has| |#2| (-386 |#1|)) (-6 (-386 |#1|)) |noBranch|) (IF (|has| |#2| (-335 |#1|)) (-6 (-335 |#1|)) |noBranch|))) (-156) (-675 |#1|)) (T -549)) -((-3691 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-549 *3 *2)) (-4 *2 (-675 *3))))) -(-13 (-675 |#1|) (-555 |#2|) (-10 -8 (-15 -3691 ($ |#2|)) (IF (|has| |#2| (-386 |#1|)) (-6 (-386 |#1|)) |noBranch|) (IF (|has| |#2| (-335 |#1|)) (-6 (-335 |#1|)) |noBranch|))) -((-3736 (((-107) $ $) NIL)) (-2186 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) 32)) (-3621 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL) (($) NIL)) (-1991 (((-1154) $ (-1053) (-1053)) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-1053) |#1|) 42)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#1| "failed") (-1053) $) 45)) (-2540 (($) NIL T CONST)) (-1998 (($ $ (-1053)) 24)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-2256 (((-3 |#1| "failed") (-1053) $) 46) (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (|has| $ (-6 -4167)))) (-1526 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-3547 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-3505 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) 31)) (-2156 ((|#1| $ (-1053) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-1053)) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-3114 (($ $) 47)) (-2342 (($ (-356)) 22) (($ (-356) (-1053)) 21)) (-3986 (((-356) $) 33)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-1053) $) NIL (|has| (-1053) (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (((-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-1522 (((-1053) $) NIL (|has| (-1053) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1500 (((-578 (-1053)) $) 38)) (-3576 (((-107) (-1053) $) NIL)) (-3947 (((-1053) $) 34)) (-1328 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-2658 (((-578 (-1053)) $) NIL)) (-2852 (((-107) (-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 ((|#1| $) NIL (|has| (-1053) (-777)))) (-2520 (((-3 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) "failed") (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-578 (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 36)) (-2007 ((|#1| $ (-1053) |#1|) NIL) ((|#1| $ (-1053)) 41)) (-3013 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL) (($) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (((-701) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (((-701) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-3691 (((-786) $) 20)) (-3371 (($ $) 25)) (-2866 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19)) (-3581 (((-701) $) 40 (|has| $ (-6 -4167))))) -(((-550 |#1|) (-13 (-333 (-356) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) (-1081 (-1053) |#1|) (-10 -8 (-6 -4167) (-15 -3114 ($ $)))) (-1001)) (T -550)) -((-3114 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-1001))))) -(-13 (-333 (-356) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) (-1081 (-1053) |#1|) (-10 -8 (-6 -4167) (-15 -3114 ($ $)))) -((-2211 (((-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) 15)) (-1500 (((-578 |#2|) $) 19)) (-3576 (((-107) |#2| $) 12))) -(((-551 |#1| |#2| |#3|) (-10 -8 (-15 -1500 ((-578 |#2|) |#1|)) (-15 -3576 ((-107) |#2| |#1|)) (-15 -2211 ((-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|))) (-552 |#2| |#3|) (-1001) (-1001)) (T -551)) -NIL -(-10 -8 (-15 -1500 ((-578 |#2|) |#1|)) (-15 -3576 ((-107) |#2| |#1|)) (-15 -2211 ((-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|))) -((-3736 (((-107) $ $) 18 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 55 (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) 61)) (-2540 (($) 7 T CONST)) (-2673 (($ $) 58 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 46 (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 62)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 54 (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 56 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 53 (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-1500 (((-578 |#1|) $) 63)) (-3576 (((-107) |#1| $) 64)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 39)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 40)) (-3708 (((-1018) $) 21 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 51)) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 41)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) 26 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 25 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 24 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 23 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3013 (($) 49) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 48)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 31 (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 50)) (-3691 (((-786) $) 20 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 42)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-552 |#1| |#2|) (-1180) (-1001) (-1001)) (T -552)) -((-3576 (*1 *2 *3 *1) (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-107)))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-578 *3)))) (-2256 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-552 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) (-4019 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-552 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001))))) -(-13 (-202 (-2 (|:| -3626 |t#1|) (|:| -2922 |t#2|))) (-10 -8 (-15 -3576 ((-107) |t#1| $)) (-15 -1500 ((-578 |t#1|) $)) (-15 -2256 ((-3 |t#2| "failed") |t#1| $)) (-15 -4019 ((-3 |t#2| "failed") |t#1| $)))) -(((-33) . T) ((-102 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-97) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) ((-555 (-786)) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) ((-138 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-556 (-490)) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))) ((-202 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-208 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-454 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-476 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-1001) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) ((-1104) . T)) -((-3736 (((-107) $ $) NIL)) (-1340 (((-3 (-1070) "failed") $) 36)) (-3782 (((-1154) $ (-701)) 26)) (-1934 (((-701) $) 25)) (-1853 (((-108) $) 12)) (-3986 (((-1070) $) 20)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3136 (($ (-108) (-578 |#1|) (-701)) 30) (($ (-1070)) 31)) (-3109 (((-107) $ (-108)) 18) (((-107) $ (-1070)) 16)) (-2696 (((-701) $) 22)) (-3708 (((-1018) $) NIL)) (-1248 (((-810 (-501)) $) 69 (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) 75 (|has| |#1| (-556 (-810 (-346))))) (((-490) $) 62 (|has| |#1| (-556 (-490))))) (-3691 (((-786) $) 51)) (-2992 (((-578 |#1|) $) 24)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 39)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 40))) -(((-553 |#1|) (-13 (-124) (-804 |#1|) (-10 -8 (-15 -3986 ((-1070) $)) (-15 -1853 ((-108) $)) (-15 -2992 ((-578 |#1|) $)) (-15 -2696 ((-701) $)) (-15 -3136 ($ (-108) (-578 |#1|) (-701))) (-15 -3136 ($ (-1070))) (-15 -1340 ((-3 (-1070) "failed") $)) (-15 -3109 ((-107) $ (-108))) (-15 -3109 ((-107) $ (-1070))) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|))) (-777)) (T -553)) -((-3986 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-3136 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-108)) (-5 *3 (-578 *5)) (-5 *4 (-701)) (-4 *5 (-777)) (-5 *1 (-553 *5)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-1340 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-108)) (-5 *2 (-107)) (-5 *1 (-553 *4)) (-4 *4 (-777)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-107)) (-5 *1 (-553 *4)) (-4 *4 (-777))))) -(-13 (-124) (-804 |#1|) (-10 -8 (-15 -3986 ((-1070) $)) (-15 -1853 ((-108) $)) (-15 -2992 ((-578 |#1|) $)) (-15 -2696 ((-701) $)) (-15 -3136 ($ (-108) (-578 |#1|) (-701))) (-15 -3136 ($ (-1070))) (-15 -1340 ((-3 (-1070) "failed") $)) (-15 -3109 ((-107) $ (-108))) (-15 -3109 ((-107) $ (-1070))) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|))) -((-2405 (((-553 |#2|) |#1|) 15)) (-3788 (((-3 |#1| "failed") (-553 |#2|)) 19))) -(((-554 |#1| |#2|) (-10 -7 (-15 -2405 ((-553 |#2|) |#1|)) (-15 -3788 ((-3 |#1| "failed") (-553 |#2|)))) (-777) (-777)) (T -554)) -((-3788 (*1 *2 *3) (|partial| -12 (-5 *3 (-553 *4)) (-4 *4 (-777)) (-4 *2 (-777)) (-5 *1 (-554 *2 *4)))) (-2405 (*1 *2 *3) (-12 (-5 *2 (-553 *4)) (-5 *1 (-554 *3 *4)) (-4 *3 (-777)) (-4 *4 (-777))))) -(-10 -7 (-15 -2405 ((-553 |#2|) |#1|)) (-15 -3788 ((-3 |#1| "failed") (-553 |#2|)))) -((-3691 ((|#1| $) 6))) -(((-555 |#1|) (-1180) (-1104)) (T -555)) -((-3691 (*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1104))))) -(-13 (-10 -8 (-15 -3691 (|t#1| $)))) -((-1248 ((|#1| $) 6))) -(((-556 |#1|) (-1180) (-1104)) (T -556)) -((-1248 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1104))))) -(-13 (-10 -8 (-15 -1248 (|t#1| $)))) -((-2510 (((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 (-373 |#2|) |#2|)) 13) (((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|)) 14))) -(((-557 |#1| |#2|) (-10 -7 (-15 -2510 ((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|))) (-15 -2510 ((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 (-373 |#2|) |#2|)))) (-13 (-134) (-27) (-950 (-501)) (-950 (-375 (-501)))) (-1125 |#1|)) (T -557)) -((-2510 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-134) (-27) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-1064 (-375 *6))) (-5 *1 (-557 *5 *6)) (-5 *3 (-375 *6)))) (-2510 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-1064 (-375 *5))) (-5 *1 (-557 *4 *5)) (-5 *3 (-375 *5))))) -(-10 -7 (-15 -2510 ((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|))) (-15 -2510 ((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 (-373 |#2|) |#2|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1417 (((-501) $) NIL (|has| |#1| (-775)))) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-2164 (((-107) $) NIL (|has| |#1| (-775)))) (-1355 (((-107) $) NIL)) (-2946 ((|#1| $) 13)) (-4067 (((-107) $) NIL (|has| |#1| (-775)))) (-4111 (($ $ $) NIL (|has| |#1| (-775)))) (-1323 (($ $ $) NIL (|has| |#1| (-775)))) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2949 ((|#3| $) 15)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL)) (-3965 (((-701)) 20)) (-1720 (($ $) NIL (|has| |#1| (-775)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) 12 T CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3803 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-558 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (-15 -3803 ($ $ |#3|)) (-15 -3803 ($ |#1| |#3|)) (-15 -2946 (|#1| $)) (-15 -2949 (|#3| $)))) (-37 |#2|) (-156) (|SubsetCategory| (-657) |#2|)) (T -558)) -((-3803 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-657) *4)))) (-3803 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-657) *4)))) (-2946 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-558 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-657) *3)))) (-2949 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-657) *4)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-37 *4))))) -(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (-15 -3803 ($ $ |#3|)) (-15 -3803 ($ |#1| |#3|)) (-15 -2946 (|#1| $)) (-15 -2949 (|#3| $)))) -((-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) 10))) -(((-559 |#1| |#2|) (-10 -8 (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-560 |#2|) (-959)) (T -559)) -NIL -(-10 -8 (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 36)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ |#1| $) 37))) -(((-560 |#1|) (-1180) (-959)) (T -560)) -((-3691 (*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-959))))) -(-13 (-959) (-583 |t#1|) (-10 -8 (-15 -3691 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3455 ((|#2| |#2| (-1070) (-1070)) 18))) -(((-561 |#1| |#2|) (-10 -7 (-15 -3455 (|#2| |#2| (-1070) (-1070)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-879) (-29 |#1|))) (T -561)) -((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1090) (-879) (-29 *4)))))) -(-10 -7 (-15 -3455 (|#2| |#2| (-1070) (-1070)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 52)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-4035 ((|#1| $) 49)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-1337 (((-2 (|:| -3499 $) (|:| -3677 (-375 |#2|))) (-375 |#2|)) 95 (|has| |#1| (-331)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 83) (((-3 |#2| "failed") $) 80)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) 24)) (-2174 (((-3 $ "failed") $) 74)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-3169 (((-501) $) 19)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) 36)) (-3787 (($ |#1| (-501)) 21)) (-3850 ((|#1| $) 51)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) 85 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 98 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ $) 78)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1864 (((-701) $) 97 (|has| |#1| (-331)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 96 (|has| |#1| (-331)))) (-2596 (($ $ (-1 |#2| |#2|)) 65) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-1201 (((-501) $) 34)) (-1248 (((-375 |#2|) $) 42)) (-3691 (((-786) $) 61) (($ (-501)) 32) (($ $) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) 31) (($ |#2|) 22)) (-2495 ((|#1| $ (-501)) 62)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 9 T CONST)) (-1925 (($) 12 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-3751 (((-107) $ $) 17)) (-3797 (($ $) 46) (($ $ $) NIL)) (-3790 (($ $ $) 75)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 26) (($ $ $) 44))) -(((-562 |#1| |#2|) (-13 (-204 |#2|) (-508) (-556 (-375 |#2|)) (-380 |#1|) (-950 |#2|) (-10 -8 (-15 -2706 ((-107) $)) (-15 -1201 ((-501) $)) (-15 -3169 ((-501) $)) (-15 -3858 ($ $)) (-15 -3850 (|#1| $)) (-15 -4035 (|#1| $)) (-15 -2495 (|#1| $ (-501))) (-15 -3787 ($ |#1| (-501))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-6 (-276)) (-15 -1337 ((-2 (|:| -3499 $) (|:| -3677 (-375 |#2|))) (-375 |#2|)))) |noBranch|))) (-508) (-1125 |#1|)) (T -562)) -((-2706 (*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-107)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) (-1201 (*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-501)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) (-3169 (*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-501)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) (-3858 (*1 *1 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2)))) (-3850 (*1 *2 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2)))) (-4035 (*1 *2 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2)))) (-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-508)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1125 *2)))) (-3787 (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-4 *2 (-508)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1125 *2)))) (-1337 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *4 (-508)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3499 (-562 *4 *5)) (|:| -3677 (-375 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-375 *5))))) -(-13 (-204 |#2|) (-508) (-556 (-375 |#2|)) (-380 |#1|) (-950 |#2|) (-10 -8 (-15 -2706 ((-107) $)) (-15 -1201 ((-501) $)) (-15 -3169 ((-501) $)) (-15 -3858 ($ $)) (-15 -3850 (|#1| $)) (-15 -4035 (|#1| $)) (-15 -2495 (|#1| $ (-501))) (-15 -3787 ($ |#1| (-501))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-6 (-276)) (-15 -1337 ((-2 (|:| -3499 $) (|:| -3677 (-375 |#2|))) (-375 |#2|)))) |noBranch|))) -((-2073 (((-578 |#6|) (-578 |#4|) (-107)) 46)) (-4076 ((|#6| |#6|) 39))) -(((-563 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4076 (|#6| |#6|)) (-15 -2073 ((-578 |#6|) (-578 |#4|) (-107)))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|) (-1009 |#1| |#2| |#3| |#4|)) (T -563)) -((-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 *10)) (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *10 (-1009 *5 *6 *7 *8)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *2 (-1009 *3 *4 *5 *6))))) -(-10 -7 (-15 -4076 (|#6| |#6|)) (-15 -2073 ((-578 |#6|) (-578 |#4|) (-107)))) -((-2357 (((-107) |#3| (-701) (-578 |#3|)) 22)) (-3374 (((-3 (-2 (|:| |polfac| (-578 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-578 (-1064 |#3|)))) "failed") |#3| (-578 (-1064 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1575 (-578 (-2 (|:| |irr| |#4|) (|:| -3257 (-501)))))) (-578 |#3|) (-578 |#1|) (-578 |#3|)) 51))) -(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2357 ((-107) |#3| (-701) (-578 |#3|))) (-15 -3374 ((-3 (-2 (|:| |polfac| (-578 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-578 (-1064 |#3|)))) "failed") |#3| (-578 (-1064 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1575 (-578 (-2 (|:| |irr| |#4|) (|:| -3257 (-501)))))) (-578 |#3|) (-578 |#1|) (-578 |#3|)))) (-777) (-723) (-276) (-870 |#3| |#2| |#1|)) (T -564)) -((-3374 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1575 (-578 (-2 (|:| |irr| *10) (|:| -3257 (-501))))))) (-5 *6 (-578 *3)) (-5 *7 (-578 *8)) (-4 *8 (-777)) (-4 *3 (-276)) (-4 *10 (-870 *3 *9 *8)) (-4 *9 (-723)) (-5 *2 (-2 (|:| |polfac| (-578 *10)) (|:| |correct| *3) (|:| |corrfact| (-578 (-1064 *3))))) (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-578 (-1064 *3))))) (-2357 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-701)) (-5 *5 (-578 *3)) (-4 *3 (-276)) (-4 *6 (-777)) (-4 *7 (-723)) (-5 *2 (-107)) (-5 *1 (-564 *6 *7 *3 *8)) (-4 *8 (-870 *3 *7 *6))))) -(-10 -7 (-15 -2357 ((-107) |#3| (-701) (-578 |#3|))) (-15 -3374 ((-3 (-2 (|:| |polfac| (-578 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-578 (-1064 |#3|)))) "failed") |#3| (-578 (-1064 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1575 (-578 (-2 (|:| |irr| |#4|) (|:| -3257 (-501)))))) (-578 |#3|) (-578 |#1|) (-578 |#3|)))) -((-3736 (((-107) $ $) NIL)) (-3514 (((-578 |#1|) $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3660 (($ $) 67)) (-1635 (((-599 |#1| |#2|) $) 52)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 70)) (-4127 (((-578 (-262 |#2|)) $ $) 33)) (-3708 (((-1018) $) NIL)) (-1989 (($ (-599 |#1| |#2|)) 48)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) 58) (((-1162 |#1| |#2|) $) NIL) (((-1167 |#1| |#2|) $) 66)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 53 T CONST)) (-1912 (((-578 (-2 (|:| |k| (-606 |#1|)) (|:| |c| |#2|))) $) 31)) (-3001 (((-578 (-599 |#1| |#2|)) (-578 |#1|)) 65)) (-1914 (((-578 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $) 36)) (-3751 (((-107) $ $) 54)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ $ $) 44))) -(((-565 |#1| |#2| |#3|) (-13 (-440) (-10 -8 (-15 -1989 ($ (-599 |#1| |#2|))) (-15 -1635 ((-599 |#1| |#2|) $)) (-15 -1914 ((-578 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $)) (-15 -3691 ((-1162 |#1| |#2|) $)) (-15 -3691 ((-1167 |#1| |#2|) $)) (-15 -3660 ($ $)) (-15 -3514 ((-578 |#1|) $)) (-15 -3001 ((-578 (-599 |#1| |#2|)) (-578 |#1|))) (-15 -1912 ((-578 (-2 (|:| |k| (-606 |#1|)) (|:| |c| |#2|))) $)) (-15 -4127 ((-578 (-262 |#2|)) $ $)))) (-777) (-13 (-156) (-648 (-375 (-501)))) (-839)) (T -565)) -((-1989 (*1 *1 *2) (-12 (-5 *2 (-599 *3 *4)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-5 *1 (-565 *3 *4 *5)) (-14 *5 (-839)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-599 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-813 *3)) (|:| |c| *4)))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-565 *2 *3 *4)) (-4 *2 (-777)) (-4 *3 (-13 (-156) (-648 (-375 (-501))))) (-14 *4 (-839)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-777)) (-5 *2 (-578 (-599 *4 *5))) (-5 *1 (-565 *4 *5 *6)) (-4 *5 (-13 (-156) (-648 (-375 (-501))))) (-14 *6 (-839)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-606 *3)) (|:| |c| *4)))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-4127 (*1 *2 *1 *1) (-12 (-5 *2 (-578 (-262 *4))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839))))) -(-13 (-440) (-10 -8 (-15 -1989 ($ (-599 |#1| |#2|))) (-15 -1635 ((-599 |#1| |#2|) $)) (-15 -1914 ((-578 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $)) (-15 -3691 ((-1162 |#1| |#2|) $)) (-15 -3691 ((-1167 |#1| |#2|) $)) (-15 -3660 ($ $)) (-15 -3514 ((-578 |#1|) $)) (-15 -3001 ((-578 (-599 |#1| |#2|)) (-578 |#1|))) (-15 -1912 ((-578 (-2 (|:| |k| (-606 |#1|)) (|:| |c| |#2|))) $)) (-15 -4127 ((-578 (-262 |#2|)) $ $)))) -((-2073 (((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107)) 70) (((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107)) 56)) (-1551 (((-107) (-578 (-710 |#1| (-787 |#2|)))) 22)) (-2728 (((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107)) 69)) (-2741 (((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107)) 55)) (-3727 (((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|)))) 26)) (-1872 (((-3 (-578 (-710 |#1| (-787 |#2|))) "failed") (-578 (-710 |#1| (-787 |#2|)))) 25))) -(((-566 |#1| |#2|) (-10 -7 (-15 -1551 ((-107) (-578 (-710 |#1| (-787 |#2|))))) (-15 -1872 ((-3 (-578 (-710 |#1| (-787 |#2|))) "failed") (-578 (-710 |#1| (-787 |#2|))))) (-15 -3727 ((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|))))) (-15 -2741 ((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2728 ((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2073 ((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2073 ((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107)))) (-419) (-578 (-1070))) (T -566)) -((-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-1041 *5 (-487 (-787 *6)) (-787 *6) (-710 *5 (-787 *6))))) (-5 *1 (-566 *5 *6)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-566 *5 *6)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-1041 *5 (-487 (-787 *6)) (-787 *6) (-710 *5 (-787 *6))))) (-5 *1 (-566 *5 *6)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-566 *5 *6)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-578 (-710 *3 (-787 *4)))) (-4 *3 (-419)) (-14 *4 (-578 (-1070))) (-5 *1 (-566 *3 *4)))) (-1872 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-710 *3 (-787 *4)))) (-4 *3 (-419)) (-14 *4 (-578 (-1070))) (-5 *1 (-566 *3 *4)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-578 (-710 *4 (-787 *5)))) (-4 *4 (-419)) (-14 *5 (-578 (-1070))) (-5 *2 (-107)) (-5 *1 (-566 *4 *5))))) -(-10 -7 (-15 -1551 ((-107) (-578 (-710 |#1| (-787 |#2|))))) (-15 -1872 ((-3 (-578 (-710 |#1| (-787 |#2|))) "failed") (-578 (-710 |#1| (-787 |#2|))))) (-15 -3727 ((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|))))) (-15 -2741 ((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2728 ((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2073 ((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2073 ((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107)))) -((-1853 (((-108) (-108)) 83)) (-2586 ((|#2| |#2|) 30)) (-3028 ((|#2| |#2| (-993 |#2|)) 79) ((|#2| |#2| (-1070)) 52)) (-3908 ((|#2| |#2|) 29)) (-3924 ((|#2| |#2|) 31)) (-3811 (((-107) (-108)) 34)) (-2909 ((|#2| |#2|) 26)) (-3878 ((|#2| |#2|) 28)) (-2043 ((|#2| |#2|) 27))) -(((-567 |#1| |#2|) (-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -3878 (|#2| |#2|)) (-15 -2909 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -2586 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -3028 (|#2| |#2| (-1070))) (-15 -3028 (|#2| |#2| (-993 |#2|)))) (-13 (-777) (-508)) (-13 (-389 |#1|) (-916) (-1090))) (T -567)) -((-3028 (*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-13 (-389 *4) (-916) (-1090))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-567 *4 *2)))) (-3028 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-389 *4) (-916) (-1090))))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-2586 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-2043 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-2909 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-3878 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *4)) (-4 *4 (-13 (-389 *3) (-916) (-1090))))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-567 *4 *5)) (-4 *5 (-13 (-389 *4) (-916) (-1090)))))) -(-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -3878 (|#2| |#2|)) (-15 -2909 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -2586 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -3028 (|#2| |#2| (-1070))) (-15 -3028 (|#2| |#2| (-993 |#2|)))) -((-3978 (($ $) 38)) (-3937 (($ $) 21)) (-3970 (($ $) 37)) (-3929 (($ $) 22)) (-3984 (($ $) 36)) (-3945 (($ $) 23)) (-2003 (($) 48)) (-1635 (($ $) 45)) (-2586 (($ $) 17)) (-3028 (($ $ (-993 $)) 7) (($ $ (-1070)) 6)) (-1989 (($ $) 46)) (-3908 (($ $) 15)) (-3924 (($ $) 16)) (-3991 (($ $) 35)) (-3949 (($ $) 24)) (-3981 (($ $) 34)) (-3940 (($ $) 25)) (-3975 (($ $) 33)) (-3933 (($ $) 26)) (-4003 (($ $) 44)) (-3958 (($ $) 32)) (-3995 (($ $) 43)) (-3952 (($ $) 31)) (-4013 (($ $) 42)) (-3964 (($ $) 30)) (-3550 (($ $) 41)) (-3967 (($ $) 29)) (-4008 (($ $) 40)) (-3961 (($ $) 28)) (-3999 (($ $) 39)) (-3955 (($ $) 27)) (-2909 (($ $) 19)) (-3878 (($ $) 20)) (-2043 (($ $) 18)) (** (($ $ $) 47))) -(((-568) (-1180)) (T -568)) -((-3878 (*1 *1 *1) (-4 *1 (-568))) (-2909 (*1 *1 *1) (-4 *1 (-568))) (-2043 (*1 *1 *1) (-4 *1 (-568))) (-2586 (*1 *1 *1) (-4 *1 (-568))) (-3924 (*1 *1 *1) (-4 *1 (-568))) (-3908 (*1 *1 *1) (-4 *1 (-568)))) -(-13 (-879) (-1090) (-10 -8 (-15 -3878 ($ $)) (-15 -2909 ($ $)) (-15 -2043 ($ $)) (-15 -2586 ($ $)) (-15 -3924 ($ $)) (-15 -3908 ($ $)))) -(((-34) . T) ((-91) . T) ((-254) . T) ((-456) . T) ((-879) . T) ((-1090) . T) ((-1093) . T)) -((-3893 (((-447 |#1| |#2|) (-220 |#1| |#2|)) 52)) (-3347 (((-578 (-220 |#1| |#2|)) (-578 (-447 |#1| |#2|))) 67)) (-2677 (((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-787 |#1|)) 69) (((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)) (-787 |#1|)) 68)) (-2322 (((-2 (|:| |gblist| (-578 (-220 |#1| |#2|))) (|:| |gvlist| (-578 (-501)))) (-578 (-447 |#1| |#2|))) 105)) (-3856 (((-578 (-447 |#1| |#2|)) (-787 |#1|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|))) 82)) (-3361 (((-2 (|:| |glbase| (-578 (-220 |#1| |#2|))) (|:| |glval| (-578 (-501)))) (-578 (-220 |#1| |#2|))) 116)) (-2761 (((-1148 |#2|) (-447 |#1| |#2|) (-578 (-447 |#1| |#2|))) 57)) (-1592 (((-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|))) 39)) (-2902 (((-220 |#1| |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|))) 49)) (-2886 (((-220 |#1| |#2|) (-578 |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|))) 89))) -(((-569 |#1| |#2|) (-10 -7 (-15 -2322 ((-2 (|:| |gblist| (-578 (-220 |#1| |#2|))) (|:| |gvlist| (-578 (-501)))) (-578 (-447 |#1| |#2|)))) (-15 -3361 ((-2 (|:| |glbase| (-578 (-220 |#1| |#2|))) (|:| |glval| (-578 (-501)))) (-578 (-220 |#1| |#2|)))) (-15 -3347 ((-578 (-220 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2677 ((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)) (-787 |#1|))) (-15 -2677 ((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-787 |#1|))) (-15 -1592 ((-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2761 ((-1148 |#2|) (-447 |#1| |#2|) (-578 (-447 |#1| |#2|)))) (-15 -2886 ((-220 |#1| |#2|) (-578 |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|)))) (-15 -3856 ((-578 (-447 |#1| |#2|)) (-787 |#1|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2902 ((-220 |#1| |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|)))) (-15 -3893 ((-447 |#1| |#2|) (-220 |#1| |#2|)))) (-578 (-1070)) (-419)) (T -569)) -((-3893 (*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-447 *4 *5)) (-5 *1 (-569 *4 *5)))) (-2902 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-220 *4 *5))) (-5 *2 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-569 *4 *5)))) (-3856 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-578 (-447 *4 *5))) (-5 *3 (-787 *4)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-569 *4 *5)))) (-2886 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-220 *5 *6))) (-4 *6 (-419)) (-5 *2 (-220 *5 *6)) (-14 *5 (-578 (-1070))) (-5 *1 (-569 *5 *6)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-447 *5 *6))) (-5 *3 (-447 *5 *6)) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-1148 *6)) (-5 *1 (-569 *5 *6)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-578 (-447 *3 *4))) (-14 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-569 *3 *4)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-447 *5 *6))) (-5 *4 (-787 *5)) (-14 *5 (-578 (-1070))) (-5 *2 (-447 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-419)))) (-2677 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-447 *5 *6))) (-5 *4 (-787 *5)) (-14 *5 (-578 (-1070))) (-5 *2 (-447 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-419)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-578 (-447 *4 *5))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-578 (-220 *4 *5))) (-5 *1 (-569 *4 *5)))) (-3361 (*1 *2 *3) (-12 (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-2 (|:| |glbase| (-578 (-220 *4 *5))) (|:| |glval| (-578 (-501))))) (-5 *1 (-569 *4 *5)) (-5 *3 (-578 (-220 *4 *5))))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-578 (-447 *4 *5))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-2 (|:| |gblist| (-578 (-220 *4 *5))) (|:| |gvlist| (-578 (-501))))) (-5 *1 (-569 *4 *5))))) -(-10 -7 (-15 -2322 ((-2 (|:| |gblist| (-578 (-220 |#1| |#2|))) (|:| |gvlist| (-578 (-501)))) (-578 (-447 |#1| |#2|)))) (-15 -3361 ((-2 (|:| |glbase| (-578 (-220 |#1| |#2|))) (|:| |glval| (-578 (-501)))) (-578 (-220 |#1| |#2|)))) (-15 -3347 ((-578 (-220 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2677 ((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)) (-787 |#1|))) (-15 -2677 ((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-787 |#1|))) (-15 -1592 ((-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2761 ((-1148 |#2|) (-447 |#1| |#2|) (-578 (-447 |#1| |#2|)))) (-15 -2886 ((-220 |#1| |#2|) (-578 |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|)))) (-15 -3856 ((-578 (-447 |#1| |#2|)) (-787 |#1|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2902 ((-220 |#1| |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|)))) (-15 -3893 ((-447 |#1| |#2|) (-220 |#1| |#2|)))) -((-3736 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL)) (-1991 (((-1154) $ (-1053) (-1053)) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 (((-50) $ (-1053) (-50)) 16) (((-50) $ (-1070) (-50)) 17)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 (-50) "failed") (-1053) $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-2256 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-3 (-50) "failed") (-1053) $) NIL)) (-1526 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-2156 (((-50) $ (-1053) (-50)) NIL (|has| $ (-6 -4168)))) (-1905 (((-50) $ (-1053)) NIL)) (-2732 (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-3114 (($ $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-1053) $) NIL (|has| (-1053) (-777)))) (-3380 (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-1522 (((-1053) $) NIL (|has| (-1053) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4168))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-2162 (($ (-356)) 9)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-1500 (((-578 (-1053)) $) NIL)) (-3576 (((-107) (-1053) $) NIL)) (-1328 (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL)) (-4114 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL)) (-2658 (((-578 (-1053)) $) NIL)) (-2852 (((-107) (-1053) $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-1190 (((-50) $) NIL (|has| (-1053) (-777)))) (-2520 (((-3 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) "failed") (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL)) (-3084 (($ $ (-50)) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (($ $ (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (($ $ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-50)) (-578 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-262 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-578 (-262 (-50)))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-4137 (((-578 (-50)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 (((-50) $ (-1053)) 14) (((-50) $ (-1053) (-50)) NIL) (((-50) $ (-1070)) 15)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (((-701) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001)))) (((-701) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-570) (-13 (-1081 (-1053) (-50)) (-10 -8 (-15 -2162 ($ (-356))) (-15 -3114 ($ $)) (-15 -2007 ((-50) $ (-1070))) (-15 -3754 ((-50) $ (-1070) (-50)))))) (T -570)) -((-2162 (*1 *1 *2) (-12 (-5 *2 (-356)) (-5 *1 (-570)))) (-3114 (*1 *1 *1) (-5 *1 (-570))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-50)) (-5 *1 (-570)))) (-3754 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-50)) (-5 *3 (-1070)) (-5 *1 (-570))))) -(-13 (-1081 (-1053) (-50)) (-10 -8 (-15 -2162 ($ (-356))) (-15 -3114 ($ $)) (-15 -2007 ((-50) $ (-1070))) (-15 -3754 ((-50) $ (-1070) (-50))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1738 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-1763 (((-1148 (-621 |#1|))) NIL (|has| |#2| (-386 |#1|))) (((-1148 (-621 |#1|)) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1674 (((-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2540 (($) NIL T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1956 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2311 (((-621 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1909 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-3867 (((-621 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1887 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3665 (((-1064 (-866 |#1|))) NIL (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-331))))) (-2911 (($ $ (-839)) NIL)) (-3925 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-2292 (((-1064 |#1|) $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2398 ((|#1|) NIL (|has| |#2| (-386 |#1|))) ((|#1| (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-3333 (((-1064 |#1|) $) NIL (|has| |#2| (-335 |#1|)))) (-3656 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3142 (($ (-1148 |#1|)) NIL (|has| |#2| (-386 |#1|))) (($ (-1148 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2174 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3689 (((-839)) NIL (|has| |#2| (-335 |#1|)))) (-3168 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3554 (($ $ (-839)) NIL)) (-3930 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2838 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3874 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2653 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-4146 (((-621 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-3821 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-1472 (((-621 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1992 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2582 (((-1064 (-866 |#1|))) NIL (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-331))))) (-3381 (($ $ (-839)) NIL)) (-3784 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-3474 (((-1064 |#1|) $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1600 ((|#1|) NIL (|has| |#2| (-386 |#1|))) ((|#1| (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2270 (((-1064 |#1|) $) NIL (|has| |#2| (-335 |#1|)))) (-2172 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3460 (((-1053) $) NIL)) (-3808 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2417 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2794 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3708 (((-1018) $) NIL)) (-2780 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2007 ((|#1| $ (-501)) NIL (|has| |#2| (-386 |#1|)))) (-2085 (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-386 |#1|))) (((-1148 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $) (-1148 $)) NIL (|has| |#2| (-335 |#1|))) (((-1148 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1248 (($ (-1148 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-1148 |#1|) $) NIL (|has| |#2| (-386 |#1|)))) (-3056 (((-578 (-866 |#1|))) NIL (|has| |#2| (-386 |#1|))) (((-578 (-866 |#1|)) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2144 (($ $ $) NIL)) (-1977 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3691 (((-786) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4119 (((-1148 $)) NIL (|has| |#2| (-386 |#1|)))) (-4102 (((-578 (-1148 |#1|))) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1363 (($ $ $ $) NIL)) (-1273 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1183 (($ (-621 |#1|) $) NIL (|has| |#2| (-386 |#1|)))) (-2033 (($ $ $) NIL)) (-2625 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3675 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3258 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1850 (($) 15 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) 17)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-571 |#1| |#2|) (-13 (-675 |#1|) (-555 |#2|) (-10 -8 (-15 -3691 ($ |#2|)) (IF (|has| |#2| (-386 |#1|)) (-6 (-386 |#1|)) |noBranch|) (IF (|has| |#2| (-335 |#1|)) (-6 (-335 |#1|)) |noBranch|))) (-156) (-675 |#1|)) (T -571)) -((-3691 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-571 *3 *2)) (-4 *2 (-675 *3))))) -(-13 (-675 |#1|) (-555 |#2|) (-10 -8 (-15 -3691 ($ |#2|)) (IF (|has| |#2| (-386 |#1|)) (-6 (-386 |#1|)) |noBranch|) (IF (|has| |#2| (-335 |#1|)) (-6 (-335 |#1|)) |noBranch|))) -((-3803 (($ $ |#2|) 10))) -(((-572 |#1| |#2|) (-10 -8 (-15 -3803 (|#1| |#1| |#2|))) (-573 |#2|) (-156)) (T -572)) -NIL -(-10 -8 (-15 -3803 (|#1| |#1| |#2|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3699 (($ $ $) 29)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 28 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-573 |#1|) (-1180) (-156)) (T -573)) -((-3699 (*1 *1 *1 *1) (-12 (-4 *1 (-573 *2)) (-4 *2 (-156)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-156)) (-4 *2 (-331))))) -(-13 (-648 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3699 ($ $ $)) (IF (|has| |t#1| (-331)) (-15 -3803 ($ $ |t#1|)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-648 |#1|) . T) ((-964 |#1|) . T) ((-1001) . T)) -((-2121 (((-3 (-769 |#2|) "failed") |#2| (-262 |#2|) (-1053)) 77) (((-3 (-769 |#2|) (-2 (|:| |leftHandLimit| (-3 (-769 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-769 |#2|) "failed"))) "failed") |#2| (-262 (-769 |#2|))) 99)) (-1979 (((-3 (-762 |#2|) "failed") |#2| (-262 (-762 |#2|))) 104))) -(((-574 |#1| |#2|) (-10 -7 (-15 -2121 ((-3 (-769 |#2|) (-2 (|:| |leftHandLimit| (-3 (-769 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-769 |#2|) "failed"))) "failed") |#2| (-262 (-769 |#2|)))) (-15 -1979 ((-3 (-762 |#2|) "failed") |#2| (-262 (-762 |#2|)))) (-15 -2121 ((-3 (-769 |#2|) "failed") |#2| (-262 |#2|) (-1053)))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -574)) -((-2121 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-262 *3)) (-5 *5 (-1053)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-769 *3)) (-5 *1 (-574 *6 *3)))) (-1979 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-262 (-762 *3))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-762 *3)) (-5 *1 (-574 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-262 (-769 *3))) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (-769 *3) (-2 (|:| |leftHandLimit| (-3 (-769 *3) "failed")) (|:| |rightHandLimit| (-3 (-769 *3) "failed"))) "failed")) (-5 *1 (-574 *5 *3))))) -(-10 -7 (-15 -2121 ((-3 (-769 |#2|) (-2 (|:| |leftHandLimit| (-3 (-769 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-769 |#2|) "failed"))) "failed") |#2| (-262 (-769 |#2|)))) (-15 -1979 ((-3 (-762 |#2|) "failed") |#2| (-262 (-762 |#2|)))) (-15 -2121 ((-3 (-769 |#2|) "failed") |#2| (-262 |#2|) (-1053)))) -((-2121 (((-3 (-769 (-375 (-866 |#1|))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))) (-1053)) 79) (((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|)))) 18) (((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-769 (-866 |#1|)))) 34)) (-1979 (((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|)))) 21) (((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-762 (-866 |#1|)))) 42))) -(((-575 |#1|) (-10 -7 (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-769 (-866 |#1|))))) (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -1979 ((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-762 (-866 |#1|))))) (-15 -1979 ((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))) (-1053)))) (-419)) (T -575)) -((-2121 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-262 (-375 (-866 *6)))) (-5 *5 (-1053)) (-5 *3 (-375 (-866 *6))) (-4 *6 (-419)) (-5 *2 (-769 *3)) (-5 *1 (-575 *6)))) (-1979 (*1 *2 *3 *4) (-12 (-5 *4 (-262 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-419)) (-5 *2 (-762 *3)) (-5 *1 (-575 *5)))) (-1979 (*1 *2 *3 *4) (-12 (-5 *4 (-262 (-762 (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-762 (-375 (-866 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-375 (-866 *5))))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-262 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-419)) (-5 *2 (-3 (-769 *3) (-2 (|:| |leftHandLimit| (-3 (-769 *3) "failed")) (|:| |rightHandLimit| (-3 (-769 *3) "failed"))) "failed")) (-5 *1 (-575 *5)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-262 (-769 (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-3 (-769 (-375 (-866 *5))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 *5))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 *5))) "failed"))) "failed")) (-5 *1 (-575 *5)) (-5 *3 (-375 (-866 *5)))))) -(-10 -7 (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-769 (-866 |#1|))))) (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -1979 ((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-762 (-866 |#1|))))) (-15 -1979 ((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))) (-1053)))) -((-3501 (((-3 (-1148 (-375 |#1|)) "failed") (-1148 |#2|) |#2|) 57 (-3031 (|has| |#1| (-331)))) (((-3 (-1148 |#1|) "failed") (-1148 |#2|) |#2|) 42 (|has| |#1| (-331)))) (-3123 (((-107) (-1148 |#2|)) 30)) (-1364 (((-3 (-1148 |#1|) "failed") (-1148 |#2|)) 33))) -(((-576 |#1| |#2|) (-10 -7 (-15 -3123 ((-107) (-1148 |#2|))) (-15 -1364 ((-3 (-1148 |#1|) "failed") (-1148 |#2|))) (IF (|has| |#1| (-331)) (-15 -3501 ((-3 (-1148 |#1|) "failed") (-1148 |#2|) |#2|)) (-15 -3501 ((-3 (-1148 (-375 |#1|)) "failed") (-1148 |#2|) |#2|)))) (-508) (-577 |#1|)) (T -576)) -((-3501 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 *5)) (-3031 (-4 *5 (-331))) (-4 *5 (-508)) (-5 *2 (-1148 (-375 *5))) (-5 *1 (-576 *5 *4)))) (-3501 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 *5)) (-4 *5 (-331)) (-4 *5 (-508)) (-5 *2 (-1148 *5)) (-5 *1 (-576 *5 *4)))) (-1364 (*1 *2 *3) (|partial| -12 (-5 *3 (-1148 *5)) (-4 *5 (-577 *4)) (-4 *4 (-508)) (-5 *2 (-1148 *4)) (-5 *1 (-576 *4 *5)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-577 *4)) (-4 *4 (-508)) (-5 *2 (-107)) (-5 *1 (-576 *4 *5))))) -(-10 -7 (-15 -3123 ((-107) (-1148 |#2|))) (-15 -1364 ((-3 (-1148 |#1|) "failed") (-1148 |#2|))) (IF (|has| |#1| (-331)) (-15 -3501 ((-3 (-1148 |#1|) "failed") (-1148 |#2|) |#2|)) (-15 -3501 ((-3 (-1148 (-375 |#1|)) "failed") (-1148 |#2|) |#2|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3868 (((-621 |#1|) (-621 $)) 36) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 35)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-577 |#1|) (-1180) (-959)) (T -577)) -((-3868 (*1 *2 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-577 *4)) (-4 *4 (-959)) (-5 *2 (-621 *4)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *1)) (-5 *4 (-1148 *1)) (-4 *1 (-577 *5)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -2978 (-621 *5)) (|:| |vec| (-1148 *5))))))) -(-13 (-959) (-10 -8 (-15 -3868 ((-621 |t#1|) (-621 $))) (-15 -3868 ((-2 (|:| -2978 (-621 |t#1|)) (|:| |vec| (-1148 |t#1|))) (-621 $) (-1148 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) NIL)) (-2786 ((|#1| $) NIL)) (-1511 (($ $) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) $) NIL (|has| |#1| (-777))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3441 (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-2861 (($ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3319 (($ $ $) NIL (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "rest" $) NIL (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2692 (($ $ $) 31 (|has| |#1| (-1001)))) (-2683 (($ $ $) 33 (|has| |#1| (-1001)))) (-2678 (($ $ $) 36 (|has| |#1| (-1001)))) (-1221 (($ (-1 (-107) |#1|) $) NIL)) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-1564 ((|#1| $) NIL)) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-1199 (($ $) NIL) (($ $ (-701)) NIL)) (-2921 (($ $) NIL (|has| |#1| (-1001)))) (-2673 (($ $) 30 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) NIL (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) NIL)) (-1526 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-3275 (((-107) $) NIL)) (-1934 (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001))) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) (-1 (-107) |#1|) $) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-1971 (((-107) $) 9)) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2951 (($) 7)) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2213 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3216 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 32 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3143 (($ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1383 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-4114 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-3654 (((-107) $) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1116 (-501))) NIL) ((|#1| $ (-501)) 35) ((|#1| $ (-501) |#1|) NIL)) (-1932 (((-501) $ $) NIL)) (-1386 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-2622 (((-107) $) NIL)) (-1455 (($ $) NIL)) (-3873 (($ $) NIL (|has| $ (-6 -4168)))) (-3278 (((-701) $) NIL)) (-2787 (($ $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) 44 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3198 (($ |#1| $) 10)) (-1186 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3934 (($ $ $) 29) (($ |#1| $) NIL) (($ (-578 $)) NIL) (($ $ |#1|) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1675 (($ $ $) 11)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3671 (((-1053) $) 25 (|has| |#1| (-751))) (((-1053) $ (-107)) 26 (|has| |#1| (-751))) (((-1154) (-753) $) 27 (|has| |#1| (-751))) (((-1154) (-753) $ (-107)) 28 (|has| |#1| (-751)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-578 |#1|) (-13 (-601 |#1|) (-10 -8 (-15 -2951 ($)) (-15 -1971 ((-107) $)) (-15 -3198 ($ |#1| $)) (-15 -1675 ($ $ $)) (IF (|has| |#1| (-1001)) (PROGN (-15 -2692 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -2678 ($ $ $))) |noBranch|) (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|))) (-1104)) (T -578)) -((-2951 (*1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104)))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-578 *3)) (-4 *3 (-1104)))) (-3198 (*1 *1 *2 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104)))) (-1675 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104)))) (-2692 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)))) (-2683 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)))) (-2678 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104))))) -(-13 (-601 |#1|) (-10 -8 (-15 -2951 ($)) (-15 -1971 ((-107) $)) (-15 -3198 ($ |#1| $)) (-15 -1675 ($ $ $)) (IF (|has| |#1| (-1001)) (PROGN (-15 -2692 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -2678 ($ $ $))) |noBranch|) (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|))) -((-3162 (((-578 |#2|) (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|) 16)) (-3547 ((|#2| (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|) 18)) (-1212 (((-578 |#2|) (-1 |#2| |#1|) (-578 |#1|)) 13))) -(((-579 |#1| |#2|) (-10 -7 (-15 -3162 ((-578 |#2|) (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -1212 ((-578 |#2|) (-1 |#2| |#1|) (-578 |#1|)))) (-1104) (-1104)) (T -579)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-578 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-578 *6)) (-5 *1 (-579 *5 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-578 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-579 *5 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-578 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-578 *5)) (-5 *1 (-579 *6 *5))))) -(-10 -7 (-15 -3162 ((-578 |#2|) (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -1212 ((-578 |#2|) (-1 |#2| |#1|) (-578 |#1|)))) -((-3921 ((|#2| (-578 |#1|) (-578 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-578 |#1|) (-578 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) |#2|) 17) ((|#2| (-578 |#1|) (-578 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|)) 12))) -(((-580 |#1| |#2|) (-10 -7 (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|))) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1|)) (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) |#2|)) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1| |#2|)) (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) (-1 |#2| |#1|))) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1| (-1 |#2| |#1|)))) (-1001) (-1104)) (T -580)) -((-3921 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) (-3921 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *1 (-580 *5 *6)))) (-3921 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) (-3921 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 *5)) (-4 *6 (-1001)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-3921 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) (-3921 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6))))) -(-10 -7 (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|))) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1|)) (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) |#2|)) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1| |#2|)) (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) (-1 |#2| |#1|))) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1| (-1 |#2| |#1|)))) -((-1212 (((-578 |#3|) (-1 |#3| |#1| |#2|) (-578 |#1|) (-578 |#2|)) 13))) -(((-581 |#1| |#2| |#3|) (-10 -7 (-15 -1212 ((-578 |#3|) (-1 |#3| |#1| |#2|) (-578 |#1|) (-578 |#2|)))) (-1104) (-1104) (-1104)) (T -581)) -((-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-578 *6)) (-5 *5 (-578 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-578 *8)) (-5 *1 (-581 *6 *7 *8))))) -(-10 -7 (-15 -1212 ((-578 |#3|) (-1 |#3| |#1| |#2|) (-578 |#1|) (-578 |#2|)))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2698 (($ |#1| |#1| $) 43)) (-2997 (((-107) $ (-701)) NIL)) (-1221 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-2921 (($ $) 45)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) 51 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 53 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 9 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 37)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) 46)) (-4114 (($ |#1| $) 26) (($ |#1| $ (-701)) 42)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1251 ((|#1| $) 48)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 21)) (-3122 (($) 25)) (-1429 (((-107) $) 49)) (-2908 (((-578 (-2 (|:| -2922 |#1|) (|:| -3713 (-701)))) $) 60)) (-3013 (($) 23) (($ (-578 |#1|)) 18)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) 57 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 19)) (-1248 (((-490) $) 34 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3691 (((-786) $) 14 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 22)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 62 (|has| |#1| (-1001)))) (-3581 (((-701) $) 16 (|has| $ (-6 -4167))))) -(((-582 |#1|) (-13 (-626 |#1|) (-10 -8 (-6 -4167) (-15 -1429 ((-107) $)) (-15 -2698 ($ |#1| |#1| $)))) (-1001)) (T -582)) -((-1429 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-582 *3)) (-4 *3 (-1001)))) (-2698 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1001))))) -(-13 (-626 |#1|) (-10 -8 (-6 -4167) (-15 -1429 ((-107) $)) (-15 -2698 ($ |#1| |#1| $)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 23))) -(((-583 |#1|) (-1180) (-965)) (T -583)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-965))))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 57 (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) 55 (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) 23 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 21 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4181))) (($ $ "rest" $) 24 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-4020 (($ $) 28 (|has| $ (-6 -4181)))) (-3093 (($ $) 29)) (-1660 (($ $) 18) (($ $ (-703)) 32)) (-3483 (($ $) 53 (|has| |#1| (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1536 (((-583 |#1|) $) 27 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 31 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 56)) (-3237 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 51 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1529 (($ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) 50 (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) 13) (($ $ (-703)) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 12)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) 17)) (-1746 (($) 16)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL)) (-2459 (((-517) $ $) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-2655 (((-107) $) 33)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) 35)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) 34)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 26)) (-2568 (($ $ $) 52) (($ $ |#1|) NIL)) (-2452 (($ $ $) NIL) (($ |#1| $) 10) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2256 (((-787) $) 45 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 47 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 9 (|has| $ (-6 -4180))))) +(((-483 |#1| |#2|) (-603 |#1|) (-1108) (-517)) (T -483)) +NIL +(-603 |#1|) +((-2468 ((|#4| |#4|) 26)) (-2261 (((-703) |#4|) 31)) (-1948 (((-703) |#4|) 32)) (-3706 (((-583 |#3|) |#4|) 37 (|has| |#3| (-6 -4181)))) (-2104 (((-3 |#4| "failed") |#4|) 47)) (-1431 ((|#4| |#4|) 40)) (-3057 ((|#1| |#4|) 39))) +(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2468 (|#4| |#4|)) (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (IF (|has| |#3| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|) (-15 -3057 (|#1| |#4|)) (-15 -1431 (|#4| |#4|)) (-15 -2104 ((-3 |#4| "failed") |#4|))) (-333) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -484)) +((-2104 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3057 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-3706 (*1 *2 *3) (-12 (|has| *6 (-6 -4181)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2261 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) +(-10 -7 (-15 -2468 (|#4| |#4|)) (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (IF (|has| |#3| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|) (-15 -3057 (|#1| |#4|)) (-15 -1431 (|#4| |#4|)) (-15 -2104 ((-3 |#4| "failed") |#4|))) +((-2468 ((|#8| |#4|) 20)) (-3706 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -4181)))) (-2104 (((-3 |#8| "failed") |#4|) 23))) +(((-485 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2468 (|#8| |#4|)) (-15 -2104 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|)) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-909 |#1|) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -485)) +((-3706 (*1 *2 *3) (-12 (|has| *9 (-6 -4181)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) (-2104 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) (-2468 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7))))) +(-10 -7 (-15 -2468 (|#8| |#4|)) (-15 -2104 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) NIL)) (-1231 (($ $ $) NIL)) (-2033 (($ (-548 |#1| |#3|)) NIL) (($ $) NIL)) (-2818 (((-107) $) NIL)) (-3666 (($ $ (-517) (-517)) 12)) (-2778 (($ $ (-517) (-517)) NIL)) (-3671 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4008 (($ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3565 (($ $ (-517) (-517) $) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-4087 (($ $ (-517) (-548 |#1| |#3|)) NIL)) (-3739 (($ $ (-517) (-548 |#1| |#2|)) NIL)) (-3487 (($ (-703) |#1|) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 19 (|has| |#1| (-278)))) (-1939 (((-548 |#1| |#3|) $ (-517)) NIL)) (-2261 (((-703) $) 22 (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1948 (((-703) $) 24 (|has| |#1| (-509)))) (-3706 (((-583 (-548 |#1| |#2|)) $) 27 (|has| |#1| (-509)))) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#1| $) 17 (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) 10)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) 11)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#1|))) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3035 (((-583 (-583 |#1|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) 31 (|has| |#1| (-333)))) (-2520 (($ $ $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-1879 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1516 (((-107) $) NIL)) (-3057 ((|#1| $) 15 (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-548 |#1| |#2|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-548 |#1| |#2|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-548 |#1| |#2|) $ (-548 |#1| |#2|)) NIL) (((-548 |#1| |#3|) (-548 |#1| |#3|) $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-486 |#1| |#2| |#3|) (-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) (-961) (-517) (-517)) (T -486)) +NIL +(-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) +((-1992 (((-1069 |#1|) (-703)) 74)) (-1472 (((-1153 |#1|) (-1153 |#1|) (-843)) 67)) (-4052 (((-1158) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) |#1|) 82)) (-3313 (((-1153 |#1|) (-1153 |#1|) (-703)) 36)) (-3209 (((-1153 |#1|) (-843)) 69)) (-3122 (((-1153 |#1|) (-1153 |#1|) (-517)) 24)) (-1913 (((-1069 |#1|) (-1153 |#1|)) 75)) (-2453 (((-1153 |#1|) (-843)) 93)) (-2434 (((-107) (-1153 |#1|)) 78)) (-1506 (((-1153 |#1|) (-1153 |#1|) (-843)) 59)) (-3777 (((-1069 |#1|) (-1153 |#1|)) 87)) (-1549 (((-843) (-1153 |#1|)) 56)) (-4118 (((-1153 |#1|) (-1153 |#1|)) 30)) (-3448 (((-1153 |#1|) (-843) (-843)) 95)) (-2583 (((-1153 |#1|) (-1153 |#1|) (-1021) (-1021)) 23)) (-3844 (((-1153 |#1|) (-1153 |#1|) (-703) (-1021)) 37)) (-1753 (((-1153 (-1153 |#1|)) (-843)) 92)) (-1667 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 79)) (** (((-1153 |#1|) (-1153 |#1|) (-517)) 43)) (* (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 25))) +(((-487 |#1|) (-10 -7 (-15 -4052 ((-1158) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) |#1|)) (-15 -3209 ((-1153 |#1|) (-843))) (-15 -3448 ((-1153 |#1|) (-843) (-843))) (-15 -1913 ((-1069 |#1|) (-1153 |#1|))) (-15 -1992 ((-1069 |#1|) (-703))) (-15 -3844 ((-1153 |#1|) (-1153 |#1|) (-703) (-1021))) (-15 -3313 ((-1153 |#1|) (-1153 |#1|) (-703))) (-15 -2583 ((-1153 |#1|) (-1153 |#1|) (-1021) (-1021))) (-15 -3122 ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 * ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1667 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1506 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -1472 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -4118 ((-1153 |#1|) (-1153 |#1|))) (-15 -1549 ((-843) (-1153 |#1|))) (-15 -2434 ((-107) (-1153 |#1|))) (-15 -1753 ((-1153 (-1153 |#1|)) (-843))) (-15 -2453 ((-1153 |#1|) (-843))) (-15 -3777 ((-1069 |#1|) (-1153 |#1|)))) (-319)) (T -487)) +((-3777 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-843)) (-5 *1 (-487 *4)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (-1472 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1667 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3122 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2583 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1021)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3313 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3844 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1153 *5)) (-5 *3 (-703)) (-5 *4 (-1021)) (-4 *5 (-319)) (-5 *1 (-487 *5)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1913 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)))) (-3448 (*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-4052 (*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-1158)) (-5 *1 (-487 *4))))) +(-10 -7 (-15 -4052 ((-1158) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) |#1|)) (-15 -3209 ((-1153 |#1|) (-843))) (-15 -3448 ((-1153 |#1|) (-843) (-843))) (-15 -1913 ((-1069 |#1|) (-1153 |#1|))) (-15 -1992 ((-1069 |#1|) (-703))) (-15 -3844 ((-1153 |#1|) (-1153 |#1|) (-703) (-1021))) (-15 -3313 ((-1153 |#1|) (-1153 |#1|) (-703))) (-15 -2583 ((-1153 |#1|) (-1153 |#1|) (-1021) (-1021))) (-15 -3122 ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 * ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1667 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1506 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -1472 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -4118 ((-1153 |#1|) (-1153 |#1|))) (-15 -1549 ((-843) (-1153 |#1|))) (-15 -2434 ((-107) (-1153 |#1|))) (-15 -1753 ((-1153 (-1153 |#1|)) (-843))) (-15 -2453 ((-1153 |#1|) (-843))) (-15 -3777 ((-1069 |#1|) (-1153 |#1|)))) +((-3488 (((-1 |#1| |#1|) |#1|) 11)) (-1383 (((-1 |#1| |#1|)) 10))) +(((-488 |#1|) (-10 -7 (-15 -1383 ((-1 |#1| |#1|))) (-15 -3488 ((-1 |#1| |#1|) |#1|))) (-13 (-659) (-25))) (T -488)) +((-3488 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))) (-1383 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25)))))) +(-10 -7 (-15 -1383 ((-1 |#1| |#1|))) (-15 -3488 ((-1 |#1| |#1|) |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1640 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ (-703) |#1|) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 (-703) (-703)) $) NIL)) (-1968 ((|#1| $) NIL)) (-1191 (((-703) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 20)) (-2396 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL))) +(((-489 |#1|) (-13 (-725) (-473 (-703) |#1|)) (-779)) (T -489)) +NIL +(-13 (-725) (-473 (-703) |#1|)) +((-1657 (((-583 |#2|) (-1069 |#1|) |#3|) 83)) (-1252 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1069 |#1|)) (-1069 |#1|))) 99)) (-4084 (((-1069 |#1|) (-623 |#1|)) 95))) +(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -4084 ((-1069 |#1|) (-623 |#1|))) (-15 -1657 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -1252 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1069 |#1|)) (-1069 |#1|))))) (-333) (-333) (-13 (-333) (-777))) (T -490)) +((-1252 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1069 *6)) (-1069 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))) (-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1069 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777)))))) +(-10 -7 (-15 -4084 ((-1069 |#1|) (-623 |#1|))) (-15 -1657 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -1252 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1069 |#1|)) (-1069 |#1|))))) +((-2699 (((-772 (-517))) 11)) (-2722 (((-772 (-517))) 13)) (-2676 (((-765 (-517))) 8))) +(((-491) (-10 -7 (-15 -2676 ((-765 (-517)))) (-15 -2699 ((-772 (-517)))) (-15 -2722 ((-772 (-517)))))) (T -491)) +((-2722 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2699 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2676 (*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491))))) +(-10 -7 (-15 -2676 ((-765 (-517)))) (-15 -2699 ((-772 (-517)))) (-15 -2722 ((-772 (-517))))) +((-3537 (((-493) (-1073)) 15)) (-2659 ((|#1| (-493)) 20))) +(((-492 |#1|) (-10 -7 (-15 -3537 ((-493) (-1073))) (-15 -2659 (|#1| (-493)))) (-1108)) (T -492)) +((-2659 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1108)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1108))))) +(-10 -7 (-15 -3537 ((-493) (-1073))) (-15 -2659 (|#1| (-493)))) +((-2750 (((-107) $ $) NIL)) (-3970 (((-1056) $) 46)) (-2710 (((-107) $) 43)) (-3881 (((-1073) $) 44)) (-2347 (((-107) $) 41)) (-3890 (((-1056) $) 42)) (-1533 (((-107) $) NIL)) (-2636 (((-107) $) NIL)) (-3567 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-1411 (($ $ (-583 (-1073))) 20)) (-2659 (((-51) $) 22)) (-1973 (((-107) $) NIL)) (-3912 (((-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1234 (($ $ (-583 (-1073)) (-1073)) 58)) (-2056 (((-107) $) NIL)) (-4005 (((-199) $) NIL)) (-2219 (($ $) 38)) (-1556 (((-787) $) NIL)) (-2131 (((-107) $ $) NIL)) (-1449 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3814 (((-583 $) $) 28)) (-1970 (((-1073) (-583 $)) 47)) (-3645 (($ (-583 $)) 51) (($ (-1056)) NIL) (($ (-1073)) 18) (($ (-517)) 8) (($ (-199)) 25) (($ (-787)) NIL) (((-1007) $) 11) (($ (-1007)) 12)) (-3628 (((-1073) (-1073) (-583 $)) 50)) (-2256 (((-787) $) NIL)) (-2705 (($ $) 49)) (-2694 (($ $) 48)) (-4146 (($ $ (-583 $)) 55)) (-1491 (((-107) $) 27)) (-2396 (($) 9 T CONST)) (-2409 (($) 10 T CONST)) (-1547 (((-107) $ $) 59)) (-1667 (($ $ $) 64)) (-1642 (($ $ $) 60)) (** (($ $ (-703)) 63) (($ $ (-517)) 62)) (* (($ $ $) 61)) (-2296 (((-517) $) NIL))) +(((-493) (-13 (-1006 (-1056) (-1073) (-517) (-199) (-787)) (-558 (-1007)) (-10 -8 (-15 -2659 ((-51) $)) (-15 -3645 ($ (-1007))) (-15 -4146 ($ $ (-583 $))) (-15 -1234 ($ $ (-583 (-1073)) (-1073))) (-15 -1411 ($ $ (-583 (-1073)))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 0 ($) -1619) (-15 1 ($) -1619) (-15 -2219 ($ $)) (-15 -3970 ((-1056) $)) (-15 -1970 ((-1073) (-583 $))) (-15 -3628 ((-1073) (-1073) (-583 $)))))) (T -493)) +((-2659 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-493)))) (-4146 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))) (-1234 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1073)) (-5 *1 (-493)))) (-1411 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-493)))) (-1642 (*1 *1 *1 *1) (-5 *1 (-493))) (* (*1 *1 *1 *1) (-5 *1 (-493))) (-1667 (*1 *1 *1 *1) (-5 *1 (-493))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) (-2396 (*1 *1) (-5 *1 (-493))) (-2409 (*1 *1) (-5 *1 (-493))) (-2219 (*1 *1 *1) (-5 *1 (-493))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-493)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1073)) (-5 *1 (-493)))) (-3628 (*1 *2 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-493))) (-5 *1 (-493))))) +(-13 (-1006 (-1056) (-1073) (-517) (-199) (-787)) (-558 (-1007)) (-10 -8 (-15 -2659 ((-51) $)) (-15 -3645 ($ (-1007))) (-15 -4146 ($ $ (-583 $))) (-15 -1234 ($ $ (-583 (-1073)) (-1073))) (-15 -1411 ($ $ (-583 (-1073)))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 (-2396) ($) -1619) (-15 (-2409) ($) -1619) (-15 -2219 ($ $)) (-15 -3970 ((-1056) $)) (-15 -1970 ((-1073) (-583 $))) (-15 -3628 ((-1073) (-1073) (-583 $))))) +((-4076 ((|#2| |#2|) 17)) (-3599 ((|#2| |#2|) 13)) (-2667 ((|#2| |#2| (-517) (-517)) 20)) (-2825 ((|#2| |#2|) 15))) +(((-494 |#1| |#2|) (-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517)))) (-13 (-509) (-134)) (-1145 |#1|)) (T -494)) +((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1145 *4)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3))))) +(-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517)))) +((-3344 (((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1073))) 32)) (-2730 (((-583 |#2|) (-874 |#1|) |#3|) 53) (((-583 |#2|) (-1069 |#1|) |#3|) 52)) (-3429 (((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)) |#3|) 87))) +(((-495 |#1| |#2| |#3|) (-10 -7 (-15 -2730 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -2730 ((-583 |#2|) (-874 |#1|) |#3|)) (-15 -3429 ((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)) |#3|)) (-15 -3344 ((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1073))))) (-421) (-333) (-13 (-333) (-777))) (T -495)) +((-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1073))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-874 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))) (-3429 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777)))))) +(-10 -7 (-15 -2730 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -2730 ((-583 |#2|) (-874 |#1|) |#3|)) (-15 -3429 ((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)) |#3|)) (-15 -3344 ((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1073))))) +((-3271 ((|#2| |#2| |#1|) 17)) (-3903 ((|#2| (-583 |#2|)) 26)) (-3845 ((|#2| (-583 |#2|)) 45))) +(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3903 (|#2| (-583 |#2|))) (-15 -3845 (|#2| (-583 |#2|))) (-15 -3271 (|#2| |#2| |#1|))) (-278) (-1130 |#1|) |#1| (-1 |#1| |#1| (-703))) (T -496)) +((-3271 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1130 *3)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703)))))) +(-10 -7 (-15 -3903 (|#2| (-583 |#2|))) (-15 -3845 (|#2| (-583 |#2|))) (-15 -3271 (|#2| |#2| |#1|))) +((-3755 (((-388 (-1069 |#4|)) (-1069 |#4|) (-1 (-388 (-1069 |#3|)) (-1069 |#3|))) 79) (((-388 |#4|) |#4| (-1 (-388 (-1069 |#3|)) (-1069 |#3|))) 164))) +(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 (-1069 |#3|)) (-1069 |#3|)))) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|) (-1 (-388 (-1069 |#3|)) (-1069 |#3|))))) (-779) (-725) (-13 (-278) (-134)) (-871 |#3| |#2| |#1|)) (T -497)) +((-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-871 *7 *6 *5)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1069 *8)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-871 *7 *6 *5))))) +(-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 (-1069 |#3|)) (-1069 |#3|)))) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|) (-1 (-388 (-1069 |#3|)) (-1069 |#3|))))) +((-4076 ((|#4| |#4|) 73)) (-3599 ((|#4| |#4|) 69)) (-2667 ((|#4| |#4| (-517) (-517)) 75)) (-2825 ((|#4| |#4|) 71))) +(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3599 (|#4| |#4|)) (-15 -2825 (|#4| |#4|)) (-15 -4076 (|#4| |#4|)) (-15 -2667 (|#4| |#4| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1130 |#1|) (-657 |#1| |#2|) (-1145 |#3|)) (T -498)) +((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1130 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1145 *6)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5))))) +(-10 -7 (-15 -3599 (|#4| |#4|)) (-15 -2825 (|#4| |#4|)) (-15 -4076 (|#4| |#4|)) (-15 -2667 (|#4| |#4| (-517) (-517)))) +((-4076 ((|#2| |#2|) 27)) (-3599 ((|#2| |#2|) 23)) (-2667 ((|#2| |#2| (-517) (-517)) 29)) (-2825 ((|#2| |#2|) 25))) +(((-499 |#1| |#2|) (-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1145 |#1|)) (T -499)) +((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1145 *4)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3))))) +(-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517)))) +((-2134 (((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)) 14) (((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|)) 13) (((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|)) 26))) +(((-500 |#1| |#2|) (-10 -7 (-15 -2134 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)))) (-961) (-1130 |#1|)) (T -500)) +((-2134 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4)))) (-2134 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4)))) (-2134 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1130 *5))))) +(-10 -7 (-15 -2134 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)))) +((-2635 (($ $ $) 78)) (-2759 (((-388 $) $) 46)) (-1772 (((-3 (-517) "failed") $) 58)) (-3189 (((-517) $) 36)) (-1256 (((-3 (-377 (-517)) "failed") $) 73)) (-1355 (((-107) $) 23)) (-3364 (((-377 (-517)) $) 71)) (-3849 (((-107) $) 49)) (-4113 (($ $ $ $) 85)) (-3556 (((-107) $) 15)) (-3647 (($ $ $) 56)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 68)) (-1319 (((-3 $ "failed") $) 63)) (-1522 (($ $) 22)) (-1997 (($ $ $) 83)) (-2836 (($) 59)) (-3663 (($ $) 52)) (-3755 (((-388 $) $) 44)) (-3998 (((-107) $) 13)) (-3146 (((-703) $) 27)) (-3127 (($ $ (-703)) NIL) (($ $) 10)) (-2433 (($ $) 16)) (-3645 (((-517) $) NIL) (((-493) $) 35) (((-814 (-517)) $) 39) (((-349) $) 30) (((-199) $) 32)) (-2961 (((-703)) 8)) (-2746 (((-107) $ $) 19)) (-1270 (($ $ $) 54))) +(((-501 |#1|) (-10 -8 (-15 -1997 (|#1| |#1| |#1|)) (-15 -4113 (|#1| |#1| |#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -2746 ((-107) |#1| |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1270 (|#1| |#1| |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3645 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3556 ((-107) |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2961 ((-703)))) (-502)) (T -501)) +((-2961 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502))))) +(-10 -8 (-15 -1997 (|#1| |#1| |#1|)) (-15 -4113 (|#1| |#1| |#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -2746 ((-107) |#1| |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1270 (|#1| |#1| |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3645 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3556 ((-107) |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2961 ((-703)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-2635 (($ $ $) 85)) (-4038 (((-3 $ "failed") $ $) 19)) (-3548 (($ $ $ $) 73)) (-2535 (($ $) 51)) (-2759 (((-388 $) $) 52)) (-1707 (((-107) $ $) 125)) (-3709 (((-517) $) 114)) (-1363 (($ $ $) 88)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 106)) (-3189 (((-517) $) 105)) (-2518 (($ $ $) 129)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 104) (((-623 (-517)) (-623 $)) 103)) (-3621 (((-3 $ "failed") $) 34)) (-1256 (((-3 (-377 (-517)) "failed") $) 82)) (-1355 (((-107) $) 84)) (-3364 (((-377 (-517)) $) 83)) (-3209 (($) 81) (($ $) 80)) (-2497 (($ $ $) 128)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 123)) (-3849 (((-107) $) 53)) (-4113 (($ $ $ $) 71)) (-1756 (($ $ $) 86)) (-3556 (((-107) $) 116)) (-3647 (($ $ $) 97)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 100)) (-3848 (((-107) $) 31)) (-1769 (((-107) $) 92)) (-1319 (((-3 $ "failed") $) 94)) (-2475 (((-107) $) 115)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 132)) (-1813 (($ $ $ $) 72)) (-2967 (($ $ $) 117)) (-3099 (($ $ $) 118)) (-1522 (($ $) 75)) (-2195 (($ $) 89)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-1997 (($ $ $) 70)) (-2836 (($) 93 T CONST)) (-3251 (($ $) 77)) (-3206 (((-1021) $) 10) (($ $) 79)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3663 (($ $) 98)) (-3755 (((-388 $) $) 50)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 130)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 124)) (-3998 (((-107) $) 91)) (-3146 (((-703) $) 126)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 127)) (-3127 (($ $ (-703)) 111) (($ $) 109)) (-2789 (($ $) 76)) (-2433 (($ $) 78)) (-3645 (((-517) $) 108) (((-493) $) 102) (((-814 (-517)) $) 101) (((-349) $) 96) (((-199) $) 95)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 107)) (-2961 (((-703)) 29)) (-2746 (((-107) $ $) 87)) (-1270 (($ $ $) 99)) (-2372 (($) 90)) (-3329 (((-107) $ $) 39)) (-1917 (($ $ $ $) 74)) (-3710 (($ $) 113)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-703)) 112) (($ $) 110)) (-1606 (((-107) $ $) 120)) (-1583 (((-107) $ $) 121)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 119)) (-1572 (((-107) $ $) 122)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-502) (-1184)) (T -502)) +((-1769 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-2372 (*1 *1) (-4 *1 (-502))) (-2195 (*1 *1 *1) (-4 *1 (-502))) (-1363 (*1 *1 *1 *1) (-4 *1 (-502))) (-2746 (*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-1756 (*1 *1 *1 *1) (-4 *1 (-502))) (-2635 (*1 *1 *1 *1) (-4 *1 (-502))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-3209 (*1 *1) (-4 *1 (-502))) (-3209 (*1 *1 *1) (-4 *1 (-502))) (-3206 (*1 *1 *1) (-4 *1 (-502))) (-2433 (*1 *1 *1) (-4 *1 (-502))) (-3251 (*1 *1 *1) (-4 *1 (-502))) (-2789 (*1 *1 *1) (-4 *1 (-502))) (-1522 (*1 *1 *1) (-4 *1 (-502))) (-1917 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-3548 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1813 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-4113 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1997 (*1 *1 *1 *1) (-4 *1 (-502)))) +(-13 (-1112) (-278) (-752) (-207) (-558 (-517)) (-952 (-517)) (-579 (-517)) (-558 (-493)) (-558 (-814 (-517))) (-808 (-517)) (-130) (-937) (-134) (-1049) (-10 -8 (-15 -1769 ((-107) $)) (-15 -3998 ((-107) $)) (-6 -4179) (-15 -2372 ($)) (-15 -2195 ($ $)) (-15 -1363 ($ $ $)) (-15 -2746 ((-107) $ $)) (-15 -1756 ($ $ $)) (-15 -2635 ($ $ $)) (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $)) (-15 -3209 ($)) (-15 -3209 ($ $)) (-15 -3206 ($ $)) (-15 -2433 ($ $)) (-15 -3251 ($ $)) (-15 -2789 ($ $)) (-15 -1522 ($ $)) (-15 -1917 ($ $ $ $)) (-15 -3548 ($ $ $ $)) (-15 -1813 ($ $ $ $)) (-15 -4113 ($ $ $ $)) (-15 -1997 ($ $ $)) (-6 -4178))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-130) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-493)) . T) ((-558 (-517)) . T) ((-558 (-814 (-517))) . T) ((-207) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-579 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-752) . T) ((-777) . T) ((-779) . T) ((-808 (-517)) . T) ((-842) . T) ((-937) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) . T) ((-1112) . T)) +((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-503 |#1| |#2| |#3|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180)))) (T -503)) +NIL +(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) +((-1864 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1069 |#2|) (-1069 |#2|))) 49))) +(((-504 |#1| |#2|) (-10 -7 (-15 -1864 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1069 |#2|) (-1069 |#2|))))) (-13 (-779) (-509)) (-13 (-27) (-400 |#1|))) (T -504)) +((-1864 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1069 *3) (-1069 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3))))) +(-10 -7 (-15 -1864 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1069 |#2|) (-1069 |#2|))))) +((-3546 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-2342 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-2724 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 198))) +(((-505 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2724 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3546 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2342 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-779) (-509) (-952 (-517))) (-13 (-27) (-400 |#1|)) (-1130 |#2|) (-1130 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -505)) +((-2342 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-4 *7 (-1130 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))) (-3546 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8))))) +(-10 -7 (-15 -2724 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3546 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2342 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-3949 (((-107) (-517) (-517)) 10)) (-2120 (((-517) (-517)) 7)) (-3470 (((-517) (-517) (-517)) 8))) +(((-506) (-10 -7 (-15 -2120 ((-517) (-517))) (-15 -3470 ((-517) (-517) (-517))) (-15 -3949 ((-107) (-517) (-517))))) (T -506)) +((-3949 (*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))) (-3470 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506))))) +(-10 -7 (-15 -2120 ((-517) (-517))) (-15 -3470 ((-517) (-517) (-517))) (-15 -3949 ((-107) (-517) (-517)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2095 ((|#1| $) 61)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1865 (($ $) 91)) (-1721 (($ $) 74)) (-1640 ((|#1| $) 62)) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $) 73)) (-1839 (($ $) 90)) (-1701 (($ $) 75)) (-1887 (($ $) 89)) (-1743 (($ $) 76)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 69)) (-3189 (((-517) $) 68)) (-3621 (((-3 $ "failed") $) 34)) (-2458 (($ |#1| |#1|) 66)) (-3556 (((-107) $) 60)) (-2645 (($) 101)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 72)) (-2475 (((-107) $) 59)) (-2967 (($ $ $) 107)) (-3099 (($ $ $) 106)) (-1867 (($ $) 98)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4015 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-377 (-517))) 64)) (-1933 ((|#1| $) 63)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2476 (((-3 $ "failed") $ $) 42)) (-2624 (($ $) 99)) (-1898 (($ $) 88)) (-1754 (($ $) 77)) (-1876 (($ $) 87)) (-1732 (($ $) 78)) (-1853 (($ $) 86)) (-1711 (($ $) 79)) (-2613 (((-107) $ |#1|) 58)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 70)) (-2961 (((-703)) 29)) (-3707 (($ $) 97)) (-1788 (($ $) 85)) (-3329 (((-107) $ $) 39)) (-3683 (($ $) 96)) (-1765 (($ $) 84)) (-3731 (($ $) 95)) (-1814 (($ $) 83)) (-1492 (($ $) 94)) (-1827 (($ $) 82)) (-3719 (($ $) 93)) (-1802 (($ $) 81)) (-3695 (($ $) 92)) (-1777 (($ $) 80)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 104)) (-1583 (((-107) $ $) 103)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 105)) (-1572 (((-107) $ $) 102)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ $) 100) (($ $ (-377 (-517))) 71)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-507 |#1|) (-1184) (-13 (-374) (-1094))) (T -507)) +((-4015 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-2458 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-4015 (*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-4015 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-2095 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) (-2613 (*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107))))) +(-13 (-421) (-779) (-1094) (-918) (-952 (-517)) (-10 -8 (-6 -3383) (-15 -4015 ($ |t#1| |t#1|)) (-15 -2458 ($ |t#1| |t#1|)) (-15 -4015 ($ |t#1|)) (-15 -4015 ($ (-377 (-517)))) (-15 -1933 (|t#1| $)) (-15 -1640 (|t#1| $)) (-15 -2095 (|t#1| $)) (-15 -3556 ((-107) $)) (-15 -2475 ((-107) $)) (-15 -2613 ((-107) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-256) . T) ((-262) . T) ((-421) . T) ((-458) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-918) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) . T) ((-1097) . T)) +((-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 9)) (-1213 (($ $) 11)) (-2454 (((-107) $) 18)) (-3621 (((-3 $ "failed") $) 16)) (-3329 (((-107) $ $) 20))) +(((-508 |#1|) (-10 -8 (-15 -2454 ((-107) |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|))) (-509)) (T -508)) +NIL +(-10 -8 (-15 -2454 ((-107) |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-509) (-1184)) (T -509)) +((-2476 (*1 *1 *1 *1) (|partial| -4 *1 (-509))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3295 *1) (|:| -4167 *1) (|:| |associate| *1))) (-4 *1 (-509)))) (-1213 (*1 *1 *1) (-4 *1 (-509))) (-3329 (*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107))))) +(-13 (-156) (-37 $) (-262) (-10 -8 (-15 -2476 ((-3 $ "failed") $ $)) (-15 -2942 ((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $)) (-15 -1213 ($ $)) (-15 -3329 ((-107) $ $)) (-15 -2454 ((-107) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2081 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1073) (-583 |#2|)) 35)) (-3767 (((-534 |#2|) |#2| (-1073)) 58)) (-1585 (((-3 |#2| "failed") |#2| (-1073)) 148)) (-1447 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) (-556 |#2|) (-583 (-556 |#2|))) 151)) (-3257 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) |#2|) 38))) +(((-510 |#1| |#2|) (-10 -7 (-15 -3257 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) |#2|)) (-15 -2081 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1073) (-583 |#2|))) (-15 -1585 ((-3 |#2| "failed") |#2| (-1073))) (-15 -3767 ((-534 |#2|) |#2| (-1073))) (-15 -1447 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) (-556 |#2|) (-583 (-556 |#2|))))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -510)) +((-1447 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1073)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1585 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2081 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))) (-3257 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5)))))) +(-10 -7 (-15 -3257 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) |#2|)) (-15 -2081 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1073) (-583 |#2|))) (-15 -1585 ((-3 |#2| "failed") |#2| (-1073))) (-15 -3767 ((-534 |#2|) |#2| (-1073))) (-15 -1447 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) (-556 |#2|) (-583 (-556 |#2|))))) +((-2759 (((-388 |#1|) |#1|) 18)) (-3755 (((-388 |#1|) |#1|) 33)) (-2281 (((-3 |#1| "failed") |#1|) 44)) (-2439 (((-388 |#1|) |#1|) 51))) +(((-511 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2439 ((-388 |#1|) |#1|)) (-15 -2281 ((-3 |#1| "failed") |#1|))) (-502)) (T -511)) +((-2281 (*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))) (-2439 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-2759 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502))))) +(-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2439 ((-388 |#1|) |#1|)) (-15 -2281 ((-3 |#1| "failed") |#1|))) +((-2320 (($) 9)) (-2513 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-2274 (((-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 26)) (-1710 (($ (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2071 (($ (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-1257 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)) (-1941 (((-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-2601 (((-1158)) 12))) +(((-512) (-10 -8 (-15 -2320 ($)) (-15 -2601 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2071 ($ (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2513 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1941 ((-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1257 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -512)) +((-1257 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-1941 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-2513 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) (-2071 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) (-2601 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-512)))) (-2320 (*1 *1) (-5 *1 (-512)))) +(-10 -8 (-15 -2320 ($)) (-15 -2601 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2071 ($ (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2513 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1941 ((-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1257 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) +((-2352 (((-1069 (-377 (-1069 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1069 |#2|)) 28)) (-2289 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1069 |#2|)) 106)) (-2357 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 78) (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|)) 50)) (-2177 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1069 |#2|))) 85) (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1069 |#2|)) 105)) (-1758 (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) |#2| (-1069 |#2|)) 107)) (-2211 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 124 (|has| |#3| (-593 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|)) 123 (|has| |#3| (-593 |#2|)))) (-1350 ((|#2| (-1069 (-377 (-1069 |#2|))) (-556 |#2|) |#2|) 48)) (-3216 (((-1069 (-377 (-1069 |#2|))) (-1069 |#2|) (-556 |#2|)) 27))) +(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1069 |#2|))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1069 |#2|))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) |#2| (-1069 |#2|))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2352 ((-1069 (-377 (-1069 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1069 |#2|))) (-15 -1350 (|#2| (-1069 (-377 (-1069 |#2|))) (-556 |#2|) |#2|)) (-15 -3216 ((-1069 (-377 (-1069 |#2|))) (-1069 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1094)) (-1003)) (T -513)) +((-2211 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1069 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-2211 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1069 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1069 *6)) (-4 *7 (-1003)))) (-1350 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1069 (-377 (-1069 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1003)))) (-2352 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1069 *3)) (-4 *7 (-1003)))) (-1758 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-377 (-1069 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) (-1758 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-1069 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) (-2289 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) (-2289 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1069 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) (-2177 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2177 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2357 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2357 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003))))) +(-10 -7 (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1069 |#2|))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1069 |#2|))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) |#2| (-1069 |#2|))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2352 ((-1069 (-377 (-1069 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1069 |#2|))) (-15 -1350 (|#2| (-1069 (-377 (-1069 |#2|))) (-556 |#2|) |#2|)) (-15 -3216 ((-1069 (-377 (-1069 |#2|))) (-1069 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))))) |noBranch|)) +((-3234 (((-517) (-517) (-703)) 65)) (-3799 (((-517) (-517)) 64)) (-1574 (((-517) (-517)) 63)) (-3163 (((-517) (-517)) 68)) (-3357 (((-517) (-517) (-517)) 48)) (-2283 (((-517) (-517) (-517)) 45)) (-2065 (((-377 (-517)) (-517)) 20)) (-2539 (((-517) (-517)) 21)) (-3097 (((-517) (-517)) 57)) (-3747 (((-517) (-517)) 32)) (-2369 (((-583 (-517)) (-517)) 62)) (-1659 (((-517) (-517) (-517) (-517) (-517)) 43)) (-1781 (((-377 (-517)) (-517)) 41))) +(((-514) (-10 -7 (-15 -1781 ((-377 (-517)) (-517))) (-15 -1659 ((-517) (-517) (-517) (-517) (-517))) (-15 -2369 ((-583 (-517)) (-517))) (-15 -3747 ((-517) (-517))) (-15 -3097 ((-517) (-517))) (-15 -2539 ((-517) (-517))) (-15 -2065 ((-377 (-517)) (-517))) (-15 -2283 ((-517) (-517) (-517))) (-15 -3357 ((-517) (-517) (-517))) (-15 -3163 ((-517) (-517))) (-15 -1574 ((-517) (-517))) (-15 -3799 ((-517) (-517))) (-15 -3234 ((-517) (-517) (-703))))) (T -514)) +((-3234 (*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1574 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3357 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2283 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2065 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3097 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2369 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-1659 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1781 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517))))) +(-10 -7 (-15 -1781 ((-377 (-517)) (-517))) (-15 -1659 ((-517) (-517) (-517) (-517) (-517))) (-15 -2369 ((-583 (-517)) (-517))) (-15 -3747 ((-517) (-517))) (-15 -3097 ((-517) (-517))) (-15 -2539 ((-517) (-517))) (-15 -2065 ((-377 (-517)) (-517))) (-15 -2283 ((-517) (-517) (-517))) (-15 -3357 ((-517) (-517) (-517))) (-15 -3163 ((-517) (-517))) (-15 -1574 ((-517) (-517))) (-15 -3799 ((-517) (-517))) (-15 -3234 ((-517) (-517) (-703)))) +((-1208 (((-2 (|:| |answer| |#4|) (|:| -3591 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1208 ((-2 (|:| |answer| |#4|) (|:| -3591 |#4|)) |#4| (-1 |#2| |#2|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -515)) +((-1208 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3591 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7))))) +(-10 -7 (-15 -1208 ((-2 (|:| |answer| |#4|) (|:| -3591 |#4|)) |#4| (-1 |#2| |#2|)))) +((-1208 (((-2 (|:| |answer| (-377 |#2|)) (|:| -3591 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 18))) +(((-516 |#1| |#2|) (-10 -7 (-15 -1208 ((-2 (|:| |answer| (-377 |#2|)) (|:| -3591 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1130 |#1|)) (T -516)) +((-1208 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -3591 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6))))) +(-10 -7 (-15 -1208 ((-2 (|:| |answer| (-377 |#2|)) (|:| -3591 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 25)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 86)) (-1213 (($ $) 87)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) 42)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) 80)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL)) (-3189 (((-517) $) NIL)) (-2518 (($ $ $) 79)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 60) (((-623 (-517)) (-623 $)) 57)) (-3621 (((-3 $ "failed") $) 83)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($) 62) (($ $) 63)) (-2497 (($ $ $) 78)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) 54)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) 26)) (-1769 (((-107) $) 73)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) 34)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) 43)) (-2967 (($ $ $) 75)) (-3099 (($ $ $) 74)) (-1522 (($ $) NIL)) (-2195 (($ $) 40)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) 53)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) 31)) (-3206 (((-1021) $) NIL) (($ $) 33)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 117)) (-1401 (($ $ $) 84) (($ (-583 $)) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) 103)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) 82)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 77)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-2789 (($ $) 32)) (-2433 (($ $) 30)) (-3645 (((-517) $) 39) (((-493) $) 51) (((-814 (-517)) $) NIL) (((-349) $) 46) (((-199) $) 48) (((-1056) $) 52)) (-2256 (((-787) $) 37) (($ (-517)) 38) (($ $) NIL) (($ (-517)) 38)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) 29)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) 41)) (-3710 (($ $) 61)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 27 T CONST)) (-2409 (($) 28 T CONST)) (-2482 (((-1056) $) 20) (((-1056) $ (-107)) 22) (((-1158) (-754) $) 23) (((-1158) (-754) $ (-107)) 24)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 64)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 65)) (-1654 (($ $) 66) (($ $ $) 68)) (-1642 (($ $ $) 67)) (** (($ $ (-843)) NIL) (($ $ (-703)) 72)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 70) (($ $ $) 69))) +(((-517) (-13 (-502) (-558 (-1056)) (-760) (-10 -8 (-15 -3209 ($ $)) (-6 -4167) (-6 -4172) (-6 -4168) (-6 -4162)))) (T -517)) +((-3209 (*1 *1 *1) (-5 *1 (-517)))) +(-13 (-502) (-558 (-1056)) (-760) (-10 -8 (-15 -3209 ($ $)) (-6 -4167) (-6 -4172) (-6 -4168) (-6 -4162))) +((-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701) (-973)) 103) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701)) 105)) (-4151 (((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1073)) 168) (((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1056)) 167) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973)) 173) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349)) 174) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349)) 175) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349))))) 176) (((-950) (-286 (-349)) (-998 (-772 (-349)))) 163) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349)) 162) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349)) 158) (((-950) (-701)) 150) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973)) 157))) +(((-518) (-10 -7 (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973))) (-15 -4151 ((-950) (-701))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701) (-973))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1056))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1073))))) (T -518)) +((-4151 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1073)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1056)) (-5 *2 (-950)) (-5 *1 (-518)))) (-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518))))) +(-10 -7 (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973))) (-15 -4151 ((-950) (-701))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701) (-973))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1056))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1073)))) +((-1325 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|)) 180)) (-3400 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|)) 98)) (-2997 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|) 176)) (-2506 (((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073))) 185)) (-3039 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1073)) 193 (|has| |#3| (-593 |#2|))))) +(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -3400 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -2997 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1325 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2506 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3039 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1073))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1094)) (-1003)) (T -519)) +((-3039 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1073)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-2506 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1003)))) (-1325 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1003)))) (-2997 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))) (-3400 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003))))) +(-10 -7 (-15 -3400 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -2997 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1325 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2506 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3039 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1073))) |noBranch|)) +((-2880 (((-2 (|:| -3618 |#2|) (|:| |nconst| |#2|)) |#2| (-1073)) 62)) (-1875 (((-3 |#2| "failed") |#2| (-1073) (-772 |#2|) (-772 |#2|)) 160 (-12 (|has| |#2| (-1037)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)) 142 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517)))))) (-2956 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)) 143 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517))))))) +(((-520 |#1| |#2|) (-10 -7 (-15 -2880 ((-2 (|:| -3618 |#2|) (|:| |nconst| |#2|)) |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2956 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073))) (-15 -1875 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) (IF (|has| |#2| (-1037)) (-15 -1875 ((-3 |#2| "failed") |#2| (-1073) (-772 |#2|) (-772 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) (-13 (-779) (-952 (-517)) (-421) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -520)) +((-1875 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1073)) (-5 *4 (-772 *2)) (-4 *2 (-1037)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))) (-1875 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2956 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2880 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -3618 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5)))))) +(-10 -7 (-15 -2880 ((-2 (|:| -3618 |#2|) (|:| |nconst| |#2|)) |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2956 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073))) (-15 -1875 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) (IF (|has| |#2| (-1037)) (-15 -1875 ((-3 |#2| "failed") |#2| (-1073) (-772 |#2|) (-772 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) +((-3979 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))) 39)) (-4151 (((-534 (-377 |#2|)) (-377 |#2|)) 27)) (-2083 (((-3 (-377 |#2|) "failed") (-377 |#2|)) 16)) (-3562 (((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|)) 46))) +(((-521 |#1| |#2|) (-10 -7 (-15 -4151 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2083 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -3562 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -3979 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))))) (-13 (-333) (-134) (-952 (-517))) (-1130 |#1|)) (T -521)) +((-3979 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))) (-3562 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -2422 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) (-2083 (*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134) (-952 (-517)))) (-5 *1 (-521 *3 *4)))) (-4151 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5))))) +(-10 -7 (-15 -4151 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2083 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -3562 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -3979 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))))) +((-1899 (((-3 (-517) "failed") |#1|) 14)) (-1973 (((-107) |#1|) 13)) (-3912 (((-517) |#1|) 9))) +(((-522 |#1|) (-10 -7 (-15 -3912 ((-517) |#1|)) (-15 -1973 ((-107) |#1|)) (-15 -1899 ((-3 (-517) "failed") |#1|))) (-952 (-517))) (T -522)) +((-1899 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))) (-1973 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-952 (-517))))) (-3912 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2))))) +(-10 -7 (-15 -3912 ((-517) |#1|)) (-15 -1973 ((-107) |#1|)) (-15 -1899 ((-3 (-517) "failed") |#1|))) +((-4027 (((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1073) (-583 (-377 (-874 |#1|)))) 43)) (-3050 (((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1073)) 25)) (-1934 (((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1073)) 20)) (-2307 (((-3 (-2 (|:| -2422 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|))) 32))) +(((-523 |#1|) (-10 -7 (-15 -3050 ((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -1934 ((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1073))) (-15 -4027 ((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1073) (-583 (-377 (-874 |#1|))))) (-15 -2307 ((-3 (-2 (|:| -2422 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|))))) (-13 (-509) (-952 (-517)) (-134))) (T -523)) +((-2307 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| -2422 (-377 (-874 *5))) (|:| |coeff| (-377 (-874 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))) (-4027 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))) (-1934 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-952 (-517)) (-134))) (-5 *1 (-523 *4)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-534 (-377 (-874 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5)))))) +(-10 -7 (-15 -3050 ((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -1934 ((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1073))) (-15 -4027 ((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1073) (-583 (-377 (-874 |#1|))))) (-15 -2307 ((-3 (-2 (|:| -2422 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|))))) +((-2750 (((-107) $ $) 59)) (-2814 (((-107) $) 36)) (-2095 ((|#1| $) 30)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) 63)) (-1865 (($ $) 123)) (-1721 (($ $) 103)) (-1640 ((|#1| $) 28)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL)) (-1839 (($ $) 125)) (-1701 (($ $) 99)) (-1887 (($ $) 127)) (-1743 (($ $) 107)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) 78)) (-3189 (((-517) $) 80)) (-3621 (((-3 $ "failed") $) 62)) (-2458 (($ |#1| |#1|) 26)) (-3556 (((-107) $) 33)) (-2645 (($) 89)) (-3848 (((-107) $) 43)) (-3824 (($ $ (-517)) NIL)) (-2475 (((-107) $) 34)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1867 (($ $) 91)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4015 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-377 (-517))) 77)) (-1933 ((|#1| $) 27)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) 65) (($ (-583 $)) NIL)) (-2476 (((-3 $ "failed") $ $) 64)) (-2624 (($ $) 93)) (-1898 (($ $) 131)) (-1754 (($ $) 105)) (-1876 (($ $) 133)) (-1732 (($ $) 109)) (-1853 (($ $) 129)) (-1711 (($ $) 101)) (-2613 (((-107) $ |#1|) 31)) (-2256 (((-787) $) 85) (($ (-517)) 67) (($ $) NIL) (($ (-517)) 67)) (-2961 (((-703)) 87)) (-3707 (($ $) 145)) (-1788 (($ $) 115)) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) 143)) (-1765 (($ $) 111)) (-3731 (($ $) 141)) (-1814 (($ $) 121)) (-1492 (($ $) 139)) (-1827 (($ $) 119)) (-3719 (($ $) 137)) (-1802 (($ $) 117)) (-3695 (($ $) 135)) (-1777 (($ $) 113)) (-2207 (($ $ (-843)) 55) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 10 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 37)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 35)) (-1654 (($ $) 41) (($ $ $) 42)) (-1642 (($ $ $) 40)) (** (($ $ (-843)) 54) (($ $ (-703)) NIL) (($ $ $) 95) (($ $ (-377 (-517))) 147)) (* (($ (-843) $) 51) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 48))) +(((-524 |#1|) (-507 |#1|) (-13 (-374) (-1094))) (T -524)) +NIL +(-507 |#1|) +((-3179 (((-3 (-583 (-1069 (-517))) "failed") (-583 (-1069 (-517))) (-1069 (-517))) 24))) +(((-525) (-10 -7 (-15 -3179 ((-3 (-583 (-1069 (-517))) "failed") (-583 (-1069 (-517))) (-1069 (-517)))))) (T -525)) +((-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 (-517)))) (-5 *3 (-1069 (-517))) (-5 *1 (-525))))) +(-10 -7 (-15 -3179 ((-3 (-583 (-1069 (-517))) "failed") (-583 (-1069 (-517))) (-1069 (-517))))) +((-2627 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1073)) 18)) (-1291 (((-583 (-556 |#2|)) (-583 |#2|) (-1073)) 23)) (-1413 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|))) 10)) (-2379 ((|#2| |#2| (-1073)) 51 (|has| |#1| (-509)))) (-2922 ((|#2| |#2| (-1073)) 76 (-12 (|has| |#2| (-256)) (|has| |#1| (-421))))) (-1391 (((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1073)) 25)) (-3796 (((-556 |#2|) (-583 (-556 |#2|))) 24)) (-3434 (((-534 |#2|) |#2| (-1073) (-1 (-534 |#2|) |#2| (-1073)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073))) 100 (-12 (|has| |#2| (-256)) (|has| |#2| (-569)) (|has| |#2| (-952 (-1073))) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-421)) (|has| |#1| (-808 (-517))))))) +(((-526 |#1| |#2|) (-10 -7 (-15 -2627 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1073))) (-15 -3796 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -1391 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1073))) (-15 -1413 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -1291 ((-583 (-556 |#2|)) (-583 |#2|) (-1073))) (IF (|has| |#1| (-509)) (-15 -2379 (|#2| |#2| (-1073))) |noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -2922 (|#2| |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-952 (-1073))) (-15 -3434 ((-534 |#2|) |#2| (-1073) (-1 (-534 |#2|) |#2| (-1073)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) (-779) (-400 |#1|)) (T -526)) +((-3434 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1073))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1073))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-952 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1073)) (-4 *7 (-558 (-814 (-517)))) (-4 *7 (-421)) (-4 *7 (-808 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))) (-2922 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))) (-2379 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))) (-1291 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1073)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))) (-1413 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) (-1391 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1073)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))) (-2627 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1073)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5))))) +(-10 -7 (-15 -2627 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1073))) (-15 -3796 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -1391 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1073))) (-15 -1413 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -1291 ((-583 (-556 |#2|)) (-583 |#2|) (-1073))) (IF (|has| |#1| (-509)) (-15 -2379 (|#2| |#2| (-1073))) |noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -2922 (|#2| |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-952 (-1073))) (-15 -3434 ((-534 |#2|) |#2| (-1073) (-1 (-534 |#2|) |#2| (-1073)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) +((-2399 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|)) 167)) (-1650 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|))) 143)) (-4066 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|))) 140)) (-1260 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 129)) (-1652 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 153)) (-2864 (((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|)) 170)) (-2521 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|)) 173)) (-4149 (((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 81)) (-1717 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 88)) (-3783 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|))) 147)) (-3929 (((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 133)) (-1830 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 157)) (-2892 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|)) 178))) +(((-527 |#1| |#2|) (-10 -7 (-15 -1652 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1830 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2399 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -2521 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -2892 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -1650 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3783 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2864 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -4066 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -1260 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3929 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -4149 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1717 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-333) (-1130 |#1|)) (T -527)) +((-1717 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3929 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *1 (-527 *4 *5)))) (-1260 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1130 *4)))) (-4066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1130 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))) (-2864 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2422 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3783 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3652 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-1650 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-2892 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2521 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2399 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-1830 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-1652 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) +(-10 -7 (-15 -1652 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1830 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2399 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -2521 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -2892 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -1650 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3783 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2864 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -4066 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -1260 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3929 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -4149 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1717 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3629 (((-3 |#2| "failed") |#2| (-1073) (-1073)) 10))) +(((-528 |#1| |#2|) (-10 -7 (-15 -3629 ((-3 |#2| "failed") |#2| (-1073) (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-1037) (-29 |#1|))) (T -528)) +((-3629 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-1037) (-29 *4)))))) +(-10 -7 (-15 -3629 ((-3 |#2| "failed") |#2| (-1073) (-1073)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $ (-517)) 65)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3959 (($ (-1069 (-517)) (-517)) 71)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 57)) (-3531 (($ $) 33)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3972 (((-703) $) 15)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 (((-517)) 27)) (-3340 (((-517) $) 31)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1672 (($ $ (-517)) 21)) (-2476 (((-3 $ "failed") $ $) 58)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) 16)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 60)) (-2930 (((-1054 (-517)) $) 18)) (-1545 (($ $) 23)) (-2256 (((-787) $) 85) (($ (-517)) 51) (($ $) NIL)) (-2961 (((-703)) 14)) (-3329 (((-107) $ $) NIL)) (-3383 (((-517) $ (-517)) 35)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 34 T CONST)) (-2409 (($) 19 T CONST)) (-1547 (((-107) $ $) 38)) (-1654 (($ $) 50) (($ $ $) 36)) (-1642 (($ $ $) 49)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 53) (($ $ $) 54))) +(((-529 |#1| |#2|) (-793 |#1|) (-517) (-107)) (T -529)) +NIL +(-793 |#1|) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 18)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) 47)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 $ "failed") $) 75)) (-3189 (($ $) 74)) (-1967 (($ (-1153 $)) 73)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 30)) (-3209 (($) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 49)) (-3391 (((-107) $) NIL)) (-2378 (($ $) NIL) (($ $ (-703)) NIL)) (-3849 (((-107) $) NIL)) (-3972 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-3848 (((-107) $) NIL)) (-2453 (($) 35 (|has| $ (-338)))) (-2434 (((-107) $) NIL (|has| $ (-338)))) (-1506 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 $) $ (-843)) NIL (|has| $ (-338))) (((-1069 $) $) 83)) (-1549 (((-843) $) 55)) (-1704 (((-1069 $) $) NIL (|has| $ (-338)))) (-2729 (((-3 (-1069 $) "failed") $ $) NIL (|has| $ (-338))) (((-1069 $) $) NIL (|has| $ (-338)))) (-3600 (($ $ (-1069 $)) NIL (|has| $ (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL T CONST)) (-3448 (($ (-843)) 48)) (-3202 (((-107) $) 67)) (-3206 (((-1021) $) NIL)) (-3220 (($) 16 (|has| $ (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 40)) (-3755 (((-388 $) $) NIL)) (-3327 (((-843)) 66) (((-765 (-843))) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-3141 (((-125)) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-3688 (((-843) $) 65) (((-765 (-843)) $) NIL)) (-2135 (((-1069 $)) 82)) (-1766 (($) 54)) (-1224 (($) 36 (|has| $ (-338)))) (-4114 (((-623 $) (-1153 $)) NIL) (((-1153 $) $) 71)) (-3645 (((-517) $) 26)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) 28) (($ $) NIL) (($ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2961 (((-703)) 37)) (-1753 (((-1153 $) (-843)) 77) (((-1153 $)) 76)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 19 T CONST)) (-2409 (($) 15 T CONST)) (-4103 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 24)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 61) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) +(((-530 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-843)) (T -530)) +NIL +(-13 (-319) (-299 $) (-558 (-517))) +((-1520 (((-1158) (-1056)) 10))) +(((-531) (-10 -7 (-15 -1520 ((-1158) (-1056))))) (T -531)) +((-1520 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-531))))) +(-10 -7 (-15 -1520 ((-1158) (-1056)))) +((-1313 (((-534 |#2|) (-534 |#2|)) 37)) (-3502 (((-583 |#2|) (-534 |#2|)) 39)) (-2029 ((|#2| (-534 |#2|)) 46))) +(((-532 |#1| |#2|) (-10 -7 (-15 -1313 ((-534 |#2|) (-534 |#2|))) (-15 -3502 ((-583 |#2|) (-534 |#2|))) (-15 -2029 (|#2| (-534 |#2|)))) (-13 (-421) (-952 (-517)) (-779) (-579 (-517))) (-13 (-29 |#1|) (-1094))) (T -532)) +((-2029 (*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1094))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1094))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) (-1313 (*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1094))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4))))) +(-10 -7 (-15 -1313 ((-534 |#2|) (-534 |#2|))) (-15 -3502 ((-583 |#2|) (-534 |#2|))) (-15 -2029 (|#2| (-534 |#2|)))) +((-1893 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|)) 26))) +(((-533 |#1| |#2|) (-10 -7 (-15 -1893 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -1893 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1893 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1893 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-333) (-333)) (T -533)) +((-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) (-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) (-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2422 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2422 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6))))) +(-10 -7 (-15 -1893 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -1893 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1893 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1893 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 68)) (-3189 ((|#1| $) NIL)) (-2422 ((|#1| $) 24)) (-1267 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-1399 (($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-3591 (((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) $) 25)) (-3985 (((-1056) $) NIL)) (-2082 (($ |#1| |#1|) 32) (($ |#1| (-1073)) 43 (|has| |#1| (-952 (-1073))))) (-3206 (((-1021) $) NIL)) (-2941 (((-107) $) 28)) (-3127 ((|#1| $ (-1 |#1| |#1|)) 80) ((|#1| $ (-1073)) 81 (|has| |#1| (-822 (-1073))))) (-2256 (((-787) $) 95) (($ |#1|) 23)) (-2396 (($) 16 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) 15) (($ $ $) NIL)) (-1642 (($ $ $) 77)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 14) (($ (-377 (-517)) $) 35) (($ $ (-377 (-517))) NIL))) +(((-534 |#1|) (-13 (-650 (-377 (-517))) (-952 |#1|) (-10 -8 (-15 -1399 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2422 (|#1| $)) (-15 -3591 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) $)) (-15 -1267 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2941 ((-107) $)) (-15 -2082 ($ |#1| |#1|)) (-15 -3127 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-822 (-1073))) (-15 -3127 (|#1| $ (-1073))) |noBranch|) (IF (|has| |#1| (-952 (-1073))) (-15 -2082 ($ |#1| (-1073))) |noBranch|))) (-333)) (T -534)) +((-1399 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *2)) (|:| |logand| (-1069 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))) (-2422 (*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *3)) (|:| |logand| (-1069 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1267 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-2082 (*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-3127 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-3127 (*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-822 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1073)))) (-2082 (*1 *1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *1 (-534 *2)) (-4 *2 (-952 *3)) (-4 *2 (-333))))) +(-13 (-650 (-377 (-517))) (-952 |#1|) (-10 -8 (-15 -1399 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2422 (|#1| $)) (-15 -3591 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) $)) (-15 -1267 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2941 ((-107) $)) (-15 -2082 ($ |#1| |#1|)) (-15 -3127 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-822 (-1073))) (-15 -3127 (|#1| $ (-1073))) |noBranch|) (IF (|has| |#1| (-952 (-1073))) (-15 -2082 ($ |#1| (-1073))) |noBranch|))) +((-1404 (((-107) |#1|) 16)) (-1580 (((-3 |#1| "failed") |#1|) 14)) (-1910 (((-2 (|:| -2372 |#1|) (|:| -2077 (-703))) |#1|) 30) (((-3 |#1| "failed") |#1| (-703)) 18)) (-3417 (((-107) |#1| (-703)) 19)) (-1944 ((|#1| |#1|) 31)) (-4043 ((|#1| |#1| (-703)) 33))) +(((-535 |#1|) (-10 -7 (-15 -3417 ((-107) |#1| (-703))) (-15 -1910 ((-3 |#1| "failed") |#1| (-703))) (-15 -1910 ((-2 (|:| -2372 |#1|) (|:| -2077 (-703))) |#1|)) (-15 -4043 (|#1| |#1| (-703))) (-15 -1404 ((-107) |#1|)) (-15 -1580 ((-3 |#1| "failed") |#1|)) (-15 -1944 (|#1| |#1|))) (-502)) (T -535)) +((-1944 (*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1580 (*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-4043 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1910 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2372 *3) (|:| -2077 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-1910 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502))))) +(-10 -7 (-15 -3417 ((-107) |#1| (-703))) (-15 -1910 ((-3 |#1| "failed") |#1| (-703))) (-15 -1910 ((-2 (|:| -2372 |#1|) (|:| -2077 (-703))) |#1|)) (-15 -4043 (|#1| |#1| (-703))) (-15 -1404 ((-107) |#1|)) (-15 -1580 ((-3 |#1| "failed") |#1|)) (-15 -1944 (|#1| |#1|))) +((-3335 (((-1069 |#1|) (-843)) 26))) +(((-536 |#1|) (-10 -7 (-15 -3335 ((-1069 |#1|) (-843)))) (-319)) (T -536)) +((-3335 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319))))) +(-10 -7 (-15 -3335 ((-1069 |#1|) (-843)))) +((-1313 (((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|)))) 26)) (-4151 (((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1073)) 33 (|has| |#1| (-134)))) (-3502 (((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|)))) 18)) (-2701 (((-286 |#1|) (-377 (-874 |#1|)) (-1073)) 31 (|has| |#1| (-134)))) (-2029 (((-286 |#1|) (-534 (-377 (-874 |#1|)))) 20))) +(((-537 |#1|) (-10 -7 (-15 -1313 ((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|))))) (-15 -3502 ((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|))))) (-15 -2029 ((-286 |#1|) (-534 (-377 (-874 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -4151 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2701 ((-286 |#1|) (-377 (-874 |#1|)) (-1073)))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (T -537)) +((-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) (-1313 (*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-874 *3)))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3))))) +(-10 -7 (-15 -1313 ((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|))))) (-15 -3502 ((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|))))) (-15 -2029 ((-286 |#1|) (-534 (-377 (-874 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -4151 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2701 ((-286 |#1|) (-377 (-874 |#1|)) (-1073)))) |noBranch|)) +((-3110 (((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517)))) 45) (((-583 (-623 (-517))) (-583 (-517))) 46) (((-623 (-517)) (-583 (-517)) (-827 (-517))) 41)) (-2717 (((-703) (-583 (-517))) 39))) +(((-538) (-10 -7 (-15 -2717 ((-703) (-583 (-517)))) (-15 -3110 ((-623 (-517)) (-583 (-517)) (-827 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517))))))) (T -538)) +((-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-827 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-827 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538))))) +(-10 -7 (-15 -2717 ((-703) (-583 (-517)))) (-15 -3110 ((-623 (-517)) (-583 (-517)) (-827 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517)))))) +((-4064 (((-583 |#5|) |#5| (-107)) 72)) (-1279 (((-107) |#5| (-583 |#5|)) 30))) +(((-539 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4064 ((-583 |#5|) |#5| (-107))) (-15 -1279 ((-107) |#5| (-583 |#5|)))) (-13 (-278) (-134)) (-725) (-779) (-975 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -539)) +((-1279 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1012 *5 *6 *7 *8))))) +(-10 -7 (-15 -4064 ((-583 |#5|) |#5| (-107))) (-15 -1279 ((-107) |#5| (-583 |#5|)))) +((-2750 (((-107) $ $) NIL (|has| (-131) (-1003)))) (-3880 (($ $) 34)) (-3132 (($ $) NIL)) (-3672 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) 51)) (-1414 (((-107) $ $ (-517)) 46)) (-1313 (((-583 $) $ (-131)) 59) (((-583 $) $ (-128)) 60)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-131) (-779))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-131) $ (-517) (-131)) 45 (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3346 (($ $ (-131)) 63) (($ $ (-128)) 64)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3610 (($ $ (-1121 (-517)) $) 44)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-2052 (($ (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) NIL)) (-1459 (((-107) $ $) 70)) (-2607 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 48 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 47) (((-517) (-128) $ (-517)) 50)) (-1536 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) 9)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 28 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3482 (((-517) $) 42 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) 71)) (-2237 (((-703) $ $ (-131)) 69)) (-1433 (($ (-1 (-131) (-131)) $) 33 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3006 (($ $) 37)) (-1285 (($ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3359 (($ $ (-131)) 61) (($ $ (-128)) 62)) (-3985 (((-1056) $) 38 (|has| (-131) (-1003)))) (-2620 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) 23)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-517) $) 68) (((-1021) $) NIL (|has| (-131) (-1003)))) (-1647 (((-131) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2565 (($ $ (-131)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) NIL)) (-3619 (((-107) $) 12)) (-1746 (($) 10)) (-1449 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) 52) (($ $ (-1121 (-517))) 21) (($ $ $) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1906 (($ $ $ (-517)) 65 (|has| $ (-6 -4181)))) (-2433 (($ $) 17)) (-3645 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) NIL)) (-2452 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) 16) (($ (-583 $)) 66)) (-2256 (($ (-131)) NIL) (((-787) $) 27 (|has| (-131) (-557 (-787))))) (-3675 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1547 (((-107) $ $) 14 (|has| (-131) (-1003)))) (-1595 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1572 (((-107) $ $) 15 (|has| (-131) (-779)))) (-2296 (((-703) $) 13 (|has| $ (-6 -4180))))) +(((-540 |#1|) (-13 (-1042) (-10 -8 (-15 -3206 ((-517) $)))) (-517)) (T -540)) +((-3206 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2)))) +(-13 (-1042) (-10 -8 (-15 -3206 ((-517) $)))) +((-2541 (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|)) 32))) +(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|))) (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|)) (T -541)) +((-2541 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) (-2541 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-998 *3)) (-4 *3 (-871 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3))))) +(-10 -7 (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|))) (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 63)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 54) (($ $ (-517) (-517)) 55)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 60)) (-2339 (($ $) 99)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2330 (((-787) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1073) |#1| (-377 (-517))) 223)) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 34)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3201 (((-107) $) NIL)) (-3972 (((-517) $) 58) (((-517) $ (-517)) 59)) (-3848 (((-107) $) NIL)) (-3430 (($ $ (-843)) 76)) (-3103 (($ (-1 |#1| (-517)) $) 73)) (-4031 (((-107) $) 25)) (-1339 (($ |#1| (-517)) 22) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 67)) (-2413 (($ (-941 (-772 (-517))) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 11)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-2217 (((-3 $ "failed") $ $ (-107)) 98)) (-1797 (($ $ $) 107)) (-3206 (((-1021) $) NIL)) (-2875 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 13)) (-3620 (((-941 (-772 (-517))) $) 12)) (-1672 (($ $ (-517)) 45)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-1449 ((|#1| $ (-517)) 57) (($ $ $) NIL (|has| (-517) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-3688 (((-517) $) NIL)) (-1545 (($ $) 46)) (-2256 (((-787) $) NIL) (($ (-517)) 28) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 27 (|has| |#1| (-156)))) (-2720 ((|#1| $ (-517)) 56)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 37)) (-2986 ((|#1| $) NIL)) (-4071 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-2425 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-2623 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1543 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-2198 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1844 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-2153 (($ $ (-377 (-517))) 165 (|has| |#1| (-37 (-377 (-517)))))) (-1219 (($ $ |#1|) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2078 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-3936 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-1198 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-2661 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-2805 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-3147 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-3749 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-1187 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-3308 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-1627 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-1579 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-2392 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-2907 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-1539 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-2447 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-3022 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-3192 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-2127 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-2387 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3383 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 29 T CONST)) (-2409 (($) 38 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1547 (((-107) $ $) 65)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) 84) (($ $ $) 64)) (-1642 (($ $ $) 81)) (** (($ $ (-843)) NIL) (($ $ (-703)) 102)) (* (($ (-843) $) 89) (($ (-703) $) 87) (($ (-517) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-542 |#1|) (-13 (-1132 |#1| (-517)) (-10 -8 (-15 -2413 ($ (-941 (-772 (-517))) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3620 ((-941 (-772 (-517))) $)) (-15 -2875 ((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -2925 ($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -4031 ((-107) $)) (-15 -3103 ($ (-1 |#1| (-517)) $)) (-15 -2217 ((-3 $ "failed") $ $ (-107))) (-15 -2339 ($ $)) (-15 -1797 ($ $ $)) (-15 -2330 ((-787) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1073) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (-15 -1219 ($ $ |#1|)) (-15 -2153 ($ $ (-377 (-517)))) (-15 -3936 ($ $)) (-15 -2078 ($ $)) (-15 -1543 ($ $)) (-15 -3749 ($ $)) (-15 -2425 ($ $)) (-15 -2805 ($ $)) (-15 -1844 ($ $)) (-15 -1575 ($ $)) (-15 -1579 ($ $)) (-15 -2387 ($ $)) (-15 -3308 ($ $)) (-15 -3192 ($ $)) (-15 -2907 ($ $)) (-15 -2447 ($ $)) (-15 -2623 ($ $)) (-15 -3147 ($ $)) (-15 -4071 ($ $)) (-15 -2661 ($ $)) (-15 -2198 ($ $)) (-15 -1198 ($ $)) (-15 -1627 ($ $)) (-15 -2127 ($ $)) (-15 -1187 ($ $)) (-15 -3022 ($ $)) (-15 -2392 ($ $)) (-15 -1539 ($ $))) |noBranch|))) (-961)) (T -542)) +((-4031 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2413 (*1 *1 *2 *3) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-542 *4)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) (-2217 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2339 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))) (-1797 (*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))) (-2330 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-941 (-772 (-517)))) (-5 *5 (-1073)) (-5 *7 (-377 (-517))) (-4 *6 (-961)) (-5 *2 (-787)) (-5 *1 (-542 *6)))) (-4151 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1219 (*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2153 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-961)))) (-3936 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2078 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1543 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3749 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2805 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1844 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1579 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3308 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3192 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2907 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2447 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2623 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3147 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-4071 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2661 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2198 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1198 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1627 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2127 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1187 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3022 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2392 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1539 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(-13 (-1132 |#1| (-517)) (-10 -8 (-15 -2413 ($ (-941 (-772 (-517))) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3620 ((-941 (-772 (-517))) $)) (-15 -2875 ((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -2925 ($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -4031 ((-107) $)) (-15 -3103 ($ (-1 |#1| (-517)) $)) (-15 -2217 ((-3 $ "failed") $ $ (-107))) (-15 -2339 ($ $)) (-15 -1797 ($ $ $)) (-15 -2330 ((-787) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1073) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (-15 -1219 ($ $ |#1|)) (-15 -2153 ($ $ (-377 (-517)))) (-15 -3936 ($ $)) (-15 -2078 ($ $)) (-15 -1543 ($ $)) (-15 -3749 ($ $)) (-15 -2425 ($ $)) (-15 -2805 ($ $)) (-15 -1844 ($ $)) (-15 -1575 ($ $)) (-15 -1579 ($ $)) (-15 -2387 ($ $)) (-15 -3308 ($ $)) (-15 -3192 ($ $)) (-15 -2907 ($ $)) (-15 -2447 ($ $)) (-15 -2623 ($ $)) (-15 -3147 ($ $)) (-15 -4071 ($ $)) (-15 -2661 ($ $)) (-15 -2198 ($ $)) (-15 -1198 ($ $)) (-15 -1627 ($ $)) (-15 -2127 ($ $)) (-15 -1187 ($ $)) (-15 -3022 ($ $)) (-15 -2392 ($ $)) (-15 -1539 ($ $))) |noBranch|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2925 (($ (-1054 |#1|)) 9)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) 42)) (-3201 (((-107) $) 52)) (-3972 (((-703) $) 55) (((-703) $ (-703)) 54)) (-3848 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ $) 44 (|has| |#1| (-509)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-1054 |#1|) $) 23)) (-2961 (((-703)) 51)) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 10 T CONST)) (-2409 (($) 14 T CONST)) (-1547 (((-107) $ $) 22)) (-1654 (($ $) 30) (($ $ $) 16)) (-1642 (($ $ $) 25)) (** (($ $ (-843)) NIL) (($ $ (-703)) 49)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-517)) 36))) +(((-543 |#1|) (-13 (-961) (-10 -8 (-15 -1311 ((-1054 |#1|) $)) (-15 -2925 ($ (-1054 |#1|))) (-15 -3201 ((-107) $)) (-15 -3972 ((-703) $)) (-15 -3972 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |noBranch|))) (-961)) (T -543)) +((-1311 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-543 *3)))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-3972 (*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-961))))) +(-13 (-961) (-10 -8 (-15 -1311 ((-1054 |#1|) $)) (-15 -2925 ($ (-1054 |#1|))) (-15 -3201 ((-107) $)) (-15 -3972 ((-703) $)) (-15 -3972 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |noBranch|))) +((-1893 (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 15))) +(((-544 |#1| |#2|) (-10 -7 (-15 -1893 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)))) (-1108) (-1108)) (T -544)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6))))) +(-10 -7 (-15 -1893 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)))) +((-1893 (((-1054 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1054 |#2|)) 20) (((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-547 |#2|)) 19) (((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|)) 18))) +(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1054 |#2|)))) (-1108) (-1108) (-1108)) (T -545)) +((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) (-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) (-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8))))) +(-10 -7 (-15 -1893 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1054 |#2|)))) +((-2716 ((|#3| |#3| (-583 (-556 |#3|)) (-583 (-1073))) 55)) (-4072 (((-153 |#2|) |#3|) 116)) (-2894 ((|#3| (-153 |#2|)) 43)) (-1484 ((|#2| |#3|) 19)) (-1794 ((|#3| |#2|) 32))) +(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2894 (|#3| (-153 |#2|))) (-15 -1484 (|#2| |#3|)) (-15 -1794 (|#3| |#2|)) (-15 -4072 ((-153 |#2|) |#3|)) (-15 -2716 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1073))))) (-13 (-509) (-779)) (-13 (-400 |#1|) (-918) (-1094)) (-13 (-400 (-153 |#1|)) (-918) (-1094))) (T -546)) +((-2716 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1073))) (-4 *2 (-13 (-400 (-153 *5)) (-918) (-1094))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-918) (-1094))))) (-4072 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094))))) (-1794 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-918) (-1094))))) (-1484 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094))))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *5 *2))))) +(-10 -7 (-15 -2894 (|#3| (-153 |#2|))) (-15 -1484 (|#2| |#3|)) (-15 -1794 (|#3| |#2|)) (-15 -4072 ((-153 |#2|) |#3|)) (-15 -2716 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1073))))) +((-3536 (($ (-1 (-107) |#1|) $) 16)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3464 (($ (-1 |#1| |#1|) |#1|) 9)) (-3513 (($ (-1 (-107) |#1|) $) 12)) (-3525 (($ (-1 (-107) |#1|) $) 14)) (-2276 (((-1054 |#1|) $) 17)) (-2256 (((-787) $) NIL))) +(((-547 |#1|) (-13 (-557 (-787)) (-10 -8 (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $)) (-15 -3536 ($ (-1 (-107) |#1|) $)) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -2276 ((-1054 |#1|) $)))) (-1108)) (T -547)) +((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3525 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3464 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1108))))) +(-13 (-557 (-787)) (-10 -8 (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $)) (-15 -3536 ($ (-1 (-107) |#1|) $)) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -2276 ((-1054 |#1|) $)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703)) NIL (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1292 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3847 (((-107) $ (-703)) NIL)) (-2195 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3501 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-961)))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1642 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-548 |#1| |#2|) (-1151 |#1|) (-1108) (-517)) (T -548)) +NIL +(-1151 |#1|) +((-1668 (((-1158) $ |#2| |#2|) 36)) (-3243 ((|#2| $) 23)) (-3482 ((|#2| $) 21)) (-1433 (($ (-1 |#3| |#3|) $) 32)) (-1893 (($ (-1 |#3| |#3|) $) 30)) (-1647 ((|#3| $) 26)) (-2565 (($ $ |#3|) 33)) (-4042 (((-107) |#3| $) 17)) (-1941 (((-583 |#3|) $) 15)) (-1449 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-549 |#1| |#2| |#3|) (-10 -8 (-15 -1668 ((-1158) |#1| |#2| |#2|)) (-15 -2565 (|#1| |#1| |#3|)) (-15 -1647 (|#3| |#1|)) (-15 -3243 (|#2| |#1|)) (-15 -3482 (|#2| |#1|)) (-15 -4042 ((-107) |#3| |#1|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|))) (-550 |#2| |#3|) (-1003) (-1108)) (T -549)) +NIL +(-10 -8 (-15 -1668 ((-1158) |#1| |#2| |#2|)) (-15 -2565 (|#1| |#1| |#3|)) (-15 -1647 (|#3| |#1|)) (-15 -3243 (|#2| |#1|)) (-15 -3482 (|#2| |#1|)) (-15 -4042 ((-107) |#3| |#1|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#2| (-1003)))) (-1668 (((-1158) $ |#1| |#1|) 40 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-1445 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 51)) (-1536 (((-583 |#2|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-3243 ((|#1| $) 43 (|has| |#1| (-779)))) (-2560 (((-583 |#2|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-3482 ((|#1| $) 44 (|has| |#1| (-779)))) (-1433 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#2| (-1003)))) (-1857 (((-583 |#1|) $) 46)) (-4088 (((-107) |#1| $) 47)) (-3206 (((-1021) $) 21 (|has| |#2| (-1003)))) (-1647 ((|#2| $) 42 (|has| |#1| (-779)))) (-2565 (($ $ |#2|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3217 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4180))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#2| (-1003)))) (-3675 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#2| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-550 |#1| |#2|) (-1184) (-1003) (-1108)) (T -550)) +((-1941 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *4)))) (-4088 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *3)))) (-4042 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-779)) (-4 *2 (-1108)))) (-2565 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-1668 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-1158))))) +(-13 (-456 |t#2|) (-260 |t#1| |t#2|) (-10 -8 (-15 -1941 ((-583 |t#2|) $)) (-15 -4088 ((-107) |t#1| $)) (-15 -1857 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1003)) (IF (|has| $ (-6 -4180)) (-15 -4042 ((-107) |t#2| $)) |noBranch|) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -3482 (|t#1| $)) (-15 -3243 (|t#1| $)) (-15 -1647 (|t#2| $))) |noBranch|) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2565 ($ $ |t#2|)) (-15 -1668 ((-1158) $ |t#1| |t#1|))) |noBranch|))) +(((-33) . T) ((-97) |has| |#2| (-1003)) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787)))) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-1003) |has| |#2| (-1003)) ((-1108) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1153 (-623 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3456 (((-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1450 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2619 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2299 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3343 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2158 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2436 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2417 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4069 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2085 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2362 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1967 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1153 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2261 (((-843)) NIL (|has| |#2| (-337 |#1|)))) (-3962 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3983 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3414 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1793 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2010 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1188 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3914 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1680 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2300 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-4121 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1988 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2190 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-3606 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1286 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1848 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1449 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-4114 (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $) (-1153 $)) NIL (|has| |#2| (-337 |#1|))) (((-1153 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3645 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2278 (((-583 (-874 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-874 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2256 (((-787) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1753 (((-1153 $)) NIL (|has| |#2| (-387 |#1|)))) (-1582 (((-583 (-1153 |#1|))) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1587 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2524 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3642 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) 24)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-551 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|))) (-156) (-677 |#1|)) (T -551)) +((-2256 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3))))) +(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|))) +((-2750 (((-107) $ $) NIL)) (-3733 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) 32)) (-3422 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL) (($) NIL)) (-1668 (((-1158) $ (-1056) (-1056)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-1056) |#1|) 42)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#1| "failed") (-1056) $) 45)) (-3092 (($) NIL T CONST)) (-1723 (($ $ (-1056)) 24)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3212 (((-3 |#1| "failed") (-1056) $) 46) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (|has| $ (-6 -4180)))) (-2052 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3225 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-1457 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) 31)) (-1445 ((|#1| $ (-1056) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-1056)) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-1669 (($ $) 47)) (-1513 (($ (-358)) 22) (($ (-358) (-1056)) 21)) (-1207 (((-358) $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1056) $) NIL (|has| (-1056) (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (((-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3482 (((-1056) $) NIL (|has| (-1056) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2274 (((-583 (-1056)) $) 38)) (-2793 (((-107) (-1056) $) NIL)) (-2845 (((-1056) $) 34)) (-3309 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1857 (((-583 (-1056)) $) NIL)) (-4088 (((-107) (-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 ((|#1| $) NIL (|has| (-1056) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) "failed") (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 36)) (-1449 ((|#1| $ (-1056) |#1|) NIL) ((|#1| $ (-1056)) 41)) (-3089 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL) (($) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (((-703) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-703) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-2256 (((-787) $) 20)) (-2463 (($ $) 25)) (-1222 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-2296 (((-703) $) 40 (|has| $ (-6 -4180))))) +(((-552 |#1|) (-13 (-334 (-358) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-1085 (-1056) |#1|) (-10 -8 (-6 -4180) (-15 -1669 ($ $)))) (-1003)) (T -552)) +((-1669 (*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1003))))) +(-13 (-334 (-358) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-1085 (-1056) |#1|) (-10 -8 (-6 -4180) (-15 -1669 ($ $)))) +((-2787 (((-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 15)) (-2274 (((-583 |#2|) $) 19)) (-2793 (((-107) |#2| $) 12))) +(((-553 |#1| |#2| |#3|) (-10 -8 (-15 -2274 ((-583 |#2|) |#1|)) (-15 -2793 ((-107) |#2| |#1|)) (-15 -2787 ((-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|))) (-554 |#2| |#3|) (-1003) (-1003)) (T -553)) +NIL +(-10 -8 (-15 -2274 ((-583 |#2|) |#1|)) (-15 -2793 ((-107) |#2| |#1|)) (-15 -2787 ((-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|))) +((-2750 (((-107) $ $) 18 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 55 (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 61)) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 46 (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 62)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 54 (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 56 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 53 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2274 (((-583 |#1|) $) 63)) (-2793 (((-107) |#1| $) 64)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 39)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 40)) (-3206 (((-1021) $) 21 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 51)) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 41)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 26 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 25 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 24 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 23 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3089 (($) 49) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 48)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 31 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 50)) (-2256 (((-787) $) 20 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 42)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-554 |#1| |#2|) (-1184) (-1003) (-1003)) (T -554)) +((-2793 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-107)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) (-3212 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3254 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) +(-13 (-203 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|))) (-10 -8 (-15 -2793 ((-107) |t#1| $)) (-15 -2274 ((-583 |t#1|) $)) (-15 -3212 ((-3 |t#2| "failed") |t#1| $)) (-15 -3254 ((-3 |t#2| "failed") |t#1| $)))) +(((-33) . T) ((-102 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-97) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) ((-557 (-787)) -3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-209 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-456 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-478 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-1003) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) ((-1108) . T)) +((-4134 (((-556 |#2|) |#1|) 15)) (-3937 (((-3 |#1| "failed") (-556 |#2|)) 19))) +(((-555 |#1| |#2|) (-10 -7 (-15 -4134 ((-556 |#2|) |#1|)) (-15 -3937 ((-3 |#1| "failed") (-556 |#2|)))) (-779) (-779)) (T -555)) +((-3937 (*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))) (-4134 (*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779))))) +(-10 -7 (-15 -4134 ((-556 |#2|) |#1|)) (-15 -3937 ((-3 |#1| "failed") (-556 |#2|)))) +((-2750 (((-107) $ $) NIL)) (-3805 (((-3 (-1073) "failed") $) 36)) (-3892 (((-1158) $ (-703)) 26)) (-2607 (((-703) $) 25)) (-3072 (((-109) $) 12)) (-1207 (((-1073) $) 20)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-1851 (($ (-109) (-583 |#1|) (-703)) 30) (($ (-1073)) 31)) (-1609 (((-107) $ (-109)) 18) (((-107) $ (-1073)) 16)) (-1881 (((-703) $) 22)) (-3206 (((-1021) $) NIL)) (-3645 (((-814 (-517)) $) 69 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 75 (|has| |#1| (-558 (-814 (-349))))) (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2256 (((-787) $) 51)) (-2921 (((-583 |#1|) $) 24)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 39)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 40))) +(((-556 |#1|) (-13 (-124) (-806 |#1|) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -3072 ((-109) $)) (-15 -2921 ((-583 |#1|) $)) (-15 -1881 ((-703) $)) (-15 -1851 ($ (-109) (-583 |#1|) (-703))) (-15 -1851 ($ (-1073))) (-15 -3805 ((-3 (-1073) "failed") $)) (-15 -1609 ((-107) $ (-109))) (-15 -1609 ((-107) $ (-1073))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|))) (-779)) (T -556)) +((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1851 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))) (-1851 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3805 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1609 (*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) (-1609 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779))))) +(-13 (-124) (-806 |#1|) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -3072 ((-109) $)) (-15 -2921 ((-583 |#1|) $)) (-15 -1881 ((-703) $)) (-15 -1851 ($ (-109) (-583 |#1|) (-703))) (-15 -1851 ($ (-1073))) (-15 -3805 ((-3 (-1073) "failed") $)) (-15 -1609 ((-107) $ (-109))) (-15 -1609 ((-107) $ (-1073))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|))) +((-2256 ((|#1| $) 6))) +(((-557 |#1|) (-1184) (-1108)) (T -557)) +((-2256 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1108))))) +(-13 (-10 -8 (-15 -2256 (|t#1| $)))) +((-3645 ((|#1| $) 6))) +(((-558 |#1|) (-1184) (-1108)) (T -558)) +((-3645 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1108))))) +(-13 (-10 -8 (-15 -3645 (|t#1| $)))) +((-2819 (((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)) 13) (((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 14))) +(((-559 |#1| |#2|) (-10 -7 (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)))) (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -559)) +((-2819 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-1069 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))) (-2819 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-1069 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5))))) +(-10 -7 (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)))) +((-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10))) +(((-560 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-561 |#2|) (-961)) (T -560)) +NIL +(-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 36)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#1| $) 37))) +(((-561 |#1|) (-1184) (-961)) (T -561)) +((-2256 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-961))))) +(-13 (-961) (-585 |t#1|) (-10 -8 (-15 -2256 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3709 (((-517) $) NIL (|has| |#1| (-777)))) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3556 (((-107) $) NIL (|has| |#1| (-777)))) (-3848 (((-107) $) NIL)) (-1787 ((|#1| $) 13)) (-2475 (((-107) $) NIL (|has| |#1| (-777)))) (-2967 (($ $ $) NIL (|has| |#1| (-777)))) (-3099 (($ $ $) NIL (|has| |#1| (-777)))) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1800 ((|#3| $) 15)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL)) (-2961 (((-703)) 20)) (-3710 (($ $) NIL (|has| |#1| (-777)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) 12 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1667 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-562 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $)))) (-37 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -562)) +((-1667 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1667 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-1800 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4))))) +(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $)))) +((-3941 ((|#2| |#2| (-1073) (-1073)) 18))) +(((-563 |#1| |#2|) (-10 -7 (-15 -3941 (|#2| |#2| (-1073) (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-29 |#1|))) (T -563)) +((-3941 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-29 *4)))))) +(-10 -7 (-15 -3941 (|#2| |#2| (-1073) (-1073)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 52)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2255 ((|#1| $) 49)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2316 (((-2 (|:| -1388 $) (|:| -2544 (-377 |#2|))) (-377 |#2|)) 95 (|has| |#1| (-333)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 83) (((-3 |#2| "failed") $) 80)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 24)) (-3621 (((-3 $ "failed") $) 74)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3972 (((-517) $) 19)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) 36)) (-1339 (($ |#1| (-517)) 21)) (-1191 ((|#1| $) 51)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) 85 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 98 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ $) 78)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3146 (((-703) $) 97 (|has| |#1| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 96 (|has| |#1| (-333)))) (-3127 (($ $ (-1 |#2| |#2|)) 65) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-3688 (((-517) $) 34)) (-3645 (((-377 |#2|) $) 42)) (-2256 (((-787) $) 61) (($ (-517)) 32) (($ $) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 31) (($ |#2|) 22)) (-2720 ((|#1| $ (-517)) 62)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 9 T CONST)) (-2409 (($) 12 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1547 (((-107) $ $) 17)) (-1654 (($ $) 46) (($ $ $) NIL)) (-1642 (($ $ $) 75)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 26) (($ $ $) 44))) +(((-564 |#1| |#2|) (-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-952 |#2|) (-10 -8 (-15 -4031 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -3972 ((-517) $)) (-15 -1212 ($ $)) (-15 -1191 (|#1| $)) (-15 -2255 (|#1| $)) (-15 -2720 (|#1| $ (-517))) (-15 -1339 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -2316 ((-2 (|:| -1388 $) (|:| -2544 (-377 |#2|))) (-377 |#2|)))) |noBranch|))) (-509) (-1130 |#1|)) (T -564)) +((-4031 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) (-3972 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) (-1212 (*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) (-1191 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) (-2255 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) (-2316 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1388 (-564 *4 *5)) (|:| -2544 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5))))) +(-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-952 |#2|) (-10 -8 (-15 -4031 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -3972 ((-517) $)) (-15 -1212 ($ $)) (-15 -1191 (|#1| $)) (-15 -2255 (|#1| $)) (-15 -2720 (|#1| $ (-517))) (-15 -1339 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -2316 ((-2 (|:| -1388 $) (|:| -2544 (-377 |#2|))) (-377 |#2|)))) |noBranch|))) +((-4029 (((-583 |#6|) (-583 |#4|) (-107)) 46)) (-2562 ((|#6| |#6|) 39))) +(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2562 (|#6| |#6|)) (-15 -4029 ((-583 |#6|) (-583 |#4|) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|) (-1012 |#1| |#2| |#3| |#4|)) (T -565)) +((-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *10 (-1012 *5 *6 *7 *8)))) (-2562 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *2 (-1012 *3 *4 *5 *6))))) +(-10 -7 (-15 -2562 (|#6| |#6|)) (-15 -4029 ((-583 |#6|) (-583 |#4|) (-107)))) +((-1928 (((-107) |#3| (-703) (-583 |#3|)) 22)) (-2494 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1069 |#3|)))) "failed") |#3| (-583 (-1069 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2879 (-583 (-2 (|:| |irr| |#4|) (|:| -3631 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 51))) +(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1928 ((-107) |#3| (-703) (-583 |#3|))) (-15 -2494 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1069 |#3|)))) "failed") |#3| (-583 (-1069 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2879 (-583 (-2 (|:| |irr| |#4|) (|:| -3631 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-779) (-725) (-278) (-871 |#3| |#2| |#1|)) (T -566)) +((-2494 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2879 (-583 (-2 (|:| |irr| *10) (|:| -3631 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-871 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1069 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1069 *3))))) (-1928 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-871 *3 *7 *6))))) +(-10 -7 (-15 -1928 ((-107) |#3| (-703) (-583 |#3|))) (-15 -2494 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1069 |#3|)))) "failed") |#3| (-583 (-1069 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2879 (-583 (-2 (|:| |irr| |#4|) (|:| -3631 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) +((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2402 (($ $) 67)) (-1867 (((-601 |#1| |#2|) $) 52)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 70)) (-1852 (((-583 (-265 |#2|)) $ $) 33)) (-3206 (((-1021) $) NIL)) (-2624 (($ (-601 |#1| |#2|)) 48)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 58) (((-1166 |#1| |#2|) $) NIL) (((-1171 |#1| |#2|) $) 66)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 53 T CONST)) (-2321 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) 31)) (-2984 (((-583 (-601 |#1| |#2|)) (-583 |#1|)) 65)) (-2332 (((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) 36)) (-1547 (((-107) $ $) 54)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 44))) +(((-567 |#1| |#2| |#3|) (-13 (-442) (-10 -8 (-15 -2624 ($ (-601 |#1| |#2|))) (-15 -1867 ((-601 |#1| |#2|) $)) (-15 -2332 ((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $)) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1171 |#1| |#2|) $)) (-15 -2402 ($ $)) (-15 -3463 ((-583 |#1|) $)) (-15 -2984 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -2321 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -1852 ((-583 (-265 |#2|)) $ $)))) (-779) (-13 (-156) (-650 (-377 (-517)))) (-843)) (T -567)) +((-2624 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-843)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2402 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-843)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-843)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-1852 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843))))) +(-13 (-442) (-10 -8 (-15 -2624 ($ (-601 |#1| |#2|))) (-15 -1867 ((-601 |#1| |#2|) $)) (-15 -2332 ((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $)) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1171 |#1| |#2|) $)) (-15 -2402 ($ $)) (-15 -3463 ((-583 |#1|) $)) (-15 -2984 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -2321 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -1852 ((-583 (-265 |#2|)) $ $)))) +((-4029 (((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 70) (((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 56)) (-3958 (((-107) (-583 (-712 |#1| (-789 |#2|)))) 22)) (-1281 (((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 69)) (-1420 (((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 55)) (-1759 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) 26)) (-2066 (((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|)))) 25))) +(((-568 |#1| |#2|) (-10 -7 (-15 -3958 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -2066 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1759 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1420 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -1281 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)))) (-421) (-583 (-1073))) (T -568)) +((-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4)))) (-2066 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1073))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5))))) +(-10 -7 (-15 -3958 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -2066 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1759 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1420 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -1281 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)))) +((-1865 (($ $) 38)) (-1721 (($ $) 21)) (-1839 (($ $) 37)) (-1701 (($ $) 22)) (-1887 (($ $) 36)) (-1743 (($ $) 23)) (-2645 (($) 48)) (-1867 (($ $) 45)) (-3139 (($ $) 17)) (-2082 (($ $ (-996 $)) 7) (($ $ (-1073)) 6)) (-2624 (($ $) 46)) (-1655 (($ $) 15)) (-1689 (($ $) 16)) (-1898 (($ $) 35)) (-1754 (($ $) 24)) (-1876 (($ $) 34)) (-1732 (($ $) 25)) (-1853 (($ $) 33)) (-1711 (($ $) 26)) (-3707 (($ $) 44)) (-1788 (($ $) 32)) (-3683 (($ $) 43)) (-1765 (($ $) 31)) (-3731 (($ $) 42)) (-1814 (($ $) 30)) (-1492 (($ $) 41)) (-1827 (($ $) 29)) (-3719 (($ $) 40)) (-1802 (($ $) 28)) (-3695 (($ $) 39)) (-1777 (($ $) 27)) (-3362 (($ $) 19)) (-3452 (($ $) 20)) (-2037 (($ $) 18)) (** (($ $ $) 47))) +(((-569) (-1184)) (T -569)) +((-3452 (*1 *1 *1) (-4 *1 (-569))) (-3362 (*1 *1 *1) (-4 *1 (-569))) (-2037 (*1 *1 *1) (-4 *1 (-569))) (-3139 (*1 *1 *1) (-4 *1 (-569))) (-1689 (*1 *1 *1) (-4 *1 (-569))) (-1655 (*1 *1 *1) (-4 *1 (-569)))) +(-13 (-880) (-1094) (-10 -8 (-15 -3452 ($ $)) (-15 -3362 ($ $)) (-15 -2037 ($ $)) (-15 -3139 ($ $)) (-15 -1689 ($ $)) (-15 -1655 ($ $)))) +(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-880) . T) ((-1094) . T) ((-1097) . T)) +((-3072 (((-109) (-109)) 83)) (-3139 ((|#2| |#2|) 30)) (-2082 ((|#2| |#2| (-996 |#2|)) 79) ((|#2| |#2| (-1073)) 52)) (-1655 ((|#2| |#2|) 29)) (-1689 ((|#2| |#2|) 31)) (-4074 (((-107) (-109)) 34)) (-3362 ((|#2| |#2|) 26)) (-3452 ((|#2| |#2|) 28)) (-2037 ((|#2| |#2|) 27))) +(((-570 |#1| |#2|) (-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3452 (|#2| |#2|)) (-15 -3362 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -3139 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -2082 (|#2| |#2| (-1073))) (-15 -2082 (|#2| |#2| (-996 |#2|)))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-918) (-1094))) (T -570)) +((-2082 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) (-2082 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3139 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-2037 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3362 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-918) (-1094))))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094)))))) +(-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3452 (|#2| |#2|)) (-15 -3362 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -3139 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -2082 (|#2| |#2| (-1073))) (-15 -2082 (|#2| |#2| (-996 |#2|)))) +((-3611 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 52)) (-2212 (((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 67)) (-2040 (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 69) (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 68)) (-1544 (((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|))) 105)) (-1465 (((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 82)) (-2358 (((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|))) 116)) (-1499 (((-1153 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|))) 57)) (-3871 (((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 39)) (-3296 (((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 49)) (-3195 (((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 89))) +(((-571 |#1| |#2|) (-10 -7 (-15 -1544 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -2358 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -2212 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -3871 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1499 ((-1153 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -3195 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1465 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3296 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -3611 ((-449 |#1| |#2|) (-221 |#1| |#2|)))) (-583 (-1073)) (-421)) (T -571)) +((-3611 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))) (-3296 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-1465 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-3195 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1073))) (-5 *1 (-571 *5 *6)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-1153 *6)) (-5 *1 (-571 *5 *6)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))) (-2040 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-2040 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2358 (*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5))))) +(-10 -7 (-15 -1544 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -2358 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -2212 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -3871 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1499 ((-1153 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -3195 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1465 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3296 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -3611 ((-449 |#1| |#2|) (-221 |#1| |#2|)))) +((-2750 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-1668 (((-1158) $ (-1056) (-1056)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-51) $ (-1056) (-51)) 16) (((-51) $ (-1073) (-51)) 17)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 (-51) "failed") (-1056) $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-3 (-51) "failed") (-1056) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-51) $ (-1056) (-51)) NIL (|has| $ (-6 -4181)))) (-1377 (((-51) $ (-1056)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-1669 (($ $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1056) $) NIL (|has| (-1056) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-3482 (((-1056) $) NIL (|has| (-1056) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1299 (($ (-358)) 9)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-2274 (((-583 (-1056)) $) NIL)) (-2793 (((-107) (-1056) $) NIL)) (-3309 (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL)) (-1857 (((-583 (-1056)) $) NIL)) (-4088 (((-107) (-1056) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-1647 (((-51) $) NIL (|has| (-1056) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) "failed") (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL)) (-2565 (($ $ (-51)) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-1941 (((-583 (-51)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-51) $ (-1056)) 14) (((-51) $ (-1056) (-51)) NIL) (((-51) $ (-1073)) 15)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-572) (-13 (-1085 (-1056) (-51)) (-10 -8 (-15 -1299 ($ (-358))) (-15 -1669 ($ $)) (-15 -1449 ((-51) $ (-1073))) (-15 -2411 ((-51) $ (-1073) (-51)))))) (T -572)) +((-1299 (*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))) (-1669 (*1 *1 *1) (-5 *1 (-572))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-572)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1073)) (-5 *1 (-572))))) +(-13 (-1085 (-1056) (-51)) (-10 -8 (-15 -1299 ($ (-358))) (-15 -1669 ($ $)) (-15 -1449 ((-51) $ (-1073))) (-15 -2411 ((-51) $ (-1073) (-51))))) +((-1667 (($ $ |#2|) 10))) +(((-573 |#1| |#2|) (-10 -8 (-15 -1667 (|#1| |#1| |#2|))) (-574 |#2|) (-156)) (T -573)) +NIL +(-10 -8 (-15 -1667 (|#1| |#1| |#2|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2276 (($ $ $) 29)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 28 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-574 |#1|) (-1184) (-156)) (T -574)) +((-2276 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333))))) +(-13 (-650 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2276 ($ $ $)) (IF (|has| |t#1| (-333)) (-15 -1667 ($ $ |t#1|)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1153 (-623 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3456 (((-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1450 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2619 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2299 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3343 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2158 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2436 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2417 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4069 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2085 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2362 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1967 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1153 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2261 (((-843)) NIL (|has| |#2| (-337 |#1|)))) (-3962 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3983 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3414 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1793 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2010 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1188 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3914 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1680 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2300 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-4121 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1988 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2190 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-3606 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1286 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1848 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1449 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-4114 (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $) (-1153 $)) NIL (|has| |#2| (-337 |#1|))) (((-1153 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3645 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2278 (((-583 (-874 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-874 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2256 (((-787) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1753 (((-1153 $)) NIL (|has| |#2| (-387 |#1|)))) (-1582 (((-583 (-1153 |#1|))) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1587 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2524 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3642 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2396 (($) 15 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) 17)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-575 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|))) (-156) (-677 |#1|)) (T -575)) +((-2256 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3))))) +(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|))) +((-3236 (((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1056)) 77) (((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|))) 99)) (-1586 (((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|))) 104))) +(((-576 |#1| |#2|) (-10 -7 (-15 -3236 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -1586 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -3236 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1056)))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -576)) +((-3236 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1056)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) (-1586 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3))))) +(-10 -7 (-15 -3236 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -1586 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -3236 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1056)))) +((-3236 (((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1056)) 79) (((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 18) (((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|)))) 34)) (-1586 (((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 21) (((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|)))) 42))) +(((-577 |#1|) (-10 -7 (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1056)))) (-421)) (T -577)) +((-3236 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-874 *6)))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))) (-1586 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))) (-1586 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-874 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) (-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-874 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5)))))) +(-10 -7 (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1056)))) +((-1412 (((-3 (-1153 (-377 |#1|)) "failed") (-1153 |#2|) |#2|) 57 (-2630 (|has| |#1| (-333)))) (((-3 (-1153 |#1|) "failed") (-1153 |#2|) |#2|) 42 (|has| |#1| (-333)))) (-1757 (((-107) (-1153 |#2|)) 30)) (-3927 (((-3 (-1153 |#1|) "failed") (-1153 |#2|)) 33))) +(((-578 |#1| |#2|) (-10 -7 (-15 -1757 ((-107) (-1153 |#2|))) (-15 -3927 ((-3 (-1153 |#1|) "failed") (-1153 |#2|))) (IF (|has| |#1| (-333)) (-15 -1412 ((-3 (-1153 |#1|) "failed") (-1153 |#2|) |#2|)) (-15 -1412 ((-3 (-1153 (-377 |#1|)) "failed") (-1153 |#2|) |#2|)))) (-509) (-579 |#1|)) (T -578)) +((-1412 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-2630 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1153 (-377 *5))) (-5 *1 (-578 *5 *4)))) (-1412 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1153 *5)) (-5 *1 (-578 *5 *4)))) (-3927 (*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1153 *4)) (-5 *1 (-578 *4 *5)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5))))) +(-10 -7 (-15 -1757 ((-107) (-1153 |#2|))) (-15 -3927 ((-3 (-1153 |#1|) "failed") (-1153 |#2|))) (IF (|has| |#1| (-333)) (-15 -1412 ((-3 (-1153 |#1|) "failed") (-1153 |#2|) |#2|)) (-15 -1412 ((-3 (-1153 (-377 |#1|)) "failed") (-1153 |#2|) |#2|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3355 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 35)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-579 |#1|) (-1184) (-961)) (T -579)) +((-3355 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-961)) (-5 *2 (-623 *4)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1153 *1)) (-4 *1 (-579 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 *5))))))) +(-13 (-961) (-10 -8 (-15 -3355 ((-623 |t#1|) (-623 $))) (-15 -3355 ((-2 (|:| -2790 (-623 |t#1|)) (|:| |vec| (-1153 |t#1|))) (-623 $) (-1153 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2237 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12))) +(((-580 |#1| |#2|) (-10 -7 (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1003) (-1108)) (T -580)) +((-2237 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) (-2237 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-580 *5 *6)))) (-2237 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) (-2237 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1003)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-2237 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6))))) +(-10 -7 (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) +((-3905 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18)) (-1893 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13))) +(((-581 |#1| |#2|) (-10 -7 (-15 -3905 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1108) (-1108)) (T -581)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-581 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5))))) +(-10 -7 (-15 -3905 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) +((-1893 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 13))) +(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1108) (-1108) (-1108)) (T -582)) +((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8))))) +(-10 -7 (-15 -1893 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "rest" $) NIL (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-1576 (($ $ $) 31 (|has| |#1| (-1003)))) (-1562 (($ $ $) 33 (|has| |#1| (-1003)))) (-1550 (($ $ $) 36 (|has| |#1| (-1003)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1660 (($ $) NIL) (($ $ (-703)) NIL)) (-3483 (($ $) NIL (|has| |#1| (-1003)))) (-1679 (($ $) 30 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2650 (((-107) $) 9)) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3353 (($) 7)) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3237 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 32 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1529 (($ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) 35) ((|#1| $ (-517) |#1|) NIL)) (-2459 (((-517) $ $) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-2655 (((-107) $) NIL)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 44 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-1540 (($ |#1| $) 10)) (-2568 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2452 (($ $ $) 29) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3741 (($ $ $) 11)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2482 (((-1056) $) 25 (|has| |#1| (-760))) (((-1056) $ (-107)) 26 (|has| |#1| (-760))) (((-1158) (-754) $) 27 (|has| |#1| (-760))) (((-1158) (-754) $ (-107)) 28 (|has| |#1| (-760)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-583 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -3353 ($)) (-15 -2650 ((-107) $)) (-15 -1540 ($ |#1| $)) (-15 -3741 ($ $ $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -1576 ($ $ $)) (-15 -1562 ($ $ $)) (-15 -1550 ($ $ $))) |noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|))) (-1108)) (T -583)) +((-3353 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1108)))) (-1540 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) (-3741 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) (-1576 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))) (-1562 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))) (-1550 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108))))) +(-13 (-603 |#1|) (-10 -8 (-15 -3353 ($)) (-15 -2650 ((-107) $)) (-15 -1540 ($ |#1| $)) (-15 -3741 ($ $ $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -1576 ($ $ $)) (-15 -1562 ($ $ $)) (-15 -1550 ($ $ $))) |noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1670 (($ |#1| |#1| $) 43)) (-2953 (((-107) $ (-703)) NIL)) (-2337 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3483 (($ $) 45)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) 51 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 53 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 9 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 37)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 46)) (-1710 (($ |#1| $) 26) (($ |#1| $ (-703)) 42)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-4006 ((|#1| $) 48)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 21)) (-1746 (($) 25)) (-2605 (((-107) $) 49)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 60)) (-3089 (($) 23) (($ (-583 |#1|)) 18)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) 57 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 19)) (-3645 (((-493) $) 34 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2256 (((-787) $) 14 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 22)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 62 (|has| |#1| (-1003)))) (-2296 (((-703) $) 16 (|has| $ (-6 -4180))))) +(((-584 |#1|) (-13 (-628 |#1|) (-10 -8 (-6 -4180) (-15 -2605 ((-107) $)) (-15 -1670 ($ |#1| |#1| $)))) (-1003)) (T -584)) +((-2605 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1003)))) (-1670 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1003))))) +(-13 (-628 |#1|) (-10 -8 (-6 -4180) (-15 -2605 ((-107) $)) (-15 -1670 ($ |#1| |#1| $)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23))) +(((-585 |#1|) (-1184) (-968)) (T -585)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-968))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3796 (((-701) $) 15)) (-1367 (($ $ |#1|) 55)) (-1375 (($ $) 32)) (-3785 (($ $) 31)) (-3765 (((-3 |#1| "failed") $) 47)) (-3490 ((|#1| $) NIL)) (-2543 (($ |#1| |#2| $) 60) (($ $ $) 61)) (-3317 (((-786) $ (-1 (-786) (-786) (-786)) (-1 (-786) (-786) (-786)) (-501)) 45)) (-2153 ((|#1| $ (-501)) 30)) (-3159 ((|#2| $ (-501)) 29)) (-2451 (($ (-1 |#1| |#1|) $) 34)) (-1620 (($ (-1 |#2| |#2|) $) 38)) (-3293 (($) 10)) (-2768 (($ |#1| |#2|) 22)) (-3920 (($ (-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|)))) 23)) (-3885 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))) $) 13)) (-3196 (($ |#1| $) 56)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1502 (((-107) $ $) 58)) (-3691 (((-786) $) 19) (($ |#1|) 16)) (-3751 (((-107) $ $) 25))) -(((-584 |#1| |#2| |#3|) (-13 (-1001) (-950 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-1 (-786) (-786) (-786)) (-1 (-786) (-786) (-786)) (-501))) (-15 -3885 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))) $)) (-15 -2768 ($ |#1| |#2|)) (-15 -3920 ($ (-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))))) (-15 -3159 (|#2| $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -3785 ($ $)) (-15 -1375 ($ $)) (-15 -3796 ((-701) $)) (-15 -3293 ($)) (-15 -1367 ($ $ |#1|)) (-15 -3196 ($ |#1| $)) (-15 -2543 ($ |#1| |#2| $)) (-15 -2543 ($ $ $)) (-15 -1502 ((-107) $ $)) (-15 -1620 ($ (-1 |#2| |#2|) $)) (-15 -2451 ($ (-1 |#1| |#1|) $)))) (-1001) (-23) |#2|) (T -584)) -((-3317 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-786) (-786) (-786))) (-5 *4 (-501)) (-5 *2 (-786)) (-5 *1 (-584 *5 *6 *7)) (-4 *5 (-1001)) (-4 *6 (-23)) (-14 *7 *6))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4))) (-2768 (*1 *1 *2 *3) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-3920 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-584 *3 *4 *5)))) (-3159 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-23)) (-5 *1 (-584 *4 *2 *5)) (-4 *4 (-1001)) (-14 *5 *2))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-1001)) (-5 *1 (-584 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3785 (*1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-1375 (*1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4))) (-3293 (*1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-1367 (*1 *1 *1 *2) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-3196 (*1 *1 *2 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-2543 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-2543 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-1502 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4))) (-1620 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)))) (-2451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-584 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1001) (-950 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-1 (-786) (-786) (-786)) (-1 (-786) (-786) (-786)) (-501))) (-15 -3885 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))) $)) (-15 -2768 ($ |#1| |#2|)) (-15 -3920 ($ (-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))))) (-15 -3159 (|#2| $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -3785 ($ $)) (-15 -1375 ($ $)) (-15 -3796 ((-701) $)) (-15 -3293 ($)) (-15 -1367 ($ $ |#1|)) (-15 -3196 ($ |#1| $)) (-15 -2543 ($ |#1| |#2| $)) (-15 -2543 ($ $ $)) (-15 -1502 ((-107) $ $)) (-15 -1620 ($ (-1 |#2| |#2|) $)) (-15 -2451 ($ (-1 |#1| |#1|) $)))) -((-1522 (((-501) $) 23)) (-1473 (($ |#2| $ (-501)) 21) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) 12)) (-2852 (((-107) (-501) $) 14)) (-3934 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-578 $)) NIL))) -(((-585 |#1| |#2|) (-10 -8 (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -1522 ((-501) |#1|)) (-15 -2658 ((-578 (-501)) |#1|)) (-15 -2852 ((-107) (-501) |#1|))) (-586 |#2|) (-1104)) (T -585)) -NIL -(-10 -8 (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -1522 ((-501) |#1|)) (-15 -2658 ((-578 (-501)) |#1|)) (-15 -2852 ((-107) (-501) |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 70)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-586 |#1|) (-1180) (-1104)) (T -586)) -((-3634 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-3934 (*1 *1 *1 *2) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) (-3934 (*1 *1 *2 *1) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) (-3934 (*1 *1 *1 *1) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) (-3934 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-1212 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-1468 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-1468 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-1473 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-586 *2)) (-4 *2 (-1104)))) (-1473 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-3754 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1116 (-501))) (|has| *1 (-6 -4168)) (-4 *1 (-586 *2)) (-4 *2 (-1104))))) -(-13 (-548 (-501) |t#1|) (-138 |t#1|) (-10 -8 (-15 -3634 ($ (-701) |t#1|)) (-15 -3934 ($ $ |t#1|)) (-15 -3934 ($ |t#1| $)) (-15 -3934 ($ $ $)) (-15 -3934 ($ (-578 $))) (-15 -1212 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2007 ($ $ (-1116 (-501)))) (-15 -1468 ($ $ (-501))) (-15 -1468 ($ $ (-1116 (-501)))) (-15 -1473 ($ |t#1| $ (-501))) (-15 -1473 ($ $ $ (-501))) (IF (|has| $ (-6 -4168)) (-15 -3754 (|t#1| $ (-1116 (-501)) |t#1|)) |noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 15)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2946 ((|#1| $) 21)) (-4111 (($ $ $) NIL (|has| |#1| (-721)))) (-1323 (($ $ $) NIL (|has| |#1| (-721)))) (-3460 (((-1053) $) 46)) (-3708 (((-1018) $) NIL)) (-2949 ((|#3| $) 22)) (-3691 (((-786) $) 42)) (-1850 (($) 10 T CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-721)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-721)))) (-3751 (((-107) $ $) 20)) (-3773 (((-107) $ $) NIL (|has| |#1| (-721)))) (-3762 (((-107) $ $) 24 (|has| |#1| (-721)))) (-3803 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-3797 (($ $) 17) (($ $ $) NIL)) (-3790 (($ $ $) 27)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-587 |#1| |#2| |#3|) (-13 (-648 |#2|) (-10 -8 (IF (|has| |#1| (-721)) (-6 (-721)) |noBranch|) (-15 -3803 ($ $ |#3|)) (-15 -3803 ($ |#1| |#3|)) (-15 -2946 (|#1| $)) (-15 -2949 (|#3| $)))) (-648 |#2|) (-156) (|SubsetCategory| (-657) |#2|)) (T -587)) -((-3803 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-587 *3 *4 *2)) (-4 *3 (-648 *4)) (-4 *2 (|SubsetCategory| (-657) *4)))) (-3803 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-587 *2 *4 *3)) (-4 *2 (-648 *4)) (-4 *3 (|SubsetCategory| (-657) *4)))) (-2946 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-648 *3)) (-5 *1 (-587 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-657) *3)))) (-2949 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-657) *4)) (-5 *1 (-587 *3 *4 *2)) (-4 *3 (-648 *4))))) -(-13 (-648 |#2|) (-10 -8 (IF (|has| |#1| (-721)) (-6 (-721)) |noBranch|) (-15 -3803 ($ $ |#3|)) (-15 -3803 ($ |#1| |#3|)) (-15 -2946 (|#1| $)) (-15 -2949 (|#3| $)))) -((-2778 (((-3 |#2| "failed") |#3| |#2| (-1070) |#2| (-578 |#2|)) 159) (((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) "failed") |#3| |#2| (-1070)) 43))) -(((-588 |#1| |#2| |#3|) (-10 -7 (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) "failed") |#3| |#2| (-1070))) (-15 -2778 ((-3 |#2| "failed") |#3| |#2| (-1070) |#2| (-578 |#2|)))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134)) (-13 (-29 |#1|) (-1090) (-879)) (-593 |#2|)) (T -588)) -((-2778 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-588 *6 *2 *3)) (-4 *3 (-593 *2)))) (-2778 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-4 *4 (-13 (-29 *6) (-1090) (-879))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4119 (-578 *4)))) (-5 *1 (-588 *6 *4 *3)) (-4 *3 (-593 *4))))) -(-10 -7 (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) "failed") |#3| |#2| (-1070))) (-15 -2778 ((-3 |#2| "failed") |#3| |#2| (-1070) |#2| (-578 |#2|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1305 (($ $) NIL (|has| |#1| (-331)))) (-1764 (($ $ $) 28 (|has| |#1| (-331)))) (-3607 (($ $ (-701)) 31 (|has| |#1| (-331)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-331)))) (-2160 (($ $ $) NIL (|has| |#1| (-331)))) (-1535 (($ $ $) NIL (|has| |#1| (-331)))) (-3912 (($ $ $) NIL (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-1355 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) NIL)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2285 (((-701) $) NIL)) (-2084 (($ $ $) NIL (|has| |#1| (-331)))) (-2530 (($ $ $) NIL (|has| |#1| (-331)))) (-3641 (($ $ $) NIL (|has| |#1| (-331)))) (-2753 (($ $ $) NIL (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-2007 ((|#1| $ |#1|) 24)) (-3409 (($ $ $) 33 (|has| |#1| (-331)))) (-1201 (((-701) $) NIL)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) 20) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) NIL)) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-1183 ((|#1| $ |#1| |#1|) 23)) (-3774 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 21 T CONST)) (-1925 (($) 8 T CONST)) (-3584 (($) NIL)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-589 |#1| |#2|) (-593 |#1|) (-959) (-1 |#1| |#1|)) (T -589)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-1611 (((-703) $) 15)) (-3953 (($ $ |#1|) 55)) (-4020 (($ $) 32)) (-3093 (($ $) 31)) (-1772 (((-3 |#1| "failed") $) 47)) (-3189 ((|#1| $) NIL)) (-2662 (($ |#1| |#2| $) 60) (($ $ $) 61)) (-3078 (((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517)) 45)) (-3466 ((|#1| $ (-517)) 30)) (-3882 ((|#2| $ (-517)) 29)) (-3420 (($ (-1 |#1| |#1|) $) 34)) (-2125 (($ (-1 |#2| |#2|) $) 38)) (-2824 (($) 10)) (-1568 (($ |#1| |#2|) 22)) (-3840 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|)))) 23)) (-3539 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $) 13)) (-1227 (($ |#1| $) 56)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2344 (((-107) $ $) 58)) (-2256 (((-787) $) 19) (($ |#1|) 16)) (-1547 (((-107) $ $) 25))) +(((-586 |#1| |#2| |#3|) (-13 (-1003) (-952 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -3539 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $)) (-15 -1568 ($ |#1| |#2|)) (-15 -3840 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))))) (-15 -3882 (|#2| $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -3093 ($ $)) (-15 -4020 ($ $)) (-15 -1611 ((-703) $)) (-15 -2824 ($)) (-15 -3953 ($ $ |#1|)) (-15 -1227 ($ |#1| $)) (-15 -2662 ($ |#1| |#2| $)) (-15 -2662 ($ $ $)) (-15 -2344 ((-107) $ $)) (-15 -2125 ($ (-1 |#2| |#2|) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)))) (-1003) (-23) |#2|) (T -586)) +((-3078 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-1568 (*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) (-14 *5 *2))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3093 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-4020 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-2824 (*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-3953 (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-1227 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2662 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2662 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2344 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-2125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1003) (-952 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -3539 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $)) (-15 -1568 ($ |#1| |#2|)) (-15 -3840 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))))) (-15 -3882 (|#2| $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -3093 ($ $)) (-15 -4020 ($ $)) (-15 -1611 ((-703) $)) (-15 -2824 ($)) (-15 -3953 ($ $ |#1|)) (-15 -1227 ($ |#1| $)) (-15 -2662 ($ |#1| |#2| $)) (-15 -2662 ($ $ $)) (-15 -2344 ((-107) $ $)) (-15 -2125 ($ (-1 |#2| |#2|) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)))) +((-3482 (((-517) $) 23)) (-2620 (($ |#2| $ (-517)) 21) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) 12)) (-4088 (((-107) (-517) $) 14)) (-2452 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-583 $)) NIL))) +(((-587 |#1| |#2|) (-10 -8 (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -3482 ((-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -4088 ((-107) (-517) |#1|))) (-588 |#2|) (-1108)) (T -587)) +NIL +(-10 -8 (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -3482 ((-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -4088 ((-107) (-517) |#1|))) +((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-588 |#1|) (-1184) (-1108)) (T -588)) +((-3462 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-2452 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-2620 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2620 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1121 (-517))) (|has| *1 (-6 -4181)) (-4 *1 (-588 *2)) (-4 *2 (-1108))))) +(-13 (-550 (-517) |t#1|) (-138 |t#1|) (-10 -8 (-15 -3462 ($ (-703) |t#1|)) (-15 -2452 ($ $ |t#1|)) (-15 -2452 ($ |t#1| $)) (-15 -2452 ($ $ $)) (-15 -2452 ($ (-583 $))) (-15 -1893 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1449 ($ $ (-1121 (-517)))) (-15 -3750 ($ $ (-517))) (-15 -3750 ($ $ (-1121 (-517)))) (-15 -2620 ($ |t#1| $ (-517))) (-15 -2620 ($ $ $ (-517))) (IF (|has| $ (-6 -4181)) (-15 -2411 (|t#1| $ (-1121 (-517)) |t#1|)) |noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-1674 (((-3 |#2| "failed") |#3| |#2| (-1073) |#2| (-583 |#2|)) 159) (((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) "failed") |#3| |#2| (-1073)) 43))) +(((-589 |#1| |#2| |#3|) (-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) "failed") |#3| |#2| (-1073))) (-15 -1674 ((-3 |#2| "failed") |#3| |#2| (-1073) |#2| (-583 |#2|)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880)) (-593 |#2|)) (T -589)) +((-1674 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4))))) +(-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) "failed") |#3| |#2| (-1073))) (-15 -1674 ((-3 |#2| "failed") |#3| |#2| (-1073) |#2| (-583 |#2|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1334 (($ $) NIL (|has| |#1| (-333)))) (-3541 (($ $ $) NIL (|has| |#1| (-333)))) (-3091 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) NIL)) (-1686 (($ $ $) NIL (|has| |#1| (-333)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) NIL)) (-2061 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($) NIL)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-590 |#1|) (-593 |#1|) (-207)) (T -590)) NIL (-593 |#1|) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1305 (($ $) NIL (|has| |#1| (-331)))) (-1764 (($ $ $) NIL (|has| |#1| (-331)))) (-3607 (($ $ (-701)) NIL (|has| |#1| (-331)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-331)))) (-2160 (($ $ $) NIL (|has| |#1| (-331)))) (-1535 (($ $ $) NIL (|has| |#1| (-331)))) (-3912 (($ $ $) NIL (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-1355 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) NIL)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2285 (((-701) $) NIL)) (-2084 (($ $ $) NIL (|has| |#1| (-331)))) (-2530 (($ $ $) NIL (|has| |#1| (-331)))) (-3641 (($ $ $) NIL (|has| |#1| (-331)))) (-2753 (($ $ $) NIL (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-2007 ((|#1| $ |#1|) NIL)) (-3409 (($ $ $) NIL (|has| |#1| (-331)))) (-1201 (((-701) $) NIL)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) NIL)) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-1183 ((|#1| $ |#1| |#1|) NIL)) (-3774 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($) NIL)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-590 |#1|) (-593 |#1|) (-206)) (T -590)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1334 (($ $) NIL (|has| |#1| (-333)))) (-3541 (($ $ $) NIL (|has| |#1| (-333)))) (-3091 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1686 (($ $ $) NIL (|has| |#1| (-333)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) NIL)) (-2061 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($) NIL)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-591 |#1| |#2|) (-13 (-593 |#1|) (-258 |#2| |#2|)) (-207) (-13 (-585 |#1|) (-10 -8 (-15 -3127 ($ $))))) (T -591)) +NIL +(-13 (-593 |#1|) (-258 |#2| |#2|)) +((-1334 (($ $) 26)) (-2061 (($ $) 24)) (-2731 (($) 12))) +(((-592 |#1| |#2|) (-10 -8 (-15 -1334 (|#1| |#1|)) (-15 -2061 (|#1| |#1|)) (-15 -2731 (|#1|))) (-593 |#2|) (-961)) (T -592)) +NIL +(-10 -8 (-15 -1334 (|#1| |#1|)) (-15 -2061 (|#1| |#1|)) (-15 -2731 (|#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1334 (($ $) 82 (|has| |#1| (-333)))) (-3541 (($ $ $) 84 (|has| |#1| (-333)))) (-3091 (($ $ (-703)) 83 (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3311 (($ $ $) 45 (|has| |#1| (-333)))) (-3527 (($ $ $) 46 (|has| |#1| (-333)))) (-2626 (($ $ $) 48 (|has| |#1| (-333)))) (-3784 (($ $ $) 43 (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 42 (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 47 (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) 74 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3189 (((-517) $) 75 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 68)) (-1212 (($ $) 64)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 55 (|has| |#1| (-421)))) (-3848 (((-107) $) 31)) (-1339 (($ |#1| (-703)) 62)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 58 (|has| |#1| (-509)))) (-2349 (((-703) $) 66)) (-4102 (($ $ $) 52 (|has| |#1| (-333)))) (-2985 (($ $ $) 53 (|has| |#1| (-333)))) (-2218 (($ $ $) 41 (|has| |#1| (-333)))) (-1423 (($ $ $) 50 (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 49 (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 54 (|has| |#1| (-333)))) (-1191 ((|#1| $) 65)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) 87)) (-1686 (($ $ $) 81 (|has| |#1| (-333)))) (-3688 (((-703) $) 67)) (-3266 ((|#1| $) 56 (|has| |#1| (-421)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 70)) (-1311 (((-583 |#1|) $) 61)) (-2720 ((|#1| $ (-703)) 63)) (-2961 (((-703)) 29)) (-1587 ((|#1| $ |#1| |#1|) 60)) (-2061 (($ $) 85)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($) 86)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) +(((-593 |#1|) (-1184) (-961)) (T -593)) +((-2731 (*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) (-2061 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) (-3541 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3091 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-961)) (-4 *3 (-333)))) (-1334 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1686 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(-13 (-781 |t#1|) (-258 |t#1| |t#1|) (-10 -8 (-15 -2731 ($)) (-15 -2061 ($ $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -3541 ($ $ $)) (-15 -3091 ($ $ (-703))) (-15 -1334 ($ $)) (-15 -1686 ($ $ $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-258 |#1| |#1|) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-781 |#1|) . T)) +((-1902 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 72 (|has| |#1| (-27)))) (-3755 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 71 (|has| |#1| (-27))) (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 15))) +(((-594 |#1| |#2|) (-10 -7 (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -1902 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |noBranch|)) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -594)) +((-1902 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6)))))) +(-10 -7 (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -1902 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |noBranch|)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1334 (($ $) NIL (|has| |#1| (-333)))) (-3541 (($ $ $) 28 (|has| |#1| (-333)))) (-3091 (($ $ (-703)) 31 (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) 24)) (-1686 (($ $ $) 33 (|has| |#1| (-333)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) 20) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) 23)) (-2061 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 8 T CONST)) (-2731 (($) NIL)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-595 |#1| |#2|) (-593 |#1|) (-961) (-1 |#1| |#1|)) (T -595)) NIL (-593 |#1|) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1305 (($ $) NIL (|has| |#1| (-331)))) (-1764 (($ $ $) NIL (|has| |#1| (-331)))) (-3607 (($ $ (-701)) NIL (|has| |#1| (-331)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-331)))) (-2160 (($ $ $) NIL (|has| |#1| (-331)))) (-1535 (($ $ $) NIL (|has| |#1| (-331)))) (-3912 (($ $ $) NIL (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-1355 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) NIL)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2285 (((-701) $) NIL)) (-2084 (($ $ $) NIL (|has| |#1| (-331)))) (-2530 (($ $ $) NIL (|has| |#1| (-331)))) (-3641 (($ $ $) NIL (|has| |#1| (-331)))) (-2753 (($ $ $) NIL (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-2007 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3409 (($ $ $) NIL (|has| |#1| (-331)))) (-1201 (((-701) $) NIL)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) NIL)) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-1183 ((|#1| $ |#1| |#1|) NIL)) (-3774 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($) NIL)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-591 |#1| |#2|) (-13 (-593 |#1|) (-256 |#2| |#2|)) (-206) (-13 (-583 |#1|) (-10 -8 (-15 -2596 ($ $))))) (T -591)) -NIL -(-13 (-593 |#1|) (-256 |#2| |#2|)) -((-1305 (($ $) 26)) (-3774 (($ $) 24)) (-3584 (($) 12))) -(((-592 |#1| |#2|) (-10 -8 (-15 -1305 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3584 (|#1|))) (-593 |#2|) (-959)) (T -592)) -NIL -(-10 -8 (-15 -1305 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3584 (|#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1305 (($ $) 84 (|has| |#1| (-331)))) (-1764 (($ $ $) 86 (|has| |#1| (-331)))) (-3607 (($ $ (-701)) 85 (|has| |#1| (-331)))) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3224 (($ $ $) 47 (|has| |#1| (-331)))) (-2160 (($ $ $) 48 (|has| |#1| (-331)))) (-1535 (($ $ $) 50 (|has| |#1| (-331)))) (-3912 (($ $ $) 45 (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 44 (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) 46 (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 49 (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) 76 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 74 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 71)) (-3490 (((-501) $) 77 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 75 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 70)) (-3858 (($ $) 66)) (-2174 (((-3 $ "failed") $) 34)) (-3533 (($ $) 57 (|has| |#1| (-419)))) (-1355 (((-107) $) 31)) (-3787 (($ |#1| (-701)) 64)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 59 (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 60 (|has| |#1| (-508)))) (-2285 (((-701) $) 68)) (-2084 (($ $ $) 54 (|has| |#1| (-331)))) (-2530 (($ $ $) 55 (|has| |#1| (-331)))) (-3641 (($ $ $) 43 (|has| |#1| (-331)))) (-2753 (($ $ $) 52 (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 51 (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 56 (|has| |#1| (-331)))) (-3850 ((|#1| $) 67)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ |#1|) 61 (|has| |#1| (-508)))) (-2007 ((|#1| $ |#1|) 89)) (-3409 (($ $ $) 83 (|has| |#1| (-331)))) (-1201 (((-701) $) 69)) (-1734 ((|#1| $) 58 (|has| |#1| (-419)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 73 (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) 72)) (-1303 (((-578 |#1|) $) 63)) (-2495 ((|#1| $ (-701)) 65)) (-3965 (((-701)) 29)) (-1183 ((|#1| $ |#1| |#1|) 62)) (-3774 (($ $) 87)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($) 88)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 79) (($ |#1| $) 78))) -(((-593 |#1|) (-1180) (-959)) (T -593)) -((-3584 (*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)))) (-1764 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3607 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-593 *3)) (-4 *3 (-959)) (-4 *3 (-331)))) (-1305 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3409 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(-13 (-779 |t#1|) (-256 |t#1| |t#1|) (-10 -8 (-15 -3584 ($)) (-15 -3774 ($ $)) (IF (|has| |t#1| (-331)) (PROGN (-15 -1764 ($ $ $)) (-15 -3607 ($ $ (-701))) (-15 -1305 ($ $)) (-15 -3409 ($ $ $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-256 |#1| |#1|) . T) ((-380 |#1|) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) |has| |#1| (-156)) ((-657) . T) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-779 |#1|) . T)) -((-3744 (((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|))) 72 (|has| |#1| (-27)))) (-3739 (((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|))) 71 (|has| |#1| (-27))) (((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|)) 15))) -(((-594 |#1| |#2|) (-10 -7 (-15 -3739 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3739 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|)))) (-15 -3744 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|))))) |noBranch|)) (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501)))) (-1125 |#1|)) (T -594)) -((-3744 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-590 (-375 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-375 *5))))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-590 (-375 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-375 *5))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-590 (-375 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-375 *6)))))) -(-10 -7 (-15 -3739 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3739 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|)))) (-15 -3744 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|))))) |noBranch|)) -((-1764 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)) (-3607 ((|#2| |#2| (-701) (-1 |#1| |#1|)) 42)) (-3409 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 63))) -(((-595 |#1| |#2|) (-10 -7 (-15 -1764 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3607 (|#2| |#2| (-701) (-1 |#1| |#1|))) (-15 -3409 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-331) (-593 |#1|)) (T -595)) -((-3409 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-331)) (-5 *1 (-595 *4 *2)) (-4 *2 (-593 *4)))) (-3607 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-5 *1 (-595 *5 *2)) (-4 *2 (-593 *5)))) (-1764 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-331)) (-5 *1 (-595 *4 *2)) (-4 *2 (-593 *4))))) -(-10 -7 (-15 -1764 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3607 (|#2| |#2| (-701) (-1 |#1| |#1|))) (-15 -3409 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3099 (($ $ $) 9))) -(((-596 |#1|) (-10 -8 (-15 -3099 (|#1| |#1| |#1|))) (-597)) (T -596)) -NIL -(-10 -8 (-15 -3099 (|#1| |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-2308 (($ $) 10)) (-3099 (($ $ $) 8)) (-3751 (((-107) $ $) 6)) (-3092 (($ $ $) 9))) -(((-597) (-1180)) (T -597)) -((-2308 (*1 *1 *1) (-4 *1 (-597))) (-3092 (*1 *1 *1 *1) (-4 *1 (-597))) (-3099 (*1 *1 *1 *1) (-4 *1 (-597)))) -(-13 (-97) (-10 -8 (-15 -2308 ($ $)) (-15 -3092 ($ $ $)) (-15 -3099 ($ $ $)))) +((-3541 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)) (-3091 ((|#2| |#2| (-703) (-1 |#1| |#1|)) 42)) (-1686 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 63))) +(((-596 |#1| |#2|) (-10 -7 (-15 -3541 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3091 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -1686 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -596)) +((-1686 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))) (-3091 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))) (-3541 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4))))) +(-10 -7 (-15 -3541 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3091 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -1686 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2391 (($ $ $) 9))) +(((-597 |#1|) (-10 -8 (-15 -2391 (|#1| |#1| |#1|))) (-598)) (T -597)) +NIL +(-10 -8 (-15 -2391 (|#1| |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-1460 (($ $) 10)) (-2391 (($ $ $) 8)) (-1547 (((-107) $ $) 6)) (-2382 (($ $ $) 9))) +(((-598) (-1184)) (T -598)) +((-1460 (*1 *1 *1) (-4 *1 (-598))) (-2382 (*1 *1 *1 *1) (-4 *1 (-598))) (-2391 (*1 *1 *1 *1) (-4 *1 (-598)))) +(-13 (-97) (-10 -8 (-15 -1460 ($ $)) (-15 -2382 ($ $ $)) (-15 -2391 ($ $ $)))) (((-97) . T)) -((-3433 (((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|)) 33))) -(((-598 |#1|) (-10 -7 (-15 -3433 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|)))) (-830)) (T -598)) -((-3433 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *4))) (-5 *3 (-1064 *4)) (-4 *4 (-830)) (-5 *1 (-598 *4))))) -(-10 -7 (-15 -3433 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3514 (((-578 |#1|) $) 82)) (-2055 (($ $ (-701)) 90)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2194 (((-1171 |#1| |#2|) (-1171 |#1| |#2|) $) 48)) (-3765 (((-3 (-606 |#1|) "failed") $) NIL)) (-3490 (((-606 |#1|) $) NIL)) (-3858 (($ $) 89)) (-3706 (((-701) $) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ (-606 |#1|) |#2|) 68)) (-3660 (($ $) 86)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-3049 (((-1171 |#1| |#2|) (-1171 |#1| |#2|) $) 47)) (-3950 (((-2 (|:| |k| (-606 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3845 (((-606 |#1|) $) NIL)) (-3850 ((|#2| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3195 (($ $ |#1| $) 30) (($ $ (-578 |#1|) (-578 $)) 32)) (-1201 (((-701) $) 88)) (-3699 (($ $ $) 20) (($ (-606 |#1|) (-606 |#1|)) 77) (($ (-606 |#1|) $) 75) (($ $ (-606 |#1|)) 76)) (-3691 (((-786) $) NIL) (($ |#1|) 74) (((-1162 |#1| |#2|) $) 58) (((-1171 |#1| |#2|) $) 41) (($ (-606 |#1|)) 25)) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-606 |#1|)) NIL)) (-3189 ((|#2| (-1171 |#1| |#2|) $) 43)) (-1850 (($) 23 T CONST)) (-1914 (((-578 (-2 (|:| |k| (-606 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1832 (((-3 $ "failed") (-1162 |#1| |#2|)) 60)) (-3116 (($ (-606 |#1|)) 14)) (-3751 (((-107) $ $) 44)) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) 66) (($ $ $) NIL)) (-3790 (($ $ $) 29)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-606 |#1|)) NIL))) -(((-599 |#1| |#2|) (-13 (-342 |#1| |#2|) (-352 |#2| (-606 |#1|)) (-10 -8 (-15 -1832 ((-3 $ "failed") (-1162 |#1| |#2|))) (-15 -3699 ($ (-606 |#1|) (-606 |#1|))) (-15 -3699 ($ (-606 |#1|) $)) (-15 -3699 ($ $ (-606 |#1|))))) (-777) (-156)) (T -599)) -((-1832 (*1 *1 *2) (|partial| -12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *1 (-599 *3 *4)))) (-3699 (*1 *1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156)))) (-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156)))) (-3699 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156))))) -(-13 (-342 |#1| |#2|) (-352 |#2| (-606 |#1|)) (-10 -8 (-15 -1832 ((-3 $ "failed") (-1162 |#1| |#2|))) (-15 -3699 ($ (-606 |#1|) (-606 |#1|))) (-15 -3699 ($ (-606 |#1|) $)) (-15 -3699 ($ $ (-606 |#1|))))) -((-2045 (((-107) $) NIL) (((-107) (-1 (-107) |#2| |#2|) $) 49)) (-3441 (($ $) NIL) (($ (-1 (-107) |#2| |#2|) $) 11)) (-1221 (($ (-1 (-107) |#2|) $) 27)) (-1375 (($ $) 55)) (-2921 (($ $) 62)) (-2256 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 36)) (-3547 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-1934 (((-501) |#2| $ (-501)) 60) (((-501) |#2| $) NIL) (((-501) (-1 (-107) |#2|) $) 46)) (-3634 (($ (-701) |#2|) 53)) (-2213 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 29)) (-3216 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 24)) (-1212 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3143 (($ |#2|) 14)) (-4114 (($ $ $ (-501)) 35) (($ |#2| $ (-501)) 33)) (-2520 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 45)) (-1386 (($ $ (-1116 (-501))) 43) (($ $ (-501)) 37)) (-2355 (($ $ $ (-501)) 59)) (-3764 (($ $) 57)) (-3762 (((-107) $ $) 64))) -(((-600 |#1| |#2|) (-10 -8 (-15 -3143 (|#1| |#2|)) (-15 -1386 (|#1| |#1| (-501))) (-15 -1386 (|#1| |#1| (-1116 (-501)))) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -4114 (|#1| |#2| |#1| (-501))) (-15 -4114 (|#1| |#1| |#1| (-501))) (-15 -2213 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -1221 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -2921 (|#1| |#1|)) (-15 -2213 (|#1| |#1| |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -3216 (|#1| |#1| |#1|)) (-15 -2045 ((-107) |#1|)) (-15 -2355 (|#1| |#1| |#1| (-501))) (-15 -1375 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3634 (|#1| (-701) |#2|)) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3764 (|#1| |#1|))) (-601 |#2|) (-1104)) (T -600)) -NIL -(-10 -8 (-15 -3143 (|#1| |#2|)) (-15 -1386 (|#1| |#1| (-501))) (-15 -1386 (|#1| |#1| (-1116 (-501)))) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -4114 (|#1| |#2| |#1| (-501))) (-15 -4114 (|#1| |#1| |#1| (-501))) (-15 -2213 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -1221 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -2921 (|#1| |#1|)) (-15 -2213 (|#1| |#1| |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -3216 (|#1| |#1| |#1|)) (-15 -2045 ((-107) |#1|)) (-15 -2355 (|#1| |#1| |#1| (-501))) (-15 -1375 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3634 (|#1| (-701) |#2|)) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3764 (|#1| |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2786 ((|#1| $) 65)) (-1511 (($ $) 67)) (-1991 (((-1154) $ (-501) (-501)) 97 (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 52 (|has| $ (-6 -4168)))) (-2045 (((-107) $) 142 (|has| |#1| (-777))) (((-107) (-1 (-107) |#1| |#1|) $) 136)) (-3441 (($ $) 146 (-12 (|has| |#1| (-777)) (|has| $ (-6 -4168)))) (($ (-1 (-107) |#1| |#1|) $) 145 (|has| $ (-6 -4168)))) (-2861 (($ $) 141 (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $) 135)) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-3319 (($ $ $) 56 (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 58 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4168))) (($ $ "rest" $) 55 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 117 (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) 86 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) 129)) (-1987 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4167)))) (-1564 ((|#1| $) 66)) (-2540 (($) 7 T CONST)) (-1375 (($ $) 144 (|has| $ (-6 -4168)))) (-3785 (($ $) 134)) (-1199 (($ $) 73) (($ $ (-701)) 71)) (-2921 (($ $) 131 (|has| |#1| (-1001)))) (-2673 (($ $) 99 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 130 (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) 125)) (-1526 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4167))) (($ |#1| $) 100 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2156 ((|#1| $ (-501) |#1|) 85 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 87)) (-3275 (((-107) $) 83)) (-1934 (((-501) |#1| $ (-501)) 139 (|has| |#1| (-1001))) (((-501) |#1| $) 138 (|has| |#1| (-1001))) (((-501) (-1 (-107) |#1|) $) 137)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) 108)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 95 (|has| (-501) (-777)))) (-4111 (($ $ $) 147 (|has| |#1| (-777)))) (-2213 (($ $ $) 132 (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) 128)) (-3216 (($ $ $) 140 (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) 133)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 94 (|has| (-501) (-777)))) (-1323 (($ $ $) 148 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3143 (($ |#1|) 122)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1383 ((|#1| $) 70) (($ $ (-701)) 68)) (-4114 (($ $ $ (-501)) 127) (($ |#1| $ (-501)) 126)) (-1473 (($ $ $ (-501)) 116) (($ |#1| $ (-501)) 115)) (-2658 (((-578 (-501)) $) 92)) (-2852 (((-107) (-501) $) 91)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 76) (($ $ (-701)) 74)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-3084 (($ $ |#1|) 96 (|has| $ (-6 -4168)))) (-3654 (((-107) $) 84)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 90)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1116 (-501))) 112) ((|#1| $ (-501)) 89) ((|#1| $ (-501) |#1|) 88)) (-1932 (((-501) $ $) 44)) (-1386 (($ $ (-1116 (-501))) 124) (($ $ (-501)) 123)) (-1468 (($ $ (-1116 (-501))) 114) (($ $ (-501)) 113)) (-2622 (((-107) $) 46)) (-1455 (($ $) 62)) (-3873 (($ $) 59 (|has| $ (-6 -4168)))) (-3278 (((-701) $) 63)) (-2787 (($ $) 64)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 143 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 98 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 107)) (-1186 (($ $ $) 61) (($ $ |#1|) 60)) (-3934 (($ $ $) 78) (($ |#1| $) 77) (($ (-578 $)) 110) (($ $ |#1|) 109)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 150 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 151 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) 149 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 152 (|has| |#1| (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-601 |#1|) (-1180) (-1104)) (T -601)) -((-3143 (*1 *1 *2) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1104))))) -(-13 (-1044 |t#1|) (-340 |t#1|) (-252 |t#1|) (-10 -8 (-15 -3143 ($ |t#1|)))) -(((-33) . T) ((-97) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-555 (-786)) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-252 |#1|) . T) ((-340 |#1|) . T) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-777) |has| |#1| (-777)) ((-924 |#1|) . T) ((-1001) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-1044 |#1|) . T) ((-1104) . T) ((-1138 |#1|) . T)) -((-2778 (((-578 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|)))) |#4| (-578 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|) 45)) (-3689 (((-701) |#4| |#3|) 17)) (-1541 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1587 (((-107) |#4| |#3|) 13))) -(((-602 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2778 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|)) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|)))) |#4| (-578 |#3|))) (-15 -1541 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1587 ((-107) |#4| |#3|)) (-15 -3689 ((-701) |#4| |#3|))) (-331) (-13 (-340 |#1|) (-10 -7 (-6 -4168))) (-13 (-340 |#1|) (-10 -7 (-6 -4168))) (-618 |#1| |#2| |#3|)) (T -602)) -((-3689 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-701)) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) (-1587 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-107)) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) (-1541 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-331)) (-4 *5 (-13 (-340 *4) (-10 -7 (-6 -4168)))) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))) (-5 *1 (-602 *4 *5 *2 *3)) (-4 *3 (-618 *4 *5 *2)))) (-2778 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *7 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-578 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4119 (-578 *7))))) (-5 *1 (-602 *5 *6 *7 *3)) (-5 *4 (-578 *7)) (-4 *3 (-618 *5 *6 *7)))) (-2778 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4))))) -(-10 -7 (-15 -2778 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|)) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|)))) |#4| (-578 |#3|))) (-15 -1541 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1587 ((-107) |#4| |#3|)) (-15 -3689 ((-701) |#4| |#3|))) -((-2778 (((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-578 (-578 |#1|)) (-578 (-1148 |#1|))) 21) (((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-621 |#1|) (-578 (-1148 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-578 (-578 |#1|)) (-1148 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|)) 13)) (-3689 (((-701) (-621 |#1|) (-1148 |#1|)) 29)) (-1541 (((-3 (-1148 |#1|) "failed") (-621 |#1|) (-1148 |#1|)) 23)) (-1587 (((-107) (-621 |#1|) (-1148 |#1|)) 26))) -(((-603 |#1|) (-10 -7 (-15 -2778 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|))) (-15 -2778 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-578 (-578 |#1|)) (-1148 |#1|))) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-621 |#1|) (-578 (-1148 |#1|)))) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-578 (-578 |#1|)) (-578 (-1148 |#1|)))) (-15 -1541 ((-3 (-1148 |#1|) "failed") (-621 |#1|) (-1148 |#1|))) (-15 -1587 ((-107) (-621 |#1|) (-1148 |#1|))) (-15 -3689 ((-701) (-621 |#1|) (-1148 |#1|)))) (-331)) (T -603)) -((-3689 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-5 *2 (-701)) (-5 *1 (-603 *5)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-5 *2 (-107)) (-5 *1 (-603 *5)))) (-1541 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1148 *4)) (-5 *3 (-621 *4)) (-4 *4 (-331)) (-5 *1 (-603 *4)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5)))))) (-5 *1 (-603 *5)) (-5 *4 (-578 (-1148 *5))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5)))))) (-5 *1 (-603 *5)) (-5 *4 (-578 (-1148 *5))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-331)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5))))) (-5 *1 (-603 *5)) (-5 *4 (-1148 *5)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5))))) (-5 *1 (-603 *5)) (-5 *4 (-1148 *5))))) -(-10 -7 (-15 -2778 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|))) (-15 -2778 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-578 (-578 |#1|)) (-1148 |#1|))) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-621 |#1|) (-578 (-1148 |#1|)))) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-578 (-578 |#1|)) (-578 (-1148 |#1|)))) (-15 -1541 ((-3 (-1148 |#1|) "failed") (-621 |#1|) (-1148 |#1|))) (-15 -1587 ((-107) (-621 |#1|) (-1148 |#1|))) (-15 -3689 ((-701) (-621 |#1|) (-1148 |#1|)))) -((-2316 (((-2 (|:| |particular| (-3 (-1148 (-375 |#4|)) "failed")) (|:| -4119 (-578 (-1148 (-375 |#4|))))) (-578 |#4|) (-578 |#3|)) 44))) -(((-604 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2316 ((-2 (|:| |particular| (-3 (-1148 (-375 |#4|)) "failed")) (|:| -4119 (-578 (-1148 (-375 |#4|))))) (-578 |#4|) (-578 |#3|)))) (-508) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -604)) -((-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *7)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 (-375 *8)) "failed")) (|:| -4119 (-578 (-1148 (-375 *8)))))) (-5 *1 (-604 *5 *6 *7 *8))))) -(-10 -7 (-15 -2316 ((-2 (|:| |particular| (-3 (-1148 (-375 |#4|)) "failed")) (|:| -4119 (-578 (-1148 (-375 |#4|))))) (-578 |#4|) (-578 |#3|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1738 (((-3 $ "failed")) NIL (|has| |#2| (-508)))) (-2225 ((|#2| $) NIL)) (-2981 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1763 (((-1148 (-621 |#2|))) NIL) (((-1148 (-621 |#2|)) (-1148 $)) NIL)) (-4007 (((-107) $) NIL)) (-1674 (((-1148 $)) 37)) (-2997 (((-107) $ (-701)) NIL)) (-1292 (($ |#2|) NIL)) (-2540 (($) NIL T CONST)) (-1933 (($ $) NIL (|has| |#2| (-276)))) (-2358 (((-212 |#1| |#2|) $ (-501)) NIL)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (|has| |#2| (-508)))) (-1956 (((-3 $ "failed")) NIL (|has| |#2| (-508)))) (-2311 (((-621 |#2|)) NIL) (((-621 |#2|) (-1148 $)) NIL)) (-1909 ((|#2| $) NIL)) (-3867 (((-621 |#2|) $) NIL) (((-621 |#2|) $ (-1148 $)) NIL)) (-1887 (((-3 $ "failed") $) NIL (|has| |#2| (-508)))) (-3665 (((-1064 (-866 |#2|))) NIL (|has| |#2| (-331)))) (-2911 (($ $ (-839)) NIL)) (-3925 ((|#2| $) NIL)) (-2292 (((-1064 |#2|) $) NIL (|has| |#2| (-508)))) (-2398 ((|#2|) NIL) ((|#2| (-1148 $)) NIL)) (-3333 (((-1064 |#2|) $) NIL)) (-3656 (((-107)) NIL)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 |#2| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) ((|#2| $) NIL)) (-3142 (($ (-1148 |#2|)) NIL) (($ (-1148 |#2|) (-1148 $)) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3689 (((-701) $) NIL (|has| |#2| (-508))) (((-839)) 38)) (-1905 ((|#2| $ (-501) (-501)) NIL)) (-3168 (((-107)) NIL)) (-3554 (($ $ (-839)) NIL)) (-2732 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL)) (-3752 (((-701) $) NIL (|has| |#2| (-508)))) (-3552 (((-578 (-212 |#1| |#2|)) $) NIL (|has| |#2| (-508)))) (-1648 (((-701) $) NIL)) (-3930 (((-107)) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3572 ((|#2| $) NIL (|has| |#2| (-6 (-4169 "*"))))) (-1567 (((-501) $) NIL)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-2969 (((-501) $) NIL)) (-3491 (((-501) $) NIL)) (-2630 (($ (-578 (-578 |#2|))) NIL)) (-2519 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2237 (((-578 (-578 |#2|)) $) NIL)) (-2838 (((-107)) NIL)) (-3874 (((-107)) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (|has| |#2| (-508)))) (-2653 (((-3 $ "failed")) NIL (|has| |#2| (-508)))) (-4146 (((-621 |#2|)) NIL) (((-621 |#2|) (-1148 $)) NIL)) (-3821 ((|#2| $) NIL)) (-1472 (((-621 |#2|) $) NIL) (((-621 |#2|) $ (-1148 $)) NIL)) (-1992 (((-3 $ "failed") $) NIL (|has| |#2| (-508)))) (-2582 (((-1064 (-866 |#2|))) NIL (|has| |#2| (-331)))) (-3381 (($ $ (-839)) NIL)) (-3784 ((|#2| $) NIL)) (-3474 (((-1064 |#2|) $) NIL (|has| |#2| (-508)))) (-1600 ((|#2|) NIL) ((|#2| (-1148 $)) NIL)) (-2270 (((-1064 |#2|) $) NIL)) (-2172 (((-107)) NIL)) (-3460 (((-1053) $) NIL)) (-3808 (((-107)) NIL)) (-2417 (((-107)) NIL)) (-2794 (((-107)) NIL)) (-1616 (((-3 $ "failed") $) NIL (|has| |#2| (-331)))) (-3708 (((-1018) $) NIL)) (-2780 (((-107)) NIL)) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508)))) (-2369 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ (-501) (-501) |#2|) NIL) ((|#2| $ (-501) (-501)) 22) ((|#2| $ (-501)) NIL)) (-2596 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-1651 ((|#2| $) NIL)) (-3133 (($ (-578 |#2|)) NIL)) (-3697 (((-107) $) NIL)) (-1566 (((-212 |#1| |#2|) $) NIL)) (-3315 ((|#2| $) NIL (|has| |#2| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-3764 (($ $) NIL)) (-2085 (((-621 |#2|) (-1148 $)) NIL) (((-1148 |#2|) $) NIL) (((-621 |#2|) (-1148 $) (-1148 $)) NIL) (((-1148 |#2|) $ (-1148 $)) 25)) (-1248 (($ (-1148 |#2|)) NIL) (((-1148 |#2|) $) NIL)) (-3056 (((-578 (-866 |#2|))) NIL) (((-578 (-866 |#2|)) (-1148 $)) NIL)) (-2144 (($ $ $) NIL)) (-1977 (((-107)) NIL)) (-2952 (((-212 |#1| |#2|) $ (-501)) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#2| (-950 (-375 (-501))))) (($ |#2|) NIL) (((-621 |#2|) $) NIL)) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) 36)) (-4102 (((-578 (-1148 |#2|))) NIL (|has| |#2| (-508)))) (-1363 (($ $ $ $) NIL)) (-1273 (((-107)) NIL)) (-1183 (($ (-621 |#2|) $) NIL)) (-1200 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3719 (((-107) $) NIL)) (-2033 (($ $ $) NIL)) (-2625 (((-107)) NIL)) (-3675 (((-107)) NIL)) (-3258 (((-107)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#2| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-212 |#1| |#2|) $ (-212 |#1| |#2|)) NIL) (((-212 |#1| |#2|) (-212 |#1| |#2|) $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-605 |#1| |#2|) (-13 (-1021 |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) (-555 (-621 |#2|)) (-386 |#2|)) (-839) (-156)) (T -605)) -NIL -(-13 (-1021 |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) (-555 (-621 |#2|)) (-386 |#2|)) -((-3736 (((-107) $ $) NIL)) (-3514 (((-578 |#1|) $) NIL)) (-1320 (($ $) 50)) (-3998 (((-107) $) NIL)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3294 (((-3 $ "failed") (-749 |#1|)) 22)) (-1901 (((-107) (-749 |#1|)) 14)) (-3280 (($ (-749 |#1|)) 23)) (-3989 (((-107) $ $) 28)) (-4139 (((-839) $) 35)) (-1313 (($ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3739 (((-578 $) (-749 |#1|)) 16)) (-3691 (((-786) $) 41) (($ |#1|) 32) (((-749 |#1|) $) 37) (((-610 |#1|) $) 42)) (-1419 (((-56 (-578 $)) (-578 |#1|) (-839)) 55)) (-1935 (((-578 $) (-578 |#1|) (-839)) 57)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 51)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 36))) -(((-606 |#1|) (-13 (-777) (-950 |#1|) (-10 -8 (-15 -3998 ((-107) $)) (-15 -1313 ($ $)) (-15 -1320 ($ $)) (-15 -4139 ((-839) $)) (-15 -3989 ((-107) $ $)) (-15 -3691 ((-749 |#1|) $)) (-15 -3691 ((-610 |#1|) $)) (-15 -3739 ((-578 $) (-749 |#1|))) (-15 -1901 ((-107) (-749 |#1|))) (-15 -3280 ($ (-749 |#1|))) (-15 -3294 ((-3 $ "failed") (-749 |#1|))) (-15 -3514 ((-578 |#1|) $)) (-15 -1419 ((-56 (-578 $)) (-578 |#1|) (-839))) (-15 -1935 ((-578 $) (-578 |#1|) (-839))))) (-777)) (T -606)) -((-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-1313 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-777)))) (-1320 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-777)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-3989 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-610 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-749 *4)) (-4 *4 (-777)) (-5 *2 (-578 (-606 *4))) (-5 *1 (-606 *4)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-749 *4)) (-4 *4 (-777)) (-5 *2 (-107)) (-5 *1 (-606 *4)))) (-3280 (*1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *3 (-777)) (-5 *1 (-606 *3)))) (-3294 (*1 *1 *2) (|partial| -12 (-5 *2 (-749 *3)) (-4 *3 (-777)) (-5 *1 (-606 *3)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-839)) (-4 *5 (-777)) (-5 *2 (-56 (-578 (-606 *5)))) (-5 *1 (-606 *5)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-839)) (-4 *5 (-777)) (-5 *2 (-578 (-606 *5))) (-5 *1 (-606 *5))))) -(-13 (-777) (-950 |#1|) (-10 -8 (-15 -3998 ((-107) $)) (-15 -1313 ($ $)) (-15 -1320 ($ $)) (-15 -4139 ((-839) $)) (-15 -3989 ((-107) $ $)) (-15 -3691 ((-749 |#1|) $)) (-15 -3691 ((-610 |#1|) $)) (-15 -3739 ((-578 $) (-749 |#1|))) (-15 -1901 ((-107) (-749 |#1|))) (-15 -3280 ($ (-749 |#1|))) (-15 -3294 ((-3 $ "failed") (-749 |#1|))) (-15 -3514 ((-578 |#1|) $)) (-15 -1419 ((-56 (-578 $)) (-578 |#1|) (-839))) (-15 -1935 ((-578 $) (-578 |#1|) (-839))))) -((-2150 ((|#2| $) 76)) (-1511 (($ $) 96)) (-2997 (((-107) $ (-701)) 26)) (-1199 (($ $) 85) (($ $ (-701)) 88)) (-3275 (((-107) $) 97)) (-3604 (((-578 $) $) 72)) (-3201 (((-107) $ $) 71)) (-3379 (((-107) $ (-701)) 24)) (-3627 (((-501) $) 46)) (-1522 (((-501) $) 45)) (-3155 (((-107) $ (-701)) 22)) (-2341 (((-107) $) 74)) (-1383 ((|#2| $) 89) (($ $ (-701)) 92)) (-1473 (($ $ $ (-501)) 62) (($ |#2| $ (-501)) 61)) (-2658 (((-578 (-501)) $) 44)) (-2852 (((-107) (-501) $) 42)) (-1190 ((|#2| $) NIL) (($ $ (-701)) 84)) (-3718 (($ $ (-501)) 99)) (-3654 (((-107) $) 98)) (-2369 (((-107) (-1 (-107) |#2|) $) 32)) (-4137 (((-578 |#2|) $) 33)) (-2007 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1116 (-501))) 58) ((|#2| $ (-501)) 40) ((|#2| $ (-501) |#2|) 41)) (-1932 (((-501) $ $) 70)) (-1468 (($ $ (-1116 (-501))) 57) (($ $ (-501)) 51)) (-2622 (((-107) $) 66)) (-1455 (($ $) 81)) (-3278 (((-701) $) 80)) (-2787 (($ $) 79)) (-3699 (($ (-578 |#2|)) 37)) (-1267 (($ $) 100)) (-1961 (((-578 $) $) 69)) (-2970 (((-107) $ $) 68)) (-1200 (((-107) (-1 (-107) |#2|) $) 31)) (-3751 (((-107) $ $) 18)) (-3581 (((-701) $) 29))) -(((-607 |#1| |#2|) (-10 -8 (-15 -1267 (|#1| |#1|)) (-15 -3718 (|#1| |#1| (-501))) (-15 -3275 ((-107) |#1|)) (-15 -3654 ((-107) |#1|)) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -4137 ((-578 |#2|) |#1|)) (-15 -2852 ((-107) (-501) |#1|)) (-15 -2658 ((-578 (-501)) |#1|)) (-15 -1522 ((-501) |#1|)) (-15 -3627 ((-501) |#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1455 (|#1| |#1|)) (-15 -3278 ((-701) |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1383 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "last")) (-15 -1383 (|#2| |#1|)) (-15 -1199 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| "rest")) (-15 -1199 (|#1| |#1|)) (-15 -1190 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "first")) (-15 -1190 (|#2| |#1|)) (-15 -3201 ((-107) |#1| |#1|)) (-15 -2970 ((-107) |#1| |#1|)) (-15 -1932 ((-501) |#1| |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701)))) (-608 |#2|) (-1104)) (T -607)) -NIL -(-10 -8 (-15 -1267 (|#1| |#1|)) (-15 -3718 (|#1| |#1| (-501))) (-15 -3275 ((-107) |#1|)) (-15 -3654 ((-107) |#1|)) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -4137 ((-578 |#2|) |#1|)) (-15 -2852 ((-107) (-501) |#1|)) (-15 -2658 ((-578 (-501)) |#1|)) (-15 -1522 ((-501) |#1|)) (-15 -3627 ((-501) |#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1455 (|#1| |#1|)) (-15 -3278 ((-701) |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1383 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "last")) (-15 -1383 (|#2| |#1|)) (-15 -1199 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| "rest")) (-15 -1199 (|#1| |#1|)) (-15 -1190 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "first")) (-15 -1190 (|#2| |#1|)) (-15 -3201 ((-107) |#1| |#1|)) (-15 -2970 ((-107) |#1| |#1|)) (-15 -1932 ((-501) |#1| |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701)))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2786 ((|#1| $) 65)) (-1511 (($ $) 67)) (-1991 (((-1154) $ (-501) (-501)) 97 (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 52 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-3319 (($ $ $) 56 (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 58 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4168))) (($ $ "rest" $) 55 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 117 (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) 86 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 102)) (-1564 ((|#1| $) 66)) (-2540 (($) 7 T CONST)) (-1591 (($ $) 124)) (-1199 (($ $) 73) (($ $ (-701)) 71)) (-2673 (($ $) 99 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 100 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 103)) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2156 ((|#1| $ (-501) |#1|) 85 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 87)) (-3275 (((-107) $) 83)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-2853 (((-701) $) 123)) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) 108)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 95 (|has| (-501) (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 94 (|has| (-501) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-2898 (($ $) 126)) (-3346 (((-107) $) 127)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1383 ((|#1| $) 70) (($ $ (-701)) 68)) (-1473 (($ $ $ (-501)) 116) (($ |#1| $ (-501)) 115)) (-2658 (((-578 (-501)) $) 92)) (-2852 (((-107) (-501) $) 91)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-3648 ((|#1| $) 125)) (-1190 ((|#1| $) 76) (($ $ (-701)) 74)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-3084 (($ $ |#1|) 96 (|has| $ (-6 -4168)))) (-3718 (($ $ (-501)) 122)) (-3654 (((-107) $) 84)) (-3170 (((-107) $) 128)) (-3546 (((-107) $) 129)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 90)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1116 (-501))) 112) ((|#1| $ (-501)) 89) ((|#1| $ (-501) |#1|) 88)) (-1932 (((-501) $ $) 44)) (-1468 (($ $ (-1116 (-501))) 114) (($ $ (-501)) 113)) (-2622 (((-107) $) 46)) (-1455 (($ $) 62)) (-3873 (($ $) 59 (|has| $ (-6 -4168)))) (-3278 (((-701) $) 63)) (-2787 (($ $) 64)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 98 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 107)) (-1186 (($ $ $) 61 (|has| $ (-6 -4168))) (($ $ |#1|) 60 (|has| $ (-6 -4168)))) (-3934 (($ $ $) 78) (($ |#1| $) 77) (($ (-578 $)) 110) (($ $ |#1|) 109)) (-1267 (($ $) 121)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-608 |#1|) (-1180) (-1104)) (T -608)) -((-1526 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) (-1987 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) (-3546 (*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-2898 (*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))) (-1591 (*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))) (-2853 (*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) (-1267 (*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104))))) -(-13 (-1044 |t#1|) (-10 -8 (-15 -1526 ($ (-1 (-107) |t#1|) $)) (-15 -1987 ($ (-1 (-107) |t#1|) $)) (-15 -3546 ((-107) $)) (-15 -3170 ((-107) $)) (-15 -3346 ((-107) $)) (-15 -2898 ($ $)) (-15 -3648 (|t#1| $)) (-15 -1591 ($ $)) (-15 -2853 ((-701) $)) (-15 -3718 ($ $ (-501))) (-15 -1267 ($ $)))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1044 |#1|) . T) ((-1104) . T) ((-1138 |#1|) . T)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2457 (($ (-701) (-701) (-701)) 32 (|has| |#1| (-959)))) (-2997 (((-107) $ (-701)) NIL)) (-1204 ((|#1| $ (-701) (-701) (-701) |#1|) 27)) (-2540 (($) NIL T CONST)) (-2543 (($ $ $) 36 (|has| |#1| (-959)))) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3507 (((-1148 (-701)) $) 8)) (-2913 (($ (-1070) $ $) 22)) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1629 (($ (-701)) 34 (|has| |#1| (-959)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-701) (-701) (-701)) 25)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3699 (($ (-578 (-578 (-578 |#1|)))) 43)) (-3691 (((-786) $) NIL (|has| |#1| (-1001))) (($ (-877 (-877 (-877 |#1|)))) 15) (((-877 (-877 (-877 |#1|))) $) 12)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-609 |#1|) (-13 (-454 |#1|) (-10 -8 (IF (|has| |#1| (-959)) (PROGN (-15 -2457 ($ (-701) (-701) (-701))) (-15 -1629 ($ (-701))) (-15 -2543 ($ $ $))) |noBranch|) (-15 -3699 ($ (-578 (-578 (-578 |#1|))))) (-15 -2007 (|#1| $ (-701) (-701) (-701))) (-15 -1204 (|#1| $ (-701) (-701) (-701) |#1|)) (-15 -3691 ($ (-877 (-877 (-877 |#1|))))) (-15 -3691 ((-877 (-877 (-877 |#1|))) $)) (-15 -2913 ($ (-1070) $ $)) (-15 -3507 ((-1148 (-701)) $)))) (-1001)) (T -609)) -((-2457 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-609 *3)) (-4 *3 (-959)) (-4 *3 (-1001)))) (-1629 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-609 *3)) (-4 *3 (-959)) (-4 *3 (-1001)))) (-2543 (*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-959)) (-4 *2 (-1001)))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-578 *3)))) (-4 *3 (-1001)) (-5 *1 (-609 *3)))) (-2007 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-701)) (-5 *1 (-609 *2)) (-4 *2 (-1001)))) (-1204 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-609 *2)) (-4 *2 (-1001)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-877 (-877 (-877 *3)))) (-4 *3 (-1001)) (-5 *1 (-609 *3)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-877 (-877 (-877 *3)))) (-5 *1 (-609 *3)) (-4 *3 (-1001)))) (-2913 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-609 *3)) (-4 *3 (-1001)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-1148 (-701))) (-5 *1 (-609 *3)) (-4 *3 (-1001))))) -(-13 (-454 |#1|) (-10 -8 (IF (|has| |#1| (-959)) (PROGN (-15 -2457 ($ (-701) (-701) (-701))) (-15 -1629 ($ (-701))) (-15 -2543 ($ $ $))) |noBranch|) (-15 -3699 ($ (-578 (-578 (-578 |#1|))))) (-15 -2007 (|#1| $ (-701) (-701) (-701))) (-15 -1204 (|#1| $ (-701) (-701) (-701) |#1|)) (-15 -3691 ($ (-877 (-877 (-877 |#1|))))) (-15 -3691 ((-877 (-877 (-877 |#1|))) $)) (-15 -2913 ($ (-1070) $ $)) (-15 -3507 ((-1148 (-701)) $)))) -((-3736 (((-107) $ $) NIL)) (-3514 (((-578 |#1|) $) 14)) (-1320 (($ $) 18)) (-3998 (((-107) $) 19)) (-3765 (((-3 |#1| "failed") $) 22)) (-3490 ((|#1| $) 20)) (-1199 (($ $) 36)) (-3660 (($ $) 24)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3989 (((-107) $ $) 41)) (-4139 (((-839) $) 38)) (-1313 (($ $) 17)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 ((|#1| $) 35)) (-3691 (((-786) $) 31) (($ |#1|) 23) (((-749 |#1|) $) 27)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 12)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 40)) (* (($ $ $) 34))) -(((-610 |#1|) (-13 (-777) (-950 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3691 ((-749 |#1|) $)) (-15 -1190 (|#1| $)) (-15 -1313 ($ $)) (-15 -4139 ((-839) $)) (-15 -3989 ((-107) $ $)) (-15 -3660 ($ $)) (-15 -1199 ($ $)) (-15 -3998 ((-107) $)) (-15 -1320 ($ $)) (-15 -3514 ((-578 |#1|) $)))) (-777)) (T -610)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) (-1190 (*1 *2 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-1313 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) (-3989 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-1199 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) (-1320 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-610 *3)) (-4 *3 (-777))))) -(-13 (-777) (-950 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3691 ((-749 |#1|) $)) (-15 -1190 (|#1| $)) (-15 -1313 ($ $)) (-15 -4139 ((-839) $)) (-15 -3989 ((-107) $ $)) (-15 -3660 ($ $)) (-15 -1199 ($ $)) (-15 -3998 ((-107) $)) (-15 -1320 ($ $)) (-15 -3514 ((-578 |#1|) $)))) -((-3072 ((|#1| (-1 |#1| (-701) |#1|) (-701) |#1|) 11)) (-2517 ((|#1| (-1 |#1| |#1|) (-701) |#1|) 9))) -(((-611 |#1|) (-10 -7 (-15 -2517 (|#1| (-1 |#1| |#1|) (-701) |#1|)) (-15 -3072 (|#1| (-1 |#1| (-701) |#1|) (-701) |#1|))) (-1001)) (T -611)) -((-3072 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-701) *2)) (-5 *4 (-701)) (-4 *2 (-1001)) (-5 *1 (-611 *2)))) (-2517 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-701)) (-4 *2 (-1001)) (-5 *1 (-611 *2))))) -(-10 -7 (-15 -2517 (|#1| (-1 |#1| |#1|) (-701) |#1|)) (-15 -3072 (|#1| (-1 |#1| (-701) |#1|) (-701) |#1|))) -((-2938 ((|#2| |#1| |#2|) 9)) (-2935 ((|#1| |#1| |#2|) 8))) -(((-612 |#1| |#2|) (-10 -7 (-15 -2935 (|#1| |#1| |#2|)) (-15 -2938 (|#2| |#1| |#2|))) (-1001) (-1001)) (T -612)) -((-2938 (*1 *2 *3 *2) (-12 (-5 *1 (-612 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) (-2935 (*1 *2 *2 *3) (-12 (-5 *1 (-612 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001))))) -(-10 -7 (-15 -2935 (|#1| |#1| |#2|)) (-15 -2938 (|#2| |#1| |#2|))) -((-3815 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -3815 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1001) (-1001) (-1001)) (T -613)) -((-3815 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)) (-5 *1 (-613 *5 *6 *2))))) -(-10 -7 (-15 -3815 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-3072 (((-1 |#1| (-701) |#1|) (-1 |#1| (-701) |#1|)) 23)) (-3896 (((-1 |#1|) |#1|) 8)) (-3611 ((|#1| |#1|) 16)) (-2884 (((-578 |#1|) (-1 (-578 |#1|) (-578 |#1|)) (-501)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3691 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-701)) 20))) -(((-614 |#1|) (-10 -7 (-15 -3896 ((-1 |#1|) |#1|)) (-15 -3691 ((-1 |#1|) |#1|)) (-15 -2884 (|#1| (-1 |#1| |#1|))) (-15 -2884 ((-578 |#1|) (-1 (-578 |#1|) (-578 |#1|)) (-501))) (-15 -3611 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-701))) (-15 -3072 ((-1 |#1| (-701) |#1|) (-1 |#1| (-701) |#1|)))) (-1001)) (T -614)) -((-3072 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-701) *3)) (-4 *3 (-1001)) (-5 *1 (-614 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *4 (-1001)) (-5 *1 (-614 *4)))) (-3611 (*1 *2 *2) (-12 (-5 *1 (-614 *2)) (-4 *2 (-1001)))) (-2884 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 *5) (-578 *5))) (-5 *4 (-501)) (-5 *2 (-578 *5)) (-5 *1 (-614 *5)) (-4 *5 (-1001)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-614 *2)) (-4 *2 (-1001)))) (-3691 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1001)))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1001))))) -(-10 -7 (-15 -3896 ((-1 |#1|) |#1|)) (-15 -3691 ((-1 |#1|) |#1|)) (-15 -2884 (|#1| (-1 |#1| |#1|))) (-15 -2884 ((-578 |#1|) (-1 (-578 |#1|) (-578 |#1|)) (-501))) (-15 -3611 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-701))) (-15 -3072 ((-1 |#1| (-701) |#1|) (-1 |#1| (-701) |#1|)))) -((-3917 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2099 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3897 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1711 (((-1 |#2| |#1|) |#2|) 11))) -(((-615 |#1| |#2|) (-10 -7 (-15 -1711 ((-1 |#2| |#1|) |#2|)) (-15 -2099 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3897 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3917 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1001) (-1001)) (T -615)) -((-3917 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-5 *2 (-1 *5 *4)) (-5 *1 (-615 *4 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1001)) (-5 *2 (-1 *5 *4)) (-5 *1 (-615 *4 *5)) (-4 *4 (-1001)))) (-2099 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-5 *2 (-1 *5)) (-5 *1 (-615 *4 *5)))) (-1711 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-615 *4 *3)) (-4 *4 (-1001)) (-4 *3 (-1001))))) -(-10 -7 (-15 -1711 ((-1 |#2| |#1|) |#2|)) (-15 -2099 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3897 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3917 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-1450 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1239 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2441 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2470 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4073 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-616 |#1| |#2| |#3|) (-10 -7 (-15 -1239 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2441 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2470 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4073 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1450 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1001) (-1001) (-1001)) (T -616)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-1 *7 *5)) (-5 *1 (-616 *5 *6 *7)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-616 *4 *5 *6)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-616 *4 *5 *6)) (-4 *4 (-1001)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-616 *4 *5 *6)) (-4 *5 (-1001)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *4 *5 *6)))) (-1239 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1001)) (-4 *4 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *4 *6))))) -(-10 -7 (-15 -1239 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2441 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2470 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4073 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1450 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2563 (($ (-701) (-701)) 31)) (-2412 (($ $ $) 54)) (-2676 (($ |#3|) 50) (($ $) 51)) (-2981 (((-107) $) 26)) (-1198 (($ $ (-501) (-501)) 56)) (-3935 (($ $ (-501) (-501)) 57)) (-3548 (($ $ (-501) (-501) (-501) (-501)) 61)) (-3173 (($ $) 52)) (-4007 (((-107) $) 14)) (-3251 (($ $ (-501) (-501) $) 62)) (-3754 ((|#2| $ (-501) (-501) |#2|) NIL) (($ $ (-578 (-501)) (-578 (-501)) $) 60)) (-1292 (($ (-701) |#2|) 36)) (-2630 (($ (-578 (-578 |#2|))) 34)) (-2237 (((-578 (-578 |#2|)) $) 55)) (-1452 (($ $ $) 53)) (-3694 (((-3 $ "failed") $ |#2|) 89)) (-2007 ((|#2| $ (-501) (-501)) NIL) ((|#2| $ (-501) (-501) |#2|) NIL) (($ $ (-578 (-501)) (-578 (-501))) 59)) (-3133 (($ (-578 |#2|)) 38) (($ (-578 $)) 40)) (-3697 (((-107) $) 23)) (-3691 (((-786) $) NIL) (($ |#4|) 45)) (-3719 (((-107) $) 28)) (-3803 (($ $ |#2|) 91)) (-3797 (($ $ $) 66) (($ $) 69)) (-3790 (($ $ $) 64)) (** (($ $ (-701)) 78) (($ $ (-501)) 94)) (* (($ $ $) 75) (($ |#2| $) 71) (($ $ |#2|) 72) (($ (-501) $) 74) ((|#4| $ |#4|) 82) ((|#3| |#3| $) 86))) -(((-617 |#1| |#2| |#3| |#4|) (-10 -8 (-15 ** (|#1| |#1| (-501))) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-701))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3251 (|#1| |#1| (-501) (-501) |#1|)) (-15 -3548 (|#1| |#1| (-501) (-501) (-501) (-501))) (-15 -3935 (|#1| |#1| (-501) (-501))) (-15 -1198 (|#1| |#1| (-501) (-501))) (-15 -3754 (|#1| |#1| (-578 (-501)) (-578 (-501)) |#1|)) (-15 -2007 (|#1| |#1| (-578 (-501)) (-578 (-501)))) (-15 -2237 ((-578 (-578 |#2|)) |#1|)) (-15 -2412 (|#1| |#1| |#1|)) (-15 -1452 (|#1| |#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -2676 (|#1| |#3|)) (-15 -3691 (|#1| |#4|)) (-15 -3133 (|#1| (-578 |#1|))) (-15 -3133 (|#1| (-578 |#2|))) (-15 -1292 (|#1| (-701) |#2|)) (-15 -2630 (|#1| (-578 (-578 |#2|)))) (-15 -2563 (|#1| (-701) (-701))) (-15 -3719 ((-107) |#1|)) (-15 -2981 ((-107) |#1|)) (-15 -3697 ((-107) |#1|)) (-15 -4007 ((-107) |#1|)) (-15 -3754 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501))) (-15 -3691 ((-786) |#1|))) (-618 |#2| |#3| |#4|) (-959) (-340 |#2|) (-340 |#2|)) (T -617)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-501))) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-701))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3251 (|#1| |#1| (-501) (-501) |#1|)) (-15 -3548 (|#1| |#1| (-501) (-501) (-501) (-501))) (-15 -3935 (|#1| |#1| (-501) (-501))) (-15 -1198 (|#1| |#1| (-501) (-501))) (-15 -3754 (|#1| |#1| (-578 (-501)) (-578 (-501)) |#1|)) (-15 -2007 (|#1| |#1| (-578 (-501)) (-578 (-501)))) (-15 -2237 ((-578 (-578 |#2|)) |#1|)) (-15 -2412 (|#1| |#1| |#1|)) (-15 -1452 (|#1| |#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -2676 (|#1| |#3|)) (-15 -3691 (|#1| |#4|)) (-15 -3133 (|#1| (-578 |#1|))) (-15 -3133 (|#1| (-578 |#2|))) (-15 -1292 (|#1| (-701) |#2|)) (-15 -2630 (|#1| (-578 (-578 |#2|)))) (-15 -2563 (|#1| (-701) (-701))) (-15 -3719 ((-107) |#1|)) (-15 -2981 ((-107) |#1|)) (-15 -3697 ((-107) |#1|)) (-15 -4007 ((-107) |#1|)) (-15 -3754 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2563 (($ (-701) (-701)) 97)) (-2412 (($ $ $) 87)) (-2676 (($ |#2|) 91) (($ $) 90)) (-2981 (((-107) $) 99)) (-1198 (($ $ (-501) (-501)) 83)) (-3935 (($ $ (-501) (-501)) 82)) (-3548 (($ $ (-501) (-501) (-501) (-501)) 81)) (-3173 (($ $) 89)) (-4007 (((-107) $) 101)) (-2997 (((-107) $ (-701)) 8)) (-3251 (($ $ (-501) (-501) $) 80)) (-3754 ((|#1| $ (-501) (-501) |#1|) 44) (($ $ (-578 (-501)) (-578 (-501)) $) 84)) (-2400 (($ $ (-501) |#2|) 42)) (-2480 (($ $ (-501) |#3|) 41)) (-1292 (($ (-701) |#1|) 95)) (-2540 (($) 7 T CONST)) (-1933 (($ $) 67 (|has| |#1| (-276)))) (-2358 ((|#2| $ (-501)) 46)) (-3689 (((-701) $) 66 (|has| |#1| (-508)))) (-2156 ((|#1| $ (-501) (-501) |#1|) 43)) (-1905 ((|#1| $ (-501) (-501)) 48)) (-2732 (((-578 |#1|) $) 30)) (-3752 (((-701) $) 65 (|has| |#1| (-508)))) (-3552 (((-578 |#3|) $) 64 (|has| |#1| (-508)))) (-1648 (((-701) $) 51)) (-3634 (($ (-701) (-701) |#1|) 57)) (-3248 (((-701) $) 50)) (-3379 (((-107) $ (-701)) 9)) (-3572 ((|#1| $) 62 (|has| |#1| (-6 (-4169 "*"))))) (-1567 (((-501) $) 55)) (-2734 (((-501) $) 53)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2969 (((-501) $) 54)) (-3491 (((-501) $) 52)) (-2630 (($ (-578 (-578 |#1|))) 96)) (-2519 (($ (-1 |#1| |#1|) $) 34)) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2237 (((-578 (-578 |#1|)) $) 86)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1616 (((-3 $ "failed") $) 61 (|has| |#1| (-331)))) (-1452 (($ $ $) 88)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) 56)) (-3694 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-508)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) (-501)) 49) ((|#1| $ (-501) (-501) |#1|) 47) (($ $ (-578 (-501)) (-578 (-501))) 85)) (-3133 (($ (-578 |#1|)) 94) (($ (-578 $)) 93)) (-3697 (((-107) $) 100)) (-3315 ((|#1| $) 63 (|has| |#1| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-2952 ((|#3| $ (-501)) 45)) (-3691 (((-786) $) 20 (|has| |#1| (-1001))) (($ |#3|) 92)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3719 (((-107) $) 98)) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3803 (($ $ |#1|) 68 (|has| |#1| (-331)))) (-3797 (($ $ $) 78) (($ $) 77)) (-3790 (($ $ $) 79)) (** (($ $ (-701)) 70) (($ $ (-501)) 60 (|has| |#1| (-331)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-501) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-618 |#1| |#2| |#3|) (-1180) (-959) (-340 |t#1|) (-340 |t#1|)) (T -618)) -((-4007 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) (-2563 (*1 *1 *2 *2) (-12 (-5 *2 (-701)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-2630 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-1292 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *2)) (-4 *4 (-340 *3)) (-4 *2 (-340 *3)))) (-2676 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-618 *3 *2 *4)) (-4 *2 (-340 *3)) (-4 *4 (-340 *3)))) (-2676 (*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-1452 (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-2412 (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-578 (-578 *3))))) (-2007 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3754 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-1198 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3935 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3548 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3251 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3790 (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-3797 (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-618 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *2 (-340 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-618 *3 *2 *4)) (-4 *3 (-959)) (-4 *2 (-340 *3)) (-4 *4 (-340 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3694 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-508)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-331)))) (-1933 (*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-276)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-701)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-701)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-578 *5)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) (-1616 (*1 *1 *1) (|partial| -12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-331)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-331))))) -(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4168) (-6 -4167) (-15 -4007 ((-107) $)) (-15 -3697 ((-107) $)) (-15 -2981 ((-107) $)) (-15 -3719 ((-107) $)) (-15 -2563 ($ (-701) (-701))) (-15 -2630 ($ (-578 (-578 |t#1|)))) (-15 -1292 ($ (-701) |t#1|)) (-15 -3133 ($ (-578 |t#1|))) (-15 -3133 ($ (-578 $))) (-15 -3691 ($ |t#3|)) (-15 -2676 ($ |t#2|)) (-15 -2676 ($ $)) (-15 -3173 ($ $)) (-15 -1452 ($ $ $)) (-15 -2412 ($ $ $)) (-15 -2237 ((-578 (-578 |t#1|)) $)) (-15 -2007 ($ $ (-578 (-501)) (-578 (-501)))) (-15 -3754 ($ $ (-578 (-501)) (-578 (-501)) $)) (-15 -1198 ($ $ (-501) (-501))) (-15 -3935 ($ $ (-501) (-501))) (-15 -3548 ($ $ (-501) (-501) (-501) (-501))) (-15 -3251 ($ $ (-501) (-501) $)) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $)) (-15 -3797 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-501) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-701))) (IF (|has| |t#1| (-508)) (-15 -3694 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-331)) (-15 -3803 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-276)) (-15 -1933 ($ $)) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -3689 ((-701) $)) (-15 -3752 ((-701) $)) (-15 -3552 ((-578 |t#3|) $))) |noBranch|) (IF (|has| |t#1| (-6 (-4169 "*"))) (PROGN (-15 -3315 (|t#1| $)) (-15 -3572 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-331)) (PROGN (-15 -1616 ((-3 $ "failed") $)) (-15 ** ($ $ (-501)))) |noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-55 |#1| |#2| |#3|) . T) ((-1104) . T)) -((-3547 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1212 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-619 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1212 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1212 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3547 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-959) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|) (-959) (-340 |#5|) (-340 |#5|) (-618 |#5| |#6| |#7|)) (T -619)) -((-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-959)) (-4 *2 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *8 (-340 *2)) (-4 *9 (-340 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-618 *5 *6 *7)) (-4 *10 (-618 *2 *8 *9)))) (-1212 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *2 (-618 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-618 *5 *6 *7)) (-4 *9 (-340 *8)) (-4 *10 (-340 *8)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *2 (-618 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-618 *5 *6 *7)) (-4 *9 (-340 *8)) (-4 *10 (-340 *8))))) -(-10 -7 (-15 -1212 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1212 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3547 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-1933 ((|#4| |#4|) 67 (|has| |#1| (-276)))) (-3689 (((-701) |#4|) 69 (|has| |#1| (-508)))) (-3752 (((-701) |#4|) 71 (|has| |#1| (-508)))) (-3552 (((-578 |#3|) |#4|) 78 (|has| |#1| (-508)))) (-3496 (((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|) 95 (|has| |#1| (-276)))) (-3572 ((|#1| |#4|) 33)) (-3281 (((-3 |#4| "failed") |#4|) 61 (|has| |#1| (-508)))) (-1616 (((-3 |#4| "failed") |#4|) 75 (|has| |#1| (-331)))) (-3100 ((|#4| |#4|) 54 (|has| |#1| (-508)))) (-1631 ((|#4| |#4| |#1| (-501) (-501)) 41)) (-1359 ((|#4| |#4| (-501) (-501)) 36)) (-2966 ((|#4| |#4| |#1| (-501) (-501)) 46)) (-3315 ((|#1| |#4|) 73)) (-3774 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 57 (|has| |#1| (-508))))) -(((-620 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3315 (|#1| |#4|)) (-15 -3572 (|#1| |#4|)) (-15 -1359 (|#4| |#4| (-501) (-501))) (-15 -1631 (|#4| |#4| |#1| (-501) (-501))) (-15 -2966 (|#4| |#4| |#1| (-501) (-501))) (IF (|has| |#1| (-508)) (PROGN (-15 -3689 ((-701) |#4|)) (-15 -3752 ((-701) |#4|)) (-15 -3552 ((-578 |#3|) |#4|)) (-15 -3100 (|#4| |#4|)) (-15 -3281 ((-3 |#4| "failed") |#4|)) (-15 -3774 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-276)) (PROGN (-15 -1933 (|#4| |#4|)) (-15 -3496 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-331)) (-15 -1616 ((-3 |#4| "failed") |#4|)) |noBranch|)) (-156) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|)) (T -620)) -((-1616 (*1 *2 *2) (|partial| -12 (-4 *3 (-331)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3496 (*1 *2 *3 *3) (-12 (-4 *3 (-276)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-620 *3 *4 *5 *6)) (-4 *6 (-618 *3 *4 *5)))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3774 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-3281 (*1 *2 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3100 (*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-578 *6)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-2966 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-501)) (-4 *3 (-156)) (-4 *5 (-340 *3)) (-4 *6 (-340 *3)) (-5 *1 (-620 *3 *5 *6 *2)) (-4 *2 (-618 *3 *5 *6)))) (-1631 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-501)) (-4 *3 (-156)) (-4 *5 (-340 *3)) (-4 *6 (-340 *3)) (-5 *1 (-620 *3 *5 *6 *2)) (-4 *2 (-618 *3 *5 *6)))) (-1359 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *1 (-620 *4 *5 *6 *2)) (-4 *2 (-618 *4 *5 *6)))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-156)) (-5 *1 (-620 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5)))) (-3315 (*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-156)) (-5 *1 (-620 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5))))) -(-10 -7 (-15 -3315 (|#1| |#4|)) (-15 -3572 (|#1| |#4|)) (-15 -1359 (|#4| |#4| (-501) (-501))) (-15 -1631 (|#4| |#4| |#1| (-501) (-501))) (-15 -2966 (|#4| |#4| |#1| (-501) (-501))) (IF (|has| |#1| (-508)) (PROGN (-15 -3689 ((-701) |#4|)) (-15 -3752 ((-701) |#4|)) (-15 -3552 ((-578 |#3|) |#4|)) (-15 -3100 (|#4| |#4|)) (-15 -3281 ((-3 |#4| "failed") |#4|)) (-15 -3774 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-276)) (PROGN (-15 -1933 (|#4| |#4|)) (-15 -3496 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-331)) (-15 -1616 ((-3 |#4| "failed") |#4|)) |noBranch|)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2563 (($ (-701) (-701)) 45)) (-2412 (($ $ $) NIL)) (-2676 (($ (-1148 |#1|)) NIL) (($ $) NIL)) (-2981 (((-107) $) NIL)) (-1198 (($ $ (-501) (-501)) 12)) (-3935 (($ $ (-501) (-501)) NIL)) (-3548 (($ $ (-501) (-501) (-501) (-501)) NIL)) (-3173 (($ $) NIL)) (-4007 (((-107) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3251 (($ $ (-501) (-501) $) NIL)) (-3754 ((|#1| $ (-501) (-501) |#1|) NIL) (($ $ (-578 (-501)) (-578 (-501)) $) NIL)) (-2400 (($ $ (-501) (-1148 |#1|)) NIL)) (-2480 (($ $ (-501) (-1148 |#1|)) NIL)) (-1292 (($ (-701) |#1|) 22)) (-2540 (($) NIL T CONST)) (-1933 (($ $) 30 (|has| |#1| (-276)))) (-2358 (((-1148 |#1|) $ (-501)) NIL)) (-3689 (((-701) $) 32 (|has| |#1| (-508)))) (-2156 ((|#1| $ (-501) (-501) |#1|) 50)) (-1905 ((|#1| $ (-501) (-501)) NIL)) (-2732 (((-578 |#1|) $) NIL)) (-3752 (((-701) $) 34 (|has| |#1| (-508)))) (-3552 (((-578 (-1148 |#1|)) $) 37 (|has| |#1| (-508)))) (-1648 (((-701) $) 20)) (-3634 (($ (-701) (-701) |#1|) NIL)) (-3248 (((-701) $) 21)) (-3379 (((-107) $ (-701)) NIL)) (-3572 ((|#1| $) 28 (|has| |#1| (-6 (-4169 "*"))))) (-1567 (((-501) $) 9)) (-2734 (((-501) $) 10)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2969 (((-501) $) 11)) (-3491 (((-501) $) 46)) (-2630 (($ (-578 (-578 |#1|))) NIL)) (-2519 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2237 (((-578 (-578 |#1|)) $) 58)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1616 (((-3 $ "failed") $) 41 (|has| |#1| (-331)))) (-1452 (($ $ $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) (-501)) NIL) ((|#1| $ (-501) (-501) |#1|) NIL) (($ $ (-578 (-501)) (-578 (-501))) NIL)) (-3133 (($ (-578 |#1|)) NIL) (($ (-578 $)) NIL) (($ (-1148 |#1|)) 51)) (-3697 (((-107) $) NIL)) (-3315 ((|#1| $) 26 (|has| |#1| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-1248 (((-490) $) 62 (|has| |#1| (-556 (-490))))) (-2952 (((-1148 |#1|) $ (-501)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001))) (($ (-1148 |#1|)) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3719 (((-107) $) NIL)) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) 23) (($ $ (-501)) 44 (|has| |#1| (-331)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-501) $) NIL) (((-1148 |#1|) $ (-1148 |#1|)) NIL) (((-1148 |#1|) (-1148 |#1|) $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-621 |#1|) (-13 (-618 |#1| (-1148 |#1|) (-1148 |#1|)) (-10 -8 (-15 -3133 ($ (-1148 |#1|))) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |#1| (-331)) (-15 -1616 ((-3 $ "failed") $)) |noBranch|))) (-959)) (T -621)) -((-1616 (*1 *1 *1) (|partial| -12 (-5 *1 (-621 *2)) (-4 *2 (-331)) (-4 *2 (-959)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-959)) (-5 *1 (-621 *3))))) -(-13 (-618 |#1| (-1148 |#1|) (-1148 |#1|)) (-10 -8 (-15 -3133 ($ (-1148 |#1|))) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |#1| (-331)) (-15 -1616 ((-3 $ "failed") $)) |noBranch|))) -((-2888 (((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|)) 25)) (-3413 (((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|) 21)) (-2346 (((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-701)) 26)) (-2644 (((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|)) 14)) (-3881 (((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|)) 18) (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 16)) (-3812 (((-621 |#1|) (-621 |#1|) |#1| (-621 |#1|)) 20)) (-2856 (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 12)) (** (((-621 |#1|) (-621 |#1|) (-701)) 30))) -(((-622 |#1|) (-10 -7 (-15 -2856 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -2644 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3881 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3881 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3812 ((-621 |#1|) (-621 |#1|) |#1| (-621 |#1|))) (-15 -3413 ((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|)) (-15 -2888 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -2346 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-701))) (-15 ** ((-621 |#1|) (-621 |#1|) (-701)))) (-959)) (T -622)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-622 *4)))) (-2346 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-622 *4)))) (-2888 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-3413 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-3812 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-3881 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-3881 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-2644 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-2856 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3))))) -(-10 -7 (-15 -2856 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -2644 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3881 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3881 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3812 ((-621 |#1|) (-621 |#1|) |#1| (-621 |#1|))) (-15 -3413 ((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|)) (-15 -2888 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -2346 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-701))) (-15 ** ((-621 |#1|) (-621 |#1|) (-701)))) -((-1232 ((|#2| |#2| |#4|) 25)) (-2424 (((-621 |#2|) |#3| |#4|) 31)) (-3166 (((-621 |#2|) |#2| |#4|) 30)) (-2095 (((-1148 |#2|) |#2| |#4|) 16)) (-2552 ((|#2| |#3| |#4|) 24)) (-3272 (((-621 |#2|) |#3| |#4| (-701) (-701)) 38)) (-3579 (((-621 |#2|) |#2| |#4| (-701)) 37))) -(((-623 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2095 ((-1148 |#2|) |#2| |#4|)) (-15 -2552 (|#2| |#3| |#4|)) (-15 -1232 (|#2| |#2| |#4|)) (-15 -3166 ((-621 |#2|) |#2| |#4|)) (-15 -3579 ((-621 |#2|) |#2| |#4| (-701))) (-15 -2424 ((-621 |#2|) |#3| |#4|)) (-15 -3272 ((-621 |#2|) |#3| |#4| (-701) (-701)))) (-1001) (-820 |#1|) (-340 |#2|) (-13 (-340 |#1|) (-10 -7 (-6 -4167)))) (T -623)) -((-3272 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-701)) (-4 *6 (-1001)) (-4 *7 (-820 *6)) (-5 *2 (-621 *7)) (-5 *1 (-623 *6 *7 *3 *4)) (-4 *3 (-340 *7)) (-4 *4 (-13 (-340 *6) (-10 -7 (-6 -4167)))))) (-2424 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *6 (-820 *5)) (-5 *2 (-621 *6)) (-5 *1 (-623 *5 *6 *3 *4)) (-4 *3 (-340 *6)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167)))))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-1001)) (-4 *3 (-820 *6)) (-5 *2 (-621 *3)) (-5 *1 (-623 *6 *3 *7 *4)) (-4 *7 (-340 *3)) (-4 *4 (-13 (-340 *6) (-10 -7 (-6 -4167)))))) (-3166 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *3 (-820 *5)) (-5 *2 (-621 *3)) (-5 *1 (-623 *5 *3 *6 *4)) (-4 *6 (-340 *3)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167)))))) (-1232 (*1 *2 *2 *3) (-12 (-4 *4 (-1001)) (-4 *2 (-820 *4)) (-5 *1 (-623 *4 *2 *5 *3)) (-4 *5 (-340 *2)) (-4 *3 (-13 (-340 *4) (-10 -7 (-6 -4167)))))) (-2552 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *2 (-820 *5)) (-5 *1 (-623 *5 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167)))))) (-2095 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *3 (-820 *5)) (-5 *2 (-1148 *3)) (-5 *1 (-623 *5 *3 *6 *4)) (-4 *6 (-340 *3)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167))))))) -(-10 -7 (-15 -2095 ((-1148 |#2|) |#2| |#4|)) (-15 -2552 (|#2| |#3| |#4|)) (-15 -1232 (|#2| |#2| |#4|)) (-15 -3166 ((-621 |#2|) |#2| |#4|)) (-15 -3579 ((-621 |#2|) |#2| |#4| (-701))) (-15 -2424 ((-621 |#2|) |#3| |#4|)) (-15 -3272 ((-621 |#2|) |#3| |#4| (-701) (-701)))) -((-3473 (((-2 (|:| |num| (-621 |#1|)) (|:| |den| |#1|)) (-621 |#2|)) 18)) (-1644 ((|#1| (-621 |#2|)) 9)) (-4132 (((-621 |#1|) (-621 |#2|)) 16))) -(((-624 |#1| |#2|) (-10 -7 (-15 -1644 (|#1| (-621 |#2|))) (-15 -4132 ((-621 |#1|) (-621 |#2|))) (-15 -3473 ((-2 (|:| |num| (-621 |#1|)) (|:| |den| |#1|)) (-621 |#2|)))) (-508) (-906 |#1|)) (T -624)) -((-3473 (*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-906 *4)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |num| (-621 *4)) (|:| |den| *4))) (-5 *1 (-624 *4 *5)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-906 *4)) (-4 *4 (-508)) (-5 *2 (-621 *4)) (-5 *1 (-624 *4 *5)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-624 *2 *4))))) -(-10 -7 (-15 -1644 (|#1| (-621 |#2|))) (-15 -4132 ((-621 |#1|) (-621 |#2|))) (-15 -3473 ((-2 (|:| |num| (-621 |#1|)) (|:| |den| |#1|)) (-621 |#2|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2239 (((-621 (-630))) NIL) (((-621 (-630)) (-1148 $)) NIL)) (-2225 (((-630) $) NIL)) (-3978 (($ $) NIL (|has| (-630) (-1090)))) (-3937 (($ $) NIL (|has| (-630) (-1090)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-630) (-318)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-630) (-276)) (|has| (-630) (-830))))) (-3676 (($ $) NIL (-1405 (-12 (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-331))))) (-1559 (((-373 $) $) NIL (-1405 (-12 (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-331))))) (-3743 (($ $) NIL (-12 (|has| (-630) (-916)) (|has| (-630) (-1090))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-630) (-276)) (|has| (-630) (-830))))) (-2781 (((-107) $ $) NIL (|has| (-630) (-276)))) (-3796 (((-701)) NIL (|has| (-630) (-336)))) (-3970 (($ $) NIL (|has| (-630) (-1090)))) (-3929 (($ $) NIL (|has| (-630) (-1090)))) (-3984 (($ $) NIL (|has| (-630) (-1090)))) (-3945 (($ $) NIL (|has| (-630) (-1090)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-630) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-630) (-950 (-375 (-501)))))) (-3490 (((-501) $) NIL) (((-630) $) NIL) (((-375 (-501)) $) NIL (|has| (-630) (-950 (-375 (-501)))))) (-3142 (($ (-1148 (-630))) NIL) (($ (-1148 (-630)) (-1148 $)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-630) (-318)))) (-3023 (($ $ $) NIL (|has| (-630) (-276)))) (-3070 (((-621 (-630)) $) NIL) (((-621 (-630)) $ (-1148 $)) NIL)) (-3868 (((-621 (-630)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-630))) (|:| |vec| (-1148 (-630)))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-630) (-577 (-501)))) (((-621 (-501)) (-621 $)) NIL (|has| (-630) (-577 (-501))))) (-3547 (((-3 $ "failed") (-375 (-1064 (-630)))) NIL (|has| (-630) (-331))) (($ (-1064 (-630))) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3749 (((-630) $) 29)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL (|has| (-630) (-500)))) (-1696 (((-107) $) NIL (|has| (-630) (-500)))) (-3518 (((-375 (-501)) $) NIL (|has| (-630) (-500)))) (-3689 (((-839)) NIL)) (-2890 (($) NIL (|has| (-630) (-336)))) (-3034 (($ $ $) NIL (|has| (-630) (-276)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| (-630) (-276)))) (-1317 (($) NIL (|has| (-630) (-318)))) (-3521 (((-107) $) NIL (|has| (-630) (-318)))) (-3067 (($ $) NIL (|has| (-630) (-318))) (($ $ (-701)) NIL (|has| (-630) (-318)))) (-1628 (((-107) $) NIL (-1405 (-12 (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-331))))) (-4090 (((-2 (|:| |r| (-630)) (|:| |phi| (-630))) $) NIL (-12 (|has| (-630) (-967)) (|has| (-630) (-1090))))) (-2003 (($) NIL (|has| (-630) (-1090)))) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-630) (-806 (-346)))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-630) (-806 (-501))))) (-3169 (((-762 (-839)) $) NIL (|has| (-630) (-318))) (((-839) $) NIL (|has| (-630) (-318)))) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (-12 (|has| (-630) (-916)) (|has| (-630) (-1090))))) (-2626 (((-630) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-630) (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-630) (-276)))) (-1792 (((-1064 (-630)) $) NIL (|has| (-630) (-331)))) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 (-630) (-630)) $) NIL)) (-3104 (((-839) $) NIL (|has| (-630) (-336)))) (-1635 (($ $) NIL (|has| (-630) (-1090)))) (-1316 (((-1064 (-630)) $) NIL)) (-1697 (($ (-578 $)) NIL (|has| (-630) (-276))) (($ $ $) NIL (|has| (-630) (-276)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| (-630) (-331)))) (-3746 (($) NIL (|has| (-630) (-318)) CONST)) (-3506 (($ (-839)) NIL (|has| (-630) (-336)))) (-2574 (($) NIL)) (-3755 (((-630) $) 31)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| (-630) (-276)))) (-3664 (($ (-578 $)) NIL (|has| (-630) (-276))) (($ $ $) NIL (|has| (-630) (-276)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-630) (-318)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-630) (-276)) (|has| (-630) (-830))))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-630) (-276)) (|has| (-630) (-830))))) (-3739 (((-373 $) $) NIL (-1405 (-12 (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-331))))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-630) (-276))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| (-630) (-276)))) (-3694 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-630)) NIL (|has| (-630) (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-630) (-276)))) (-1989 (($ $) NIL (|has| (-630) (-1090)))) (-3195 (($ $ (-1070) (-630)) NIL (|has| (-630) (-476 (-1070) (-630)))) (($ $ (-578 (-1070)) (-578 (-630))) NIL (|has| (-630) (-476 (-1070) (-630)))) (($ $ (-578 (-262 (-630)))) NIL (|has| (-630) (-278 (-630)))) (($ $ (-262 (-630))) NIL (|has| (-630) (-278 (-630)))) (($ $ (-630) (-630)) NIL (|has| (-630) (-278 (-630)))) (($ $ (-578 (-630)) (-578 (-630))) NIL (|has| (-630) (-278 (-630))))) (-1864 (((-701) $) NIL (|has| (-630) (-276)))) (-2007 (($ $ (-630)) NIL (|has| (-630) (-256 (-630) (-630))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| (-630) (-276)))) (-2532 (((-630)) NIL) (((-630) (-1148 $)) NIL)) (-1984 (((-3 (-701) "failed") $ $) NIL (|has| (-630) (-318))) (((-701) $) NIL (|has| (-630) (-318)))) (-2596 (($ $ (-1 (-630) (-630))) NIL) (($ $ (-1 (-630) (-630)) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-1070)) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-701)) NIL (|has| (-630) (-206))) (($ $) NIL (|has| (-630) (-206)))) (-2231 (((-621 (-630)) (-1148 $) (-1 (-630) (-630))) NIL (|has| (-630) (-331)))) (-2264 (((-1064 (-630))) NIL)) (-3991 (($ $) NIL (|has| (-630) (-1090)))) (-3949 (($ $) NIL (|has| (-630) (-1090)))) (-1349 (($) NIL (|has| (-630) (-318)))) (-3981 (($ $) NIL (|has| (-630) (-1090)))) (-3940 (($ $) NIL (|has| (-630) (-1090)))) (-3975 (($ $) NIL (|has| (-630) (-1090)))) (-3933 (($ $) NIL (|has| (-630) (-1090)))) (-2085 (((-621 (-630)) (-1148 $)) NIL) (((-1148 (-630)) $) NIL) (((-621 (-630)) (-1148 $) (-1148 $)) NIL) (((-1148 (-630)) $ (-1148 $)) NIL)) (-1248 (((-490) $) NIL (|has| (-630) (-556 (-490)))) (((-152 (-199)) $) NIL (|has| (-630) (-933))) (((-152 (-346)) $) NIL (|has| (-630) (-933))) (((-810 (-346)) $) NIL (|has| (-630) (-556 (-810 (-346))))) (((-810 (-501)) $) NIL (|has| (-630) (-556 (-810 (-501))))) (($ (-1064 (-630))) NIL) (((-1064 (-630)) $) NIL) (($ (-1148 (-630))) NIL) (((-1148 (-630)) $) NIL)) (-3097 (($ $) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-318))))) (-1976 (($ (-630) (-630)) 12)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-501)) NIL) (($ (-630)) NIL) (($ (-152 (-346))) 13) (($ (-152 (-501))) 19) (($ (-152 (-630))) 28) (($ (-152 (-632))) 25) (((-152 (-346)) $) 33) (($ (-375 (-501))) NIL (-1405 (|has| (-630) (-331)) (|has| (-630) (-950 (-375 (-501))))))) (-1274 (($ $) NIL (|has| (-630) (-318))) (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-132))))) (-2942 (((-1064 (-630)) $) NIL)) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL)) (-4003 (($ $) NIL (|has| (-630) (-1090)))) (-3958 (($ $) NIL (|has| (-630) (-1090)))) (-2442 (((-107) $ $) NIL)) (-3995 (($ $) NIL (|has| (-630) (-1090)))) (-3952 (($ $) NIL (|has| (-630) (-1090)))) (-4013 (($ $) NIL (|has| (-630) (-1090)))) (-3964 (($ $) NIL (|has| (-630) (-1090)))) (-2992 (((-630) $) NIL (|has| (-630) (-1090)))) (-3550 (($ $) NIL (|has| (-630) (-1090)))) (-3967 (($ $) NIL (|has| (-630) (-1090)))) (-4008 (($ $) NIL (|has| (-630) (-1090)))) (-3961 (($ $) NIL (|has| (-630) (-1090)))) (-3999 (($ $) NIL (|has| (-630) (-1090)))) (-3955 (($ $) NIL (|has| (-630) (-1090)))) (-1720 (($ $) NIL (|has| (-630) (-967)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| (-630) (-331)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-1 (-630) (-630))) NIL) (($ $ (-1 (-630) (-630)) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-1070)) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-701)) NIL (|has| (-630) (-206))) (($ $) NIL (|has| (-630) (-206)))) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL (|has| (-630) (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ $) NIL (|has| (-630) (-1090))) (($ $ (-375 (-501))) NIL (-12 (|has| (-630) (-916)) (|has| (-630) (-1090)))) (($ $ (-501)) NIL (|has| (-630) (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ (-630) $) NIL) (($ $ (-630)) NIL) (($ (-375 (-501)) $) NIL (|has| (-630) (-331))) (($ $ (-375 (-501))) NIL (|has| (-630) (-331))))) -(((-625) (-13 (-355) (-150 (-630)) (-10 -8 (-15 -3691 ($ (-152 (-346)))) (-15 -3691 ($ (-152 (-501)))) (-15 -3691 ($ (-152 (-630)))) (-15 -3691 ($ (-152 (-632)))) (-15 -3691 ((-152 (-346)) $))))) (T -625)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-625)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-152 (-501))) (-5 *1 (-625)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-152 (-630))) (-5 *1 (-625)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-152 (-632))) (-5 *1 (-625)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-625))))) -(-13 (-355) (-150 (-630)) (-10 -8 (-15 -3691 ($ (-152 (-346)))) (-15 -3691 ($ (-152 (-501)))) (-15 -3691 ($ (-152 (-630)))) (-15 -3691 ($ (-152 (-632)))) (-15 -3691 ((-152 (-346)) $)))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2921 (($ $) 62)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40) (($ |#1| $ (-701)) 63)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2908 (((-578 (-2 (|:| -2922 |#1|) (|:| -3713 (-701)))) $) 61)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-626 |#1|) (-1180) (-1001)) (T -626)) -((-4114 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-626 *2)) (-4 *2 (-1001)))) (-2921 (*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1001)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1001)) (-5 *2 (-578 (-2 (|:| -2922 *3) (|:| -3713 (-701)))))))) -(-13 (-208 |t#1|) (-10 -8 (-15 -4114 ($ |t#1| $ (-701))) (-15 -2921 ($ $)) (-15 -2908 ((-578 (-2 (|:| -2922 |t#1|) (|:| -3713 (-701)))) $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-208 |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-1371 (((-578 |#1|) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) (-501)) 46)) (-3191 ((|#1| |#1| (-501)) 45)) (-3664 ((|#1| |#1| |#1| (-501)) 35)) (-3739 (((-578 |#1|) |#1| (-501)) 38)) (-2434 ((|#1| |#1| (-501) |#1| (-501)) 32)) (-2730 (((-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) |#1| (-501)) 44))) -(((-627 |#1|) (-10 -7 (-15 -3664 (|#1| |#1| |#1| (-501))) (-15 -3191 (|#1| |#1| (-501))) (-15 -3739 ((-578 |#1|) |#1| (-501))) (-15 -2730 ((-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) |#1| (-501))) (-15 -1371 ((-578 |#1|) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) (-501))) (-15 -2434 (|#1| |#1| (-501) |#1| (-501)))) (-1125 (-501))) (T -627)) -((-2434 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| -3739 *5) (|:| -1201 (-501))))) (-5 *4 (-501)) (-4 *5 (-1125 *4)) (-5 *2 (-578 *5)) (-5 *1 (-627 *5)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-578 (-2 (|:| -3739 *3) (|:| -1201 *4)))) (-5 *1 (-627 *3)) (-4 *3 (-1125 *4)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-578 *3)) (-5 *1 (-627 *3)) (-4 *3 (-1125 *4)))) (-3191 (*1 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3)))) (-3664 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3))))) -(-10 -7 (-15 -3664 (|#1| |#1| |#1| (-501))) (-15 -3191 (|#1| |#1| (-501))) (-15 -3739 ((-578 |#1|) |#1| (-501))) (-15 -2730 ((-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) |#1| (-501))) (-15 -1371 ((-578 |#1|) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) (-501))) (-15 -2434 (|#1| |#1| (-501) |#1| (-501)))) -((-1188 (((-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 17)) (-2598 (((-1031 (-199)) (-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232))) 38) (((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232))) 40) (((-1031 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232))) 42)) (-2993 (((-1031 (-199)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-578 (-232))) NIL)) (-1844 (((-1031 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232))) 43))) -(((-628) (-10 -7 (-15 -2598 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2598 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2598 ((-1031 (-199)) (-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -1844 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2993 ((-1031 (-199)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-578 (-232)))) (-15 -1188 ((-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -628)) -((-1188 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-863 (-199)) (-199) (-199))) (-5 *1 (-628)))) (-2993 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))) (-1844 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))) (-2598 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-199))) (-5 *5 (-578 (-232))) (-5 *1 (-628)))) (-2598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-199))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))) (-2598 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628))))) -(-10 -7 (-15 -2598 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2598 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2598 ((-1031 (-199)) (-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -1844 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2993 ((-1031 (-199)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-578 (-232)))) (-15 -1188 ((-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))))) -((-3739 (((-373 (-1064 |#4|)) (-1064 |#4|)) 73) (((-373 |#4|) |#4|) 215))) -(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4|)) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|)))) (-777) (-723) (-318) (-870 |#3| |#2| |#1|)) (T -629)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-318)) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-629 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4))))) -(-10 -7 (-15 -3739 ((-373 |#4|) |#4|)) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 84)) (-2197 (((-501) $) 30)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2805 (($ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL)) (-2540 (($) NIL T CONST)) (-1453 (($ $) NIL)) (-3765 (((-3 (-501) "failed") $) 73) (((-3 (-375 (-501)) "failed") $) 26) (((-3 (-346) "failed") $) 70)) (-3490 (((-501) $) 75) (((-375 (-501)) $) 67) (((-346) $) 68)) (-3023 (($ $ $) 96)) (-2174 (((-3 $ "failed") $) 87)) (-3034 (($ $ $) 95)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3943 (((-839)) 77) (((-839) (-839)) 76)) (-2164 (((-107) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL)) (-3169 (((-501) $) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL)) (-2626 (($ $) NIL)) (-4067 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3973 (((-501) (-501)) 81) (((-501)) 82)) (-4111 (($ $ $) NIL) (($) NIL (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-2382 (((-501) (-501)) 79) (((-501)) 80)) (-1323 (($ $ $) NIL) (($) NIL (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-1828 (((-501) $) 16)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 91)) (-3039 (((-839) (-501)) NIL (|has| $ (-6 -4158)))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL)) (-3383 (($ $) NIL)) (-2017 (($ (-501) (-501)) NIL) (($ (-501) (-501) (-839)) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) 92)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3027 (((-501) $) 22)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 94)) (-3960 (((-839)) NIL) (((-839) (-839)) NIL (|has| $ (-6 -4158)))) (-1537 (((-839) (-501)) NIL (|has| $ (-6 -4158)))) (-1248 (((-346) $) NIL) (((-199) $) NIL) (((-810 (-346)) $) NIL)) (-3691 (((-786) $) 52) (($ (-501)) 63) (($ $) NIL) (($ (-375 (-501))) 66) (($ (-501)) 63) (($ (-375 (-501))) 66) (($ (-346)) 60) (((-346) $) 50) (($ (-632)) 55)) (-3965 (((-701)) 103)) (-1821 (($ (-501) (-501) (-839)) 44)) (-2803 (($ $) NIL)) (-2751 (((-839)) NIL) (((-839) (-839)) NIL (|has| $ (-6 -4158)))) (-1965 (((-839)) 35) (((-839) (-839)) 78)) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 32 T CONST)) (-1925 (($) 17 T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 83)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 101)) (-3803 (($ $ $) 65)) (-3797 (($ $) 99) (($ $ $) 100)) (-3790 (($ $ $) 98)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL) (($ $ (-375 (-501))) 90)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 97) (($ $ $) 88) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL))) -(((-630) (-13 (-372) (-355) (-331) (-950 (-346)) (-950 (-375 (-501))) (-134) (-10 -8 (-15 -3943 ((-839) (-839))) (-15 -3943 ((-839))) (-15 -1965 ((-839) (-839))) (-15 -1965 ((-839))) (-15 -2382 ((-501) (-501))) (-15 -2382 ((-501))) (-15 -3973 ((-501) (-501))) (-15 -3973 ((-501))) (-15 -3691 ((-346) $)) (-15 -3691 ($ (-632))) (-15 -1828 ((-501) $)) (-15 -3027 ((-501) $)) (-15 -1821 ($ (-501) (-501) (-839)))))) (T -630)) -((-1965 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-3943 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) (-1965 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-2382 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-3973 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-3973 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-346)) (-5 *1 (-630)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-632)) (-5 *1 (-630)))) (-1821 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-839)) (-5 *1 (-630))))) -(-13 (-372) (-355) (-331) (-950 (-346)) (-950 (-375 (-501))) (-134) (-10 -8 (-15 -3943 ((-839) (-839))) (-15 -3943 ((-839))) (-15 -1965 ((-839) (-839))) (-15 -1965 ((-839))) (-15 -2382 ((-501) (-501))) (-15 -2382 ((-501))) (-15 -3973 ((-501) (-501))) (-15 -3973 ((-501))) (-15 -3691 ((-346) $)) (-15 -3691 ($ (-632))) (-15 -1828 ((-501) $)) (-15 -3027 ((-501) $)) (-15 -1821 ($ (-501) (-501) (-839))))) -((-1683 (((-621 |#1|) (-621 |#1|) |#1| |#1|) 66)) (-1933 (((-621 |#1|) (-621 |#1|) |#1|) 49)) (-3578 (((-621 |#1|) (-621 |#1|) |#1|) 67)) (-2587 (((-621 |#1|) (-621 |#1|)) 50)) (-3496 (((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|) 65))) -(((-631 |#1|) (-10 -7 (-15 -2587 ((-621 |#1|) (-621 |#1|))) (-15 -1933 ((-621 |#1|) (-621 |#1|) |#1|)) (-15 -3578 ((-621 |#1|) (-621 |#1|) |#1|)) (-15 -1683 ((-621 |#1|) (-621 |#1|) |#1| |#1|)) (-15 -3496 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|))) (-276)) (T -631)) -((-3496 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-631 *3)) (-4 *3 (-276)))) (-1683 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))) (-3578 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))) (-1933 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))) (-2587 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3))))) -(-10 -7 (-15 -2587 ((-621 |#1|) (-621 |#1|))) (-15 -1933 ((-621 |#1|) (-621 |#1|) |#1|)) (-15 -3578 ((-621 |#1|) (-621 |#1|) |#1|)) (-15 -1683 ((-621 |#1|) (-621 |#1|) |#1| |#1|)) (-15 -3496 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2619 (($ $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL)) (-1525 (($ $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) 27)) (-3490 (((-501) $) 25)) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL)) (-1696 (((-107) $) NIL)) (-3518 (((-375 (-501)) $) NIL)) (-2890 (($ $) NIL) (($) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3185 (($ $ $ $) NIL)) (-2002 (($ $ $) NIL)) (-2164 (((-107) $) NIL)) (-2940 (($ $ $) NIL)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL)) (-1355 (((-107) $) NIL)) (-3729 (((-107) $) NIL)) (-3493 (((-3 $ "failed") $) NIL)) (-4067 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4124 (($ $ $ $) NIL)) (-4111 (($ $ $) NIL)) (-3816 (((-839) (-839)) 10) (((-839)) 9)) (-1323 (($ $ $) NIL)) (-4100 (($ $) NIL)) (-4139 (($ $) NIL)) (-1697 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3437 (($ $ $) NIL)) (-3746 (($) NIL T CONST)) (-2170 (($ $) NIL)) (-3708 (((-1018) $) NIL) (($ $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3260 (($ $) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL) (($ $ (-701)) NIL)) (-2565 (($ $) NIL)) (-3764 (($ $) NIL)) (-1248 (((-199) $) NIL) (((-346) $) NIL) (((-810 (-501)) $) NIL) (((-490) $) NIL) (((-501) $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) 24) (($ $) NIL) (($ (-501)) 24) (((-282 $) (-282 (-501))) 18)) (-3965 (((-701)) NIL)) (-1808 (((-107) $ $) NIL)) (-1299 (($ $ $) NIL)) (-1965 (($) NIL)) (-2442 (((-107) $ $) NIL)) (-3429 (($ $ $ $) NIL)) (-1720 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL) (($ $ (-701)) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL))) -(((-632) (-13 (-355) (-500) (-10 -8 (-15 -3816 ((-839) (-839))) (-15 -3816 ((-839))) (-15 -3691 ((-282 $) (-282 (-501))))))) (T -632)) -((-3816 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-632)))) (-3816 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-632)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-282 (-501))) (-5 *2 (-282 (-632))) (-5 *1 (-632))))) -(-13 (-355) (-500) (-10 -8 (-15 -3816 ((-839) (-839))) (-15 -3816 ((-839))) (-15 -3691 ((-282 $) (-282 (-501)))))) -((-1746 (((-1 |#4| |#2| |#3|) |#1| (-1070) (-1070)) 19)) (-2196 (((-1 |#4| |#2| |#3|) (-1070)) 12))) -(((-633 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2196 ((-1 |#4| |#2| |#3|) (-1070))) (-15 -1746 ((-1 |#4| |#2| |#3|) |#1| (-1070) (-1070)))) (-556 (-490)) (-1104) (-1104) (-1104)) (T -633)) -((-1746 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-633 *3 *5 *6 *7)) (-4 *3 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-633 *4 *5 *6 *7)) (-4 *4 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104))))) -(-10 -7 (-15 -2196 ((-1 |#4| |#2| |#3|) (-1070))) (-15 -1746 ((-1 |#4| |#2| |#3|) |#1| (-1070) (-1070)))) -((-3736 (((-107) $ $) NIL)) (-3782 (((-1154) $ (-701)) 14)) (-1934 (((-701) $) 12)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 25)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 24))) -(((-634 |#1|) (-13 (-124) (-555 |#1|) (-10 -8 (-15 -3691 ($ |#1|)))) (-1001)) (T -634)) -((-3691 (*1 *1 *2) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1001))))) -(-13 (-124) (-555 |#1|) (-10 -8 (-15 -3691 ($ |#1|)))) -((-1915 (((-1 (-199) (-199) (-199)) |#1| (-1070) (-1070)) 33) (((-1 (-199) (-199)) |#1| (-1070)) 38))) -(((-635 |#1|) (-10 -7 (-15 -1915 ((-1 (-199) (-199)) |#1| (-1070))) (-15 -1915 ((-1 (-199) (-199) (-199)) |#1| (-1070) (-1070)))) (-556 (-490))) (T -635)) -((-1915 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-635 *3)) (-4 *3 (-556 (-490))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-635 *3)) (-4 *3 (-556 (-490)))))) -(-10 -7 (-15 -1915 ((-1 (-199) (-199)) |#1| (-1070))) (-15 -1915 ((-1 (-199) (-199) (-199)) |#1| (-1070) (-1070)))) -((-1684 (((-1070) |#1| (-1070) (-578 (-1070))) 9) (((-1070) |#1| (-1070) (-1070) (-1070)) 12) (((-1070) |#1| (-1070) (-1070)) 11) (((-1070) |#1| (-1070)) 10))) -(((-636 |#1|) (-10 -7 (-15 -1684 ((-1070) |#1| (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-1070) (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-578 (-1070))))) (-556 (-490))) (T -636)) -((-1684 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) (-1684 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) (-1684 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) (-1684 (*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490)))))) -(-10 -7 (-15 -1684 ((-1070) |#1| (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-1070) (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-578 (-1070))))) -((-2024 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-637 |#1| |#2|) (-10 -7 (-15 -2024 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1104) (-1104)) (T -637)) -((-2024 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-637 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) -(-10 -7 (-15 -2024 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-1947 (((-1 |#3| |#2|) (-1070)) 11)) (-1746 (((-1 |#3| |#2|) |#1| (-1070)) 21))) -(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -1947 ((-1 |#3| |#2|) (-1070))) (-15 -1746 ((-1 |#3| |#2|) |#1| (-1070)))) (-556 (-490)) (-1104) (-1104)) (T -638)) -((-1746 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *3 *5 *6)) (-4 *3 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *4 *5 *6)) (-4 *4 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104))))) -(-10 -7 (-15 -1947 ((-1 |#3| |#2|) (-1070))) (-15 -1746 ((-1 |#3| |#2|) |#1| (-1070)))) -((-3711 (((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#4|)) (-578 |#3|) (-578 |#4|) (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#4|)))) (-578 (-701)) (-1148 (-578 (-1064 |#3|))) |#3|) 58)) (-3603 (((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#3|)) (-578 |#3|) (-578 |#4|) (-578 (-701)) |#3|) 71)) (-2242 (((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 |#3|) (-578 (-701)) (-578 (-1064 |#4|)) (-1148 (-578 (-1064 |#3|))) |#3|) 32))) -(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2242 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 |#3|) (-578 (-701)) (-578 (-1064 |#4|)) (-1148 (-578 (-1064 |#3|))) |#3|)) (-15 -3603 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#3|)) (-578 |#3|) (-578 |#4|) (-578 (-701)) |#3|)) (-15 -3711 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#4|)) (-578 |#3|) (-578 |#4|) (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#4|)))) (-578 (-701)) (-1148 (-578 (-1064 |#3|))) |#3|))) (-723) (-777) (-276) (-870 |#3| |#1| |#2|)) (T -639)) -((-3711 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-578 (-1064 *13))) (-5 *3 (-1064 *13)) (-5 *4 (-578 *12)) (-5 *5 (-578 *10)) (-5 *6 (-578 *13)) (-5 *7 (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| *13))))) (-5 *8 (-578 (-701))) (-5 *9 (-1148 (-578 (-1064 *10)))) (-4 *12 (-777)) (-4 *10 (-276)) (-4 *13 (-870 *10 *11 *12)) (-4 *11 (-723)) (-5 *1 (-639 *11 *12 *10 *13)))) (-3603 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-578 *11)) (-5 *5 (-578 (-1064 *9))) (-5 *6 (-578 *9)) (-5 *7 (-578 *12)) (-5 *8 (-578 (-701))) (-4 *11 (-777)) (-4 *9 (-276)) (-4 *12 (-870 *9 *10 *11)) (-4 *10 (-723)) (-5 *2 (-578 (-1064 *12))) (-5 *1 (-639 *10 *11 *9 *12)) (-5 *3 (-1064 *12)))) (-2242 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-578 (-1064 *11))) (-5 *3 (-1064 *11)) (-5 *4 (-578 *10)) (-5 *5 (-578 *8)) (-5 *6 (-578 (-701))) (-5 *7 (-1148 (-578 (-1064 *8)))) (-4 *10 (-777)) (-4 *8 (-276)) (-4 *11 (-870 *8 *9 *10)) (-4 *9 (-723)) (-5 *1 (-639 *9 *10 *8 *11))))) -(-10 -7 (-15 -2242 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 |#3|) (-578 (-701)) (-578 (-1064 |#4|)) (-1148 (-578 (-1064 |#3|))) |#3|)) (-15 -3603 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#3|)) (-578 |#3|) (-578 |#4|) (-578 (-701)) |#3|)) (-15 -3711 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#4|)) (-578 |#3|) (-578 |#4|) (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#4|)))) (-578 (-701)) (-1148 (-578 (-1064 |#3|))) |#3|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3858 (($ $) 43)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3787 (($ |#1| (-701)) 41)) (-2285 (((-701) $) 45)) (-3850 ((|#1| $) 44)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-1201 (((-701) $) 46)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 40 (|has| |#1| (-156)))) (-2495 ((|#1| $ (-701)) 42)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 48) (($ |#1| $) 47))) -(((-640 |#1|) (-1180) (-959)) (T -640)) -((-1201 (*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-959)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-959)))) (-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-640 *2)) (-4 *2 (-959)))) (-3787 (*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-640 *2)) (-4 *2 (-959))))) -(-13 (-959) (-106 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (-15 -1201 ((-701) $)) (-15 -2285 ((-701) $)) (-15 -3850 (|t#1| $)) (-15 -3858 ($ $)) (-15 -2495 (|t#1| $ (-701))) (-15 -3787 ($ |t#1| (-701))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) |has| |#1| (-156)) ((-657) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-1212 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-641 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1212 (|#6| (-1 |#4| |#1|) |#3|))) (-508) (-1125 |#1|) (-1125 (-375 |#2|)) (-508) (-1125 |#4|) (-1125 (-375 |#5|))) (T -641)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-508)) (-4 *7 (-508)) (-4 *6 (-1125 *5)) (-4 *2 (-1125 (-375 *8))) (-5 *1 (-641 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1125 (-375 *6))) (-4 *8 (-1125 *7))))) -(-10 -7 (-15 -1212 (|#6| (-1 |#4| |#1|) |#3|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL)) (-3547 (($ |#1| |#2|) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3121 ((|#2| $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1626 (((-3 $ "failed") $ $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) ((|#1| $) NIL)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL))) -(((-642 |#1| |#2| |#3| |#4| |#5|) (-13 (-331) (-10 -8 (-15 -3121 (|#2| $)) (-15 -3691 (|#1| $)) (-15 -3547 ($ |#1| |#2|)) (-15 -1626 ((-3 $ "failed") $ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -642)) -((-3121 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-642 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3691 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3547 (*1 *1 *2 *3) (-12 (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1626 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-331) (-10 -8 (-15 -3121 (|#2| $)) (-15 -3691 (|#1| $)) (-15 -3547 ($ |#1| |#2|)) (-15 -1626 ((-3 $ "failed") $ $)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 30)) (-3077 (((-1148 |#1|) $ (-701)) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3081 (($ (-1064 |#1|)) NIL)) (-3728 (((-1064 $) $ (-986)) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-986))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1855 (($ $ $) NIL (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3796 (((-701)) 46 (|has| |#1| (-336)))) (-3643 (($ $ (-701)) NIL)) (-2222 (($ $ (-701)) NIL)) (-3466 ((|#2| |#2|) 43)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-419)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-986) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-986) $) NIL)) (-1749 (($ $ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $ $) NIL (|has| |#1| (-156)))) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) 33)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-3547 (($ |#2|) 41)) (-2174 (((-3 $ "failed") $) 84)) (-2890 (($) 50 (|has| |#1| (-336)))) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-4094 (($ $ $) NIL)) (-3470 (($ $ $) NIL (|has| |#1| (-508)))) (-2352 (((-2 (|:| -3189 |#1|) (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3257 (((-877 $)) 78)) (-3503 (($ $ |#1| (-701) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-986) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-986) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ $) NIL (|has| |#1| (-508)))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-1046)))) (-3794 (($ (-1064 |#1|) (-986)) NIL) (($ (-1064 $) (-986)) NIL)) (-2917 (($ $ (-701)) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) 76) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-986)) NIL) (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3121 ((|#2|) 44)) (-2285 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-701) (-701)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1704 (((-1064 |#1|) $) NIL)) (-2752 (((-3 (-986) "failed") $) NIL)) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-1316 ((|#2| $) 40)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) 28)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-986)) (|:| -3027 (-701))) "failed") $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) NIL (|has| |#1| (-1046)) CONST)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3407 (($ $) 77 (|has| |#1| (-318)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-986) |#1|) NIL) (($ $ (-578 (-986)) (-578 |#1|)) NIL) (($ $ (-986) $) NIL) (($ $ (-578 (-986)) (-578 $)) NIL)) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-375 $) (-375 $) (-375 $)) NIL (|has| |#1| (-508))) ((|#1| (-375 $) |#1|) NIL (|has| |#1| (-331))) (((-375 $) $ (-375 $)) NIL (|has| |#1| (-508)))) (-2158 (((-3 $ "failed") $ (-701)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 85 (|has| |#1| (-331)))) (-2532 (($ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2596 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1201 (((-701) $) 31) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-986) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-1447 (((-877 $)) 35)) (-3913 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508))) (((-3 (-375 $) "failed") (-375 $) $) NIL (|has| |#1| (-508)))) (-3691 (((-786) $) 60) (($ (-501)) NIL) (($ |#1|) 57) (($ (-986)) NIL) (($ |#2|) 67) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) 62) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 20 T CONST)) (-3008 (((-1148 |#1|) $) 74)) (-3238 (($ (-1148 |#1|)) 49)) (-1925 (($) 8 T CONST)) (-3584 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1392 (((-1148 |#1|) $) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 68)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) 71) (($ $ $) NIL)) (-3790 (($ $ $) 32)) (** (($ $ (-839)) NIL) (($ $ (-701)) 79)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 56) (($ $ $) 73) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 54) (($ $ |#1|) NIL))) -(((-643 |#1| |#2|) (-13 (-1125 |#1|) (-10 -8 (-15 -3466 (|#2| |#2|)) (-15 -3121 (|#2|)) (-15 -3547 ($ |#2|)) (-15 -1316 (|#2| $)) (-15 -3691 ($ |#2|)) (-15 -3008 ((-1148 |#1|) $)) (-15 -3238 ($ (-1148 |#1|))) (-15 -1392 ((-1148 |#1|) $)) (-15 -3257 ((-877 $))) (-15 -1447 ((-877 $))) (IF (|has| |#1| (-318)) (-15 -3407 ($ $)) |noBranch|) (IF (|has| |#1| (-336)) (-6 (-336)) |noBranch|))) (-959) (-1125 |#1|)) (T -643)) -((-3466 (*1 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3)))) (-3121 (*1 *2) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-643 *3 *2)) (-4 *3 (-959)))) (-3547 (*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3)))) (-1316 (*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-643 *3 *2)) (-4 *3 (-959)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3)))) (-3008 (*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-1148 *3)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-959)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))) (-1392 (*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-1148 *3)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))) (-3257 (*1 *2) (-12 (-4 *3 (-959)) (-5 *2 (-877 (-643 *3 *4))) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))) (-1447 (*1 *2) (-12 (-4 *3 (-959)) (-5 *2 (-877 (-643 *3 *4))) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))) (-3407 (*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *2 (-959)) (-5 *1 (-643 *2 *3)) (-4 *3 (-1125 *2))))) -(-13 (-1125 |#1|) (-10 -8 (-15 -3466 (|#2| |#2|)) (-15 -3121 (|#2|)) (-15 -3547 ($ |#2|)) (-15 -1316 (|#2| $)) (-15 -3691 ($ |#2|)) (-15 -3008 ((-1148 |#1|) $)) (-15 -3238 ($ (-1148 |#1|))) (-15 -1392 ((-1148 |#1|) $)) (-15 -3257 ((-877 $))) (-15 -1447 ((-877 $))) (IF (|has| |#1| (-318)) (-15 -3407 ($ $)) |noBranch|) (IF (|has| |#1| (-336)) (-6 (-336)) |noBranch|))) -((-3736 (((-107) $ $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3506 ((|#1| $) 13)) (-3708 (((-1018) $) NIL)) (-3027 ((|#2| $) 12)) (-3699 (($ |#1| |#2|) 16)) (-3691 (((-786) $) NIL) (($ (-2 (|:| -3506 |#1|) (|:| -3027 |#2|))) 15) (((-2 (|:| -3506 |#1|) (|:| -3027 |#2|)) $) 14)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 11))) -(((-644 |#1| |#2| |#3|) (-13 (-777) (-10 -8 (-15 -3027 (|#2| $)) (-15 -3506 (|#1| $)) (-15 -3691 ($ (-2 (|:| -3506 |#1|) (|:| -3027 |#2|)))) (-15 -3691 ((-2 (|:| -3506 |#1|) (|:| -3027 |#2|)) $)) (-15 -3699 ($ |#1| |#2|)))) (-777) (-1001) (-1 (-107) (-2 (|:| -3506 |#1|) (|:| -3027 |#2|)) (-2 (|:| -3506 |#1|) (|:| -3027 |#2|)))) (T -644)) -((-3027 (*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-644 *3 *2 *4)) (-4 *3 (-777)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *3) (|:| -3027 *2)) (-2 (|:| -3506 *3) (|:| -3027 *2)))))) (-3506 (*1 *2 *1) (-12 (-4 *2 (-777)) (-5 *1 (-644 *2 *3 *4)) (-4 *3 (-1001)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *3)) (-2 (|:| -3506 *2) (|:| -3027 *3)))))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3506 *3) (|:| -3027 *4))) (-4 *3 (-777)) (-4 *4 (-1001)) (-5 *1 (-644 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3506 *3) (|:| -3027 *4))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-1001)) (-14 *5 (-1 (-107) *2 *2)))) (-3699 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-777)) (-4 *3 (-1001)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *3)) (-2 (|:| -3506 *2) (|:| -3027 *3))))))) -(-13 (-777) (-10 -8 (-15 -3027 (|#2| $)) (-15 -3506 (|#1| $)) (-15 -3691 ($ (-2 (|:| -3506 |#1|) (|:| -3027 |#2|)))) (-15 -3691 ((-2 (|:| -3506 |#1|) (|:| -3027 |#2|)) $)) (-15 -3699 ($ |#1| |#2|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 59)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 89) (((-3 (-108) "failed") $) 95)) (-3490 ((|#1| $) NIL) (((-108) $) 39)) (-2174 (((-3 $ "failed") $) 90)) (-1289 ((|#2| (-108) |#2|) 82)) (-1355 (((-107) $) NIL)) (-2100 (($ |#1| (-329 (-108))) 13)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1310 (($ $ (-1 |#2| |#2|)) 58)) (-3508 (($ $ (-1 |#2| |#2|)) 44)) (-2007 ((|#2| $ |#2|) 32)) (-2454 ((|#1| |#1|) 100 (|has| |#1| (-156)))) (-3691 (((-786) $) 66) (($ (-501)) 17) (($ |#1|) 16) (($ (-108)) 23)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) 36)) (-3774 (($ $) 99 (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-156)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 20 T CONST)) (-1925 (($) 9 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) 48) (($ $ $) NIL)) (-3790 (($ $ $) 73)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ (-108) (-501)) NIL) (($ $ (-501)) 57)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-156))) (($ $ |#1|) 97 (|has| |#1| (-156))))) -(((-645 |#1| |#2|) (-13 (-959) (-950 |#1|) (-950 (-108)) (-256 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3774 ($ $)) (-15 -3774 ($ $ $)) (-15 -2454 (|#1| |#1|))) |noBranch|) (-15 -3508 ($ $ (-1 |#2| |#2|))) (-15 -1310 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-108) (-501))) (-15 ** ($ $ (-501))) (-15 -1289 (|#2| (-108) |#2|)) (-15 -2100 ($ |#1| (-329 (-108)))))) (-959) (-583 |#1|)) (T -645)) -((-3774 (*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) (-3774 (*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) (-2454 (*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) (-3508 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-583 *3)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)))) (-1310 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-583 *3)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-645 *4 *5)) (-4 *5 (-583 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)) (-4 *4 (-583 *3)))) (-1289 (*1 *2 *3 *2) (-12 (-5 *3 (-108)) (-4 *4 (-959)) (-5 *1 (-645 *4 *2)) (-4 *2 (-583 *4)))) (-2100 (*1 *1 *2 *3) (-12 (-5 *3 (-329 (-108))) (-4 *2 (-959)) (-5 *1 (-645 *2 *4)) (-4 *4 (-583 *2))))) -(-13 (-959) (-950 |#1|) (-950 (-108)) (-256 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3774 ($ $)) (-15 -3774 ($ $ $)) (-15 -2454 (|#1| |#1|))) |noBranch|) (-15 -3508 ($ $ (-1 |#2| |#2|))) (-15 -1310 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-108) (-501))) (-15 ** ($ $ (-501))) (-15 -1289 (|#2| (-108) |#2|)) (-15 -2100 ($ |#1| (-329 (-108)))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 33)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3547 (($ |#1| |#2|) 25)) (-2174 (((-3 $ "failed") $) 47)) (-1355 (((-107) $) 35)) (-3121 ((|#2| $) 12)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 48)) (-3708 (((-1018) $) NIL)) (-1626 (((-3 $ "failed") $ $) 46)) (-3691 (((-786) $) 24) (($ (-501)) 19) ((|#1| $) 13)) (-3965 (((-701)) 28)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 16 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 38)) (-3797 (($ $) 43) (($ $ $) 37)) (-3790 (($ $ $) 40)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 21) (($ $ $) 20))) -(((-646 |#1| |#2| |#3| |#4| |#5|) (-13 (-959) (-10 -8 (-15 -3121 (|#2| $)) (-15 -3691 (|#1| $)) (-15 -3547 ($ |#1| |#2|)) (-15 -1626 ((-3 $ "failed") $ $)) (-15 -2174 ((-3 $ "failed") $)) (-15 -3833 ($ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -646)) -((-2174 (*1 *1 *1) (|partial| -12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3121 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-646 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3691 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3547 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1626 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3833 (*1 *1 *1) (-12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-959) (-10 -8 (-15 -3121 (|#2| $)) (-15 -3691 (|#1| $)) (-15 -3547 ($ |#1| |#2|)) (-15 -1626 ((-3 $ "failed") $ $)) (-15 -2174 ((-3 $ "failed") $)) (-15 -3833 ($ $)))) -((* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-647 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) (-648 |#2|) (-156)) (T -647)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 24) (($ $ |#1|) 27))) -(((-648 |#1|) (-1180) (-156)) (T -648)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 15)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1787 ((|#1| $) 21)) (-2967 (($ $ $) NIL (|has| |#1| (-723)))) (-3099 (($ $ $) NIL (|has| |#1| (-723)))) (-3985 (((-1056) $) 46)) (-3206 (((-1021) $) NIL)) (-1800 ((|#3| $) 22)) (-2256 (((-787) $) 42)) (-2396 (($) 10 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1547 (((-107) $ $) 20)) (-1595 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1572 (((-107) $ $) 24 (|has| |#1| (-723)))) (-1667 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1654 (($ $) 17) (($ $ $) NIL)) (-1642 (($ $ $) 27)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-599 |#1| |#2| |#3|) (-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $)))) (-650 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -599)) +((-1667 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1667 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-1800 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4))))) +(-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $)))) +((-1950 (((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|)) 33))) +(((-600 |#1|) (-10 -7 (-15 -1950 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|)))) (-831)) (T -600)) +((-1950 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *4))) (-5 *3 (-1069 *4)) (-4 *4 (-831)) (-5 *1 (-600 *4))))) +(-10 -7 (-15 -1950 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 82)) (-3883 (($ $ (-703)) 90)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3791 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 48)) (-1772 (((-3 (-608 |#1|) "failed") $) NIL)) (-3189 (((-608 |#1|) $) NIL)) (-1212 (($ $) 89)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-608 |#1|) |#2|) 68)) (-2402 (($ $) 86)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-2208 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 47)) (-2854 (((-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4152 (((-608 |#1|) $) NIL)) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2051 (($ $ |#1| $) 30) (($ $ (-583 |#1|) (-583 $)) 32)) (-3688 (((-703) $) 88)) (-2276 (($ $ $) 20) (($ (-608 |#1|) (-608 |#1|)) 77) (($ (-608 |#1|) $) 75) (($ $ (-608 |#1|)) 76)) (-2256 (((-787) $) NIL) (($ |#1|) 74) (((-1166 |#1| |#2|) $) 58) (((-1175 |#1| |#2|) $) 41) (($ (-608 |#1|)) 25)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-608 |#1|)) NIL)) (-1931 ((|#2| (-1175 |#1| |#2|) $) 43)) (-2396 (($) 23 T CONST)) (-2332 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2908 (((-3 $ "failed") (-1166 |#1| |#2|)) 60)) (-1691 (($ (-608 |#1|)) 14)) (-1547 (((-107) $ $) 44)) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) 66) (($ $ $) NIL)) (-1642 (($ $ $) 29)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-608 |#1|)) NIL))) +(((-601 |#1| |#2|) (-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -2908 ((-3 $ "failed") (-1166 |#1| |#2|))) (-15 -2276 ($ (-608 |#1|) (-608 |#1|))) (-15 -2276 ($ (-608 |#1|) $)) (-15 -2276 ($ $ (-608 |#1|))))) (-779) (-156)) (T -601)) +((-2908 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) (-2276 (*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2276 (*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156))))) +(-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -2908 ((-3 $ "failed") (-1166 |#1| |#2|))) (-15 -2276 ($ (-608 |#1|) (-608 |#1|))) (-15 -2276 ($ (-608 |#1|) $)) (-15 -2276 ($ $ (-608 |#1|))))) +((-2044 (((-107) $) NIL) (((-107) (-1 (-107) |#2| |#2|) $) 49)) (-2034 (($ $) NIL) (($ (-1 (-107) |#2| |#2|) $) 11)) (-2337 (($ (-1 (-107) |#2|) $) 27)) (-4020 (($ $) 55)) (-3483 (($ $) 62)) (-3212 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 36)) (-3225 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-2607 (((-517) |#2| $ (-517)) 60) (((-517) |#2| $) NIL) (((-517) (-1 (-107) |#2|) $) 46)) (-3462 (($ (-703) |#2|) 53)) (-2797 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 29)) (-3237 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 24)) (-1893 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-1529 (($ |#2|) 14)) (-1710 (($ $ $ (-517)) 35) (($ |#2| $ (-517)) 33)) (-2887 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 45)) (-2154 (($ $ (-1121 (-517))) 43) (($ $ (-517)) 37)) (-1906 (($ $ $ (-517)) 59)) (-2433 (($ $) 57)) (-1572 (((-107) $ $) 64))) +(((-602 |#1| |#2|) (-10 -8 (-15 -1529 (|#1| |#2|)) (-15 -2154 (|#1| |#1| (-517))) (-15 -2154 (|#1| |#1| (-1121 (-517)))) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1710 (|#1| |#2| |#1| (-517))) (-15 -1710 (|#1| |#1| |#1| (-517))) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -4020 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3462 (|#1| (-703) |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|))) (-603 |#2|) (-1108)) (T -602)) +NIL +(-10 -8 (-15 -1529 (|#1| |#2|)) (-15 -2154 (|#1| |#1| (-517))) (-15 -2154 (|#1| |#1| (-1121 (-517)))) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1710 (|#1| |#2| |#1| (-517))) (-15 -1710 (|#1| |#1| |#1| (-517))) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -4020 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3462 (|#1| (-703) |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|))) +((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1668 (((-1158) $ (-517) (-517)) 97 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2044 (((-107) $) 142 (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) 136)) (-2034 (($ $) 146 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181)))) (($ (-1 (-107) |#1| |#1|) $) 145 (|has| $ (-6 -4181)))) (-3166 (($ $) 141 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) 135)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 117 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) 129)) (-3536 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4180)))) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-4020 (($ $) 144 (|has| $ (-6 -4181)))) (-3093 (($ $) 134)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-3483 (($ $) 131 (|has| |#1| (-1003)))) (-1679 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 130 (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) 125)) (-2052 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4180))) (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1445 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 87)) (-3811 (((-107) $) 83)) (-2607 (((-517) |#1| $ (-517)) 139 (|has| |#1| (-1003))) (((-517) |#1| $) 138 (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) 137)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) 108)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 95 (|has| (-517) (-779)))) (-2967 (($ $ $) 147 (|has| |#1| (-779)))) (-2797 (($ $ $) 132 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 128)) (-3237 (($ $ $) 140 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 133)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 94 (|has| (-517) (-779)))) (-3099 (($ $ $) 148 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1529 (($ |#1|) 122)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-1710 (($ $ $ (-517)) 127) (($ |#1| $ (-517)) 126)) (-2620 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1857 (((-583 (-517)) $) 92)) (-4088 (((-107) (-517) $) 91)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2565 (($ $ |#1|) 96 (|has| $ (-6 -4181)))) (-2348 (((-107) $) 84)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 90)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1121 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2459 (((-517) $ $) 44)) (-2154 (($ $ (-1121 (-517))) 124) (($ $ (-517)) 123)) (-3750 (($ $ (-1121 (-517))) 114) (($ $ (-517)) 113)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 143 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 107)) (-2568 (($ $ $) 61) (($ $ |#1|) 60)) (-2452 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 150 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 151 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 149 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 152 (|has| |#1| (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-603 |#1|) (-1184) (-1108)) (T -603)) +((-1529 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1108))))) +(-13 (-1047 |t#1|) (-343 |t#1|) (-254 |t#1|) (-10 -8 (-15 -1529 ($ |t#1|)))) +(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-254 |#1|) . T) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-926 |#1|) . T) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1047 |#1|) . T) ((-1108) . T) ((-1142 |#1|) . T)) +((-1674 (((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-583 (-583 |#1|)) (-583 (-1153 |#1|))) 21) (((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-623 |#1|) (-583 (-1153 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-583 (-583 |#1|)) (-1153 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|)) 13)) (-2261 (((-703) (-623 |#1|) (-1153 |#1|)) 29)) (-2679 (((-3 (-1153 |#1|) "failed") (-623 |#1|) (-1153 |#1|)) 23)) (-3836 (((-107) (-623 |#1|) (-1153 |#1|)) 26))) +(((-604 |#1|) (-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|))) (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-583 (-583 |#1|)) (-1153 |#1|))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-623 |#1|) (-583 (-1153 |#1|)))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-583 (-583 |#1|)) (-583 (-1153 |#1|)))) (-15 -2679 ((-3 (-1153 |#1|) "failed") (-623 |#1|) (-1153 |#1|))) (-15 -3836 ((-107) (-623 |#1|) (-1153 |#1|))) (-15 -2261 ((-703) (-623 |#1|) (-1153 |#1|)))) (-333)) (T -604)) +((-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) (-3836 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) (-2679 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1153 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5))))) +(-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|))) (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-583 (-583 |#1|)) (-1153 |#1|))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-623 |#1|) (-583 (-1153 |#1|)))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-583 (-583 |#1|)) (-583 (-1153 |#1|)))) (-15 -2679 ((-3 (-1153 |#1|) "failed") (-623 |#1|) (-1153 |#1|))) (-15 -3836 ((-107) (-623 |#1|) (-1153 |#1|))) (-15 -2261 ((-703) (-623 |#1|) (-1153 |#1|)))) +((-1674 (((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|)))) |#4| (-583 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|) 45)) (-2261 (((-703) |#4| |#3|) 17)) (-2679 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3836 (((-107) |#4| |#3|) 13))) +(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|)) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -2679 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3836 ((-107) |#4| |#3|)) (-15 -2261 ((-703) |#4| |#3|))) (-333) (-13 (-343 |#1|) (-10 -7 (-6 -4181))) (-13 (-343 |#1|) (-10 -7 (-6 -4181))) (-621 |#1| |#2| |#3|)) (T -605)) +((-2261 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3836 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-2679 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) (-1674 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1753 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) (-1674 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4))))) +(-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|)) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -2679 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3836 ((-107) |#4| |#3|)) (-15 -2261 ((-703) |#4| |#3|))) +((-1485 (((-2 (|:| |particular| (-3 (-1153 (-377 |#4|)) "failed")) (|:| -1753 (-583 (-1153 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)) 44))) +(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1485 ((-2 (|:| |particular| (-3 (-1153 (-377 |#4|)) "failed")) (|:| -1753 (-583 (-1153 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-509) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -606)) +((-1485 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 (-377 *8)) "failed")) (|:| -1753 (-583 (-1153 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8))))) +(-10 -7 (-15 -1485 ((-2 (|:| |particular| (-3 (-1153 (-377 |#4|)) "failed")) (|:| -1753 (-583 (-1153 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1472 ((|#2| $) NIL)) (-2818 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#2|))) NIL) (((-1153 (-623 |#2|)) (-1153 $)) NIL)) (-3213 (((-107) $) NIL)) (-3456 (((-1153 $)) 37)) (-2953 (((-107) $ (-703)) NIL)) (-3487 (($ |#2|) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) NIL (|has| |#2| (-278)))) (-1939 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-1450 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2619 (((-623 |#2|)) NIL) (((-623 |#2|) (-1153 $)) NIL)) (-2299 ((|#2| $) NIL)) (-3343 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1153 $)) NIL)) (-2158 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-2436 (((-1069 (-874 |#2|))) NIL (|has| |#2| (-333)))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#2| $) NIL)) (-2417 (((-1069 |#2|) $) NIL (|has| |#2| (-509)))) (-4069 ((|#2|) NIL) ((|#2| (-1153 $)) NIL)) (-2085 (((-1069 |#2|) $) NIL)) (-2362 (((-107)) NIL)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-1967 (($ (-1153 |#2|)) NIL) (($ (-1153 |#2|) (-1153 $)) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2261 (((-703) $) NIL (|has| |#2| (-509))) (((-843)) 38)) (-1377 ((|#2| $ (-517) (-517)) NIL)) (-3962 (((-107)) NIL)) (-3730 (($ $ (-843)) NIL)) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL)) (-1948 (((-703) $) NIL (|has| |#2| (-509)))) (-3706 (((-583 (-214 |#1| |#2|)) $) NIL (|has| |#2| (-509)))) (-1477 (((-703) $) NIL)) (-2754 (((-107)) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#2| $) NIL (|has| |#2| (-6 (-4182 "*"))))) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#2|))) NIL)) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3035 (((-583 (-583 |#2|)) $) NIL)) (-3983 (((-107)) NIL)) (-3414 (((-107)) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-1793 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2010 (((-623 |#2|)) NIL) (((-623 |#2|) (-1153 $)) NIL)) (-1188 ((|#2| $) NIL)) (-3914 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1153 $)) NIL)) (-1680 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-2300 (((-1069 (-874 |#2|))) NIL (|has| |#2| (-333)))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#2| $) NIL)) (-4121 (((-1069 |#2|) $) NIL (|has| |#2| (-509)))) (-1988 ((|#2|) NIL) ((|#2| (-1153 $)) NIL)) (-2190 (((-1069 |#2|) $) NIL)) (-3606 (((-107)) NIL)) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL)) (-1286 (((-107)) NIL)) (-1848 (((-107)) NIL)) (-2104 (((-3 $ "failed") $) NIL (|has| |#2| (-333)))) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) NIL)) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) 22) ((|#2| $ (-517)) NIL)) (-3127 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-2671 ((|#2| $) NIL)) (-1879 (($ (-583 |#2|)) NIL)) (-1516 (((-107) $) NIL)) (-2803 (((-214 |#1| |#2|) $) NIL)) (-3057 ((|#2| $) NIL (|has| |#2| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-4114 (((-623 |#2|) (-1153 $)) NIL) (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $ (-1153 $)) 25)) (-3645 (($ (-1153 |#2|)) NIL) (((-1153 |#2|) $) NIL)) (-2278 (((-583 (-874 |#2|))) NIL) (((-583 (-874 |#2|)) (-1153 $)) NIL)) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL)) (-3728 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) 36)) (-1582 (((-583 (-1153 |#2|))) NIL (|has| |#2| (-509)))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL)) (-1587 (($ (-623 |#2|) $) NIL)) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL)) (-2524 (((-107)) NIL)) (-3642 (((-107)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) NIL) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-607 |#1| |#2|) (-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|)) (-843) (-156)) (T -607)) +NIL +(-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|)) +((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) NIL)) (-3652 (($ $) 50)) (-3153 (((-107) $) NIL)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2833 (((-3 $ "failed") (-751 |#1|)) 22)) (-2247 (((-107) (-751 |#1|)) 14)) (-2714 (($ (-751 |#1|)) 23)) (-3109 (((-107) $ $) 28)) (-2195 (((-843) $) 35)) (-3639 (($ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3755 (((-583 $) (-751 |#1|)) 16)) (-2256 (((-787) $) 41) (($ |#1|) 32) (((-751 |#1|) $) 37) (((-612 |#1|) $) 42)) (-2514 (((-57 (-583 $)) (-583 |#1|) (-843)) 55)) (-2479 (((-583 $) (-583 |#1|) (-843)) 57)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 51)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 36))) +(((-608 |#1|) (-13 (-779) (-952 |#1|) (-10 -8 (-15 -3153 ((-107) $)) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ((-612 |#1|) $)) (-15 -3755 ((-583 $) (-751 |#1|))) (-15 -2247 ((-107) (-751 |#1|))) (-15 -2714 ($ (-751 |#1|))) (-15 -2833 ((-3 $ "failed") (-751 |#1|))) (-15 -3463 ((-583 |#1|) $)) (-15 -2514 ((-57 (-583 $)) (-583 |#1|) (-843))) (-15 -2479 ((-583 $) (-583 |#1|) (-843))))) (-779)) (T -608)) +((-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3639 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3652 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3109 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))) (-2714 (*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-2833 (*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5))))) +(-13 (-779) (-952 |#1|) (-10 -8 (-15 -3153 ((-107) $)) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ((-612 |#1|) $)) (-15 -3755 ((-583 $) (-751 |#1|))) (-15 -2247 ((-107) (-751 |#1|))) (-15 -2714 ($ (-751 |#1|))) (-15 -2833 ((-3 $ "failed") (-751 |#1|))) (-15 -3463 ((-583 |#1|) $)) (-15 -2514 ((-57 (-583 $)) (-583 |#1|) (-843))) (-15 -2479 ((-583 $) (-583 |#1|) (-843))))) +((-3199 ((|#2| $) 76)) (-2779 (($ $) 96)) (-2953 (((-107) $ (-703)) 26)) (-1660 (($ $) 85) (($ $ (-703)) 88)) (-3811 (((-107) $) 97)) (-3063 (((-583 $) $) 72)) (-1272 (((-107) $ $) 71)) (-2550 (((-107) $ (-703)) 24)) (-3243 (((-517) $) 46)) (-3482 (((-517) $) 45)) (-3847 (((-107) $ (-703)) 22)) (-1763 (((-107) $) 74)) (-2068 ((|#2| $) 89) (($ $ (-703)) 92)) (-2620 (($ $ $ (-517)) 62) (($ |#2| $ (-517)) 61)) (-1857 (((-583 (-517)) $) 44)) (-4088 (((-107) (-517) $) 42)) (-1647 ((|#2| $) NIL) (($ $ (-703)) 84)) (-1672 (($ $ (-517)) 99)) (-2348 (((-107) $) 98)) (-2048 (((-107) (-1 (-107) |#2|) $) 32)) (-1941 (((-583 |#2|) $) 33)) (-1449 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1121 (-517))) 58) ((|#2| $ (-517)) 40) ((|#2| $ (-517) |#2|) 41)) (-2459 (((-517) $ $) 70)) (-3750 (($ $ (-1121 (-517))) 57) (($ $ (-517)) 51)) (-2655 (((-107) $) 66)) (-2552 (($ $) 81)) (-2691 (((-703) $) 80)) (-1761 (($ $) 79)) (-2276 (($ (-583 |#2|)) 37)) (-1545 (($ $) 100)) (-1479 (((-583 $) $) 69)) (-2732 (((-107) $ $) 68)) (-3675 (((-107) (-1 (-107) |#2|) $) 31)) (-1547 (((-107) $ $) 18)) (-2296 (((-703) $) 29))) +(((-609 |#1| |#2|) (-10 -8 (-15 -1545 (|#1| |#1|)) (-15 -1672 (|#1| |#1| (-517))) (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1941 ((-583 |#2|) |#1|)) (-15 -4088 ((-107) (-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -3482 ((-517) |#1|)) (-15 -3243 ((-517) |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -2459 ((-517) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703)))) (-610 |#2|) (-1108)) (T -609)) +NIL +(-10 -8 (-15 -1545 (|#1| |#1|)) (-15 -1672 (|#1| |#1| (-517))) (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1941 ((-583 |#2|) |#1|)) (-15 -4088 ((-107) (-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -3482 ((-517) |#1|)) (-15 -3243 ((-517) |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -2459 ((-517) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703)))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1668 (((-1158) $ (-517) (-517)) 97 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 117 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 102)) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-3861 (($ $) 124)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-1679 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 103)) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1445 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 87)) (-3811 (((-107) $) 83)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-4097 (((-703) $) 123)) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) 108)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 95 (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 94 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3258 (($ $) 126)) (-2202 (((-107) $) 127)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-2620 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1857 (((-583 (-517)) $) 92)) (-4088 (((-107) (-517) $) 91)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2279 ((|#1| $) 125)) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2565 (($ $ |#1|) 96 (|has| $ (-6 -4181)))) (-1672 (($ $ (-517)) 122)) (-2348 (((-107) $) 84)) (-3980 (((-107) $) 128)) (-3660 (((-107) $) 129)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 90)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1121 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2459 (((-517) $ $) 44)) (-3750 (($ $ (-1121 (-517))) 114) (($ $ (-517)) 113)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 107)) (-2568 (($ $ $) 61 (|has| $ (-6 -4181))) (($ $ |#1|) 60 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-1545 (($ $) 121)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-610 |#1|) (-1184) (-1108)) (T -610)) +((-2052 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) (-3536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3980 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3258 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) (-3861 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108))))) +(-13 (-1047 |t#1|) (-10 -8 (-15 -2052 ($ (-1 (-107) |t#1|) $)) (-15 -3536 ($ (-1 (-107) |t#1|) $)) (-15 -3660 ((-107) $)) (-15 -3980 ((-107) $)) (-15 -2202 ((-107) $)) (-15 -3258 ($ $)) (-15 -2279 (|t#1| $)) (-15 -3861 ($ $)) (-15 -4097 ((-703) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $)))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1047 |#1|) . T) ((-1108) . T) ((-1142 |#1|) . T)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3486 (($ (-703) (-703) (-703)) 33 (|has| |#1| (-961)))) (-2953 (((-107) $ (-703)) NIL)) (-3724 ((|#1| $ (-703) (-703) (-703) |#1|) 27)) (-3092 (($) NIL T CONST)) (-2662 (($ $ $) 37 (|has| |#1| (-961)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3260 (((-1153 (-703)) $) 8)) (-3398 (($ (-1073) $ $) 22)) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3857 (($ (-703)) 35 (|has| |#1| (-961)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-703) (-703) (-703)) 25)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2276 (($ (-583 (-583 (-583 |#1|)))) 44)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-879 (-879 (-879 |#1|)))) 15) (((-879 (-879 (-879 |#1|))) $) 12)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-611 |#1|) (-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-961)) (PROGN (-15 -3486 ($ (-703) (-703) (-703))) (-15 -3857 ($ (-703))) (-15 -2662 ($ $ $))) |noBranch|) (-15 -2276 ($ (-583 (-583 (-583 |#1|))))) (-15 -1449 (|#1| $ (-703) (-703) (-703))) (-15 -3724 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2256 ($ (-879 (-879 (-879 |#1|))))) (-15 -2256 ((-879 (-879 (-879 |#1|))) $)) (-15 -3398 ($ (-1073) $ $)) (-15 -3260 ((-1153 (-703)) $)))) (-1003)) (T -611)) +((-3486 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))) (-2662 (*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-961)) (-4 *2 (-1003)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) (-1449 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) (-3724 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) (-3398 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-1153 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1003))))) +(-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-961)) (PROGN (-15 -3486 ($ (-703) (-703) (-703))) (-15 -3857 ($ (-703))) (-15 -2662 ($ $ $))) |noBranch|) (-15 -2276 ($ (-583 (-583 (-583 |#1|))))) (-15 -1449 (|#1| $ (-703) (-703) (-703))) (-15 -3724 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2256 ($ (-879 (-879 (-879 |#1|))))) (-15 -2256 ((-879 (-879 (-879 |#1|))) $)) (-15 -3398 ($ (-1073) $ $)) (-15 -3260 ((-1153 (-703)) $)))) +((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) 14)) (-3652 (($ $) 18)) (-3153 (((-107) $) 19)) (-1772 (((-3 |#1| "failed") $) 22)) (-3189 ((|#1| $) 20)) (-1660 (($ $) 36)) (-2402 (($ $) 24)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3109 (((-107) $ $) 41)) (-2195 (((-843) $) 38)) (-3639 (($ $) 17)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 ((|#1| $) 35)) (-2256 (((-787) $) 31) (($ |#1|) 23) (((-751 |#1|) $) 27)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 12)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 40)) (* (($ $ $) 34))) +(((-612 |#1|) (-13 (-779) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -1647 (|#1| $)) (-15 -3639 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2402 ($ $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3652 ($ $)) (-15 -3463 ((-583 |#1|) $)))) (-779)) (T -612)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-1647 (*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3639 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3109 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-2402 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3652 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779))))) +(-13 (-779) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -1647 (|#1| $)) (-15 -3639 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2402 ($ $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3652 ($ $)) (-15 -3463 ((-583 |#1|) $)))) +((-2435 ((|#1| (-1 |#1| (-703) |#1|) (-703) |#1|) 11)) (-2141 ((|#1| (-1 |#1| |#1|) (-703) |#1|) 9))) +(((-613 |#1|) (-10 -7 (-15 -2141 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2435 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|))) (-1003)) (T -613)) +((-2435 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))) (-2141 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2))))) +(-10 -7 (-15 -2141 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2435 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|))) +((-2205 ((|#2| |#1| |#2|) 9)) (-2194 ((|#1| |#1| |#2|) 8))) +(((-614 |#1| |#2|) (-10 -7 (-15 -2194 (|#1| |#1| |#2|)) (-15 -2205 (|#2| |#1| |#2|))) (-1003) (-1003)) (T -614)) +((-2205 (*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2194 (*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) +(-10 -7 (-15 -2194 (|#1| |#1| |#2|)) (-15 -2205 (|#2| |#1| |#2|))) +((-1955 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-615 |#1| |#2| |#3|) (-10 -7 (-15 -1955 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1003) (-1003) (-1003)) (T -615)) +((-1955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)) (-5 *1 (-615 *5 *6 *2))))) +(-10 -7 (-15 -1955 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2435 (((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)) 23)) (-3644 (((-1 |#1|) |#1|) 8)) (-3402 ((|#1| |#1|) 16)) (-1366 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2256 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-703)) 20))) +(((-616 |#1|) (-10 -7 (-15 -3644 ((-1 |#1|) |#1|)) (-15 -2256 ((-1 |#1|) |#1|)) (-15 -1366 (|#1| (-1 |#1| |#1|))) (-15 -1366 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3402 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2435 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)))) (-1003)) (T -616)) +((-2435 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1003)) (-5 *1 (-616 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1003)) (-5 *1 (-616 *4)))) (-3402 (*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1003)))) (-1366 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1003)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1003)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))) (-3644 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003))))) +(-10 -7 (-15 -3644 ((-1 |#1|) |#1|)) (-15 -2256 ((-1 |#1|) |#1|)) (-15 -1366 (|#1| (-1 |#1| |#1|))) (-15 -1366 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3402 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2435 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)))) +((-3822 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1250 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1619 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3618 (((-1 |#2| |#1|) |#2|) 11))) +(((-617 |#1| |#2|) (-10 -7 (-15 -3618 ((-1 |#2| |#1|) |#2|)) (-15 -1250 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1619 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3822 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1003) (-1003)) (T -617)) +((-3822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1003)))) (-1250 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))) (-3618 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1003))))) +(-10 -7 (-15 -3618 ((-1 |#2| |#1|) |#2|)) (-15 -1250 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1619 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3822 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2498 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2423 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3319 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3626 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2530 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -2423 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3319 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3626 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2530 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2498 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1003) (-1003) (-1003)) (T -618)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1003)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1003)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6))))) +(-10 -7 (-15 -2423 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3319 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3626 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2530 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2498 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3225 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1893 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-619 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1893 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3225 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-961) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-961) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -619)) +((-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) (-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8))))) +(-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1893 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3225 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3526 (($ (-703) (-703)) 31)) (-1231 (($ $ $) 54)) (-2033 (($ |#3|) 50) (($ $) 51)) (-2818 (((-107) $) 26)) (-3666 (($ $ (-517) (-517)) 56)) (-2778 (($ $ (-517) (-517)) 57)) (-3671 (($ $ (-517) (-517) (-517) (-517)) 61)) (-4008 (($ $) 52)) (-3213 (((-107) $) 14)) (-3565 (($ $ (-517) (-517) $) 62)) (-2411 ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) 60)) (-3487 (($ (-703) |#2|) 36)) (-1840 (($ (-583 (-583 |#2|))) 34)) (-3035 (((-583 (-583 |#2|)) $) 55)) (-2520 (($ $ $) 53)) (-2476 (((-3 $ "failed") $ |#2|) 89)) (-1449 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517))) 59)) (-1879 (($ (-583 |#2|)) 38) (($ (-583 $)) 40)) (-1516 (((-107) $) 23)) (-2256 (((-787) $) NIL) (($ |#4|) 45)) (-1683 (((-107) $) 28)) (-1667 (($ $ |#2|) 91)) (-1654 (($ $ $) 66) (($ $) 69)) (-1642 (($ $ $) 64)) (** (($ $ (-703)) 78) (($ $ (-517)) 94)) (* (($ $ $) 75) (($ |#2| $) 71) (($ $ |#2|) 72) (($ (-517) $) 74) ((|#4| $ |#4|) 82) ((|#3| |#3| $) 86))) +(((-620 |#1| |#2| |#3| |#4|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#2|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3671 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -2778 (|#1| |#1| (-517) (-517))) (-15 -3666 (|#1| |#1| (-517) (-517))) (-15 -2411 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -1449 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3035 ((-583 (-583 |#2|)) |#1|)) (-15 -1231 (|#1| |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2033 (|#1| |#3|)) (-15 -2256 (|#1| |#4|)) (-15 -1879 (|#1| (-583 |#1|))) (-15 -1879 (|#1| (-583 |#2|))) (-15 -3487 (|#1| (-703) |#2|)) (-15 -1840 (|#1| (-583 (-583 |#2|)))) (-15 -3526 (|#1| (-703) (-703))) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2256 ((-787) |#1|))) (-621 |#2| |#3| |#4|) (-961) (-343 |#2|) (-343 |#2|)) (T -620)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#2|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3671 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -2778 (|#1| |#1| (-517) (-517))) (-15 -3666 (|#1| |#1| (-517) (-517))) (-15 -2411 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -1449 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3035 ((-583 (-583 |#2|)) |#1|)) (-15 -1231 (|#1| |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2033 (|#1| |#3|)) (-15 -2256 (|#1| |#4|)) (-15 -1879 (|#1| (-583 |#1|))) (-15 -1879 (|#1| (-583 |#2|))) (-15 -3487 (|#1| (-703) |#2|)) (-15 -1840 (|#1| (-583 (-583 |#2|)))) (-15 -3526 (|#1| (-703) (-703))) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) 97)) (-1231 (($ $ $) 87)) (-2033 (($ |#2|) 91) (($ $) 90)) (-2818 (((-107) $) 99)) (-3666 (($ $ (-517) (-517)) 83)) (-2778 (($ $ (-517) (-517)) 82)) (-3671 (($ $ (-517) (-517) (-517) (-517)) 81)) (-4008 (($ $) 89)) (-3213 (((-107) $) 101)) (-2953 (((-107) $ (-703)) 8)) (-3565 (($ $ (-517) (-517) $) 80)) (-2411 ((|#1| $ (-517) (-517) |#1|) 44) (($ $ (-583 (-517)) (-583 (-517)) $) 84)) (-4087 (($ $ (-517) |#2|) 42)) (-3739 (($ $ (-517) |#3|) 41)) (-3487 (($ (-703) |#1|) 95)) (-3092 (($) 7 T CONST)) (-2468 (($ $) 67 (|has| |#1| (-278)))) (-1939 ((|#2| $ (-517)) 46)) (-2261 (((-703) $) 66 (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) 43)) (-1377 ((|#1| $ (-517) (-517)) 48)) (-1536 (((-583 |#1|) $) 30)) (-1948 (((-703) $) 65 (|has| |#1| (-509)))) (-3706 (((-583 |#3|) $) 64 (|has| |#1| (-509)))) (-1477 (((-703) $) 51)) (-3462 (($ (-703) (-703) |#1|) 57)) (-1486 (((-703) $) 50)) (-2550 (((-107) $ (-703)) 9)) (-2757 ((|#1| $) 62 (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) 55)) (-1338 (((-517) $) 53)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 54)) (-1307 (((-517) $) 52)) (-1840 (($ (-583 (-583 |#1|))) 96)) (-1433 (($ (-1 |#1| |#1|) $) 34)) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3035 (((-583 (-583 |#1|)) $) 86)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) 61 (|has| |#1| (-333)))) (-2520 (($ $ $) 88)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) 56)) (-2476 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47) (($ $ (-583 (-517)) (-583 (-517))) 85)) (-1879 (($ (-583 |#1|)) 94) (($ (-583 $)) 93)) (-1516 (((-107) $) 100)) (-3057 ((|#1| $) 63 (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3728 ((|#3| $ (-517)) 45)) (-2256 (((-787) $) 20 (|has| |#1| (-1003))) (($ |#3|) 92)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1683 (((-107) $) 98)) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) 68 (|has| |#1| (-333)))) (-1654 (($ $ $) 78) (($ $) 77)) (-1642 (($ $ $) 79)) (** (($ $ (-703)) 70) (($ $ (-517)) 60 (|has| |#1| (-333)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-517) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-621 |#1| |#2| |#3|) (-1184) (-961) (-343 |t#1|) (-343 |t#1|)) (T -621)) +((-3213 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3526 (*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3487 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (-2033 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (-2033 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-4008 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1231 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) (-1449 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2411 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3666 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2778 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3671 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3565 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1642 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1654 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1654 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2104 (*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333))))) +(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3213 ((-107) $)) (-15 -1516 ((-107) $)) (-15 -2818 ((-107) $)) (-15 -1683 ((-107) $)) (-15 -3526 ($ (-703) (-703))) (-15 -1840 ($ (-583 (-583 |t#1|)))) (-15 -3487 ($ (-703) |t#1|)) (-15 -1879 ($ (-583 |t#1|))) (-15 -1879 ($ (-583 $))) (-15 -2256 ($ |t#3|)) (-15 -2033 ($ |t#2|)) (-15 -2033 ($ $)) (-15 -4008 ($ $)) (-15 -2520 ($ $ $)) (-15 -1231 ($ $ $)) (-15 -3035 ((-583 (-583 |t#1|)) $)) (-15 -1449 ($ $ (-583 (-517)) (-583 (-517)))) (-15 -2411 ($ $ (-583 (-517)) (-583 (-517)) $)) (-15 -3666 ($ $ (-517) (-517))) (-15 -2778 ($ $ (-517) (-517))) (-15 -3671 ($ $ (-517) (-517) (-517) (-517))) (-15 -3565 ($ $ (-517) (-517) $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -1654 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-517) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-703))) (IF (|has| |t#1| (-509)) (-15 -2476 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-333)) (-15 -1667 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-278)) (-15 -2468 ($ $)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2261 ((-703) $)) (-15 -1948 ((-703) $)) (-15 -3706 ((-583 |t#3|) $))) |noBranch|) (IF (|has| |t#1| (-6 (-4182 "*"))) (PROGN (-15 -3057 (|t#1| $)) (-15 -2757 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -2104 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-55 |#1| |#2| |#3|) . T) ((-1108) . T)) +((-2468 ((|#4| |#4|) 69 (|has| |#1| (-278)))) (-2261 (((-703) |#4|) 93 (|has| |#1| (-509)))) (-1948 (((-703) |#4|) 73 (|has| |#1| (-509)))) (-3706 (((-583 |#3|) |#4|) 80 (|has| |#1| (-509)))) (-1352 (((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|) 105 (|has| |#1| (-278)))) (-2757 ((|#1| |#4|) 33)) (-2726 (((-3 |#4| "failed") |#4|) 61 (|has| |#1| (-509)))) (-2104 (((-3 |#4| "failed") |#4|) 77 (|has| |#1| (-333)))) (-1503 ((|#4| |#4|) 65 (|has| |#1| (-509)))) (-3876 ((|#4| |#4| |#1| (-517) (-517)) 41)) (-3874 ((|#4| |#4| (-517) (-517)) 36)) (-2696 ((|#4| |#4| |#1| (-517) (-517)) 46)) (-3057 ((|#1| |#4|) 75)) (-2061 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 66 (|has| |#1| (-509))))) +(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3057 (|#1| |#4|)) (-15 -2757 (|#1| |#4|)) (-15 -3874 (|#4| |#4| (-517) (-517))) (-15 -3876 (|#4| |#4| |#1| (-517) (-517))) (-15 -2696 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (-15 -3706 ((-583 |#3|) |#4|)) (-15 -1503 (|#4| |#4|)) (-15 -2726 ((-3 |#4| "failed") |#4|)) (-15 -2061 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -2468 (|#4| |#4|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 |#4| "failed") |#4|)) |noBranch|)) (-156) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -622)) +((-2104 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1352 (*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2061 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2726 (*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3706 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2261 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2696 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-3876 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-3874 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))) (-2757 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-3057 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5))))) +(-10 -7 (-15 -3057 (|#1| |#4|)) (-15 -2757 (|#1| |#4|)) (-15 -3874 (|#4| |#4| (-517) (-517))) (-15 -3876 (|#4| |#4| |#1| (-517) (-517))) (-15 -2696 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (-15 -3706 ((-583 |#3|) |#4|)) (-15 -1503 (|#4| |#4|)) (-15 -2726 ((-3 |#4| "failed") |#4|)) (-15 -2061 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -2468 (|#4| |#4|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 |#4| "failed") |#4|)) |noBranch|)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) 46)) (-1231 (($ $ $) NIL)) (-2033 (($ (-1153 |#1|)) NIL) (($ $) NIL)) (-2818 (((-107) $) NIL)) (-3666 (($ $ (-517) (-517)) 12)) (-2778 (($ $ (-517) (-517)) NIL)) (-3671 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4008 (($ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3565 (($ $ (-517) (-517) $) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-4087 (($ $ (-517) (-1153 |#1|)) NIL)) (-3739 (($ $ (-517) (-1153 |#1|)) NIL)) (-3487 (($ (-703) |#1|) 22)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 30 (|has| |#1| (-278)))) (-1939 (((-1153 |#1|) $ (-517)) NIL)) (-2261 (((-703) $) 32 (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) 51)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1948 (((-703) $) 34 (|has| |#1| (-509)))) (-3706 (((-583 (-1153 |#1|)) $) 37 (|has| |#1| (-509)))) (-1477 (((-703) $) 20)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) 21)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#1| $) 28 (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) 9)) (-1338 (((-517) $) 10)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) 11)) (-1307 (((-517) $) 47)) (-1840 (($ (-583 (-583 |#1|))) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3035 (((-583 (-583 |#1|)) $) 59)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) 44 (|has| |#1| (-333)))) (-2520 (($ $ $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-1879 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL) (($ (-1153 |#1|)) 52)) (-1516 (((-107) $) NIL)) (-3057 ((|#1| $) 26 (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-3728 (((-1153 |#1|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-1153 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) 23) (($ $ (-517)) 45 (|has| |#1| (-333)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1153 |#1|) $ (-1153 |#1|)) NIL) (((-1153 |#1|) (-1153 |#1|) $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-623 |#1|) (-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 -1879 ($ (-1153 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 $ "failed") $)) |noBranch|))) (-961)) (T -623)) +((-2104 (*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-961)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-623 *3))))) +(-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 -1879 ($ (-1153 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 $ "failed") $)) |noBranch|))) +((-3205 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 25)) (-1729 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 21)) (-1811 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703)) 26)) (-1705 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 14)) (-3492 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 18) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 16)) (-4085 (((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|)) 20)) (-4119 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 12)) (** (((-623 |#1|) (-623 |#1|) (-703)) 30))) +(((-624 |#1|) (-10 -7 (-15 -4119 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1705 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -4085 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -1729 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3205 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1811 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703)))) (-961)) (T -624)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) (-1811 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) (-3205 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-1729 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-4085 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3492 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3492 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-1705 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-4119 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3))))) +(-10 -7 (-15 -4119 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1705 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -4085 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -1729 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3205 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1811 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703)))) +((-3248 ((|#2| |#2| |#4|) 25)) (-1367 (((-623 |#2|) |#3| |#4|) 31)) (-3943 (((-623 |#2|) |#2| |#4|) 30)) (-1228 (((-1153 |#2|) |#2| |#4|) 16)) (-3182 ((|#2| |#3| |#4|) 24)) (-3780 (((-623 |#2|) |#3| |#4| (-703) (-703)) 38)) (-2820 (((-623 |#2|) |#2| |#4| (-703)) 37))) +(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1228 ((-1153 |#2|) |#2| |#4|)) (-15 -3182 (|#2| |#3| |#4|)) (-15 -3248 (|#2| |#2| |#4|)) (-15 -3943 ((-623 |#2|) |#2| |#4|)) (-15 -2820 ((-623 |#2|) |#2| |#4| (-703))) (-15 -1367 ((-623 |#2|) |#3| |#4|)) (-15 -3780 ((-623 |#2|) |#3| |#4| (-703) (-703)))) (-1003) (-822 |#1|) (-343 |#2|) (-13 (-343 |#1|) (-10 -7 (-6 -4180)))) (T -625)) +((-3780 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *7 (-822 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180)))))) (-1367 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-822 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))) (-2820 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *3 (-822 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180)))))) (-3943 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))) (-3248 (*1 *2 *2 *3) (-12 (-4 *4 (-1003)) (-4 *2 (-822 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4180)))))) (-3182 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *2 (-822 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))) (-1228 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-1153 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180))))))) +(-10 -7 (-15 -1228 ((-1153 |#2|) |#2| |#4|)) (-15 -3182 (|#2| |#3| |#4|)) (-15 -3248 (|#2| |#2| |#4|)) (-15 -3943 ((-623 |#2|) |#2| |#4|)) (-15 -2820 ((-623 |#2|) |#2| |#4| (-703))) (-15 -1367 ((-623 |#2|) |#3| |#4|)) (-15 -3780 ((-623 |#2|) |#3| |#4| (-703) (-703)))) +((-4112 (((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)) 18)) (-3484 ((|#1| (-623 |#2|)) 9)) (-1897 (((-623 |#1|) (-623 |#2|)) 16))) +(((-626 |#1| |#2|) (-10 -7 (-15 -3484 (|#1| (-623 |#2|))) (-15 -1897 ((-623 |#1|) (-623 |#2|))) (-15 -4112 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)))) (-509) (-909 |#1|)) (T -626)) +((-4112 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4))))) +(-10 -7 (-15 -3484 (|#1| (-623 |#2|))) (-15 -1897 ((-623 |#1|) (-623 |#2|))) (-15 -4112 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-3055 (((-623 (-632))) NIL) (((-623 (-632)) (-1153 $)) NIL)) (-1472 (((-632) $) NIL)) (-1865 (($ $) NIL (|has| (-632) (-1094)))) (-1721 (($ $) NIL (|has| (-632) (-1094)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-632) (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-2535 (($ $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2759 (((-388 $) $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-3766 (($ $) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1094))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-1707 (((-107) $ $) NIL (|has| (-632) (-278)))) (-1611 (((-703)) NIL (|has| (-632) (-338)))) (-1839 (($ $) NIL (|has| (-632) (-1094)))) (-1701 (($ $) NIL (|has| (-632) (-1094)))) (-1887 (($ $) NIL (|has| (-632) (-1094)))) (-1743 (($ $) NIL (|has| (-632) (-1094)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-632) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-952 (-377 (-517)))))) (-3189 (((-517) $) NIL) (((-632) $) NIL) (((-377 (-517)) $) NIL (|has| (-632) (-952 (-377 (-517)))))) (-1967 (($ (-1153 (-632))) NIL) (($ (-1153 (-632)) (-1153 $)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-632) (-319)))) (-2518 (($ $ $) NIL (|has| (-632) (-278)))) (-2410 (((-623 (-632)) $) NIL) (((-623 (-632)) $ (-1153 $)) NIL)) (-3355 (((-623 (-632)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-632))) (|:| |vec| (-1153 (-632)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-632) (-579 (-517)))) (((-623 (-517)) (-623 $)) NIL (|has| (-632) (-579 (-517))))) (-3225 (((-3 $ "failed") (-377 (-1069 (-632)))) NIL (|has| (-632) (-333))) (($ (-1069 (-632))) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3775 (((-632) $) 29)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-502)))) (-1355 (((-107) $) NIL (|has| (-632) (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| (-632) (-502)))) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| (-632) (-338)))) (-2497 (($ $ $) NIL (|has| (-632) (-278)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| (-632) (-278)))) (-3442 (($) NIL (|has| (-632) (-319)))) (-3391 (((-107) $) NIL (|has| (-632) (-319)))) (-2378 (($ $) NIL (|has| (-632) (-319))) (($ $ (-703)) NIL (|has| (-632) (-319)))) (-3849 (((-107) $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2658 (((-2 (|:| |r| (-632)) (|:| |phi| (-632))) $) NIL (-12 (|has| (-632) (-970)) (|has| (-632) (-1094))))) (-2645 (($) NIL (|has| (-632) (-1094)))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-632) (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-632) (-808 (-517))))) (-3972 (((-765 (-843)) $) NIL (|has| (-632) (-319))) (((-843) $) NIL (|has| (-632) (-319)))) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1094))))) (-1506 (((-632) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-632) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-3777 (((-1069 (-632)) $) NIL (|has| (-632) (-333)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 (-632) (-632)) $) NIL)) (-1549 (((-843) $) NIL (|has| (-632) (-338)))) (-1867 (($ $) NIL (|has| (-632) (-1094)))) (-3216 (((-1069 (-632)) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| (-632) (-333)))) (-2836 (($) NIL (|has| (-632) (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| (-632) (-338)))) (-2228 (($) NIL)) (-3785 (((-632) $) 31)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| (-632) (-278)))) (-1401 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-632) (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-3755 (((-388 $) $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-632) (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| (-632) (-278)))) (-2476 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-632)) NIL (|has| (-632) (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-2624 (($ $) NIL (|has| (-632) (-1094)))) (-2051 (($ $ (-1073) (-632)) NIL (|has| (-632) (-478 (-1073) (-632)))) (($ $ (-583 (-1073)) (-583 (-632))) NIL (|has| (-632) (-478 (-1073) (-632)))) (($ $ (-583 (-265 (-632)))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-265 (-632))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-632) (-632)) NIL (|has| (-632) (-280 (-632)))) (($ $ (-583 (-632)) (-583 (-632))) NIL (|has| (-632) (-280 (-632))))) (-3146 (((-703) $) NIL (|has| (-632) (-278)))) (-1449 (($ $ (-632)) NIL (|has| (-632) (-258 (-632) (-632))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| (-632) (-278)))) (-3010 (((-632)) NIL) (((-632) (-1153 $)) NIL)) (-1620 (((-3 (-703) "failed") $ $) NIL (|has| (-632) (-319))) (((-703) $) NIL (|has| (-632) (-319)))) (-3127 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-2970 (((-623 (-632)) (-1153 $) (-1 (-632) (-632))) NIL (|has| (-632) (-333)))) (-2135 (((-1069 (-632))) NIL)) (-1898 (($ $) NIL (|has| (-632) (-1094)))) (-1754 (($ $) NIL (|has| (-632) (-1094)))) (-1766 (($) NIL (|has| (-632) (-319)))) (-1876 (($ $) NIL (|has| (-632) (-1094)))) (-1732 (($ $) NIL (|has| (-632) (-1094)))) (-1853 (($ $) NIL (|has| (-632) (-1094)))) (-1711 (($ $) NIL (|has| (-632) (-1094)))) (-4114 (((-623 (-632)) (-1153 $)) NIL) (((-1153 (-632)) $) NIL) (((-623 (-632)) (-1153 $) (-1153 $)) NIL) (((-1153 (-632)) $ (-1153 $)) NIL)) (-3645 (((-493) $) NIL (|has| (-632) (-558 (-493)))) (((-153 (-199)) $) NIL (|has| (-632) (-937))) (((-153 (-349)) $) NIL (|has| (-632) (-937))) (((-814 (-349)) $) NIL (|has| (-632) (-558 (-814 (-349))))) (((-814 (-517)) $) NIL (|has| (-632) (-558 (-814 (-517))))) (($ (-1069 (-632))) NIL) (((-1069 (-632)) $) NIL) (($ (-1153 (-632))) NIL) (((-1153 (-632)) $) NIL)) (-1487 (($ $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-319))))) (-3392 (($ (-632) (-632)) 12)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-632)) NIL) (($ (-153 (-349))) 13) (($ (-153 (-517))) 19) (($ (-153 (-632))) 28) (($ (-153 (-634))) 25) (((-153 (-349)) $) 33) (($ (-377 (-517))) NIL (-3807 (|has| (-632) (-952 (-377 (-517)))) (|has| (-632) (-333))))) (-1328 (($ $) NIL (|has| (-632) (-319))) (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-132))))) (-3669 (((-1069 (-632)) $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL)) (-3707 (($ $) NIL (|has| (-632) (-1094)))) (-1788 (($ $) NIL (|has| (-632) (-1094)))) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) NIL (|has| (-632) (-1094)))) (-1765 (($ $) NIL (|has| (-632) (-1094)))) (-3731 (($ $) NIL (|has| (-632) (-1094)))) (-1814 (($ $) NIL (|has| (-632) (-1094)))) (-2921 (((-632) $) NIL (|has| (-632) (-1094)))) (-1492 (($ $) NIL (|has| (-632) (-1094)))) (-1827 (($ $) NIL (|has| (-632) (-1094)))) (-3719 (($ $) NIL (|has| (-632) (-1094)))) (-1802 (($ $) NIL (|has| (-632) (-1094)))) (-3695 (($ $) NIL (|has| (-632) (-1094)))) (-1777 (($ $) NIL (|has| (-632) (-1094)))) (-3710 (($ $) NIL (|has| (-632) (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-632) (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL (|has| (-632) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| (-632) (-1094))) (($ $ (-377 (-517))) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1094)))) (($ $ (-517)) NIL (|has| (-632) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-632) $) NIL) (($ $ (-632)) NIL) (($ (-377 (-517)) $) NIL (|has| (-632) (-333))) (($ $ (-377 (-517))) NIL (|has| (-632) (-333))))) +(((-627) (-13 (-357) (-150 (-632)) (-10 -8 (-15 -2256 ($ (-153 (-349)))) (-15 -2256 ($ (-153 (-517)))) (-15 -2256 ($ (-153 (-632)))) (-15 -2256 ($ (-153 (-634)))) (-15 -2256 ((-153 (-349)) $))))) (T -627)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627))))) +(-13 (-357) (-150 (-632)) (-10 -8 (-15 -2256 ($ (-153 (-349)))) (-15 -2256 ($ (-153 (-517)))) (-15 -2256 ($ (-153 (-632)))) (-15 -2256 ($ (-153 (-634)))) (-15 -2256 ((-153 (-349)) $)))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 62)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 61)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-628 |#1|) (-1184) (-1003)) (T -628)) +((-1710 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1003)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1003)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1003)) (-5 *2 (-583 (-2 (|:| -1257 *3) (|:| -3217 (-703)))))))) +(-13 (-209 |t#1|) (-10 -8 (-15 -1710 ($ |t#1| $ (-703))) (-15 -3483 ($ $)) (-15 -3350 ((-583 (-2 (|:| -1257 |t#1|) (|:| -3217 (-703)))) $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-3988 (((-583 |#1|) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) (-517)) 46)) (-1196 ((|#1| |#1| (-517)) 45)) (-1401 ((|#1| |#1| |#1| (-517)) 35)) (-3755 (((-583 |#1|) |#1| (-517)) 38)) (-1458 ((|#1| |#1| (-517) |#1| (-517)) 32)) (-1300 (((-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) |#1| (-517)) 44))) +(((-629 |#1|) (-10 -7 (-15 -1401 (|#1| |#1| |#1| (-517))) (-15 -1196 (|#1| |#1| (-517))) (-15 -3755 ((-583 |#1|) |#1| (-517))) (-15 -1300 ((-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) |#1| (-517))) (-15 -3988 ((-583 |#1|) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) (-517))) (-15 -1458 (|#1| |#1| (-517) |#1| (-517)))) (-1130 (-517))) (T -629)) +((-1458 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3755 *5) (|:| -3688 (-517))))) (-5 *4 (-517)) (-4 *5 (-1130 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))) (-1300 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -3688 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4)))) (-1196 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))) (-1401 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3))))) +(-10 -7 (-15 -1401 (|#1| |#1| |#1| (-517))) (-15 -1196 (|#1| |#1| (-517))) (-15 -3755 ((-583 |#1|) |#1| (-517))) (-15 -1300 ((-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) |#1| (-517))) (-15 -3988 ((-583 |#1|) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) (-517))) (-15 -1458 (|#1| |#1| (-517) |#1| (-517)))) +((-2592 (((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 17)) (-2426 (((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236))) 38) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236))) 40) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236))) 42)) (-2933 (((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236))) NIL)) (-3008 (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236))) 43))) +(((-630) (-10 -7 (-15 -2426 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3008 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2933 ((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2592 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -630)) +((-2592 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *1 (-630)))) (-2933 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-3008 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-2426 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))) (-2426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-2426 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630))))) +(-10 -7 (-15 -2426 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3008 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2933 ((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2592 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))))) +((-3755 (((-388 (-1069 |#4|)) (-1069 |#4|)) 73) (((-388 |#4|) |#4|) 215))) +(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|)))) (-779) (-725) (-319) (-871 |#3| |#2| |#1|)) (T -631)) +((-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4))))) +(-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 84)) (-2668 (((-517) $) 30)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-1974 (($ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-3092 (($) NIL T CONST)) (-2531 (($ $) NIL)) (-1772 (((-3 (-517) "failed") $) 73) (((-3 (-377 (-517)) "failed") $) 26) (((-3 (-349) "failed") $) 70)) (-3189 (((-517) $) 75) (((-377 (-517)) $) 67) (((-349) $) 68)) (-2518 (($ $ $) 96)) (-3621 (((-3 $ "failed") $) 87)) (-2497 (($ $ $) 95)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3554 (((-843)) 77) (((-843) (-843)) 76)) (-3556 (((-107) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-3972 (((-517) $) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-1506 (($ $) NIL)) (-2475 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3004 (((-517) (-517)) 81) (((-517)) 82)) (-2967 (($ $ $) NIL) (($) NIL (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3942 (((-517) (-517)) 79) (((-517)) 80)) (-3099 (($ $ $) NIL) (($) NIL (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3371 (((-517) $) 16)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 91)) (-2138 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL)) (-2597 (($ $) NIL)) (-4005 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-843)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) 92)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2077 (((-517) $) 22)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 94)) (-2930 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-2646 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-3645 (((-349) $) NIL) (((-199) $) NIL) (((-814 (-349)) $) NIL)) (-2256 (((-787) $) 52) (($ (-517)) 63) (($ $) NIL) (($ (-377 (-517))) 66) (($ (-517)) 63) (($ (-377 (-517))) 66) (($ (-349)) 60) (((-349) $) 50) (($ (-634)) 55)) (-2961 (((-703)) 103)) (-2838 (($ (-517) (-517) (-843)) 44)) (-1949 (($ $) NIL)) (-1398 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-2372 (((-843)) 35) (((-843) (-843)) 78)) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 32 T CONST)) (-2409 (($) 17 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 83)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 101)) (-1667 (($ $ $) 65)) (-1654 (($ $) 99) (($ $ $) 100)) (-1642 (($ $ $) 98)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 97) (($ $ $) 88) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) +(((-632) (-13 (-374) (-357) (-333) (-952 (-349)) (-952 (-377 (-517))) (-134) (-10 -8 (-15 -3554 ((-843) (-843))) (-15 -3554 ((-843))) (-15 -2372 ((-843) (-843))) (-15 -2372 ((-843))) (-15 -3942 ((-517) (-517))) (-15 -3942 ((-517))) (-15 -3004 ((-517) (-517))) (-15 -3004 ((-517))) (-15 -2256 ((-349) $)) (-15 -2256 ($ (-634))) (-15 -3371 ((-517) $)) (-15 -2077 ((-517) $)) (-15 -2838 ($ (-517) (-517) (-843)))))) (T -632)) +((-2372 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3554 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-3554 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3942 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3004 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3004 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) (-2838 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-5 *1 (-632))))) +(-13 (-374) (-357) (-333) (-952 (-349)) (-952 (-377 (-517))) (-134) (-10 -8 (-15 -3554 ((-843) (-843))) (-15 -3554 ((-843))) (-15 -2372 ((-843) (-843))) (-15 -2372 ((-843))) (-15 -3942 ((-517) (-517))) (-15 -3942 ((-517))) (-15 -3004 ((-517) (-517))) (-15 -3004 ((-517))) (-15 -2256 ((-349) $)) (-15 -2256 ($ (-634))) (-15 -3371 ((-517) $)) (-15 -2077 ((-517) $)) (-15 -2838 ($ (-517) (-517) (-843))))) +((-1995 (((-623 |#1|) (-623 |#1|) |#1| |#1|) 66)) (-2468 (((-623 |#1|) (-623 |#1|) |#1|) 49)) (-2811 (((-623 |#1|) (-623 |#1|) |#1|) 67)) (-2331 (((-623 |#1|) (-623 |#1|)) 50)) (-1352 (((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|) 65))) +(((-633 |#1|) (-10 -7 (-15 -2331 ((-623 |#1|) (-623 |#1|))) (-15 -2468 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2811 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -1995 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|))) (-278)) (T -633)) +((-1352 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))) (-1995 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2811 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2468 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2331 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3))))) +(-10 -7 (-15 -2331 ((-623 |#1|) (-623 |#1|))) (-15 -2468 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2811 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -1995 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) 27)) (-3189 (((-517) $) 25)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($ $) NIL) (($) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) NIL)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) NIL)) (-2967 (($ $ $) NIL)) (-4115 (((-843) (-843)) 10) (((-843)) 9)) (-3099 (($ $ $) NIL)) (-1522 (($ $) NIL)) (-2195 (($ $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) NIL)) (-3206 (((-1021) $) NIL) (($ $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL) (($ $ (-703)) NIL)) (-2789 (($ $) NIL)) (-2433 (($ $) NIL)) (-3645 (((-199) $) NIL) (((-349) $) NIL) (((-814 (-517)) $) NIL) (((-493) $) NIL) (((-517) $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) 24) (($ $) NIL) (($ (-517)) 24) (((-286 $) (-286 (-517))) 18)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) NIL)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL) (($ $ (-703)) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL))) +(((-634) (-13 (-357) (-502) (-10 -8 (-15 -4115 ((-843) (-843))) (-15 -4115 ((-843))) (-15 -2256 ((-286 $) (-286 (-517))))))) (T -634)) +((-4115 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) (-4115 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634))))) +(-13 (-357) (-502) (-10 -8 (-15 -4115 ((-843) (-843))) (-15 -4115 ((-843))) (-15 -2256 ((-286 $) (-286 (-517)))))) +((-3372 (((-1 |#4| |#2| |#3|) |#1| (-1073) (-1073)) 19)) (-3810 (((-1 |#4| |#2| |#3|) (-1073)) 12))) +(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 ((-1 |#4| |#2| |#3|) (-1073))) (-15 -3372 ((-1 |#4| |#2| |#3|) |#1| (-1073) (-1073)))) (-558 (-493)) (-1108) (-1108) (-1108)) (T -635)) +((-3372 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108))))) +(-10 -7 (-15 -3810 ((-1 |#4| |#2| |#3|) (-1073))) (-15 -3372 ((-1 |#4| |#2| |#3|) |#1| (-1073) (-1073)))) +((-2750 (((-107) $ $) NIL)) (-3892 (((-1158) $ (-703)) 14)) (-2607 (((-703) $) 12)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 25)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 24))) +(((-636 |#1|) (-13 (-124) (-557 |#1|) (-10 -8 (-15 -2256 ($ |#1|)))) (-1003)) (T -636)) +((-2256 (*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1003))))) +(-13 (-124) (-557 |#1|) (-10 -8 (-15 -2256 ($ |#1|)))) +((-2345 (((-1 (-199) (-199) (-199)) |#1| (-1073) (-1073)) 33) (((-1 (-199) (-199)) |#1| (-1073)) 38))) +(((-637 |#1|) (-10 -7 (-15 -2345 ((-1 (-199) (-199)) |#1| (-1073))) (-15 -2345 ((-1 (-199) (-199) (-199)) |#1| (-1073) (-1073)))) (-558 (-493))) (T -637)) +((-2345 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) (-2345 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493)))))) +(-10 -7 (-15 -2345 ((-1 (-199) (-199)) |#1| (-1073))) (-15 -2345 ((-1 (-199) (-199) (-199)) |#1| (-1073) (-1073)))) +((-1234 (((-1073) |#1| (-1073) (-583 (-1073))) 9) (((-1073) |#1| (-1073) (-1073) (-1073)) 12) (((-1073) |#1| (-1073) (-1073)) 11) (((-1073) |#1| (-1073)) 10))) +(((-638 |#1|) (-10 -7 (-15 -1234 ((-1073) |#1| (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-583 (-1073))))) (-558 (-493))) (T -638)) +((-1234 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1234 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1234 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1234 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))) +(-10 -7 (-15 -1234 ((-1073) |#1| (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-583 (-1073))))) +((-3594 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-639 |#1| |#2|) (-10 -7 (-15 -3594 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1108) (-1108)) (T -639)) +((-3594 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108))))) +(-10 -7 (-15 -3594 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2577 (((-1 |#3| |#2|) (-1073)) 11)) (-3372 (((-1 |#3| |#2|) |#1| (-1073)) 21))) +(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -2577 ((-1 |#3| |#2|) (-1073))) (-15 -3372 ((-1 |#3| |#2|) |#1| (-1073)))) (-558 (-493)) (-1108) (-1108)) (T -640)) +((-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108))))) +(-10 -7 (-15 -2577 ((-1 |#3| |#2|) (-1073))) (-15 -3372 ((-1 |#3| |#2|) |#1| (-1073)))) +((-1608 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1153 (-583 (-1069 |#3|))) |#3|) 58)) (-3053 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|) 71)) (-3085 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1069 |#4|)) (-1153 (-583 (-1069 |#3|))) |#3|) 32))) +(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3085 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1069 |#4|)) (-1153 (-583 (-1069 |#3|))) |#3|)) (-15 -3053 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -1608 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1153 (-583 (-1069 |#3|))) |#3|))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -641)) +((-1608 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1069 *13))) (-5 *3 (-1069 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1153 (-583 (-1069 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-871 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))) (-3053 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1069 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-871 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1069 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1069 *12)))) (-3085 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1069 *11))) (-5 *3 (-1069 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1153 (-583 (-1069 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-871 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11))))) +(-10 -7 (-15 -3085 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1069 |#4|)) (-1153 (-583 (-1069 |#3|))) |#3|)) (-15 -3053 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -1608 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1153 (-583 (-1069 |#3|))) |#3|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 41)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-1339 (($ |#1| (-703)) 39)) (-2349 (((-703) $) 43)) (-1191 ((|#1| $) 42)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 (((-703) $) 44)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38 (|has| |#1| (-156)))) (-2720 ((|#1| $ (-703)) 40)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-642 |#1|) (-1184) (-961)) (T -642)) +((-3688 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961))))) +(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (-15 -3688 ((-703) $)) (-15 -2349 ((-703) $)) (-15 -1191 (|t#1| $)) (-15 -1212 ($ $)) (-15 -2720 (|t#1| $ (-703))) (-15 -1339 ($ |t#1| (-703))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-1893 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1893 (|#6| (-1 |#4| |#1|) |#3|))) (-509) (-1130 |#1|) (-1130 (-377 |#2|)) (-509) (-1130 |#4|) (-1130 (-377 |#5|))) (T -643)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1130 *5)) (-4 *2 (-1130 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1130 (-377 *6))) (-4 *8 (-1130 *7))))) +(-10 -7 (-15 -1893 (|#6| (-1 |#4| |#1|) |#3|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-3225 (($ |#1| |#2|) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 ((|#2| $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3841 (((-3 $ "failed") $ $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) ((|#1| $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) +(((-644 |#1| |#2| |#3| |#4| |#5|) (-13 (-333) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -644)) +((-1734 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3225 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3841 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-333) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 30)) (-2490 (((-1153 |#1|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#1|)) NIL)) (-2352 (((-1069 $) $ (-989)) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) NIL (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1611 (((-703)) 46 (|has| |#1| (-338)))) (-2241 (($ $ (-703)) NIL)) (-2882 (($ $ (-703)) NIL)) (-4044 ((|#2| |#2|) 43)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) NIL (|has| |#1| (-156)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 33)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3225 (($ |#2|) 41)) (-3621 (((-3 $ "failed") $) 84)) (-3209 (($) 50 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-2704 (($ $ $) NIL)) (-4080 (($ $ $) NIL (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-3631 (((-879 $)) 78)) (-1436 (($ $ |#1| (-703) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) NIL) (($ (-1069 $) (-989)) NIL)) (-3430 (($ $ (-703)) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 76) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1734 ((|#2|) 44)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1548 (((-1069 |#1|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-3216 ((|#2| $) 40)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) 28)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1664 (($ $) 77 (|has| |#1| (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 85 (|has| |#1| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3688 (((-703) $) 31) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2478 (((-879 $)) 35)) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2256 (((-787) $) 60) (($ (-517)) NIL) (($ |#1|) 57) (($ (-989)) NIL) (($ |#2|) 67) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) 62) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 20 T CONST)) (-3040 (((-1153 |#1|) $) 74)) (-3450 (($ (-1153 |#1|)) 49)) (-2409 (($) 8 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2191 (((-1153 |#1|) $) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 68)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) 71) (($ $ $) NIL)) (-1642 (($ $ $) 32)) (** (($ $ (-843)) NIL) (($ $ (-703)) 79)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 56) (($ $ $) 73) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 54) (($ $ |#1|) NIL))) +(((-645 |#1| |#2|) (-13 (-1130 |#1|) (-10 -8 (-15 -4044 (|#2| |#2|)) (-15 -1734 (|#2|)) (-15 -3225 ($ |#2|)) (-15 -3216 (|#2| $)) (-15 -2256 ($ |#2|)) (-15 -3040 ((-1153 |#1|) $)) (-15 -3450 ($ (-1153 |#1|))) (-15 -2191 ((-1153 |#1|) $)) (-15 -3631 ((-879 $))) (-15 -2478 ((-879 $))) (IF (|has| |#1| (-319)) (-15 -1664 ($ $)) |noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |noBranch|))) (-961) (-1130 |#1|)) (T -645)) +((-4044 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) (-1734 (*1 *2) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) (-3225 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) (-3216 (*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) (-3040 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-3450 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-2191 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-3631 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-2478 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-1664 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-961)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1130 *2))))) +(-13 (-1130 |#1|) (-10 -8 (-15 -4044 (|#2| |#2|)) (-15 -1734 (|#2|)) (-15 -3225 ($ |#2|)) (-15 -3216 (|#2| $)) (-15 -2256 ($ |#2|)) (-15 -3040 ((-1153 |#1|) $)) (-15 -3450 ($ (-1153 |#1|))) (-15 -2191 ((-1153 |#1|) $)) (-15 -3631 ((-879 $))) (-15 -2478 ((-879 $))) (IF (|has| |#1| (-319)) (-15 -1664 ($ $)) |noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |noBranch|))) +((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3448 ((|#1| $) 13)) (-3206 (((-1021) $) NIL)) (-2077 ((|#2| $) 12)) (-2276 (($ |#1| |#2|) 16)) (-2256 (((-787) $) NIL) (($ (-2 (|:| -3448 |#1|) (|:| -2077 |#2|))) 15) (((-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) $) 14)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 11))) +(((-646 |#1| |#2| |#3|) (-13 (-779) (-10 -8 (-15 -2077 (|#2| $)) (-15 -3448 (|#1| $)) (-15 -2256 ($ (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)))) (-15 -2256 ((-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) $)) (-15 -2276 ($ |#1| |#2|)))) (-779) (-1003) (-1 (-107) (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)))) (T -646)) +((-2077 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *2)) (-2 (|:| -3448 *3) (|:| -2077 *2)))))) (-3448 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3)))))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-4 *3 (-779)) (-4 *4 (-1003)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1003)) (-14 *5 (-1 (-107) *2 *2)))) (-2276 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3))))))) +(-13 (-779) (-10 -8 (-15 -2077 (|#2| $)) (-15 -3448 (|#1| $)) (-15 -2256 ($ (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)))) (-15 -2256 ((-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) $)) (-15 -2276 ($ |#1| |#2|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 59)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 89) (((-3 (-109) "failed") $) 95)) (-3189 ((|#1| $) NIL) (((-109) $) 39)) (-3621 (((-3 $ "failed") $) 90)) (-3447 ((|#2| (-109) |#2|) 82)) (-3848 (((-107) $) NIL)) (-1261 (($ |#1| (-331 (-109))) 13)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1392 (($ $ (-1 |#2| |#2|)) 58)) (-3269 (($ $ (-1 |#2| |#2|)) 44)) (-1449 ((|#2| $ |#2|) 32)) (-3445 ((|#1| |#1|) 105 (|has| |#1| (-156)))) (-2256 (((-787) $) 66) (($ (-517)) 17) (($ |#1|) 16) (($ (-109)) 23)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 36)) (-2061 (($ $) 99 (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-156)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 20 T CONST)) (-2409 (($) 9 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) 48) (($ $ $) NIL)) (-1642 (($ $ $) 73)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) 57)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-156))) (($ $ |#1|) 97 (|has| |#1| (-156))))) +(((-647 |#1| |#2|) (-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#2| |#2|))) (-15 -1392 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#2| (-109) |#2|)) (-15 -1261 ($ |#1| (-331 (-109)))))) (-961) (-585 |#1|)) (T -647)) +((-2061 (*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-2061 (*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3445 (*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3269 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) (-1392 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) (-3447 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-961)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) (-1261 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-961)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2))))) +(-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#2| |#2|))) (-15 -1392 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#2| (-109) |#2|)) (-15 -1261 ($ |#1| (-331 (-109)))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 33)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ |#1| |#2|) 25)) (-3621 (((-3 $ "failed") $) 47)) (-3848 (((-107) $) 35)) (-1734 ((|#2| $) 12)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 48)) (-3206 (((-1021) $) NIL)) (-3841 (((-3 $ "failed") $ $) 46)) (-2256 (((-787) $) 24) (($ (-517)) 19) ((|#1| $) 13)) (-2961 (((-703)) 28)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 16 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 38)) (-1654 (($ $) 43) (($ $ $) 37)) (-1642 (($ $ $) 40)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 21) (($ $ $) 20))) +(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-961) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -648)) +((-3621 (*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1734 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3225 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3841 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4118 (*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-961) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $)))) +((* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-649 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-650 |#2|) (-156)) (T -649)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-650 |#1|) (-1184) (-156)) (T -650)) NIL (-13 (-106 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-964 |#1|) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-1525 (($ |#1|) 17) (($ $ |#1|) 20)) (-3487 (($ |#1|) 18) (($ $ |#1|) 21)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1355 (((-107) $) NIL)) (-3309 (($ |#1| |#1| |#1| |#1|) 8)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 16)) (-3708 (((-1018) $) NIL)) (-3195 ((|#1| $ |#1|) 24) (((-762 |#1|) $ (-762 |#1|)) 32)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) 39)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 9 T CONST)) (-3751 (((-107) $ $) 44)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ $ $) 14))) -(((-649 |#1|) (-13 (-440) (-10 -8 (-15 -3309 ($ |#1| |#1| |#1| |#1|)) (-15 -1525 ($ |#1|)) (-15 -3487 ($ |#1|)) (-15 -2174 ($)) (-15 -1525 ($ $ |#1|)) (-15 -3487 ($ $ |#1|)) (-15 -2174 ($ $)) (-15 -3195 (|#1| $ |#1|)) (-15 -3195 ((-762 |#1|) $ (-762 |#1|))))) (-331)) (T -649)) -((-3309 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-1525 (*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-3487 (*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-2174 (*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-3487 (*1 *1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-3195 (*1 *2 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-3195 (*1 *2 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *3 (-331)) (-5 *1 (-649 *3))))) -(-13 (-440) (-10 -8 (-15 -3309 ($ |#1| |#1| |#1| |#1|)) (-15 -1525 ($ |#1|)) (-15 -3487 ($ |#1|)) (-15 -2174 ($)) (-15 -1525 ($ $ |#1|)) (-15 -3487 ($ $ |#1|)) (-15 -2174 ($ $)) (-15 -3195 (|#1| $ |#1|)) (-15 -3195 ((-762 |#1|) $ (-762 |#1|))))) -((-2911 (($ $ (-839)) 12)) (-3381 (($ $ (-839)) 13)) (** (($ $ (-839)) 10))) -(((-650 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-839))) (-15 -3381 (|#1| |#1| (-839))) (-15 -2911 (|#1| |#1| (-839)))) (-651)) (T -650)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-839))) (-15 -3381 (|#1| |#1| (-839))) (-15 -2911 (|#1| |#1| (-839)))) -((-3736 (((-107) $ $) 7)) (-2911 (($ $ (-839)) 15)) (-3381 (($ $ (-839)) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6)) (** (($ $ (-839)) 13)) (* (($ $ $) 16))) -(((-651) (-1180)) (T -651)) -((* (*1 *1 *1 *1) (-4 *1 (-651))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839)))) (-3381 (*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839))))) -(-13 (-1001) (-10 -8 (-15 * ($ $ $)) (-15 -2911 ($ $ (-839))) (-15 -3381 ($ $ (-839))) (-15 ** ($ $ (-839))))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-2911 (($ $ (-839)) NIL) (($ $ (-701)) 17)) (-1355 (((-107) $) 10)) (-3381 (($ $ (-839)) NIL) (($ $ (-701)) 18)) (** (($ $ (-839)) NIL) (($ $ (-701)) 15))) -(((-652 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-701))) (-15 -3381 (|#1| |#1| (-701))) (-15 -2911 (|#1| |#1| (-701))) (-15 -1355 ((-107) |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 -3381 (|#1| |#1| (-839))) (-15 -2911 (|#1| |#1| (-839)))) (-653)) (T -652)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-701))) (-15 -3381 (|#1| |#1| (-701))) (-15 -2911 (|#1| |#1| (-701))) (-15 -1355 ((-107) |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 -3381 (|#1| |#1| (-839))) (-15 -2911 (|#1| |#1| (-839)))) -((-3736 (((-107) $ $) 7)) (-1887 (((-3 $ "failed") $) 17)) (-2911 (($ $ (-839)) 15) (($ $ (-701)) 22)) (-2174 (((-3 $ "failed") $) 19)) (-1355 (((-107) $) 23)) (-1992 (((-3 $ "failed") $) 18)) (-3381 (($ $ (-839)) 14) (($ $ (-701)) 21)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1925 (($) 24 T CONST)) (-3751 (((-107) $ $) 6)) (** (($ $ (-839)) 13) (($ $ (-701)) 20)) (* (($ $ $) 16))) -(((-653) (-1180)) (T -653)) -((-1925 (*1 *1) (-4 *1 (-653))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-653)) (-5 *2 (-107)))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701)))) (-3381 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701)))) (-2174 (*1 *1 *1) (|partial| -4 *1 (-653))) (-1992 (*1 *1 *1) (|partial| -4 *1 (-653))) (-1887 (*1 *1 *1) (|partial| -4 *1 (-653)))) -(-13 (-651) (-10 -8 (-15 (-1925) ($) -3897) (-15 -1355 ((-107) $)) (-15 -2911 ($ $ (-701))) (-15 -3381 ($ $ (-701))) (-15 ** ($ $ (-701))) (-15 -2174 ((-3 $ "failed") $)) (-15 -1992 ((-3 $ "failed") $)) (-15 -1887 ((-3 $ "failed") $)))) -(((-97) . T) ((-555 (-786)) . T) ((-651) . T) ((-1001) . T)) -((-3796 (((-701)) 35)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL) ((|#2| $) 22)) (-3547 (($ |#3|) NIL) (((-3 $ "failed") (-375 |#3|)) 45)) (-2174 (((-3 $ "failed") $) 65)) (-2890 (($) 39)) (-2626 ((|#2| $) 20)) (-3987 (($) 17)) (-2596 (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL)) (-2231 (((-621 |#2|) (-1148 $) (-1 |#2| |#2|)) 60)) (-1248 (((-1148 |#2|) $) NIL) (($ (-1148 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2942 ((|#3| $) 32)) (-4119 (((-1148 $)) 29))) -(((-654 |#1| |#2| |#3|) (-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2890 (|#1|)) (-15 -3796 ((-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2231 ((-621 |#2|) (-1148 |#1|) (-1 |#2| |#2|))) (-15 -3547 ((-3 |#1| "failed") (-375 |#3|))) (-15 -1248 (|#1| |#3|)) (-15 -3547 (|#1| |#3|)) (-15 -3987 (|#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 (|#3| |#1|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -4119 ((-1148 |#1|))) (-15 -2942 (|#3| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|))) (-655 |#2| |#3|) (-156) (-1125 |#2|)) (T -654)) -((-3796 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-701)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-655 *4 *5))))) -(-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2890 (|#1|)) (-15 -3796 ((-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2231 ((-621 |#2|) (-1148 |#1|) (-1 |#2| |#2|))) (-15 -3547 ((-3 |#1| "failed") (-375 |#3|))) (-15 -1248 (|#1| |#3|)) (-15 -3547 (|#1| |#3|)) (-15 -3987 (|#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 (|#3| |#1|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -4119 ((-1148 |#1|))) (-15 -2942 (|#3| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 93 (|has| |#1| (-331)))) (-2865 (($ $) 94 (|has| |#1| (-331)))) (-1639 (((-107) $) 96 (|has| |#1| (-331)))) (-2239 (((-621 |#1|) (-1148 $)) 46) (((-621 |#1|)) 61)) (-2225 ((|#1| $) 52)) (-3431 (((-1077 (-839) (-701)) (-501)) 147 (|has| |#1| (-318)))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 113 (|has| |#1| (-331)))) (-1559 (((-373 $) $) 114 (|has| |#1| (-331)))) (-2781 (((-107) $ $) 104 (|has| |#1| (-331)))) (-3796 (((-701)) 87 (|has| |#1| (-336)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 169 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 167 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 166)) (-3490 (((-501) $) 170 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 168 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 165)) (-3142 (($ (-1148 |#1|) (-1148 $)) 48) (($ (-1148 |#1|)) 64)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-318)))) (-3023 (($ $ $) 108 (|has| |#1| (-331)))) (-3070 (((-621 |#1|) $ (-1148 $)) 53) (((-621 |#1|) $) 59)) (-3868 (((-621 (-501)) (-621 $)) 164 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 163 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 162) (((-621 |#1|) (-621 $)) 161)) (-3547 (($ |#2|) 158) (((-3 $ "failed") (-375 |#2|)) 155 (|has| |#1| (-331)))) (-2174 (((-3 $ "failed") $) 34)) (-3689 (((-839)) 54)) (-2890 (($) 90 (|has| |#1| (-336)))) (-3034 (($ $ $) 107 (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 102 (|has| |#1| (-331)))) (-1317 (($) 149 (|has| |#1| (-318)))) (-3521 (((-107) $) 150 (|has| |#1| (-318)))) (-3067 (($ $ (-701)) 141 (|has| |#1| (-318))) (($ $) 140 (|has| |#1| (-318)))) (-1628 (((-107) $) 115 (|has| |#1| (-331)))) (-3169 (((-839) $) 152 (|has| |#1| (-318))) (((-762 (-839)) $) 138 (|has| |#1| (-318)))) (-1355 (((-107) $) 31)) (-2626 ((|#1| $) 51)) (-3493 (((-3 $ "failed") $) 142 (|has| |#1| (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 111 (|has| |#1| (-331)))) (-1792 ((|#2| $) 44 (|has| |#1| (-331)))) (-3104 (((-839) $) 89 (|has| |#1| (-336)))) (-1316 ((|#2| $) 156)) (-1697 (($ (-578 $)) 100 (|has| |#1| (-331))) (($ $ $) 99 (|has| |#1| (-331)))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 116 (|has| |#1| (-331)))) (-3746 (($) 143 (|has| |#1| (-318)) CONST)) (-3506 (($ (-839)) 88 (|has| |#1| (-336)))) (-3708 (((-1018) $) 10)) (-3987 (($) 160)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 101 (|has| |#1| (-331)))) (-3664 (($ (-578 $)) 98 (|has| |#1| (-331))) (($ $ $) 97 (|has| |#1| (-331)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 146 (|has| |#1| (-318)))) (-3739 (((-373 $) $) 112 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 109 (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ $) 92 (|has| |#1| (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 103 (|has| |#1| (-331)))) (-1864 (((-701) $) 105 (|has| |#1| (-331)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 106 (|has| |#1| (-331)))) (-2532 ((|#1| (-1148 $)) 47) ((|#1|) 60)) (-1984 (((-701) $) 151 (|has| |#1| (-318))) (((-3 (-701) "failed") $ $) 139 (|has| |#1| (-318)))) (-2596 (($ $) 137 (-1405 (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-701)) 135 (-1405 (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-1070)) 133 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-578 (-1070))) 132 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-1070) (-701)) 131 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 (-701))) 130 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-1 |#1| |#1|) (-701)) 123 (|has| |#1| (-331))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-331)))) (-2231 (((-621 |#1|) (-1148 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-331)))) (-2264 ((|#2|) 159)) (-1349 (($) 148 (|has| |#1| (-318)))) (-2085 (((-1148 |#1|) $ (-1148 $)) 50) (((-621 |#1|) (-1148 $) (-1148 $)) 49) (((-1148 |#1|) $) 66) (((-621 |#1|) (-1148 $)) 65)) (-1248 (((-1148 |#1|) $) 63) (($ (-1148 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 145 (|has| |#1| (-318)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-331))) (($ (-375 (-501))) 86 (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501))))))) (-1274 (($ $) 144 (|has| |#1| (-318))) (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-2942 ((|#2| $) 45)) (-3965 (((-701)) 29)) (-4119 (((-1148 $)) 67)) (-2442 (((-107) $ $) 95 (|has| |#1| (-331)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 117 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $) 136 (-1405 (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-701)) 134 (-1405 (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-1070)) 129 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-578 (-1070))) 128 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-1070) (-701)) 127 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 (-701))) 126 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-1 |#1| |#1|) (-701)) 125 (|has| |#1| (-331))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-331)))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 121 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 118 (|has| |#1| (-331)))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-375 (-501)) $) 120 (|has| |#1| (-331))) (($ $ (-375 (-501))) 119 (|has| |#1| (-331))))) -(((-655 |#1| |#2|) (-1180) (-156) (-1125 |t#1|)) (T -655)) -((-3987 (*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-655 *2 *3)) (-4 *3 (-1125 *2)))) (-2264 (*1 *2) (-12 (-4 *1 (-655 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) (-3547 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-655 *3 *2)) (-4 *2 (-1125 *3)))) (-1248 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-655 *3 *2)) (-4 *2 (-1125 *3)))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-655 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) (-3547 (*1 *1 *2) (|partial| -12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-331)) (-4 *3 (-156)) (-4 *1 (-655 *3 *4)))) (-2231 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-4 *1 (-655 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1125 *5)) (-5 *2 (-621 *5))))) -(-13 (-378 |t#1| |t#2|) (-156) (-556 |t#2|) (-380 |t#1|) (-345 |t#1|) (-10 -8 (-15 -3987 ($)) (-15 -2264 (|t#2|)) (-15 -3547 ($ |t#2|)) (-15 -1248 ($ |t#2|)) (-15 -1316 (|t#2| $)) (IF (|has| |t#1| (-336)) (-6 (-336)) |noBranch|) (IF (|has| |t#1| (-331)) (PROGN (-6 (-331)) (-6 (-204 |t#1|)) (-15 -3547 ((-3 $ "failed") (-375 |t#2|))) (-15 -2231 ((-621 |t#1|) (-1148 $) (-1 |t#1| |t#1|)))) |noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-37 |#1|) . T) ((-37 $) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -1405 (|has| |#1| (-318)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-556 |#2|) . T) ((-204 |#1|) |has| |#1| (-331)) ((-206) -1405 (|has| |#1| (-318)) (-12 (|has| |#1| (-206)) (|has| |#1| (-331)))) ((-216) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-260) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-276) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-331) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-370) |has| |#1| (-318)) ((-336) -1405 (|has| |#1| (-336)) (|has| |#1| (-318))) ((-318) |has| |#1| (-318)) ((-338 |#1| |#2|) . T) ((-378 |#1| |#2|) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-508) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-648 |#1|) . T) ((-648 $) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070)))) ((-841) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-964 |#1|) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| |#1| (-318)) ((-1108) -1405 (|has| |#1| (-318)) (|has| |#1| (-331)))) -((-2540 (($) 14)) (-2174 (((-3 $ "failed") $) 16)) (-1355 (((-107) $) 13)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) 9)) (** (($ $ (-839)) NIL) (($ $ (-701)) 20))) -(((-656 |#1|) (-10 -8 (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -3948 (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-701))) (-15 -1355 ((-107) |#1|)) (-15 -2540 (|#1|)) (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839)))) (-657)) (T -656)) -NIL -(-10 -8 (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -3948 (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-701))) (-15 -1355 ((-107) |#1|)) (-15 -2540 (|#1|)) (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839)))) -((-3736 (((-107) $ $) 7)) (-2540 (($) 20 T CONST)) (-2174 (((-3 $ "failed") $) 16)) (-1355 (((-107) $) 19)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-839)) 13) (($ $ (-701)) 17)) (-1925 (($) 21 T CONST)) (-3751 (((-107) $ $) 6)) (** (($ $ (-839)) 14) (($ $ (-701)) 18)) (* (($ $ $) 15))) -(((-657) (-1180)) (T -657)) -((-1925 (*1 *1) (-4 *1 (-657))) (-2540 (*1 *1) (-4 *1 (-657))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-657)) (-5 *2 (-107)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-701)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-701)))) (-2174 (*1 *1 *1) (|partial| -4 *1 (-657)))) -(-13 (-1012) (-10 -8 (-15 (-1925) ($) -3897) (-15 -2540 ($) -3897) (-15 -1355 ((-107) $)) (-15 ** ($ $ (-701))) (-15 -3948 ($ $ (-701))) (-15 -2174 ((-3 $ "failed") $)))) -(((-97) . T) ((-555 (-786)) . T) ((-1012) . T) ((-1001) . T)) -((-3538 (((-2 (|:| -2091 (-373 |#2|)) (|:| |special| (-373 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3205 (((-2 (|:| -2091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2359 ((|#2| (-375 |#2|) (-1 |#2| |#2|)) 13)) (-1688 (((-2 (|:| |poly| |#2|) (|:| -2091 (-375 |#2|)) (|:| |special| (-375 |#2|))) (-375 |#2|) (-1 |#2| |#2|)) 47))) -(((-658 |#1| |#2|) (-10 -7 (-15 -3205 ((-2 (|:| -2091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3538 ((-2 (|:| -2091 (-373 |#2|)) (|:| |special| (-373 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2359 (|#2| (-375 |#2|) (-1 |#2| |#2|))) (-15 -1688 ((-2 (|:| |poly| |#2|) (|:| -2091 (-375 |#2|)) (|:| |special| (-375 |#2|))) (-375 |#2|) (-1 |#2| |#2|)))) (-331) (-1125 |#1|)) (T -658)) -((-1688 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2091 (-375 *6)) (|:| |special| (-375 *6)))) (-5 *1 (-658 *5 *6)) (-5 *3 (-375 *6)))) (-2359 (*1 *2 *3 *4) (-12 (-5 *3 (-375 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-658 *5 *2)) (-4 *5 (-331)))) (-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -2091 (-373 *3)) (|:| |special| (-373 *3)))) (-5 *1 (-658 *5 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -2091 *3) (|:| |special| *3))) (-5 *1 (-658 *5 *3))))) -(-10 -7 (-15 -3205 ((-2 (|:| -2091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3538 ((-2 (|:| -2091 (-373 |#2|)) (|:| |special| (-373 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2359 (|#2| (-375 |#2|) (-1 |#2| |#2|))) (-15 -1688 ((-2 (|:| |poly| |#2|) (|:| -2091 (-375 |#2|)) (|:| |special| (-375 |#2|))) (-375 |#2|) (-1 |#2| |#2|)))) -((-1205 ((|#7| (-578 |#5|) |#6|) NIL)) (-1212 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-659 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1212 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1205 (|#7| (-578 |#5|) |#6|))) (-777) (-723) (-723) (-959) (-959) (-870 |#4| |#2| |#1|) (-870 |#5| |#3| |#1|)) (T -659)) -((-1205 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *9)) (-4 *9 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *8 (-959)) (-4 *2 (-870 *9 *7 *5)) (-5 *1 (-659 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-723)) (-4 *4 (-870 *8 *6 *5)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-959)) (-4 *9 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *2 (-870 *9 *7 *5)) (-5 *1 (-659 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-723)) (-4 *4 (-870 *8 *6 *5))))) -(-10 -7 (-15 -1212 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1205 (|#7| (-578 |#5|) |#6|))) -((-1212 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-660 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1212 (|#7| (-1 |#2| |#1|) |#6|))) (-777) (-777) (-723) (-723) (-959) (-870 |#5| |#3| |#1|) (-870 |#5| |#4| |#2|)) (T -660)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-777)) (-4 *6 (-777)) (-4 *7 (-723)) (-4 *9 (-959)) (-4 *2 (-870 *9 *8 *6)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-723)) (-4 *4 (-870 *9 *7 *5))))) -(-10 -7 (-15 -1212 (|#7| (-1 |#2| |#1|) |#6|))) -((-3739 (((-373 |#4|) |#4|) 39))) -(((-661 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4|))) (-723) (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070))))) (-276) (-870 (-866 |#3|) |#1| |#2|)) (T -661)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-661 *4 *5 *6 *3)) (-4 *3 (-870 (-866 *6) *4 *5))))) -(-10 -7 (-15 -3739 ((-373 |#4|) |#4|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-787 |#1|)) $) NIL)) (-3728 (((-1064 $) $ (-787 |#1|)) NIL) (((-1064 |#2|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-508)))) (-2865 (($ $) NIL (|has| |#2| (-508)))) (-1639 (((-107) $) NIL (|has| |#2| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-787 |#1|))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL (|has| |#2| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-787 |#1|) "failed") $) NIL)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-787 |#1|) $) NIL)) (-1749 (($ $ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#2| (-830)))) (-3503 (($ $ |#2| (-487 (-787 |#1|)) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#2|) (-787 |#1|)) NIL) (($ (-1064 $) (-787 |#1|)) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#2| (-487 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-787 |#1|)) NIL)) (-2285 (((-487 (-787 |#1|)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-3515 (($ (-1 (-487 (-787 |#1|)) (-487 (-787 |#1|))) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-2752 (((-3 (-787 |#1|) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#2| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-787 |#1|)) (|:| -3027 (-701))) "failed") $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#2| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-830)))) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-787 |#1|) |#2|) NIL) (($ $ (-578 (-787 |#1|)) (-578 |#2|)) NIL) (($ $ (-787 |#1|) $) NIL) (($ $ (-578 (-787 |#1|)) (-578 $)) NIL)) (-2532 (($ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-2596 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1201 (((-487 (-787 |#1|)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-787 |#1|) (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#2| $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-787 |#1|)) NIL) (($ $) NIL (|has| |#2| (-508))) (($ (-375 (-501))) NIL (-1405 (|has| |#2| (-37 (-375 (-501)))) (|has| |#2| (-950 (-375 (-501))))))) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-487 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#2| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#2| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#2| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#2| (-37 (-375 (-501))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-662 |#1| |#2|) (-870 |#2| (-487 (-787 |#1|)) (-787 |#1|)) (-578 (-1070)) (-959)) (T -662)) -NIL -(-870 |#2| (-487 (-787 |#1|)) (-787 |#1|)) -((-3539 (((-2 (|:| -3405 (-866 |#3|)) (|:| -1277 (-866 |#3|))) |#4|) 13)) (-1512 ((|#4| |#4| |#2|) 30)) (-3528 ((|#4| (-375 (-866 |#3|)) |#2|) 63)) (-2333 ((|#4| (-1064 (-866 |#3|)) |#2|) 76)) (-2647 ((|#4| (-1064 |#4|) |#2|) 49)) (-1827 ((|#4| |#4| |#2|) 52)) (-3739 (((-373 |#4|) |#4|) 38))) -(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3539 ((-2 (|:| -3405 (-866 |#3|)) (|:| -1277 (-866 |#3|))) |#4|)) (-15 -1827 (|#4| |#4| |#2|)) (-15 -2647 (|#4| (-1064 |#4|) |#2|)) (-15 -1512 (|#4| |#4| |#2|)) (-15 -2333 (|#4| (-1064 (-866 |#3|)) |#2|)) (-15 -3528 (|#4| (-375 (-866 |#3|)) |#2|)) (-15 -3739 ((-373 |#4|) |#4|))) (-723) (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)))) (-508) (-870 (-375 (-866 |#3|)) |#1| |#2|)) (T -663)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-870 (-375 (-866 *6)) *4 *5)))) (-3528 (*1 *2 *3 *4) (-12 (-4 *6 (-508)) (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-5 *3 (-375 (-866 *6))) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))))) (-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 (-866 *6))) (-4 *6 (-508)) (-4 *2 (-870 (-375 (-866 *6)) *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))))) (-1512 (*1 *2 *2 *3) (-12 (-4 *4 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *5 (-508)) (-5 *1 (-663 *4 *3 *5 *2)) (-4 *2 (-870 (-375 (-866 *5)) *4 *3)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *2)) (-4 *2 (-870 (-375 (-866 *6)) *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508)))) (-1827 (*1 *2 *2 *3) (-12 (-4 *4 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *5 (-508)) (-5 *1 (-663 *4 *3 *5 *2)) (-4 *2 (-870 (-375 (-866 *5)) *4 *3)))) (-3539 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508)) (-5 *2 (-2 (|:| -3405 (-866 *6)) (|:| -1277 (-866 *6)))) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-870 (-375 (-866 *6)) *4 *5))))) -(-10 -7 (-15 -3539 ((-2 (|:| -3405 (-866 |#3|)) (|:| -1277 (-866 |#3|))) |#4|)) (-15 -1827 (|#4| |#4| |#2|)) (-15 -2647 (|#4| (-1064 |#4|) |#2|)) (-15 -1512 (|#4| |#4| |#2|)) (-15 -2333 (|#4| (-1064 (-866 |#3|)) |#2|)) (-15 -3528 (|#4| (-375 (-866 |#3|)) |#2|)) (-15 -3739 ((-373 |#4|) |#4|))) -((-3739 (((-373 |#4|) |#4|) 51))) -(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4|))) (-723) (-777) (-13 (-276) (-134)) (-870 (-375 |#3|) |#1| |#2|)) (T -664)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-870 (-375 *6) *4 *5))))) -(-10 -7 (-15 -3739 ((-373 |#4|) |#4|))) -((-1212 (((-666 |#2| |#3|) (-1 |#2| |#1|) (-666 |#1| |#3|)) 18))) -(((-665 |#1| |#2| |#3|) (-10 -7 (-15 -1212 ((-666 |#2| |#3|) (-1 |#2| |#1|) (-666 |#1| |#3|)))) (-959) (-959) (-657)) (T -665)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-666 *5 *7)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *7 (-657)) (-5 *2 (-666 *6 *7)) (-5 *1 (-665 *5 *6 *7))))) -(-10 -7 (-15 -1212 ((-666 |#2| |#3|) (-1 |#2| |#1|) (-666 |#1| |#3|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 26)) (-1395 (((-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|))) $) 27)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701)) 20 (-12 (|has| |#2| (-336)) (|has| |#1| (-336))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 55) (((-3 |#1| "failed") $) 58)) (-3490 ((|#2| $) NIL) ((|#1| $) NIL)) (-3858 (($ $) 75 (|has| |#2| (-777)))) (-2174 (((-3 $ "failed") $) 62)) (-2890 (($) 33 (-12 (|has| |#2| (-336)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) 53)) (-2713 (((-578 $) $) 37)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| |#2|) 16)) (-1212 (($ (-1 |#1| |#1|) $) 52)) (-3104 (((-839) $) 30 (-12 (|has| |#2| (-336)) (|has| |#1| (-336))))) (-3845 ((|#2| $) 74 (|has| |#2| (-777)))) (-3850 ((|#1| $) 73 (|has| |#2| (-777)))) (-3460 (((-1053) $) NIL)) (-3506 (($ (-839)) 25 (-12 (|has| |#2| (-336)) (|has| |#1| (-336))))) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 72) (($ (-501)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|)))) 11)) (-1303 (((-578 |#1|) $) 39)) (-2495 ((|#1| $ |#2|) 83)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 12 T CONST)) (-1925 (($) 31 T CONST)) (-3751 (((-107) $ $) 76)) (-3797 (($ $) 46) (($ $ $) NIL)) (-3790 (($ $ $) 24)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 50) (($ $ $) 85) (($ |#1| $) 48 (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) -(((-666 |#1| |#2|) (-13 (-959) (-950 |#2|) (-950 |#1|) (-10 -8 (-15 -3787 ($ |#1| |#2|)) (-15 -2495 (|#1| $ |#2|)) (-15 -3691 ($ (-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|))))) (-15 -1395 ((-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|))) $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (-15 -2706 ((-107) $)) (-15 -1303 ((-578 |#1|) $)) (-15 -2713 ((-578 $) $)) (-15 -3706 ((-701) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-336)) (IF (|has| |#2| (-336)) (-6 (-336)) |noBranch|) |noBranch|) (IF (|has| |#2| (-777)) (PROGN (-15 -3845 (|#2| $)) (-15 -3850 (|#1| $)) (-15 -3858 ($ $))) |noBranch|))) (-959) (-657)) (T -666)) -((-3787 (*1 *1 *2 *3) (-12 (-5 *1 (-666 *2 *3)) (-4 *2 (-959)) (-4 *3 (-657)))) (-2495 (*1 *2 *1 *3) (-12 (-4 *2 (-959)) (-5 *1 (-666 *2 *3)) (-4 *3 (-657)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3189 *3) (|:| -2607 *4)))) (-4 *3 (-959)) (-4 *4 (-657)) (-5 *1 (-666 *3 *4)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3189 *3) (|:| -2607 *4)))) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-666 *3 *4)) (-4 *4 (-657)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) (-1303 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-578 (-666 *3 *4))) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) (-3845 (*1 *2 *1) (-12 (-4 *2 (-657)) (-4 *2 (-777)) (-5 *1 (-666 *3 *2)) (-4 *3 (-959)))) (-3850 (*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-666 *2 *3)) (-4 *3 (-777)) (-4 *3 (-657)))) (-3858 (*1 *1 *1) (-12 (-5 *1 (-666 *2 *3)) (-4 *3 (-777)) (-4 *2 (-959)) (-4 *3 (-657))))) -(-13 (-959) (-950 |#2|) (-950 |#1|) (-10 -8 (-15 -3787 ($ |#1| |#2|)) (-15 -2495 (|#1| $ |#2|)) (-15 -3691 ($ (-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|))))) (-15 -1395 ((-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|))) $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (-15 -2706 ((-107) $)) (-15 -1303 ((-578 |#1|) $)) (-15 -2713 ((-578 $) $)) (-15 -3706 ((-701) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-336)) (IF (|has| |#2| (-336)) (-6 (-336)) |noBranch|) |noBranch|) (IF (|has| |#2| (-777)) (PROGN (-15 -3845 (|#2| $)) (-15 -3850 (|#1| $)) (-15 -3858 ($ $))) |noBranch|))) -((-3736 (((-107) $ $) NIL)) (-1442 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 77)) (-3217 (($ $ $) 80)) (-3599 (((-107) $ $) 83)) (-2997 (((-107) $ (-701)) NIL)) (-2198 (($ (-578 |#1|)) 24) (($) 15)) (-1221 (($ (-1 (-107) |#1|) $) 71 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-2921 (($ $) 72)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) 61 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 64 (|has| $ (-6 -4167))) (($ |#1| $ (-501)) 62) (($ (-1 (-107) |#1|) $ (-501)) 65)) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (($ |#1| $ (-501)) 67) (($ (-1 (-107) |#1|) $ (-501)) 68)) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 32 (|has| $ (-6 -4167)))) (-1431 (($) 13) (($ |#1|) 26) (($ (-578 |#1|)) 21)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) 38)) (-2211 (((-107) |#1| $) 57 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) 75 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 76)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-3420 (($ $ $) 78)) (-1328 ((|#1| $) 54)) (-4114 (($ |#1| $) 55) (($ |#1| $ (-701)) 73)) (-3708 (((-1018) $) NIL)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1251 ((|#1| $) 53)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 49)) (-3122 (($) 12)) (-2908 (((-578 (-2 (|:| -2922 |#1|) (|:| -3713 (-701)))) $) 47)) (-3327 (($ $ |#1|) NIL) (($ $ $) 79)) (-3013 (($) 14) (($ (-578 |#1|)) 23)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) 60 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 66)) (-1248 (((-490) $) 36 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 20)) (-3691 (((-786) $) 44)) (-3910 (($ (-578 |#1|)) 25) (($) 16)) (-2866 (($ (-578 |#1|)) 22)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 81)) (-3762 (((-107) $ $) 82)) (-3581 (((-701) $) 59 (|has| $ (-6 -4167))))) -(((-667 |#1|) (-13 (-668 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -1431 ($)) (-15 -1431 ($ |#1|)) (-15 -1431 ($ (-578 |#1|))) (-15 -3380 ((-578 |#1|) $)) (-15 -1526 ($ |#1| $ (-501))) (-15 -1526 ($ (-1 (-107) |#1|) $ (-501))) (-15 -2256 ($ |#1| $ (-501))) (-15 -2256 ($ (-1 (-107) |#1|) $ (-501))))) (-1001)) (T -667)) -((-1431 (*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1001)))) (-1431 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1001)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-667 *3)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-667 *3)) (-4 *3 (-1001)))) (-1526 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-667 *2)) (-4 *2 (-1001)))) (-1526 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-501)) (-4 *4 (-1001)) (-5 *1 (-667 *4)))) (-2256 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-667 *2)) (-4 *2 (-1001)))) (-2256 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-501)) (-4 *4 (-1001)) (-5 *1 (-667 *4))))) -(-13 (-668 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -1431 ($)) (-15 -1431 ($ |#1|)) (-15 -1431 ($ (-578 |#1|))) (-15 -3380 ((-578 |#1|) $)) (-15 -1526 ($ |#1| $ (-501))) (-15 -1526 ($ (-1 (-107) |#1|) $ (-501))) (-15 -2256 ($ |#1| $ (-501))) (-15 -2256 ($ (-1 (-107) |#1|) $ (-501))))) -((-3736 (((-107) $ $) 18)) (-1442 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3217 (($ $ $) 72)) (-3599 (((-107) $ $) 73)) (-2997 (((-107) $ (-701)) 8)) (-2198 (($ (-578 |#1|)) 68) (($) 67)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2921 (($ $) 62)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22)) (-3420 (($ $ $) 69)) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40) (($ |#1| $ (-701)) 63)) (-3708 (((-1018) $) 21)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2908 (((-578 (-2 (|:| -2922 |#1|) (|:| -3713 (-701)))) $) 61)) (-3327 (($ $ |#1|) 71) (($ $ $) 70)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3691 (((-786) $) 20)) (-3910 (($ (-578 |#1|)) 66) (($) 65)) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19)) (-3762 (((-107) $ $) 64)) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-668 |#1|) (-1180) (-1001)) (T -668)) -NIL -(-13 (-626 |t#1|) (-999 |t#1|)) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-208 |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-626 |#1|) . T) ((-999 |#1|) . T) ((-1001) . T) ((-1104) . T)) -((-2923 (((-1154) (-1053)) 8))) -(((-669) (-10 -7 (-15 -2923 ((-1154) (-1053))))) (T -669)) -((-2923 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-669))))) -(-10 -7 (-15 -2923 ((-1154) (-1053)))) -((-2610 (((-578 |#1|) (-578 |#1|) (-578 |#1|)) 10))) -(((-670 |#1|) (-10 -7 (-15 -2610 ((-578 |#1|) (-578 |#1|) (-578 |#1|)))) (-777)) (T -670)) -((-2610 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-670 *3))))) -(-10 -7 (-15 -2610 ((-578 |#1|) (-578 |#1|) (-578 |#1|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 |#2|) $) 143)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 136 (|has| |#1| (-508)))) (-2865 (($ $) 135 (|has| |#1| (-508)))) (-1639 (((-107) $) 133 (|has| |#1| (-508)))) (-3978 (($ $) 92 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 75 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3743 (($ $) 74 (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) 91 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 76 (|has| |#1| (-37 (-375 (-501)))))) (-3984 (($ $) 90 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 77 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3858 (($ $) 127)) (-2174 (((-3 $ "failed") $) 34)) (-3430 (((-866 |#1|) $ (-701)) 105) (((-866 |#1|) $ (-701) (-701)) 104)) (-3331 (((-107) $) 144)) (-2003 (($) 102 (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $ |#2|) 107) (((-701) $ |#2| (-701)) 106)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 73 (|has| |#1| (-37 (-375 (-501)))))) (-2706 (((-107) $) 125)) (-3787 (($ $ (-578 |#2|) (-578 (-487 |#2|))) 142) (($ $ |#2| (-487 |#2|)) 141) (($ |#1| (-487 |#2|)) 126) (($ $ |#2| (-701)) 109) (($ $ (-578 |#2|) (-578 (-701))) 108)) (-1212 (($ (-1 |#1| |#1|) $) 124)) (-1635 (($ $) 99 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 122)) (-3850 ((|#1| $) 121)) (-3460 (((-1053) $) 9)) (-3188 (($ $ |#2|) 103 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) 10)) (-3718 (($ $ (-701)) 110)) (-3694 (((-3 $ "failed") $ $) 137 (|has| |#1| (-508)))) (-1989 (($ $) 100 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (($ $ |#2| $) 118) (($ $ (-578 |#2|) (-578 $)) 117) (($ $ (-578 (-262 $))) 116) (($ $ (-262 $)) 115) (($ $ $ $) 114) (($ $ (-578 $) (-578 $)) 113)) (-2596 (($ $ |#2|) 42) (($ $ (-578 |#2|)) 41) (($ $ |#2| (-701)) 40) (($ $ (-578 |#2|) (-578 (-701))) 39)) (-1201 (((-487 |#2|) $) 123)) (-3991 (($ $) 89 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 78 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 88 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 79 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 87 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 80 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 145)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 140 (|has| |#1| (-156))) (($ $) 138 (|has| |#1| (-508))) (($ (-375 (-501))) 130 (|has| |#1| (-37 (-375 (-501)))))) (-2495 ((|#1| $ (-487 |#2|)) 128) (($ $ |#2| (-701)) 112) (($ $ (-578 |#2|) (-578 (-701))) 111)) (-1274 (((-3 $ "failed") $) 139 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-4003 (($ $) 98 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 86 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 134 (|has| |#1| (-508)))) (-3995 (($ $) 97 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 85 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 96 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 84 (|has| |#1| (-37 (-375 (-501)))))) (-3550 (($ $) 95 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 83 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 94 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 82 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 93 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 81 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ |#2|) 38) (($ $ (-578 |#2|)) 37) (($ $ |#2| (-701)) 36) (($ $ (-578 |#2|) (-578 (-701))) 35)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 129 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ $) 101 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 72 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 132 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 131 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 120) (($ $ |#1|) 119))) -(((-671 |#1| |#2|) (-1180) (-959) (-777)) (T -671)) -((-2495 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *2)) (-4 *4 (-959)) (-4 *2 (-777)))) (-2495 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-701))) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-671 *3 *4)) (-4 *3 (-959)) (-4 *4 (-777)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *2)) (-4 *4 (-959)) (-4 *2 (-777)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-701))) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)))) (-3169 (*1 *2 *1 *3) (-12 (-4 *1 (-671 *4 *3)) (-4 *4 (-959)) (-4 *3 (-777)) (-5 *2 (-701)))) (-3169 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-701)) (-4 *1 (-671 *4 *3)) (-4 *4 (-959)) (-4 *3 (-777)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)) (-5 *2 (-866 *4)))) (-3430 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)) (-5 *2 (-866 *4)))) (-3188 (*1 *1 *1 *2) (-12 (-4 *1 (-671 *3 *2)) (-4 *3 (-959)) (-4 *2 (-777)) (-4 *3 (-37 (-375 (-501))))))) -(-13 (-820 |t#2|) (-888 |t#1| (-487 |t#2|) |t#2|) (-476 |t#2| $) (-278 $) (-10 -8 (-15 -2495 ($ $ |t#2| (-701))) (-15 -2495 ($ $ (-578 |t#2|) (-578 (-701)))) (-15 -3718 ($ $ (-701))) (-15 -3787 ($ $ |t#2| (-701))) (-15 -3787 ($ $ (-578 |t#2|) (-578 (-701)))) (-15 -3169 ((-701) $ |t#2|)) (-15 -3169 ((-701) $ |t#2| (-701))) (-15 -3430 ((-866 |t#1|) $ (-701))) (-15 -3430 ((-866 |t#1|) $ (-701) (-701))) (IF (|has| |t#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $ |t#2|)) (-6 (-916)) (-6 (-1090))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| (-487 |#2|)) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-260) |has| |#1| (-508)) ((-278 $) . T) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-476 |#2| $) . T) ((-476 $ $) . T) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-820 |#2|) . T) ((-888 |#1| (-487 |#2|) |#2|) . T) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501))))) -((-3739 (((-373 (-1064 |#4|)) (-1064 |#4|)) 28) (((-373 |#4|) |#4|) 24))) -(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4|)) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|)))) (-777) (-723) (-13 (-276) (-134)) (-870 |#3| |#2| |#1|)) (T -672)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-672 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4))))) -(-10 -7 (-15 -3739 ((-373 |#4|) |#4|)) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|)))) -((-1918 (((-373 |#4|) |#4| |#2|) 116)) (-3247 (((-373 |#4|) |#4|) NIL)) (-1559 (((-373 (-1064 |#4|)) (-1064 |#4|)) 107) (((-373 |#4|) |#4|) 38)) (-3206 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-578 (-2 (|:| -3739 (-1064 |#4|)) (|:| -3027 (-501)))))) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|))) 65)) (-2071 (((-1064 |#3|) (-1064 |#3|) (-501)) 133)) (-1466 (((-578 (-701)) (-1064 |#4|) (-578 |#2|) (-701)) 58)) (-1316 (((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-1064 |#3|) (-1064 |#3|) |#4| (-578 |#2|) (-578 (-701)) (-578 |#3|)) 62)) (-1454 (((-2 (|:| |upol| (-1064 |#3|)) (|:| |Lval| (-578 |#3|)) (|:| |Lfact| (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501))))) (|:| |ctpol| |#3|)) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|))) 22)) (-3264 (((-2 (|:| -2663 (-1064 |#4|)) (|:| |polval| (-1064 |#3|))) (-1064 |#4|) (-1064 |#3|) (-501)) 54)) (-1185 (((-501) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501))))) 130)) (-2112 ((|#4| (-501) (-373 |#4|)) 55)) (-1266 (((-107) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501))))) NIL))) -(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1559 ((-373 |#4|) |#4|)) (-15 -1559 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -3247 ((-373 |#4|) |#4|)) (-15 -1185 ((-501) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))))) (-15 -1918 ((-373 |#4|) |#4| |#2|)) (-15 -3264 ((-2 (|:| -2663 (-1064 |#4|)) (|:| |polval| (-1064 |#3|))) (-1064 |#4|) (-1064 |#3|) (-501))) (-15 -3206 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-578 (-2 (|:| -3739 (-1064 |#4|)) (|:| -3027 (-501)))))) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -1454 ((-2 (|:| |upol| (-1064 |#3|)) (|:| |Lval| (-578 |#3|)) (|:| |Lfact| (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501))))) (|:| |ctpol| |#3|)) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -2112 (|#4| (-501) (-373 |#4|))) (-15 -1266 ((-107) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))))) (-15 -1316 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-1064 |#3|) (-1064 |#3|) |#4| (-578 |#2|) (-578 (-701)) (-578 |#3|))) (-15 -1466 ((-578 (-701)) (-1064 |#4|) (-578 |#2|) (-701))) (-15 -2071 ((-1064 |#3|) (-1064 |#3|) (-501)))) (-723) (-777) (-276) (-870 |#3| |#1| |#2|)) (T -673)) -((-2071 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 *6)) (-5 *3 (-501)) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) (-1466 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-4 *7 (-777)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-4 *8 (-276)) (-5 *2 (-578 (-701))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *5 (-701)))) (-1316 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1064 *11)) (-5 *6 (-578 *10)) (-5 *7 (-578 (-701))) (-5 *8 (-578 *11)) (-4 *10 (-777)) (-4 *11 (-276)) (-4 *9 (-723)) (-4 *5 (-870 *11 *9 *10)) (-5 *2 (-578 (-1064 *5))) (-5 *1 (-673 *9 *10 *11 *5)) (-5 *3 (-1064 *5)))) (-1266 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 (-1064 *6)) (|:| -3027 (-501))))) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-373 *2)) (-4 *2 (-870 *7 *5 *6)) (-5 *1 (-673 *5 *6 *7 *2)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-276)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-5 *2 (-2 (|:| |upol| (-1064 *8)) (|:| |Lval| (-578 *8)) (|:| |Lfact| (-578 (-2 (|:| -3739 (-1064 *8)) (|:| -3027 (-501))))) (|:| |ctpol| *8))) (-5 *1 (-673 *6 *7 *8 *9)))) (-3206 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *6 (-723)) (-4 *9 (-870 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-578 (-2 (|:| -3739 (-1064 *9)) (|:| -3027 (-501))))))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *3 (-1064 *9)))) (-3264 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-501)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *9 (-870 *8 *6 *7)) (-5 *2 (-2 (|:| -2663 (-1064 *9)) (|:| |polval| (-1064 *8)))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *3 (-1064 *9)) (-5 *4 (-1064 *8)))) (-1918 (*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *5 *4 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) (-1185 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 (-1064 *6)) (|:| -3027 (-501))))) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-501)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) (-3247 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-870 *6 *4 *5)))) (-1559 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-673 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-1559 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-870 *6 *4 *5))))) -(-10 -7 (-15 -1559 ((-373 |#4|) |#4|)) (-15 -1559 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -3247 ((-373 |#4|) |#4|)) (-15 -1185 ((-501) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))))) (-15 -1918 ((-373 |#4|) |#4| |#2|)) (-15 -3264 ((-2 (|:| -2663 (-1064 |#4|)) (|:| |polval| (-1064 |#3|))) (-1064 |#4|) (-1064 |#3|) (-501))) (-15 -3206 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-578 (-2 (|:| -3739 (-1064 |#4|)) (|:| -3027 (-501)))))) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -1454 ((-2 (|:| |upol| (-1064 |#3|)) (|:| |Lval| (-578 |#3|)) (|:| |Lfact| (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501))))) (|:| |ctpol| |#3|)) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -2112 (|#4| (-501) (-373 |#4|))) (-15 -1266 ((-107) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))))) (-15 -1316 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-1064 |#3|) (-1064 |#3|) |#4| (-578 |#2|) (-578 (-701)) (-578 |#3|))) (-15 -1466 ((-578 (-701)) (-1064 |#4|) (-578 |#2|) (-701))) (-15 -2071 ((-1064 |#3|) (-1064 |#3|) (-501)))) -((-3554 (($ $ (-839)) 12))) -(((-674 |#1| |#2|) (-10 -8 (-15 -3554 (|#1| |#1| (-839)))) (-675 |#2|) (-156)) (T -674)) -NIL -(-10 -8 (-15 -3554 (|#1| |#1| (-839)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2911 (($ $ (-839)) 28)) (-3554 (($ $ (-839)) 33)) (-3381 (($ $ (-839)) 29)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2144 (($ $ $) 25)) (-3691 (((-786) $) 11)) (-1363 (($ $ $ $) 26)) (-2033 (($ $ $) 24)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 30)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-675 |#1|) (-1180) (-156)) (T -675)) -((-3554 (*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-675 *3)) (-4 *3 (-156))))) -(-13 (-692) (-648 |t#1|) (-10 -8 (-15 -3554 ($ $ (-839))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-648 |#1|) . T) ((-651) . T) ((-692) . T) ((-964 |#1|) . T) ((-1001) . T)) -((-1377 (((-948) (-621 (-199)) (-501) (-107) (-501)) 24)) (-1373 (((-948) (-621 (-199)) (-501) (-107) (-501)) 23))) -(((-676) (-10 -7 (-15 -1373 ((-948) (-621 (-199)) (-501) (-107) (-501))) (-15 -1377 ((-948) (-621 (-199)) (-501) (-107) (-501))))) (T -676)) -((-1377 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-676)))) (-1373 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-676))))) -(-10 -7 (-15 -1373 ((-948) (-621 (-199)) (-501) (-107) (-501))) (-15 -1377 ((-948) (-621 (-199)) (-501) (-107) (-501)))) -((-1404 (((-948) (-501) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-72 FCN)))) 43)) (-1396 (((-948) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-79 FCN)))) 39)) (-1388 (((-948) (-199) (-199) (-199) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) 32))) -(((-677) (-10 -7 (-15 -1388 ((-948) (-199) (-199) (-199) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1396 ((-948) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-79 FCN))))) (-15 -1404 ((-948) (-501) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-72 FCN))))))) (T -677)) -((-1404 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-72 FCN)))) (-5 *2 (-948)) (-5 *1 (-677)))) (-1396 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-79 FCN)))) (-5 *2 (-948)) (-5 *1 (-677)))) (-1388 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-677))))) -(-10 -7 (-15 -1388 ((-948) (-199) (-199) (-199) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1396 ((-948) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-79 FCN))))) (-15 -1404 ((-948) (-501) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-72 FCN)))))) -((-1496 (((-948) (-501) (-501) (-621 (-199)) (-501)) 33)) (-1489 (((-948) (-501) (-501) (-621 (-199)) (-501)) 32)) (-1478 (((-948) (-501) (-621 (-199)) (-501)) 31)) (-1470 (((-948) (-501) (-621 (-199)) (-501)) 30)) (-1463 (((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 29)) (-1456 (((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 28)) (-1448 (((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501)) 27)) (-1438 (((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501)) 26)) (-1432 (((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 23)) (-1424 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501)) 22)) (-1420 (((-948) (-501) (-621 (-199)) (-501)) 21)) (-1412 (((-948) (-501) (-621 (-199)) (-501)) 20))) -(((-678) (-10 -7 (-15 -1412 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1420 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1424 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1432 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1438 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1448 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1456 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1463 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1470 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1478 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1489 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1496 ((-948) (-501) (-501) (-621 (-199)) (-501))))) (T -678)) -((-1496 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1489 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1478 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1470 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1463 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1456 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1448 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1438 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1432 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1424 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1420 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1412 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(-10 -7 (-15 -1412 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1420 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1424 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1432 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1438 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1448 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1456 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1463 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1470 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1478 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1489 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1496 ((-948) (-501) (-501) (-621 (-199)) (-501)))) -((-1589 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) 52)) (-1580 (((-948) (-621 (-199)) (-621 (-199)) (-501) (-501)) 51)) (-1573 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) 50)) (-1565 (((-948) (-199) (-199) (-501) (-501) (-501) (-501)) 46)) (-1561 (((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) 45)) (-1553 (((-948) (-199) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) 44)) (-1539 (((-948) (-199) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) 43)) (-1533 (((-948) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) 42)) (-1523 (((-948) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) 38)) (-1519 (((-948) (-199) (-199) (-501) (-621 (-199)) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) 37)) (-1508 (((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) 33)) (-1503 (((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) 32))) -(((-679) (-10 -7 (-15 -1503 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1508 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1519 ((-948) (-199) (-199) (-501) (-621 (-199)) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1523 ((-948) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1533 ((-948) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1539 ((-948) (-199) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1553 ((-948) (-199) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1561 ((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1565 ((-948) (-199) (-199) (-501) (-501) (-501) (-501))) (-15 -1573 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN))))) (-15 -1580 ((-948) (-621 (-199)) (-621 (-199)) (-501) (-501))) (-15 -1589 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN))))))) (T -679)) -((-1589 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1580 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-679)))) (-1573 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1565 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-679)))) (-1561 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1553 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1539 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1533 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1523 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1519 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-679)))) (-1508 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1503 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679))))) -(-10 -7 (-15 -1503 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1508 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1519 ((-948) (-199) (-199) (-501) (-621 (-199)) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1523 ((-948) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1533 ((-948) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1539 ((-948) (-199) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1553 ((-948) (-199) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1561 ((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1565 ((-948) (-199) (-199) (-501) (-501) (-501) (-501))) (-15 -1573 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN))))) (-15 -1580 ((-948) (-621 (-199)) (-621 (-199)) (-501) (-501))) (-15 -1589 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))))) -((-1650 (((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-356)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-1643 (((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL))) (-356) (-356)) 69) (((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL)))) 68)) (-1636 (((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-84 FCNG)))) 57)) (-1627 (((-948) (-621 (-199)) (-621 (-199)) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) 50)) (-1619 (((-948) (-199) (-501) (-501) (-1053) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) 49)) (-1611 (((-948) (-199) (-501) (-501) (-199) (-1053) (-199) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) 45)) (-1603 (((-948) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) 42)) (-1593 (((-948) (-199) (-501) (-501) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) 38))) -(((-680) (-10 -7 (-15 -1593 ((-948) (-199) (-501) (-501) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1603 ((-948) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))))) (-15 -1611 ((-948) (-199) (-501) (-501) (-199) (-1053) (-199) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1619 ((-948) (-199) (-501) (-501) (-1053) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1627 ((-948) (-621 (-199)) (-621 (-199)) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))))) (-15 -1636 ((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-84 FCNG))))) (-15 -1643 ((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL))))) (-15 -1643 ((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL))) (-356) (-356))) (-15 -1650 ((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-356)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -680)) -((-1650 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1643 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-356)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1643 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-948)) (-5 *1 (-680)))) (-1636 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1627 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *2 (-948)) (-5 *1 (-680)))) (-1619 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1611 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1603 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1593 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680))))) -(-10 -7 (-15 -1593 ((-948) (-199) (-501) (-501) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1603 ((-948) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))))) (-15 -1611 ((-948) (-199) (-501) (-501) (-199) (-1053) (-199) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1619 ((-948) (-199) (-501) (-501) (-1053) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1627 ((-948) (-621 (-199)) (-621 (-199)) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))))) (-15 -1636 ((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-84 FCNG))))) (-15 -1643 ((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL))))) (-15 -1643 ((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL))) (-356) (-356))) (-15 -1650 ((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-356)) (|:| |fp| (-75 G JACOBG JACGEP)))))) -((-1669 (((-948) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-609 (-199)) (-501)) 45)) (-1661 (((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-1053) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-82 BNDY)))) 41)) (-1656 (((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 23))) -(((-681) (-10 -7 (-15 -1656 ((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1661 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-1053) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-82 BNDY))))) (-15 -1669 ((-948) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-609 (-199)) (-501))))) (T -681)) -((-1669 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-609 (-199))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-681)))) (-1661 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-948)) (-5 *1 (-681)))) (-1656 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-681))))) -(-10 -7 (-15 -1656 ((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1661 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-1053) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-82 BNDY))))) (-15 -1669 ((-948) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-609 (-199)) (-501)))) -((-1742 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-621 (-199)) (-199) (-199) (-501)) 35)) (-1736 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-199) (-199) (-501)) 34)) (-1728 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-621 (-199)) (-199) (-199) (-501)) 33)) (-1721 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 29)) (-1714 (((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 28)) (-1708 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501)) 27)) (-1698 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501)) 23)) (-1692 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501)) 22)) (-1685 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501)) 21)) (-1679 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501)) 20))) -(((-682) (-10 -7 (-15 -1679 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501))) (-15 -1685 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1692 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -1698 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -1708 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501))) (-15 -1714 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1721 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1728 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-621 (-199)) (-199) (-199) (-501))) (-15 -1736 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-199) (-199) (-501))) (-15 -1742 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-621 (-199)) (-199) (-199) (-501))))) (T -682)) -((-1742 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682)))) (-1736 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682)))) (-1728 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *6 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-682)))) (-1721 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))) (-1714 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))) (-1708 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682)))) (-1698 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))) (-1692 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))) (-1685 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))) (-1679 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682))))) -(-10 -7 (-15 -1679 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501))) (-15 -1685 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1692 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -1698 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -1708 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501))) (-15 -1714 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1721 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1728 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-621 (-199)) (-199) (-199) (-501))) (-15 -1736 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-199) (-199) (-501))) (-15 -1742 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-621 (-199)) (-199) (-199) (-501)))) -((-1840 (((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501)) 45)) (-1836 (((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-501)) 44)) (-1830 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501)) 43)) (-1823 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 42)) (-1819 (((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501)) 41)) (-1815 (((-948) (-1053) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501)) 40)) (-1810 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501) (-501) (-501) (-199) (-621 (-199)) (-501)) 39)) (-1805 (((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501))) 38)) (-1799 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501)) 35)) (-1793 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501)) 34)) (-1788 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501)) 33)) (-1779 (((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 32)) (-1775 (((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501)) 31)) (-1770 (((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-501)) 30)) (-1760 (((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-501) (-501) (-501)) 29)) (-1756 (((-948) (-501) (-501) (-501) (-199) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-501)) (-501) (-501) (-501)) 28)) (-1748 (((-948) (-501) (-621 (-199)) (-199) (-501)) 24)) (-1744 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 20))) -(((-683) (-10 -7 (-15 -1744 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1748 ((-948) (-501) (-621 (-199)) (-199) (-501))) (-15 -1756 ((-948) (-501) (-501) (-501) (-199) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-501)) (-501) (-501) (-501))) (-15 -1760 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-501) (-501) (-501))) (-15 -1770 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-501))) (-15 -1775 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501))) (-15 -1779 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1788 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501))) (-15 -1793 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501))) (-15 -1799 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1805 ((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501)))) (-15 -1810 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501) (-501) (-501) (-199) (-621 (-199)) (-501))) (-15 -1815 ((-948) (-1053) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501))) (-15 -1819 ((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1823 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1830 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501))) (-15 -1836 ((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1840 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501))))) (T -683)) -((-1840 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))) (-1836 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1830 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))) (-1823 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))) (-1819 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1815 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1810 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *6 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1805 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1799 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))) (-1793 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1788 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1779 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))) (-1775 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1770 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1760 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1756 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1748 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1744 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683))))) -(-10 -7 (-15 -1744 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1748 ((-948) (-501) (-621 (-199)) (-199) (-501))) (-15 -1756 ((-948) (-501) (-501) (-501) (-199) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-501)) (-501) (-501) (-501))) (-15 -1760 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-501) (-501) (-501))) (-15 -1770 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-501))) (-15 -1775 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501))) (-15 -1779 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1788 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501))) (-15 -1793 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501))) (-15 -1799 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1805 ((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501)))) (-15 -1810 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501) (-501) (-501) (-199) (-621 (-199)) (-501))) (-15 -1815 ((-948) (-1053) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501))) (-15 -1819 ((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1823 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1830 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501))) (-15 -1836 ((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1840 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501)))) -((-1873 (((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-501) (-621 (-199)) (-501)) 63)) (-1869 (((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-107) (-199) (-501) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-501) (-501) (-501) (-501) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) 62)) (-1865 (((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-107) (-107) (-501) (-501) (-621 (-199)) (-621 (-501)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-63 QPHESS)))) 58)) (-1861 (((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-501) (-501) (-621 (-199)) (-501)) 51)) (-1857 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-64 FUNCT1)))) 50)) (-1854 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-62 LSFUN2)))) 46)) (-1849 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-77 LSFUN1)))) 42)) (-1845 (((-948) (-501) (-199) (-199) (-501) (-199) (-107) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) 38))) -(((-684) (-10 -7 (-15 -1845 ((-948) (-501) (-199) (-199) (-501) (-199) (-107) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN))))) (-15 -1849 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-77 LSFUN1))))) (-15 -1854 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-62 LSFUN2))))) (-15 -1857 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-64 FUNCT1))))) (-15 -1861 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-501) (-501) (-621 (-199)) (-501))) (-15 -1865 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-107) (-107) (-501) (-501) (-621 (-199)) (-621 (-501)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-63 QPHESS))))) (-15 -1869 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-107) (-199) (-501) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-501) (-501) (-501) (-501) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN))))) (-15 -1873 ((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-501) (-621 (-199)) (-501))))) (T -684)) -((-1873 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684)))) (-1869 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-684)))) (-1865 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-621 (-199))) (-5 *6 (-107)) (-5 *7 (-621 (-501))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684)))) (-1861 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-684)))) (-1857 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-948)) (-5 *1 (-684)))) (-1854 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-948)) (-5 *1 (-684)))) (-1849 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-948)) (-5 *1 (-684)))) (-1845 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-501)) (-5 *5 (-107)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684))))) -(-10 -7 (-15 -1845 ((-948) (-501) (-199) (-199) (-501) (-199) (-107) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN))))) (-15 -1849 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-77 LSFUN1))))) (-15 -1854 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-62 LSFUN2))))) (-15 -1857 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-64 FUNCT1))))) (-15 -1861 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-501) (-501) (-621 (-199)) (-501))) (-15 -1865 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-107) (-107) (-501) (-501) (-621 (-199)) (-621 (-501)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-63 QPHESS))))) (-15 -1869 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-107) (-199) (-501) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-501) (-501) (-501) (-501) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN))))) (-15 -1873 ((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-501) (-621 (-199)) (-501)))) -((-1916 (((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501)) 46)) (-1911 (((-948) (-1053) (-1053) (-501) (-501) (-621 (-152 (-199))) (-501) (-621 (-152 (-199))) (-501) (-501) (-621 (-152 (-199))) (-501)) 45)) (-1907 (((-948) (-501) (-501) (-501) (-621 (-152 (-199))) (-501)) 44)) (-1903 (((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 40)) (-1899 (((-948) (-1053) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-621 (-199)) (-501)) 39)) (-1895 (((-948) (-501) (-501) (-501) (-621 (-199)) (-501)) 36)) (-1890 (((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501)) 35)) (-1885 (((-948) (-501) (-501) (-501) (-501) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-199) (-199) (-501)) 34)) (-1881 (((-948) (-501) (-501) (-501) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-107) (-199) (-107) (-621 (-501)) (-621 (-199)) (-501)) 33)) (-1877 (((-948) (-501) (-501) (-501) (-501) (-199) (-107) (-107) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-501)) 32))) -(((-685) (-10 -7 (-15 -1877 ((-948) (-501) (-501) (-501) (-501) (-199) (-107) (-107) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-501))) (-15 -1881 ((-948) (-501) (-501) (-501) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-107) (-199) (-107) (-621 (-501)) (-621 (-199)) (-501))) (-15 -1885 ((-948) (-501) (-501) (-501) (-501) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-199) (-199) (-501))) (-15 -1890 ((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501))) (-15 -1895 ((-948) (-501) (-501) (-501) (-621 (-199)) (-501))) (-15 -1899 ((-948) (-1053) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-621 (-199)) (-501))) (-15 -1903 ((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1907 ((-948) (-501) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -1911 ((-948) (-1053) (-1053) (-501) (-501) (-621 (-152 (-199))) (-501) (-621 (-152 (-199))) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -1916 ((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501))))) (T -685)) -((-1916 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1911 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1907 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1903 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1899 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1895 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1890 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-685)))) (-1885 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-578 (-107))) (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *7 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-685)))) (-1881 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-621 (-501))) (-5 *5 (-107)) (-5 *7 (-621 (-199))) (-5 *3 (-501)) (-5 *6 (-199)) (-5 *2 (-948)) (-5 *1 (-685)))) (-1877 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-578 (-107))) (-5 *7 (-621 (-199))) (-5 *8 (-621 (-501))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-685))))) -(-10 -7 (-15 -1877 ((-948) (-501) (-501) (-501) (-501) (-199) (-107) (-107) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-501))) (-15 -1881 ((-948) (-501) (-501) (-501) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-107) (-199) (-107) (-621 (-501)) (-621 (-199)) (-501))) (-15 -1885 ((-948) (-501) (-501) (-501) (-501) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-199) (-199) (-501))) (-15 -1890 ((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501))) (-15 -1895 ((-948) (-501) (-501) (-501) (-621 (-199)) (-501))) (-15 -1899 ((-948) (-1053) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-621 (-199)) (-501))) (-15 -1903 ((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1907 ((-948) (-501) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -1911 ((-948) (-1053) (-1053) (-501) (-501) (-621 (-152 (-199))) (-501) (-621 (-152 (-199))) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -1916 ((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501)))) -((-1993 (((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501)) 64)) (-1986 (((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501)) 60)) (-1980 (((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE))) (-356)) 56) (((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE)))) 55)) (-1973 (((-948) (-501) (-501) (-501) (-199) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501)) 37)) (-1962 (((-948) (-501) (-501) (-199) (-199) (-501) (-501) (-621 (-199)) (-501)) 33)) (-1958 (((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501) (-501)) 29)) (-1952 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 28)) (-1948 (((-948) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 27)) (-1944 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 26)) (-1939 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501)) 25)) (-1938 (((-948) (-501) (-501) (-621 (-199)) (-501)) 24)) (-1931 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 23)) (-1929 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 22)) (-1924 (((-948) (-621 (-199)) (-501) (-501) (-501) (-501)) 21)) (-1920 (((-948) (-501) (-501) (-621 (-199)) (-501)) 20))) -(((-686) (-10 -7 (-15 -1920 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1924 ((-948) (-621 (-199)) (-501) (-501) (-501) (-501))) (-15 -1929 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1931 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1938 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1939 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501))) (-15 -1944 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1948 ((-948) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1952 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1958 ((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501) (-501))) (-15 -1962 ((-948) (-501) (-501) (-199) (-199) (-501) (-501) (-621 (-199)) (-501))) (-15 -1973 ((-948) (-501) (-501) (-501) (-199) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1980 ((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE))))) (-15 -1980 ((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE))) (-356))) (-15 -1986 ((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1993 ((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501))))) (T -686)) -((-1993 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-107)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1986 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-107)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1980 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-356)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1980 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1973 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-501)) (-5 *5 (-107)) (-5 *6 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1962 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1958 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1952 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1948 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1944 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1939 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1938 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1931 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1929 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1924 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1920 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686))))) -(-10 -7 (-15 -1920 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1924 ((-948) (-621 (-199)) (-501) (-501) (-501) (-501))) (-15 -1929 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1931 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1938 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1939 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501))) (-15 -1944 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1948 ((-948) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1952 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1958 ((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501) (-501))) (-15 -1962 ((-948) (-501) (-501) (-199) (-199) (-501) (-501) (-621 (-199)) (-501))) (-15 -1973 ((-948) (-501) (-501) (-501) (-199) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1980 ((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE))))) (-15 -1980 ((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE))) (-356))) (-15 -1986 ((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1993 ((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501)))) -((-2060 (((-948) (-501) (-501) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-68 APROD)))) 60)) (-2054 (((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501)) 56)) (-2048 (((-948) (-501) (-621 (-199)) (-107) (-199) (-501) (-501) (-501) (-501) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-356)) (|:| |fp| (-71 MSOLVE)))) 55)) (-2044 (((-948) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501)) 36)) (-2037 (((-948) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-501)) 35)) (-2030 (((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 31)) (-2026 (((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199))) 30)) (-2021 (((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501)) 26)) (-2013 (((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501)) 25)) (-2005 (((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501)) 24)) (-1999 (((-948) (-501) (-621 (-152 (-199))) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-501)) 20))) -(((-687) (-10 -7 (-15 -1999 ((-948) (-501) (-621 (-152 (-199))) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -2005 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -2013 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -2021 ((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501))) (-15 -2026 ((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199)))) (-15 -2030 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -2037 ((-948) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -2044 ((-948) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501))) (-15 -2048 ((-948) (-501) (-621 (-199)) (-107) (-199) (-501) (-501) (-501) (-501) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-356)) (|:| |fp| (-71 MSOLVE))))) (-15 -2054 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501))) (-15 -2060 ((-948) (-501) (-501) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-68 APROD))))))) (T -687)) -((-2060 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2054 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2048 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-948)) (-5 *1 (-687)))) (-2044 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2037 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2030 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687)))) (-2026 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2021 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2013 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687)))) (-2005 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687)))) (-1999 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-687))))) -(-10 -7 (-15 -1999 ((-948) (-501) (-621 (-152 (-199))) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -2005 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -2013 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -2021 ((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501))) (-15 -2026 ((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199)))) (-15 -2030 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -2037 ((-948) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -2044 ((-948) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501))) (-15 -2048 ((-948) (-501) (-621 (-199)) (-107) (-199) (-501) (-501) (-501) (-501) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-356)) (|:| |fp| (-71 MSOLVE))))) (-15 -2054 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501))) (-15 -2060 ((-948) (-501) (-501) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-68 APROD)))))) -((-2079 (((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-501) (-621 (-199))) 28)) (-2075 (((-948) (-1053) (-501) (-501) (-621 (-199))) 27)) (-2070 (((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-199))) 26)) (-2062 (((-948) (-501) (-501) (-501) (-621 (-199))) 20))) -(((-688) (-10 -7 (-15 -2062 ((-948) (-501) (-501) (-501) (-621 (-199)))) (-15 -2070 ((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-199)))) (-15 -2075 ((-948) (-1053) (-501) (-501) (-621 (-199)))) (-15 -2079 ((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-501) (-621 (-199)))))) (T -688)) -((-2079 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688)))) (-2075 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688)))) (-2070 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-688)))) (-2062 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688))))) -(-10 -7 (-15 -2062 ((-948) (-501) (-501) (-501) (-621 (-199)))) (-15 -2070 ((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-199)))) (-15 -2075 ((-948) (-1053) (-501) (-501) (-621 (-199)))) (-15 -2079 ((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-501) (-621 (-199))))) -((-2887 (((-948) (-199) (-199) (-199) (-199) (-501)) 62)) (-2883 (((-948) (-199) (-199) (-199) (-501)) 61)) (-2879 (((-948) (-199) (-199) (-199) (-501)) 60)) (-2875 (((-948) (-199) (-199) (-501)) 59)) (-2871 (((-948) (-199) (-501)) 58)) (-2867 (((-948) (-199) (-501)) 57)) (-2863 (((-948) (-199) (-501)) 56)) (-2858 (((-948) (-199) (-501)) 55)) (-2854 (((-948) (-199) (-501)) 54)) (-2850 (((-948) (-199) (-501)) 53)) (-2846 (((-948) (-199) (-152 (-199)) (-501) (-1053) (-501)) 52)) (-2841 (((-948) (-199) (-152 (-199)) (-501) (-1053) (-501)) 51)) (-2835 (((-948) (-199) (-501)) 50)) (-2830 (((-948) (-199) (-501)) 49)) (-2825 (((-948) (-199) (-501)) 48)) (-2820 (((-948) (-199) (-501)) 47)) (-2815 (((-948) (-501) (-199) (-152 (-199)) (-501) (-1053) (-501)) 46)) (-2191 (((-948) (-1053) (-152 (-199)) (-1053) (-501)) 45)) (-2187 (((-948) (-1053) (-152 (-199)) (-1053) (-501)) 44)) (-2178 (((-948) (-199) (-152 (-199)) (-501) (-1053) (-501)) 43)) (-2173 (((-948) (-199) (-152 (-199)) (-501) (-1053) (-501)) 42)) (-2171 (((-948) (-199) (-501)) 39)) (-2165 (((-948) (-199) (-501)) 38)) (-2157 (((-948) (-199) (-501)) 37)) (-2152 (((-948) (-199) (-501)) 36)) (-2148 (((-948) (-199) (-501)) 35)) (-2143 (((-948) (-199) (-501)) 34)) (-2139 (((-948) (-199) (-501)) 33)) (-2133 (((-948) (-199) (-501)) 32)) (-2129 (((-948) (-199) (-501)) 31)) (-2122 (((-948) (-199) (-501)) 30)) (-2118 (((-948) (-199) (-199) (-199) (-501)) 29)) (-2113 (((-948) (-199) (-501)) 28)) (-2106 (((-948) (-199) (-501)) 27)) (-2101 (((-948) (-199) (-501)) 26)) (-2097 (((-948) (-199) (-501)) 25)) (-2090 (((-948) (-199) (-501)) 24)) (-2082 (((-948) (-152 (-199)) (-501)) 20))) -(((-689) (-10 -7 (-15 -2082 ((-948) (-152 (-199)) (-501))) (-15 -2090 ((-948) (-199) (-501))) (-15 -2097 ((-948) (-199) (-501))) (-15 -2101 ((-948) (-199) (-501))) (-15 -2106 ((-948) (-199) (-501))) (-15 -2113 ((-948) (-199) (-501))) (-15 -2118 ((-948) (-199) (-199) (-199) (-501))) (-15 -2122 ((-948) (-199) (-501))) (-15 -2129 ((-948) (-199) (-501))) (-15 -2133 ((-948) (-199) (-501))) (-15 -2139 ((-948) (-199) (-501))) (-15 -2143 ((-948) (-199) (-501))) (-15 -2148 ((-948) (-199) (-501))) (-15 -2152 ((-948) (-199) (-501))) (-15 -2157 ((-948) (-199) (-501))) (-15 -2165 ((-948) (-199) (-501))) (-15 -2171 ((-948) (-199) (-501))) (-15 -2173 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2178 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2187 ((-948) (-1053) (-152 (-199)) (-1053) (-501))) (-15 -2191 ((-948) (-1053) (-152 (-199)) (-1053) (-501))) (-15 -2815 ((-948) (-501) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2820 ((-948) (-199) (-501))) (-15 -2825 ((-948) (-199) (-501))) (-15 -2830 ((-948) (-199) (-501))) (-15 -2835 ((-948) (-199) (-501))) (-15 -2841 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2846 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2850 ((-948) (-199) (-501))) (-15 -2854 ((-948) (-199) (-501))) (-15 -2858 ((-948) (-199) (-501))) (-15 -2863 ((-948) (-199) (-501))) (-15 -2867 ((-948) (-199) (-501))) (-15 -2871 ((-948) (-199) (-501))) (-15 -2875 ((-948) (-199) (-199) (-501))) (-15 -2879 ((-948) (-199) (-199) (-199) (-501))) (-15 -2883 ((-948) (-199) (-199) (-199) (-501))) (-15 -2887 ((-948) (-199) (-199) (-199) (-199) (-501))))) (T -689)) -((-2887 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2883 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2879 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2875 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2871 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2867 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2846 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2841 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2830 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2815 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-501)) (-5 *5 (-152 (-199))) (-5 *6 (-1053)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2191 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2187 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2178 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2173 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2157 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2143 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2118 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2106 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2090 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-152 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(-10 -7 (-15 -2082 ((-948) (-152 (-199)) (-501))) (-15 -2090 ((-948) (-199) (-501))) (-15 -2097 ((-948) (-199) (-501))) (-15 -2101 ((-948) (-199) (-501))) (-15 -2106 ((-948) (-199) (-501))) (-15 -2113 ((-948) (-199) (-501))) (-15 -2118 ((-948) (-199) (-199) (-199) (-501))) (-15 -2122 ((-948) (-199) (-501))) (-15 -2129 ((-948) (-199) (-501))) (-15 -2133 ((-948) (-199) (-501))) (-15 -2139 ((-948) (-199) (-501))) (-15 -2143 ((-948) (-199) (-501))) (-15 -2148 ((-948) (-199) (-501))) (-15 -2152 ((-948) (-199) (-501))) (-15 -2157 ((-948) (-199) (-501))) (-15 -2165 ((-948) (-199) (-501))) (-15 -2171 ((-948) (-199) (-501))) (-15 -2173 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2178 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2187 ((-948) (-1053) (-152 (-199)) (-1053) (-501))) (-15 -2191 ((-948) (-1053) (-152 (-199)) (-1053) (-501))) (-15 -2815 ((-948) (-501) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2820 ((-948) (-199) (-501))) (-15 -2825 ((-948) (-199) (-501))) (-15 -2830 ((-948) (-199) (-501))) (-15 -2835 ((-948) (-199) (-501))) (-15 -2841 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2846 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2850 ((-948) (-199) (-501))) (-15 -2854 ((-948) (-199) (-501))) (-15 -2858 ((-948) (-199) (-501))) (-15 -2863 ((-948) (-199) (-501))) (-15 -2867 ((-948) (-199) (-501))) (-15 -2871 ((-948) (-199) (-501))) (-15 -2875 ((-948) (-199) (-199) (-501))) (-15 -2879 ((-948) (-199) (-199) (-199) (-501))) (-15 -2883 ((-948) (-199) (-199) (-199) (-501))) (-15 -2887 ((-948) (-199) (-199) (-199) (-199) (-501)))) -((-3447 (((-1154)) 18)) (-2716 (((-1053)) 22)) (-1308 (((-1053)) 21)) (-2261 (((-1003) (-1070) (-621 (-501))) 35) (((-1003) (-1070) (-621 (-199))) 31)) (-1389 (((-107)) 16)) (-2317 (((-1053) (-1053)) 25))) -(((-690) (-10 -7 (-15 -1308 ((-1053))) (-15 -2716 ((-1053))) (-15 -2317 ((-1053) (-1053))) (-15 -2261 ((-1003) (-1070) (-621 (-199)))) (-15 -2261 ((-1003) (-1070) (-621 (-501)))) (-15 -1389 ((-107))) (-15 -3447 ((-1154))))) (T -690)) -((-3447 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-690)))) (-1389 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-690)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-621 (-501))) (-5 *2 (-1003)) (-5 *1 (-690)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-621 (-199))) (-5 *2 (-1003)) (-5 *1 (-690)))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690)))) (-2716 (*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690)))) (-1308 (*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690))))) -(-10 -7 (-15 -1308 ((-1053))) (-15 -2716 ((-1053))) (-15 -2317 ((-1053) (-1053))) (-15 -2261 ((-1003) (-1070) (-621 (-199)))) (-15 -2261 ((-1003) (-1070) (-621 (-501)))) (-15 -1389 ((-107))) (-15 -3447 ((-1154)))) -((-2144 (($ $ $) 10)) (-1363 (($ $ $ $) 9)) (-2033 (($ $ $) 12))) -(((-691 |#1|) (-10 -8 (-15 -2033 (|#1| |#1| |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -1363 (|#1| |#1| |#1| |#1|))) (-692)) (T -691)) -NIL -(-10 -8 (-15 -2033 (|#1| |#1| |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -1363 (|#1| |#1| |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2911 (($ $ (-839)) 28)) (-3381 (($ $ (-839)) 29)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2144 (($ $ $) 25)) (-3691 (((-786) $) 11)) (-1363 (($ $ $ $) 26)) (-2033 (($ $ $) 24)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 30)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 27))) -(((-692) (-1180)) (T -692)) -((-1363 (*1 *1 *1 *1 *1) (-4 *1 (-692))) (-2144 (*1 *1 *1 *1) (-4 *1 (-692))) (-2033 (*1 *1 *1 *1) (-4 *1 (-692)))) -(-13 (-21) (-651) (-10 -8 (-15 -1363 ($ $ $ $)) (-15 -2144 ($ $ $)) (-15 -2033 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-651) . T) ((-1001) . T)) -((-3691 (((-786) $) NIL) (($ (-501)) 10))) -(((-693 |#1|) (-10 -8 (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-694)) (T -693)) -NIL -(-10 -8 (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-1887 (((-3 $ "failed") $) 40)) (-2911 (($ $ (-839)) 28) (($ $ (-701)) 35)) (-2174 (((-3 $ "failed") $) 38)) (-1355 (((-107) $) 34)) (-1992 (((-3 $ "failed") $) 39)) (-3381 (($ $ (-839)) 29) (($ $ (-701)) 36)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2144 (($ $ $) 25)) (-3691 (((-786) $) 11) (($ (-501)) 31)) (-3965 (((-701)) 32)) (-1363 (($ $ $ $) 26)) (-2033 (($ $ $) 24)) (-1850 (($) 18 T CONST)) (-1925 (($) 33 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 30) (($ $ (-701)) 37)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 27))) -(((-694) (-1180)) (T -694)) -((-3965 (*1 *2) (-12 (-4 *1 (-694)) (-5 *2 (-701)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-694))))) -(-13 (-692) (-653) (-10 -8 (-15 -3965 ((-701))) (-15 -3691 ($ (-501))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-651) . T) ((-653) . T) ((-692) . T) ((-1001) . T)) -((-1422 (((-578 (-2 (|:| |outval| (-152 |#1|)) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 (-152 |#1|)))))) (-621 (-152 (-375 (-501)))) |#1|) 27)) (-3820 (((-578 (-152 |#1|)) (-621 (-152 (-375 (-501)))) |#1|) 19)) (-2942 (((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501)))) (-1070)) 16) (((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501))))) 15))) -(((-695 |#1|) (-10 -7 (-15 -2942 ((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501)))))) (-15 -2942 ((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501)))) (-1070))) (-15 -3820 ((-578 (-152 |#1|)) (-621 (-152 (-375 (-501)))) |#1|)) (-15 -1422 ((-578 (-2 (|:| |outval| (-152 |#1|)) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 (-152 |#1|)))))) (-621 (-152 (-375 (-501)))) |#1|))) (-13 (-331) (-775))) (T -695)) -((-1422 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |outval| (-152 *4)) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 (-152 *4))))))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775))))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775))))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *4 (-1070)) (-5 *2 (-866 (-152 (-375 (-501))))) (-5 *1 (-695 *5)) (-4 *5 (-13 (-331) (-775))))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-866 (-152 (-375 (-501))))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775)))))) -(-10 -7 (-15 -2942 ((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501)))))) (-15 -2942 ((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501)))) (-1070))) (-15 -3820 ((-578 (-152 |#1|)) (-621 (-152 (-375 (-501)))) |#1|)) (-15 -1422 ((-578 (-2 (|:| |outval| (-152 |#1|)) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 (-152 |#1|)))))) (-621 (-152 (-375 (-501)))) |#1|))) -((-2672 (((-157 (-501)) |#1|) 25))) -(((-696 |#1|) (-10 -7 (-15 -2672 ((-157 (-501)) |#1|))) (-372)) (T -696)) -((-2672 (*1 *2 *3) (-12 (-5 *2 (-157 (-501))) (-5 *1 (-696 *3)) (-4 *3 (-372))))) -(-10 -7 (-15 -2672 ((-157 (-501)) |#1|))) -((-2084 ((|#1| |#1| |#1|) 24)) (-2530 ((|#1| |#1| |#1|) 23)) (-3641 ((|#1| |#1| |#1|) 31)) (-2753 ((|#1| |#1| |#1|) 27)) (-3756 (((-3 |#1| "failed") |#1| |#1|) 26)) (-1838 (((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|) 22))) -(((-697 |#1| |#2|) (-10 -7 (-15 -1838 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1| |#1|)) (-15 -3756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -3641 (|#1| |#1| |#1|))) (-640 |#2|) (-331)) (T -697)) -((-3641 (*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) (-2753 (*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) (-3756 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) (-2084 (*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) (-2530 (*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) (-1838 (*1 *2 *3 *3) (-12 (-4 *4 (-331)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-697 *3 *4)) (-4 *3 (-640 *4))))) -(-10 -7 (-15 -1838 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1| |#1|)) (-15 -3756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -3641 (|#1| |#1| |#1|))) -((-3819 (((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501)))) (-501)) 58)) (-1897 (((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501))))) 56)) (-2532 (((-501)) 68))) -(((-698 |#1| |#2|) (-10 -7 (-15 -2532 ((-501))) (-15 -1897 ((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501)))))) (-15 -3819 ((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501)))) (-501)))) (-1125 (-501)) (-378 (-501) |#1|)) (T -698)) -((-3819 (*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-698 *4 *5)) (-4 *5 (-378 *3 *4)))) (-1897 (*1 *2) (-12 (-4 *3 (-1125 (-501))) (-5 *2 (-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501))))) (-5 *1 (-698 *3 *4)) (-4 *4 (-378 (-501) *3)))) (-2532 (*1 *2) (-12 (-4 *3 (-1125 *2)) (-5 *2 (-501)) (-5 *1 (-698 *3 *4)) (-4 *4 (-378 *2 *3))))) -(-10 -7 (-15 -2532 ((-501))) (-15 -1897 ((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501)))))) (-15 -3819 ((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501)))) (-501)))) -((-3736 (((-107) $ $) NIL)) (-3490 (((-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $) 15)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 14) (($ (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8) (($ (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) 12)) (-3751 (((-107) $ $) NIL))) -(((-699) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ($ (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))) (T -699)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-699)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-699)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-699)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-699)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-699))))) -(-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ($ (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $)))) -((-3766 (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|))) 14) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070))) 13)) (-2778 (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|))) 16) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070))) 15))) -(((-700 |#1|) (-10 -7 (-15 -3766 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -3766 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|))))) (-508)) (T -700)) -((-2778 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-700 *4)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-700 *5)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-700 *4)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-700 *5))))) -(-10 -7 (-15 -3766 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -3766 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3405 (($ $ $) 6)) (-3177 (((-3 $ "failed") $ $) 9)) (-1525 (($ $ (-501)) 7)) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($ $) NIL)) (-3034 (($ $ $) NIL)) (-1355 (((-107) $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3664 (($ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3691 (((-786) $) NIL)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ (-701) $) NIL) (($ (-839) $) NIL) (($ $ $) NIL))) -(((-701) (-13 (-723) (-657) (-10 -8 (-15 -3034 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3664 ($ $ $)) (-15 -2419 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -3694 ((-3 $ "failed") $ $)) (-15 -1525 ($ $ (-501))) (-15 -2890 ($ $)) (-6 (-4169 "*"))))) (T -701)) -((-3034 (*1 *1 *1 *1) (-5 *1 (-701))) (-3023 (*1 *1 *1 *1) (-5 *1 (-701))) (-3664 (*1 *1 *1 *1) (-5 *1 (-701))) (-2419 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3236 (-701)) (|:| -1852 (-701)))) (-5 *1 (-701)))) (-3694 (*1 *1 *1 *1) (|partial| -5 *1 (-701))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-701)))) (-2890 (*1 *1 *1) (-5 *1 (-701)))) -(-13 (-723) (-657) (-10 -8 (-15 -3034 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3664 ($ $ $)) (-15 -2419 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -3694 ((-3 $ "failed") $ $)) (-15 -1525 ($ $ (-501))) (-15 -2890 ($ $)) (-6 (-4169 "*")))) -((-2778 (((-3 |#2| "failed") |#2| |#2| (-108) (-1070)) 35))) -(((-702 |#1| |#2|) (-10 -7 (-15 -2778 ((-3 |#2| "failed") |#2| |#2| (-108) (-1070)))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134)) (-13 (-29 |#1|) (-1090) (-879))) (T -702)) -((-2778 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-702 *5 *2)) (-4 *2 (-13 (-29 *5) (-1090) (-879)))))) -(-10 -7 (-15 -2778 ((-3 |#2| "failed") |#2| |#2| (-108) (-1070)))) -((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 7)) (-3751 (((-107) $ $) 9))) -(((-703) (-1001)) (T -703)) -NIL -(-1001) -((-3691 (((-703) |#1|) 8))) -(((-704 |#1|) (-10 -7 (-15 -3691 ((-703) |#1|))) (-1104)) (T -704)) -((-3691 (*1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-704 *3)) (-4 *3 (-1104))))) -(-10 -7 (-15 -3691 ((-703) |#1|))) -((-2626 ((|#2| |#4|) 35))) -(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2626 (|#2| |#4|))) (-419) (-1125 |#1|) (-655 |#1| |#2|) (-1125 |#3|)) (T -705)) -((-2626 (*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-655 *4 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-705 *4 *2 *5 *3)) (-4 *3 (-1125 *5))))) -(-10 -7 (-15 -2626 (|#2| |#4|))) -((-2174 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2844 (((-1154) (-1053) (-1053) |#4| |#5|) 33)) (-3164 ((|#4| |#4| |#5|) 72)) (-3373 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|) 76)) (-4084 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|) 15))) -(((-706 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2174 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3164 (|#4| |#4| |#5|)) (-15 -3373 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2844 ((-1154) (-1053) (-1053) |#4| |#5|)) (-15 -4084 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -706)) -((-4084 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2844 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1053)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *4 (-972 *6 *7 *8)) (-5 *2 (-1154)) (-5 *1 (-706 *6 *7 *8 *4 *5)) (-4 *5 (-977 *6 *7 *8 *4)))) (-3373 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3164 (*1 *2 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *2 (-972 *4 *5 *6)) (-5 *1 (-706 *4 *5 *6 *2 *3)) (-4 *3 (-977 *4 *5 *6 *2)))) (-2174 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(-10 -7 (-15 -2174 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3164 (|#4| |#4| |#5|)) (-15 -3373 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2844 ((-1154) (-1053) (-1053) |#4| |#5|)) (-15 -4084 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|))) -((-3765 (((-3 (-1064 (-1064 |#1|)) "failed") |#4|) 43)) (-3289 (((-578 |#4|) |#4|) 15)) (-3184 ((|#4| |#4|) 11))) -(((-707 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3289 ((-578 |#4|) |#4|)) (-15 -3765 ((-3 (-1064 (-1064 |#1|)) "failed") |#4|)) (-15 -3184 (|#4| |#4|))) (-318) (-297 |#1|) (-1125 |#2|) (-1125 |#3|) (-839)) (T -707)) -((-3184 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-297 *3)) (-4 *5 (-1125 *4)) (-5 *1 (-707 *3 *4 *5 *2 *6)) (-4 *2 (-1125 *5)) (-14 *6 (-839)))) (-3765 (*1 *2 *3) (|partial| -12 (-4 *4 (-318)) (-4 *5 (-297 *4)) (-4 *6 (-1125 *5)) (-5 *2 (-1064 (-1064 *4))) (-5 *1 (-707 *4 *5 *6 *3 *7)) (-4 *3 (-1125 *6)) (-14 *7 (-839)))) (-3289 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-297 *4)) (-4 *6 (-1125 *5)) (-5 *2 (-578 *3)) (-5 *1 (-707 *4 *5 *6 *3 *7)) (-4 *3 (-1125 *6)) (-14 *7 (-839))))) -(-10 -7 (-15 -3289 ((-578 |#4|) |#4|)) (-15 -3765 ((-3 (-1064 (-1064 |#1|)) "failed") |#4|)) (-15 -3184 (|#4| |#4|))) -((-2707 (((-2 (|:| |deter| (-578 (-1064 |#5|))) (|:| |dterm| (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-578 |#1|)) (|:| |nlead| (-578 |#5|))) (-1064 |#5|) (-578 |#1|) (-578 |#5|)) 51)) (-1366 (((-578 (-701)) |#1|) 12))) -(((-708 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2707 ((-2 (|:| |deter| (-578 (-1064 |#5|))) (|:| |dterm| (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-578 |#1|)) (|:| |nlead| (-578 |#5|))) (-1064 |#5|) (-578 |#1|) (-578 |#5|))) (-15 -1366 ((-578 (-701)) |#1|))) (-1125 |#4|) (-723) (-777) (-276) (-870 |#4| |#2| |#3|)) (T -708)) -((-1366 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-578 (-701))) (-5 *1 (-708 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *6)) (-4 *7 (-870 *6 *4 *5)))) (-2707 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1125 *9)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-276)) (-4 *10 (-870 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-578 (-1064 *10))) (|:| |dterm| (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| *10))))) (|:| |nfacts| (-578 *6)) (|:| |nlead| (-578 *10)))) (-5 *1 (-708 *6 *7 *8 *9 *10)) (-5 *3 (-1064 *10)) (-5 *4 (-578 *6)) (-5 *5 (-578 *10))))) -(-10 -7 (-15 -2707 ((-2 (|:| |deter| (-578 (-1064 |#5|))) (|:| |dterm| (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-578 |#1|)) (|:| |nlead| (-578 |#5|))) (-1064 |#5|) (-578 |#1|) (-578 |#5|))) (-15 -1366 ((-578 (-701)) |#1|))) -((-2266 (((-578 (-2 (|:| |outval| |#1|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#1|))))) (-621 (-375 (-501))) |#1|) 27)) (-1192 (((-578 |#1|) (-621 (-375 (-501))) |#1|) 19)) (-2942 (((-866 (-375 (-501))) (-621 (-375 (-501))) (-1070)) 16) (((-866 (-375 (-501))) (-621 (-375 (-501)))) 15))) -(((-709 |#1|) (-10 -7 (-15 -2942 ((-866 (-375 (-501))) (-621 (-375 (-501))))) (-15 -2942 ((-866 (-375 (-501))) (-621 (-375 (-501))) (-1070))) (-15 -1192 ((-578 |#1|) (-621 (-375 (-501))) |#1|)) (-15 -2266 ((-578 (-2 (|:| |outval| |#1|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#1|))))) (-621 (-375 (-501))) |#1|))) (-13 (-331) (-775))) (T -709)) -((-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-578 (-2 (|:| |outval| *4) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 *4)))))) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775))))) (-1192 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-578 *4)) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775))))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *4 (-1070)) (-5 *2 (-866 (-375 (-501)))) (-5 *1 (-709 *5)) (-4 *5 (-13 (-331) (-775))))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-866 (-375 (-501)))) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775)))))) -(-10 -7 (-15 -2942 ((-866 (-375 (-501))) (-621 (-375 (-501))))) (-15 -2942 ((-866 (-375 (-501))) (-621 (-375 (-501))) (-1070))) (-15 -1192 ((-578 |#1|) (-621 (-375 (-501))) |#1|)) (-15 -2266 ((-578 (-2 (|:| |outval| |#1|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#1|))))) (-621 (-375 (-501))) |#1|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 34)) (-3800 (((-578 |#2|) $) NIL)) (-3728 (((-1064 $) $ |#2|) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 |#2|)) NIL)) (-1511 (($ $) 28)) (-1441 (((-107) $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1855 (($ $ $) 92 (|has| |#1| (-508)))) (-3936 (((-578 $) $ $) 105 (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-866 (-375 (-501)))) NIL (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070))))) (((-3 $ "failed") (-866 (-501))) NIL (-1405 (-12 (|has| |#1| (-37 (-501))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501)))))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070)))))) (((-3 $ "failed") (-866 |#1|)) NIL (-1405 (-12 (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-37 (-501))))) (-12 (|has| |#1| (-37 (-501))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-500)))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-906 (-501))))))) (((-3 (-1023 |#1| |#2|) "failed") $) 18)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) ((|#2| $) NIL) (($ (-866 (-375 (-501)))) NIL (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070))))) (($ (-866 (-501))) NIL (-1405 (-12 (|has| |#1| (-37 (-501))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501)))))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070)))))) (($ (-866 |#1|)) NIL (-1405 (-12 (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-37 (-501))))) (-12 (|has| |#1| (-37 (-501))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-500)))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-906 (-501))))))) (((-1023 |#1| |#2|) $) NIL)) (-1749 (($ $ $ |#2|) NIL (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-508)))) (-3858 (($ $) NIL) (($ $ |#2|) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2130 (((-107) $ $) NIL) (((-107) $ (-578 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3132 (((-107) $) NIL)) (-2352 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 69)) (-3182 (($ $) 118 (|has| |#1| (-419)))) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ |#2|) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-2611 (($ $) NIL (|has| |#1| (-508)))) (-3855 (($ $) NIL (|has| |#1| (-508)))) (-3090 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-1936 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-3503 (($ $ |#1| (-487 |#2|) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| |#1| (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| |#1| (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-1964 (((-107) $ $) NIL) (((-107) $ (-578 $)) NIL)) (-4014 (($ $ $ $ $) 89 (|has| |#1| (-508)))) (-2361 ((|#2| $) 19)) (-3794 (($ (-1064 |#1|) |#2|) NIL) (($ (-1064 $) |#2|) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-487 |#2|)) NIL) (($ $ |#2| (-701)) 36) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1955 (($ $ $) 60)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#2|) NIL)) (-1257 (((-107) $) NIL)) (-2285 (((-487 |#2|) $) NIL) (((-701) $ |#2|) NIL) (((-578 (-701)) $ (-578 |#2|)) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2595 (((-701) $) 20)) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 |#2|) (-487 |#2|)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2752 (((-3 |#2| "failed") $) NIL)) (-2538 (($ $) NIL (|has| |#1| (-419)))) (-1493 (($ $) NIL (|has| |#1| (-419)))) (-3723 (((-578 $) $) NIL)) (-2682 (($ $) 37)) (-3894 (($ $) NIL (|has| |#1| (-419)))) (-2274 (((-578 $) $) 41)) (-3154 (($ $) 39)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2939 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2735 (-701))) $ $) 81)) (-3276 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $) 66) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $ |#2|) NIL)) (-2226 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $) NIL) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $ |#2|) NIL)) (-1782 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-3303 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3460 (((-1053) $) NIL)) (-2019 (($ $ $) 107 (|has| |#1| (-508)))) (-2329 (((-578 $) $) 30)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| |#2|) (|:| -3027 (-701))) "failed") $) NIL)) (-1590 (((-107) $ $) NIL) (((-107) $ (-578 $)) NIL)) (-1762 (($ $ $) NIL)) (-3746 (($ $) 21)) (-3523 (((-107) $ $) NIL)) (-2667 (((-107) $ $) NIL) (((-107) $ (-578 $)) NIL)) (-3618 (($ $ $) NIL)) (-1657 (($ $) 23)) (-3708 (((-1018) $) NIL)) (-1784 (((-2 (|:| -3664 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-508)))) (-1729 (((-2 (|:| -3664 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-508)))) (-3837 (((-107) $) 52)) (-3841 ((|#1| $) 55)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 ((|#1| |#1| $) 115 (|has| |#1| (-419))) (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3095 (((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-508)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-508)))) (-1785 (($ $ |#1|) 111 (|has| |#1| (-508))) (($ $ $) NIL (|has| |#1| (-508)))) (-3982 (($ $ |#1|) 110 (|has| |#1| (-508))) (($ $ $) NIL (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-578 |#2|) (-578 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-578 |#2|) (-578 $)) NIL)) (-2532 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2596 (($ $ |#2|) NIL) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1201 (((-487 |#2|) $) NIL) (((-701) $ |#2|) 43) (((-578 (-701)) $ (-578 |#2|)) NIL)) (-2295 (($ $) NIL)) (-1673 (($ $) 33)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| |#1| (-556 (-490))) (|has| |#2| (-556 (-490))))) (($ (-866 (-375 (-501)))) NIL (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070))))) (($ (-866 (-501))) NIL (-1405 (-12 (|has| |#1| (-37 (-501))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501)))))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070)))))) (($ (-866 |#1|)) NIL (|has| |#2| (-556 (-1070)))) (((-1053) $) NIL (-12 (|has| |#1| (-950 (-501))) (|has| |#2| (-556 (-1070))))) (((-866 |#1|) $) NIL (|has| |#2| (-556 (-1070))))) (-1734 ((|#1| $) 114 (|has| |#1| (-419))) (($ $ |#2|) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-866 |#1|) $) NIL (|has| |#2| (-556 (-1070)))) (((-1023 |#1| |#2|) $) 15) (($ (-1023 |#1| |#2|)) 16) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-487 |#2|)) NIL) (($ $ |#2| (-701)) 44) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 13 T CONST)) (-1814 (((-3 (-107) "failed") $ $) NIL)) (-1925 (($) 35 T CONST)) (-3158 (($ $ $ $ (-701)) 87 (|has| |#1| (-508)))) (-1851 (($ $ $ (-701)) 86 (|has| |#1| (-508)))) (-3584 (($ $ |#2|) NIL) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 54)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) 63)) (-3790 (($ $ $) 73)) (** (($ $ (-839)) NIL) (($ $ (-701)) 61)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 59) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-710 |#1| |#2|) (-13 (-972 |#1| (-487 |#2|) |#2|) (-555 (-1023 |#1| |#2|)) (-950 (-1023 |#1| |#2|))) (-959) (-777)) (T -710)) -NIL -(-13 (-972 |#1| (-487 |#2|) |#2|) (-555 (-1023 |#1| |#2|)) (-950 (-1023 |#1| |#2|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 12)) (-3077 (((-1148 |#1|) $ (-701)) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3081 (($ (-1064 |#1|)) NIL)) (-3728 (((-1064 $) $ (-986)) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-986))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2624 (((-578 $) $ $) 39 (|has| |#1| (-508)))) (-1855 (($ $ $) 35 (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3643 (($ $ (-701)) NIL)) (-2222 (($ $ (-701)) NIL)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-419)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-986) "failed") $) NIL) (((-3 (-1064 |#1|) "failed") $) 10)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-986) $) NIL) (((-1064 |#1|) $) NIL)) (-1749 (($ $ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $ $) 43 (|has| |#1| (-156)))) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-4094 (($ $ $) NIL)) (-3470 (($ $ $) 71 (|has| |#1| (-508)))) (-2352 (((-2 (|:| -3189 |#1|) (|:| -3236 $) (|:| -1852 $)) $ $) 70 (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-701) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-986) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-986) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ $) NIL (|has| |#1| (-508)))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-1046)))) (-3794 (($ (-1064 |#1|) (-986)) NIL) (($ (-1064 $) (-986)) NIL)) (-2917 (($ $ (-701)) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1955 (($ $ $) 20)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-986)) NIL) (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2285 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-701) (-701)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1704 (((-1064 |#1|) $) NIL)) (-2752 (((-3 (-986) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2939 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2735 (-701))) $ $) 26)) (-2961 (($ $ $) 29)) (-1624 (($ $ $) 32)) (-3276 (((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $) 31)) (-3460 (((-1053) $) NIL)) (-2019 (($ $ $) 41 (|has| |#1| (-508)))) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-986)) (|:| -3027 (-701))) "failed") $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) NIL (|has| |#1| (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-1784 (((-2 (|:| -3664 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-508)))) (-1729 (((-2 (|:| -3664 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-508)))) (-3318 (((-2 (|:| -1749 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-508)))) (-4083 (((-2 (|:| -1749 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-508)))) (-3837 (((-107) $) 13)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-4138 (($ $ (-701) |#1| $) 19)) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3095 (((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-508)))) (-1694 (((-2 (|:| -1749 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-508)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-986) |#1|) NIL) (($ $ (-578 (-986)) (-578 |#1|)) NIL) (($ $ (-986) $) NIL) (($ $ (-578 (-986)) (-578 $)) NIL)) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-375 $) (-375 $) (-375 $)) NIL (|has| |#1| (-508))) ((|#1| (-375 $) |#1|) NIL (|has| |#1| (-331))) (((-375 $) $ (-375 $)) NIL (|has| |#1| (-508)))) (-2158 (((-3 $ "failed") $ (-701)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2532 (($ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2596 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1201 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-986) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3913 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508))) (((-3 (-375 $) "failed") (-375 $) $) NIL (|has| |#1| (-508)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-986)) NIL) (((-1064 |#1|) $) 7) (($ (-1064 |#1|)) 8) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 21 T CONST)) (-1925 (($) 24 T CONST)) (-3584 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) 28) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-711 |#1|) (-13 (-1125 |#1|) (-555 (-1064 |#1|)) (-950 (-1064 |#1|)) (-10 -8 (-15 -4138 ($ $ (-701) |#1| $)) (-15 -1955 ($ $ $)) (-15 -2939 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2735 (-701))) $ $)) (-15 -2961 ($ $ $)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -1624 ($ $ $)) (IF (|has| |#1| (-508)) (PROGN (-15 -2624 ((-578 $) $ $)) (-15 -2019 ($ $ $)) (-15 -3095 ((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1729 ((-2 (|:| -3664 $) (|:| |coef1| $)) $ $)) (-15 -1784 ((-2 (|:| -3664 $) (|:| |coef2| $)) $ $)) (-15 -1694 ((-2 (|:| -1749 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4083 ((-2 (|:| -1749 |#1|) (|:| |coef1| $)) $ $)) (-15 -3318 ((-2 (|:| -1749 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) (-959)) (T -711)) -((-4138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-711 *3)) (-4 *3 (-959)))) (-1955 (*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959)))) (-2939 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-711 *3)) (|:| |polden| *3) (|:| -2735 (-701)))) (-5 *1 (-711 *3)) (-4 *3 (-959)))) (-2961 (*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959)))) (-3276 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3189 *3) (|:| |gap| (-701)) (|:| -3236 (-711 *3)) (|:| -1852 (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-959)))) (-1624 (*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959)))) (-2624 (*1 *2 *1 *1) (-12 (-5 *2 (-578 (-711 *3))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-2019 (*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-508)) (-4 *2 (-959)))) (-3095 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef1| (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-1729 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef1| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-1784 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-1694 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef1| (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-4083 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef1| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-3318 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959))))) -(-13 (-1125 |#1|) (-555 (-1064 |#1|)) (-950 (-1064 |#1|)) (-10 -8 (-15 -4138 ($ $ (-701) |#1| $)) (-15 -1955 ($ $ $)) (-15 -2939 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2735 (-701))) $ $)) (-15 -2961 ($ $ $)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -1624 ($ $ $)) (IF (|has| |#1| (-508)) (PROGN (-15 -2624 ((-578 $) $ $)) (-15 -2019 ($ $ $)) (-15 -3095 ((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1729 ((-2 (|:| -3664 $) (|:| |coef1| $)) $ $)) (-15 -1784 ((-2 (|:| -3664 $) (|:| |coef2| $)) $ $)) (-15 -1694 ((-2 (|:| -1749 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4083 ((-2 (|:| -1749 |#1|) (|:| |coef1| $)) $ $)) (-15 -3318 ((-2 (|:| -1749 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) -((-1212 (((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)) 13))) -(((-712 |#1| |#2|) (-10 -7 (-15 -1212 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)))) (-959) (-959)) (T -712)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-711 *6)) (-5 *1 (-712 *5 *6))))) -(-10 -7 (-15 -1212 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)))) -((-2566 ((|#1| (-701) |#1|) 32 (|has| |#1| (-37 (-375 (-501)))))) (-3573 ((|#1| (-701) |#1|) 22)) (-1584 ((|#1| (-701) |#1|) 34 (|has| |#1| (-37 (-375 (-501))))))) -(((-713 |#1|) (-10 -7 (-15 -3573 (|#1| (-701) |#1|)) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -1584 (|#1| (-701) |#1|)) (-15 -2566 (|#1| (-701) |#1|))) |noBranch|)) (-156)) (T -713)) -((-2566 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156)))) (-1584 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156)))) (-3573 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-156))))) -(-10 -7 (-15 -3573 (|#1| (-701) |#1|)) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -1584 (|#1| (-701) |#1|)) (-15 -2566 (|#1| (-701) |#1|))) |noBranch|)) -((-3736 (((-107) $ $) 7)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) 85)) (-2073 (((-578 $) (-578 |#4|)) 86) (((-578 $) (-578 |#4|) (-107)) 111)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) 101) (((-107) $) 97)) (-2599 ((|#4| |#4| $) 92)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 79)) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-1199 (((-3 $ "failed") $) 82)) (-1778 ((|#4| |#4| $) 89)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1379 ((|#4| |#4| $) 87)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) 105)) (-3180 (((-107) |#4| $) 136)) (-1209 (((-107) |#4| $) 133)) (-1972 (((-107) |#4| $) 137) (((-107) $) 134)) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) 104) (((-107) $) 103)) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) 128)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 127)) (-1383 (((-3 |#4| "failed") $) 83)) (-1618 (((-578 $) |#4| $) 129)) (-2217 (((-3 (-107) (-578 $)) |#4| $) 132)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3420 (((-578 $) |#4| $) 125) (((-578 $) (-578 |#4|) $) 124) (((-578 $) (-578 |#4|) (-578 $)) 123) (((-578 $) |#4| (-578 $)) 122)) (-2297 (($ |#4| $) 117) (($ (-578 |#4|) $) 116)) (-3574 (((-578 |#4|) $) 107)) (-1590 (((-107) |#4| $) 99) (((-107) $) 95)) (-1762 ((|#4| |#4| $) 90)) (-3523 (((-107) $ $) 110)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) 100) (((-107) $) 96)) (-3618 ((|#4| |#4| $) 91)) (-3708 (((-1018) $) 10)) (-1190 (((-3 |#4| "failed") $) 84)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3478 (((-3 $ "failed") $ |#4|) 78)) (-3718 (($ $ |#4|) 77) (((-578 $) |#4| $) 115) (((-578 $) |#4| (-578 $)) 114) (((-578 $) (-578 |#4|) $) 113) (((-578 $) (-578 |#4|) (-578 $)) 112)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-1201 (((-701) $) 106)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-1218 (($ $) 88)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-4104 (((-701) $) 76 (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) 98)) (-1709 (((-578 $) |#4| $) 121) (((-578 $) |#4| (-578 $)) 120) (((-578 $) (-578 |#4|) $) 119) (((-578 $) (-578 |#4|) (-578 $)) 118)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) 81)) (-3036 (((-107) |#4| $) 135)) (-2659 (((-107) |#3| $) 80)) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167))))) -(((-714 |#1| |#2| |#3| |#4|) (-1180) (-419) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -714)) -NIL -(-13 (-977 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-891 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1001) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1104) . T)) -((-2812 (((-3 (-346) "failed") (-282 |#1|) (-839)) 60 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-346) "failed") (-282 |#1|)) 52 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-346) "failed") (-375 (-866 |#1|)) (-839)) 39 (|has| |#1| (-508))) (((-3 (-346) "failed") (-375 (-866 |#1|))) 35 (|has| |#1| (-508))) (((-3 (-346) "failed") (-866 |#1|) (-839)) 30 (|has| |#1| (-959))) (((-3 (-346) "failed") (-866 |#1|)) 24 (|has| |#1| (-959)))) (-3241 (((-346) (-282 |#1|) (-839)) 92 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-346) (-282 |#1|)) 87 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-346) (-375 (-866 |#1|)) (-839)) 84 (|has| |#1| (-508))) (((-346) (-375 (-866 |#1|))) 81 (|has| |#1| (-508))) (((-346) (-866 |#1|) (-839)) 80 (|has| |#1| (-959))) (((-346) (-866 |#1|)) 77 (|has| |#1| (-959))) (((-346) |#1| (-839)) 73) (((-346) |#1|) 22)) (-2715 (((-3 (-152 (-346)) "failed") (-282 (-152 |#1|)) (-839)) 68 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-152 (-346)) "failed") (-282 (-152 |#1|))) 58 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-152 (-346)) "failed") (-282 |#1|) (-839)) 61 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-152 (-346)) "failed") (-282 |#1|)) 59 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|))) (-839)) 44 (|has| |#1| (-508))) (((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|)))) 43 (|has| |#1| (-508))) (((-3 (-152 (-346)) "failed") (-375 (-866 |#1|)) (-839)) 38 (|has| |#1| (-508))) (((-3 (-152 (-346)) "failed") (-375 (-866 |#1|))) 37 (|has| |#1| (-508))) (((-3 (-152 (-346)) "failed") (-866 |#1|) (-839)) 28 (|has| |#1| (-959))) (((-3 (-152 (-346)) "failed") (-866 |#1|)) 26 (|has| |#1| (-959))) (((-3 (-152 (-346)) "failed") (-866 (-152 |#1|)) (-839)) 17 (|has| |#1| (-156))) (((-3 (-152 (-346)) "failed") (-866 (-152 |#1|))) 14 (|has| |#1| (-156)))) (-3717 (((-152 (-346)) (-282 (-152 |#1|)) (-839)) 95 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-152 (-346)) (-282 (-152 |#1|))) 94 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-152 (-346)) (-282 |#1|) (-839)) 93 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-152 (-346)) (-282 |#1|)) 91 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-152 (-346)) (-375 (-866 (-152 |#1|))) (-839)) 86 (|has| |#1| (-508))) (((-152 (-346)) (-375 (-866 (-152 |#1|)))) 85 (|has| |#1| (-508))) (((-152 (-346)) (-375 (-866 |#1|)) (-839)) 83 (|has| |#1| (-508))) (((-152 (-346)) (-375 (-866 |#1|))) 82 (|has| |#1| (-508))) (((-152 (-346)) (-866 |#1|) (-839)) 79 (|has| |#1| (-959))) (((-152 (-346)) (-866 |#1|)) 78 (|has| |#1| (-959))) (((-152 (-346)) (-866 (-152 |#1|)) (-839)) 75 (|has| |#1| (-156))) (((-152 (-346)) (-866 (-152 |#1|))) 74 (|has| |#1| (-156))) (((-152 (-346)) (-152 |#1|) (-839)) 16 (|has| |#1| (-156))) (((-152 (-346)) (-152 |#1|)) 12 (|has| |#1| (-156))) (((-152 (-346)) |#1| (-839)) 27) (((-152 (-346)) |#1|) 25))) -(((-715 |#1|) (-10 -7 (-15 -3241 ((-346) |#1|)) (-15 -3241 ((-346) |#1| (-839))) (-15 -3717 ((-152 (-346)) |#1|)) (-15 -3717 ((-152 (-346)) |#1| (-839))) (IF (|has| |#1| (-156)) (PROGN (-15 -3717 ((-152 (-346)) (-152 |#1|))) (-15 -3717 ((-152 (-346)) (-152 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-866 (-152 |#1|)))) (-15 -3717 ((-152 (-346)) (-866 (-152 |#1|)) (-839)))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-15 -3241 ((-346) (-866 |#1|))) (-15 -3241 ((-346) (-866 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-866 |#1|))) (-15 -3717 ((-152 (-346)) (-866 |#1|) (-839)))) |noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -3241 ((-346) (-375 (-866 |#1|)))) (-15 -3241 ((-346) (-375 (-866 |#1|)) (-839))) (-15 -3717 ((-152 (-346)) (-375 (-866 |#1|)))) (-15 -3717 ((-152 (-346)) (-375 (-866 |#1|)) (-839))) (-15 -3717 ((-152 (-346)) (-375 (-866 (-152 |#1|))))) (-15 -3717 ((-152 (-346)) (-375 (-866 (-152 |#1|))) (-839))) (IF (|has| |#1| (-777)) (PROGN (-15 -3241 ((-346) (-282 |#1|))) (-15 -3241 ((-346) (-282 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-282 |#1|))) (-15 -3717 ((-152 (-346)) (-282 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-282 (-152 |#1|)))) (-15 -3717 ((-152 (-346)) (-282 (-152 |#1|)) (-839)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 (-152 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 (-152 |#1|)) (-839)))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-866 |#1|))) (-15 -2812 ((-3 (-346) "failed") (-866 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 |#1|))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 |#1|) (-839)))) |noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-375 (-866 |#1|)))) (-15 -2812 ((-3 (-346) "failed") (-375 (-866 |#1|)) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 |#1|)) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|))))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|))) (-839))) (IF (|has| |#1| (-777)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-282 |#1|))) (-15 -2812 ((-3 (-346) "failed") (-282 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 |#1|))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 (-152 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 (-152 |#1|)) (-839)))) |noBranch|)) |noBranch|)) (-556 (-346))) (T -715)) -((-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-152 *4))) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-2812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-2812 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 (-152 *5)))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 (-152 *4)))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-2812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-2812 (*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-2812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-2812 (*1 *2 *3) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-866 (-152 *4))) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-282 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-282 (-152 *4))) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 *5)))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 (-152 *4)))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-866 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-866 (-152 *4))) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-152 *5)) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-152 *4)) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-152 (-346))) (-5 *1 (-715 *3)) (-4 *3 (-556 (-346))))) (-3717 (*1 *2 *3) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-715 *3)) (-4 *3 (-556 (-346))))) (-3241 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-346)) (-5 *1 (-715 *3)) (-4 *3 (-556 *2)))) (-3241 (*1 *2 *3) (-12 (-5 *2 (-346)) (-5 *1 (-715 *3)) (-4 *3 (-556 *2))))) -(-10 -7 (-15 -3241 ((-346) |#1|)) (-15 -3241 ((-346) |#1| (-839))) (-15 -3717 ((-152 (-346)) |#1|)) (-15 -3717 ((-152 (-346)) |#1| (-839))) (IF (|has| |#1| (-156)) (PROGN (-15 -3717 ((-152 (-346)) (-152 |#1|))) (-15 -3717 ((-152 (-346)) (-152 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-866 (-152 |#1|)))) (-15 -3717 ((-152 (-346)) (-866 (-152 |#1|)) (-839)))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-15 -3241 ((-346) (-866 |#1|))) (-15 -3241 ((-346) (-866 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-866 |#1|))) (-15 -3717 ((-152 (-346)) (-866 |#1|) (-839)))) |noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -3241 ((-346) (-375 (-866 |#1|)))) (-15 -3241 ((-346) (-375 (-866 |#1|)) (-839))) (-15 -3717 ((-152 (-346)) (-375 (-866 |#1|)))) (-15 -3717 ((-152 (-346)) (-375 (-866 |#1|)) (-839))) (-15 -3717 ((-152 (-346)) (-375 (-866 (-152 |#1|))))) (-15 -3717 ((-152 (-346)) (-375 (-866 (-152 |#1|))) (-839))) (IF (|has| |#1| (-777)) (PROGN (-15 -3241 ((-346) (-282 |#1|))) (-15 -3241 ((-346) (-282 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-282 |#1|))) (-15 -3717 ((-152 (-346)) (-282 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-282 (-152 |#1|)))) (-15 -3717 ((-152 (-346)) (-282 (-152 |#1|)) (-839)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 (-152 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 (-152 |#1|)) (-839)))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-866 |#1|))) (-15 -2812 ((-3 (-346) "failed") (-866 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 |#1|))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 |#1|) (-839)))) |noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-375 (-866 |#1|)))) (-15 -2812 ((-3 (-346) "failed") (-375 (-866 |#1|)) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 |#1|)) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|))))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|))) (-839))) (IF (|has| |#1| (-777)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-282 |#1|))) (-15 -2812 ((-3 (-346) "failed") (-282 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 |#1|))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 (-152 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 (-152 |#1|)) (-839)))) |noBranch|)) |noBranch|)) -((-3779 (((-839) (-1053)) 64)) (-2353 (((-3 (-346) "failed") (-1053)) 32)) (-2135 (((-346) (-1053)) 30)) (-1997 (((-839) (-1053)) 53)) (-3565 (((-1053) (-839)) 55)) (-2343 (((-1053) (-839)) 52))) -(((-716) (-10 -7 (-15 -2343 ((-1053) (-839))) (-15 -1997 ((-839) (-1053))) (-15 -3565 ((-1053) (-839))) (-15 -3779 ((-839) (-1053))) (-15 -2135 ((-346) (-1053))) (-15 -2353 ((-3 (-346) "failed") (-1053))))) (T -716)) -((-2353 (*1 *2 *3) (|partial| -12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-716)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-716)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-839)) (-5 *1 (-716)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1053)) (-5 *1 (-716)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-839)) (-5 *1 (-716)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1053)) (-5 *1 (-716))))) -(-10 -7 (-15 -2343 ((-1053) (-839))) (-15 -1997 ((-839) (-1053))) (-15 -3565 ((-1053) (-839))) (-15 -3779 ((-839) (-1053))) (-15 -2135 ((-346) (-1053))) (-15 -2353 ((-3 (-346) "failed") (-1053)))) -((-3736 (((-107) $ $) 7)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 15) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 13)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 16) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6))) -(((-717) (-1180)) (T -717)) -((-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-717)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948)))))) (-1882 (*1 *2 *3 *2) (-12 (-4 *1 (-717)) (-5 *2 (-948)) (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-717)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948)))))) (-1882 (*1 *2 *3 *2) (-12 (-4 *1 (-717)) (-5 *2 (-948)) (-5 *3 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) -(-13 (-1001) (-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1882 ((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1882 ((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948))))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3781 (((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346))) 44) (((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346))) 43)) (-3680 (((-1154) (-1148 (-346)) (-501) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346))) 50)) (-2937 (((-1154) (-1148 (-346)) (-501) (-346) (-346) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346))) 41)) (-4077 (((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346))) 52) (((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346))) 51))) -(((-718) (-10 -7 (-15 -4077 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -4077 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)))) (-15 -2937 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -3781 ((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -3781 ((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)))) (-15 -3680 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))))) (T -718)) -((-3680 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) (-3781 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-501)) (-5 *6 (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346)))) (-5 *7 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) (-3781 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-501)) (-5 *6 (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346)))) (-5 *7 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) (-2937 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) (-4077 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) (-4077 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718))))) -(-10 -7 (-15 -4077 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -4077 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)))) (-15 -2937 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -3781 ((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -3781 ((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)))) (-15 -3680 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346))))) -((-3570 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 53)) (-1439 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 30)) (-3780 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 52)) (-3357 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 28)) (-2799 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 51)) (-1304 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 18)) (-2063 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501)) 31)) (-1681 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501)) 29)) (-4006 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501)) 27))) -(((-719) (-10 -7 (-15 -4006 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -1681 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -2063 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -1304 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3357 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -1439 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -2799 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3780 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3570 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))))) (T -719)) -((-3570 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-3780 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-2799 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-1439 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-3357 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-1304 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-2063 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-1681 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-4006 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501))))) -(-10 -7 (-15 -4006 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -1681 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -2063 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -1304 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3357 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -1439 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -2799 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3780 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3570 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)))) -((-2810 (((-1100 |#1|) |#1| (-199) (-501)) 45))) -(((-720 |#1|) (-10 -7 (-15 -2810 ((-1100 |#1|) |#1| (-199) (-501)))) (-889)) (T -720)) -((-2810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-501)) (-5 *2 (-1100 *3)) (-5 *1 (-720 *3)) (-4 *3 (-889))))) -(-10 -7 (-15 -2810 ((-1100 |#1|) |#1| (-199) (-501)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-3177 (((-3 $ "failed") $ $) 26)) (-2540 (($) 23 T CONST)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 22 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3797 (($ $ $) 28) (($ $) 27)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 25) (($ (-839) $) 21) (($ (-501) $) 29))) -(((-721) (-1180)) (T -721)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-1363 (($ |#1|) 17) (($ $ |#1|) 20)) (-1278 (($ |#1|) 18) (($ $ |#1|) 21)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3848 (((-107) $) NIL)) (-2990 (($ |#1| |#1| |#1| |#1|) 8)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 16)) (-3206 (((-1021) $) NIL)) (-2051 ((|#1| $ |#1|) 24) (((-765 |#1|) $ (-765 |#1|)) 32)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 39)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 9 T CONST)) (-1547 (((-107) $ $) 44)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 14))) +(((-651 |#1|) (-13 (-442) (-10 -8 (-15 -2990 ($ |#1| |#1| |#1| |#1|)) (-15 -1363 ($ |#1|)) (-15 -1278 ($ |#1|)) (-15 -3621 ($)) (-15 -1363 ($ $ |#1|)) (-15 -1278 ($ $ |#1|)) (-15 -3621 ($ $)) (-15 -2051 (|#1| $ |#1|)) (-15 -2051 ((-765 |#1|) $ (-765 |#1|))))) (-333)) (T -651)) +((-2990 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1363 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1278 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3621 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1363 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1278 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3621 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2051 (*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2051 (*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3))))) +(-13 (-442) (-10 -8 (-15 -2990 ($ |#1| |#1| |#1| |#1|)) (-15 -1363 ($ |#1|)) (-15 -1278 ($ |#1|)) (-15 -3621 ($)) (-15 -1363 ($ $ |#1|)) (-15 -1278 ($ $ |#1|)) (-15 -3621 ($ $)) (-15 -2051 (|#1| $ |#1|)) (-15 -2051 ((-765 |#1|) $ (-765 |#1|))))) +((-3380 (($ $ (-843)) 12)) (-2572 (($ $ (-843)) 13)) (** (($ $ (-843)) 10))) +(((-652 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843)))) (-653)) (T -652)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843)))) +((-2750 (((-107) $ $) 7)) (-3380 (($ $ (-843)) 15)) (-2572 (($ $ (-843)) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 13)) (* (($ $ $) 16))) +(((-653) (-1184)) (T -653)) +((* (*1 *1 *1 *1) (-4 *1 (-653))) (-3380 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) (-2572 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843))))) +(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 -3380 ($ $ (-843))) (-15 -2572 ($ $ (-843))) (-15 ** ($ $ (-843))))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-3380 (($ $ (-843)) NIL) (($ $ (-703)) 17)) (-3848 (((-107) $) 10)) (-2572 (($ $ (-843)) NIL) (($ $ (-703)) 18)) (** (($ $ (-843)) NIL) (($ $ (-703)) 15))) +(((-654 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -2572 (|#1| |#1| (-703))) (-15 -3380 (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843)))) (-655)) (T -654)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -2572 (|#1| |#1| (-703))) (-15 -3380 (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843)))) +((-2750 (((-107) $ $) 7)) (-2158 (((-3 $ "failed") $) 17)) (-3380 (($ $ (-843)) 15) (($ $ (-703)) 22)) (-3621 (((-3 $ "failed") $) 19)) (-3848 (((-107) $) 23)) (-1680 (((-3 $ "failed") $) 18)) (-2572 (($ $ (-843)) 14) (($ $ (-703)) 21)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2409 (($) 24 T CONST)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 13) (($ $ (-703)) 20)) (* (($ $ $) 16))) +(((-655) (-1184)) (T -655)) +((-2409 (*1 *1) (-4 *1 (-655))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) (-3380 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-2572 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-3621 (*1 *1 *1) (|partial| -4 *1 (-655))) (-1680 (*1 *1 *1) (|partial| -4 *1 (-655))) (-2158 (*1 *1 *1) (|partial| -4 *1 (-655)))) +(-13 (-653) (-10 -8 (-15 (-2409) ($) -1619) (-15 -3848 ((-107) $)) (-15 -3380 ($ $ (-703))) (-15 -2572 ($ $ (-703))) (-15 ** ($ $ (-703))) (-15 -3621 ((-3 $ "failed") $)) (-15 -1680 ((-3 $ "failed") $)) (-15 -2158 ((-3 $ "failed") $)))) +(((-97) . T) ((-557 (-787)) . T) ((-653) . T) ((-1003) . T)) +((-1611 (((-703)) 35)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 22)) (-3225 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) 45)) (-3621 (((-3 $ "failed") $) 65)) (-3209 (($) 39)) (-1506 ((|#2| $) 20)) (-3220 (($) 17)) (-3127 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2970 (((-623 |#2|) (-1153 $) (-1 |#2| |#2|)) 60)) (-3645 (((-1153 |#2|) $) NIL) (($ (-1153 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3669 ((|#3| $) 32)) (-1753 (((-1153 $)) 29))) +(((-656 |#1| |#2| |#3|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3209 (|#1|)) (-15 -1611 ((-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2970 ((-623 |#2|) (-1153 |#1|) (-1 |#2| |#2|))) (-15 -3225 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3645 (|#1| |#3|)) (-15 -3225 (|#1| |#3|)) (-15 -3220 (|#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 (|#3| |#1|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1753 ((-1153 |#1|))) (-15 -3669 (|#3| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|))) (-657 |#2| |#3|) (-156) (-1130 |#2|)) (T -656)) +((-1611 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5))))) +(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3209 (|#1|)) (-15 -1611 ((-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2970 ((-623 |#2|) (-1153 |#1|) (-1 |#2| |#2|))) (-15 -3225 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3645 (|#1| |#3|)) (-15 -3225 (|#1| |#3|)) (-15 -3220 (|#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 (|#3| |#1|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1753 ((-1153 |#1|))) (-15 -3669 (|#3| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 93 (|has| |#1| (-333)))) (-1213 (($ $) 94 (|has| |#1| (-333)))) (-2454 (((-107) $) 96 (|has| |#1| (-333)))) (-3055 (((-623 |#1|) (-1153 $)) 46) (((-623 |#1|)) 61)) (-1472 ((|#1| $) 52)) (-1926 (((-1082 (-843) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 113 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 114 (|has| |#1| (-333)))) (-1707 (((-107) $ $) 104 (|has| |#1| (-333)))) (-1611 (((-703)) 87 (|has| |#1| (-338)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 169 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3189 (((-517) $) 170 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 165)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48) (($ (-1153 |#1|)) 64)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2518 (($ $ $) 108 (|has| |#1| (-333)))) (-2410 (((-623 |#1|) $ (-1153 $)) 53) (((-623 |#1|) $) 59)) (-3355 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-3225 (($ |#2|) 158) (((-3 $ "failed") (-377 |#2|)) 155 (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-843)) 54)) (-3209 (($) 90 (|has| |#1| (-338)))) (-2497 (($ $ $) 107 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 102 (|has| |#1| (-333)))) (-3442 (($) 149 (|has| |#1| (-319)))) (-3391 (((-107) $) 150 (|has| |#1| (-319)))) (-2378 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-3849 (((-107) $) 115 (|has| |#1| (-333)))) (-3972 (((-843) $) 152 (|has| |#1| (-319))) (((-765 (-843)) $) 138 (|has| |#1| (-319)))) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 51)) (-1319 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-333)))) (-3777 ((|#2| $) 44 (|has| |#1| (-333)))) (-1549 (((-843) $) 89 (|has| |#1| (-338)))) (-3216 ((|#2| $) 156)) (-1365 (($ (-583 $)) 100 (|has| |#1| (-333))) (($ $ $) 99 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 116 (|has| |#1| (-333)))) (-2836 (($) 143 (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) 88 (|has| |#1| (-338)))) (-3206 (((-1021) $) 10)) (-3220 (($) 160)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 101 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 98 (|has| |#1| (-333))) (($ $ $) 97 (|has| |#1| (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 146 (|has| |#1| (-319)))) (-3755 (((-388 $) $) 112 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 109 (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ $) 92 (|has| |#1| (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-333)))) (-3146 (((-703) $) 105 (|has| |#1| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106 (|has| |#1| (-333)))) (-3010 ((|#1| (-1153 $)) 47) ((|#1|) 60)) (-1620 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-3127 (($ $) 137 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 135 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) 133 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073))) 132 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1073) (-703)) 131 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-703))) 130 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 123 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-333)))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2135 ((|#2|) 159)) (-1766 (($) 148 (|has| |#1| (-319)))) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49) (((-1153 |#1|) $) 66) (((-623 |#1|) (-1153 $)) 65)) (-3645 (((-1153 |#1|) $) 63) (($ (-1153 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 145 (|has| |#1| (-319)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-333))) (($ (-377 (-517))) 86 (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3669 ((|#2| $) 45)) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 67)) (-3329 (((-107) $ $) 95 (|has| |#1| (-333)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 136 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 134 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) 129 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073))) 128 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1073) (-703)) 127 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-703))) 126 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 125 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-333)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 121 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333))))) +(((-657 |#1| |#2|) (-1184) (-156) (-1130 |t#1|)) (T -657)) +((-3220 (*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1130 *2)))) (-2135 (*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) (-3225 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) (-3645 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) (-3225 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-1153 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *5))))) +(-13 (-379 |t#1| |t#2|) (-156) (-558 |t#2|) (-381 |t#1|) (-347 |t#1|) (-10 -8 (-15 -3220 ($)) (-15 -2135 (|t#2|)) (-15 -3225 ($ |t#2|)) (-15 -3645 ($ |t#2|)) (-15 -3216 (|t#2| $)) (IF (|has| |t#1| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-333)) (-6 (-205 |t#1|)) (-15 -3225 ((-3 $ "failed") (-377 |t#2|))) (-15 -2970 ((-623 |t#1|) (-1153 $) (-1 |t#1| |t#1|)))) |noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#2|) . T) ((-205 |#1|) |has| |#1| (-333)) ((-207) -3807 (|has| |#1| (-319)) (-12 (|has| |#1| (-207)) (|has| |#1| (-333)))) ((-217) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-262) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-278) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-333) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3807 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| |#2|) . T) ((-379 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-509) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073)))) ((-842) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-319)) ((-1112) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)))) +((-3092 (($) 14)) (-3621 (((-3 $ "failed") $) 16)) (-3848 (((-107) $) 13)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) 20))) +(((-658 |#1|) (-10 -8 (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-659)) (T -658)) +NIL +(-10 -8 (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) +((-2750 (((-107) $ $) 7)) (-3092 (($) 20 T CONST)) (-3621 (((-3 $ "failed") $) 16)) (-3848 (((-107) $) 19)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13) (($ $ (-703)) 17)) (-2409 (($) 21 T CONST)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 14) (($ $ (-703)) 18)) (* (($ $ $) 15))) +(((-659) (-1184)) (T -659)) +((-2409 (*1 *1) (-4 *1 (-659))) (-3092 (*1 *1) (-4 *1 (-659))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-3621 (*1 *1 *1) (|partial| -4 *1 (-659)))) +(-13 (-1015) (-10 -8 (-15 (-2409) ($) -1619) (-15 -3092 ($) -1619) (-15 -3848 ((-107) $)) (-15 ** ($ $ (-703))) (-15 -2207 ($ $ (-703))) (-15 -3621 ((-3 $ "failed") $)))) +(((-97) . T) ((-557 (-787)) . T) ((-1015) . T) ((-1003) . T)) +((-3573 (((-2 (|:| -2527 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1313 (((-2 (|:| -2527 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1951 ((|#2| (-377 |#2|) (-1 |#2| |#2|)) 13)) (-2132 (((-2 (|:| |poly| |#2|) (|:| -2527 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)) 47))) +(((-660 |#1| |#2|) (-10 -7 (-15 -1313 ((-2 (|:| -2527 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3573 ((-2 (|:| -2527 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1951 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2132 ((-2 (|:| |poly| |#2|) (|:| -2527 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1130 |#1|)) (T -660)) +((-2132 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2527 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) (-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))) (-1313 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3))))) +(-10 -7 (-15 -1313 ((-2 (|:| -2527 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3573 ((-2 (|:| -2527 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1951 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2132 ((-2 (|:| |poly| |#2|) (|:| -2527 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)))) +((-2473 ((|#7| (-583 |#5|) |#6|) NIL)) (-1893 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1893 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2473 (|#7| (-583 |#5|) |#6|))) (-779) (-725) (-725) (-961) (-961) (-871 |#4| |#2| |#1|) (-871 |#5| |#3| |#1|)) (T -661)) +((-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-961)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5))))) +(-10 -7 (-15 -1893 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2473 (|#7| (-583 |#5|) |#6|))) +((-1893 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-662 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1893 (|#7| (-1 |#2| |#1|) |#6|))) (-779) (-779) (-725) (-725) (-961) (-871 |#5| |#3| |#1|) (-871 |#5| |#4| |#2|)) (T -662)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-961)) (-4 *2 (-871 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-871 *9 *7 *5))))) +(-10 -7 (-15 -1893 (|#7| (-1 |#2| |#1|) |#6|))) +((-3755 (((-388 |#4|) |#4|) 39))) +(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073))))) (-278) (-871 (-874 |#3|) |#1| |#2|)) (T -663)) +((-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-871 (-874 *6) *4 *5))))) +(-10 -7 (-15 -3755 ((-388 |#4|) |#4|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-789 |#1|)) $) NIL)) (-2352 (((-1069 $) $ (-789 |#1|)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-489 (-789 |#1|)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) NIL) (($ (-1069 $) (-789 |#1|)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-489 (-789 |#1|)) (-489 (-789 |#1|))) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ $) NIL (|has| |#2| (-509))) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517))))))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-664 |#1| |#2|) (-871 |#2| (-489 (-789 |#1|)) (-789 |#1|)) (-583 (-1073)) (-961)) (T -664)) +NIL +(-871 |#2| (-489 (-789 |#1|)) (-789 |#1|)) +((-3581 (((-2 (|:| -1640 (-874 |#3|)) (|:| -1933 (-874 |#3|))) |#4|) 13)) (-2906 ((|#4| |#4| |#2|) 30)) (-3474 ((|#4| (-377 (-874 |#3|)) |#2|) 63)) (-1675 ((|#4| (-1069 (-874 |#3|)) |#2|) 76)) (-1725 ((|#4| (-1069 |#4|) |#2|) 49)) (-2885 ((|#4| |#4| |#2|) 52)) (-3755 (((-388 |#4|) |#4|) 38))) +(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3581 ((-2 (|:| -1640 (-874 |#3|)) (|:| -1933 (-874 |#3|))) |#4|)) (-15 -2885 (|#4| |#4| |#2|)) (-15 -1725 (|#4| (-1069 |#4|) |#2|)) (-15 -2906 (|#4| |#4| |#2|)) (-15 -1675 (|#4| (-1069 (-874 |#3|)) |#2|)) (-15 -3474 (|#4| (-377 (-874 |#3|)) |#2|)) (-15 -3755 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)))) (-509) (-871 (-377 (-874 |#3|)) |#1| |#2|)) (T -665)) +((-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))) (-3474 (*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-874 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 (-874 *6))) (-4 *6 (-509)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))))) (-2906 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)))) (-2885 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -1640 (-874 *6)) (|:| -1933 (-874 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5))))) +(-10 -7 (-15 -3581 ((-2 (|:| -1640 (-874 |#3|)) (|:| -1933 (-874 |#3|))) |#4|)) (-15 -2885 (|#4| |#4| |#2|)) (-15 -1725 (|#4| (-1069 |#4|) |#2|)) (-15 -2906 (|#4| |#4| |#2|)) (-15 -1675 (|#4| (-1069 (-874 |#3|)) |#2|)) (-15 -3474 (|#4| (-377 (-874 |#3|)) |#2|)) (-15 -3755 ((-388 |#4|) |#4|))) +((-3755 (((-388 |#4|) |#4|) 51))) +(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|))) (-725) (-779) (-13 (-278) (-134)) (-871 (-377 |#3|) |#1| |#2|)) (T -666)) +((-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-871 (-377 *6) *4 *5))))) +(-10 -7 (-15 -3755 ((-388 |#4|) |#4|))) +((-1893 (((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)) 18))) +(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) (-961) (-961) (-659)) (T -667)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7))))) +(-10 -7 (-15 -1893 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 26)) (-2223 (((-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))) $) 27)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703)) 20 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 55) (((-3 |#1| "failed") $) 58)) (-3189 ((|#2| $) NIL) ((|#1| $) NIL)) (-1212 (($ $) 75 (|has| |#2| (-779)))) (-3621 (((-3 $ "failed") $) 62)) (-3209 (($) 33 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 53)) (-4094 (((-583 $) $) 37)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| |#2|) 16)) (-1893 (($ (-1 |#1| |#1|) $) 52)) (-1549 (((-843) $) 30 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-4152 ((|#2| $) 74 (|has| |#2| (-779)))) (-1191 ((|#1| $) 73 (|has| |#2| (-779)))) (-3985 (((-1056) $) NIL)) (-3448 (($ (-843)) 25 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 72) (($ (-517)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|)))) 11)) (-1311 (((-583 |#1|) $) 39)) (-2720 ((|#1| $ |#2|) 83)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 12 T CONST)) (-2409 (($) 31 T CONST)) (-1547 (((-107) $ $) 76)) (-1654 (($ $) 46) (($ $ $) NIL)) (-1642 (($ $ $) 24)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 85) (($ |#1| $) 48 (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) +(((-668 |#1| |#2|) (-13 (-961) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -1339 ($ |#1| |#2|)) (-15 -2720 (|#1| $ |#2|)) (-15 -2256 ($ (-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))))) (-15 -2223 ((-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))) $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -4031 ((-107) $)) (-15 -1311 ((-583 |#1|) $)) (-15 -4094 ((-583 $) $)) (-15 -1577 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -4152 (|#2| $)) (-15 -1191 (|#1| $)) (-15 -1212 ($ $))) |noBranch|))) (-961) (-659)) (T -668)) +((-1339 (*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-961)) (-4 *3 (-659)))) (-2720 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-4 *3 (-961)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-4152 (*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-961)))) (-1191 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-961)) (-4 *3 (-659))))) +(-13 (-961) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -1339 ($ |#1| |#2|)) (-15 -2720 (|#1| $ |#2|)) (-15 -2256 ($ (-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))))) (-15 -2223 ((-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))) $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -4031 ((-107) $)) (-15 -1311 ((-583 |#1|) $)) (-15 -4094 ((-583 $) $)) (-15 -1577 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -4152 (|#2| $)) (-15 -1191 (|#1| $)) (-15 -1212 ($ $))) |noBranch|))) +((-2750 (((-107) $ $) 18)) (-1413 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3245 (($ $ $) 72)) (-3009 (((-107) $ $) 73)) (-2953 (((-107) $ (-703)) 8)) (-1362 (($ (-583 |#1|)) 68) (($) 67)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 62)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22)) (-1812 (($ $ $) 69)) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3206 (((-1021) $) 21)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 61)) (-3170 (($ $ |#1|) 71) (($ $ $) 70)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20)) (-3167 (($ (-583 |#1|)) 66) (($) 65)) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-1572 (((-107) $ $) 64)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-669 |#1|) (-1184) (-1003)) (T -669)) +NIL +(-13 (-628 |t#1|) (-1001 |t#1|)) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-628 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1108) . T)) +((-2750 (((-107) $ $) NIL)) (-1413 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 77)) (-3245 (($ $ $) 80)) (-3009 (((-107) $ $) 83)) (-2953 (((-107) $ (-703)) NIL)) (-1362 (($ (-583 |#1|)) 24) (($) 15)) (-2337 (($ (-1 (-107) |#1|) $) 71 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3483 (($ $) 72)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) 61 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 64 (|has| $ (-6 -4180))) (($ |#1| $ (-517)) 62) (($ (-1 (-107) |#1|) $ (-517)) 65)) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $ (-517)) 67) (($ (-1 (-107) |#1|) $ (-517)) 68)) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 32 (|has| $ (-6 -4180)))) (-2625 (($) 13) (($ |#1|) 26) (($ (-583 |#1|)) 21)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) 38)) (-2787 (((-107) |#1| $) 57 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) 75 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 76)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 78)) (-3309 ((|#1| $) 54)) (-1710 (($ |#1| $) 55) (($ |#1| $ (-703)) 73)) (-3206 (((-1021) $) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-4006 ((|#1| $) 53)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 49)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 47)) (-3170 (($ $ |#1|) NIL) (($ $ $) 79)) (-3089 (($) 14) (($ (-583 |#1|)) 23)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) 60 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 66)) (-3645 (((-493) $) 36 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 20)) (-2256 (((-787) $) 44)) (-3167 (($ (-583 |#1|)) 25) (($) 16)) (-1222 (($ (-583 |#1|)) 22)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 81)) (-1572 (((-107) $ $) 82)) (-2296 (((-703) $) 59 (|has| $ (-6 -4180))))) +(((-670 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2625 ($)) (-15 -2625 ($ |#1|)) (-15 -2625 ($ (-583 |#1|))) (-15 -2560 ((-583 |#1|) $)) (-15 -2052 ($ |#1| $ (-517))) (-15 -2052 ($ (-1 (-107) |#1|) $ (-517))) (-15 -3212 ($ |#1| $ (-517))) (-15 -3212 ($ (-1 (-107) |#1|) $ (-517))))) (-1003)) (T -670)) +((-2625 (*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-2625 (*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-670 *3)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1003)))) (-2052 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-2052 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) (-3212 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-3212 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4))))) +(-13 (-669 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2625 ($)) (-15 -2625 ($ |#1|)) (-15 -2625 ($ (-583 |#1|))) (-15 -2560 ((-583 |#1|) $)) (-15 -2052 ($ |#1| $ (-517))) (-15 -2052 ($ (-1 (-107) |#1|) $ (-517))) (-15 -3212 ($ |#1| $ (-517))) (-15 -3212 ($ (-1 (-107) |#1|) $ (-517))))) +((-2503 (((-1158) (-1056)) 8))) +(((-671) (-10 -7 (-15 -2503 ((-1158) (-1056))))) (T -671)) +((-2503 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-671))))) +(-10 -7 (-15 -2503 ((-1158) (-1056)))) +((-2546 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 10))) +(((-672 |#1|) (-10 -7 (-15 -2546 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-779)) (T -672)) +((-2546 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3))))) +(-10 -7 (-15 -2546 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#2|) $) 136)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 129 (|has| |#1| (-509)))) (-1213 (($ $) 128 (|has| |#1| (-509)))) (-2454 (((-107) $) 126 (|has| |#1| (-509)))) (-1865 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 68 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $) 67 (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 84 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 69 (|has| |#1| (-37 (-377 (-517)))))) (-1887 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 70 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1212 (($ $) 120)) (-3621 (((-3 $ "failed") $) 34)) (-3520 (((-874 |#1|) $ (-703)) 98) (((-874 |#1|) $ (-703) (-703)) 97)) (-3201 (((-107) $) 137)) (-2645 (($) 95 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $ |#2|) 100) (((-703) $ |#2| (-703)) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 66 (|has| |#1| (-37 (-377 (-517)))))) (-4031 (((-107) $) 118)) (-1339 (($ $ (-583 |#2|) (-583 (-489 |#2|))) 135) (($ $ |#2| (-489 |#2|)) 134) (($ |#1| (-489 |#2|)) 119) (($ $ |#2| (-703)) 102) (($ $ (-583 |#2|) (-583 (-703))) 101)) (-1893 (($ (-1 |#1| |#1|) $) 117)) (-1867 (($ $) 92 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 115)) (-1191 ((|#1| $) 114)) (-3985 (((-1056) $) 9)) (-4151 (($ $ |#2|) 96 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) 10)) (-1672 (($ $ (-703)) 103)) (-2476 (((-3 $ "failed") $ $) 130 (|has| |#1| (-509)))) (-2624 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (($ $ |#2| $) 111) (($ $ (-583 |#2|) (-583 $)) 110) (($ $ (-583 (-265 $))) 109) (($ $ (-265 $)) 108) (($ $ $ $) 107) (($ $ (-583 $) (-583 $)) 106)) (-3127 (($ $ |#2|) 42) (($ $ (-583 |#2|)) 41) (($ $ |#2| (-703)) 40) (($ $ (-583 |#2|) (-583 (-703))) 39)) (-3688 (((-489 |#2|) $) 116)) (-1898 (($ $) 82 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 71 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 80 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 138)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 133 (|has| |#1| (-156))) (($ $) 131 (|has| |#1| (-509))) (($ (-377 (-517))) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2720 ((|#1| $ (-489 |#2|)) 121) (($ $ |#2| (-703)) 105) (($ $ (-583 |#2|) (-583 (-703))) 104)) (-1328 (((-3 $ "failed") $) 132 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3707 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 127 (|has| |#1| (-509)))) (-3683 (($ $) 90 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 78 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 77 (|has| |#1| (-37 (-377 (-517)))))) (-1492 (($ $) 88 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 76 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 75 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 86 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 74 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#2|) 38) (($ $ (-583 |#2|)) 37) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) 35)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 122 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ $) 94 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 65 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 125 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 124 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 113) (($ $ |#1|) 112))) +(((-673 |#1| |#2|) (-1184) (-961) (-779)) (T -673)) +((-2720 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-961)) (-4 *4 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) (-3972 (*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3972 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) (-3520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) (-4151 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517))))))) +(-13 (-822 |t#2|) (-890 |t#1| (-489 |t#2|) |t#2|) (-478 |t#2| $) (-280 $) (-10 -8 (-15 -2720 ($ $ |t#2| (-703))) (-15 -2720 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -1672 ($ $ (-703))) (-15 -1339 ($ $ |t#2| (-703))) (-15 -1339 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -3972 ((-703) $ |t#2|)) (-15 -3972 ((-703) $ |t#2| (-703))) (-15 -3520 ((-874 |t#1|) $ (-703))) (-15 -3520 ((-874 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ |t#2|)) (-6 (-918)) (-6 (-1094))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| (-489 |#2|)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-262) |has| |#1| (-509)) ((-280 $) . T) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 |#2| $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 |#2|) . T) ((-890 |#1| (-489 |#2|) |#2|) . T) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517))))) +((-3755 (((-388 (-1069 |#4|)) (-1069 |#4|)) 28) (((-388 |#4|) |#4|) 24))) +(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|)))) (-779) (-725) (-13 (-278) (-134)) (-871 |#3| |#2| |#1|)) (T -674)) +((-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4))))) +(-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|)))) +((-2360 (((-388 |#4|) |#4| |#2|) 116)) (-3538 (((-388 |#4|) |#4|) NIL)) (-2759 (((-388 (-1069 |#4|)) (-1069 |#4|)) 107) (((-388 |#4|) |#4|) 38)) (-1323 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 |#4|)) (|:| -2077 (-517)))))) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 65)) (-4009 (((-1069 |#3|) (-1069 |#3|) (-517)) 133)) (-3875 (((-583 (-703)) (-1069 |#4|) (-583 |#2|) (-703)) 58)) (-3216 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-1069 |#3|) (-1069 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|)) 62)) (-2542 (((-2 (|:| |upol| (-1069 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) (|:| |ctpol| |#3|)) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 22)) (-3698 (((-2 (|:| -1913 (-1069 |#4|)) (|:| |polval| (-1069 |#3|))) (-1069 |#4|) (-1069 |#3|) (-517)) 54)) (-2556 (((-517) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) 130)) (-1359 ((|#4| (-517) (-388 |#4|)) 55)) (-3823 (((-107) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) NIL))) +(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2759 ((-388 |#4|) |#4|)) (-15 -2759 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3538 ((-388 |#4|) |#4|)) (-15 -2556 ((-517) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -2360 ((-388 |#4|) |#4| |#2|)) (-15 -3698 ((-2 (|:| -1913 (-1069 |#4|)) (|:| |polval| (-1069 |#3|))) (-1069 |#4|) (-1069 |#3|) (-517))) (-15 -1323 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 |#4|)) (|:| -2077 (-517)))))) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2542 ((-2 (|:| |upol| (-1069 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) (|:| |ctpol| |#3|)) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1359 (|#4| (-517) (-388 |#4|))) (-15 -3823 ((-107) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -3216 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-1069 |#3|) (-1069 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -3875 ((-583 (-703)) (-1069 |#4|) (-583 |#2|) (-703))) (-15 -4009 ((-1069 |#3|) (-1069 |#3|) (-517)))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -675)) +((-4009 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-3875 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))) (-3216 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1069 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-871 *11 *9 *10)) (-5 *2 (-583 (-1069 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1069 *5)))) (-3823 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-871 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))) (-2542 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1069 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 *8)) (|:| -2077 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))) (-1323 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 *9)) (|:| -2077 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9)))) (-3698 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| -1913 (-1069 *9)) (|:| |polval| (-1069 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9)) (-5 *4 (-1069 *8)))) (-2360 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-3538 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))) (-2759 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-2759 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5))))) +(-10 -7 (-15 -2759 ((-388 |#4|) |#4|)) (-15 -2759 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3538 ((-388 |#4|) |#4|)) (-15 -2556 ((-517) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -2360 ((-388 |#4|) |#4| |#2|)) (-15 -3698 ((-2 (|:| -1913 (-1069 |#4|)) (|:| |polval| (-1069 |#3|))) (-1069 |#4|) (-1069 |#3|) (-517))) (-15 -1323 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 |#4|)) (|:| -2077 (-517)))))) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2542 ((-2 (|:| |upol| (-1069 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) (|:| |ctpol| |#3|)) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1359 (|#4| (-517) (-388 |#4|))) (-15 -3823 ((-107) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -3216 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-1069 |#3|) (-1069 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -3875 ((-583 (-703)) (-1069 |#4|) (-583 |#2|) (-703))) (-15 -4009 ((-1069 |#3|) (-1069 |#3|) (-517)))) +((-3730 (($ $ (-843)) 12))) +(((-676 |#1| |#2|) (-10 -8 (-15 -3730 (|#1| |#1| (-843)))) (-677 |#2|) (-156)) (T -676)) +NIL +(-10 -8 (-15 -3730 (|#1| |#1| (-843)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3380 (($ $ (-843)) 28)) (-3730 (($ $ (-843)) 33)) (-2572 (($ $ (-843)) 29)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3394 (($ $ $) 25)) (-2256 (((-787) $) 11)) (-3917 (($ $ $ $) 26)) (-1956 (($ $ $) 24)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-677 |#1|) (-1184) (-156)) (T -677)) +((-3730 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-677 *3)) (-4 *3 (-156))))) +(-13 (-694) (-650 |t#1|) (-10 -8 (-15 -3730 ($ $ (-843))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T)) +((-2831 (((-950) (-623 (-199)) (-517) (-107) (-517)) 24)) (-2821 (((-950) (-623 (-199)) (-517) (-107) (-517)) 23))) +(((-678) (-10 -7 (-15 -2821 ((-950) (-623 (-199)) (-517) (-107) (-517))) (-15 -2831 ((-950) (-623 (-199)) (-517) (-107) (-517))))) (T -678)) +((-2831 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))) (-2821 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678))))) +(-10 -7 (-15 -2821 ((-950) (-623 (-199)) (-517) (-107) (-517))) (-15 -2831 ((-950) (-623 (-199)) (-517) (-107) (-517)))) +((-2860 (((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) 43)) (-2851 (((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) 39)) (-2841 (((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 32))) +(((-679) (-10 -7 (-15 -2841 ((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -2851 ((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2860 ((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))) (T -679)) +((-2860 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))) (-2851 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))) (-2841 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-679))))) +(-10 -7 (-15 -2841 ((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -2851 ((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2860 ((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))))) +((-2988 (((-950) (-517) (-517) (-623 (-199)) (-517)) 33)) (-2977 (((-950) (-517) (-517) (-623 (-199)) (-517)) 32)) (-2968 (((-950) (-517) (-623 (-199)) (-517)) 31)) (-2957 (((-950) (-517) (-623 (-199)) (-517)) 30)) (-2947 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-2937 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-2924 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-2911 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-2900 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-2890 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-2878 (((-950) (-517) (-623 (-199)) (-517)) 21)) (-2868 (((-950) (-517) (-623 (-199)) (-517)) 20))) +(((-680) (-10 -7 (-15 -2868 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2878 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2890 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2900 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2911 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2924 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2937 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2947 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2957 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2968 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2977 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2988 ((-950) (-517) (-517) (-623 (-199)) (-517))))) (T -680)) +((-2988 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2977 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2968 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2957 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2947 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2937 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2924 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2911 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2900 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2890 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2878 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2868 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(-10 -7 (-15 -2868 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2878 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2890 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2900 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2911 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2924 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2937 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2947 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2957 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2968 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2977 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2988 ((-950) (-517) (-517) (-623 (-199)) (-517)))) +((-1263 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1253 (((-950) (-623 (-199)) (-623 (-199)) (-517) (-517)) 51)) (-1239 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3084 (((-950) (-199) (-199) (-517) (-517) (-517) (-517)) 46)) (-3075 (((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 45)) (-3064 (((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 44)) (-3054 (((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 43)) (-3043 (((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 42)) (-3032 (((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 38)) (-3021 (((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 37)) (-3011 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 33)) (-3000 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 32))) +(((-681) (-10 -7 (-15 -3000 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3011 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3021 ((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3032 ((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3043 ((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3054 ((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3064 ((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3075 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3084 ((-950) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -1239 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1253 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1263 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))) (T -681)) +((-1263 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-1253 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))) (-1239 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3084 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))) (-3075 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3064 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3054 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3043 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3032 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3021 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-681)))) (-3011 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3000 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681))))) +(-10 -7 (-15 -3000 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3011 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3021 ((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3032 ((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3043 ((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3054 ((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3064 ((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3075 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3084 ((-950) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -1239 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1253 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1263 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))))) +((-1348 (((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-1336 (((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358)) 69) (((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) 68)) (-1326 (((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) 57)) (-1310 (((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 50)) (-1303 (((-950) (-199) (-517) (-517) (-1056) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 49)) (-1294 (((-950) (-199) (-517) (-517) (-199) (-1056) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 45)) (-1283 (((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 42)) (-1269 (((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 38))) +(((-682) (-10 -7 (-15 -1269 ((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1283 ((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1294 ((-950) (-199) (-517) (-517) (-199) (-1056) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1303 ((-950) (-199) (-517) (-517) (-1056) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1310 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1326 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1348 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -682)) +((-1348 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1336 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1336 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-950)) (-5 *1 (-682)))) (-1326 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1310 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-950)) (-5 *1 (-682)))) (-1303 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1294 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1283 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1269 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682))))) +(-10 -7 (-15 -1269 ((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1283 ((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1294 ((-950) (-199) (-517) (-517) (-199) (-1056) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1303 ((-950) (-199) (-517) (-517) (-1056) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1310 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1326 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1348 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))))) +((-1386 (((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517)) 45)) (-1375 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1056) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) 41)) (-1360 (((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 23))) +(((-683) (-10 -7 (-15 -1360 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1375 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1056) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1386 ((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))) (T -683)) +((-1386 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))) (-1375 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-950)) (-5 *1 (-683)))) (-1360 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-683))))) +(-10 -7 (-15 -1360 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1375 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1056) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1386 ((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517)))) +((-3338 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517)) 35)) (-1481 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517)) 34)) (-1471 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517)) 33)) (-1466 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-1453 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-1443 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517)) 27)) (-1432 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 23)) (-1421 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 22)) (-1406 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 21)) (-1393 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 20))) +(((-684) (-10 -7 (-15 -1393 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1406 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1421 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1432 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1443 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1453 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1466 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1471 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1481 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -3338 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))) (T -684)) +((-3338 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1481 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1471 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1466 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1453 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1443 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1432 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1421 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1406 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1393 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684))))) +(-10 -7 (-15 -1393 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1406 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1421 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1432 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1443 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1453 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1466 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1471 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1481 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -3338 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517)))) +((-1684 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 45)) (-1673 (((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517)) 44)) (-1661 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 43)) (-1648 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 42)) (-1635 (((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517)) 41)) (-1625 (((-950) (-1056) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 40)) (-1612 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517)) 39)) (-1600 (((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517))) 38)) (-1589 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-1578 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517)) 34)) (-1566 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517)) 33)) (-1554 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 32)) (-1541 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517)) 31)) (-1530 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517)) 30)) (-1518 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-1507 (((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517)) 28)) (-1498 (((-950) (-517) (-623 (-199)) (-199) (-517)) 24)) (-1490 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 20))) +(((-685) (-10 -7 (-15 -1490 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1498 ((-950) (-517) (-623 (-199)) (-199) (-517))) (-15 -1507 ((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1518 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1530 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -1541 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -1554 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1566 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1578 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1589 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1600 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1612 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1625 ((-950) (-1056) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1635 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1648 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1661 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1673 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1684 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))) (T -685)) +((-1684 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1673 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1661 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1648 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1635 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1625 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1612 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1600 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1589 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1578 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1566 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1554 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1541 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1530 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1518 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1507 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1498 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1490 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685))))) +(-10 -7 (-15 -1490 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1498 ((-950) (-517) (-623 (-199)) (-199) (-517))) (-15 -1507 ((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1518 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1530 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -1541 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -1554 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1566 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1578 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1589 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1600 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1612 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1625 ((-950) (-1056) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1635 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1648 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1661 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1673 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1684 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)))) +((-1771 (((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517)) 63)) (-1760 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1749 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) 58)) (-1738 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517)) 51)) (-1727 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) 50)) (-1716 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1706 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) 42)) (-1695 (((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 38))) +(((-686) (-10 -7 (-15 -1695 ((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1706 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -1716 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -1727 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -1738 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1749 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1760 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1771 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))) (T -686)) +((-1771 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1760 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1749 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1738 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1727 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1716 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1706 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1695 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686))))) +(-10 -7 (-15 -1695 ((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1706 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -1716 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -1727 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -1738 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1749 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1760 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1771 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517)))) +((-3012 (((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 46)) (-3003 (((-950) (-1056) (-1056) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517)) 45)) (-2991 (((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 44)) (-1859 (((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 40)) (-1847 (((-950) (-1056) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517)) 39)) (-1834 (((-950) (-517) (-517) (-517) (-623 (-199)) (-517)) 36)) (-1821 (((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517)) 35)) (-1809 (((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517)) 34)) (-1795 (((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517)) 33)) (-1782 (((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517)) 32))) +(((-687) (-10 -7 (-15 -1782 ((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1795 ((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1809 ((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1821 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1834 ((-950) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1847 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1859 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2991 ((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3003 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3012 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -687)) +((-3012 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-3003 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-2991 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1859 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1847 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1834 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1821 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1809 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1795 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1782 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-687))))) +(-10 -7 (-15 -1782 ((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1795 ((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1809 ((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1821 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1834 ((-950) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1847 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1859 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2991 ((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3003 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3012 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)))) +((-3159 (((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 64)) (-3152 (((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 60)) (-3142 (((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358)) 56) (((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) 55)) (-3134 (((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 37)) (-3124 (((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517)) 33)) (-3114 (((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-3107 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-3094 (((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-3086 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-3076 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517)) 25)) (-3066 (((-950) (-517) (-517) (-623 (-199)) (-517)) 24)) (-3056 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-3045 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-3034 (((-950) (-623 (-199)) (-517) (-517) (-517) (-517)) 21)) (-3023 (((-950) (-517) (-517) (-623 (-199)) (-517)) 20))) +(((-688) (-10 -7 (-15 -3023 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3034 ((-950) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3045 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3056 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3066 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3076 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3086 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3094 ((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3107 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3114 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3124 ((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3134 ((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3152 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3159 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -688)) +((-3159 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3152 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3142 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3142 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3134 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3124 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3114 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3107 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3094 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3086 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3076 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3066 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3056 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3045 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3034 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3023 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688))))) +(-10 -7 (-15 -3023 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3034 ((-950) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3045 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3056 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3066 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3076 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3086 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3094 ((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3107 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3114 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3124 ((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3134 ((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3152 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3159 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)))) +((-3255 (((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) 60)) (-3246 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517)) 56)) (-3238 (((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) 55)) (-3230 (((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 36)) (-3221 (((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-3211 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 31)) (-3200 (((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199))) 30)) (-3193 (((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517)) 26)) (-3184 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 25)) (-3177 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 24)) (-3168 (((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 20))) +(((-689) (-10 -7 (-15 -3168 ((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3177 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3184 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3193 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -3200 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3211 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3221 ((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3230 ((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3238 ((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -3246 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3255 ((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))) (T -689)) +((-3255 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3246 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3238 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3230 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3221 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3211 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3200 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3193 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3184 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3177 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3168 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-689))))) +(-10 -7 (-15 -3168 ((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3177 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3184 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3193 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -3200 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3211 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3221 ((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3230 ((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3238 ((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -3246 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3255 ((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))))) +((-3293 (((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199))) 28)) (-3284 (((-950) (-1056) (-517) (-517) (-623 (-199))) 27)) (-3273 (((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199))) 26)) (-3264 (((-950) (-517) (-517) (-517) (-623 (-199))) 20))) +(((-690) (-10 -7 (-15 -3264 ((-950) (-517) (-517) (-517) (-623 (-199)))) (-15 -3273 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3284 ((-950) (-1056) (-517) (-517) (-623 (-199)))) (-15 -3293 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))) (T -690)) +((-3293 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))) (-3284 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))) (-3273 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-690)))) (-3264 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690))))) +(-10 -7 (-15 -3264 ((-950) (-517) (-517) (-517) (-623 (-199)))) (-15 -3273 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3284 ((-950) (-1056) (-517) (-517) (-623 (-199)))) (-15 -3293 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199))))) +((-1275 (((-950) (-199) (-199) (-199) (-199) (-517)) 62)) (-1265 (((-950) (-199) (-199) (-199) (-517)) 61)) (-1255 (((-950) (-199) (-199) (-199) (-517)) 60)) (-1244 (((-950) (-199) (-199) (-517)) 59)) (-1232 (((-950) (-199) (-517)) 58)) (-1223 (((-950) (-199) (-517)) 57)) (-1214 (((-950) (-199) (-517)) 56)) (-1202 (((-950) (-199) (-517)) 55)) (-1192 (((-950) (-199) (-517)) 54)) (-4158 (((-950) (-199) (-517)) 53)) (-4143 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 52)) (-4131 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 51)) (-4120 (((-950) (-199) (-517)) 50)) (-4109 (((-950) (-199) (-517)) 49)) (-4098 (((-950) (-199) (-517)) 48)) (-3549 (((-950) (-199) (-517)) 47)) (-3540 (((-950) (-517) (-199) (-153 (-199)) (-517) (-1056) (-517)) 46)) (-3530 (((-950) (-1056) (-153 (-199)) (-1056) (-517)) 45)) (-3516 (((-950) (-1056) (-153 (-199)) (-1056) (-517)) 44)) (-3505 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 43)) (-3493 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 42)) (-3480 (((-950) (-199) (-517)) 39)) (-3467 (((-950) (-199) (-517)) 38)) (-3453 (((-950) (-199) (-517)) 37)) (-3439 (((-950) (-199) (-517)) 36)) (-3426 (((-950) (-199) (-517)) 35)) (-3415 (((-950) (-199) (-517)) 34)) (-3405 (((-950) (-199) (-517)) 33)) (-3396 (((-950) (-199) (-517)) 32)) (-3387 (((-950) (-199) (-517)) 31)) (-3377 (((-950) (-199) (-517)) 30)) (-3368 (((-950) (-199) (-199) (-199) (-517)) 29)) (-3358 (((-950) (-199) (-517)) 28)) (-3345 (((-950) (-199) (-517)) 27)) (-3333 (((-950) (-199) (-517)) 26)) (-3323 (((-950) (-199) (-517)) 25)) (-3314 (((-950) (-199) (-517)) 24)) (-3302 (((-950) (-153 (-199)) (-517)) 20))) +(((-691) (-10 -7 (-15 -3302 ((-950) (-153 (-199)) (-517))) (-15 -3314 ((-950) (-199) (-517))) (-15 -3323 ((-950) (-199) (-517))) (-15 -3333 ((-950) (-199) (-517))) (-15 -3345 ((-950) (-199) (-517))) (-15 -3358 ((-950) (-199) (-517))) (-15 -3368 ((-950) (-199) (-199) (-199) (-517))) (-15 -3377 ((-950) (-199) (-517))) (-15 -3387 ((-950) (-199) (-517))) (-15 -3396 ((-950) (-199) (-517))) (-15 -3405 ((-950) (-199) (-517))) (-15 -3415 ((-950) (-199) (-517))) (-15 -3426 ((-950) (-199) (-517))) (-15 -3439 ((-950) (-199) (-517))) (-15 -3453 ((-950) (-199) (-517))) (-15 -3467 ((-950) (-199) (-517))) (-15 -3480 ((-950) (-199) (-517))) (-15 -3493 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3505 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3516 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3530 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3540 ((-950) (-517) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3549 ((-950) (-199) (-517))) (-15 -4098 ((-950) (-199) (-517))) (-15 -4109 ((-950) (-199) (-517))) (-15 -4120 ((-950) (-199) (-517))) (-15 -4131 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4143 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4158 ((-950) (-199) (-517))) (-15 -1192 ((-950) (-199) (-517))) (-15 -1202 ((-950) (-199) (-517))) (-15 -1214 ((-950) (-199) (-517))) (-15 -1223 ((-950) (-199) (-517))) (-15 -1232 ((-950) (-199) (-517))) (-15 -1244 ((-950) (-199) (-199) (-517))) (-15 -1255 ((-950) (-199) (-199) (-199) (-517))) (-15 -1265 ((-950) (-199) (-199) (-199) (-517))) (-15 -1275 ((-950) (-199) (-199) (-199) (-199) (-517))))) (T -691)) +((-1275 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1265 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1255 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1244 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1223 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1214 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1202 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1192 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4143 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4131 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4109 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3540 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1056)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3530 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3516 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3505 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3493 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3453 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3377 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3368 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3345 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3314 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(-10 -7 (-15 -3302 ((-950) (-153 (-199)) (-517))) (-15 -3314 ((-950) (-199) (-517))) (-15 -3323 ((-950) (-199) (-517))) (-15 -3333 ((-950) (-199) (-517))) (-15 -3345 ((-950) (-199) (-517))) (-15 -3358 ((-950) (-199) (-517))) (-15 -3368 ((-950) (-199) (-199) (-199) (-517))) (-15 -3377 ((-950) (-199) (-517))) (-15 -3387 ((-950) (-199) (-517))) (-15 -3396 ((-950) (-199) (-517))) (-15 -3405 ((-950) (-199) (-517))) (-15 -3415 ((-950) (-199) (-517))) (-15 -3426 ((-950) (-199) (-517))) (-15 -3439 ((-950) (-199) (-517))) (-15 -3453 ((-950) (-199) (-517))) (-15 -3467 ((-950) (-199) (-517))) (-15 -3480 ((-950) (-199) (-517))) (-15 -3493 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3505 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3516 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3530 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3540 ((-950) (-517) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3549 ((-950) (-199) (-517))) (-15 -4098 ((-950) (-199) (-517))) (-15 -4109 ((-950) (-199) (-517))) (-15 -4120 ((-950) (-199) (-517))) (-15 -4131 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4143 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4158 ((-950) (-199) (-517))) (-15 -1192 ((-950) (-199) (-517))) (-15 -1202 ((-950) (-199) (-517))) (-15 -1214 ((-950) (-199) (-517))) (-15 -1223 ((-950) (-199) (-517))) (-15 -1232 ((-950) (-199) (-517))) (-15 -1244 ((-950) (-199) (-199) (-517))) (-15 -1255 ((-950) (-199) (-199) (-199) (-517))) (-15 -1265 ((-950) (-199) (-199) (-199) (-517))) (-15 -1275 ((-950) (-199) (-199) (-199) (-199) (-517)))) +((-3859 (((-1158)) 18)) (-4128 (((-1056)) 22)) (-1372 (((-1056)) 21)) (-2108 (((-1007) (-1073) (-623 (-517))) 35) (((-1007) (-1073) (-623 (-199))) 31)) (-3570 (((-107)) 16)) (-1494 (((-1056) (-1056)) 25))) +(((-692) (-10 -7 (-15 -1372 ((-1056))) (-15 -4128 ((-1056))) (-15 -1494 ((-1056) (-1056))) (-15 -2108 ((-1007) (-1073) (-623 (-199)))) (-15 -2108 ((-1007) (-1073) (-623 (-517)))) (-15 -3570 ((-107))) (-15 -3859 ((-1158))))) (T -692)) +((-3859 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-692)))) (-3570 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-517))) (-5 *2 (-1007)) (-5 *1 (-692)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-199))) (-5 *2 (-1007)) (-5 *1 (-692)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))) (-4128 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))) (-1372 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692))))) +(-10 -7 (-15 -1372 ((-1056))) (-15 -4128 ((-1056))) (-15 -1494 ((-1056) (-1056))) (-15 -2108 ((-1007) (-1073) (-623 (-199)))) (-15 -2108 ((-1007) (-1073) (-623 (-517)))) (-15 -3570 ((-107))) (-15 -3859 ((-1158)))) +((-3394 (($ $ $) 10)) (-3917 (($ $ $ $) 9)) (-1956 (($ $ $) 12))) +(((-693 |#1|) (-10 -8 (-15 -1956 (|#1| |#1| |#1|)) (-15 -3394 (|#1| |#1| |#1|)) (-15 -3917 (|#1| |#1| |#1| |#1|))) (-694)) (T -693)) +NIL +(-10 -8 (-15 -1956 (|#1| |#1| |#1|)) (-15 -3394 (|#1| |#1| |#1|)) (-15 -3917 (|#1| |#1| |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3380 (($ $ (-843)) 28)) (-2572 (($ $ (-843)) 29)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3394 (($ $ $) 25)) (-2256 (((-787) $) 11)) (-3917 (($ $ $ $) 26)) (-1956 (($ $ $) 24)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27))) +(((-694) (-1184)) (T -694)) +((-3917 (*1 *1 *1 *1 *1) (-4 *1 (-694))) (-3394 (*1 *1 *1 *1) (-4 *1 (-694))) (-1956 (*1 *1 *1 *1) (-4 *1 (-694)))) +(-13 (-21) (-653) (-10 -8 (-15 -3917 ($ $ $ $)) (-15 -3394 ($ $ $)) (-15 -1956 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-1003) . T)) +((-2256 (((-787) $) NIL) (($ (-517)) 10))) +(((-695 |#1|) (-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-696)) (T -695)) +NIL +(-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-2158 (((-3 $ "failed") $) 40)) (-3380 (($ $ (-843)) 28) (($ $ (-703)) 35)) (-3621 (((-3 $ "failed") $) 38)) (-3848 (((-107) $) 34)) (-1680 (((-3 $ "failed") $) 39)) (-2572 (($ $ (-843)) 29) (($ $ (-703)) 36)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3394 (($ $ $) 25)) (-2256 (((-787) $) 11) (($ (-517)) 31)) (-2961 (((-703)) 32)) (-3917 (($ $ $ $) 26)) (-1956 (($ $ $) 24)) (-2396 (($) 18 T CONST)) (-2409 (($) 33 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30) (($ $ (-703)) 37)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27))) +(((-696) (-1184)) (T -696)) +((-2961 (*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696))))) +(-13 (-694) (-655) (-10 -8 (-15 -2961 ((-703))) (-15 -2256 ($ (-517))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-655) . T) ((-694) . T) ((-1003) . T)) +((-2536 (((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|) 27)) (-4153 (((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|) 19)) (-3669 (((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1073)) 16) (((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517))))) 15))) +(((-697 |#1|) (-10 -7 (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1073))) (-15 -4153 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -2536 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|))) (-13 (-333) (-777))) (T -697)) +((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1073)) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777)))))) +(-10 -7 (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1073))) (-15 -4153 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -2536 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|))) +((-2005 (((-157 (-517)) |#1|) 25))) +(((-698 |#1|) (-10 -7 (-15 -2005 ((-157 (-517)) |#1|))) (-374)) (T -698)) +((-2005 (*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374))))) +(-10 -7 (-15 -2005 ((-157 (-517)) |#1|))) +((-4102 ((|#1| |#1| |#1|) 24)) (-2985 ((|#1| |#1| |#1|) 23)) (-2218 ((|#1| |#1| |#1|) 31)) (-1423 ((|#1| |#1| |#1|) 27)) (-1971 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2962 (((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|) 22))) +(((-699 |#1| |#2|) (-10 -7 (-15 -2962 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -2218 (|#1| |#1| |#1|))) (-642 |#2|) (-333)) (T -699)) +((-2218 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1423 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1971 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-4102 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-2985 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-2962 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4))))) +(-10 -7 (-15 -2962 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -2218 (|#1| |#1| |#1|))) +((-4140 (((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)) 58)) (-2216 (((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) 56)) (-3010 (((-517)) 68))) +(((-700 |#1| |#2|) (-10 -7 (-15 -3010 ((-517))) (-15 -2216 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -4140 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)))) (-1130 (-517)) (-379 (-517) |#1|)) (T -700)) +((-4140 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2216 (*1 *2) (-12 (-4 *3 (-1130 (-517))) (-5 *2 (-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) (-3010 (*1 *2) (-12 (-4 *3 (-1130 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3))))) +(-10 -7 (-15 -3010 ((-517))) (-15 -2216 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -4140 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)))) +((-2750 (((-107) $ $) NIL)) (-3189 (((-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $) 15)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 14) (($ (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) 12)) (-1547 (((-107) $ $) NIL))) +(((-701) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))) (T -701)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701))))) +(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $)))) +((-2032 (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))) 14) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073))) 13)) (-1674 (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))) 16) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073))) 15))) +(((-702 |#1|) (-10 -7 (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))))) (-509)) (T -702)) +((-1674 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5))))) +(-10 -7 (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1640 (($ $ $) 6)) (-4038 (((-3 $ "failed") $ $) 9)) (-1363 (($ $ (-517)) 7)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($ $) NIL)) (-2497 (($ $ $) NIL)) (-3848 (((-107) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1401 (($ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2256 (((-787) $) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL) (($ $ $) NIL))) +(((-703) (-13 (-725) (-659) (-10 -8 (-15 -2497 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -1401 ($ $ $)) (-15 -1306 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2476 ((-3 $ "failed") $ $)) (-15 -1363 ($ $ (-517))) (-15 -3209 ($ $)) (-6 (-4182 "*"))))) (T -703)) +((-2497 (*1 *1 *1 *1) (-5 *1 (-703))) (-2518 (*1 *1 *1 *1) (-5 *1 (-703))) (-1401 (*1 *1 *1 *1) (-5 *1 (-703))) (-1306 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 (-703)) (|:| -3060 (-703)))) (-5 *1 (-703)))) (-2476 (*1 *1 *1 *1) (|partial| -5 *1 (-703))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))) (-3209 (*1 *1 *1) (-5 *1 (-703)))) +(-13 (-725) (-659) (-10 -8 (-15 -2497 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -1401 ($ $ $)) (-15 -1306 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2476 ((-3 $ "failed") $ $)) (-15 -1363 ($ $ (-517))) (-15 -3209 ($ $)) (-6 (-4182 "*")))) +((-1674 (((-3 |#2| "failed") |#2| |#2| (-109) (-1073)) 35))) +(((-704 |#1| |#2|) (-10 -7 (-15 -1674 ((-3 |#2| "failed") |#2| |#2| (-109) (-1073)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880))) (T -704)) +((-1674 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1094) (-880)))))) +(-10 -7 (-15 -1674 ((-3 |#2| "failed") |#2| |#2| (-109) (-1073)))) +((-2256 (((-706) |#1|) 8))) +(((-705 |#1|) (-10 -7 (-15 -2256 ((-706) |#1|))) (-1108)) (T -705)) +((-2256 (*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1108))))) +(-10 -7 (-15 -2256 ((-706) |#1|))) +((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 7)) (-1547 (((-107) $ $) 9))) +(((-706) (-1003)) (T -706)) +NIL +(-1003) +((-1506 ((|#2| |#4|) 35))) +(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1506 (|#2| |#4|))) (-421) (-1130 |#1|) (-657 |#1| |#2|) (-1130 |#3|)) (T -707)) +((-1506 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1130 *5))))) +(-10 -7 (-15 -1506 (|#2| |#4|))) +((-3621 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-4032 (((-1158) (-1056) (-1056) |#4| |#5|) 33)) (-3925 ((|#4| |#4| |#5|) 72)) (-2485 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|) 76)) (-2621 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 15))) +(((-708 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3621 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3925 (|#4| |#4| |#5|)) (-15 -2485 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -4032 ((-1158) (-1056) (-1056) |#4| |#5|)) (-15 -2621 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -708)) +((-2621 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-4032 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1056)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-975 *6 *7 *8)) (-5 *2 (-1158)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-980 *6 *7 *8 *4)))) (-2485 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3925 (*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-975 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-980 *4 *5 *6 *2)))) (-3621 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(-10 -7 (-15 -3621 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3925 (|#4| |#4| |#5|)) (-15 -2485 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -4032 ((-1158) (-1056) (-1056) |#4| |#5|)) (-15 -2621 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|))) +((-1772 (((-3 (-1069 (-1069 |#1|)) "failed") |#4|) 43)) (-2786 (((-583 |#4|) |#4|) 15)) (-4103 ((|#4| |#4|) 11))) +(((-709 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2786 ((-583 |#4|) |#4|)) (-15 -1772 ((-3 (-1069 (-1069 |#1|)) "failed") |#4|)) (-15 -4103 (|#4| |#4|))) (-319) (-299 |#1|) (-1130 |#2|) (-1130 |#3|) (-843)) (T -709)) +((-4103 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1130 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1130 *5)) (-14 *6 (-843)))) (-1772 (*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843)))) (-2786 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843))))) +(-10 -7 (-15 -2786 ((-583 |#4|) |#4|)) (-15 -1772 ((-3 (-1069 (-1069 |#1|)) "failed") |#4|)) (-15 -4103 (|#4| |#4|))) +((-4041 (((-2 (|:| |deter| (-583 (-1069 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1069 |#5|) (-583 |#1|) (-583 |#5|)) 51)) (-3944 (((-583 (-703)) |#1|) 12))) +(((-710 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4041 ((-2 (|:| |deter| (-583 (-1069 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1069 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -3944 ((-583 (-703)) |#1|))) (-1130 |#4|) (-725) (-779) (-278) (-871 |#4| |#2| |#3|)) (T -710)) +((-3944 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *6)) (-4 *7 (-871 *6 *4 *5)))) (-4041 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1130 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-871 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1069 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1069 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10))))) +(-10 -7 (-15 -4041 ((-2 (|:| |deter| (-583 (-1069 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1069 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -3944 ((-583 (-703)) |#1|))) +((-2155 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|) 27)) (-3609 (((-583 |#1|) (-623 (-377 (-517))) |#1|) 19)) (-3669 (((-874 (-377 (-517))) (-623 (-377 (-517))) (-1073)) 16) (((-874 (-377 (-517))) (-623 (-377 (-517)))) 15))) +(((-711 |#1|) (-10 -7 (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))) (-1073))) (-15 -3609 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2155 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|))) (-13 (-333) (-777))) (T -711)) +((-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1073)) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777)))))) +(-10 -7 (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))) (-1073))) (-15 -3609 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2155 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 34)) (-1364 (((-583 |#2|) $) NIL)) (-2352 (((-1069 $) $ |#2|) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 |#2|)) NIL)) (-2779 (($ $) 28)) (-2421 (((-107) $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) 92 (|has| |#1| (-509)))) (-2788 (((-583 $) $ $) 105 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))))) (((-3 $ "failed") (-874 (-517))) NIL (-3807 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073)))))) (((-3 $ "failed") (-874 |#1|)) NIL (-3807 (-12 (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-909 (-517))))))) (((-3 (-1026 |#1| |#2|) "failed") $) 18)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#2| $) NIL) (($ (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))))) (($ (-874 (-517))) NIL (-3807 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073)))))) (($ (-874 |#1|)) NIL (-3807 (-12 (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-909 (-517))))))) (((-1026 |#1| |#2|) $) NIL)) (-3388 (($ $ $ |#2|) NIL (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-509)))) (-1212 (($ $) NIL) (($ $ |#2|) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3283 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1869 (((-107) $) NIL)) (-1874 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 69)) (-4083 (($ $) 118 (|has| |#1| (-421)))) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-2557 (($ $) NIL (|has| |#1| (-509)))) (-1454 (($ $) NIL (|has| |#1| (-509)))) (-1440 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-2489 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-1436 (($ $ |#1| (-489 |#2|) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1497 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3239 (($ $ $ $ $) 89 (|has| |#1| (-509)))) (-1976 ((|#2| $) 19)) (-1350 (($ (-1069 |#1|) |#2|) NIL) (($ (-1069 $) |#2|) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1439 (($ $ $) 60)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#2|) NIL)) (-4156 (((-107) $) NIL)) (-2349 (((-489 |#2|) $) NIL) (((-703) $ |#2|) NIL) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2401 (((-703) $) 20)) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1409 (((-3 |#2| "failed") $) NIL)) (-3074 (($ $) NIL (|has| |#1| (-421)))) (-1923 (($ $) NIL (|has| |#1| (-421)))) (-1726 (((-583 $) $) NIL)) (-2070 (($ $) 37)) (-3622 (($ $) NIL (|has| |#1| (-421)))) (-2235 (((-583 $) $) 41)) (-3839 (($ $) 39)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $) 81)) (-2669 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 66) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |#2|) NIL)) (-2915 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $) NIL) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |#2|) NIL)) (-3692 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-2928 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3985 (((-1056) $) NIL)) (-1855 (($ $ $) 107 (|has| |#1| (-509)))) (-1628 (((-583 $) $) 30)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-703))) "failed") $) NIL)) (-3852 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3522 (($ $ $) NIL)) (-2836 (($ $) 21)) (-3411 (((-107) $ $) NIL)) (-1959 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3183 (($ $ $) NIL)) (-3059 (($ $) 23)) (-3206 (((-1021) $) NIL)) (-3704 (((-2 (|:| -1401 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-509)))) (-3224 (((-2 (|:| -1401 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-509)))) (-4127 (((-107) $) 52)) (-4141 ((|#1| $) 55)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 ((|#1| |#1| $) 115 (|has| |#1| (-421))) (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-1478 (((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-509)))) (-3716 (($ $ |#1|) 111 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3068 (($ $ |#1|) 110 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-583 |#2|) (-583 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-583 |#2|) (-583 $)) NIL)) (-3010 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-3127 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3688 (((-489 |#2|) $) NIL) (((-703) $ |#2|) 43) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-2451 (($ $) NIL)) (-3443 (($ $) 33)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493))))) (($ (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))))) (($ (-874 (-517))) NIL (-3807 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073)))))) (($ (-874 |#1|)) NIL (|has| |#2| (-558 (-1073)))) (((-1056) $) NIL (-12 (|has| |#1| (-952 (-517))) (|has| |#2| (-558 (-1073))))) (((-874 |#1|) $) NIL (|has| |#2| (-558 (-1073))))) (-3266 ((|#1| $) 114 (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-874 |#1|) $) NIL (|has| |#2| (-558 (-1073)))) (((-1026 |#1| |#2|) $) 15) (($ (-1026 |#1| |#2|)) 16) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) 44) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 13 T CONST)) (-2791 (((-3 (-107) "failed") $ $) NIL)) (-2409 (($) 35 T CONST)) (-3872 (($ $ $ $ (-703)) 87 (|has| |#1| (-509)))) (-3051 (($ $ $ (-703)) 86 (|has| |#1| (-509)))) (-2731 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 54)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 63)) (-1642 (($ $ $) 73)) (** (($ $ (-843)) NIL) (($ $ (-703)) 61)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-712 |#1| |#2|) (-13 (-975 |#1| (-489 |#2|) |#2|) (-557 (-1026 |#1| |#2|)) (-952 (-1026 |#1| |#2|))) (-961) (-779)) (T -712)) +NIL +(-13 (-975 |#1| (-489 |#2|) |#2|) (-557 (-1026 |#1| |#2|)) (-952 (-1026 |#1| |#2|))) +((-1893 (((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)) 13))) +(((-713 |#1| |#2|) (-10 -7 (-15 -1893 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)))) (-961) (-961)) (T -713)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6))))) +(-10 -7 (-15 -1893 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 12)) (-2490 (((-1153 |#1|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#1|)) NIL)) (-2352 (((-1069 $) $ (-989)) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2674 (((-583 $) $ $) 39 (|has| |#1| (-509)))) (-3081 (($ $ $) 35 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2241 (($ $ (-703)) NIL)) (-2882 (($ $ (-703)) NIL)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL) (((-3 (-1069 |#1|) "failed") $) 10)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL) (((-1069 |#1|) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) 43 (|has| |#1| (-156)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-2704 (($ $ $) NIL)) (-4080 (($ $ $) 71 (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) 70 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-703) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) NIL) (($ (-1069 $) (-989)) NIL)) (-3430 (($ $ (-703)) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1439 (($ $ $) 20)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1548 (((-1069 |#1|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1349 (-703))) $ $) 26)) (-2641 (($ $ $) 29)) (-3037 (($ $ $) 32)) (-2669 (((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 31)) (-3985 (((-1056) $) NIL)) (-1855 (($ $ $) 41 (|has| |#1| (-509)))) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-3704 (((-2 (|:| -1401 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-509)))) (-3224 (((-2 (|:| -1401 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-509)))) (-3087 (((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-509)))) (-2610 (((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-509)))) (-4127 (((-107) $) 13)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1953 (($ $ (-703) |#1| $) 19)) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-1478 (((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-509)))) (-1332 (((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-509)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3688 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-989)) NIL) (((-1069 |#1|) $) 7) (($ (-1069 |#1|)) 8) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 24 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) 28) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-714 |#1|) (-13 (-1130 |#1|) (-557 (-1069 |#1|)) (-952 (-1069 |#1|)) (-10 -8 (-15 -1953 ($ $ (-703) |#1| $)) (-15 -1439 ($ $ $)) (-15 -3634 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1349 (-703))) $ $)) (-15 -2641 ($ $ $)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -3037 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2674 ((-583 $) $ $)) (-15 -1855 ($ $ $)) (-15 -1478 ((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3224 ((-2 (|:| -1401 $) (|:| |coef1| $)) $ $)) (-15 -3704 ((-2 (|:| -1401 $) (|:| |coef2| $)) $ $)) (-15 -1332 ((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2610 ((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $)) (-15 -3087 ((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) (-961)) (T -714)) +((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-1439 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-3634 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1349 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-2641 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-2669 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1931 *3) (|:| |gap| (-703)) (|:| -3425 (-714 *3)) (|:| -3060 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-3037 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-2674 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-1855 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-961)))) (-1478 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3224 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3704 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-1332 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-2610 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3087 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961))))) +(-13 (-1130 |#1|) (-557 (-1069 |#1|)) (-952 (-1069 |#1|)) (-10 -8 (-15 -1953 ($ $ (-703) |#1| $)) (-15 -1439 ($ $ $)) (-15 -3634 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1349 (-703))) $ $)) (-15 -2641 ($ $ $)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -3037 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2674 ((-583 $) $ $)) (-15 -1855 ($ $ $)) (-15 -1478 ((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3224 ((-2 (|:| -1401 $) (|:| |coef1| $)) $ $)) (-15 -3704 ((-2 (|:| -1401 $) (|:| |coef2| $)) $ $)) (-15 -1332 ((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2610 ((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $)) (-15 -3087 ((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) +((-2151 ((|#1| (-703) |#1|) 32 (|has| |#1| (-37 (-377 (-517)))))) (-2765 ((|#1| (-703) |#1|) 22)) (-2969 ((|#1| (-703) |#1|) 34 (|has| |#1| (-37 (-377 (-517))))))) +(((-715 |#1|) (-10 -7 (-15 -2765 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2969 (|#1| (-703) |#1|)) (-15 -2151 (|#1| (-703) |#1|))) |noBranch|)) (-156)) (T -715)) +((-2151 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2969 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2765 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156))))) +(-10 -7 (-15 -2765 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2969 (|#1| (-703) |#1|)) (-15 -2151 (|#1| (-703) |#1|))) |noBranch|)) +((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180))))) +(((-716 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -716)) +NIL +(-13 (-980 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T)) +((-3806 (((-3 (-349) "failed") (-286 |#1|) (-843)) 62 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-286 |#1|)) 54 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-377 (-874 |#1|)) (-843)) 41 (|has| |#1| (-509))) (((-3 (-349) "failed") (-377 (-874 |#1|))) 40 (|has| |#1| (-509))) (((-3 (-349) "failed") (-874 |#1|) (-843)) 31 (|has| |#1| (-961))) (((-3 (-349) "failed") (-874 |#1|)) 30 (|has| |#1| (-961)))) (-3690 (((-349) (-286 |#1|) (-843)) 99 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-286 |#1|)) 94 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-377 (-874 |#1|)) (-843)) 91 (|has| |#1| (-509))) (((-349) (-377 (-874 |#1|))) 90 (|has| |#1| (-509))) (((-349) (-874 |#1|) (-843)) 86 (|has| |#1| (-961))) (((-349) (-874 |#1|)) 85 (|has| |#1| (-961))) (((-349) |#1| (-843)) 76) (((-349) |#1|) 22)) (-4116 (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)) 71 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|))) 70 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|) (-843)) 63 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|)) 61 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843)) 46 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|)))) 45 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843)) 39 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 |#1|))) 38 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)) 28 (|has| |#1| (-961))) (((-3 (-153 (-349)) "failed") (-874 |#1|)) 26 (|has| |#1| (-961))) (((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)) 17 (|has| |#1| (-156))) (((-3 (-153 (-349)) "failed") (-874 (-153 |#1|))) 14 (|has| |#1| (-156)))) (-2319 (((-153 (-349)) (-286 (-153 |#1|)) (-843)) 102 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 (-153 |#1|))) 101 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|) (-843)) 100 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|)) 98 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843)) 93 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 (-153 |#1|)))) 92 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 |#1|)) (-843)) 89 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 |#1|))) 88 (|has| |#1| (-509))) (((-153 (-349)) (-874 |#1|) (-843)) 84 (|has| |#1| (-961))) (((-153 (-349)) (-874 |#1|)) 83 (|has| |#1| (-961))) (((-153 (-349)) (-874 (-153 |#1|)) (-843)) 78 (|has| |#1| (-156))) (((-153 (-349)) (-874 (-153 |#1|))) 77 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|) (-843)) 80 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|)) 79 (|has| |#1| (-156))) (((-153 (-349)) |#1| (-843)) 27) (((-153 (-349)) |#1|) 25))) +(((-717 |#1|) (-10 -7 (-15 -3690 ((-349) |#1|)) (-15 -3690 ((-349) |#1| (-843))) (-15 -2319 ((-153 (-349)) |#1|)) (-15 -2319 ((-153 (-349)) |#1| (-843))) (IF (|has| |#1| (-156)) (PROGN (-15 -2319 ((-153 (-349)) (-153 |#1|))) (-15 -2319 ((-153 (-349)) (-153 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3690 ((-349) (-874 |#1|))) (-15 -3690 ((-349) (-874 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 |#1|))) (-15 -2319 ((-153 (-349)) (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3690 ((-349) (-377 (-874 |#1|)))) (-15 -3690 ((-349) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3690 ((-349) (-286 |#1|))) (-15 -3690 ((-349) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 |#1|))) (-15 -2319 ((-153 (-349)) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-874 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-874 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)))) (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|)) (-558 (-349))) (T -717)) +((-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3806 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3806 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3806 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3806 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3806 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3806 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-2319 (*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-3690 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) (-3690 (*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2))))) +(-10 -7 (-15 -3690 ((-349) |#1|)) (-15 -3690 ((-349) |#1| (-843))) (-15 -2319 ((-153 (-349)) |#1|)) (-15 -2319 ((-153 (-349)) |#1| (-843))) (IF (|has| |#1| (-156)) (PROGN (-15 -2319 ((-153 (-349)) (-153 |#1|))) (-15 -2319 ((-153 (-349)) (-153 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3690 ((-349) (-874 |#1|))) (-15 -3690 ((-349) (-874 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 |#1|))) (-15 -2319 ((-153 (-349)) (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3690 ((-349) (-377 (-874 |#1|)))) (-15 -3690 ((-349) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3690 ((-349) (-286 |#1|))) (-15 -3690 ((-349) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 |#1|))) (-15 -2319 ((-153 (-349)) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-874 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-874 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)))) (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|)) +((-2084 (((-843) (-1056)) 63)) (-1885 (((-3 (-349) "failed") (-1056)) 32)) (-3321 (((-349) (-1056)) 30)) (-1712 (((-843) (-1056)) 53)) (-3835 (((-1056) (-843)) 54)) (-1774 (((-1056) (-843)) 52))) +(((-718) (-10 -7 (-15 -1774 ((-1056) (-843))) (-15 -1712 ((-843) (-1056))) (-15 -3835 ((-1056) (-843))) (-15 -2084 ((-843) (-1056))) (-15 -3321 ((-349) (-1056))) (-15 -1885 ((-3 (-349) "failed") (-1056))))) (T -718)) +((-1885 (*1 *2 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718)))) (-3835 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718))))) +(-10 -7 (-15 -1774 ((-1056) (-843))) (-15 -1712 ((-843) (-1056))) (-15 -3835 ((-1056) (-843))) (-15 -2084 ((-843) (-1056))) (-15 -3321 ((-349) (-1056))) (-15 -1885 ((-3 (-349) "failed") (-1056)))) +((-2750 (((-107) $ $) 7)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 15) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 13)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 16) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6))) +(((-719) (-1184)) (T -719)) +((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) (-2118 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) (-2118 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) +(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2118 ((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2118 ((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950))))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2099 (((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349))) 44) (((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 43)) (-2579 (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 50)) (-3623 (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 41)) (-2574 (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349))) 52) (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 51))) +(((-720) (-10 -7 (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -3623 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -2579 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))))) (T -720)) +((-2579 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2099 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2099 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-3623 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2574 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2574 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720))))) +(-10 -7 (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -3623 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -2579 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))))) +((-2740 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 53)) (-2688 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 30)) (-2091 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 52)) (-2314 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 28)) (-1904 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 51)) (-1322 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 18)) (-3946 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 31)) (-1984 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 29)) (-3203 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 27))) +(((-721) (-10 -7 (-15 -3203 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1984 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3946 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1322 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2314 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2688 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1904 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2091 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2740 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))) (T -721)) +((-2740 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2091 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1904 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2688 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2314 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1322 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3946 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1984 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3203 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517))))) +(-10 -7 (-15 -3203 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1984 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3946 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1322 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2314 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2688 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1904 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2091 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2740 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)))) +((-2018 (((-1104 |#1|) |#1| (-199) (-517)) 45))) +(((-722 |#1|) (-10 -7 (-15 -2018 ((-1104 |#1|) |#1| (-199) (-517)))) (-891)) (T -722)) +((-2018 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1104 *3)) (-5 *1 (-722 *3)) (-4 *3 (-891))))) +(-10 -7 (-15 -2018 ((-1104 |#1|) |#1| (-199) (-517)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1654 (($ $ $) 28) (($ $) 27)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21) (($ (-517) $) 29))) +(((-723) (-1184)) (T -723)) NIL (-13 (-727) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-777) . T) ((-1001) . T)) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-2540 (($) 23 T CONST)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 22 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 25) (($ (-839) $) 21))) -(((-722) (-1180)) (T -722)) -NIL -(-13 (-724) (-23)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-555 (-786)) . T) ((-724) . T) ((-777) . T) ((-1001) . T)) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-3405 (($ $ $) 27)) (-3177 (((-3 $ "failed") $ $) 26)) (-2540 (($) 23 T CONST)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 22 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 25) (($ (-839) $) 21))) -(((-723) (-1180)) (T -723)) -((-3405 (*1 *1 *1 *1) (-4 *1 (-723)))) -(-13 (-727) (-10 -8 (-15 -3405 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-777) . T) ((-1001) . T)) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-2540 (($) 23 T CONST)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 22 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 25) (($ (-839) $) 21))) -(((-724) (-1180)) (T -724)) -NIL -(-13 (-777) (-23)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-555 (-786)) . T) ((-777) . T) ((-1001) . T)) -((-3292 (((-107) $) 41)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL) ((|#2| $) 42)) (-2870 (((-3 (-375 (-501)) "failed") $) 78)) (-1696 (((-107) $) 72)) (-3518 (((-375 (-501)) $) 76)) (-2626 ((|#2| $) 26)) (-1212 (($ (-1 |#2| |#2|) $) 23)) (-3833 (($ $) 61)) (-1248 (((-490) $) 67)) (-3097 (($ $) 21)) (-3691 (((-786) $) 56) (($ (-501)) 39) (($ |#2|) 37) (($ (-375 (-501))) NIL)) (-3965 (((-701)) 10)) (-1720 ((|#2| $) 71)) (-3751 (((-107) $ $) 29)) (-3762 (((-107) $ $) 69)) (-3797 (($ $) 31) (($ $ $) NIL)) (-3790 (($ $ $) 30)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-725 |#1| |#2|) (-10 -8 (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -1720 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -3097 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-726 |#2|) (-156)) (T -725)) -((-3965 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-725 *3 *4)) (-4 *3 (-726 *4))))) -(-10 -8 (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -1720 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -3097 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-3796 (((-701)) 53 (|has| |#1| (-336)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 94 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 92 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 90)) (-3490 (((-501) $) 95 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 93 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 89)) (-2174 (((-3 $ "failed") $) 34)) (-3749 ((|#1| $) 79)) (-2870 (((-3 (-375 (-501)) "failed") $) 66 (|has| |#1| (-500)))) (-1696 (((-107) $) 68 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 67 (|has| |#1| (-500)))) (-2890 (($) 56 (|has| |#1| (-336)))) (-1355 (((-107) $) 31)) (-2069 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2626 ((|#1| $) 71)) (-4111 (($ $ $) 62 (|has| |#1| (-777)))) (-1323 (($ $ $) 61 (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) 81)) (-3104 (((-839) $) 55 (|has| |#1| (-336)))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 65 (|has| |#1| (-331)))) (-3506 (($ (-839)) 54 (|has| |#1| (-336)))) (-1256 ((|#1| $) 76)) (-3488 ((|#1| $) 77)) (-1870 ((|#1| $) 78)) (-3596 ((|#1| $) 72)) (-2531 ((|#1| $) 73)) (-2757 ((|#1| $) 74)) (-2155 ((|#1| $) 75)) (-3708 (((-1018) $) 10)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) 87 (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) 85 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) 84 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 83 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) 82 (|has| |#1| (-476 (-1070) |#1|)))) (-2007 (($ $ |#1|) 88 (|has| |#1| (-256 |#1| |#1|)))) (-1248 (((-490) $) 63 (|has| |#1| (-556 (-490))))) (-3097 (($ $) 80)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37) (($ (-375 (-501))) 91 (|has| |#1| (-950 (-375 (-501)))))) (-1274 (((-3 $ "failed") $) 64 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-1720 ((|#1| $) 69 (|has| |#1| (-967)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 59 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 58 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 60 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 57 (|has| |#1| (-777)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-726 |#1|) (-1180) (-156)) (T -726)) -((-3097 (*1 *1 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-3488 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-1256 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-2069 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) (-2870 (*1 *2 *1) (|partial| -12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) (-3833 (*1 *1 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)) (-4 *2 (-331))))) -(-13 (-37 |t#1|) (-380 |t#1|) (-306 |t#1|) (-10 -8 (-15 -3097 ($ $)) (-15 -3749 (|t#1| $)) (-15 -1870 (|t#1| $)) (-15 -3488 (|t#1| $)) (-15 -1256 (|t#1| $)) (-15 -2155 (|t#1| $)) (-15 -2757 (|t#1| $)) (-15 -2531 (|t#1| $)) (-15 -3596 (|t#1| $)) (-15 -2626 (|t#1| $)) (-15 -2069 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-336)) (-6 (-336)) |noBranch|) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-967)) (-15 -1720 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-331)) (-15 -3833 ($ $)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 |#1| $) |has| |#1| (-256 |#1| |#1|)) ((-278 |#1|) |has| |#1| (-278 |#1|)) ((-336) |has| |#1| (-336)) ((-306 |#1|) . T) ((-380 |#1|) . T) ((-476 (-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((-476 |#1| |#1|) |has| |#1| (-278 |#1|)) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) . T) ((-657) . T) ((-777) |has| |#1| (-777)) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-3177 (((-3 $ "failed") $ $) 26)) (-2540 (($) 23 T CONST)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 22 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 25) (($ (-839) $) 21))) -(((-727) (-1180)) (T -727)) -NIL -(-13 (-722) (-123)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-722) . T) ((-724) . T) ((-777) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-910 |#1|) "failed") $) 35) (((-3 (-501) "failed") $) NIL (-1405 (|has| (-910 |#1|) (-950 (-501))) (|has| |#1| (-950 (-501))))) (((-3 (-375 (-501)) "failed") $) NIL (-1405 (|has| (-910 |#1|) (-950 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-3490 ((|#1| $) NIL) (((-910 |#1|) $) 33) (((-501) $) NIL (-1405 (|has| (-910 |#1|) (-950 (-501))) (|has| |#1| (-950 (-501))))) (((-375 (-501)) $) NIL (-1405 (|has| (-910 |#1|) (-950 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-2174 (((-3 $ "failed") $) NIL)) (-3749 ((|#1| $) 16)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-500)))) (-1696 (((-107) $) NIL (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) NIL (|has| |#1| (-500)))) (-2890 (($) NIL (|has| |#1| (-336)))) (-1355 (((-107) $) NIL)) (-2069 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-910 |#1|) (-910 |#1|)) 29)) (-2626 ((|#1| $) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-1256 ((|#1| $) 22)) (-3488 ((|#1| $) 20)) (-1870 ((|#1| $) 18)) (-3596 ((|#1| $) 26)) (-2531 ((|#1| $) 25)) (-2757 ((|#1| $) 24)) (-2155 ((|#1| $) 23)) (-3708 (((-1018) $) NIL)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-476 (-1070) |#1|)))) (-2007 (($ $ |#1|) NIL (|has| |#1| (-256 |#1| |#1|)))) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3097 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-910 |#1|)) 30) (($ (-375 (-501))) NIL (-1405 (|has| (-910 |#1|) (-950 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-1720 ((|#1| $) NIL (|has| |#1| (-967)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 8 T CONST)) (-1925 (($) 12 T CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-728 |#1|) (-13 (-726 |#1|) (-380 (-910 |#1|)) (-10 -8 (-15 -2069 ($ (-910 |#1|) (-910 |#1|))))) (-156)) (T -728)) -((-2069 (*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-156)) (-5 *1 (-728 *3))))) -(-13 (-726 |#1|) (-380 (-910 |#1|)) (-10 -8 (-15 -2069 ($ (-910 |#1|) (-910 |#1|))))) -((-1212 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|))) (-726 |#2|) (-156) (-726 |#4|) (-156)) (T -729)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-726 *6)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *4 (-726 *5))))) -(-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|))) -((-3736 (((-107) $ $) 7)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-2894 (((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 13)) (-3751 (((-107) $ $) 6))) -(((-730) (-1180)) (T -730)) -((-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-730)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) (-2894 (*1 *2 *3) (-12 (-4 *1 (-730)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-948))))) -(-13 (-1001) (-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2894 ((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-2177 (((-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#3| |#2| (-1070)) 19))) -(((-731 |#1| |#2| |#3|) (-10 -7 (-15 -2177 ((-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#3| |#2| (-1070)))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134)) (-13 (-29 |#1|) (-1090) (-879)) (-593 |#2|)) (T -731)) -((-2177 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-4 *4 (-13 (-29 *6) (-1090) (-879))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4119 (-578 *4)))) (-5 *1 (-731 *6 *4 *3)) (-4 *3 (-593 *4))))) -(-10 -7 (-15 -2177 ((-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#3| |#2| (-1070)))) -((-2778 (((-3 |#2| "failed") |#2| (-108) (-262 |#2|) (-578 |#2|)) 26) (((-3 |#2| "failed") (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") |#2| (-108) (-1070)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") (-262 |#2|) (-108) (-1070)) 17) (((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 |#2|) (-578 (-108)) (-1070)) 22) (((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 (-262 |#2|)) (-578 (-108)) (-1070)) 24) (((-3 (-578 (-1148 |#2|)) "failed") (-621 |#2|) (-1070)) 36) (((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-621 |#2|) (-1148 |#2|) (-1070)) 34))) -(((-732 |#1| |#2|) (-10 -7 (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-621 |#2|) (-1148 |#2|) (-1070))) (-15 -2778 ((-3 (-578 (-1148 |#2|)) "failed") (-621 |#2|) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 (-262 |#2|)) (-578 (-108)) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 |#2|) (-578 (-108)) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") (-262 |#2|) (-108) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") |#2| (-108) (-1070))) (-15 -2778 ((-3 |#2| "failed") (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|))) (-15 -2778 ((-3 |#2| "failed") |#2| (-108) (-262 |#2|) (-578 |#2|)))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134)) (-13 (-29 |#1|) (-1090) (-879))) (T -732)) -((-2778 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-262 *2)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-732 *6 *2)))) (-2778 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-262 *2)) (-5 *4 (-108)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-5 *1 (-732 *6 *2)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))))) (-2778 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4119 (-578 *3))) *3 "failed")) (-5 *1 (-732 *6 *3)) (-4 *3 (-13 (-29 *6) (-1090) (-879))))) (-2778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-108)) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4119 (-578 *7))) *7 "failed")) (-5 *1 (-732 *6 *7)))) (-2778 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-108))) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)))) (-2778 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 (-262 *7))) (-5 *4 (-578 (-108))) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)))) (-2778 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-621 *6)) (-5 *4 (-1070)) (-4 *6 (-13 (-29 *5) (-1090) (-879))) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-1148 *6))) (-5 *1 (-732 *5 *6)))) (-2778 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-621 *7)) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)) (-5 *4 (-1148 *7))))) -(-10 -7 (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-621 |#2|) (-1148 |#2|) (-1070))) (-15 -2778 ((-3 (-578 (-1148 |#2|)) "failed") (-621 |#2|) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 (-262 |#2|)) (-578 (-108)) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 |#2|) (-578 (-108)) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") (-262 |#2|) (-108) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") |#2| (-108) (-1070))) (-15 -2778 ((-3 |#2| "failed") (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|))) (-15 -2778 ((-3 |#2| "failed") |#2| (-108) (-262 |#2|) (-578 |#2|)))) -((-2869 (($) 9)) (-3954 (((-3 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-1500 (((-578 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 23)) (-4114 (($ (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))))) 20)) (-1399 (($ (-578 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))))) 18)) (-1902 (((-1154)) 12))) -(((-733) (-10 -8 (-15 -2869 ($)) (-15 -1902 ((-1154))) (-15 -1500 ((-578 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1399 ($ (-578 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))))))) (-15 -4114 ($ (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))))) (-15 -3954 ((-3 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -733)) -((-3954 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))) (-5 *1 (-733)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))))) (-5 *1 (-733)))) (-1399 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))))) (-5 *1 (-733)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-733)))) (-1902 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-733)))) (-2869 (*1 *1) (-5 *1 (-733)))) -(-10 -8 (-15 -2869 ($)) (-15 -1902 ((-1154))) (-15 -1500 ((-578 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1399 ($ (-578 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))))))) (-15 -4114 ($ (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))))) (-15 -3954 ((-3 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) -((-3089 ((|#2| |#2| (-1070)) 15)) (-1458 ((|#2| |#2| (-1070)) 47)) (-1331 (((-1 |#2| |#2|) (-1070)) 11))) -(((-734 |#1| |#2|) (-10 -7 (-15 -3089 (|#2| |#2| (-1070))) (-15 -1458 (|#2| |#2| (-1070))) (-15 -1331 ((-1 |#2| |#2|) (-1070)))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134)) (-13 (-29 |#1|) (-1090) (-879))) (T -734)) -((-1331 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-734 *4 *5)) (-4 *5 (-13 (-29 *4) (-1090) (-879))))) (-1458 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-734 *4 *2)) (-4 *2 (-13 (-29 *4) (-1090) (-879))))) (-3089 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-734 *4 *2)) (-4 *2 (-13 (-29 *4) (-1090) (-879)))))) -(-10 -7 (-15 -3089 (|#2| |#2| (-1070))) (-15 -1458 (|#2| |#2| (-1070))) (-15 -1331 ((-1 |#2| |#2|) (-1070)))) -((-2778 (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346) (-346)) 114) (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346)) 115) (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-578 (-346)) (-346)) 117) (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-346)) 118) (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-346)) 119) (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346))) 120) (((-948) (-738) (-970)) 105) (((-948) (-738)) 106)) (-3492 (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738) (-970)) 71) (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738)) 73))) -(((-735) (-10 -7 (-15 -2778 ((-948) (-738))) (-15 -2778 ((-948) (-738) (-970))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346) (-346))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738) (-970))))) (T -735)) -((-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-738)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-735)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-738)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-738)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-738)) (-5 *2 (-948)) (-5 *1 (-735))))) -(-10 -7 (-15 -2778 ((-948) (-738))) (-15 -2778 ((-948) (-738) (-970))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346) (-346))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738) (-970)))) -((-2927 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4119 (-578 |#4|))) (-590 |#4|) |#4|) 32))) -(((-736 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2927 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4119 (-578 |#4|))) (-590 |#4|) |#4|))) (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501)))) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -736)) -((-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-310 *5 *6 *7)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-736 *5 *6 *7 *4))))) -(-10 -7 (-15 -2927 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4119 (-578 |#4|))) (-590 |#4|) |#4|))) -((-3473 (((-2 (|:| -2499 |#3|) (|:| |rh| (-578 (-375 |#2|)))) |#4| (-578 (-375 |#2|))) 51)) (-2842 (((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4| |#2|) 59) (((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4|) 58) (((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3| |#2|) 20) (((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3|) 21)) (-1520 ((|#2| |#4| |#1|) 60) ((|#2| |#3| |#1|) 27)) (-2363 ((|#2| |#3| (-578 (-375 |#2|))) 93) (((-3 |#2| "failed") |#3| (-375 |#2|)) 90))) -(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2363 ((-3 |#2| "failed") |#3| (-375 |#2|))) (-15 -2363 (|#2| |#3| (-578 (-375 |#2|)))) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3| |#2|)) (-15 -1520 (|#2| |#3| |#1|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4| |#2|)) (-15 -1520 (|#2| |#4| |#1|)) (-15 -3473 ((-2 (|:| -2499 |#3|) (|:| |rh| (-578 (-375 |#2|)))) |#4| (-578 (-375 |#2|))))) (-13 (-331) (-134) (-950 (-375 (-501)))) (-1125 |#1|) (-593 |#2|) (-593 (-375 |#2|))) (T -737)) -((-3473 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-2 (|:| -2499 *7) (|:| |rh| (-578 (-375 *6))))) (-5 *1 (-737 *5 *6 *7 *3)) (-5 *4 (-578 (-375 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-375 *6))))) (-1520 (*1 *2 *3 *4) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-737 *4 *2 *5 *3)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-375 *2))))) (-2842 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *4 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -2896 *4) (|:| -4022 *4)))) (-5 *1 (-737 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-375 *4))))) (-2842 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| -2896 *5) (|:| -4022 *5)))) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-375 *5))))) (-1520 (*1 *2 *3 *4) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-737 *4 *2 *3 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-375 *2))))) (-2842 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *4 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -2896 *4) (|:| -4022 *4)))) (-5 *1 (-737 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-375 *4))))) (-2842 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| -2896 *5) (|:| -4022 *5)))) (-5 *1 (-737 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-375 *5))))) (-2363 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-375 *2))) (-4 *2 (-1125 *5)) (-5 *1 (-737 *5 *2 *3 *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-375 *2))))) (-2363 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-375 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-737 *5 *2 *3 *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4))))) -(-10 -7 (-15 -2363 ((-3 |#2| "failed") |#3| (-375 |#2|))) (-15 -2363 (|#2| |#3| (-578 (-375 |#2|)))) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3| |#2|)) (-15 -1520 (|#2| |#3| |#1|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4| |#2|)) (-15 -1520 (|#2| |#4| |#1|)) (-15 -3473 ((-2 (|:| -2499 |#3|) (|:| |rh| (-578 (-375 |#2|)))) |#4| (-578 (-375 |#2|))))) -((-3736 (((-107) $ $) NIL)) (-3490 (((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $) 9)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 11) (($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8)) (-3751 (((-107) $ $) NIL))) -(((-738) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))) (T -738)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-738)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-738)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-738))))) -(-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $)))) -((-2984 (((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 |#3|))) |#3| (-1 (-578 |#2|) |#2| (-1064 |#2|)) (-1 (-373 |#2|) |#2|)) 118)) (-3639 (((-578 (-2 (|:| |poly| |#2|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|)) 45)) (-3144 (((-578 (-2 (|:| |deg| (-701)) (|:| -2499 |#2|))) |#3|) 95)) (-3670 ((|#2| |#3|) 37)) (-3341 (((-578 (-2 (|:| -3897 |#1|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|)) 82)) (-3336 ((|#3| |#3| (-375 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3670 (|#2| |#3|)) (-15 -3144 ((-578 (-2 (|:| |deg| (-701)) (|:| -2499 |#2|))) |#3|)) (-15 -3341 ((-578 (-2 (|:| -3897 |#1|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -3639 ((-578 (-2 (|:| |poly| |#2|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -2984 ((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 |#3|))) |#3| (-1 (-578 |#2|) |#2| (-1064 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3336 (|#3| |#3| |#2|)) (-15 -3336 (|#3| |#3| (-375 |#2|)))) (-13 (-331) (-134) (-950 (-375 (-501)))) (-1125 |#1|) (-593 |#2|) (-593 (-375 |#2|))) (T -739)) -((-3336 (*1 *2 *2 *3) (-12 (-5 *3 (-375 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *1 (-739 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))) (-3336 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-1125 *4)) (-5 *1 (-739 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-375 *3))))) (-2984 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-578 *7) *7 (-1064 *7))) (-5 *5 (-1 (-373 *7) *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-331) (-134) (-950 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |frac| (-375 *7)) (|:| -2499 *3)))) (-5 *1 (-739 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-375 *7))))) (-3639 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -2499 *3)))) (-5 *1 (-739 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-375 *6))))) (-3341 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -3897 *5) (|:| -2499 *3)))) (-5 *1 (-739 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-375 *6))))) (-3144 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| |deg| (-701)) (|:| -2499 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-375 *5))))) (-3670 (*1 *2 *3) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-375 *2)))))) -(-10 -7 (-15 -3670 (|#2| |#3|)) (-15 -3144 ((-578 (-2 (|:| |deg| (-701)) (|:| -2499 |#2|))) |#3|)) (-15 -3341 ((-578 (-2 (|:| -3897 |#1|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -3639 ((-578 (-2 (|:| |poly| |#2|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -2984 ((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 |#3|))) |#3| (-1 (-578 |#2|) |#2| (-1064 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3336 (|#3| |#3| |#2|)) (-15 -3336 (|#3| |#3| (-375 |#2|)))) -((-2669 (((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-591 |#2| (-375 |#2|)) (-578 (-375 |#2|))) 117) (((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-591 |#2| (-375 |#2|)) (-375 |#2|)) 116) (((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-590 (-375 |#2|)) (-578 (-375 |#2|))) 111) (((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-590 (-375 |#2|)) (-375 |#2|)) 109)) (-2568 ((|#2| (-591 |#2| (-375 |#2|))) 77) ((|#2| (-590 (-375 |#2|))) 81))) -(((-740 |#1| |#2|) (-10 -7 (-15 -2669 ((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-590 (-375 |#2|)) (-375 |#2|))) (-15 -2669 ((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-590 (-375 |#2|)) (-578 (-375 |#2|)))) (-15 -2669 ((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-591 |#2| (-375 |#2|)) (-375 |#2|))) (-15 -2669 ((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-591 |#2| (-375 |#2|)) (-578 (-375 |#2|)))) (-15 -2568 (|#2| (-590 (-375 |#2|)))) (-15 -2568 (|#2| (-591 |#2| (-375 |#2|))))) (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501)))) (-1125 |#1|)) (T -740)) -((-2568 (*1 *2 *3) (-12 (-5 *3 (-591 *2 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-740 *4 *2)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))))) (-2568 (*1 *2 *3) (-12 (-5 *3 (-590 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-740 *4 *2)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| -4119 (-578 (-375 *6))) (|:| -2978 (-621 *5)))) (-5 *1 (-740 *5 *6)) (-5 *4 (-578 (-375 *6))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-740 *5 *6)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| -4119 (-578 (-375 *6))) (|:| -2978 (-621 *5)))) (-5 *1 (-740 *5 *6)) (-5 *4 (-578 (-375 *6))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-740 *5 *6))))) -(-10 -7 (-15 -2669 ((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-590 (-375 |#2|)) (-375 |#2|))) (-15 -2669 ((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-590 (-375 |#2|)) (-578 (-375 |#2|)))) (-15 -2669 ((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-591 |#2| (-375 |#2|)) (-375 |#2|))) (-15 -2669 ((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-591 |#2| (-375 |#2|)) (-578 (-375 |#2|)))) (-15 -2568 (|#2| (-590 (-375 |#2|)))) (-15 -2568 (|#2| (-591 |#2| (-375 |#2|))))) -((-1892 (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) |#5| |#4|) 47))) -(((-741 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1892 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) |#5| |#4|))) (-331) (-593 |#1|) (-1125 |#1|) (-655 |#1| |#3|) (-593 |#4|)) (T -741)) -((-1892 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *7 (-1125 *5)) (-4 *4 (-655 *5 *7)) (-5 *2 (-2 (|:| -2978 (-621 *6)) (|:| |vec| (-1148 *5)))) (-5 *1 (-741 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4))))) -(-10 -7 (-15 -1892 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) |#5| |#4|))) -((-2984 (((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|)) 43)) (-3093 (((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|)) 133 (|has| |#1| (-27))) (((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|))) 134 (|has| |#1| (-27))) (((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-373 |#2|) |#2|)) 135 (|has| |#1| (-27))) (((-578 (-375 |#2|)) (-590 (-375 |#2|))) 136 (|has| |#1| (-27))) (((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|)) 36) (((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|)) 37) (((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|)) 34) (((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|)) 35)) (-3639 (((-578 (-2 (|:| |poly| |#2|) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|)) 80))) -(((-742 |#1| |#2|) (-10 -7 (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|))) (-15 -2984 ((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3639 ((-578 (-2 (|:| |poly| |#2|) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)))) (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|)))) |noBranch|)) (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501)))) (-1125 |#1|)) (T -742)) -((-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-591 *5 (-375 *5))) (-4 *5 (-1125 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *5))) (-5 *1 (-742 *4 *5)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-590 (-375 *5))) (-4 *5 (-1125 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *5))) (-5 *1 (-742 *4 *5)))) (-3639 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -2499 (-591 *6 (-375 *6)))))) (-5 *1 (-742 *5 *6)) (-5 *3 (-591 *6 (-375 *6))))) (-2984 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |frac| (-375 *6)) (|:| -2499 (-591 *6 (-375 *6)))))) (-5 *1 (-742 *5 *6)) (-5 *3 (-591 *6 (-375 *6))))) (-3093 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-375 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-373 *7) *7)) (-4 *6 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *7 (-1125 *6)) (-5 *2 (-578 (-375 *7))) (-5 *1 (-742 *6 *7)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) (-3093 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-375 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-373 *7) *7)) (-4 *6 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *7 (-1125 *6)) (-5 *2 (-578 (-375 *7))) (-5 *1 (-742 *6 *7)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6))))) -(-10 -7 (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|))) (-15 -2984 ((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3639 ((-578 (-2 (|:| |poly| |#2|) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)))) (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|)))) |noBranch|)) -((-4121 (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) (-621 |#2|) (-1148 |#1|)) 86) (((-2 (|:| A (-621 |#1|)) (|:| |eqs| (-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)) (|:| -2499 |#2|) (|:| |rh| |#1|))))) (-621 |#1|) (-1148 |#1|)) 14)) (-3766 (((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#2|) (-1148 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4119 (-578 |#1|))) |#2| |#1|)) 92)) (-2778 (((-3 (-2 (|:| |particular| (-1148 |#1|)) (|:| -4119 (-621 |#1|))) "failed") (-621 |#1|) (-1148 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed") |#2| |#1|)) 45))) -(((-743 |#1| |#2|) (-10 -7 (-15 -4121 ((-2 (|:| A (-621 |#1|)) (|:| |eqs| (-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)) (|:| -2499 |#2|) (|:| |rh| |#1|))))) (-621 |#1|) (-1148 |#1|))) (-15 -4121 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) (-621 |#2|) (-1148 |#1|))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#1|)) (|:| -4119 (-621 |#1|))) "failed") (-621 |#1|) (-1148 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed") |#2| |#1|))) (-15 -3766 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#2|) (-1148 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4119 (-578 |#1|))) |#2| |#1|)))) (-331) (-593 |#1|)) (T -743)) -((-3766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4119 (-578 *6))) *7 *6)) (-4 *6 (-331)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *6) "failed")) (|:| -4119 (-578 (-1148 *6))))) (-5 *1 (-743 *6 *7)) (-5 *4 (-1148 *6)))) (-2778 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4119 (-578 *6))) "failed") *7 *6)) (-4 *6 (-331)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1148 *6)) (|:| -4119 (-621 *6)))) (-5 *1 (-743 *6 *7)) (-5 *3 (-621 *6)) (-5 *4 (-1148 *6)))) (-4121 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2978 (-621 *6)) (|:| |vec| (-1148 *5)))) (-5 *1 (-743 *5 *6)) (-5 *3 (-621 *6)) (-5 *4 (-1148 *5)))) (-4121 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-2 (|:| A (-621 *5)) (|:| |eqs| (-578 (-2 (|:| C (-621 *5)) (|:| |g| (-1148 *5)) (|:| -2499 *6) (|:| |rh| *5)))))) (-5 *1 (-743 *5 *6)) (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *6 (-593 *5))))) -(-10 -7 (-15 -4121 ((-2 (|:| A (-621 |#1|)) (|:| |eqs| (-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)) (|:| -2499 |#2|) (|:| |rh| |#1|))))) (-621 |#1|) (-1148 |#1|))) (-15 -4121 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) (-621 |#2|) (-1148 |#1|))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#1|)) (|:| -4119 (-621 |#1|))) "failed") (-621 |#1|) (-1148 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed") |#2| |#1|))) (-15 -3766 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#2|) (-1148 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4119 (-578 |#1|))) |#2| |#1|)))) -((-3103 (((-621 |#1|) (-578 |#1|) (-701)) 13) (((-621 |#1|) (-578 |#1|)) 14)) (-3356 (((-3 (-1148 |#1|) "failed") |#2| |#1| (-578 |#1|)) 34)) (-1541 (((-3 |#1| "failed") |#2| |#1| (-578 |#1|) (-1 |#1| |#1|)) 42))) -(((-744 |#1| |#2|) (-10 -7 (-15 -3103 ((-621 |#1|) (-578 |#1|))) (-15 -3103 ((-621 |#1|) (-578 |#1|) (-701))) (-15 -3356 ((-3 (-1148 |#1|) "failed") |#2| |#1| (-578 |#1|))) (-15 -1541 ((-3 |#1| "failed") |#2| |#1| (-578 |#1|) (-1 |#1| |#1|)))) (-331) (-593 |#1|)) (T -744)) -((-1541 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-578 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-331)) (-5 *1 (-744 *2 *3)) (-4 *3 (-593 *2)))) (-3356 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-578 *4)) (-4 *4 (-331)) (-5 *2 (-1148 *4)) (-5 *1 (-744 *4 *3)) (-4 *3 (-593 *4)))) (-3103 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-701)) (-4 *5 (-331)) (-5 *2 (-621 *5)) (-5 *1 (-744 *5 *6)) (-4 *6 (-593 *5)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-331)) (-5 *2 (-621 *4)) (-5 *1 (-744 *4 *5)) (-4 *5 (-593 *4))))) -(-10 -7 (-15 -3103 ((-621 |#1|) (-578 |#1|))) (-15 -3103 ((-621 |#1|) (-578 |#1|) (-701))) (-15 -3356 ((-3 (-1148 |#1|) "failed") |#2| |#1| (-578 |#1|))) (-15 -1541 ((-3 |#1| "failed") |#2| |#1| (-578 |#1|) (-1 |#1| |#1|)))) -((-3736 (((-107) $ $) NIL (|has| |#2| (-1001)))) (-3292 (((-107) $) NIL (|has| |#2| (-123)))) (-1822 (($ (-839)) NIL (|has| |#2| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) NIL (|has| |#2| (-723)))) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#2| (-336)))) (-1417 (((-501) $) NIL (|has| |#2| (-775)))) (-3754 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1001)))) (-3490 (((-501) $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) ((|#2| $) NIL (|has| |#2| (-1001)))) (-3868 (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL (|has| |#2| (-959))) (((-621 |#2|) (-621 $)) NIL (|has| |#2| (-959)))) (-2174 (((-3 $ "failed") $) NIL (|has| |#2| (-959)))) (-2890 (($) NIL (|has| |#2| (-336)))) (-2156 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ (-501)) NIL)) (-2164 (((-107) $) NIL (|has| |#2| (-775)))) (-2732 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#2| (-959)))) (-4067 (((-107) $) NIL (|has| |#2| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3380 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-2519 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#2| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#2| (-1001)))) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#2| (-336)))) (-3708 (((-1018) $) NIL (|has| |#2| (-1001)))) (-1190 ((|#2| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ (-501) |#2|) NIL) ((|#2| $ (-501)) NIL)) (-1293 ((|#2| $ $) NIL (|has| |#2| (-959)))) (-3759 (($ (-1148 |#2|)) NIL)) (-3613 (((-125)) NIL (|has| |#2| (-331)))) (-2596 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3713 (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#2|) $) NIL) (((-786) $) NIL (|has| |#2| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (|has| |#2| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (($ |#2|) NIL (|has| |#2| (-1001)))) (-3965 (((-701)) NIL (|has| |#2| (-959)))) (-1200 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#2| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (-1850 (($) NIL (|has| |#2| (-123)) CONST)) (-1925 (($) NIL (|has| |#2| (-959)) CONST)) (-3584 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3751 (((-107) $ $) NIL (|has| |#2| (-1001)))) (-3773 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3762 (((-107) $ $) 11 (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $ $) NIL (|has| |#2| (-959))) (($ $) NIL (|has| |#2| (-959)))) (-3790 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (* (($ $ $) NIL (|has| |#2| (-959))) (($ (-501) $) NIL (|has| |#2| (-959))) (($ $ |#2|) NIL (|has| |#2| (-657))) (($ |#2| $) NIL (|has| |#2| (-657))) (($ (-701) $) NIL (|has| |#2| (-123))) (($ (-839) $) NIL (|has| |#2| (-25)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-745 |#1| |#2| |#3|) (-211 |#1| |#2|) (-701) (-723) (-1 (-107) (-1148 |#2|) (-1148 |#2|))) (T -745)) -NIL -(-211 |#1| |#2|) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2456 (((-578 (-701)) $) NIL) (((-578 (-701)) $ (-1070)) NIL)) (-1506 (((-701) $) NIL) (((-701) $ (-1070)) NIL)) (-3800 (((-578 (-748 (-1070))) $) NIL)) (-3728 (((-1064 $) $ (-748 (-1070))) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-748 (-1070)))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3457 (($ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-748 (-1070)) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL) (((-3 (-1023 |#1| (-1070)) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-748 (-1070)) $) NIL) (((-1070) $) NIL) (((-1023 |#1| (-1070)) $) NIL)) (-1749 (($ $ $ (-748 (-1070))) NIL (|has| |#1| (-156)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ (-748 (-1070))) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-487 (-748 (-1070))) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-748 (-1070)) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-748 (-1070)) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ (-1070)) NIL) (((-701) $) NIL)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#1|) (-748 (-1070))) NIL) (($ (-1064 $) (-748 (-1070))) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-487 (-748 (-1070)))) NIL) (($ $ (-748 (-1070)) (-701)) NIL) (($ $ (-578 (-748 (-1070))) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-748 (-1070))) NIL)) (-2285 (((-487 (-748 (-1070))) $) NIL) (((-701) $ (-748 (-1070))) NIL) (((-578 (-701)) $ (-578 (-748 (-1070)))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 (-748 (-1070))) (-487 (-748 (-1070)))) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1435 (((-1 $ (-701)) (-1070)) NIL) (((-1 $ (-701)) $) NIL (|has| |#1| (-206)))) (-2752 (((-3 (-748 (-1070)) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-2486 (((-748 (-1070)) $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3597 (((-107) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-748 (-1070))) (|:| -3027 (-701))) "failed") $) NIL)) (-2577 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-748 (-1070)) |#1|) NIL) (($ $ (-578 (-748 (-1070))) (-578 |#1|)) NIL) (($ $ (-748 (-1070)) $) NIL) (($ $ (-578 (-748 (-1070))) (-578 $)) NIL) (($ $ (-1070) $) NIL (|has| |#1| (-206))) (($ $ (-578 (-1070)) (-578 $)) NIL (|has| |#1| (-206))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-206))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-206)))) (-2532 (($ $ (-748 (-1070))) NIL (|has| |#1| (-156)))) (-2596 (($ $ (-748 (-1070))) NIL) (($ $ (-578 (-748 (-1070)))) NIL) (($ $ (-748 (-1070)) (-701)) NIL) (($ $ (-578 (-748 (-1070))) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1490 (((-578 (-1070)) $) NIL)) (-1201 (((-487 (-748 (-1070))) $) NIL) (((-701) $ (-748 (-1070))) NIL) (((-578 (-701)) $ (-578 (-748 (-1070)))) NIL) (((-701) $ (-1070)) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-748 (-1070)) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-748 (-1070)) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-748 (-1070)) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ (-748 (-1070))) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-748 (-1070))) NIL) (($ (-1070)) NIL) (($ (-1023 |#1| (-1070))) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-487 (-748 (-1070)))) NIL) (($ $ (-748 (-1070)) (-701)) NIL) (($ $ (-578 (-748 (-1070))) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-748 (-1070))) NIL) (($ $ (-578 (-748 (-1070)))) NIL) (($ $ (-748 (-1070)) (-701)) NIL) (($ $ (-578 (-748 (-1070))) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-746 |#1|) (-13 (-224 |#1| (-1070) (-748 (-1070)) (-487 (-748 (-1070)))) (-950 (-1023 |#1| (-1070)))) (-959)) (T -746)) -NIL -(-13 (-224 |#1| (-1070) (-748 (-1070)) (-487 (-748 (-1070)))) (-950 (-1023 |#1| (-1070)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-331)))) (-2865 (($ $) NIL (|has| |#2| (-331)))) (-1639 (((-107) $) NIL (|has| |#2| (-331)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#2| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-331)))) (-2781 (((-107) $ $) NIL (|has| |#2| (-331)))) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL (|has| |#2| (-331)))) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#2| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#2| (-331)))) (-1628 (((-107) $) NIL (|has| |#2| (-331)))) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#2| (-331)))) (-1697 (($ (-578 $)) NIL (|has| |#2| (-331))) (($ $ $) NIL (|has| |#2| (-331)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 20 (|has| |#2| (-331)))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-331))) (($ $ $) NIL (|has| |#2| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#2| (-331)))) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#2| (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#2| (-331)))) (-1864 (((-701) $) NIL (|has| |#2| (-331)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-331)))) (-2596 (($ $ (-701)) NIL) (($ $) 13)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-375 (-501))) NIL (|has| |#2| (-331))) (($ $) NIL (|has| |#2| (-331)))) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL (|has| |#2| (-331)))) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL) (($ $ (-501)) NIL (|has| |#2| (-331)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) 15 (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL) (($ $ (-501)) 18 (|has| |#2| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-375 (-501)) $) NIL (|has| |#2| (-331))) (($ $ (-375 (-501))) NIL (|has| |#2| (-331))))) -(((-747 |#1| |#2| |#3|) (-13 (-106 $ $) (-206) (-10 -8 (IF (|has| |#2| (-331)) (-6 (-331)) |noBranch|) (-15 -3691 ($ |#2|)) (-15 -3691 (|#2| $)))) (-1001) (-820 |#1|) |#1|) (T -747)) -((-3691 (*1 *1 *2) (-12 (-4 *3 (-1001)) (-14 *4 *3) (-5 *1 (-747 *3 *2 *4)) (-4 *2 (-820 *3)))) (-3691 (*1 *2 *1) (-12 (-4 *2 (-820 *3)) (-5 *1 (-747 *3 *2 *4)) (-4 *3 (-1001)) (-14 *4 *3)))) -(-13 (-106 $ $) (-206) (-10 -8 (IF (|has| |#2| (-331)) (-6 (-331)) |noBranch|) (-15 -3691 ($ |#2|)) (-15 -3691 (|#2| $)))) -((-3736 (((-107) $ $) NIL)) (-1506 (((-701) $) NIL)) (-3484 ((|#1| $) 10)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3169 (((-701) $) 11)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1435 (($ |#1| (-701)) 9)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2596 (($ $) NIL) (($ $ (-701)) NIL)) (-3691 (((-786) $) NIL) (($ |#1|) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL))) -(((-748 |#1|) (-237 |#1|) (-777)) (T -748)) -NIL -(-237 |#1|) -((-3736 (((-107) $ $) NIL)) (-3514 (((-578 |#1|) $) 29)) (-3796 (((-701) $) NIL)) (-2540 (($) NIL T CONST)) (-2194 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-1199 (($ $) 31)) (-2174 (((-3 $ "failed") $) NIL)) (-3840 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1355 (((-107) $) NIL)) (-2153 ((|#1| $ (-501)) NIL)) (-3159 (((-701) $ (-501)) NIL)) (-3660 (($ $) 35)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3049 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-3989 (((-107) $ $) 33)) (-4139 (((-701) $) 25)) (-3460 (((-1053) $) NIL)) (-1954 (($ $ $) NIL)) (-3650 (($ $ $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 ((|#1| $) 30)) (-1575 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $) NIL)) (-3040 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3691 (((-786) $) NIL) (($ |#1|) NIL)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1925 (($) 14 T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 34)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL) (($ |#1| (-701)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-749 |#1|) (-13 (-773) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-701))) (-15 -1190 (|#1| $)) (-15 -1199 ($ $)) (-15 -3660 ($ $)) (-15 -3989 ((-107) $ $)) (-15 -3650 ($ $ $)) (-15 -1954 ($ $ $)) (-15 -3049 ((-3 $ "failed") $ $)) (-15 -2194 ((-3 $ "failed") $ $)) (-15 -3049 ((-3 $ "failed") $ |#1|)) (-15 -2194 ((-3 $ "failed") $ |#1|)) (-15 -3040 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3840 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3796 ((-701) $)) (-15 -3159 ((-701) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $)) (-15 -4139 ((-701) $)) (-15 -3514 ((-578 |#1|) $)))) (-777)) (T -749)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-1190 (*1 *2 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-1199 (*1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-3989 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-3650 (*1 *1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-1954 (*1 *1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-3049 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-2194 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-3049 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-2194 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-3040 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-749 *3)) (|:| |rm| (-749 *3)))) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-3840 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-749 *3)) (|:| |mm| (-749 *3)) (|:| |rm| (-749 *3)))) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-3159 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701)) (-5 *1 (-749 *4)) (-4 *4 (-777)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-701))))) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-749 *3)) (-4 *3 (-777))))) -(-13 (-773) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-701))) (-15 -1190 (|#1| $)) (-15 -1199 ($ $)) (-15 -3660 ($ $)) (-15 -3989 ((-107) $ $)) (-15 -3650 ($ $ $)) (-15 -1954 ($ $ $)) (-15 -3049 ((-3 $ "failed") $ $)) (-15 -2194 ((-3 $ "failed") $ $)) (-15 -3049 ((-3 $ "failed") $ |#1|)) (-15 -2194 ((-3 $ "failed") $ |#1|)) (-15 -3040 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3840 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3796 ((-701) $)) (-15 -3159 ((-701) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $)) (-15 -4139 ((-701) $)) (-15 -3514 ((-578 |#1|) $)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-1417 (((-501) $) 53)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-2164 (((-107) $) 51)) (-1355 (((-107) $) 31)) (-4067 (((-107) $) 52)) (-4111 (($ $ $) 50)) (-1323 (($ $ $) 49)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ $) 42)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-1720 (($ $) 54)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 47)) (-3768 (((-107) $ $) 46)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 48)) (-3762 (((-107) $ $) 45)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-750) (-1180)) (T -750)) -NIL -(-13 (-508) (-775)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-775) . T) ((-777) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3671 (((-1154) (-753) $ (-107)) 9) (((-1154) (-753) $) 8) (((-1053) $ (-107)) 7) (((-1053) $) 6))) -(((-751) (-1180)) (T -751)) -((-3671 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-751)) (-5 *3 (-753)) (-5 *4 (-107)) (-5 *2 (-1154)))) (-3671 (*1 *2 *3 *1) (-12 (-4 *1 (-751)) (-5 *3 (-753)) (-5 *2 (-1154)))) (-3671 (*1 *2 *1 *3) (-12 (-4 *1 (-751)) (-5 *3 (-107)) (-5 *2 (-1053)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-751)) (-5 *2 (-1053))))) -(-13 (-10 -8 (-15 -3671 ((-1053) $)) (-15 -3671 ((-1053) $ (-107))) (-15 -3671 ((-1154) (-753) $)) (-15 -3671 ((-1154) (-753) $ (-107))))) -((-3033 (($ (-1018)) 7)) (-1693 (((-107) $ (-1053) (-1018)) 15)) (-3149 (((-753) $) 12)) (-2792 (((-753) $) 11)) (-1604 (((-1154) $) 9)) (-1322 (((-107) $ (-1018)) 16))) -(((-752) (-10 -8 (-15 -3033 ($ (-1018))) (-15 -1604 ((-1154) $)) (-15 -2792 ((-753) $)) (-15 -3149 ((-753) $)) (-15 -1693 ((-107) $ (-1053) (-1018))) (-15 -1322 ((-107) $ (-1018))))) (T -752)) -((-1322 (*1 *2 *1 *3) (-12 (-5 *3 (-1018)) (-5 *2 (-107)) (-5 *1 (-752)))) (-1693 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-1018)) (-5 *2 (-107)) (-5 *1 (-752)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-752)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-752)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-752)))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-752))))) -(-10 -8 (-15 -3033 ($ (-1018))) (-15 -1604 ((-1154) $)) (-15 -2792 ((-753) $)) (-15 -3149 ((-753) $)) (-15 -1693 ((-107) $ (-1053) (-1018))) (-15 -1322 ((-107) $ (-1018)))) -((-2497 (((-1154) $ (-754)) 12)) (-2760 (((-1154) $ (-1070)) 32)) (-3862 (((-1154) $ (-1053) (-1053)) 34)) (-4012 (((-1154) $ (-1053)) 33)) (-3976 (((-1154) $) 19)) (-1476 (((-1154) $ (-501)) 28)) (-2597 (((-1154) $ (-199)) 30)) (-1312 (((-1154) $) 18)) (-2666 (((-1154) $) 26)) (-1552 (((-1154) $) 25)) (-1809 (((-1154) $) 23)) (-2293 (((-1154) $) 24)) (-1543 (((-1154) $) 22)) (-3598 (((-1154) $) 21)) (-1324 (((-1154) $) 20)) (-1427 (((-1154) $) 16)) (-2697 (((-1154) $) 17)) (-2354 (((-1154) $) 15)) (-2941 (((-1154) $) 14)) (-1795 (((-1154) $) 13)) (-2860 (($ (-1053) (-754)) 9)) (-3311 (($ (-1053) (-1053) (-754)) 8)) (-1527 (((-1070) $) 51)) (-2127 (((-1070) $) 55)) (-3690 (((-2 (|:| |cd| (-1053)) (|:| -3986 (-1053))) $) 54)) (-2855 (((-1053) $) 52)) (-4023 (((-1154) $) 41)) (-2138 (((-501) $) 49)) (-4024 (((-199) $) 50)) (-1240 (((-1154) $) 40)) (-2182 (((-1154) $) 48)) (-1860 (((-1154) $) 47)) (-1509 (((-1154) $) 45)) (-3259 (((-1154) $) 46)) (-1664 (((-1154) $) 44)) (-1824 (((-1154) $) 43)) (-2484 (((-1154) $) 42)) (-1678 (((-1154) $) 38)) (-3870 (((-1154) $) 39)) (-2541 (((-1154) $) 37)) (-1812 (((-1154) $) 36)) (-2931 (((-1154) $) 35)) (-3600 (((-1154) $) 11))) -(((-753) (-10 -8 (-15 -3311 ($ (-1053) (-1053) (-754))) (-15 -2860 ($ (-1053) (-754))) (-15 -3600 ((-1154) $)) (-15 -2497 ((-1154) $ (-754))) (-15 -1795 ((-1154) $)) (-15 -2941 ((-1154) $)) (-15 -2354 ((-1154) $)) (-15 -1427 ((-1154) $)) (-15 -2697 ((-1154) $)) (-15 -1312 ((-1154) $)) (-15 -3976 ((-1154) $)) (-15 -1324 ((-1154) $)) (-15 -3598 ((-1154) $)) (-15 -1543 ((-1154) $)) (-15 -1809 ((-1154) $)) (-15 -2293 ((-1154) $)) (-15 -1552 ((-1154) $)) (-15 -2666 ((-1154) $)) (-15 -1476 ((-1154) $ (-501))) (-15 -2597 ((-1154) $ (-199))) (-15 -2760 ((-1154) $ (-1070))) (-15 -4012 ((-1154) $ (-1053))) (-15 -3862 ((-1154) $ (-1053) (-1053))) (-15 -2931 ((-1154) $)) (-15 -1812 ((-1154) $)) (-15 -2541 ((-1154) $)) (-15 -1678 ((-1154) $)) (-15 -3870 ((-1154) $)) (-15 -1240 ((-1154) $)) (-15 -4023 ((-1154) $)) (-15 -2484 ((-1154) $)) (-15 -1824 ((-1154) $)) (-15 -1664 ((-1154) $)) (-15 -1509 ((-1154) $)) (-15 -3259 ((-1154) $)) (-15 -1860 ((-1154) $)) (-15 -2182 ((-1154) $)) (-15 -2138 ((-501) $)) (-15 -4024 ((-199) $)) (-15 -1527 ((-1070) $)) (-15 -2855 ((-1053) $)) (-15 -3690 ((-2 (|:| |cd| (-1053)) (|:| -3986 (-1053))) $)) (-15 -2127 ((-1070) $)))) (T -753)) -((-2127 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-753)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1053)) (|:| -3986 (-1053)))) (-5 *1 (-753)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-753)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-753)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-753)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-753)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1860 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1240 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-3862 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-4012 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-2760 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-2597 (*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-1476 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2293 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1543 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2354 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2497 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2860 (*1 *1 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-754)) (-5 *1 (-753)))) (-3311 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-754)) (-5 *1 (-753))))) -(-10 -8 (-15 -3311 ($ (-1053) (-1053) (-754))) (-15 -2860 ($ (-1053) (-754))) (-15 -3600 ((-1154) $)) (-15 -2497 ((-1154) $ (-754))) (-15 -1795 ((-1154) $)) (-15 -2941 ((-1154) $)) (-15 -2354 ((-1154) $)) (-15 -1427 ((-1154) $)) (-15 -2697 ((-1154) $)) (-15 -1312 ((-1154) $)) (-15 -3976 ((-1154) $)) (-15 -1324 ((-1154) $)) (-15 -3598 ((-1154) $)) (-15 -1543 ((-1154) $)) (-15 -1809 ((-1154) $)) (-15 -2293 ((-1154) $)) (-15 -1552 ((-1154) $)) (-15 -2666 ((-1154) $)) (-15 -1476 ((-1154) $ (-501))) (-15 -2597 ((-1154) $ (-199))) (-15 -2760 ((-1154) $ (-1070))) (-15 -4012 ((-1154) $ (-1053))) (-15 -3862 ((-1154) $ (-1053) (-1053))) (-15 -2931 ((-1154) $)) (-15 -1812 ((-1154) $)) (-15 -2541 ((-1154) $)) (-15 -1678 ((-1154) $)) (-15 -3870 ((-1154) $)) (-15 -1240 ((-1154) $)) (-15 -4023 ((-1154) $)) (-15 -2484 ((-1154) $)) (-15 -1824 ((-1154) $)) (-15 -1664 ((-1154) $)) (-15 -1509 ((-1154) $)) (-15 -3259 ((-1154) $)) (-15 -1860 ((-1154) $)) (-15 -2182 ((-1154) $)) (-15 -2138 ((-501) $)) (-15 -4024 ((-199) $)) (-15 -1527 ((-1070) $)) (-15 -2855 ((-1053) $)) (-15 -3690 ((-2 (|:| |cd| (-1053)) (|:| -3986 (-1053))) $)) (-15 -2127 ((-1070) $))) -((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 12)) (-2703 (($) 15)) (-4052 (($) 13)) (-2818 (($) 16)) (-3225 (($) 14)) (-3751 (((-107) $ $) 8))) -(((-754) (-13 (-1001) (-10 -8 (-15 -4052 ($)) (-15 -2703 ($)) (-15 -2818 ($)) (-15 -3225 ($))))) (T -754)) -((-4052 (*1 *1) (-5 *1 (-754))) (-2703 (*1 *1) (-5 *1 (-754))) (-2818 (*1 *1) (-5 *1 (-754))) (-3225 (*1 *1) (-5 *1 (-754)))) -(-13 (-1001) (-10 -8 (-15 -4052 ($)) (-15 -2703 ($)) (-15 -2818 ($)) (-15 -3225 ($)))) -((-3736 (((-107) $ $) NIL)) (-3994 (($ (-756) (-578 (-1070))) 24)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1966 (((-756) $) 25)) (-3079 (((-578 (-1070)) $) 26)) (-3691 (((-786) $) 23)) (-3751 (((-107) $ $) NIL))) -(((-755) (-13 (-1001) (-10 -8 (-15 -1966 ((-756) $)) (-15 -3079 ((-578 (-1070)) $)) (-15 -3994 ($ (-756) (-578 (-1070))))))) (T -755)) -((-1966 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-755)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-755)))) (-3994 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-578 (-1070))) (-5 *1 (-755))))) -(-13 (-1001) (-10 -8 (-15 -1966 ((-756) $)) (-15 -3079 ((-578 (-1070)) $)) (-15 -3994 ($ (-756) (-578 (-1070)))))) -((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 21) (($ (-1070)) 17)) (-2963 (((-107) $) 10)) (-4098 (((-107) $) 9)) (-1811 (((-107) $) 11)) (-4140 (((-107) $) 8)) (-3751 (((-107) $ $) 19))) -(((-756) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-1070))) (-15 -4140 ((-107) $)) (-15 -4098 ((-107) $)) (-15 -2963 ((-107) $)) (-15 -1811 ((-107) $))))) (T -756)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-756)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) -(-13 (-1001) (-10 -8 (-15 -3691 ($ (-1070))) (-15 -4140 ((-107) $)) (-15 -4098 ((-107) $)) (-15 -2963 ((-107) $)) (-15 -1811 ((-107) $)))) -((-3671 (((-1154) (-753) (-282 |#1|) (-107)) 22) (((-1154) (-753) (-282 |#1|)) 76) (((-1053) (-282 |#1|) (-107)) 75) (((-1053) (-282 |#1|)) 74))) -(((-757 |#1|) (-10 -7 (-15 -3671 ((-1053) (-282 |#1|))) (-15 -3671 ((-1053) (-282 |#1|) (-107))) (-15 -3671 ((-1154) (-753) (-282 |#1|))) (-15 -3671 ((-1154) (-753) (-282 |#1|) (-107)))) (-13 (-751) (-777) (-959))) (T -757)) -((-3671 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-753)) (-5 *4 (-282 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-751) (-777) (-959))) (-5 *2 (-1154)) (-5 *1 (-757 *6)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-282 *5)) (-4 *5 (-13 (-751) (-777) (-959))) (-5 *2 (-1154)) (-5 *1 (-757 *5)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-751) (-777) (-959))) (-5 *2 (-1053)) (-5 *1 (-757 *5)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-13 (-751) (-777) (-959))) (-5 *2 (-1053)) (-5 *1 (-757 *4))))) -(-10 -7 (-15 -3671 ((-1053) (-282 |#1|))) (-15 -3671 ((-1053) (-282 |#1|) (-107))) (-15 -3671 ((-1154) (-753) (-282 |#1|))) (-15 -3671 ((-1154) (-753) (-282 |#1|) (-107)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2983 ((|#1| $) 10)) (-3996 (($ |#1|) 9)) (-1355 (((-107) $) NIL)) (-3787 (($ |#2| (-701)) NIL)) (-2285 (((-701) $) NIL)) (-3850 ((|#2| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2596 (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $) NIL (|has| |#1| (-206)))) (-1201 (((-701) $) NIL)) (-3691 (((-786) $) 17) (($ (-501)) NIL) (($ |#2|) NIL (|has| |#2| (-156)))) (-2495 ((|#2| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $) NIL (|has| |#1| (-206)))) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-758 |#1| |#2|) (-13 (-640 |#2|) (-10 -8 (IF (|has| |#1| (-206)) (-6 (-206)) |noBranch|) (-15 -3996 ($ |#1|)) (-15 -2983 (|#1| $)))) (-640 |#2|) (-959)) (T -758)) -((-3996 (*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-758 *2 *3)) (-4 *2 (-640 *3)))) (-2983 (*1 *2 *1) (-12 (-4 *2 (-640 *3)) (-5 *1 (-758 *2 *3)) (-4 *3 (-959))))) -(-13 (-640 |#2|) (-10 -8 (IF (|has| |#1| (-206)) (-6 (-206)) |noBranch|) (-15 -3996 ($ |#1|)) (-15 -2983 (|#1| $)))) -((-1300 (((-280) (-1053) (-1053)) 12)) (-3966 (((-107) (-1053) (-1053)) 33)) (-3151 (((-107) (-1053)) 32)) (-2654 (((-50) (-1053)) 25)) (-1283 (((-50) (-1053)) 23)) (-3051 (((-50) (-753)) 17)) (-2404 (((-578 (-1053)) (-1053)) 28)) (-2576 (((-578 (-1053))) 27))) -(((-759) (-10 -7 (-15 -3051 ((-50) (-753))) (-15 -1283 ((-50) (-1053))) (-15 -2654 ((-50) (-1053))) (-15 -2576 ((-578 (-1053)))) (-15 -2404 ((-578 (-1053)) (-1053))) (-15 -3151 ((-107) (-1053))) (-15 -3966 ((-107) (-1053) (-1053))) (-15 -1300 ((-280) (-1053) (-1053))))) (T -759)) -((-1300 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-759)))) (-3966 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-759)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-759)))) (-2404 (*1 *2 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-759)) (-5 *3 (-1053)))) (-2576 (*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-759)))) (-2654 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-759)))) (-1283 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-759)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-50)) (-5 *1 (-759))))) -(-10 -7 (-15 -3051 ((-50) (-753))) (-15 -1283 ((-50) (-1053))) (-15 -2654 ((-50) (-1053))) (-15 -2576 ((-578 (-1053)))) (-15 -2404 ((-578 (-1053)) (-1053))) (-15 -3151 ((-107) (-1053))) (-15 -3966 ((-107) (-1053) (-1053))) (-15 -1300 ((-280) (-1053) (-1053)))) -((-3736 (((-107) $ $) 18)) (-1442 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3217 (($ $ $) 72)) (-3599 (((-107) $ $) 73)) (-2997 (((-107) $ (-701)) 8)) (-2198 (($ (-578 |#1|)) 68) (($) 67)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2921 (($ $) 62)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-4111 ((|#1| $) 78)) (-2213 (($ $ $) 81)) (-3216 (($ $ $) 80)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1323 ((|#1| $) 79)) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22)) (-3420 (($ $ $) 69)) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40) (($ |#1| $ (-701)) 63)) (-3708 (((-1018) $) 21)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2908 (((-578 (-2 (|:| -2922 |#1|) (|:| -3713 (-701)))) $) 61)) (-3327 (($ $ |#1|) 71) (($ $ $) 70)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3691 (((-786) $) 20)) (-3910 (($ (-578 |#1|)) 66) (($) 65)) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19)) (-3762 (((-107) $ $) 64)) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-760 |#1|) (-1180) (-777)) (T -760)) -((-4111 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-777))))) -(-13 (-668 |t#1|) (-884 |t#1|) (-10 -8 (-15 -4111 (|t#1| $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-208 |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-626 |#1|) . T) ((-668 |#1|) . T) ((-884 |#1|) . T) ((-999 |#1|) . T) ((-1001) . T) ((-1104) . T)) -((-2111 (((-1154) (-1018) (-1018)) 47)) (-2252 (((-1154) (-752) (-50)) 44)) (-3396 (((-50) (-752)) 16))) -(((-761) (-10 -7 (-15 -3396 ((-50) (-752))) (-15 -2252 ((-1154) (-752) (-50))) (-15 -2111 ((-1154) (-1018) (-1018))))) (T -761)) -((-2111 (*1 *2 *3 *3) (-12 (-5 *3 (-1018)) (-5 *2 (-1154)) (-5 *1 (-761)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-752)) (-5 *4 (-50)) (-5 *2 (-1154)) (-5 *1 (-761)))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-752)) (-5 *2 (-50)) (-5 *1 (-761))))) -(-10 -7 (-15 -3396 ((-50) (-752))) (-15 -2252 ((-1154) (-752) (-50))) (-15 -2111 ((-1154) (-1018) (-1018)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL (|has| |#1| (-21)))) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1417 (((-501) $) NIL (|has| |#1| (-775)))) (-2540 (($) NIL (|has| |#1| (-21)) CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 15)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 9)) (-2174 (((-3 $ "failed") $) 40 (|has| |#1| (-775)))) (-2870 (((-3 (-375 (-501)) "failed") $) 48 (|has| |#1| (-500)))) (-1696 (((-107) $) 43 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 45 (|has| |#1| (-500)))) (-2164 (((-107) $) NIL (|has| |#1| (-775)))) (-1355 (((-107) $) NIL (|has| |#1| (-775)))) (-4067 (((-107) $) NIL (|has| |#1| (-775)))) (-4111 (($ $ $) NIL (|has| |#1| (-775)))) (-1323 (($ $ $) NIL (|has| |#1| (-775)))) (-3460 (((-1053) $) NIL)) (-2029 (($) 13)) (-1889 (((-107) $) 12)) (-3708 (((-1018) $) NIL)) (-3101 (((-107) $) 11)) (-3691 (((-786) $) 18) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) 8) (($ (-501)) NIL (-1405 (|has| |#1| (-775)) (|has| |#1| (-950 (-501)))))) (-3965 (((-701)) 34 (|has| |#1| (-775)))) (-1720 (($ $) NIL (|has| |#1| (-775)))) (-3948 (($ $ (-839)) NIL (|has| |#1| (-775))) (($ $ (-701)) NIL (|has| |#1| (-775)))) (-1850 (($) 22 (|has| |#1| (-21)) CONST)) (-1925 (($) 31 (|has| |#1| (-775)) CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3751 (((-107) $ $) 20)) (-3773 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3762 (((-107) $ $) 42 (|has| |#1| (-775)))) (-3797 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-3790 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-839)) NIL (|has| |#1| (-775))) (($ $ (-701)) NIL (|has| |#1| (-775)))) (* (($ $ $) 37 (|has| |#1| (-775))) (($ (-501) $) 25 (|has| |#1| (-21))) (($ (-701) $) NIL (|has| |#1| (-21))) (($ (-839) $) NIL (|has| |#1| (-21))))) -(((-762 |#1|) (-13 (-1001) (-380 |#1|) (-10 -8 (-15 -2029 ($)) (-15 -3101 ((-107) $)) (-15 -1889 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|))) (-1001)) (T -762)) -((-2029 (*1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1001)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-1001)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-1001)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) (-2870 (*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001))))) -(-13 (-1001) (-380 |#1|) (-10 -8 (-15 -2029 ($)) (-15 -3101 ((-107) $)) (-15 -1889 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|))) -((-1212 (((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|) (-762 |#2|)) 12) (((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|)) 13))) -(((-763 |#1| |#2|) (-10 -7 (-15 -1212 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|))) (-15 -1212 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|) (-762 |#2|)))) (-1001) (-1001)) (T -763)) -((-1212 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-762 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *1 (-763 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-762 *6)) (-5 *1 (-763 *5 *6))))) -(-10 -7 (-15 -1212 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|))) (-15 -1212 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|) (-762 |#2|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-108) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-108) $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-1289 ((|#1| (-108) |#1|) NIL)) (-1355 (((-107) $) NIL)) (-2100 (($ |#1| (-329 (-108))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1310 (($ $ (-1 |#1| |#1|)) NIL)) (-3508 (($ $ (-1 |#1| |#1|)) NIL)) (-2007 ((|#1| $ |#1|) NIL)) (-2454 ((|#1| |#1|) NIL (|has| |#1| (-156)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-108)) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-3774 (($ $) NIL (|has| |#1| (-156))) (($ $ $) NIL (|has| |#1| (-156)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ (-108) (-501)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) -(((-764 |#1|) (-13 (-959) (-950 |#1|) (-950 (-108)) (-256 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3774 ($ $)) (-15 -3774 ($ $ $)) (-15 -2454 (|#1| |#1|))) |noBranch|) (-15 -3508 ($ $ (-1 |#1| |#1|))) (-15 -1310 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-108) (-501))) (-15 ** ($ $ (-501))) (-15 -1289 (|#1| (-108) |#1|)) (-15 -2100 ($ |#1| (-329 (-108)))))) (-959)) (T -764)) -((-3774 (*1 *1 *1) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959)))) (-3774 (*1 *1 *1 *1) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959)))) (-2454 (*1 *2 *2) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959)))) (-3508 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-764 *3)))) (-1310 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-764 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-501)) (-5 *1 (-764 *4)) (-4 *4 (-959)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-764 *3)) (-4 *3 (-959)))) (-1289 (*1 *2 *3 *2) (-12 (-5 *3 (-108)) (-5 *1 (-764 *2)) (-4 *2 (-959)))) (-2100 (*1 *1 *2 *3) (-12 (-5 *3 (-329 (-108))) (-5 *1 (-764 *2)) (-4 *2 (-959))))) -(-13 (-959) (-950 |#1|) (-950 (-108)) (-256 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3774 ($ $)) (-15 -3774 ($ $ $)) (-15 -2454 (|#1| |#1|))) |noBranch|) (-15 -3508 ($ $ (-1 |#1| |#1|))) (-15 -1310 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-108) (-501))) (-15 ** ($ $ (-501))) (-15 -1289 (|#1| (-108) |#1|)) (-15 -2100 ($ |#1| (-329 (-108)))))) -((-3563 (((-189 (-465)) (-1053)) 8))) -(((-765) (-10 -7 (-15 -3563 ((-189 (-465)) (-1053))))) (T -765)) -((-3563 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-189 (-465))) (-5 *1 (-765))))) -(-10 -7 (-15 -3563 ((-189 (-465)) (-1053)))) -((-3736 (((-107) $ $) 7)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 14) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 13)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 16) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 15)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6))) -(((-766) (-1180)) (T -766)) -((-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-766)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) (-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-766)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) (-2491 (*1 *2 *3) (-12 (-4 *1 (-766)) (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-948)))) (-2491 (*1 *2 *3) (-12 (-4 *1 (-766)) (-5 *3 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *2 (-948))))) -(-13 (-1001) (-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -2491 ((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -2491 ((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))))))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-2180 (((-948) (-578 (-282 (-346))) (-578 (-346))) 143) (((-948) (-282 (-346)) (-578 (-346))) 141) (((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-769 (-346)))) 140) (((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-282 (-346))) (-578 (-769 (-346)))) 139) (((-948) (-768)) 112) (((-948) (-768) (-970)) 111)) (-3492 (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768) (-970)) 76) (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768)) 78)) (-3284 (((-948) (-578 (-282 (-346))) (-578 (-346))) 144) (((-948) (-768)) 128))) -(((-767) (-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768) (-970))) (-15 -2180 ((-948) (-768) (-970))) (-15 -2180 ((-948) (-768))) (-15 -3284 ((-948) (-768))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-282 (-346))) (-578 (-769 (-346))))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-769 (-346))))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)))) (-15 -2180 ((-948) (-578 (-282 (-346))) (-578 (-346)))) (-15 -3284 ((-948) (-578 (-282 (-346))) (-578 (-346)))))) (T -767)) -((-3284 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-346)))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-346)))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-346))) (-5 *5 (-578 (-769 (-346)))) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-578 (-346))) (-5 *5 (-578 (-769 (-346)))) (-5 *6 (-578 (-282 (-346)))) (-5 *3 (-282 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-767)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-767)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-767))))) -(-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768) (-970))) (-15 -2180 ((-948) (-768) (-970))) (-15 -2180 ((-948) (-768))) (-15 -3284 ((-948) (-768))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-282 (-346))) (-578 (-769 (-346))))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-769 (-346))))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)))) (-15 -2180 ((-948) (-578 (-282 (-346))) (-578 (-346)))) (-15 -3284 ((-948) (-578 (-282 (-346))) (-578 (-346))))) -((-3736 (((-107) $ $) NIL)) (-3490 (((-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) $) 15)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 14) (($ (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 8) (($ (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) 12)) (-3751 (((-107) $ $) NIL))) -(((-768) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))))) (-15 -3691 ($ (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3691 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) $))))) (T -768)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-768)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *1 (-768)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *1 (-768)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *1 (-768)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *1 (-768))))) -(-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))))) (-15 -3691 ($ (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3691 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) $)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL (|has| |#1| (-21)))) (-1469 (((-1018) $) 24)) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1417 (((-501) $) NIL (|has| |#1| (-775)))) (-2540 (($) NIL (|has| |#1| (-21)) CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 16)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 9)) (-2174 (((-3 $ "failed") $) 46 (|has| |#1| (-775)))) (-2870 (((-3 (-375 (-501)) "failed") $) 53 (|has| |#1| (-500)))) (-1696 (((-107) $) 48 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 51 (|has| |#1| (-500)))) (-2164 (((-107) $) NIL (|has| |#1| (-775)))) (-2040 (($) 13)) (-1355 (((-107) $) NIL (|has| |#1| (-775)))) (-4067 (((-107) $) NIL (|has| |#1| (-775)))) (-2051 (($) 14)) (-4111 (($ $ $) NIL (|has| |#1| (-775)))) (-1323 (($ $ $) NIL (|has| |#1| (-775)))) (-3460 (((-1053) $) NIL)) (-1889 (((-107) $) 12)) (-3708 (((-1018) $) NIL)) (-3101 (((-107) $) 11)) (-3691 (((-786) $) 22) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) 8) (($ (-501)) NIL (-1405 (|has| |#1| (-775)) (|has| |#1| (-950 (-501)))))) (-3965 (((-701)) 40 (|has| |#1| (-775)))) (-1720 (($ $) NIL (|has| |#1| (-775)))) (-3948 (($ $ (-839)) NIL (|has| |#1| (-775))) (($ $ (-701)) NIL (|has| |#1| (-775)))) (-1850 (($) 28 (|has| |#1| (-21)) CONST)) (-1925 (($) 37 (|has| |#1| (-775)) CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3751 (((-107) $ $) 26)) (-3773 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3762 (((-107) $ $) 47 (|has| |#1| (-775)))) (-3797 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 33 (|has| |#1| (-21)))) (-3790 (($ $ $) 35 (|has| |#1| (-21)))) (** (($ $ (-839)) NIL (|has| |#1| (-775))) (($ $ (-701)) NIL (|has| |#1| (-775)))) (* (($ $ $) 43 (|has| |#1| (-775))) (($ (-501) $) 31 (|has| |#1| (-21))) (($ (-701) $) NIL (|has| |#1| (-21))) (($ (-839) $) NIL (|has| |#1| (-21))))) -(((-769 |#1|) (-13 (-1001) (-380 |#1|) (-10 -8 (-15 -2040 ($)) (-15 -2051 ($)) (-15 -3101 ((-107) $)) (-15 -1889 ((-107) $)) (-15 -1469 ((-1018) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|))) (-1001)) (T -769)) -((-2040 (*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1001)))) (-2051 (*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1001)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-1001)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-1001)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-769 *3)) (-4 *3 (-1001)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) (-2870 (*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001))))) -(-13 (-1001) (-380 |#1|) (-10 -8 (-15 -2040 ($)) (-15 -2051 ($)) (-15 -3101 ((-107) $)) (-15 -1889 ((-107) $)) (-15 -1469 ((-1018) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|))) -((-1212 (((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|) (-769 |#2|)) 13) (((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)) 14))) -(((-770 |#1| |#2|) (-10 -7 (-15 -1212 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|))) (-15 -1212 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|) (-769 |#2|)))) (-1001) (-1001)) (T -770)) -((-1212 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-769 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *1 (-770 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-769 *6)) (-5 *1 (-770 *5 *6))))) -(-10 -7 (-15 -1212 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|))) (-15 -1212 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|) (-769 |#2|)))) -((-3736 (((-107) $ $) 7)) (-3796 (((-701)) 20)) (-2890 (($) 23)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3104 (((-839) $) 22)) (-3460 (((-1053) $) 9)) (-3506 (($ (-839)) 21)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18))) -(((-771) (-1180)) (T -771)) -NIL -(-13 (-777) (-336)) -(((-97) . T) ((-555 (-786)) . T) ((-336) . T) ((-777) . T) ((-1001) . T)) -((-3946 (((-107) (-1148 |#2|) (-1148 |#2|)) 17)) (-1866 (((-107) (-1148 |#2|) (-1148 |#2|)) 18)) (-2718 (((-107) (-1148 |#2|) (-1148 |#2|)) 14))) -(((-772 |#1| |#2|) (-10 -7 (-15 -2718 ((-107) (-1148 |#2|) (-1148 |#2|))) (-15 -3946 ((-107) (-1148 |#2|) (-1148 |#2|))) (-15 -1866 ((-107) (-1148 |#2|) (-1148 |#2|)))) (-701) (-722)) (T -772)) -((-1866 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701)))) (-3946 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701)))) (-2718 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701))))) -(-10 -7 (-15 -2718 ((-107) (-1148 |#2|) (-1148 |#2|))) (-15 -3946 ((-107) (-1148 |#2|) (-1148 |#2|))) (-15 -1866 ((-107) (-1148 |#2|) (-1148 |#2|)))) -((-3736 (((-107) $ $) 7)) (-2540 (($) 24 T CONST)) (-2174 (((-3 $ "failed") $) 28)) (-1355 (((-107) $) 25)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-701)) 27) (($ $ (-839)) 22)) (-1925 (($) 23 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (** (($ $ (-701)) 26) (($ $ (-839)) 21)) (* (($ $ $) 20))) -(((-773) (-1180)) (T -773)) -NIL -(-13 (-777) (-657)) -(((-97) . T) ((-555 (-786)) . T) ((-657) . T) ((-777) . T) ((-1012) . T) ((-1001) . T)) -((-1417 (((-501) $) 17)) (-2164 (((-107) $) 10)) (-4067 (((-107) $) 11)) (-1720 (($ $) 19))) -(((-774 |#1|) (-10 -8 (-15 -1720 (|#1| |#1|)) (-15 -1417 ((-501) |#1|)) (-15 -4067 ((-107) |#1|)) (-15 -2164 ((-107) |#1|))) (-775)) (T -774)) -NIL -(-10 -8 (-15 -1720 (|#1| |#1|)) (-15 -1417 ((-501) |#1|)) (-15 -4067 ((-107) |#1|)) (-15 -2164 ((-107) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-3177 (((-3 $ "failed") $ $) 26)) (-1417 (((-501) $) 33)) (-2540 (($) 23 T CONST)) (-2174 (((-3 $ "failed") $) 39)) (-2164 (((-107) $) 35)) (-1355 (((-107) $) 42)) (-4067 (((-107) $) 34)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 45)) (-3965 (((-701)) 44)) (-1720 (($ $) 32)) (-3948 (($ $ (-701)) 40) (($ $ (-839)) 36)) (-1850 (($) 22 T CONST)) (-1925 (($) 43 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3797 (($ $ $) 28) (($ $) 27)) (-3790 (($ $ $) 20)) (** (($ $ (-701)) 41) (($ $ (-839)) 37)) (* (($ (-701) $) 25) (($ (-839) $) 21) (($ (-501) $) 29) (($ $ $) 38))) -(((-775) (-1180)) (T -775)) -((-2164 (*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-107)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-107)))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-501)))) (-1720 (*1 *1 *1) (-4 *1 (-775)))) -(-13 (-721) (-959) (-657) (-10 -8 (-15 -2164 ((-107) $)) (-15 -4067 ((-107) $)) (-15 -1417 ((-501) $)) (-15 -1720 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-777) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-4111 (($ $ $) 10)) (-1323 (($ $ $) 9)) (-3778 (((-107) $ $) 12)) (-3768 (((-107) $ $) 11)) (-3773 (((-107) $ $) 13))) -(((-776 |#1|) (-10 -8 (-15 -4111 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -3773 ((-107) |#1| |#1|)) (-15 -3778 ((-107) |#1| |#1|)) (-15 -3768 ((-107) |#1| |#1|))) (-777)) (T -776)) -NIL -(-10 -8 (-15 -4111 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -3773 ((-107) |#1| |#1|)) (-15 -3778 ((-107) |#1| |#1|)) (-15 -3768 ((-107) |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18))) -(((-777) (-1180)) (T -777)) -((-3762 (*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3768 (*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3778 (*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3773 (*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-1323 (*1 *1 *1 *1) (-4 *1 (-777))) (-4111 (*1 *1 *1 *1) (-4 *1 (-777)))) -(-13 (-1001) (-10 -8 (-15 -3762 ((-107) $ $)) (-15 -3768 ((-107) $ $)) (-15 -3778 ((-107) $ $)) (-15 -3773 ((-107) $ $)) (-15 -1323 ($ $ $)) (-15 -4111 ($ $ $)))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3224 (($ $ $) 45)) (-2160 (($ $ $) 44)) (-1535 (($ $ $) 42)) (-3912 (($ $ $) 51)) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 46)) (-2529 (((-3 $ "failed") $ $) 49)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3533 (($ $) 35)) (-2084 (($ $ $) 39)) (-2530 (($ $ $) 38)) (-3641 (($ $ $) 47)) (-2753 (($ $ $) 53)) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 41)) (-3756 (((-3 $ "failed") $ $) 48)) (-3694 (((-3 $ "failed") $ |#2|) 28)) (-1734 ((|#2| $) 32)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL) (($ |#2|) 12)) (-1303 (((-578 |#2|) $) 18)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-778 |#1| |#2|) (-10 -8 (-15 -3641 (|#1| |#1| |#1|)) (-15 -3900 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -3912 (|#1| |#1| |#1|)) (-15 -2529 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -2160 (|#1| |#1| |#1|)) (-15 -1535 (|#1| |#1| |#1|)) (-15 -1224 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -3756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2084 (|#1| |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1303 ((-578 |#2|) |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3691 ((-786) |#1|))) (-779 |#2|) (-959)) (T -778)) -NIL -(-10 -8 (-15 -3641 (|#1| |#1| |#1|)) (-15 -3900 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -3912 (|#1| |#1| |#1|)) (-15 -2529 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -2160 (|#1| |#1| |#1|)) (-15 -1535 (|#1| |#1| |#1|)) (-15 -1224 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -3756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2084 (|#1| |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1303 ((-578 |#2|) |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3224 (($ $ $) 47 (|has| |#1| (-331)))) (-2160 (($ $ $) 48 (|has| |#1| (-331)))) (-1535 (($ $ $) 50 (|has| |#1| (-331)))) (-3912 (($ $ $) 45 (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 44 (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) 46 (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 49 (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) 76 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 74 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 71)) (-3490 (((-501) $) 77 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 75 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 70)) (-3858 (($ $) 66)) (-2174 (((-3 $ "failed") $) 34)) (-3533 (($ $) 57 (|has| |#1| (-419)))) (-1355 (((-107) $) 31)) (-3787 (($ |#1| (-701)) 64)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 59 (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 60 (|has| |#1| (-508)))) (-2285 (((-701) $) 68)) (-2084 (($ $ $) 54 (|has| |#1| (-331)))) (-2530 (($ $ $) 55 (|has| |#1| (-331)))) (-3641 (($ $ $) 43 (|has| |#1| (-331)))) (-2753 (($ $ $) 52 (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 51 (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 56 (|has| |#1| (-331)))) (-3850 ((|#1| $) 67)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ |#1|) 61 (|has| |#1| (-508)))) (-1201 (((-701) $) 69)) (-1734 ((|#1| $) 58 (|has| |#1| (-419)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 73 (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) 72)) (-1303 (((-578 |#1|) $) 63)) (-2495 ((|#1| $ (-701)) 65)) (-3965 (((-701)) 29)) (-1183 ((|#1| $ |#1| |#1|) 62)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 79) (($ |#1| $) 78))) -(((-779 |#1|) (-1180) (-959)) (T -779)) -((-1201 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) (-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-779 *2)) (-4 *2 (-959)))) (-3787 (*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-779 *2)) (-4 *2 (-959)))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-578 *3)))) (-1183 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) (-3694 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-508)))) (-2985 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) (-4064 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) (-1734 (*1 *2 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-419)))) (-3533 (*1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-419)))) (-1838 (*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) (-2530 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-2084 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3756 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-2753 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-1224 (*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-779 *3)))) (-1535 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-2929 (*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) (-2160 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3224 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-2529 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3912 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3900 (*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-779 *3)))) (-3641 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(-13 (-959) (-106 |t#1| |t#1|) (-380 |t#1|) (-10 -8 (-15 -1201 ((-701) $)) (-15 -2285 ((-701) $)) (-15 -3850 (|t#1| $)) (-15 -3858 ($ $)) (-15 -2495 (|t#1| $ (-701))) (-15 -3787 ($ |t#1| (-701))) (-15 -1303 ((-578 |t#1|) $)) (-15 -1183 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -3694 ((-3 $ "failed") $ |t#1|)) (-15 -2985 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -4064 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-419)) (PROGN (-15 -1734 (|t#1| $)) (-15 -3533 ($ $))) |noBranch|) (IF (|has| |t#1| (-331)) (PROGN (-15 -1838 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -2530 ($ $ $)) (-15 -2084 ($ $ $)) (-15 -3756 ((-3 $ "failed") $ $)) (-15 -2753 ($ $ $)) (-15 -1224 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $)) (-15 -1535 ($ $ $)) (-15 -2929 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -2160 ($ $ $)) (-15 -3224 ($ $ $)) (-15 -2529 ((-3 $ "failed") $ $)) (-15 -3912 ($ $ $)) (-15 -3900 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $)) (-15 -3641 ($ $ $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-380 |#1|) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) |has| |#1| (-156)) ((-657) . T) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-2584 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-2929 (((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-331)))) (-4064 (((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-508)))) (-1838 (((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-331)))) (-1183 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31))) -(((-780 |#1| |#2|) (-10 -7 (-15 -2584 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1183 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-508)) (PROGN (-15 -2985 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -4064 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -1838 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2929 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|)) (-959) (-779 |#1|)) (T -780)) -((-2929 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))) (-1838 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))) (-4064 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-508)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))) (-2985 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-508)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))) (-1183 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-959)) (-5 *1 (-780 *2 *3)) (-4 *3 (-779 *2)))) (-2584 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-959)) (-5 *1 (-780 *5 *2)) (-4 *2 (-779 *5))))) -(-10 -7 (-15 -2584 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1183 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-508)) (PROGN (-15 -2985 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -4064 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -1838 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2929 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-331)))) (-2160 (($ $ $) NIL (|has| |#1| (-331)))) (-1535 (($ $ $) NIL (|has| |#1| (-331)))) (-3912 (($ $ $) NIL (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 25 (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-3317 (((-786) $ (-786)) NIL)) (-1355 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) NIL)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 21 (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 19 (|has| |#1| (-508)))) (-2285 (((-701) $) NIL)) (-2084 (($ $ $) NIL (|has| |#1| (-331)))) (-2530 (($ $ $) NIL (|has| |#1| (-331)))) (-3641 (($ $ $) NIL (|has| |#1| (-331)))) (-2753 (($ $ $) NIL (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 23 (|has| |#1| (-331)))) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-1201 (((-701) $) NIL)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) NIL)) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-1183 ((|#1| $ |#1| |#1|) 15)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-781 |#1| |#2| |#3|) (-13 (-779 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-786))))) (-959) (-94 |#1|) (-1 |#1| |#1|)) (T -781)) -((-3317 (*1 *2 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-781 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-779 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-786))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#2| (-331)))) (-2160 (($ $ $) NIL (|has| |#2| (-331)))) (-1535 (($ $ $) NIL (|has| |#2| (-331)))) (-3912 (($ $ $) NIL (|has| |#2| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#2| (-331)))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#2| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-331)))) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 |#2| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) ((|#2| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#2| (-419)))) (-1355 (((-107) $) NIL)) (-3787 (($ |#2| (-701)) 16)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-508)))) (-2285 (((-701) $) NIL)) (-2084 (($ $ $) NIL (|has| |#2| (-331)))) (-2530 (($ $ $) NIL (|has| |#2| (-331)))) (-3641 (($ $ $) NIL (|has| |#2| (-331)))) (-2753 (($ $ $) NIL (|has| |#2| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#2| (-331)))) (-3756 (((-3 $ "failed") $ $) NIL (|has| |#2| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-331)))) (-3850 ((|#2| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508)))) (-1201 (((-701) $) NIL)) (-1734 ((|#2| $) NIL (|has| |#2| (-419)))) (-3691 (((-786) $) 23) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#2| (-950 (-375 (-501))))) (($ |#2|) NIL) (($ (-1145 |#1|)) 18)) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-1183 ((|#2| $ |#2| |#2|) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) 13 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-782 |#1| |#2| |#3| |#4|) (-13 (-779 |#2|) (-10 -8 (-15 -3691 ($ (-1145 |#1|))))) (-1070) (-959) (-94 |#2|) (-1 |#2| |#2|)) (T -782)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-14 *3 (-1070)) (-5 *1 (-782 *3 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-779 |#2|) (-10 -8 (-15 -3691 ($ (-1145 |#1|))))) -((-1922 ((|#1| (-701) |#1|) 35 (|has| |#1| (-37 (-375 (-501)))))) (-3212 ((|#1| (-701) (-701) |#1|) 27) ((|#1| (-701) |#1|) 20)) (-2315 ((|#1| (-701) |#1|) 31)) (-4080 ((|#1| (-701) |#1|) 29)) (-3495 ((|#1| (-701) |#1|) 28))) -(((-783 |#1|) (-10 -7 (-15 -3495 (|#1| (-701) |#1|)) (-15 -4080 (|#1| (-701) |#1|)) (-15 -2315 (|#1| (-701) |#1|)) (-15 -3212 (|#1| (-701) |#1|)) (-15 -3212 (|#1| (-701) (-701) |#1|)) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -1922 (|#1| (-701) |#1|)) |noBranch|)) (-156)) (T -783)) -((-1922 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156)))) (-3212 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) (-3212 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) (-2315 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) (-4080 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) (-3495 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156))))) -(-10 -7 (-15 -3495 (|#1| (-701) |#1|)) (-15 -4080 (|#1| (-701) |#1|)) (-15 -2315 (|#1| (-701) |#1|)) (-15 -3212 (|#1| (-701) |#1|)) (-15 -3212 (|#1| (-701) (-701) |#1|)) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -1922 (|#1| (-701) |#1|)) |noBranch|)) -((-3736 (((-107) $ $) NIL)) (-2150 (((-501) $) 12)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 18) (($ (-501)) 11)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 8)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 9))) -(((-784) (-13 (-777) (-10 -8 (-15 -3691 ($ (-501))) (-15 -2150 ((-501) $))))) (T -784)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-784)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-784))))) -(-13 (-777) (-10 -8 (-15 -3691 ($ (-501))) (-15 -2150 ((-501) $)))) -((-4054 (((-1154) (-578 (-50))) 24)) (-2762 (((-1154) (-1053) (-786)) 14) (((-1154) (-786)) 9) (((-1154) (-1053)) 11))) -(((-785) (-10 -7 (-15 -2762 ((-1154) (-1053))) (-15 -2762 ((-1154) (-786))) (-15 -2762 ((-1154) (-1053) (-786))) (-15 -4054 ((-1154) (-578 (-50)))))) (T -785)) -((-4054 (*1 *2 *3) (-12 (-5 *3 (-578 (-50))) (-5 *2 (-1154)) (-5 *1 (-785)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-786)) (-5 *2 (-1154)) (-5 *1 (-785)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-785)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-785))))) -(-10 -7 (-15 -2762 ((-1154) (-1053))) (-15 -2762 ((-1154) (-786))) (-15 -2762 ((-1154) (-1053) (-786))) (-15 -4054 ((-1154) (-578 (-50))))) -((-3736 (((-107) $ $) NIL)) (-4134 (($ $ $) 116)) (-1783 (((-501) $) 30) (((-501)) 35)) (-3030 (($ (-501)) 44)) (-3919 (($ $ $) 45) (($ (-578 $)) 76)) (-1347 (($ $ (-578 $)) 74)) (-4017 (((-501) $) 33)) (-2132 (($ $ $) 63)) (-4063 (($ $) 129) (($ $ $) 130) (($ $ $ $) 131)) (-2049 (((-501) $) 32)) (-3606 (($ $ $) 62)) (-2011 (($ $) 105)) (-1703 (($ $ $) 120)) (-3799 (($ (-578 $)) 52)) (-4147 (($ $ (-578 $)) 69)) (-2228 (($ (-501) (-501)) 46)) (-2833 (($ $) 117) (($ $ $) 118)) (-1320 (($ $ (-501)) 40) (($ $) 43)) (-3023 (($ $ $) 89)) (-2086 (($ $ $) 123)) (-3911 (($ $) 106)) (-3034 (($ $ $) 90)) (-3215 (($ $) 132) (($ $ $) 133) (($ $ $ $) 134)) (-3802 (((-1154) $) 8)) (-1451 (($ $) 109) (($ $ (-701)) 113)) (-3062 (($ $ $) 65)) (-3411 (($ $ $) 64)) (-2995 (($ $ (-578 $)) 100)) (-2192 (($ $ $) 104)) (-2393 (($ (-578 $)) 50)) (-2446 (($ $) 60) (($ (-578 $)) 61)) (-1207 (($ $ $) 114)) (-1499 (($ $) 107)) (-2736 (($ $ $) 119)) (-3317 (($ (-501)) 20) (($ (-1070)) 22) (($ (-1053)) 29) (($ (-199)) 24)) (-4057 (($ $ $) 93)) (-3031 (($ $) 94)) (-2662 (((-1154) (-1053)) 14)) (-3535 (($ (-1053)) 13)) (-2630 (($ (-578 (-578 $))) 48)) (-1313 (($ $ (-501)) 39) (($ $) 42)) (-3460 (((-1053) $) NIL)) (-2915 (($ $ $) 122)) (-3089 (($ $) 135) (($ $ $) 136) (($ $ $ $) 137)) (-4095 (((-107) $) 98)) (-3712 (($ $ (-578 $)) 102) (($ $ $ $) 103)) (-2974 (($ (-501)) 36)) (-2696 (((-501) $) 31) (((-501)) 34)) (-2831 (($ $ $) 37) (($ (-578 $)) 75)) (-3708 (((-1018) $) NIL)) (-3694 (($ $ $) 91)) (-3122 (($) 12)) (-2007 (($ $ (-578 $)) 99)) (-1293 (($ $) 108) (($ $ (-701)) 112)) (-3040 (($ $ $) 88)) (-2596 (($ $ (-701)) 128)) (-3883 (($ (-578 $)) 51)) (-3691 (((-786) $) 18)) (-2896 (($ $ (-501)) 38) (($ $) 41)) (-3348 (($ $) 58) (($ (-578 $)) 59)) (-3910 (($ $) 56) (($ (-578 $)) 57)) (-1831 (($ $) 115)) (-1757 (($ (-578 $)) 55)) (-1299 (($ $ $) 97)) (-1278 (($ $ $) 121)) (-1280 (($ $ $) 92)) (-3775 (($ $ $) 77)) (-3686 (($ $ $) 95) (($ $) 96)) (-3778 (($ $ $) 81)) (-3768 (($ $ $) 79)) (-3751 (((-107) $ $) 15) (($ $ $) 16)) (-3773 (($ $ $) 80)) (-3762 (($ $ $) 78)) (-3803 (($ $ $) 86)) (-3797 (($ $ $) 83) (($ $) 84)) (-3790 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-786) (-13 (-1001) (-10 -8 (-15 -3802 ((-1154) $)) (-15 -3535 ($ (-1053))) (-15 -2662 ((-1154) (-1053))) (-15 -3317 ($ (-501))) (-15 -3317 ($ (-1070))) (-15 -3317 ($ (-1053))) (-15 -3317 ($ (-199))) (-15 -3122 ($)) (-15 -1783 ((-501) $)) (-15 -2696 ((-501) $)) (-15 -1783 ((-501))) (-15 -2696 ((-501))) (-15 -2049 ((-501) $)) (-15 -4017 ((-501) $)) (-15 -2974 ($ (-501))) (-15 -3030 ($ (-501))) (-15 -2228 ($ (-501) (-501))) (-15 -1313 ($ $ (-501))) (-15 -1320 ($ $ (-501))) (-15 -2896 ($ $ (-501))) (-15 -1313 ($ $)) (-15 -1320 ($ $)) (-15 -2896 ($ $)) (-15 -2831 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -2831 ($ (-578 $))) (-15 -3919 ($ (-578 $))) (-15 -2995 ($ $ (-578 $))) (-15 -3712 ($ $ (-578 $))) (-15 -3712 ($ $ $ $)) (-15 -2192 ($ $ $)) (-15 -4095 ((-107) $)) (-15 -2007 ($ $ (-578 $))) (-15 -2011 ($ $)) (-15 -2915 ($ $ $)) (-15 -1831 ($ $)) (-15 -2630 ($ (-578 (-578 $)))) (-15 -4134 ($ $ $)) (-15 -2833 ($ $)) (-15 -2833 ($ $ $)) (-15 -2736 ($ $ $)) (-15 -1703 ($ $ $)) (-15 -1278 ($ $ $)) (-15 -2086 ($ $ $)) (-15 -2596 ($ $ (-701))) (-15 -1299 ($ $ $)) (-15 -3606 ($ $ $)) (-15 -2132 ($ $ $)) (-15 -3411 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -4147 ($ $ (-578 $))) (-15 -1347 ($ $ (-578 $))) (-15 -3911 ($ $)) (-15 -1293 ($ $)) (-15 -1293 ($ $ (-701))) (-15 -1451 ($ $)) (-15 -1451 ($ $ (-701))) (-15 -1499 ($ $)) (-15 -1207 ($ $ $)) (-15 -4063 ($ $)) (-15 -4063 ($ $ $)) (-15 -4063 ($ $ $ $)) (-15 -3215 ($ $)) (-15 -3215 ($ $ $)) (-15 -3215 ($ $ $ $)) (-15 -3089 ($ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $ $ $)) (-15 -3910 ($ $)) (-15 -3910 ($ (-578 $))) (-15 -3348 ($ $)) (-15 -3348 ($ (-578 $))) (-15 -2446 ($ $)) (-15 -2446 ($ (-578 $))) (-15 -2393 ($ (-578 $))) (-15 -3883 ($ (-578 $))) (-15 -3799 ($ (-578 $))) (-15 -1757 ($ (-578 $))) (-15 -3751 ($ $ $)) (-15 -3775 ($ $ $)) (-15 -3762 ($ $ $)) (-15 -3768 ($ $ $)) (-15 -3773 ($ $ $)) (-15 -3778 ($ $ $)) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $)) (-15 -3797 ($ $)) (-15 * ($ $ $)) (-15 -3803 ($ $ $)) (-15 ** ($ $ $)) (-15 -3040 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -3694 ($ $ $)) (-15 -1280 ($ $ $)) (-15 -4057 ($ $ $)) (-15 -3031 ($ $)) (-15 -3686 ($ $ $)) (-15 -3686 ($ $))))) (T -786)) -((-3802 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-786)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-786)))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-786)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-786)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-786)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-786)))) (-3122 (*1 *1) (-5 *1 (-786))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-1783 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2696 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-3030 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2228 (*1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-1313 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-1320 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-1313 (*1 *1 *1) (-5 *1 (-786))) (-1320 (*1 *1 *1) (-5 *1 (-786))) (-2896 (*1 *1 *1) (-5 *1 (-786))) (-2831 (*1 *1 *1 *1) (-5 *1 (-786))) (-3919 (*1 *1 *1 *1) (-5 *1 (-786))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3919 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-2995 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3712 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3712 (*1 *1 *1 *1 *1) (-5 *1 (-786))) (-2192 (*1 *1 *1 *1) (-5 *1 (-786))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-786)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-2011 (*1 *1 *1) (-5 *1 (-786))) (-2915 (*1 *1 *1 *1) (-5 *1 (-786))) (-1831 (*1 *1 *1) (-5 *1 (-786))) (-2630 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-786)))) (-5 *1 (-786)))) (-4134 (*1 *1 *1 *1) (-5 *1 (-786))) (-2833 (*1 *1 *1) (-5 *1 (-786))) (-2833 (*1 *1 *1 *1) (-5 *1 (-786))) (-2736 (*1 *1 *1 *1) (-5 *1 (-786))) (-1703 (*1 *1 *1 *1) (-5 *1 (-786))) (-1278 (*1 *1 *1 *1) (-5 *1 (-786))) (-2086 (*1 *1 *1 *1) (-5 *1 (-786))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) (-1299 (*1 *1 *1 *1) (-5 *1 (-786))) (-3606 (*1 *1 *1 *1) (-5 *1 (-786))) (-2132 (*1 *1 *1 *1) (-5 *1 (-786))) (-3411 (*1 *1 *1 *1) (-5 *1 (-786))) (-3062 (*1 *1 *1 *1) (-5 *1 (-786))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-1347 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3911 (*1 *1 *1) (-5 *1 (-786))) (-1293 (*1 *1 *1) (-5 *1 (-786))) (-1293 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) (-1451 (*1 *1 *1) (-5 *1 (-786))) (-1451 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) (-1499 (*1 *1 *1) (-5 *1 (-786))) (-1207 (*1 *1 *1 *1) (-5 *1 (-786))) (-4063 (*1 *1 *1) (-5 *1 (-786))) (-4063 (*1 *1 *1 *1) (-5 *1 (-786))) (-4063 (*1 *1 *1 *1 *1) (-5 *1 (-786))) (-3215 (*1 *1 *1) (-5 *1 (-786))) (-3215 (*1 *1 *1 *1) (-5 *1 (-786))) (-3215 (*1 *1 *1 *1 *1) (-5 *1 (-786))) (-3089 (*1 *1 *1) (-5 *1 (-786))) (-3089 (*1 *1 *1 *1) (-5 *1 (-786))) (-3089 (*1 *1 *1 *1 *1) (-5 *1 (-786))) (-3910 (*1 *1 *1) (-5 *1 (-786))) (-3910 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3348 (*1 *1 *1) (-5 *1 (-786))) (-3348 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-2446 (*1 *1 *1) (-5 *1 (-786))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3799 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-1757 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3751 (*1 *1 *1 *1) (-5 *1 (-786))) (-3775 (*1 *1 *1 *1) (-5 *1 (-786))) (-3762 (*1 *1 *1 *1) (-5 *1 (-786))) (-3768 (*1 *1 *1 *1) (-5 *1 (-786))) (-3773 (*1 *1 *1 *1) (-5 *1 (-786))) (-3778 (*1 *1 *1 *1) (-5 *1 (-786))) (-3790 (*1 *1 *1 *1) (-5 *1 (-786))) (-3797 (*1 *1 *1 *1) (-5 *1 (-786))) (-3797 (*1 *1 *1) (-5 *1 (-786))) (* (*1 *1 *1 *1) (-5 *1 (-786))) (-3803 (*1 *1 *1 *1) (-5 *1 (-786))) (** (*1 *1 *1 *1) (-5 *1 (-786))) (-3040 (*1 *1 *1 *1) (-5 *1 (-786))) (-3023 (*1 *1 *1 *1) (-5 *1 (-786))) (-3034 (*1 *1 *1 *1) (-5 *1 (-786))) (-3694 (*1 *1 *1 *1) (-5 *1 (-786))) (-1280 (*1 *1 *1 *1) (-5 *1 (-786))) (-4057 (*1 *1 *1 *1) (-5 *1 (-786))) (-3031 (*1 *1 *1) (-5 *1 (-786))) (-3686 (*1 *1 *1 *1) (-5 *1 (-786))) (-3686 (*1 *1 *1) (-5 *1 (-786)))) -(-13 (-1001) (-10 -8 (-15 -3802 ((-1154) $)) (-15 -3535 ($ (-1053))) (-15 -2662 ((-1154) (-1053))) (-15 -3317 ($ (-501))) (-15 -3317 ($ (-1070))) (-15 -3317 ($ (-1053))) (-15 -3317 ($ (-199))) (-15 -3122 ($)) (-15 -1783 ((-501) $)) (-15 -2696 ((-501) $)) (-15 -1783 ((-501))) (-15 -2696 ((-501))) (-15 -2049 ((-501) $)) (-15 -4017 ((-501) $)) (-15 -2974 ($ (-501))) (-15 -3030 ($ (-501))) (-15 -2228 ($ (-501) (-501))) (-15 -1313 ($ $ (-501))) (-15 -1320 ($ $ (-501))) (-15 -2896 ($ $ (-501))) (-15 -1313 ($ $)) (-15 -1320 ($ $)) (-15 -2896 ($ $)) (-15 -2831 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -2831 ($ (-578 $))) (-15 -3919 ($ (-578 $))) (-15 -2995 ($ $ (-578 $))) (-15 -3712 ($ $ (-578 $))) (-15 -3712 ($ $ $ $)) (-15 -2192 ($ $ $)) (-15 -4095 ((-107) $)) (-15 -2007 ($ $ (-578 $))) (-15 -2011 ($ $)) (-15 -2915 ($ $ $)) (-15 -1831 ($ $)) (-15 -2630 ($ (-578 (-578 $)))) (-15 -4134 ($ $ $)) (-15 -2833 ($ $)) (-15 -2833 ($ $ $)) (-15 -2736 ($ $ $)) (-15 -1703 ($ $ $)) (-15 -1278 ($ $ $)) (-15 -2086 ($ $ $)) (-15 -2596 ($ $ (-701))) (-15 -1299 ($ $ $)) (-15 -3606 ($ $ $)) (-15 -2132 ($ $ $)) (-15 -3411 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -4147 ($ $ (-578 $))) (-15 -1347 ($ $ (-578 $))) (-15 -3911 ($ $)) (-15 -1293 ($ $)) (-15 -1293 ($ $ (-701))) (-15 -1451 ($ $)) (-15 -1451 ($ $ (-701))) (-15 -1499 ($ $)) (-15 -1207 ($ $ $)) (-15 -4063 ($ $)) (-15 -4063 ($ $ $)) (-15 -4063 ($ $ $ $)) (-15 -3215 ($ $)) (-15 -3215 ($ $ $)) (-15 -3215 ($ $ $ $)) (-15 -3089 ($ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $ $ $)) (-15 -3910 ($ $)) (-15 -3910 ($ (-578 $))) (-15 -3348 ($ $)) (-15 -3348 ($ (-578 $))) (-15 -2446 ($ $)) (-15 -2446 ($ (-578 $))) (-15 -2393 ($ (-578 $))) (-15 -3883 ($ (-578 $))) (-15 -3799 ($ (-578 $))) (-15 -1757 ($ (-578 $))) (-15 -3751 ($ $ $)) (-15 -3775 ($ $ $)) (-15 -3762 ($ $ $)) (-15 -3768 ($ $ $)) (-15 -3773 ($ $ $)) (-15 -3778 ($ $ $)) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $)) (-15 -3797 ($ $)) (-15 * ($ $ $)) (-15 -3803 ($ $ $)) (-15 ** ($ $ $)) (-15 -3040 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -3694 ($ $ $)) (-15 -1280 ($ $ $)) (-15 -4057 ($ $ $)) (-15 -3031 ($ $)) (-15 -3686 ($ $ $)) (-15 -3686 ($ $)))) -((-3736 (((-107) $ $) NIL)) (-3484 (((-3 $ "failed") (-1070)) 32)) (-3796 (((-701)) 30)) (-2890 (($) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3104 (((-839) $) 28)) (-3460 (((-1053) $) 38)) (-3506 (($ (-839)) 27)) (-3708 (((-1018) $) NIL)) (-1248 (((-1070) $) 13) (((-490) $) 19) (((-810 (-346)) $) 25) (((-810 (-501)) $) 22)) (-3691 (((-786) $) 16)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 35)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 34))) -(((-787 |#1|) (-13 (-771) (-556 (-1070)) (-556 (-490)) (-556 (-810 (-346))) (-556 (-810 (-501))) (-10 -8 (-15 -3484 ((-3 $ "failed") (-1070))))) (-578 (-1070))) (T -787)) -((-3484 (*1 *1 *2) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-787 *3)) (-14 *3 (-578 *2))))) -(-13 (-771) (-556 (-1070)) (-556 (-490)) (-556 (-810 (-346))) (-556 (-810 (-501))) (-10 -8 (-15 -3484 ((-3 $ "failed") (-1070))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (((-866 |#1|) $) NIL) (($ (-866 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-156)))) (-3965 (((-701)) NIL)) (-1333 (((-1154) (-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) -(((-788 |#1| |#2| |#3| |#4|) (-13 (-959) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -3691 ((-866 |#1|) $)) (-15 -3691 ($ (-866 |#1|))) (IF (|has| |#1| (-331)) (-15 -3803 ((-3 $ "failed") $ $)) |noBranch|) (-15 -1333 ((-1154) (-701))))) (-959) (-578 (-1070)) (-578 (-701)) (-701)) (T -788)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-866 *3)) (-5 *1 (-788 *3 *4 *5 *6)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))) (-14 *5 (-578 (-701))) (-14 *6 (-701)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-5 *1 (-788 *3 *4 *5 *6)) (-14 *4 (-578 (-1070))) (-14 *5 (-578 (-701))) (-14 *6 (-701)))) (-3803 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-788 *2 *3 *4 *5)) (-4 *2 (-331)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-701))) (-14 *5 (-701)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-788 *4 *5 *6 *7)) (-4 *4 (-959)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 *3)) (-14 *7 *3)))) -(-13 (-959) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -3691 ((-866 |#1|) $)) (-15 -3691 ($ (-866 |#1|))) (IF (|has| |#1| (-331)) (-15 -3803 ((-3 $ "failed") $ $)) |noBranch|) (-15 -1333 ((-1154) (-701))))) -((-1752 (((-3 (-157 |#3|) "failed") (-701) (-701) |#2| |#2|) 31)) (-2797 (((-3 (-375 |#3|) "failed") (-701) (-701) |#2| |#2|) 24))) -(((-789 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-3 (-375 |#3|) "failed") (-701) (-701) |#2| |#2|)) (-15 -1752 ((-3 (-157 |#3|) "failed") (-701) (-701) |#2| |#2|))) (-331) (-1142 |#1|) (-1125 |#1|)) (T -789)) -((-1752 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-4 *5 (-331)) (-5 *2 (-157 *6)) (-5 *1 (-789 *5 *4 *6)) (-4 *4 (-1142 *5)) (-4 *6 (-1125 *5)))) (-2797 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-4 *5 (-331)) (-5 *2 (-375 *6)) (-5 *1 (-789 *5 *4 *6)) (-4 *4 (-1142 *5)) (-4 *6 (-1125 *5))))) -(-10 -7 (-15 -2797 ((-3 (-375 |#3|) "failed") (-701) (-701) |#2| |#2|)) (-15 -1752 ((-3 (-157 |#3|) "failed") (-701) (-701) |#2| |#2|))) -((-2797 (((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|)) 28) (((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) 26))) -(((-790 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) (-15 -2797 ((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|)))) (-331) (-1070) |#1|) (T -790)) -((-2797 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-701)) (-5 *4 (-1139 *5 *6 *7)) (-4 *5 (-331)) (-14 *6 (-1070)) (-14 *7 *5) (-5 *2 (-375 (-1118 *6 *5))) (-5 *1 (-790 *5 *6 *7)))) (-2797 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-5 *4 (-1139 *5 *6 *7)) (-4 *5 (-331)) (-14 *6 (-1070)) (-14 *7 *5) (-5 *2 (-375 (-1118 *6 *5))) (-5 *1 (-790 *5 *6 *7))))) -(-10 -7 (-15 -2797 ((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) (-15 -2797 ((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $ (-501)) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2833 (($ (-1064 (-501)) (-501)) NIL)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-1529 (($ $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-3169 (((-701) $) NIL)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3121 (((-501)) NIL)) (-2443 (((-501) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3718 (($ $ (-501)) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3960 (((-1048 (-501)) $) NIL)) (-1267 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-2391 (((-501) $ (-501)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL))) -(((-791 |#1|) (-792 |#1|) (-501)) (T -791)) -NIL -(-792 |#1|) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3743 (($ $ (-501)) 62)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-2833 (($ (-1064 (-501)) (-501)) 61)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-1529 (($ $) 64)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-3169 (((-701) $) 69)) (-1355 (((-107) $) 31)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-3121 (((-501)) 66)) (-2443 (((-501) $) 65)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3718 (($ $ (-501)) 68)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-3960 (((-1048 (-501)) $) 70)) (-1267 (($ $) 67)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-2391 (((-501) $ (-501)) 63)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-792 |#1|) (-1180) (-501)) (T -792)) -((-3960 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-1048 (-501))))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-701)))) (-3718 (*1 *1 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) (-1267 (*1 *1 *1) (-4 *1 (-792 *2))) (-3121 (*1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) (-1529 (*1 *1 *1) (-4 *1 (-792 *2))) (-2391 (*1 *2 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) (-3743 (*1 *1 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) (-2833 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *3 (-501)) (-4 *1 (-792 *4))))) -(-13 (-276) (-134) (-10 -8 (-15 -3960 ((-1048 (-501)) $)) (-15 -3169 ((-701) $)) (-15 -3718 ($ $ (-501))) (-15 -1267 ($ $)) (-15 -3121 ((-501))) (-15 -2443 ((-501) $)) (-15 -1529 ($ $)) (-15 -2391 ((-501) $ (-501))) (-15 -3743 ($ $ (-501))) (-15 -2833 ($ (-1064 (-501)) (-501))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-276) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-791 |#1|) $) NIL (|has| (-791 |#1|) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-791 |#1|) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-791 |#1|) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-791 |#1|) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-791 |#1|) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-791 |#1|) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-791 |#1|) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-791 |#1|) (-950 (-501))))) (-3490 (((-791 |#1|) $) NIL) (((-1070) $) NIL (|has| (-791 |#1|) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-791 |#1|) (-950 (-501)))) (((-501) $) NIL (|has| (-791 |#1|) (-950 (-501))))) (-1574 (($ $) NIL) (($ (-501) $) NIL)) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-791 |#1|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-791 |#1|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-791 |#1|))) (|:| |vec| (-1148 (-791 |#1|)))) (-621 $) (-1148 $)) NIL) (((-621 (-791 |#1|)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-791 |#1|) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-791 |#1|) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-791 |#1|) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-791 |#1|) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-791 |#1|) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-791 |#1|) (-1046)))) (-4067 (((-107) $) NIL (|has| (-791 |#1|) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-791 |#1|) (-777)))) (-1323 (($ $ $) NIL (|has| (-791 |#1|) (-777)))) (-1212 (($ (-1 (-791 |#1|) (-791 |#1|)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-791 |#1|) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-791 |#1|) (-276)))) (-3383 (((-791 |#1|) $) NIL (|has| (-791 |#1|) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-791 |#1|) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-791 |#1|) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-791 |#1|)) (-578 (-791 |#1|))) NIL (|has| (-791 |#1|) (-278 (-791 |#1|)))) (($ $ (-791 |#1|) (-791 |#1|)) NIL (|has| (-791 |#1|) (-278 (-791 |#1|)))) (($ $ (-262 (-791 |#1|))) NIL (|has| (-791 |#1|) (-278 (-791 |#1|)))) (($ $ (-578 (-262 (-791 |#1|)))) NIL (|has| (-791 |#1|) (-278 (-791 |#1|)))) (($ $ (-578 (-1070)) (-578 (-791 |#1|))) NIL (|has| (-791 |#1|) (-476 (-1070) (-791 |#1|)))) (($ $ (-1070) (-791 |#1|)) NIL (|has| (-791 |#1|) (-476 (-1070) (-791 |#1|))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-791 |#1|)) NIL (|has| (-791 |#1|) (-256 (-791 |#1|) (-791 |#1|))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-791 |#1|) (-206))) (($ $ (-701)) NIL (|has| (-791 |#1|) (-206))) (($ $ (-1070)) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-1 (-791 |#1|) (-791 |#1|)) (-701)) NIL) (($ $ (-1 (-791 |#1|) (-791 |#1|))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-791 |#1|) $) NIL)) (-1248 (((-810 (-501)) $) NIL (|has| (-791 |#1|) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-791 |#1|) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-791 |#1|) (-556 (-490)))) (((-346) $) NIL (|has| (-791 |#1|) (-933))) (((-199) $) NIL (|has| (-791 |#1|) (-933)))) (-2672 (((-157 (-375 (-501))) $) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-791 |#1|) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-791 |#1|)) NIL) (($ (-1070)) NIL (|has| (-791 |#1|) (-950 (-1070))))) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-791 |#1|) (-830))) (|has| (-791 |#1|) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-791 |#1|) $) NIL (|has| (-791 |#1|) (-500)))) (-2442 (((-107) $ $) NIL)) (-2391 (((-375 (-501)) $ (-501)) NIL)) (-1720 (($ $) NIL (|has| (-791 |#1|) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-791 |#1|) (-206))) (($ $ (-701)) NIL (|has| (-791 |#1|) (-206))) (($ $ (-1070)) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-1 (-791 |#1|) (-791 |#1|)) (-701)) NIL) (($ $ (-1 (-791 |#1|) (-791 |#1|))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-791 |#1|) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-791 |#1|) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-791 |#1|) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-791 |#1|) (-777)))) (-3803 (($ $ $) NIL) (($ (-791 |#1|) (-791 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-791 |#1|) $) NIL) (($ $ (-791 |#1|)) NIL))) -(((-793 |#1|) (-13 (-906 (-791 |#1|)) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $)))) (-501)) (T -793)) -((-2391 (*1 *2 *1 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-793 *4)) (-14 *4 *3) (-5 *3 (-501)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-793 *3)) (-14 *3 (-501)))) (-1574 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-14 *2 (-501)))) (-1574 (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-793 *3)) (-14 *3 *2)))) -(-13 (-906 (-791 |#1|)) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 ((|#2| $) NIL (|has| |#2| (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| |#2| (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| |#2| (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501))))) (-3490 ((|#2| $) NIL) (((-1070) $) NIL (|has| |#2| (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-501)))) (((-501) $) NIL (|has| |#2| (-950 (-501))))) (-1574 (($ $) 31) (($ (-501) $) 32)) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) 53)) (-2890 (($) NIL (|has| |#2| (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| |#2| (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| |#2| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| |#2| (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 ((|#2| $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#2| (-1046)))) (-4067 (((-107) $) NIL (|has| |#2| (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 49)) (-3746 (($) NIL (|has| |#2| (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| |#2| (-276)))) (-3383 ((|#2| $) NIL (|has| |#2| (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 |#2|) (-578 |#2|)) NIL (|has| |#2| (-278 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-278 |#2|))) (($ $ (-262 |#2|)) NIL (|has| |#2| (-278 |#2|))) (($ $ (-578 (-262 |#2|))) NIL (|has| |#2| (-278 |#2|))) (($ $ (-578 (-1070)) (-578 |#2|)) NIL (|has| |#2| (-476 (-1070) |#2|))) (($ $ (-1070) |#2|) NIL (|has| |#2| (-476 (-1070) |#2|)))) (-1864 (((-701) $) NIL)) (-2007 (($ $ |#2|) NIL (|has| |#2| (-256 |#2| |#2|)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| |#2| (-206))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3307 (($ $) NIL)) (-2949 ((|#2| $) NIL)) (-1248 (((-810 (-501)) $) NIL (|has| |#2| (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| |#2| (-556 (-810 (-346))))) (((-490) $) NIL (|has| |#2| (-556 (-490)))) (((-346) $) NIL (|has| |#2| (-933))) (((-199) $) NIL (|has| |#2| (-933)))) (-2672 (((-157 (-375 (-501))) $) 68)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3691 (((-786) $) 85) (($ (-501)) 19) (($ $) NIL) (($ (-375 (-501))) 24) (($ |#2|) 18) (($ (-1070)) NIL (|has| |#2| (-950 (-1070))))) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-2803 ((|#2| $) NIL (|has| |#2| (-500)))) (-2442 (((-107) $ $) NIL)) (-2391 (((-375 (-501)) $ (-501)) 60)) (-1720 (($ $) NIL (|has| |#2| (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 14 T CONST)) (-1925 (($) 16 T CONST)) (-3584 (($ $) NIL (|has| |#2| (-206))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) 35)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ $) 23) (($ |#2| |#2|) 54)) (-3797 (($ $) 39) (($ $ $) 41)) (-3790 (($ $ $) 37)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 50)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 42) (($ $ $) 44) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-794 |#1| |#2|) (-13 (-906 |#2|) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $)))) (-501) (-792 |#1|)) (T -794)) -((-2391 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-375 (-501))) (-5 *1 (-794 *4 *5)) (-5 *3 (-501)) (-4 *5 (-792 *4)))) (-2672 (*1 *2 *1) (-12 (-14 *3 (-501)) (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-794 *3 *4)) (-4 *4 (-792 *3)))) (-1574 (*1 *1 *1) (-12 (-14 *2 (-501)) (-5 *1 (-794 *2 *3)) (-4 *3 (-792 *2)))) (-1574 (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-14 *3 *2) (-5 *1 (-794 *3 *4)) (-4 *4 (-792 *3))))) -(-13 (-906 |#2|) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $)))) -((-3736 (((-107) $ $) NIL)) (-3052 (((-501) $) 15)) (-2580 (($ (-142)) 11)) (-3904 (($ (-142)) 12)) (-3460 (((-1053) $) NIL)) (-3531 (((-142) $) 13)) (-3708 (((-1018) $) NIL)) (-2742 (($ (-142)) 9)) (-3632 (($ (-142)) 8)) (-3691 (((-786) $) 23) (($ (-142)) 16)) (-3161 (($ (-142)) 10)) (-3751 (((-107) $ $) NIL))) -(((-795) (-13 (-1001) (-10 -8 (-15 -3632 ($ (-142))) (-15 -2742 ($ (-142))) (-15 -3161 ($ (-142))) (-15 -2580 ($ (-142))) (-15 -3904 ($ (-142))) (-15 -3531 ((-142) $)) (-15 -3052 ((-501) $)) (-15 -3691 ($ (-142)))))) (T -795)) -((-3632 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-2742 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-3161 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-3904 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-795)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795))))) -(-13 (-1001) (-10 -8 (-15 -3632 ($ (-142))) (-15 -2742 ($ (-142))) (-15 -3161 ($ (-142))) (-15 -2580 ($ (-142))) (-15 -3904 ($ (-142))) (-15 -3531 ((-142) $)) (-15 -3052 ((-501) $)) (-15 -3691 ($ (-142))))) -((-3691 (((-282 (-501)) (-375 (-866 (-47)))) 21) (((-282 (-501)) (-866 (-47))) 16))) -(((-796) (-10 -7 (-15 -3691 ((-282 (-501)) (-866 (-47)))) (-15 -3691 ((-282 (-501)) (-375 (-866 (-47))))))) (T -796)) -((-3691 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 (-47)))) (-5 *2 (-282 (-501))) (-5 *1 (-796)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-866 (-47))) (-5 *2 (-282 (-501))) (-5 *1 (-796))))) -(-10 -7 (-15 -3691 ((-282 (-501)) (-866 (-47)))) (-15 -3691 ((-282 (-501)) (-375 (-866 (-47)))))) -((-1212 (((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|)) 14))) -(((-797 |#1| |#2|) (-10 -7 (-15 -1212 ((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|)))) (-1104) (-1104)) (T -797)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-798 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-798 *6)) (-5 *1 (-797 *5 *6))))) -(-10 -7 (-15 -1212 ((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|)))) -((-1542 (($ |#1| |#1|) 8)) (-3698 ((|#1| $ (-701)) 10))) -(((-798 |#1|) (-10 -8 (-15 -1542 ($ |#1| |#1|)) (-15 -3698 (|#1| $ (-701)))) (-1104)) (T -798)) -((-3698 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-798 *2)) (-4 *2 (-1104)))) (-1542 (*1 *1 *2 *2) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1104))))) -(-10 -8 (-15 -1542 ($ |#1| |#1|)) (-15 -3698 (|#1| $ (-701)))) -((-1212 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 14))) -(((-799 |#1| |#2|) (-10 -7 (-15 -1212 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1104) (-1104)) (T -799)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6))))) -(-10 -7 (-15 -1212 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) -((-1542 (($ |#1| |#1| |#1|) 8)) (-3698 ((|#1| $ (-701)) 10))) -(((-800 |#1|) (-10 -8 (-15 -1542 ($ |#1| |#1| |#1|)) (-15 -3698 (|#1| $ (-701)))) (-1104)) (T -800)) -((-3698 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-800 *2)) (-4 *2 (-1104)))) (-1542 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1104))))) -(-10 -8 (-15 -1542 ($ |#1| |#1| |#1|)) (-15 -3698 (|#1| $ (-701)))) -((-1212 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 14))) -(((-801 |#1| |#2|) (-10 -7 (-15 -1212 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1104) (-1104)) (T -801)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6))))) -(-10 -7 (-15 -1212 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) -((-2795 (($ |#1| |#1| |#1|) 8)) (-3698 ((|#1| $ (-701)) 10))) -(((-802 |#1|) (-10 -8 (-15 -2795 ($ |#1| |#1| |#1|)) (-15 -3698 (|#1| $ (-701)))) (-1104)) (T -802)) -((-3698 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-802 *2)) (-4 *2 (-1104)))) (-2795 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1104))))) -(-10 -8 (-15 -2795 ($ |#1| |#1| |#1|)) (-15 -3698 (|#1| $ (-701)))) -((-3941 (((-1048 (-578 (-501))) (-578 (-501)) (-1048 (-578 (-501)))) 30)) (-3415 (((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501))) 26)) (-2802 (((-1048 (-578 (-501))) (-578 (-501))) 39) (((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501))) 38)) (-3393 (((-1048 (-578 (-501))) (-501)) 40)) (-3891 (((-1048 (-578 (-501))) (-501) (-501)) 22) (((-1048 (-578 (-501))) (-501)) 16) (((-1048 (-578 (-501))) (-501) (-501) (-501)) 12)) (-3110 (((-1048 (-578 (-501))) (-1048 (-578 (-501)))) 24)) (-3097 (((-578 (-501)) (-578 (-501))) 23))) -(((-803) (-10 -7 (-15 -3891 ((-1048 (-578 (-501))) (-501) (-501) (-501))) (-15 -3891 ((-1048 (-578 (-501))) (-501))) (-15 -3891 ((-1048 (-578 (-501))) (-501) (-501))) (-15 -3097 ((-578 (-501)) (-578 (-501)))) (-15 -3110 ((-1048 (-578 (-501))) (-1048 (-578 (-501))))) (-15 -3415 ((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501)))) (-15 -3941 ((-1048 (-578 (-501))) (-578 (-501)) (-1048 (-578 (-501))))) (-15 -2802 ((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501)))) (-15 -2802 ((-1048 (-578 (-501))) (-578 (-501)))) (-15 -3393 ((-1048 (-578 (-501))) (-501))))) (T -803)) -((-3393 (*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501))))) (-2802 (*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501))))) (-3941 (*1 *2 *3 *2) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *3 (-578 (-501))) (-5 *1 (-803)))) (-3415 (*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501))))) (-3110 (*1 *2 *2) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)))) (-3097 (*1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-803)))) (-3891 (*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))) (-3891 (*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))) (-3891 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501))))) -(-10 -7 (-15 -3891 ((-1048 (-578 (-501))) (-501) (-501) (-501))) (-15 -3891 ((-1048 (-578 (-501))) (-501))) (-15 -3891 ((-1048 (-578 (-501))) (-501) (-501))) (-15 -3097 ((-578 (-501)) (-578 (-501)))) (-15 -3110 ((-1048 (-578 (-501))) (-1048 (-578 (-501))))) (-15 -3415 ((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501)))) (-15 -3941 ((-1048 (-578 (-501))) (-578 (-501)) (-1048 (-578 (-501))))) (-15 -2802 ((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501)))) (-15 -2802 ((-1048 (-578 (-501))) (-578 (-501)))) (-15 -3393 ((-1048 (-578 (-501))) (-501)))) -((-1248 (((-810 (-346)) $) 9 (|has| |#1| (-556 (-810 (-346))))) (((-810 (-501)) $) 8 (|has| |#1| (-556 (-810 (-501))))))) -(((-804 |#1|) (-1180) (-1104)) (T -804)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-556 (-810 (-501)))) (-6 (-556 (-810 (-501)))) |noBranch|) (IF (|has| |t#1| (-556 (-810 (-346)))) (-6 (-556 (-810 (-346)))) |noBranch|))) -(((-556 (-810 (-346))) |has| |#1| (-556 (-810 (-346)))) ((-556 (-810 (-501))) |has| |#1| (-556 (-810 (-501))))) -((-3736 (((-107) $ $) NIL)) (-3634 (($) 14)) (-1518 (($ (-808 |#1| |#2|) (-808 |#1| |#3|)) 27)) (-2826 (((-808 |#1| |#3|) $) 16)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2526 (((-107) $) 22)) (-4142 (($) 19)) (-3691 (((-786) $) 30)) (-3905 (((-808 |#1| |#2|) $) 15)) (-3751 (((-107) $ $) 25))) -(((-805 |#1| |#2| |#3|) (-13 (-1001) (-10 -8 (-15 -2526 ((-107) $)) (-15 -4142 ($)) (-15 -3634 ($)) (-15 -1518 ($ (-808 |#1| |#2|) (-808 |#1| |#3|))) (-15 -3905 ((-808 |#1| |#2|) $)) (-15 -2826 ((-808 |#1| |#3|) $)))) (-1001) (-1001) (-601 |#2|)) (T -805)) -((-2526 (*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4)))) (-4142 (*1 *1) (-12 (-4 *3 (-1001)) (-5 *1 (-805 *2 *3 *4)) (-4 *2 (-1001)) (-4 *4 (-601 *3)))) (-3634 (*1 *1) (-12 (-4 *3 (-1001)) (-5 *1 (-805 *2 *3 *4)) (-4 *2 (-1001)) (-4 *4 (-601 *3)))) (-1518 (*1 *1 *2 *3) (-12 (-5 *2 (-808 *4 *5)) (-5 *3 (-808 *4 *6)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-601 *5)) (-5 *1 (-805 *4 *5 *6)))) (-3905 (*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-808 *3 *4)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4)))) (-2826 (*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-808 *3 *5)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4))))) -(-13 (-1001) (-10 -8 (-15 -2526 ((-107) $)) (-15 -4142 ($)) (-15 -3634 ($)) (-15 -1518 ($ (-808 |#1| |#2|) (-808 |#1| |#3|))) (-15 -3905 ((-808 |#1| |#2|) $)) (-15 -2826 ((-808 |#1| |#3|) $)))) -((-3736 (((-107) $ $) 7)) (-3809 (((-808 |#1| $) $ (-810 |#1|) (-808 |#1| $)) 13)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6))) -(((-806 |#1|) (-1180) (-1001)) (T -806)) -((-3809 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-808 *4 *1)) (-5 *3 (-810 *4)) (-4 *1 (-806 *4)) (-4 *4 (-1001))))) -(-13 (-1001) (-10 -8 (-15 -3809 ((-808 |t#1| $) $ (-810 |t#1|) (-808 |t#1| $))))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3109 (((-107) (-578 |#2|) |#3|) 22) (((-107) |#2| |#3|) 17)) (-4101 (((-808 |#1| |#2|) |#2| |#3|) 42 (-12 (-3031 (|has| |#2| (-950 (-1070)))) (-3031 (|has| |#2| (-959))))) (((-578 (-262 (-866 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-959)) (-3031 (|has| |#2| (-950 (-1070)))))) (((-578 (-262 |#2|)) |#2| |#3|) 34 (|has| |#2| (-950 (-1070)))) (((-805 |#1| |#2| (-578 |#2|)) (-578 |#2|) |#3|) 20))) -(((-807 |#1| |#2| |#3|) (-10 -7 (-15 -3109 ((-107) |#2| |#3|)) (-15 -3109 ((-107) (-578 |#2|) |#3|)) (-15 -4101 ((-805 |#1| |#2| (-578 |#2|)) (-578 |#2|) |#3|)) (IF (|has| |#2| (-950 (-1070))) (-15 -4101 ((-578 (-262 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-959)) (-15 -4101 ((-578 (-262 (-866 |#2|))) |#2| |#3|)) (-15 -4101 ((-808 |#1| |#2|) |#2| |#3|))))) (-1001) (-806 |#1|) (-556 (-810 |#1|))) (T -807)) -((-4101 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-808 *5 *3)) (-5 *1 (-807 *5 *3 *4)) (-3031 (-4 *3 (-950 (-1070)))) (-3031 (-4 *3 (-959))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) (-4101 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-578 (-262 (-866 *3)))) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-959)) (-3031 (-4 *3 (-950 (-1070)))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) (-4101 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-578 (-262 *3))) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-950 (-1070))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) (-4101 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *6 (-806 *5)) (-5 *2 (-805 *5 *6 (-578 *6))) (-5 *1 (-807 *5 *6 *4)) (-5 *3 (-578 *6)) (-4 *4 (-556 (-810 *5))))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-4 *6 (-806 *5)) (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-807 *5 *6 *4)) (-4 *4 (-556 (-810 *5))))) (-3109 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5)))))) -(-10 -7 (-15 -3109 ((-107) |#2| |#3|)) (-15 -3109 ((-107) (-578 |#2|) |#3|)) (-15 -4101 ((-805 |#1| |#2| (-578 |#2|)) (-578 |#2|) |#3|)) (IF (|has| |#2| (-950 (-1070))) (-15 -4101 ((-578 (-262 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-959)) (-15 -4101 ((-578 (-262 (-866 |#2|))) |#2| |#3|)) (-15 -4101 ((-808 |#1| |#2|) |#2| |#3|))))) -((-3736 (((-107) $ $) NIL)) (-1442 (($ $ $) 37)) (-2218 (((-3 (-107) "failed") $ (-810 |#1|)) 34)) (-3634 (($) 11)) (-3460 (((-1053) $) NIL)) (-3745 (($ (-810 |#1|) |#2| $) 20)) (-3708 (((-1018) $) NIL)) (-2975 (((-3 |#2| "failed") (-810 |#1|) $) 48)) (-2526 (((-107) $) 14)) (-4142 (($) 12)) (-3770 (((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|))) $) 25)) (-3699 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|)))) 23)) (-3691 (((-786) $) 42)) (-4034 (($ (-810 |#1|) |#2| $ |#2|) 46)) (-2635 (($ (-810 |#1|) |#2| $) 45)) (-3751 (((-107) $ $) 39))) -(((-808 |#1| |#2|) (-13 (-1001) (-10 -8 (-15 -2526 ((-107) $)) (-15 -4142 ($)) (-15 -3634 ($)) (-15 -1442 ($ $ $)) (-15 -2975 ((-3 |#2| "failed") (-810 |#1|) $)) (-15 -2635 ($ (-810 |#1|) |#2| $)) (-15 -3745 ($ (-810 |#1|) |#2| $)) (-15 -4034 ($ (-810 |#1|) |#2| $ |#2|)) (-15 -3770 ((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|))) $)) (-15 -3699 ($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|))))) (-15 -2218 ((-3 (-107) "failed") $ (-810 |#1|))))) (-1001) (-1001)) (T -808)) -((-2526 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-4142 (*1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-3634 (*1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-1442 (*1 *1 *1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-2975 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-4 *2 (-1001)) (-5 *1 (-808 *4 *2)))) (-2635 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001)))) (-3745 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001)))) (-4034 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 *4)))) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 *4)))) (-4 *4 (-1001)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)))) (-2218 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-808 *4 *5)) (-4 *5 (-1001))))) -(-13 (-1001) (-10 -8 (-15 -2526 ((-107) $)) (-15 -4142 ($)) (-15 -3634 ($)) (-15 -1442 ($ $ $)) (-15 -2975 ((-3 |#2| "failed") (-810 |#1|) $)) (-15 -2635 ($ (-810 |#1|) |#2| $)) (-15 -3745 ($ (-810 |#1|) |#2| $)) (-15 -4034 ($ (-810 |#1|) |#2| $ |#2|)) (-15 -3770 ((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|))) $)) (-15 -3699 ($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|))))) (-15 -2218 ((-3 (-107) "failed") $ (-810 |#1|))))) -((-1212 (((-808 |#1| |#3|) (-1 |#3| |#2|) (-808 |#1| |#2|)) 21))) -(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -1212 ((-808 |#1| |#3|) (-1 |#3| |#2|) (-808 |#1| |#2|)))) (-1001) (-1001) (-1001)) (T -809)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-808 *5 *6)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-808 *5 *7)) (-5 *1 (-809 *5 *6 *7))))) -(-10 -7 (-15 -1212 ((-808 |#1| |#3|) (-1 |#3| |#2|) (-808 |#1| |#2|)))) -((-3736 (((-107) $ $) NIL)) (-1960 (($ $ (-578 (-50))) 62)) (-3800 (((-578 $) $) 116)) (-4004 (((-2 (|:| |var| (-578 (-1070))) (|:| |pred| (-50))) $) 22)) (-2494 (((-107) $) 29)) (-2340 (($ $ (-578 (-1070)) (-50)) 24)) (-2623 (($ $ (-578 (-50))) 61)) (-3765 (((-3 |#1| "failed") $) 59) (((-3 (-1070) "failed") $) 138)) (-3490 ((|#1| $) 55) (((-1070) $) NIL)) (-3647 (($ $) 106)) (-3083 (((-107) $) 45)) (-3623 (((-578 (-50)) $) 43)) (-1701 (($ (-1070) (-107) (-107) (-107)) 63)) (-1908 (((-3 (-578 $) "failed") (-578 $)) 70)) (-2779 (((-107) $) 48)) (-2243 (((-107) $) 47)) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) 34)) (-2671 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 41)) (-2000 (((-3 (-2 (|:| |val| $) (|:| -3027 $)) "failed") $) 81)) (-1285 (((-3 (-578 $) "failed") $) 31)) (-1816 (((-3 (-578 $) "failed") $ (-108)) 105) (((-3 (-2 (|:| -3996 (-108)) (|:| |arg| (-578 $))) "failed") $) 93)) (-2637 (((-3 (-578 $) "failed") $) 35)) (-2551 (((-3 (-2 (|:| |val| $) (|:| -3027 (-701))) "failed") $) 38)) (-2614 (((-107) $) 28)) (-3708 (((-1018) $) NIL)) (-1583 (((-107) $) 20)) (-3384 (((-107) $) 44)) (-1609 (((-578 (-50)) $) 109)) (-1528 (((-107) $) 46)) (-2007 (($ (-108) (-578 $)) 90)) (-3661 (((-701) $) 27)) (-3764 (($ $) 60)) (-1248 (($ (-578 $)) 57)) (-2490 (((-107) $) 25)) (-3691 (((-786) $) 50) (($ |#1|) 18) (($ (-1070)) 64)) (-2114 (($ $ (-50)) 108)) (-1850 (($) 89 T CONST)) (-1925 (($) 71 T CONST)) (-3751 (((-107) $ $) 77)) (-3803 (($ $ $) 98)) (-3790 (($ $ $) 102)) (** (($ $ (-701)) 97) (($ $ $) 51)) (* (($ $ $) 103))) -(((-810 |#1|) (-13 (-1001) (-950 |#1|) (-950 (-1070)) (-10 -8 (-15 0 ($) -3897) (-15 1 ($) -3897) (-15 -1285 ((-3 (-578 $) "failed") $)) (-15 -2948 ((-3 (-578 $) "failed") $)) (-15 -1816 ((-3 (-578 $) "failed") $ (-108))) (-15 -1816 ((-3 (-2 (|:| -3996 (-108)) (|:| |arg| (-578 $))) "failed") $)) (-15 -2551 ((-3 (-2 (|:| |val| $) (|:| -3027 (-701))) "failed") $)) (-15 -2671 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2637 ((-3 (-578 $) "failed") $)) (-15 -2000 ((-3 (-2 (|:| |val| $) (|:| -3027 $)) "failed") $)) (-15 -2007 ($ (-108) (-578 $))) (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-701))) (-15 ** ($ $ $)) (-15 -3803 ($ $ $)) (-15 -3661 ((-701) $)) (-15 -1248 ($ (-578 $))) (-15 -3764 ($ $)) (-15 -2614 ((-107) $)) (-15 -3083 ((-107) $)) (-15 -2494 ((-107) $)) (-15 -2490 ((-107) $)) (-15 -1528 ((-107) $)) (-15 -2243 ((-107) $)) (-15 -2779 ((-107) $)) (-15 -3384 ((-107) $)) (-15 -3623 ((-578 (-50)) $)) (-15 -2623 ($ $ (-578 (-50)))) (-15 -1960 ($ $ (-578 (-50)))) (-15 -1701 ($ (-1070) (-107) (-107) (-107))) (-15 -2340 ($ $ (-578 (-1070)) (-50))) (-15 -4004 ((-2 (|:| |var| (-578 (-1070))) (|:| |pred| (-50))) $)) (-15 -1583 ((-107) $)) (-15 -3647 ($ $)) (-15 -2114 ($ $ (-50))) (-15 -1609 ((-578 (-50)) $)) (-15 -3800 ((-578 $) $)) (-15 -1908 ((-3 (-578 $) "failed") (-578 $))))) (-1001)) (T -810)) -((-1850 (*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-1925 (*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-1285 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2948 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1816 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-578 (-810 *4))) (-5 *1 (-810 *4)) (-4 *4 (-1001)))) (-1816 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3996 (-108)) (|:| |arg| (-578 (-810 *3))))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2551 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-810 *3)) (|:| -3027 (-701)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2671 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-810 *3)) (|:| |den| (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2637 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2000 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-810 *3)) (|:| -3027 (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 (-810 *4))) (-5 *1 (-810 *4)) (-4 *4 (-1001)))) (-3790 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-3803 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3764 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2623 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1960 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1701 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-107)) (-5 *1 (-810 *4)) (-4 *4 (-1001)))) (-2340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-50)) (-5 *1 (-810 *4)) (-4 *4 (-1001)))) (-4004 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-578 (-1070))) (|:| |pred| (-50)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3647 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-2114 (*1 *1 *1 *2) (-12 (-5 *2 (-50)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1908 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(-13 (-1001) (-950 |#1|) (-950 (-1070)) (-10 -8 (-15 (-1850) ($) -3897) (-15 (-1925) ($) -3897) (-15 -1285 ((-3 (-578 $) "failed") $)) (-15 -2948 ((-3 (-578 $) "failed") $)) (-15 -1816 ((-3 (-578 $) "failed") $ (-108))) (-15 -1816 ((-3 (-2 (|:| -3996 (-108)) (|:| |arg| (-578 $))) "failed") $)) (-15 -2551 ((-3 (-2 (|:| |val| $) (|:| -3027 (-701))) "failed") $)) (-15 -2671 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2637 ((-3 (-578 $) "failed") $)) (-15 -2000 ((-3 (-2 (|:| |val| $) (|:| -3027 $)) "failed") $)) (-15 -2007 ($ (-108) (-578 $))) (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-701))) (-15 ** ($ $ $)) (-15 -3803 ($ $ $)) (-15 -3661 ((-701) $)) (-15 -1248 ($ (-578 $))) (-15 -3764 ($ $)) (-15 -2614 ((-107) $)) (-15 -3083 ((-107) $)) (-15 -2494 ((-107) $)) (-15 -2490 ((-107) $)) (-15 -1528 ((-107) $)) (-15 -2243 ((-107) $)) (-15 -2779 ((-107) $)) (-15 -3384 ((-107) $)) (-15 -3623 ((-578 (-50)) $)) (-15 -2623 ($ $ (-578 (-50)))) (-15 -1960 ($ $ (-578 (-50)))) (-15 -1701 ($ (-1070) (-107) (-107) (-107))) (-15 -2340 ($ $ (-578 (-1070)) (-50))) (-15 -4004 ((-2 (|:| |var| (-578 (-1070))) (|:| |pred| (-50))) $)) (-15 -1583 ((-107) $)) (-15 -3647 ($ $)) (-15 -2114 ($ $ (-50))) (-15 -1609 ((-578 (-50)) $)) (-15 -3800 ((-578 $) $)) (-15 -1908 ((-3 (-578 $) "failed") (-578 $))))) -((-4081 (((-810 |#1|) (-810 |#1|) (-578 (-1070)) (-1 (-107) (-578 |#2|))) 30) (((-810 |#1|) (-810 |#1|) (-578 (-1 (-107) |#2|))) 42) (((-810 |#1|) (-810 |#1|) (-1 (-107) |#2|)) 33)) (-2218 (((-107) (-578 |#2|) (-810 |#1|)) 39) (((-107) |#2| (-810 |#1|)) 35)) (-3666 (((-1 (-107) |#2|) (-810 |#1|)) 14)) (-2525 (((-578 |#2|) (-810 |#1|)) 23)) (-2114 (((-810 |#1|) (-810 |#1|) |#2|) 19))) -(((-811 |#1| |#2|) (-10 -7 (-15 -4081 ((-810 |#1|) (-810 |#1|) (-1 (-107) |#2|))) (-15 -4081 ((-810 |#1|) (-810 |#1|) (-578 (-1 (-107) |#2|)))) (-15 -4081 ((-810 |#1|) (-810 |#1|) (-578 (-1070)) (-1 (-107) (-578 |#2|)))) (-15 -3666 ((-1 (-107) |#2|) (-810 |#1|))) (-15 -2218 ((-107) |#2| (-810 |#1|))) (-15 -2218 ((-107) (-578 |#2|) (-810 |#1|))) (-15 -2114 ((-810 |#1|) (-810 |#1|) |#2|)) (-15 -2525 ((-578 |#2|) (-810 |#1|)))) (-1001) (-1104)) (T -811)) -((-2525 (*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-578 *5)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1104)))) (-2114 (*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1104)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *2 (-107)) (-5 *1 (-811 *5 *6)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-811 *5 *3)) (-4 *3 (-1104)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1104)))) (-4081 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-810 *5)) (-5 *3 (-578 (-1070))) (-5 *4 (-1 (-107) (-578 *6))) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *1 (-811 *5 *6)))) (-4081 (*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-5 *3 (-578 (-1 (-107) *5))) (-4 *4 (-1001)) (-4 *5 (-1104)) (-5 *1 (-811 *4 *5)))) (-4081 (*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1001)) (-4 *5 (-1104)) (-5 *1 (-811 *4 *5))))) -(-10 -7 (-15 -4081 ((-810 |#1|) (-810 |#1|) (-1 (-107) |#2|))) (-15 -4081 ((-810 |#1|) (-810 |#1|) (-578 (-1 (-107) |#2|)))) (-15 -4081 ((-810 |#1|) (-810 |#1|) (-578 (-1070)) (-1 (-107) (-578 |#2|)))) (-15 -3666 ((-1 (-107) |#2|) (-810 |#1|))) (-15 -2218 ((-107) |#2| (-810 |#1|))) (-15 -2218 ((-107) (-578 |#2|) (-810 |#1|))) (-15 -2114 ((-810 |#1|) (-810 |#1|) |#2|)) (-15 -2525 ((-578 |#2|) (-810 |#1|)))) -((-1212 (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)) 17))) -(((-812 |#1| |#2|) (-10 -7 (-15 -1212 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) (-1001) (-1001)) (T -812)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-810 *6)) (-5 *1 (-812 *5 *6))))) -(-10 -7 (-15 -1212 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) -((-3736 (((-107) $ $) NIL)) (-3514 (((-578 |#1|) $) 16)) (-3998 (((-107) $) 38)) (-3765 (((-3 (-606 |#1|) "failed") $) 41)) (-3490 (((-606 |#1|) $) 39)) (-1199 (($ $) 18)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-4139 (((-701) $) 45)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-606 |#1|) $) 17)) (-3691 (((-786) $) 37) (($ (-606 |#1|)) 21) (((-749 |#1|) $) 27) (($ |#1|) 20)) (-1925 (($) 8 T CONST)) (-1914 (((-578 (-606 |#1|)) $) 23)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 11)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 48))) -(((-813 |#1|) (-13 (-777) (-950 (-606 |#1|)) (-10 -8 (-15 1 ($) -3897) (-15 -3691 ((-749 |#1|) $)) (-15 -3691 ($ |#1|)) (-15 -1190 ((-606 |#1|) $)) (-15 -4139 ((-701) $)) (-15 -1914 ((-578 (-606 |#1|)) $)) (-15 -1199 ($ $)) (-15 -3998 ((-107) $)) (-15 -3514 ((-578 |#1|) $)))) (-777)) (T -813)) -((-1925 (*1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) (-3691 (*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777)))) (-1190 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-578 (-606 *3))) (-5 *1 (-813 *3)) (-4 *3 (-777)))) (-1199 (*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777))))) -(-13 (-777) (-950 (-606 |#1|)) (-10 -8 (-15 (-1925) ($) -3897) (-15 -3691 ((-749 |#1|) $)) (-15 -3691 ($ |#1|)) (-15 -1190 ((-606 |#1|) $)) (-15 -4139 ((-701) $)) (-15 -1914 ((-578 (-606 |#1|)) $)) (-15 -1199 ($ $)) (-15 -3998 ((-107) $)) (-15 -3514 ((-578 |#1|) $)))) -((-3417 ((|#1| |#1| |#1|) 19))) -(((-814 |#1| |#2|) (-10 -7 (-15 -3417 (|#1| |#1| |#1|))) (-1125 |#2|) (-959)) (T -814)) -((-3417 (*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-814 *2 *3)) (-4 *2 (-1125 *3))))) -(-10 -7 (-15 -3417 (|#1| |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1900 (((-948) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 13)) (-3751 (((-107) $ $) 6))) -(((-815) (-1180)) (T -815)) -((-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-815)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) (-1900 (*1 *2 *3) (-12 (-4 *1 (-815)) (-5 *3 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-948))))) -(-13 (-1001) (-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))))) (-15 -1900 ((-948) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))))))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-2166 ((|#1| |#1| (-701)) 23)) (-3836 (((-3 |#1| "failed") |#1| |#1|) 22)) (-1688 (((-3 (-2 (|:| -1313 |#1|) (|:| -1320 |#1|)) "failed") |#1| (-701) (-701)) 26) (((-578 |#1|) |#1|) 28))) -(((-816 |#1| |#2|) (-10 -7 (-15 -1688 ((-578 |#1|) |#1|)) (-15 -1688 ((-3 (-2 (|:| -1313 |#1|) (|:| -1320 |#1|)) "failed") |#1| (-701) (-701))) (-15 -3836 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2166 (|#1| |#1| (-701)))) (-1125 |#2|) (-331)) (T -816)) -((-2166 (*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-331)) (-5 *1 (-816 *2 *4)) (-4 *2 (-1125 *4)))) (-3836 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-331)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1125 *3)))) (-1688 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-701)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -1313 *3) (|:| -1320 *3))) (-5 *1 (-816 *3 *5)) (-4 *3 (-1125 *5)))) (-1688 (*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-816 *3 *4)) (-4 *3 (-1125 *4))))) -(-10 -7 (-15 -1688 ((-578 |#1|) |#1|)) (-15 -1688 ((-3 (-2 (|:| -1313 |#1|) (|:| -1320 |#1|)) "failed") |#1| (-701) (-701))) (-15 -3836 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2166 (|#1| |#1| (-701)))) -((-2778 (((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053)) 92) (((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053) (-199)) 87) (((-948) (-818) (-970)) 76) (((-948) (-818)) 77)) (-3492 (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818) (-970)) 50) (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818)) 52))) -(((-817) (-10 -7 (-15 -2778 ((-948) (-818))) (-15 -2778 ((-948) (-818) (-970))) (-15 -2778 ((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053) (-199))) (-15 -2778 ((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818) (-970))))) (T -817)) -((-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-817)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-817)))) (-2778 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-701)) (-5 *6 (-578 (-578 (-282 *3)))) (-5 *7 (-1053)) (-5 *5 (-578 (-282 (-346)))) (-5 *3 (-346)) (-5 *2 (-948)) (-5 *1 (-817)))) (-2778 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-701)) (-5 *6 (-578 (-578 (-282 *3)))) (-5 *7 (-1053)) (-5 *8 (-199)) (-5 *5 (-578 (-282 (-346)))) (-5 *3 (-346)) (-5 *2 (-948)) (-5 *1 (-817)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-817)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-948)) (-5 *1 (-817))))) -(-10 -7 (-15 -2778 ((-948) (-818))) (-15 -2778 ((-948) (-818) (-970))) (-15 -2778 ((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053) (-199))) (-15 -2778 ((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818) (-970)))) -((-3736 (((-107) $ $) NIL)) (-3490 (((-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))) $) 10)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 12) (($ (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 9)) (-3751 (((-107) $ $) NIL))) -(((-818) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))) $))))) (T -818)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-818)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *1 (-818)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *1 (-818))))) -(-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))) $)))) -((-2596 (($ $ |#2|) NIL) (($ $ (-578 |#2|)) 10) (($ $ |#2| (-701)) 12) (($ $ (-578 |#2|) (-578 (-701))) 15)) (-3584 (($ $ |#2|) 16) (($ $ (-578 |#2|)) 18) (($ $ |#2| (-701)) 19) (($ $ (-578 |#2|) (-578 (-701))) 21))) -(((-819 |#1| |#2|) (-10 -8 (-15 -3584 (|#1| |#1| (-578 |#2|) (-578 (-701)))) (-15 -3584 (|#1| |#1| |#2| (-701))) (-15 -3584 (|#1| |#1| (-578 |#2|))) (-15 -3584 (|#1| |#1| |#2|)) (-15 -2596 (|#1| |#1| (-578 |#2|) (-578 (-701)))) (-15 -2596 (|#1| |#1| |#2| (-701))) (-15 -2596 (|#1| |#1| (-578 |#2|))) (-15 -2596 (|#1| |#1| |#2|))) (-820 |#2|) (-1001)) (T -819)) -NIL -(-10 -8 (-15 -3584 (|#1| |#1| (-578 |#2|) (-578 (-701)))) (-15 -3584 (|#1| |#1| |#2| (-701))) (-15 -3584 (|#1| |#1| (-578 |#2|))) (-15 -3584 (|#1| |#1| |#2|)) (-15 -2596 (|#1| |#1| (-578 |#2|) (-578 (-701)))) (-15 -2596 (|#1| |#1| |#2| (-701))) (-15 -2596 (|#1| |#1| (-578 |#2|))) (-15 -2596 (|#1| |#1| |#2|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2596 (($ $ |#1|) 42) (($ $ (-578 |#1|)) 41) (($ $ |#1| (-701)) 40) (($ $ (-578 |#1|) (-578 (-701))) 39)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ |#1|) 38) (($ $ (-578 |#1|)) 37) (($ $ |#1| (-701)) 36) (($ $ (-578 |#1|) (-578 (-701))) 35)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-820 |#1|) (-1180) (-1001)) (T -820)) -((-2596 (*1 *1 *1 *2) (-12 (-4 *1 (-820 *2)) (-4 *2 (-1001)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-820 *3)) (-4 *3 (-1001)))) (-2596 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-820 *2)) (-4 *2 (-1001)))) (-2596 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-701))) (-4 *1 (-820 *4)) (-4 *4 (-1001)))) (-3584 (*1 *1 *1 *2) (-12 (-4 *1 (-820 *2)) (-4 *2 (-1001)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-820 *3)) (-4 *3 (-1001)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-820 *2)) (-4 *2 (-1001)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-701))) (-4 *1 (-820 *4)) (-4 *4 (-1001))))) -(-13 (-959) (-10 -8 (-15 -2596 ($ $ |t#1|)) (-15 -2596 ($ $ (-578 |t#1|))) (-15 -2596 ($ $ |t#1| (-701))) (-15 -2596 ($ $ (-578 |t#1|) (-578 (-701)))) (-15 -3584 ($ $ |t#1|)) (-15 -3584 ($ $ (-578 |t#1|))) (-15 -3584 ($ $ |t#1| (-701))) (-15 -3584 ($ $ (-578 |t#1|) (-578 (-701)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) 26)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-1896 (($ $ $) NIL (|has| $ (-6 -4168)))) (-2919 (($ $ $) NIL (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "left" $) NIL (|has| $ (-6 -4168))) (($ $ "right" $) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-1320 (($ $) 25)) (-2744 (($ |#1|) 12) (($ $ $) 17)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1313 (($ $) 23)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) 20)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) 29 (|has| |#1| (-1001))) (((-1091 |#1|) $) 9)) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 21 (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-821 |#1|) (-13 (-114 |#1|) (-10 -8 (-15 -2744 ($ |#1|)) (-15 -2744 ($ $ $)) (-15 -3691 ((-1091 |#1|) $)))) (-1001)) (T -821)) -((-2744 (*1 *1 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1001)))) (-2744 (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1001)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1091 *3)) (-5 *1 (-821 *3)) (-4 *3 (-1001))))) -(-13 (-114 |#1|) (-10 -8 (-15 -2744 ($ |#1|)) (-15 -2744 ($ $ $)) (-15 -3691 ((-1091 |#1|) $)))) -((-3736 (((-107) $ $) NIL)) (-2861 (((-578 $) (-578 $)) 75)) (-1417 (((-501) $) 58)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-3169 (((-701) $) 56)) (-3329 (((-997 |#1|) $ |#1|) 47)) (-1355 (((-107) $) NIL)) (-3729 (((-107) $) 61)) (-2176 (((-701) $) 59)) (-4033 (((-997 |#1|) $) 40)) (-4111 (($ $ $) NIL (-1405 (|has| |#1| (-336)) (|has| |#1| (-777))))) (-1323 (($ $ $) NIL (-1405 (|has| |#1| (-336)) (|has| |#1| (-777))))) (-2688 (((-2 (|:| |preimage| (-578 |#1|)) (|:| |image| (-578 |#1|))) $) 35)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 91)) (-3708 (((-1018) $) NIL)) (-3035 (((-997 |#1|) $) 97 (|has| |#1| (-336)))) (-3172 (((-107) $) 57)) (-3195 ((|#1| $ |#1|) 45)) (-2007 ((|#1| $ |#1|) 92)) (-1201 (((-701) $) 42)) (-2823 (($ (-578 (-578 |#1|))) 83)) (-2437 (((-886) $) 51)) (-3823 (($ (-578 |#1|)) 21)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3939 (($ (-578 (-578 |#1|))) 37)) (-1440 (($ (-578 (-578 |#1|))) 86)) (-1229 (($ (-578 |#1|)) 94)) (-3691 (((-786) $) 82) (($ (-578 (-578 |#1|))) 64) (($ (-578 |#1|)) 65)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 16 T CONST)) (-3778 (((-107) $ $) NIL (-1405 (|has| |#1| (-336)) (|has| |#1| (-777))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#1| (-336)) (|has| |#1| (-777))))) (-3751 (((-107) $ $) 43)) (-3773 (((-107) $ $) NIL (-1405 (|has| |#1| (-336)) (|has| |#1| (-777))))) (-3762 (((-107) $ $) 63)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ $ $) 22))) -(((-822 |#1|) (-13 (-824 |#1|) (-10 -8 (-15 -2688 ((-2 (|:| |preimage| (-578 |#1|)) (|:| |image| (-578 |#1|))) $)) (-15 -3939 ($ (-578 (-578 |#1|)))) (-15 -3691 ($ (-578 (-578 |#1|)))) (-15 -3691 ($ (-578 |#1|))) (-15 -1440 ($ (-578 (-578 |#1|)))) (-15 -1201 ((-701) $)) (-15 -4033 ((-997 |#1|) $)) (-15 -2437 ((-886) $)) (-15 -3169 ((-701) $)) (-15 -2176 ((-701) $)) (-15 -1417 ((-501) $)) (-15 -3172 ((-107) $)) (-15 -3729 ((-107) $)) (-15 -2861 ((-578 $) (-578 $))) (IF (|has| |#1| (-336)) (-15 -3035 ((-997 |#1|) $)) |noBranch|) (IF (|has| |#1| (-500)) (-15 -1229 ($ (-578 |#1|))) (IF (|has| |#1| (-336)) (-15 -1229 ($ (-578 |#1|))) |noBranch|)))) (-1001)) (T -822)) -((-2688 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-578 *3)) (|:| |image| (-578 *3)))) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) (-1201 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-2861 (*1 *2 *2) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-822 *3)) (-4 *3 (-336)) (-4 *3 (-1001)))) (-1229 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-822 *3))))) -(-13 (-824 |#1|) (-10 -8 (-15 -2688 ((-2 (|:| |preimage| (-578 |#1|)) (|:| |image| (-578 |#1|))) $)) (-15 -3939 ($ (-578 (-578 |#1|)))) (-15 -3691 ($ (-578 (-578 |#1|)))) (-15 -3691 ($ (-578 |#1|))) (-15 -1440 ($ (-578 (-578 |#1|)))) (-15 -1201 ((-701) $)) (-15 -4033 ((-997 |#1|) $)) (-15 -2437 ((-886) $)) (-15 -3169 ((-701) $)) (-15 -2176 ((-701) $)) (-15 -1417 ((-501) $)) (-15 -3172 ((-107) $)) (-15 -3729 ((-107) $)) (-15 -2861 ((-578 $) (-578 $))) (IF (|has| |#1| (-336)) (-15 -3035 ((-997 |#1|) $)) |noBranch|) (IF (|has| |#1| (-500)) (-15 -1229 ($ (-578 |#1|))) (IF (|has| |#1| (-336)) (-15 -1229 ($ (-578 |#1|))) |noBranch|)))) -((-2765 ((|#2| (-1037 |#1| |#2|)) 39))) -(((-823 |#1| |#2|) (-10 -7 (-15 -2765 (|#2| (-1037 |#1| |#2|)))) (-839) (-13 (-959) (-10 -7 (-6 (-4169 "*"))))) (T -823)) -((-2765 (*1 *2 *3) (-12 (-5 *3 (-1037 *4 *2)) (-14 *4 (-839)) (-4 *2 (-13 (-959) (-10 -7 (-6 (-4169 "*"))))) (-5 *1 (-823 *4 *2))))) -(-10 -7 (-15 -2765 (|#2| (-1037 |#1| |#2|)))) -((-3736 (((-107) $ $) 7)) (-2540 (($) 20 T CONST)) (-2174 (((-3 $ "failed") $) 16)) (-3329 (((-997 |#1|) $ |#1|) 35)) (-1355 (((-107) $) 19)) (-4111 (($ $ $) 33 (-1405 (|has| |#1| (-777)) (|has| |#1| (-336))))) (-1323 (($ $ $) 32 (-1405 (|has| |#1| (-777)) (|has| |#1| (-336))))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 27)) (-3708 (((-1018) $) 10)) (-3195 ((|#1| $ |#1|) 37)) (-2007 ((|#1| $ |#1|) 36)) (-2823 (($ (-578 (-578 |#1|))) 38)) (-3823 (($ (-578 |#1|)) 39)) (-3097 (($ $ $) 23)) (-2144 (($ $ $) 22)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-839)) 13) (($ $ (-701)) 17) (($ $ (-501)) 24)) (-1925 (($) 21 T CONST)) (-3778 (((-107) $ $) 30 (-1405 (|has| |#1| (-777)) (|has| |#1| (-336))))) (-3768 (((-107) $ $) 29 (-1405 (|has| |#1| (-777)) (|has| |#1| (-336))))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 31 (-1405 (|has| |#1| (-777)) (|has| |#1| (-336))))) (-3762 (((-107) $ $) 34)) (-3803 (($ $ $) 26)) (** (($ $ (-839)) 14) (($ $ (-701)) 18) (($ $ (-501)) 25)) (* (($ $ $) 15))) -(((-824 |#1|) (-1180) (-1001)) (T -824)) -((-3823 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-824 *3)))) (-2823 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-4 *1 (-824 *3)))) (-3195 (*1 *2 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1001)))) (-2007 (*1 *2 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1001)))) (-3329 (*1 *2 *1 *3) (-12 (-4 *1 (-824 *3)) (-4 *3 (-1001)) (-5 *2 (-997 *3)))) (-3762 (*1 *2 *1 *1) (-12 (-4 *1 (-824 *3)) (-4 *3 (-1001)) (-5 *2 (-107))))) -(-13 (-440) (-10 -8 (-15 -3823 ($ (-578 |t#1|))) (-15 -2823 ($ (-578 (-578 |t#1|)))) (-15 -3195 (|t#1| $ |t#1|)) (-15 -2007 (|t#1| $ |t#1|)) (-15 -3329 ((-997 |t#1|) $ |t#1|)) (-15 -3762 ((-107) $ $)) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-336)) (-6 (-777)) |noBranch|))) -(((-97) . T) ((-555 (-786)) . T) ((-440) . T) ((-657) . T) ((-777) -1405 (|has| |#1| (-777)) (|has| |#1| (-336))) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-1570 (((-578 (-578 (-701))) $) 106)) (-1254 (((-578 (-701)) (-822 |#1|) $) 128)) (-3847 (((-578 (-701)) (-822 |#1|) $) 129)) (-1382 (((-578 (-822 |#1|)) $) 96)) (-2890 (((-822 |#1|) $ (-501)) 101) (((-822 |#1|) $) 102)) (-2862 (($ (-578 (-822 |#1|))) 108)) (-3169 (((-701) $) 103)) (-4143 (((-997 (-997 |#1|)) $) 126)) (-3329 (((-997 |#1|) $ |#1|) 119) (((-997 (-997 |#1|)) $ (-997 |#1|)) 137) (((-997 (-578 |#1|)) $ (-578 |#1|)) 140)) (-4033 (((-997 |#1|) $) 99)) (-2211 (((-107) (-822 |#1|) $) 90)) (-3460 (((-1053) $) NIL)) (-1751 (((-1154) $) 93) (((-1154) $ (-501) (-501)) 141)) (-3708 (((-1018) $) NIL)) (-3983 (((-578 (-822 |#1|)) $) 94)) (-2007 (((-822 |#1|) $ (-701)) 97)) (-1201 (((-701) $) 104)) (-3691 (((-786) $) 117) (((-578 (-822 |#1|)) $) 22) (($ (-578 (-822 |#1|))) 107)) (-1965 (((-578 |#1|) $) 105)) (-3751 (((-107) $ $) 134)) (-3773 (((-107) $ $) 132)) (-3762 (((-107) $ $) 131))) -(((-825 |#1|) (-13 (-1001) (-10 -8 (-15 -3691 ((-578 (-822 |#1|)) $)) (-15 -3983 ((-578 (-822 |#1|)) $)) (-15 -2007 ((-822 |#1|) $ (-701))) (-15 -2890 ((-822 |#1|) $ (-501))) (-15 -2890 ((-822 |#1|) $)) (-15 -3169 ((-701) $)) (-15 -1201 ((-701) $)) (-15 -1965 ((-578 |#1|) $)) (-15 -1382 ((-578 (-822 |#1|)) $)) (-15 -1570 ((-578 (-578 (-701))) $)) (-15 -3691 ($ (-578 (-822 |#1|)))) (-15 -2862 ($ (-578 (-822 |#1|)))) (-15 -3329 ((-997 |#1|) $ |#1|)) (-15 -4143 ((-997 (-997 |#1|)) $)) (-15 -3329 ((-997 (-997 |#1|)) $ (-997 |#1|))) (-15 -3329 ((-997 (-578 |#1|)) $ (-578 |#1|))) (-15 -2211 ((-107) (-822 |#1|) $)) (-15 -1254 ((-578 (-701)) (-822 |#1|) $)) (-15 -3847 ((-578 (-701)) (-822 |#1|) $)) (-15 -4033 ((-997 |#1|) $)) (-15 -3762 ((-107) $ $)) (-15 -3773 ((-107) $ $)) (-15 -1751 ((-1154) $)) (-15 -1751 ((-1154) $ (-501) (-501))))) (-1001)) (T -825)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-822 *4)) (-5 *1 (-825 *4)) (-4 *4 (-1001)))) (-2890 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-822 *4)) (-5 *1 (-825 *4)) (-4 *4 (-1001)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-822 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1201 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-701)))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-822 *3))) (-4 *3 (-1001)) (-5 *1 (-825 *3)))) (-2862 (*1 *1 *2) (-12 (-5 *2 (-578 (-822 *3))) (-4 *3 (-1001)) (-5 *1 (-825 *3)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *2 (-997 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-997 (-997 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3329 (*1 *2 *1 *3) (-12 (-4 *4 (-1001)) (-5 *2 (-997 (-997 *4))) (-5 *1 (-825 *4)) (-5 *3 (-997 *4)))) (-3329 (*1 *2 *1 *3) (-12 (-4 *4 (-1001)) (-5 *2 (-997 (-578 *4))) (-5 *1 (-825 *4)) (-5 *3 (-578 *4)))) (-2211 (*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-825 *4)))) (-1254 (*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-578 (-701))) (-5 *1 (-825 *4)))) (-3847 (*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-578 (-701))) (-5 *1 (-825 *4)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3762 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3773 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1751 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-825 *4)) (-4 *4 (-1001))))) -(-13 (-1001) (-10 -8 (-15 -3691 ((-578 (-822 |#1|)) $)) (-15 -3983 ((-578 (-822 |#1|)) $)) (-15 -2007 ((-822 |#1|) $ (-701))) (-15 -2890 ((-822 |#1|) $ (-501))) (-15 -2890 ((-822 |#1|) $)) (-15 -3169 ((-701) $)) (-15 -1201 ((-701) $)) (-15 -1965 ((-578 |#1|) $)) (-15 -1382 ((-578 (-822 |#1|)) $)) (-15 -1570 ((-578 (-578 (-701))) $)) (-15 -3691 ($ (-578 (-822 |#1|)))) (-15 -2862 ($ (-578 (-822 |#1|)))) (-15 -3329 ((-997 |#1|) $ |#1|)) (-15 -4143 ((-997 (-997 |#1|)) $)) (-15 -3329 ((-997 (-997 |#1|)) $ (-997 |#1|))) (-15 -3329 ((-997 (-578 |#1|)) $ (-578 |#1|))) (-15 -2211 ((-107) (-822 |#1|) $)) (-15 -1254 ((-578 (-701)) (-822 |#1|) $)) (-15 -3847 ((-578 (-701)) (-822 |#1|) $)) (-15 -4033 ((-997 |#1|) $)) (-15 -3762 ((-107) $ $)) (-15 -3773 ((-107) $ $)) (-15 -1751 ((-1154) $)) (-15 -1751 ((-1154) $ (-501) (-501))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (($ $ (-839)) NIL (|has| $ (-336))) (($ $) NIL)) (-3431 (((-1077 (-839) (-701)) (-501)) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 $ "failed") $) NIL)) (-3490 (($ $) NIL)) (-3142 (($ (-1148 $)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL)) (-3521 (((-107) $) NIL)) (-3067 (($ $) NIL) (($ $ (-701)) NIL)) (-1628 (((-107) $) NIL)) (-3169 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| $ (-336)))) (-1928 (((-107) $) NIL (|has| $ (-336)))) (-2626 (($ $ (-839)) NIL (|has| $ (-336))) (($ $) NIL)) (-3493 (((-3 $ "failed") $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 $) $ (-839)) NIL (|has| $ (-336))) (((-1064 $) $) NIL)) (-3104 (((-839) $) NIL)) (-3721 (((-1064 $) $) NIL (|has| $ (-336)))) (-1806 (((-3 (-1064 $) "failed") $ $) NIL (|has| $ (-336))) (((-1064 $) $) NIL (|has| $ (-336)))) (-2468 (($ $ (-1064 $)) NIL (|has| $ (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL T CONST)) (-3506 (($ (-839)) NIL)) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL (|has| $ (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL)) (-3739 (((-373 $) $) NIL)) (-2906 (((-839)) NIL) (((-762 (-839))) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-3 (-701) "failed") $ $) NIL) (((-701) $) NIL)) (-3613 (((-125)) NIL)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-1201 (((-839) $) NIL) (((-762 (-839)) $) NIL)) (-2264 (((-1064 $)) NIL)) (-1349 (($) NIL)) (-3481 (($) NIL (|has| $ (-336)))) (-2085 (((-621 $) (-1148 $)) NIL) (((-1148 $) $) NIL)) (-1248 (((-501) $) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL)) (-1274 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3965 (((-701)) NIL)) (-4119 (((-1148 $) (-839)) NIL) (((-1148 $)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $ (-701)) NIL (|has| $ (-336))) (($ $) NIL (|has| $ (-336)))) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL))) -(((-826 |#1|) (-13 (-318) (-297 $) (-556 (-501))) (-839)) (T -826)) -NIL -(-13 (-318) (-297 $) (-556 (-501))) -((-3461 (((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|)) 127)) (-3959 ((|#1|) 75)) (-1789 (((-373 (-1064 |#4|)) (-1064 |#4|)) 136)) (-3135 (((-373 (-1064 |#4|)) (-578 |#3|) (-1064 |#4|)) 67)) (-3901 (((-373 (-1064 |#4|)) (-1064 |#4|)) 146)) (-4041 (((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|) |#3|) 91))) -(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3461 ((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|))) (-15 -3901 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -1789 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -3959 (|#1|)) (-15 -4041 ((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|) |#3|)) (-15 -3135 ((-373 (-1064 |#4|)) (-578 |#3|) (-1064 |#4|)))) (-830) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -827)) -((-3135 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *7)) (-4 *7 (-777)) (-4 *5 (-830)) (-4 *6 (-723)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-373 (-1064 *8))) (-5 *1 (-827 *5 *6 *7 *8)) (-5 *4 (-1064 *8)))) (-4041 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-578 (-1064 *7))) (-5 *3 (-1064 *7)) (-4 *7 (-870 *5 *6 *4)) (-4 *5 (-830)) (-4 *6 (-723)) (-4 *4 (-777)) (-5 *1 (-827 *5 *6 *4 *7)))) (-3959 (*1 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-830)) (-5 *1 (-827 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-1789 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-827 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-3901 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-827 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-3461 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *7))) (-5 *3 (-1064 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-827 *4 *5 *6 *7))))) -(-10 -7 (-15 -3461 ((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|))) (-15 -3901 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -1789 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -3959 (|#1|)) (-15 -4041 ((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|) |#3|)) (-15 -3135 ((-373 (-1064 |#4|)) (-578 |#3|) (-1064 |#4|)))) -((-3461 (((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|)) 36)) (-3959 ((|#1|) 53)) (-1789 (((-373 (-1064 |#2|)) (-1064 |#2|)) 101)) (-3135 (((-373 (-1064 |#2|)) (-1064 |#2|)) 88)) (-3901 (((-373 (-1064 |#2|)) (-1064 |#2|)) 112))) -(((-828 |#1| |#2|) (-10 -7 (-15 -3461 ((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|))) (-15 -3901 ((-373 (-1064 |#2|)) (-1064 |#2|))) (-15 -1789 ((-373 (-1064 |#2|)) (-1064 |#2|))) (-15 -3959 (|#1|)) (-15 -3135 ((-373 (-1064 |#2|)) (-1064 |#2|)))) (-830) (-1125 |#1|)) (T -828)) -((-3135 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5)))) (-3959 (*1 *2) (-12 (-4 *2 (-830)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1125 *2)))) (-1789 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5)))) (-3901 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5)))) (-3461 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *5))) (-5 *3 (-1064 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-830)) (-5 *1 (-828 *4 *5))))) -(-10 -7 (-15 -3461 ((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|))) (-15 -3901 ((-373 (-1064 |#2|)) (-1064 |#2|))) (-15 -1789 ((-373 (-1064 |#2|)) (-1064 |#2|))) (-15 -3959 (|#1|)) (-15 -3135 ((-373 (-1064 |#2|)) (-1064 |#2|)))) -((-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 39)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 18)) (-1274 (((-3 $ "failed") $) 33))) -(((-829 |#1|) (-10 -8 (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)))) (-830)) (T -829)) -NIL -(-10 -8 (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 60)) (-3676 (($ $) 51)) (-1559 (((-373 $) $) 52)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 57)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1628 (((-107) $) 53)) (-1355 (((-107) $) 31)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-2305 (((-373 (-1064 $)) (-1064 $)) 58)) (-2572 (((-373 (-1064 $)) (-1064 $)) 59)) (-3739 (((-373 $) $) 50)) (-3694 (((-3 $ "failed") $ $) 42)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 56 (|has| $ (-132)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-1274 (((-3 $ "failed") $) 55 (|has| $ (-132)))) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-830) (-1180)) (T -830)) -((-3424 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-830)))) (-3324 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1)))) (-2572 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1)))) (-2305 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1)))) (-4002 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *1))) (-5 *3 (-1064 *1)) (-4 *1 (-830)))) (-2375 (*1 *2 *3) (|partial| -12 (-5 *3 (-621 *1)) (-4 *1 (-132)) (-4 *1 (-830)) (-5 *2 (-1148 *1)))) (-1274 (*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-830))))) -(-13 (-1108) (-10 -8 (-15 -3324 ((-373 (-1064 $)) (-1064 $))) (-15 -2572 ((-373 (-1064 $)) (-1064 $))) (-15 -2305 ((-373 (-1064 $)) (-1064 $))) (-15 -3424 ((-1064 $) (-1064 $) (-1064 $))) (-15 -4002 ((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $))) (IF (|has| $ (-132)) (PROGN (-15 -2375 ((-3 (-1148 $) "failed") (-621 $))) (-15 -1274 ((-3 $ "failed") $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T)) -((-3314 (((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#5|)) "failed") (-301 |#2| |#3| |#4| |#5|)) 76)) (-1847 (((-107) (-301 |#2| |#3| |#4| |#5|)) 16)) (-3169 (((-3 (-701) "failed") (-301 |#2| |#3| |#4| |#5|)) 14))) -(((-831 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3169 ((-3 (-701) "failed") (-301 |#2| |#3| |#4| |#5|))) (-15 -1847 ((-107) (-301 |#2| |#3| |#4| |#5|))) (-15 -3314 ((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#5|)) "failed") (-301 |#2| |#3| |#4| |#5|)))) (-13 (-777) (-508) (-950 (-501))) (-389 |#1|) (-1125 |#2|) (-1125 (-375 |#3|)) (-310 |#2| |#3| |#4|)) (T -831)) -((-3314 (*1 *2 *3) (|partial| -12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-2 (|:| -3169 (-701)) (|:| -1684 *8))) (-5 *1 (-831 *4 *5 *6 *7 *8)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-107)) (-5 *1 (-831 *4 *5 *6 *7 *8)))) (-3169 (*1 *2 *3) (|partial| -12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-701)) (-5 *1 (-831 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3169 ((-3 (-701) "failed") (-301 |#2| |#3| |#4| |#5|))) (-15 -1847 ((-107) (-301 |#2| |#3| |#4| |#5|))) (-15 -3314 ((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#5|)) "failed") (-301 |#2| |#3| |#4| |#5|)))) -((-3314 (((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#3|)) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|)) 56)) (-1847 (((-107) (-301 (-375 (-501)) |#1| |#2| |#3|)) 13)) (-3169 (((-3 (-701) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|)) 11))) -(((-832 |#1| |#2| |#3|) (-10 -7 (-15 -3169 ((-3 (-701) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|))) (-15 -1847 ((-107) (-301 (-375 (-501)) |#1| |#2| |#3|))) (-15 -3314 ((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#3|)) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|)))) (-1125 (-375 (-501))) (-1125 (-375 |#1|)) (-310 (-375 (-501)) |#1| |#2|)) (T -832)) -((-3314 (*1 *2 *3) (|partial| -12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-2 (|:| -3169 (-701)) (|:| -1684 *6))) (-5 *1 (-832 *4 *5 *6)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-832 *4 *5 *6)))) (-3169 (*1 *2 *3) (|partial| -12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-701)) (-5 *1 (-832 *4 *5 *6))))) -(-10 -7 (-15 -3169 ((-3 (-701) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|))) (-15 -1847 ((-107) (-301 (-375 (-501)) |#1| |#2| |#3|))) (-15 -3314 ((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#3|)) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|)))) -((-2283 ((|#2| |#2|) 25)) (-3832 (((-501) (-578 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))))) 15)) (-3312 (((-839) (-501)) 35)) (-1264 (((-501) |#2|) 42)) (-3434 (((-501) |#2|) 21) (((-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))) |#1|) 20))) -(((-833 |#1| |#2|) (-10 -7 (-15 -3312 ((-839) (-501))) (-15 -3434 ((-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))) |#1|)) (-15 -3434 ((-501) |#2|)) (-15 -3832 ((-501) (-578 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501)))))) (-15 -1264 ((-501) |#2|)) (-15 -2283 (|#2| |#2|))) (-1125 (-375 (-501))) (-1125 (-375 |#1|))) (T -833)) -((-2283 (*1 *2 *2) (-12 (-4 *3 (-1125 (-375 (-501)))) (-5 *1 (-833 *3 *2)) (-4 *2 (-1125 (-375 *3))))) (-1264 (*1 *2 *3) (-12 (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *3)) (-4 *3 (-1125 (-375 *4))))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))))) (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1125 (-375 *4))))) (-3434 (*1 *2 *3) (-12 (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *3)) (-4 *3 (-1125 (-375 *4))))) (-3434 (*1 *2 *3) (-12 (-4 *3 (-1125 (-375 (-501)))) (-5 *2 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501)))) (-5 *1 (-833 *3 *4)) (-4 *4 (-1125 (-375 *3))))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-1125 (-375 *3))) (-5 *2 (-839)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1125 (-375 *4)))))) -(-10 -7 (-15 -3312 ((-839) (-501))) (-15 -3434 ((-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))) |#1|)) (-15 -3434 ((-501) |#2|)) (-15 -3832 ((-501) (-578 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501)))))) (-15 -1264 ((-501) |#2|)) (-15 -2283 (|#2| |#2|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 ((|#1| $) 80)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) 74)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3629 (($ |#1| (-373 |#1|)) 72)) (-3720 (((-1064 |#1|) |#1| |#1|) 40)) (-3438 (($ $) 48)) (-1355 (((-107) $) NIL)) (-2027 (((-501) $) 77)) (-3160 (($ $ (-501)) 79)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1898 ((|#1| $) 76)) (-2656 (((-373 |#1|) $) 75)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) 73)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1368 (($ $) 38)) (-3691 (((-786) $) 98) (($ (-501)) 53) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 30) (((-375 |#1|) $) 58) (($ (-375 (-373 |#1|))) 66)) (-3965 (((-701)) 51)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 23 T CONST)) (-1925 (($) 11 T CONST)) (-3751 (((-107) $ $) 67)) (-3803 (($ $ $) NIL)) (-3797 (($ $) 87) (($ $ $) NIL)) (-3790 (($ $ $) 37)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 89) (($ $ $) 36) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ |#1| $) 88) (($ $ |#1|) NIL))) -(((-834 |#1|) (-13 (-331) (-37 |#1|) (-10 -8 (-15 -3691 ((-375 |#1|) $)) (-15 -3691 ($ (-375 (-373 |#1|)))) (-15 -1368 ($ $)) (-15 -2656 ((-373 |#1|) $)) (-15 -1898 (|#1| $)) (-15 -3160 ($ $ (-501))) (-15 -2027 ((-501) $)) (-15 -3720 ((-1064 |#1|) |#1| |#1|)) (-15 -3438 ($ $)) (-15 -3629 ($ |#1| (-373 |#1|))) (-15 -2197 (|#1| $)))) (-276)) (T -834)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-375 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-375 (-373 *3))) (-4 *3 (-276)) (-5 *1 (-834 *3)))) (-1368 (*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-373 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) (-1898 (*1 *2 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))) (-3160 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) (-3720 (*1 *2 *3 *3) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) (-3438 (*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))) (-3629 (*1 *1 *2 *3) (-12 (-5 *3 (-373 *2)) (-4 *2 (-276)) (-5 *1 (-834 *2)))) (-2197 (*1 *2 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276))))) -(-13 (-331) (-37 |#1|) (-10 -8 (-15 -3691 ((-375 |#1|) $)) (-15 -3691 ($ (-375 (-373 |#1|)))) (-15 -1368 ($ $)) (-15 -2656 ((-373 |#1|) $)) (-15 -1898 (|#1| $)) (-15 -3160 ($ $ (-501))) (-15 -2027 ((-501) $)) (-15 -3720 ((-1064 |#1|) |#1| |#1|)) (-15 -3438 ($ $)) (-15 -3629 ($ |#1| (-373 |#1|))) (-15 -2197 (|#1| $)))) -((-3629 (((-50) (-866 |#1|) (-373 (-866 |#1|)) (-1070)) 16) (((-50) (-375 (-866 |#1|)) (-1070)) 17))) -(((-835 |#1|) (-10 -7 (-15 -3629 ((-50) (-375 (-866 |#1|)) (-1070))) (-15 -3629 ((-50) (-866 |#1|) (-373 (-866 |#1|)) (-1070)))) (-13 (-276) (-134))) (T -835)) -((-3629 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-373 (-866 *6))) (-5 *5 (-1070)) (-5 *3 (-866 *6)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-50)) (-5 *1 (-835 *6)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-50)) (-5 *1 (-835 *5))))) -(-10 -7 (-15 -3629 ((-50) (-375 (-866 |#1|)) (-1070))) (-15 -3629 ((-50) (-866 |#1|) (-373 (-866 |#1|)) (-1070)))) -((-2262 ((|#4| (-578 |#4|)) 118) (((-1064 |#4|) (-1064 |#4|) (-1064 |#4|)) 65) ((|#4| |#4| |#4|) 117)) (-3664 (((-1064 |#4|) (-578 (-1064 |#4|))) 111) (((-1064 |#4|) (-1064 |#4|) (-1064 |#4|)) 48) ((|#4| (-578 |#4|)) 53) ((|#4| |#4| |#4|) 82))) -(((-836 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3664 (|#4| |#4| |#4|)) (-15 -3664 (|#4| (-578 |#4|))) (-15 -3664 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -3664 ((-1064 |#4|) (-578 (-1064 |#4|)))) (-15 -2262 (|#4| |#4| |#4|)) (-15 -2262 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -2262 (|#4| (-578 |#4|)))) (-723) (-777) (-276) (-870 |#3| |#1| |#2|)) (T -836)) -((-2262 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *6 *4 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)))) (-2262 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *6)))) (-2262 (*1 *2 *2 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-870 *5 *3 *4)))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-578 (-1064 *7))) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-1064 *7)) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) (-3664 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *6)))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *6 *4 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)))) (-3664 (*1 *2 *2 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-870 *5 *3 *4))))) -(-10 -7 (-15 -3664 (|#4| |#4| |#4|)) (-15 -3664 (|#4| (-578 |#4|))) (-15 -3664 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -3664 ((-1064 |#4|) (-578 (-1064 |#4|)))) (-15 -2262 (|#4| |#4| |#4|)) (-15 -2262 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -2262 (|#4| (-578 |#4|)))) -((-1423 (((-825 (-501)) (-886)) 22) (((-825 (-501)) (-578 (-501))) 19)) (-2241 (((-825 (-501)) (-578 (-501))) 46) (((-825 (-501)) (-839)) 47)) (-1534 (((-825 (-501))) 23)) (-1233 (((-825 (-501))) 36) (((-825 (-501)) (-578 (-501))) 35)) (-1735 (((-825 (-501))) 34) (((-825 (-501)) (-578 (-501))) 33)) (-1750 (((-825 (-501))) 32) (((-825 (-501)) (-578 (-501))) 31)) (-1597 (((-825 (-501))) 30) (((-825 (-501)) (-578 (-501))) 29)) (-3747 (((-825 (-501))) 28) (((-825 (-501)) (-578 (-501))) 27)) (-3906 (((-825 (-501))) 38) (((-825 (-501)) (-578 (-501))) 37)) (-4071 (((-825 (-501)) (-578 (-501))) 50) (((-825 (-501)) (-839)) 51)) (-2284 (((-825 (-501)) (-578 (-501))) 48) (((-825 (-501)) (-839)) 49)) (-1346 (((-825 (-501)) (-578 (-501))) 43) (((-825 (-501)) (-839)) 45)) (-2149 (((-825 (-501)) (-578 (-839))) 40))) -(((-837) (-10 -7 (-15 -2241 ((-825 (-501)) (-839))) (-15 -2241 ((-825 (-501)) (-578 (-501)))) (-15 -1346 ((-825 (-501)) (-839))) (-15 -1346 ((-825 (-501)) (-578 (-501)))) (-15 -2149 ((-825 (-501)) (-578 (-839)))) (-15 -2284 ((-825 (-501)) (-839))) (-15 -2284 ((-825 (-501)) (-578 (-501)))) (-15 -4071 ((-825 (-501)) (-839))) (-15 -4071 ((-825 (-501)) (-578 (-501)))) (-15 -3747 ((-825 (-501)) (-578 (-501)))) (-15 -3747 ((-825 (-501)))) (-15 -1597 ((-825 (-501)) (-578 (-501)))) (-15 -1597 ((-825 (-501)))) (-15 -1750 ((-825 (-501)) (-578 (-501)))) (-15 -1750 ((-825 (-501)))) (-15 -1735 ((-825 (-501)) (-578 (-501)))) (-15 -1735 ((-825 (-501)))) (-15 -1233 ((-825 (-501)) (-578 (-501)))) (-15 -1233 ((-825 (-501)))) (-15 -3906 ((-825 (-501)) (-578 (-501)))) (-15 -3906 ((-825 (-501)))) (-15 -1534 ((-825 (-501)))) (-15 -1423 ((-825 (-501)) (-578 (-501)))) (-15 -1423 ((-825 (-501)) (-886))))) (T -837)) -((-1423 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1534 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-3906 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1233 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1233 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1735 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1750 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1597 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-3747 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-578 (-839))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(-10 -7 (-15 -2241 ((-825 (-501)) (-839))) (-15 -2241 ((-825 (-501)) (-578 (-501)))) (-15 -1346 ((-825 (-501)) (-839))) (-15 -1346 ((-825 (-501)) (-578 (-501)))) (-15 -2149 ((-825 (-501)) (-578 (-839)))) (-15 -2284 ((-825 (-501)) (-839))) (-15 -2284 ((-825 (-501)) (-578 (-501)))) (-15 -4071 ((-825 (-501)) (-839))) (-15 -4071 ((-825 (-501)) (-578 (-501)))) (-15 -3747 ((-825 (-501)) (-578 (-501)))) (-15 -3747 ((-825 (-501)))) (-15 -1597 ((-825 (-501)) (-578 (-501)))) (-15 -1597 ((-825 (-501)))) (-15 -1750 ((-825 (-501)) (-578 (-501)))) (-15 -1750 ((-825 (-501)))) (-15 -1735 ((-825 (-501)) (-578 (-501)))) (-15 -1735 ((-825 (-501)))) (-15 -1233 ((-825 (-501)) (-578 (-501)))) (-15 -1233 ((-825 (-501)))) (-15 -3906 ((-825 (-501)) (-578 (-501)))) (-15 -3906 ((-825 (-501)))) (-15 -1534 ((-825 (-501)))) (-15 -1423 ((-825 (-501)) (-578 (-501)))) (-15 -1423 ((-825 (-501)) (-886)))) -((-1343 (((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070))) 10)) (-4000 (((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070))) 9))) -(((-838 |#1|) (-10 -7 (-15 -4000 ((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -1343 ((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070))))) (-419)) (T -838)) -((-1343 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-866 *4))) (-5 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-838 *4)))) (-4000 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-866 *4))) (-5 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-838 *4))))) -(-10 -7 (-15 -4000 ((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -1343 ((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070))))) -((-3736 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3664 (($ $ $) NIL)) (-3691 (((-786) $) NIL)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1925 (($) NIL T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ (-839) $) NIL) (($ $ $) NIL))) -(((-839) (-13 (-25) (-777) (-657) (-10 -8 (-15 -3664 ($ $ $)) (-6 (-4169 "*"))))) (T -839)) -((-3664 (*1 *1 *1 *1) (-5 *1 (-839)))) -(-13 (-25) (-777) (-657) (-10 -8 (-15 -3664 ($ $ $)) (-6 (-4169 "*")))) -((-3691 (((-282 |#1|) (-444)) 15))) -(((-840 |#1|) (-10 -7 (-15 -3691 ((-282 |#1|) (-444)))) (-13 (-777) (-508))) (T -840)) -((-3691 (*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-282 *4)) (-5 *1 (-840 *4)) (-4 *4 (-13 (-777) (-508)))))) -(-10 -7 (-15 -3691 ((-282 |#1|) (-444)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1355 (((-107) $) 31)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-841) (-1180)) (T -841)) -((-3730 (*1 *2 *3) (-12 (-4 *1 (-841)) (-5 *2 (-2 (|:| -3189 (-578 *1)) (|:| -3987 *1))) (-5 *3 (-578 *1)))) (-2648 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-841))))) -(-13 (-419) (-10 -8 (-15 -3730 ((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $))) (-15 -2648 ((-3 (-578 $) "failed") (-578 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-1676 (((-1064 |#2|) (-578 |#2|) (-578 |#2|)) 17) (((-1118 |#1| |#2|) (-1118 |#1| |#2|) (-578 |#2|) (-578 |#2|)) 13))) -(((-842 |#1| |#2|) (-10 -7 (-15 -1676 ((-1118 |#1| |#2|) (-1118 |#1| |#2|) (-578 |#2|) (-578 |#2|))) (-15 -1676 ((-1064 |#2|) (-578 |#2|) (-578 |#2|)))) (-1070) (-331)) (T -842)) -((-1676 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-331)) (-5 *2 (-1064 *5)) (-5 *1 (-842 *4 *5)) (-14 *4 (-1070)))) (-1676 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1118 *4 *5)) (-5 *3 (-578 *5)) (-14 *4 (-1070)) (-4 *5 (-331)) (-5 *1 (-842 *4 *5))))) -(-10 -7 (-15 -1676 ((-1118 |#1| |#2|) (-1118 |#1| |#2|) (-578 |#2|) (-578 |#2|))) (-15 -1676 ((-1064 |#2|) (-578 |#2|) (-578 |#2|)))) -((-2081 ((|#2| (-578 |#1|) (-578 |#1|)) 22))) -(((-843 |#1| |#2|) (-10 -7 (-15 -2081 (|#2| (-578 |#1|) (-578 |#1|)))) (-331) (-1125 |#1|)) (T -843)) -((-2081 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-331)) (-4 *2 (-1125 *4)) (-5 *1 (-843 *4 *2))))) -(-10 -7 (-15 -2081 (|#2| (-578 |#1|) (-578 |#1|)))) -((-3614 (((-501) (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053)) 138)) (-2889 ((|#4| |#4|) 154)) (-3419 (((-578 (-375 (-866 |#1|))) (-578 (-1070))) 117)) (-2312 (((-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-578 (-578 |#4|)) (-701) (-701) (-501)) 69)) (-3557 (((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-578 |#4|)) 51)) (-1365 (((-621 |#4|) (-621 |#4|) (-578 |#4|)) 46)) (-1290 (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053)) 150)) (-3483 (((-501) (-621 |#4|) (-839) (-1053)) 131) (((-501) (-621 |#4|) (-578 (-1070)) (-839) (-1053)) 130) (((-501) (-621 |#4|) (-578 |#4|) (-839) (-1053)) 129) (((-501) (-621 |#4|) (-1053)) 126) (((-501) (-621 |#4|) (-578 (-1070)) (-1053)) 125) (((-501) (-621 |#4|) (-578 |#4|) (-1053)) 124) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-839)) 123) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070)) (-839)) 122) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|) (-839)) 121) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|)) 119) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070))) 118) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|)) 115)) (-2105 ((|#4| (-866 |#1|)) 62)) (-3141 (((-107) (-578 |#4|) (-578 (-578 |#4|))) 151)) (-4066 (((-578 (-578 (-501))) (-501) (-501)) 128)) (-3555 (((-578 (-578 |#4|)) (-578 (-578 |#4|))) 81)) (-3844 (((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|))))) 79)) (-2609 (((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|))))) 78)) (-3560 (((-2 (|:| |sysok| (-107)) (|:| |z0| (-578 |#4|)) (|:| |n0| (-578 |#4|))) (-578 |#4|) (-578 |#4|)) 65)) (-2294 (((-578 |#4|) |#4|) 40)) (-1731 (((-578 (-375 (-866 |#1|))) (-578 |#4|)) 113) (((-621 (-375 (-866 |#1|))) (-621 |#4|)) 47) (((-375 (-866 |#1|)) |#4|) 110)) (-2971 (((-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))))) (|:| |rgsz| (-501))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-701) (-1053) (-501)) 87)) (-3813 (((-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))) (-621 |#4|) (-701)) 77)) (-2154 (((-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-621 |#4|) (-701)) 97)) (-1686 (((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| -2978 (-621 (-375 (-866 |#1|)))) (|:| |vec| (-578 (-375 (-866 |#1|)))) (|:| -3689 (-701)) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) 38))) -(((-844 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070)))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|) (-839))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070)) (-839))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-839))) (-15 -3483 ((-501) (-621 |#4|) (-578 |#4|) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 (-1070)) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 |#4|) (-839) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 (-1070)) (-839) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-839) (-1053))) (-15 -3614 ((-501) (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053))) (-15 -1290 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053))) (-15 -2971 ((-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))))) (|:| |rgsz| (-501))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-701) (-1053) (-501))) (-15 -1731 ((-375 (-866 |#1|)) |#4|)) (-15 -1731 ((-621 (-375 (-866 |#1|))) (-621 |#4|))) (-15 -1731 ((-578 (-375 (-866 |#1|))) (-578 |#4|))) (-15 -3419 ((-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2105 (|#4| (-866 |#1|))) (-15 -3560 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-578 |#4|)) (|:| |n0| (-578 |#4|))) (-578 |#4|) (-578 |#4|))) (-15 -3813 ((-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))) (-621 |#4|) (-701))) (-15 -3557 ((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-578 |#4|))) (-15 -1686 ((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| -2978 (-621 (-375 (-866 |#1|)))) (|:| |vec| (-578 (-375 (-866 |#1|)))) (|:| -3689 (-701)) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (-15 -2294 ((-578 |#4|) |#4|)) (-15 -2609 ((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -3844 ((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -3555 ((-578 (-578 |#4|)) (-578 (-578 |#4|)))) (-15 -4066 ((-578 (-578 (-501))) (-501) (-501))) (-15 -3141 ((-107) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2154 ((-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-621 |#4|) (-701))) (-15 -1365 ((-621 |#4|) (-621 |#4|) (-578 |#4|))) (-15 -2312 ((-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-578 (-578 |#4|)) (-701) (-701) (-501))) (-15 -2889 (|#4| |#4|))) (-13 (-276) (-134)) (-13 (-777) (-556 (-1070))) (-723) (-870 |#1| |#3| |#2|)) (T -844)) -((-2889 (*1 *2 *2) (-12 (-4 *3 (-13 (-276) (-134))) (-4 *4 (-13 (-777) (-556 (-1070)))) (-4 *5 (-723)) (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-870 *3 *5 *4)))) (-2312 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-5 *4 (-621 *12)) (-5 *5 (-578 (-375 (-866 *9)))) (-5 *6 (-578 (-578 *12))) (-5 *7 (-701)) (-5 *8 (-501)) (-4 *9 (-13 (-276) (-134))) (-4 *12 (-870 *9 *11 *10)) (-4 *10 (-13 (-777) (-556 (-1070)))) (-4 *11 (-723)) (-5 *2 (-2 (|:| |eqzro| (-578 *12)) (|:| |neqzro| (-578 *12)) (|:| |wcond| (-578 (-866 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *9)))) (|:| -4119 (-578 (-1148 (-375 (-866 *9))))))))) (-5 *1 (-844 *9 *10 *11 *12)))) (-1365 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *1 (-844 *4 *5 *6 *7)))) (-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-701)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (-5 *1 (-844 *5 *6 *7 *8)))) (-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-107)) (-5 *1 (-844 *5 *6 *7 *8)))) (-4066 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-578 (-501)))) (-5 *1 (-844 *4 *5 *6 *7)) (-5 *3 (-501)) (-4 *7 (-870 *4 *6 *5)))) (-3555 (*1 *2 *2) (-12 (-5 *2 (-578 (-578 *6))) (-4 *6 (-870 *3 *5 *4)) (-4 *3 (-13 (-276) (-134))) (-4 *4 (-13 (-777) (-556 (-1070)))) (-4 *5 (-723)) (-5 *1 (-844 *3 *4 *5 *6)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-701)) (-5 *1 (-844 *4 *5 *6 *7)))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-701)) (-5 *1 (-844 *4 *5 *6 *7)))) (-2294 (*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 *3)) (-5 *1 (-844 *4 *5 *6 *3)) (-4 *3 (-870 *4 *6 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2978 (-621 (-375 (-866 *4)))) (|:| |vec| (-578 (-375 (-866 *4)))) (|:| -3689 (-701)) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4))))))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5)))) (-3557 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4))))))) (-5 *3 (-578 *7)) (-4 *4 (-13 (-276) (-134))) (-4 *7 (-870 *4 *6 *5)) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *1 (-844 *4 *5 *6 *7)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *8))))) (-5 *1 (-844 *5 *6 *7 *8)) (-5 *4 (-701)))) (-3560 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-4 *7 (-870 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-578 *7)) (|:| |n0| (-578 *7)))) (-5 *1 (-844 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-13 (-276) (-134))) (-4 *2 (-870 *4 *6 *5)) (-5 *1 (-844 *4 *5 *6 *2)) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-621 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7)))) (-1731 (*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-375 (-866 *4))) (-5 *1 (-844 *4 *5 *6 *3)) (-4 *3 (-870 *4 *6 *5)))) (-2971 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-621 *11)) (-5 *4 (-578 (-375 (-866 *8)))) (-5 *5 (-701)) (-5 *6 (-1053)) (-4 *8 (-13 (-276) (-134))) (-4 *11 (-870 *8 *10 *9)) (-4 *9 (-13 (-777) (-556 (-1070)))) (-4 *10 (-723)) (-5 *2 (-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 *11)) (|:| |neqzro| (-578 *11)) (|:| |wcond| (-578 (-866 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *8)))) (|:| -4119 (-578 (-1148 (-375 (-866 *8)))))))))) (|:| |rgsz| (-501)))) (-5 *1 (-844 *8 *9 *10 *11)) (-5 *7 (-501)))) (-1290 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-866 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4)))))))))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5)))) (-3614 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *4 (-1053)) (-4 *5 (-13 (-276) (-134))) (-4 *8 (-870 *5 *7 *6)) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *5 *6 *7 *8)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-839)) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9)))) (-3483 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *10)) (-5 *4 (-578 (-1070))) (-5 *5 (-839)) (-5 *6 (-1053)) (-4 *10 (-870 *7 *9 *8)) (-4 *7 (-13 (-276) (-134))) (-4 *8 (-13 (-777) (-556 (-1070)))) (-4 *9 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *7 *8 *9 *10)))) (-3483 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *10)) (-5 *4 (-578 *10)) (-5 *5 (-839)) (-5 *6 (-1053)) (-4 *10 (-870 *7 *9 *8)) (-4 *7 (-13 (-276) (-134))) (-4 *8 (-13 (-777) (-556 (-1070)))) (-4 *9 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *7 *8 *9 *10)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-1053)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *5 *6 *7 *8)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 (-1070))) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 *9)) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-839)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 (-1070))) (-5 *5 (-839)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-866 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *6)))) (|:| -4119 (-578 (-1148 (-375 (-866 *6)))))))))) (-5 *1 (-844 *6 *7 *8 *9)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *5 (-839)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-866 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *6)))) (|:| -4119 (-578 (-1148 (-375 (-866 *6)))))))))) (-5 *1 (-844 *6 *7 *8 *9)) (-5 *4 (-578 *9)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-866 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4)))))))))) (-5 *1 (-844 *4 *5 *6 *7)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-578 (-1070))) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) -(-10 -7 (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070)))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|) (-839))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070)) (-839))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-839))) (-15 -3483 ((-501) (-621 |#4|) (-578 |#4|) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 (-1070)) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 |#4|) (-839) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 (-1070)) (-839) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-839) (-1053))) (-15 -3614 ((-501) (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053))) (-15 -1290 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053))) (-15 -2971 ((-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))))) (|:| |rgsz| (-501))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-701) (-1053) (-501))) (-15 -1731 ((-375 (-866 |#1|)) |#4|)) (-15 -1731 ((-621 (-375 (-866 |#1|))) (-621 |#4|))) (-15 -1731 ((-578 (-375 (-866 |#1|))) (-578 |#4|))) (-15 -3419 ((-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2105 (|#4| (-866 |#1|))) (-15 -3560 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-578 |#4|)) (|:| |n0| (-578 |#4|))) (-578 |#4|) (-578 |#4|))) (-15 -3813 ((-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))) (-621 |#4|) (-701))) (-15 -3557 ((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-578 |#4|))) (-15 -1686 ((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| -2978 (-621 (-375 (-866 |#1|)))) (|:| |vec| (-578 (-375 (-866 |#1|)))) (|:| -3689 (-701)) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (-15 -2294 ((-578 |#4|) |#4|)) (-15 -2609 ((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -3844 ((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -3555 ((-578 (-578 |#4|)) (-578 (-578 |#4|)))) (-15 -4066 ((-578 (-578 (-501))) (-501) (-501))) (-15 -3141 ((-107) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2154 ((-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-621 |#4|) (-701))) (-15 -1365 ((-621 |#4|) (-621 |#4|) (-578 |#4|))) (-15 -2312 ((-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-578 (-578 |#4|)) (-701) (-701) (-501))) (-15 -2889 (|#4| |#4|))) -((-2857 (($ $ (-991 (-199))) 69) (($ $ (-991 (-199)) (-991 (-199))) 70)) (-1236 (((-991 (-199)) $) 43)) (-3096 (((-991 (-199)) $) 42)) (-2323 (((-991 (-199)) $) 44)) (-3693 (((-501) (-501)) 36)) (-2891 (((-501) (-501)) 32)) (-2334 (((-501) (-501)) 34)) (-2602 (((-107) (-107)) 38)) (-3536 (((-501)) 35)) (-3237 (($ $ (-991 (-199))) 73) (($ $) 74)) (-3875 (($ (-1 (-863 (-199)) (-199)) (-991 (-199))) 83) (($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199))) 84)) (-1871 (($ (-1 (-199) (-199)) (-991 (-199))) 91) (($ (-1 (-199) (-199))) 94)) (-2701 (($ (-1 (-199) (-199)) (-991 (-199))) 78) (($ (-1 (-199) (-199)) (-991 (-199)) (-991 (-199))) 79) (($ (-578 (-1 (-199) (-199))) (-991 (-199))) 86) (($ (-578 (-1 (-199) (-199))) (-991 (-199)) (-991 (-199))) 87) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199))) 80) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199))) 81) (($ $ (-991 (-199))) 75)) (-2259 (((-107) $) 39)) (-3628 (((-501)) 40)) (-3286 (((-501)) 31)) (-2709 (((-501)) 33)) (-2616 (((-578 (-578 (-863 (-199)))) $) 22)) (-1839 (((-107) (-107)) 41)) (-3691 (((-786) $) 105)) (-3938 (((-107)) 37))) -(((-845) (-13 (-874) (-10 -8 (-15 -2701 ($ (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-578 (-1 (-199) (-199))) (-991 (-199)))) (-15 -2701 ($ (-578 (-1 (-199) (-199))) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -1871 ($ (-1 (-199) (-199)) (-991 (-199)))) (-15 -1871 ($ (-1 (-199) (-199)))) (-15 -2701 ($ $ (-991 (-199)))) (-15 -2259 ((-107) $)) (-15 -2857 ($ $ (-991 (-199)))) (-15 -2857 ($ $ (-991 (-199)) (-991 (-199)))) (-15 -3237 ($ $ (-991 (-199)))) (-15 -3237 ($ $)) (-15 -2323 ((-991 (-199)) $)) (-15 -3286 ((-501))) (-15 -2891 ((-501) (-501))) (-15 -2709 ((-501))) (-15 -2334 ((-501) (-501))) (-15 -3536 ((-501))) (-15 -3693 ((-501) (-501))) (-15 -3938 ((-107))) (-15 -2602 ((-107) (-107))) (-15 -3628 ((-501))) (-15 -1839 ((-107) (-107)))))) (T -845)) -((-2701 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1 (-199) (-199)))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-1 (-199) (-199)))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-3875 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-3875 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-1871 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-1871 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-845)))) (-2857 (*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) (-2857 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) (-3237 (*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) (-3237 (*1 *1 *1) (-5 *1 (-845))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) (-3286 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-2891 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-2709 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-3536 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-3938 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845)))) (-2602 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845)))) (-3628 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845))))) -(-13 (-874) (-10 -8 (-15 -2701 ($ (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-578 (-1 (-199) (-199))) (-991 (-199)))) (-15 -2701 ($ (-578 (-1 (-199) (-199))) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -1871 ($ (-1 (-199) (-199)) (-991 (-199)))) (-15 -1871 ($ (-1 (-199) (-199)))) (-15 -2701 ($ $ (-991 (-199)))) (-15 -2259 ((-107) $)) (-15 -2857 ($ $ (-991 (-199)))) (-15 -2857 ($ $ (-991 (-199)) (-991 (-199)))) (-15 -3237 ($ $ (-991 (-199)))) (-15 -3237 ($ $)) (-15 -2323 ((-991 (-199)) $)) (-15 -3286 ((-501))) (-15 -2891 ((-501) (-501))) (-15 -2709 ((-501))) (-15 -2334 ((-501) (-501))) (-15 -3536 ((-501))) (-15 -3693 ((-501) (-501))) (-15 -3938 ((-107))) (-15 -2602 ((-107) (-107))) (-15 -3628 ((-501))) (-15 -1839 ((-107) (-107))))) -((-1871 (((-845) |#1| (-1070)) 16) (((-845) |#1| (-1070) (-991 (-199))) 20)) (-2701 (((-845) |#1| |#1| (-1070) (-991 (-199))) 18) (((-845) |#1| (-1070) (-991 (-199))) 14))) -(((-846 |#1|) (-10 -7 (-15 -2701 ((-845) |#1| (-1070) (-991 (-199)))) (-15 -2701 ((-845) |#1| |#1| (-1070) (-991 (-199)))) (-15 -1871 ((-845) |#1| (-1070) (-991 (-199)))) (-15 -1871 ((-845) |#1| (-1070)))) (-556 (-490))) (T -846)) -((-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) (-1871 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) (-2701 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) (-2701 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490)))))) -(-10 -7 (-15 -2701 ((-845) |#1| (-1070) (-991 (-199)))) (-15 -2701 ((-845) |#1| |#1| (-1070) (-991 (-199)))) (-15 -1871 ((-845) |#1| (-1070) (-991 (-199)))) (-15 -1871 ((-845) |#1| (-1070)))) -((-2857 (($ $ (-991 (-199)) (-991 (-199)) (-991 (-199))) 68)) (-3283 (((-991 (-199)) $) 40)) (-1236 (((-991 (-199)) $) 39)) (-3096 (((-991 (-199)) $) 38)) (-3895 (((-578 (-578 (-199))) $) 43)) (-2323 (((-991 (-199)) $) 41)) (-2423 (((-501) (-501)) 32)) (-2873 (((-501) (-501)) 28)) (-2877 (((-501) (-501)) 30)) (-2847 (((-107) (-107)) 35)) (-3633 (((-501)) 31)) (-3237 (($ $ (-991 (-199))) 71) (($ $) 72)) (-3875 (($ (-1 (-863 (-199)) (-199)) (-991 (-199))) 76) (($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199))) 77)) (-2701 (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199))) 79) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199))) 80) (($ $ (-991 (-199))) 74)) (-2700 (((-501)) 36)) (-3795 (((-501)) 27)) (-1524 (((-501)) 29)) (-2616 (((-578 (-578 (-863 (-199)))) $) 92)) (-2901 (((-107) (-107)) 37)) (-3691 (((-786) $) 91)) (-3050 (((-107)) 34))) -(((-847) (-13 (-889) (-10 -8 (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ $ (-991 (-199)))) (-15 -2857 ($ $ (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -3237 ($ $ (-991 (-199)))) (-15 -3237 ($ $)) (-15 -2323 ((-991 (-199)) $)) (-15 -3895 ((-578 (-578 (-199))) $)) (-15 -3795 ((-501))) (-15 -2873 ((-501) (-501))) (-15 -1524 ((-501))) (-15 -2877 ((-501) (-501))) (-15 -3633 ((-501))) (-15 -2423 ((-501) (-501))) (-15 -3050 ((-107))) (-15 -2847 ((-107) (-107))) (-15 -2700 ((-501))) (-15 -2901 ((-107) (-107)))))) (T -847)) -((-3875 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) (-3875 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) (-2701 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) (-2701 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) (-2857 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) (-3237 (*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) (-3237 (*1 *1 *1) (-5 *1 (-847))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-199)))) (-5 *1 (-847)))) (-3795 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-1524 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-2877 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-3633 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-2423 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-3050 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847)))) (-2700 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-2901 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847))))) -(-13 (-889) (-10 -8 (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ $ (-991 (-199)))) (-15 -2857 ($ $ (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -3237 ($ $ (-991 (-199)))) (-15 -3237 ($ $)) (-15 -2323 ((-991 (-199)) $)) (-15 -3895 ((-578 (-578 (-199))) $)) (-15 -3795 ((-501))) (-15 -2873 ((-501) (-501))) (-15 -1524 ((-501))) (-15 -2877 ((-501) (-501))) (-15 -3633 ((-501))) (-15 -2423 ((-501) (-501))) (-15 -3050 ((-107))) (-15 -2847 ((-107) (-107))) (-15 -2700 ((-501))) (-15 -2901 ((-107) (-107))))) -((-2124 (((-578 (-991 (-199))) (-578 (-578 (-863 (-199))))) 23))) -(((-848) (-10 -7 (-15 -2124 ((-578 (-991 (-199))) (-578 (-578 (-863 (-199)))))))) (T -848)) -((-2124 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-578 (-991 (-199)))) (-5 *1 (-848))))) -(-10 -7 (-15 -2124 ((-578 (-991 (-199))) (-578 (-578 (-863 (-199))))))) -((-4028 (((-282 (-501)) (-1070)) 15)) (-4020 (((-282 (-501)) (-1070)) 13)) (-3897 (((-282 (-501)) (-1070)) 11)) (-2402 (((-282 (-501)) (-1070) (-1053)) 18))) -(((-849) (-10 -7 (-15 -2402 ((-282 (-501)) (-1070) (-1053))) (-15 -3897 ((-282 (-501)) (-1070))) (-15 -4028 ((-282 (-501)) (-1070))) (-15 -4020 ((-282 (-501)) (-1070))))) (T -849)) -((-4020 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-1053)) (-5 *2 (-282 (-501))) (-5 *1 (-849))))) -(-10 -7 (-15 -2402 ((-282 (-501)) (-1070) (-1053))) (-15 -3897 ((-282 (-501)) (-1070))) (-15 -4028 ((-282 (-501)) (-1070))) (-15 -4020 ((-282 (-501)) (-1070)))) -((-4028 ((|#2| |#2|) 25)) (-4020 ((|#2| |#2|) 26)) (-3897 ((|#2| |#2|) 24)) (-2402 ((|#2| |#2| (-1053)) 23))) -(((-850 |#1| |#2|) (-10 -7 (-15 -2402 (|#2| |#2| (-1053))) (-15 -3897 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4020 (|#2| |#2|))) (-777) (-389 |#1|)) (T -850)) -((-4020 (*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3)))) (-4028 (*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3)))) (-2402 (*1 *2 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-777)) (-5 *1 (-850 *4 *2)) (-4 *2 (-389 *4))))) -(-10 -7 (-15 -2402 (|#2| |#2| (-1053))) (-15 -3897 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4020 (|#2| |#2|))) -((-3809 (((-808 |#1| |#3|) |#2| (-810 |#1|) (-808 |#1| |#3|)) 24)) (-2410 (((-1 (-107) |#2|) (-1 (-107) |#3|)) 12))) -(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -2410 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -3809 ((-808 |#1| |#3|) |#2| (-810 |#1|) (-808 |#1| |#3|)))) (-1001) (-806 |#1|) (-13 (-1001) (-950 |#2|))) (T -851)) -((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *6)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-13 (-1001) (-950 *3))) (-4 *3 (-806 *5)) (-5 *1 (-851 *5 *3 *6)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1001) (-950 *5))) (-4 *5 (-806 *4)) (-4 *4 (-1001)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-851 *4 *5 *6))))) -(-10 -7 (-15 -2410 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -3809 ((-808 |#1| |#3|) |#2| (-810 |#1|) (-808 |#1| |#3|)))) -((-3809 (((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)) 29))) -(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)))) (-1001) (-13 (-508) (-777) (-806 |#1|)) (-13 (-389 |#2|) (-556 (-810 |#1|)) (-806 |#1|) (-950 (-553 $)))) (T -852)) -((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-13 (-389 *6) (-556 *4) (-806 *5) (-950 (-553 $)))) (-5 *4 (-810 *5)) (-4 *6 (-13 (-508) (-777) (-806 *5))) (-5 *1 (-852 *5 *6 *3))))) -(-10 -7 (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)))) -((-3809 (((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|)) 12))) -(((-853 |#1|) (-10 -7 (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|)))) (-500)) (T -853)) -((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 (-501) *3)) (-5 *4 (-810 (-501))) (-4 *3 (-500)) (-5 *1 (-853 *3))))) -(-10 -7 (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|)))) -((-3809 (((-808 |#1| |#2|) (-553 |#2|) (-810 |#1|) (-808 |#1| |#2|)) 52))) -(((-854 |#1| |#2|) (-10 -7 (-15 -3809 ((-808 |#1| |#2|) (-553 |#2|) (-810 |#1|) (-808 |#1| |#2|)))) (-1001) (-13 (-777) (-950 (-553 $)) (-556 (-810 |#1|)) (-806 |#1|))) (T -854)) -((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *6)) (-5 *3 (-553 *6)) (-4 *5 (-1001)) (-4 *6 (-13 (-777) (-950 (-553 $)) (-556 *4) (-806 *5))) (-5 *4 (-810 *5)) (-5 *1 (-854 *5 *6))))) -(-10 -7 (-15 -3809 ((-808 |#1| |#2|) (-553 |#2|) (-810 |#1|) (-808 |#1| |#2|)))) -((-3809 (((-805 |#1| |#2| |#3|) |#3| (-810 |#1|) (-805 |#1| |#2| |#3|)) 14))) -(((-855 |#1| |#2| |#3|) (-10 -7 (-15 -3809 ((-805 |#1| |#2| |#3|) |#3| (-810 |#1|) (-805 |#1| |#2| |#3|)))) (-1001) (-806 |#1|) (-601 |#2|)) (T -855)) -((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-805 *5 *6 *3)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-806 *5)) (-4 *3 (-601 *6)) (-5 *1 (-855 *5 *6 *3))))) -(-10 -7 (-15 -3809 ((-805 |#1| |#2| |#3|) |#3| (-810 |#1|) (-805 |#1| |#2| |#3|)))) -((-3809 (((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|)) 17 (|has| |#3| (-806 |#1|))) (((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|) (-1 (-808 |#1| |#5|) |#3| (-810 |#1|) (-808 |#1| |#5|))) 16))) -(((-856 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3809 ((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|) (-1 (-808 |#1| |#5|) |#3| (-810 |#1|) (-808 |#1| |#5|)))) (IF (|has| |#3| (-806 |#1|)) (-15 -3809 ((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|))) |noBranch|)) (-1001) (-723) (-777) (-13 (-959) (-777) (-806 |#1|)) (-13 (-870 |#4| |#2| |#3|) (-556 (-810 |#1|)))) (T -856)) -((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-13 (-870 *8 *6 *7) (-556 *4))) (-5 *4 (-810 *5)) (-4 *7 (-806 *5)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-13 (-959) (-777) (-806 *5))) (-5 *1 (-856 *5 *6 *7 *8 *3)))) (-3809 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-808 *6 *3) *8 (-810 *6) (-808 *6 *3))) (-4 *8 (-777)) (-5 *2 (-808 *6 *3)) (-5 *4 (-810 *6)) (-4 *6 (-1001)) (-4 *3 (-13 (-870 *9 *7 *8) (-556 *4))) (-4 *7 (-723)) (-4 *9 (-13 (-959) (-777) (-806 *6))) (-5 *1 (-856 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3809 ((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|) (-1 (-808 |#1| |#5|) |#3| (-810 |#1|) (-808 |#1| |#5|)))) (IF (|has| |#3| (-806 |#1|)) (-15 -3809 ((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|))) |noBranch|)) -((-4081 (((-282 (-501)) (-1070) (-578 (-1 (-107) |#1|))) 16) (((-282 (-501)) (-1070) (-1 (-107) |#1|)) 13))) -(((-857 |#1|) (-10 -7 (-15 -4081 ((-282 (-501)) (-1070) (-1 (-107) |#1|))) (-15 -4081 ((-282 (-501)) (-1070) (-578 (-1 (-107) |#1|))))) (-1104)) (T -857)) -((-4081 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-578 (-1 (-107) *5))) (-4 *5 (-1104)) (-5 *2 (-282 (-501))) (-5 *1 (-857 *5)))) (-4081 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1104)) (-5 *2 (-282 (-501))) (-5 *1 (-857 *5))))) -(-10 -7 (-15 -4081 ((-282 (-501)) (-1070) (-1 (-107) |#1|))) (-15 -4081 ((-282 (-501)) (-1070) (-578 (-1 (-107) |#1|))))) -((-4081 ((|#2| |#2| (-578 (-1 (-107) |#3|))) 11) ((|#2| |#2| (-1 (-107) |#3|)) 12))) -(((-858 |#1| |#2| |#3|) (-10 -7 (-15 -4081 (|#2| |#2| (-1 (-107) |#3|))) (-15 -4081 (|#2| |#2| (-578 (-1 (-107) |#3|))))) (-777) (-389 |#1|) (-1104)) (T -858)) -((-4081 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1 (-107) *5))) (-4 *5 (-1104)) (-4 *4 (-777)) (-5 *1 (-858 *4 *2 *5)) (-4 *2 (-389 *4)))) (-4081 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1104)) (-4 *4 (-777)) (-5 *1 (-858 *4 *2 *5)) (-4 *2 (-389 *4))))) -(-10 -7 (-15 -4081 (|#2| |#2| (-1 (-107) |#3|))) (-15 -4081 (|#2| |#2| (-578 (-1 (-107) |#3|))))) -((-3809 (((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)) 25))) -(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)))) (-1001) (-13 (-508) (-806 |#1|) (-556 (-810 |#1|))) (-906 |#2|)) (T -859)) -((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-906 *6)) (-4 *6 (-13 (-508) (-806 *5) (-556 *4))) (-5 *4 (-810 *5)) (-5 *1 (-859 *5 *6 *3))))) -(-10 -7 (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)))) -((-3809 (((-808 |#1| (-1070)) (-1070) (-810 |#1|) (-808 |#1| (-1070))) 17))) -(((-860 |#1|) (-10 -7 (-15 -3809 ((-808 |#1| (-1070)) (-1070) (-810 |#1|) (-808 |#1| (-1070))))) (-1001)) (T -860)) -((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 (-1070))) (-5 *3 (-1070)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-5 *1 (-860 *5))))) -(-10 -7 (-15 -3809 ((-808 |#1| (-1070)) (-1070) (-810 |#1|) (-808 |#1| (-1070))))) -((-2689 (((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))) 33)) (-3809 (((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-1 |#3| (-578 |#3|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))) 32))) -(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -3809 ((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-1 |#3| (-578 |#3|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)))) (-15 -2689 ((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))))) (-1001) (-13 (-959) (-777)) (-13 (-959) (-556 (-810 |#1|)) (-950 |#2|))) (T -861)) -((-2689 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-810 *6))) (-5 *5 (-1 (-808 *6 *8) *8 (-810 *6) (-808 *6 *8))) (-4 *6 (-1001)) (-4 *8 (-13 (-959) (-556 (-810 *6)) (-950 *7))) (-5 *2 (-808 *6 *8)) (-4 *7 (-13 (-959) (-777))) (-5 *1 (-861 *6 *7 *8)))) (-3809 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-578 (-810 *7))) (-5 *5 (-1 *9 (-578 *9))) (-5 *6 (-1 (-808 *7 *9) *9 (-810 *7) (-808 *7 *9))) (-4 *7 (-1001)) (-4 *9 (-13 (-959) (-556 (-810 *7)) (-950 *8))) (-5 *2 (-808 *7 *9)) (-5 *3 (-578 *9)) (-4 *8 (-13 (-959) (-777))) (-5 *1 (-861 *7 *8 *9))))) -(-10 -7 (-15 -3809 ((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-1 |#3| (-578 |#3|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)))) (-15 -2689 ((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))))) -((-3228 (((-1064 (-375 (-501))) (-501)) 61)) (-1219 (((-1064 (-501)) (-501)) 64)) (-2475 (((-1064 (-501)) (-501)) 58)) (-1282 (((-501) (-1064 (-501))) 53)) (-2955 (((-1064 (-375 (-501))) (-501)) 47)) (-3573 (((-1064 (-501)) (-501)) 36)) (-4080 (((-1064 (-501)) (-501)) 66)) (-3495 (((-1064 (-501)) (-501)) 65)) (-2652 (((-1064 (-375 (-501))) (-501)) 49))) -(((-862) (-10 -7 (-15 -2652 ((-1064 (-375 (-501))) (-501))) (-15 -3495 ((-1064 (-501)) (-501))) (-15 -4080 ((-1064 (-501)) (-501))) (-15 -3573 ((-1064 (-501)) (-501))) (-15 -2955 ((-1064 (-375 (-501))) (-501))) (-15 -1282 ((-501) (-1064 (-501)))) (-15 -2475 ((-1064 (-501)) (-501))) (-15 -1219 ((-1064 (-501)) (-501))) (-15 -3228 ((-1064 (-375 (-501))) (-501))))) (T -862)) -((-3228 (*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501)))) (-1219 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) (-2475 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-1064 (-501))) (-5 *2 (-501)) (-5 *1 (-862)))) (-2955 (*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501)))) (-3573 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) (-4080 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) (-3495 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) (-2652 (*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501))))) -(-10 -7 (-15 -2652 ((-1064 (-375 (-501))) (-501))) (-15 -3495 ((-1064 (-501)) (-501))) (-15 -4080 ((-1064 (-501)) (-501))) (-15 -3573 ((-1064 (-501)) (-501))) (-15 -2955 ((-1064 (-375 (-501))) (-501))) (-15 -1282 ((-501) (-1064 (-501)))) (-15 -2475 ((-1064 (-501)) (-501))) (-15 -1219 ((-1064 (-501)) (-501))) (-15 -3228 ((-1064 (-375 (-501))) (-501)))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2563 (($ (-701)) NIL (|has| |#1| (-23)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) 11 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-1801 (($ (-578 |#1|)) 13)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2123 (((-621 |#1|) $ $) NIL (|has| |#1| (-959)))) (-3634 (($ (-701) |#1|) 8)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 10 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3203 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3155 (((-107) $ (-701)) NIL)) (-4139 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-3718 (($ $ (-578 |#1|)) 24)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) 18) (($ $ (-1116 (-501))) NIL)) (-1293 ((|#1| $ $) NIL (|has| |#1| (-959)))) (-3613 (((-839) $) 16)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-2220 (($ $ $) 22)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490)))) (($ (-578 |#1|)) 17)) (-3699 (($ (-578 |#1|)) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3797 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3790 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-501) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-657))) (($ $ |#1|) NIL (|has| |#1| (-657)))) (-3581 (((-701) $) 14 (|has| $ (-6 -4167))))) -(((-863 |#1|) (-895 |#1|) (-959)) (T -863)) -NIL -(-895 |#1|) -((-2207 (((-447 |#1| |#2|) (-866 |#2|)) 17)) (-3464 (((-220 |#1| |#2|) (-866 |#2|)) 29)) (-2549 (((-866 |#2|) (-447 |#1| |#2|)) 22)) (-2895 (((-220 |#1| |#2|) (-447 |#1| |#2|)) 53)) (-4016 (((-866 |#2|) (-220 |#1| |#2|)) 26)) (-3814 (((-447 |#1| |#2|) (-220 |#1| |#2|)) 44))) -(((-864 |#1| |#2|) (-10 -7 (-15 -3814 ((-447 |#1| |#2|) (-220 |#1| |#2|))) (-15 -2895 ((-220 |#1| |#2|) (-447 |#1| |#2|))) (-15 -2207 ((-447 |#1| |#2|) (-866 |#2|))) (-15 -2549 ((-866 |#2|) (-447 |#1| |#2|))) (-15 -4016 ((-866 |#2|) (-220 |#1| |#2|))) (-15 -3464 ((-220 |#1| |#2|) (-866 |#2|)))) (-578 (-1070)) (-959)) (T -864)) -((-3464 (*1 *2 *3) (-12 (-5 *3 (-866 *5)) (-4 *5 (-959)) (-5 *2 (-220 *4 *5)) (-5 *1 (-864 *4 *5)) (-14 *4 (-578 (-1070))))) (-4016 (*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-866 *5)) (-5 *1 (-864 *4 *5)))) (-2549 (*1 *2 *3) (-12 (-5 *3 (-447 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-866 *5)) (-5 *1 (-864 *4 *5)))) (-2207 (*1 *2 *3) (-12 (-5 *3 (-866 *5)) (-4 *5 (-959)) (-5 *2 (-447 *4 *5)) (-5 *1 (-864 *4 *5)) (-14 *4 (-578 (-1070))))) (-2895 (*1 *2 *3) (-12 (-5 *3 (-447 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-220 *4 *5)) (-5 *1 (-864 *4 *5)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-447 *4 *5)) (-5 *1 (-864 *4 *5))))) -(-10 -7 (-15 -3814 ((-447 |#1| |#2|) (-220 |#1| |#2|))) (-15 -2895 ((-220 |#1| |#2|) (-447 |#1| |#2|))) (-15 -2207 ((-447 |#1| |#2|) (-866 |#2|))) (-15 -2549 ((-866 |#2|) (-447 |#1| |#2|))) (-15 -4016 ((-866 |#2|) (-220 |#1| |#2|))) (-15 -3464 ((-220 |#1| |#2|) (-866 |#2|)))) -((-2032 (((-578 |#2|) |#2| |#2|) 10)) (-2727 (((-701) (-578 |#1|)) 37 (|has| |#1| (-775)))) (-2840 (((-578 |#2|) |#2|) 11)) (-3763 (((-701) (-578 |#1|) (-501) (-501)) 36 (|has| |#1| (-775)))) (-1759 ((|#1| |#2|) 32 (|has| |#1| (-775))))) -(((-865 |#1| |#2|) (-10 -7 (-15 -2032 ((-578 |#2|) |#2| |#2|)) (-15 -2840 ((-578 |#2|) |#2|)) (IF (|has| |#1| (-775)) (PROGN (-15 -1759 (|#1| |#2|)) (-15 -2727 ((-701) (-578 |#1|))) (-15 -3763 ((-701) (-578 |#1|) (-501) (-501)))) |noBranch|)) (-331) (-1125 |#1|)) (T -865)) -((-3763 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-501)) (-4 *5 (-775)) (-4 *5 (-331)) (-5 *2 (-701)) (-5 *1 (-865 *5 *6)) (-4 *6 (-1125 *5)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-775)) (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-865 *4 *5)) (-4 *5 (-1125 *4)))) (-1759 (*1 *2 *3) (-12 (-4 *2 (-331)) (-4 *2 (-775)) (-5 *1 (-865 *2 *3)) (-4 *3 (-1125 *2)))) (-2840 (*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1125 *4)))) (-2032 (*1 *2 *3 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1125 *4))))) -(-10 -7 (-15 -2032 ((-578 |#2|) |#2| |#2|)) (-15 -2840 ((-578 |#2|) |#2|)) (IF (|has| |#1| (-775)) (PROGN (-15 -1759 (|#1| |#2|)) (-15 -2727 ((-701) (-578 |#1|))) (-15 -3763 ((-701) (-578 |#1|) (-501) (-501)))) |noBranch|)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-1070)) $) 15)) (-3728 (((-1064 $) $ (-1070)) 21) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-1070))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 8) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-1070) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-1070) $) NIL)) (-1749 (($ $ $ (-1070)) NIL (|has| |#1| (-156)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ (-1070)) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-487 (-1070)) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-1070) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-1070) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#1|) (-1070)) NIL) (($ (-1064 $) (-1070)) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-487 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-1070)) NIL)) (-2285 (((-487 (-1070)) $) NIL) (((-701) $ (-1070)) NIL) (((-578 (-701)) $ (-578 (-1070))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 (-1070)) (-487 (-1070))) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2752 (((-3 (-1070) "failed") $) 19)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-1070)) (|:| -3027 (-701))) "failed") $) NIL)) (-3188 (($ $ (-1070)) 29 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-1070) |#1|) NIL) (($ $ (-578 (-1070)) (-578 |#1|)) NIL) (($ $ (-1070) $) NIL) (($ $ (-578 (-1070)) (-578 $)) NIL)) (-2532 (($ $ (-1070)) NIL (|has| |#1| (-156)))) (-2596 (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-1201 (((-487 (-1070)) $) NIL) (((-701) $ (-1070)) NIL) (((-578 (-701)) $ (-578 (-1070))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-1070) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-1070) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-1070) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ (-1070)) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 25) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-1070)) 27) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-487 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-866 |#1|) (-13 (-870 |#1| (-487 (-1070)) (-1070)) (-10 -8 (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1070))) |noBranch|))) (-959)) (T -866)) -((-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-866 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959))))) -(-13 (-870 |#1| (-487 (-1070)) (-1070)) (-10 -8 (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1070))) |noBranch|))) -((-1212 (((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)) 18))) -(((-867 |#1| |#2|) (-10 -7 (-15 -1212 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)))) (-959) (-959)) (T -867)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-866 *6)) (-5 *1 (-867 *5 *6))))) -(-10 -7 (-15 -1212 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)))) -((-3728 (((-1118 |#1| (-866 |#2|)) (-866 |#2|) (-1145 |#1|)) 18))) -(((-868 |#1| |#2|) (-10 -7 (-15 -3728 ((-1118 |#1| (-866 |#2|)) (-866 |#2|) (-1145 |#1|)))) (-1070) (-959)) (T -868)) -((-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-1145 *5)) (-14 *5 (-1070)) (-4 *6 (-959)) (-5 *2 (-1118 *5 (-866 *6))) (-5 *1 (-868 *5 *6)) (-5 *3 (-866 *6))))) -(-10 -7 (-15 -3728 ((-1118 |#1| (-866 |#2|)) (-866 |#2|) (-1145 |#1|)))) -((-1699 (((-701) $) 69) (((-701) $ (-578 |#4|)) 72)) (-3676 (($ $) 169)) (-1559 (((-373 $) $) 161)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 112)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 |#4| "failed") $) 58)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL) (((-501) $) NIL) ((|#4| $) 57)) (-1749 (($ $ $ |#4|) 74)) (-3868 (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 102) (((-621 |#2|) (-621 $)) 95)) (-3533 (($ $) 176) (($ $ |#4|) 179)) (-3854 (((-578 $) $) 61)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 194) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 188)) (-2713 (((-578 $) $) 27)) (-3787 (($ |#2| |#3|) NIL) (($ $ |#4| (-701)) NIL) (($ $ (-578 |#4|) (-578 (-701))) 55)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#4|) 158)) (-2948 (((-3 (-578 $) "failed") $) 41)) (-1285 (((-3 (-578 $) "failed") $) 30)) (-2551 (((-3 (-2 (|:| |var| |#4|) (|:| -3027 (-701))) "failed") $) 45)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 105)) (-2305 (((-373 (-1064 $)) (-1064 $)) 118)) (-2572 (((-373 (-1064 $)) (-1064 $)) 116)) (-3739 (((-373 $) $) 136)) (-3195 (($ $ (-578 (-262 $))) 20) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-578 |#4|) (-578 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-578 |#4|) (-578 $)) NIL)) (-2532 (($ $ |#4|) 76)) (-1248 (((-810 (-346)) $) 208) (((-810 (-501)) $) 201) (((-490) $) 216)) (-1734 ((|#2| $) NIL) (($ $ |#4|) 171)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 150)) (-2495 ((|#2| $ |#3|) NIL) (($ $ |#4| (-701)) 50) (($ $ (-578 |#4|) (-578 (-701))) 53)) (-1274 (((-3 $ "failed") $) 152)) (-3762 (((-107) $ $) 182))) -(((-869 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -2375 ((-3 (-1148 |#1|) "failed") (-621 |#1|))) (-15 -3533 (|#1| |#1| |#4|)) (-15 -1734 (|#1| |#1| |#4|)) (-15 -2532 (|#1| |#1| |#4|)) (-15 -1749 (|#1| |#1| |#1| |#4|)) (-15 -3854 ((-578 |#1|) |#1|)) (-15 -1699 ((-701) |#1| (-578 |#4|))) (-15 -1699 ((-701) |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| |#4|) (|:| -3027 (-701))) "failed") |#1|)) (-15 -2948 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -1285 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -3787 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -3787 (|#1| |#1| |#4| (-701))) (-15 -1554 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -2713 ((-578 |#1|) |#1|)) (-15 -2495 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -2495 (|#1| |#1| |#4| (-701))) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#4| |#1|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#4| |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#4| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3787 (|#1| |#2| |#3|)) (-15 -2495 (|#2| |#1| |#3|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3533 (|#1| |#1|))) (-870 |#2| |#3| |#4|) (-959) (-723) (-777)) (T -869)) -NIL -(-10 -8 (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -2375 ((-3 (-1148 |#1|) "failed") (-621 |#1|))) (-15 -3533 (|#1| |#1| |#4|)) (-15 -1734 (|#1| |#1| |#4|)) (-15 -2532 (|#1| |#1| |#4|)) (-15 -1749 (|#1| |#1| |#1| |#4|)) (-15 -3854 ((-578 |#1|) |#1|)) (-15 -1699 ((-701) |#1| (-578 |#4|))) (-15 -1699 ((-701) |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| |#4|) (|:| -3027 (-701))) "failed") |#1|)) (-15 -2948 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -1285 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -3787 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -3787 (|#1| |#1| |#4| (-701))) (-15 -1554 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -2713 ((-578 |#1|) |#1|)) (-15 -2495 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -2495 (|#1| |#1| |#4| (-701))) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#4| |#1|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#4| |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#4| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3787 (|#1| |#2| |#3|)) (-15 -2495 (|#2| |#1| |#3|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3533 (|#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 |#3|) $) 112)) (-3728 (((-1064 $) $ |#3|) 127) (((-1064 |#1|) $) 126)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 89 (|has| |#1| (-508)))) (-2865 (($ $) 90 (|has| |#1| (-508)))) (-1639 (((-107) $) 92 (|has| |#1| (-508)))) (-1699 (((-701) $) 114) (((-701) $ (-578 |#3|)) 113)) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 102 (|has| |#1| (-830)))) (-3676 (($ $) 100 (|has| |#1| (-419)))) (-1559 (((-373 $) $) 99 (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 105 (|has| |#1| (-830)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 166) (((-3 (-375 (-501)) "failed") $) 164 (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) 162 (|has| |#1| (-950 (-501)))) (((-3 |#3| "failed") $) 138)) (-3490 ((|#1| $) 167) (((-375 (-501)) $) 163 (|has| |#1| (-950 (-375 (-501))))) (((-501) $) 161 (|has| |#1| (-950 (-501)))) ((|#3| $) 137)) (-1749 (($ $ $ |#3|) 110 (|has| |#1| (-156)))) (-3858 (($ $) 156)) (-3868 (((-621 (-501)) (-621 $)) 136 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 135 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 134) (((-621 |#1|) (-621 $)) 133)) (-2174 (((-3 $ "failed") $) 34)) (-3533 (($ $) 178 (|has| |#1| (-419))) (($ $ |#3|) 107 (|has| |#1| (-419)))) (-3854 (((-578 $) $) 111)) (-1628 (((-107) $) 98 (|has| |#1| (-830)))) (-3503 (($ $ |#1| |#2| $) 174)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 86 (-12 (|has| |#3| (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 85 (-12 (|has| |#3| (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-1355 (((-107) $) 31)) (-3706 (((-701) $) 171)) (-3794 (($ (-1064 |#1|) |#3|) 119) (($ (-1064 $) |#3|) 118)) (-2713 (((-578 $) $) 128)) (-2706 (((-107) $) 154)) (-3787 (($ |#1| |#2|) 155) (($ $ |#3| (-701)) 121) (($ $ (-578 |#3|) (-578 (-701))) 120)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#3|) 122)) (-2285 ((|#2| $) 172) (((-701) $ |#3|) 124) (((-578 (-701)) $ (-578 |#3|)) 123)) (-4111 (($ $ $) 81 (|has| |#1| (-777)))) (-1323 (($ $ $) 80 (|has| |#1| (-777)))) (-3515 (($ (-1 |#2| |#2|) $) 173)) (-1212 (($ (-1 |#1| |#1|) $) 153)) (-2752 (((-3 |#3| "failed") $) 125)) (-3845 (($ $) 151)) (-3850 ((|#1| $) 150)) (-1697 (($ (-578 $)) 96 (|has| |#1| (-419))) (($ $ $) 95 (|has| |#1| (-419)))) (-3460 (((-1053) $) 9)) (-2948 (((-3 (-578 $) "failed") $) 116)) (-1285 (((-3 (-578 $) "failed") $) 117)) (-2551 (((-3 (-2 (|:| |var| |#3|) (|:| -3027 (-701))) "failed") $) 115)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 168)) (-3841 ((|#1| $) 169)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 97 (|has| |#1| (-419)))) (-3664 (($ (-578 $)) 94 (|has| |#1| (-419))) (($ $ $) 93 (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 104 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 103 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 101 (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) 147) (($ $ (-262 $)) 146) (($ $ $ $) 145) (($ $ (-578 $) (-578 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-578 |#3|) (-578 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-578 |#3|) (-578 $)) 140)) (-2532 (($ $ |#3|) 109 (|has| |#1| (-156)))) (-2596 (($ $ |#3|) 42) (($ $ (-578 |#3|)) 41) (($ $ |#3| (-701)) 40) (($ $ (-578 |#3|) (-578 (-701))) 39)) (-1201 ((|#2| $) 152) (((-701) $ |#3|) 132) (((-578 (-701)) $ (-578 |#3|)) 131)) (-1248 (((-810 (-346)) $) 84 (-12 (|has| |#3| (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) 83 (-12 (|has| |#3| (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) 82 (-12 (|has| |#3| (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) 177 (|has| |#1| (-419))) (($ $ |#3|) 108 (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 106 (-1280 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 165) (($ |#3|) 139) (($ $) 87 (|has| |#1| (-508))) (($ (-375 (-501))) 74 (-1405 (|has| |#1| (-950 (-375 (-501)))) (|has| |#1| (-37 (-375 (-501))))))) (-1303 (((-578 |#1|) $) 170)) (-2495 ((|#1| $ |#2|) 157) (($ $ |#3| (-701)) 130) (($ $ (-578 |#3|) (-578 (-701))) 129)) (-1274 (((-3 $ "failed") $) 75 (-1405 (-1280 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 29)) (-3771 (($ $ $ (-701)) 175 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 91 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ |#3|) 38) (($ $ (-578 |#3|)) 37) (($ $ |#3| (-701)) 36) (($ $ (-578 |#3|) (-578 (-701))) 35)) (-3778 (((-107) $ $) 78 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 77 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 79 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 76 (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 158 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 160 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 159 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-870 |#1| |#2| |#3|) (-1180) (-959) (-723) (-777)) (T -870)) -((-3533 (*1 *1 *1) (-12 (-4 *1 (-870 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-1201 (*1 *2 *1 *3) (-12 (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-701)))) (-1201 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-701))))) (-2495 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-870 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *2 (-777)))) (-2495 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-701))) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)))) (-2713 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) (-3728 (*1 *2 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-1064 *1)) (-4 *1 (-870 *4 *5 *3)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-1064 *3)))) (-2752 (*1 *2 *1) (|partial| -12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-2285 (*1 *2 *1 *3) (-12 (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-701)))) (-2285 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-701))))) (-1554 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-870 *4 *5 *3)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-870 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *2 (-777)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-701))) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 *4)) (-4 *4 (-959)) (-4 *1 (-870 *4 *5 *3)) (-4 *5 (-723)) (-4 *3 (-777)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)))) (-1285 (*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) (-2948 (*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) (-2551 (*1 *2 *1) (|partial| -12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| |var| *5) (|:| -3027 (-701)))))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-701)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-701)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *5)))) (-3854 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) (-1749 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-156)))) (-2532 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-156)))) (-1734 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-419)))) (-3533 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-419)))) (-3676 (*1 *1 *1) (-12 (-4 *1 (-870 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-1559 (*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-373 *1)) (-4 *1 (-870 *3 *4 *5))))) -(-13 (-820 |t#3|) (-294 |t#1| |t#2|) (-278 $) (-476 |t#3| |t#1|) (-476 |t#3| $) (-950 |t#3|) (-345 |t#1|) (-10 -8 (-15 -1201 ((-701) $ |t#3|)) (-15 -1201 ((-578 (-701)) $ (-578 |t#3|))) (-15 -2495 ($ $ |t#3| (-701))) (-15 -2495 ($ $ (-578 |t#3|) (-578 (-701)))) (-15 -2713 ((-578 $) $)) (-15 -3728 ((-1064 $) $ |t#3|)) (-15 -3728 ((-1064 |t#1|) $)) (-15 -2752 ((-3 |t#3| "failed") $)) (-15 -2285 ((-701) $ |t#3|)) (-15 -2285 ((-578 (-701)) $ (-578 |t#3|))) (-15 -1554 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |t#3|)) (-15 -3787 ($ $ |t#3| (-701))) (-15 -3787 ($ $ (-578 |t#3|) (-578 (-701)))) (-15 -3794 ($ (-1064 |t#1|) |t#3|)) (-15 -3794 ($ (-1064 $) |t#3|)) (-15 -1285 ((-3 (-578 $) "failed") $)) (-15 -2948 ((-3 (-578 $) "failed") $)) (-15 -2551 ((-3 (-2 (|:| |var| |t#3|) (|:| -3027 (-701))) "failed") $)) (-15 -1699 ((-701) $)) (-15 -1699 ((-701) $ (-578 |t#3|))) (-15 -3800 ((-578 |t#3|) $)) (-15 -3854 ((-578 $) $)) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (IF (|has| |t#3| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-556 (-810 (-501)))) (IF (|has| |t#3| (-556 (-810 (-501)))) (-6 (-556 (-810 (-501)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-556 (-810 (-346)))) (IF (|has| |t#3| (-556 (-810 (-346)))) (-6 (-556 (-810 (-346)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-806 (-501))) (IF (|has| |t#3| (-806 (-501))) (-6 (-806 (-501))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-806 (-346))) (IF (|has| |t#3| (-806 (-346))) (-6 (-806 (-346))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -1749 ($ $ $ |t#3|)) (-15 -2532 ($ $ |t#3|))) |noBranch|) (IF (|has| |t#1| (-419)) (PROGN (-6 (-419)) (-15 -1734 ($ $ |t#3|)) (-15 -3533 ($ $)) (-15 -3533 ($ $ |t#3|)) (-15 -1559 ((-373 $) $)) (-15 -3676 ($ $))) |noBranch|) (IF (|has| |t#1| (-6 -4165)) (-6 -4165) |noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-556 (-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#3| (-556 (-490)))) ((-556 (-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#3| (-556 (-810 (-346))))) ((-556 (-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#3| (-556 (-810 (-501))))) ((-260) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-278 $) . T) ((-294 |#1| |#2|) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-830)) (|has| |#1| (-419))) ((-476 |#3| |#1|) . T) ((-476 |#3| $) . T) ((-476 $ $) . T) ((-508) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 |#3|) . T) ((-806 (-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#3| (-806 (-346)))) ((-806 (-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#3| (-806 (-501)))) ((-830) |has| |#1| (-830)) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) |has| |#1| (-830))) -((-3800 (((-578 |#2|) |#5|) 36)) (-3728 (((-1064 |#5|) |#5| |#2| (-1064 |#5|)) 23) (((-375 (-1064 |#5|)) |#5| |#2|) 16)) (-3794 ((|#5| (-375 (-1064 |#5|)) |#2|) 30)) (-2752 (((-3 |#2| "failed") |#5|) 61)) (-2948 (((-3 (-578 |#5|) "failed") |#5|) 55)) (-2000 (((-3 (-2 (|:| |val| |#5|) (|:| -3027 (-501))) "failed") |#5|) 45)) (-1285 (((-3 (-578 |#5|) "failed") |#5|) 57)) (-2551 (((-3 (-2 (|:| |var| |#2|) (|:| -3027 (-501))) "failed") |#5|) 48))) -(((-871 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3800 ((-578 |#2|) |#5|)) (-15 -2752 ((-3 |#2| "failed") |#5|)) (-15 -3728 ((-375 (-1064 |#5|)) |#5| |#2|)) (-15 -3794 (|#5| (-375 (-1064 |#5|)) |#2|)) (-15 -3728 ((-1064 |#5|) |#5| |#2| (-1064 |#5|))) (-15 -1285 ((-3 (-578 |#5|) "failed") |#5|)) (-15 -2948 ((-3 (-578 |#5|) "failed") |#5|)) (-15 -2551 ((-3 (-2 (|:| |var| |#2|) (|:| -3027 (-501))) "failed") |#5|)) (-15 -2000 ((-3 (-2 (|:| |val| |#5|) (|:| -3027 (-501))) "failed") |#5|))) (-723) (-777) (-959) (-870 |#3| |#1| |#2|) (-13 (-331) (-10 -8 (-15 -3691 ($ |#4|)) (-15 -2946 (|#4| $)) (-15 -2949 (|#4| $))))) (T -871)) -((-2000 (*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3027 (-501)))) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) (-2551 (*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3027 (-501)))) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) (-2948 (*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) (-1285 (*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) (-3728 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))) (-4 *7 (-870 *6 *5 *4)) (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-5 *1 (-871 *5 *4 *6 *7 *3)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-1064 *2))) (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-4 *2 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))) (-5 *1 (-871 *5 *4 *6 *7 *2)) (-4 *7 (-870 *6 *5 *4)))) (-3728 (*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-375 (-1064 *3))) (-5 *1 (-871 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) (-2752 (*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-959)) (-4 *6 (-870 *5 *4 *2)) (-4 *2 (-777)) (-5 *1 (-871 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *6)) (-15 -2946 (*6 $)) (-15 -2949 (*6 $))))))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *5)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $)))))))) -(-10 -7 (-15 -3800 ((-578 |#2|) |#5|)) (-15 -2752 ((-3 |#2| "failed") |#5|)) (-15 -3728 ((-375 (-1064 |#5|)) |#5| |#2|)) (-15 -3794 (|#5| (-375 (-1064 |#5|)) |#2|)) (-15 -3728 ((-1064 |#5|) |#5| |#2| (-1064 |#5|))) (-15 -1285 ((-3 (-578 |#5|) "failed") |#5|)) (-15 -2948 ((-3 (-578 |#5|) "failed") |#5|)) (-15 -2551 ((-3 (-2 (|:| |var| |#2|) (|:| -3027 (-501))) "failed") |#5|)) (-15 -2000 ((-3 (-2 (|:| |val| |#5|) (|:| -3027 (-501))) "failed") |#5|))) -((-1212 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) -(((-872 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1212 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-723) (-777) (-959) (-870 |#3| |#1| |#2|) (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-701)))))) (T -872)) -((-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-777)) (-4 *8 (-959)) (-4 *6 (-723)) (-4 *2 (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-701)))))) (-5 *1 (-872 *6 *7 *8 *5 *2)) (-4 *5 (-870 *8 *6 *7))))) -(-10 -7 (-15 -1212 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2754 (((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#3| (-701)) 37)) (-2282 (((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) (-375 (-501)) (-701)) 33)) (-3592 (((-2 (|:| -3027 (-701)) (|:| -3189 |#4|) (|:| |radicand| (-578 |#4|))) |#4| (-701)) 52)) (-3564 (((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#5| (-701)) 62 (|has| |#3| (-419))))) -(((-873 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2754 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#3| (-701))) (-15 -2282 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) (-375 (-501)) (-701))) (IF (|has| |#3| (-419)) (-15 -3564 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#5| (-701))) |noBranch|) (-15 -3592 ((-2 (|:| -3027 (-701)) (|:| -3189 |#4|) (|:| |radicand| (-578 |#4|))) |#4| (-701)))) (-723) (-777) (-508) (-870 |#3| |#1| |#2|) (-13 (-331) (-10 -8 (-15 -2946 (|#4| $)) (-15 -2949 (|#4| $)) (-15 -3691 ($ |#4|))))) (T -873)) -((-3592 (*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *3 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| (-578 *3)))) (-5 *1 (-873 *5 *6 *7 *3 *8)) (-5 *4 (-701)) (-4 *8 (-13 (-331) (-10 -8 (-15 -2946 (*3 $)) (-15 -2949 (*3 $)) (-15 -3691 ($ *3))))))) (-3564 (*1 *2 *3 *4) (-12 (-4 *7 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *8 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| *3))) (-5 *1 (-873 *5 *6 *7 *8 *3)) (-5 *4 (-701)) (-4 *3 (-13 (-331) (-10 -8 (-15 -2946 (*8 $)) (-15 -2949 (*8 $)) (-15 -3691 ($ *8))))))) (-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-501))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *8 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *9) (|:| |radicand| *9))) (-5 *1 (-873 *5 *6 *7 *8 *9)) (-5 *4 (-701)) (-4 *9 (-13 (-331) (-10 -8 (-15 -2946 (*8 $)) (-15 -2949 (*8 $)) (-15 -3691 ($ *8))))))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-508)) (-4 *7 (-870 *3 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *8) (|:| |radicand| *8))) (-5 *1 (-873 *5 *6 *3 *7 *8)) (-5 *4 (-701)) (-4 *8 (-13 (-331) (-10 -8 (-15 -2946 (*7 $)) (-15 -2949 (*7 $)) (-15 -3691 ($ *7)))))))) -(-10 -7 (-15 -2754 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#3| (-701))) (-15 -2282 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) (-375 (-501)) (-701))) (IF (|has| |#3| (-419)) (-15 -3564 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#5| (-701))) |noBranch|) (-15 -3592 ((-2 (|:| -3027 (-701)) (|:| -3189 |#4|) (|:| |radicand| (-578 |#4|))) |#4| (-701)))) -((-1236 (((-991 (-199)) $) 8)) (-3096 (((-991 (-199)) $) 9)) (-2616 (((-578 (-578 (-863 (-199)))) $) 10)) (-3691 (((-786) $) 6))) -(((-874) (-1180)) (T -874)) -((-2616 (*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-578 (-578 (-863 (-199))))))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-991 (-199))))) (-1236 (*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-991 (-199)))))) -(-13 (-555 (-786)) (-10 -8 (-15 -2616 ((-578 (-578 (-863 (-199)))) $)) (-15 -3096 ((-991 (-199)) $)) (-15 -1236 ((-991 (-199)) $)))) -(((-555 (-786)) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 62 (|has| |#1| (-508)))) (-2865 (($ $) 63 (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 28)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) 24)) (-2174 (((-3 $ "failed") $) 35)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-3503 (($ $ |#1| |#2| $) 47)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) 16)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| |#2|) NIL)) (-2285 ((|#2| $) 19)) (-3515 (($ (-1 |#2| |#2|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3845 (($ $) 23)) (-3850 ((|#1| $) 21)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) 40)) (-3841 ((|#1| $) NIL)) (-4138 (($ $ |#2| |#1| $) 71 (-12 (|has| |#2| (-123)) (|has| |#1| (-508))))) (-3694 (((-3 $ "failed") $ $) 73 (|has| |#1| (-508))) (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-508)))) (-1201 ((|#2| $) 17)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) 39) (($ $) NIL (|has| |#1| (-508))) (($ |#1|) 34) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ |#2|) 31)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) 15)) (-3771 (($ $ $ (-701)) 58 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 68 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 54) (($ $ (-701)) 55)) (-1850 (($) 22 T CONST)) (-1925 (($) 12 T CONST)) (-3751 (((-107) $ $) 67)) (-3803 (($ $ |#1|) 74 (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) 53) (($ $ (-701)) 51)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-875 |#1| |#2|) (-13 (-294 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-508)) (IF (|has| |#2| (-123)) (-15 -4138 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|))) (-959) (-722)) (T -875)) -((-4138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-875 *3 *2)) (-4 *2 (-123)) (-4 *3 (-508)) (-4 *3 (-959)) (-4 *2 (-722))))) -(-13 (-294 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-508)) (IF (|has| |#2| (-123)) (-15 -4138 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|))) -((-2554 (((-3 (-621 |#1|) "failed") |#2| (-839)) 14))) -(((-876 |#1| |#2|) (-10 -7 (-15 -2554 ((-3 (-621 |#1|) "failed") |#2| (-839)))) (-508) (-593 |#1|)) (T -876)) -((-2554 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-839)) (-4 *5 (-508)) (-5 *2 (-621 *5)) (-5 *1 (-876 *5 *3)) (-4 *3 (-593 *5))))) -(-10 -7 (-15 -2554 ((-3 (-621 |#1|) "failed") |#2| (-839)))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) 17 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 16 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 14)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 13)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 10 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) 12 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 11)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) 15) (($ $ (-1116 (-501))) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) 8 (|has| $ (-6 -4167))))) -(((-877 |#1|) (-19 |#1|) (-1104)) (T -877)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1003) . T)) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21))) +(((-724) (-1184)) (T -724)) +NIL +(-13 (-726) (-23)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-726) . T) ((-779) . T) ((-1003) . T)) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-1640 (($ $ $) 27)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21))) +(((-725) (-1184)) (T -725)) +((-1640 (*1 *1 *1 *1) (-4 *1 (-725)))) +(-13 (-727) (-10 -8 (-15 -1640 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1003) . T)) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21))) +(((-726) (-1184)) (T -726)) +NIL +(-13 (-779) (-23)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1003) . T)) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21))) +(((-727) (-1184)) (T -727)) +NIL +(-13 (-724) (-123)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-779) . T) ((-1003) . T)) +((-2814 (((-107) $) 41)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 42)) (-1256 (((-3 (-377 (-517)) "failed") $) 78)) (-1355 (((-107) $) 72)) (-3364 (((-377 (-517)) $) 76)) (-1506 ((|#2| $) 26)) (-1893 (($ (-1 |#2| |#2|) $) 23)) (-4118 (($ $) 61)) (-3645 (((-493) $) 67)) (-1487 (($ $) 21)) (-2256 (((-787) $) 56) (($ (-517)) 39) (($ |#2|) 37) (($ (-377 (-517))) NIL)) (-2961 (((-703)) 10)) (-3710 ((|#2| $) 71)) (-1547 (((-107) $ $) 29)) (-1572 (((-107) $ $) 69)) (-1654 (($ $) 31) (($ $ $) NIL)) (-1642 (($ $ $) 30)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-728 |#1| |#2|) (-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-729 |#2|) (-156)) (T -728)) +((-2961 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4))))) +(-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-1611 (((-703)) 53 (|has| |#1| (-338)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 94 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 92 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 90)) (-3189 (((-517) $) 95 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 93 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 89)) (-3621 (((-3 $ "failed") $) 34)) (-3775 ((|#1| $) 79)) (-1256 (((-3 (-377 (-517)) "failed") $) 66 (|has| |#1| (-502)))) (-1355 (((-107) $) 68 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 67 (|has| |#1| (-502)))) (-3209 (($) 56 (|has| |#1| (-338)))) (-3848 (((-107) $) 31)) (-3997 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-1506 ((|#1| $) 71)) (-2967 (($ $ $) 62 (|has| |#1| (-779)))) (-3099 (($ $ $) 61 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 81)) (-1549 (((-843) $) 55 (|has| |#1| (-338)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 65 (|has| |#1| (-333)))) (-3448 (($ (-843)) 54 (|has| |#1| (-338)))) (-4142 ((|#1| $) 76)) (-1287 ((|#1| $) 77)) (-3181 ((|#1| $) 78)) (-2976 ((|#1| $) 72)) (-2999 ((|#1| $) 73)) (-1467 ((|#1| $) 74)) (-3490 ((|#1| $) 75)) (-3206 (((-1021) $) 10)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 87 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 85 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 84 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 83 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 82 (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) 88 (|has| |#1| (-258 |#1| |#1|)))) (-3645 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-1487 (($ $) 80)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 91 (|has| |#1| (-952 (-377 (-517)))))) (-1328 (((-3 $ "failed") $) 64 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3710 ((|#1| $) 69 (|has| |#1| (-970)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 59 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 58 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 60 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 57 (|has| |#1| (-779)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-729 |#1|) (-1184) (-156)) (T -729)) +((-1487 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1287 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1467 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3997 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-4118 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333))))) +(-13 (-37 |t#1|) (-381 |t#1|) (-308 |t#1|) (-10 -8 (-15 -1487 ($ $)) (-15 -3775 (|t#1| $)) (-15 -3181 (|t#1| $)) (-15 -1287 (|t#1| $)) (-15 -4142 (|t#1| $)) (-15 -3490 (|t#1| $)) (-15 -1467 (|t#1| $)) (-15 -2999 (|t#1| $)) (-15 -2976 (|t#1| $)) (-15 -1506 (|t#1| $)) (-15 -3997 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -3710 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-333)) (-15 -4118 ($ $)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-338) |has| |#1| (-338)) ((-308 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-1893 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) (-729 |#2|) (-156) (-729 |#4|) (-156)) (T -730)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5))))) +(-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-915 |#1|) "failed") $) 35) (((-3 (-517) "failed") $) NIL (-3807 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL (-3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 ((|#1| $) NIL) (((-915 |#1|) $) 33) (((-517) $) NIL (-3807 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517))))) (((-377 (-517)) $) NIL (-3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3621 (((-3 $ "failed") $) NIL)) (-3775 ((|#1| $) 16)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1355 (((-107) $) NIL (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-3209 (($) NIL (|has| |#1| (-338)))) (-3848 (((-107) $) NIL)) (-3997 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-915 |#1|) (-915 |#1|)) 29)) (-1506 ((|#1| $) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-4142 ((|#1| $) 22)) (-1287 ((|#1| $) 20)) (-3181 ((|#1| $) 18)) (-2976 ((|#1| $) 26)) (-2999 ((|#1| $) 25)) (-1467 ((|#1| $) 24)) (-3490 ((|#1| $) 23)) (-3206 (((-1021) $) NIL)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1487 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-915 |#1|)) 30) (($ (-377 (-517))) NIL (-3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3710 ((|#1| $) NIL (|has| |#1| (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 8 T CONST)) (-2409 (($) 12 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-731 |#1|) (-13 (-729 |#1|) (-381 (-915 |#1|)) (-10 -8 (-15 -3997 ($ (-915 |#1|) (-915 |#1|))))) (-156)) (T -731)) +((-3997 (*1 *1 *2 *2) (-12 (-5 *2 (-915 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3))))) +(-13 (-729 |#1|) (-381 (-915 |#1|)) (-10 -8 (-15 -3997 ($ (-915 |#1|) (-915 |#1|))))) +((-2750 (((-107) $ $) 7)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 13)) (-1547 (((-107) $ $) 6))) +(((-732) (-1184)) (T -732)) +((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-3232 (*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-950))))) +(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3232 ((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-3655 (((-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#3| |#2| (-1073)) 19))) +(((-733 |#1| |#2| |#3|) (-10 -7 (-15 -3655 ((-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#3| |#2| (-1073)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880)) (-593 |#2|)) (T -733)) +((-3655 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4))))) +(-10 -7 (-15 -3655 ((-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#3| |#2| (-1073)))) +((-1674 (((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)) 26) (((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1073)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1073)) 17) (((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1073)) 22) (((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1073)) 24) (((-3 (-583 (-1153 |#2|)) "failed") (-623 |#2|) (-1073)) 36) (((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-623 |#2|) (-1153 |#2|) (-1073)) 34))) +(((-734 |#1| |#2|) (-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-623 |#2|) (-1153 |#2|) (-1073))) (-15 -1674 ((-3 (-583 (-1153 |#2|)) "failed") (-623 |#2|) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1073))) (-15 -1674 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1674 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880))) (T -734)) +((-1674 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) (-1674 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))))) (-1674 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1753 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1094) (-880))))) (-1674 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1753 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) (-1674 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1073)) (-4 *6 (-13 (-29 *5) (-1094) (-880))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1153 *6))) (-5 *1 (-734 *5 *6)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1153 *7))))) +(-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-623 |#2|) (-1153 |#2|) (-1073))) (-15 -1674 ((-3 (-583 (-1153 |#2|)) "failed") (-623 |#2|) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1073))) (-15 -1674 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1674 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)))) +((-1245 (($) 9)) (-2883 (((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-2274 (((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 23)) (-1710 (($ (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) 20)) (-2245 (($ (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) 18)) (-2258 (((-1158)) 12))) +(((-735) (-10 -8 (-15 -1245 ($)) (-15 -2258 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2245 ($ (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2883 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -735)) +((-2883 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) (-2245 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))) (-2258 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-735)))) (-1245 (*1 *1) (-5 *1 (-735)))) +(-10 -8 (-15 -1245 ($)) (-15 -2258 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2245 ($ (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2883 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) +((-2612 ((|#2| |#2| (-1073)) 15)) (-2575 ((|#2| |#2| (-1073)) 47)) (-2252 (((-1 |#2| |#2|) (-1073)) 11))) +(((-736 |#1| |#2|) (-10 -7 (-15 -2612 (|#2| |#2| (-1073))) (-15 -2575 (|#2| |#2| (-1073))) (-15 -2252 ((-1 |#2| |#2|) (-1073)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880))) (T -736)) +((-2252 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1094) (-880))))) (-2575 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880))))) (-2612 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880)))))) +(-10 -7 (-15 -2612 (|#2| |#2| (-1073))) (-15 -2575 (|#2| |#2| (-1073))) (-15 -2252 ((-1 |#2| |#2|) (-1073)))) +((-1674 (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349)) 114) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349)) 115) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349)) 117) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349)) 118) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349)) 119) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349))) 120) (((-950) (-740) (-973)) 105) (((-950) (-740)) 106)) (-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740) (-973)) 71) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740)) 73))) +(((-737) (-10 -7 (-15 -1674 ((-950) (-740))) (-15 -1674 ((-950) (-740) (-973))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740) (-973))))) (T -737)) +((-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-950)) (-5 *1 (-737))))) +(-10 -7 (-15 -1674 ((-950) (-740))) (-15 -1674 ((-950) (-740) (-973))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740) (-973)))) +((-3532 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1753 (-583 |#4|))) (-590 |#4|) |#4|) 32))) +(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3532 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1753 (-583 |#4|))) (-590 |#4|) |#4|))) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -738)) +((-3532 (*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4))))) +(-10 -7 (-15 -3532 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1753 (-583 |#4|))) (-590 |#4|) |#4|))) +((-4112 (((-2 (|:| -2131 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))) 51)) (-4013 (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4| |#2|) 59) (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4|) 58) (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3| |#2|) 20) (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3|) 21)) (-3457 ((|#2| |#4| |#1|) 60) ((|#2| |#3| |#1|) 27)) (-1998 ((|#2| |#3| (-583 (-377 |#2|))) 93) (((-3 |#2| "failed") |#3| (-377 |#2|)) 90))) +(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1998 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -1998 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3| |#2|)) (-15 -3457 (|#2| |#3| |#1|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4| |#2|)) (-15 -3457 (|#2| |#4| |#1|)) (-15 -4112 ((-2 (|:| -2131 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))))) (-13 (-333) (-134) (-952 (-377 (-517)))) (-1130 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -739)) +((-4112 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2131 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) (-3457 (*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))) (-4013 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))) (-4013 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) (-3457 (*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) (-4013 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) (-4013 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-1998 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))) (-1998 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4))))) +(-10 -7 (-15 -1998 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -1998 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3| |#2|)) (-15 -3457 (|#2| |#3| |#1|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4| |#2|)) (-15 -3457 (|#2| |#4| |#1|)) (-15 -4112 ((-2 (|:| -2131 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))))) +((-2750 (((-107) $ $) NIL)) (-3189 (((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $) 9)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11) (($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8)) (-1547 (((-107) $ $) NIL))) +(((-740) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))) (T -740)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740))))) +(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $)))) +((-2846 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1069 |#2|)) (-1 (-388 |#2|) |#2|)) 118)) (-2199 (((-583 (-2 (|:| |poly| |#2|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 45)) (-1981 (((-583 (-2 (|:| |deg| (-703)) (|:| -2131 |#2|))) |#3|) 95)) (-2470 ((|#2| |#3|) 37)) (-2156 (((-583 (-2 (|:| -1619 |#1|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 82)) (-2109 ((|#3| |#3| (-377 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2470 (|#2| |#3|)) (-15 -1981 ((-583 (-2 (|:| |deg| (-703)) (|:| -2131 |#2|))) |#3|)) (-15 -2156 ((-583 (-2 (|:| -1619 |#1|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1069 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2109 (|#3| |#3| |#2|)) (-15 -2109 (|#3| |#3| (-377 |#2|)))) (-13 (-333) (-134) (-952 (-377 (-517)))) (-1130 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -741)) +((-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))) (-2109 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-1130 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) (-2846 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1069 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -2131 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) (-2199 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-2156 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1619 *5) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-1981 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2131 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-2470 (*1 *2 *3) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2)))))) +(-10 -7 (-15 -2470 (|#2| |#3|)) (-15 -1981 ((-583 (-2 (|:| |deg| (-703)) (|:| -2131 |#2|))) |#3|)) (-15 -2156 ((-583 (-2 (|:| -1619 |#1|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1069 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2109 (|#3| |#3| |#2|)) (-15 -2109 (|#3| |#3| (-377 |#2|)))) +((-1983 (((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|))) 117) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|)) 116) (((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|))) 111) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|)) 109)) (-2171 ((|#2| (-591 |#2| (-377 |#2|))) 77) ((|#2| (-590 (-377 |#2|))) 81))) +(((-742 |#1| |#2|) (-10 -7 (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -2171 (|#2| (-590 (-377 |#2|)))) (-15 -2171 (|#2| (-591 |#2| (-377 |#2|))))) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -742)) +((-2171 (*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6))))) +(-10 -7 (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -2171 (|#2| (-590 (-377 |#2|)))) (-15 -2171 (|#2| (-591 |#2| (-377 |#2|))))) +((-2187 (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) |#5| |#4|) 47))) +(((-743 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2187 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) |#5| |#4|))) (-333) (-593 |#1|) (-1130 |#1|) (-657 |#1| |#3|) (-593 |#4|)) (T -743)) +((-2187 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1130 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4))))) +(-10 -7 (-15 -2187 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) |#5| |#4|))) +((-2846 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 43)) (-1461 (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 137 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|))) 134 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 138 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|))) 136 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 36) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 37) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 34) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 35)) (-2199 (((-583 (-2 (|:| |poly| |#2|) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 80))) +(((-744 |#1| |#2|) (-10 -7 (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |noBranch|)) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -744)) +((-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-2199 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-2846 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-1461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))) +(-10 -7 (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |noBranch|)) +((-1776 (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) (-623 |#2|) (-1153 |#1|)) 86) (((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)) (|:| -2131 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1153 |#1|)) 14)) (-2032 (((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#2|) (-1153 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1753 (-583 |#1|))) |#2| |#1|)) 92)) (-1674 (((-3 (-2 (|:| |particular| (-1153 |#1|)) (|:| -1753 (-623 |#1|))) "failed") (-623 |#1|) (-1153 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed") |#2| |#1|)) 45))) +(((-745 |#1| |#2|) (-10 -7 (-15 -1776 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)) (|:| -2131 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1153 |#1|))) (-15 -1776 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) (-623 |#2|) (-1153 |#1|))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#1|)) (|:| -1753 (-623 |#1|))) "failed") (-623 |#1|) (-1153 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -2032 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#2|) (-1153 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1753 (-583 |#1|))) |#2| |#1|)))) (-333) (-593 |#1|)) (T -745)) +((-2032 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1753 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *6) "failed")) (|:| -1753 (-583 (-1153 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1153 *6)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1753 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1153 *6)) (|:| -1753 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *5)))) (-1776 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5)) (|:| -2131 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *6 (-593 *5))))) +(-10 -7 (-15 -1776 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)) (|:| -2131 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1153 |#1|))) (-15 -1776 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) (-623 |#2|) (-1153 |#1|))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#1|)) (|:| -1753 (-623 |#1|))) "failed") (-623 |#1|) (-1153 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -2032 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#2|) (-1153 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1753 (-583 |#1|))) |#2| |#1|)))) +((-1537 (((-623 |#1|) (-583 |#1|) (-703)) 13) (((-623 |#1|) (-583 |#1|)) 14)) (-2306 (((-3 (-1153 |#1|) "failed") |#2| |#1| (-583 |#1|)) 34)) (-2679 (((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 42))) +(((-746 |#1| |#2|) (-10 -7 (-15 -1537 ((-623 |#1|) (-583 |#1|))) (-15 -1537 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -2306 ((-3 (-1153 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -2679 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -746)) +((-2679 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) (-2306 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1153 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4))))) +(-10 -7 (-15 -1537 ((-623 |#1|) (-583 |#1|))) (-15 -1537 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -2306 ((-3 (-1153 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -2679 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) +((-2750 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2814 (((-107) $) NIL (|has| |#2| (-123)))) (-2847 (($ (-843)) NIL (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#2| (-338)))) (-3709 (((-517) $) NIL (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) NIL (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) NIL (|has| |#2| (-961)))) (-3209 (($) NIL (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) NIL)) (-3556 (((-107) $) NIL (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#2| (-961)))) (-2475 (((-107) $) NIL (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#2| (-338)))) (-3206 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1647 ((|#2| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3501 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) NIL)) (-3141 (((-125)) NIL (|has| |#2| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#2|) $) NIL) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) NIL (|has| |#2| (-1003)))) (-2961 (((-703)) NIL (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#2| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2396 (($) NIL (|has| |#2| (-123)) CONST)) (-2409 (($) NIL (|has| |#2| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1547 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) 11 (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1642 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) NIL (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-747 |#1| |#2| |#3|) (-212 |#1| |#2|) (-703) (-725) (-1 (-107) (-1153 |#2|) (-1153 |#2|))) (T -747)) +NIL +(-212 |#1| |#2|) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3469 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1073)) NIL)) (-2932 (((-703) $) NIL) (((-703) $ (-1073)) NIL)) (-1364 (((-583 (-750 (-1073))) $) NIL)) (-2352 (((-1069 $) $ (-750 (-1073))) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-750 (-1073)))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3960 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-750 (-1073)) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL) (((-3 (-1026 |#1| (-1073)) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-750 (-1073)) $) NIL) (((-1073) $) NIL) (((-1026 |#1| (-1073)) $) NIL)) (-3388 (($ $ $ (-750 (-1073))) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1073))) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 (-750 (-1073))) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-750 (-1073)) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-750 (-1073)) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ (-1073)) NIL) (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) (-750 (-1073))) NIL) (($ (-1069 $) (-750 (-1073))) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-750 (-1073))) NIL)) (-2349 (((-489 (-750 (-1073))) $) NIL) (((-703) $ (-750 (-1073))) NIL) (((-583 (-703)) $ (-583 (-750 (-1073)))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 (-750 (-1073))) (-489 (-750 (-1073)))) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2656 (((-1 $ (-703)) (-1073)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1409 (((-3 (-750 (-1073)) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-2133 (((-750 (-1073)) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2982 (((-107) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-750 (-1073))) (|:| -2077 (-703))) "failed") $) NIL)) (-2604 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-750 (-1073)) |#1|) NIL) (($ $ (-583 (-750 (-1073))) (-583 |#1|)) NIL) (($ $ (-750 (-1073)) $) NIL) (($ $ (-583 (-750 (-1073))) (-583 $)) NIL) (($ $ (-1073) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3010 (($ $ (-750 (-1073))) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-750 (-1073))) NIL) (($ $ (-583 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1890 (((-583 (-1073)) $) NIL)) (-3688 (((-489 (-750 (-1073))) $) NIL) (((-703) $ (-750 (-1073))) NIL) (((-583 (-703)) $ (-583 (-750 (-1073)))) NIL) (((-703) $ (-1073)) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-750 (-1073)) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-750 (-1073)) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-750 (-1073)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1073))) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-750 (-1073))) NIL) (($ (-1073)) NIL) (($ (-1026 |#1| (-1073))) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-750 (-1073))) NIL) (($ $ (-583 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-748 |#1|) (-13 (-226 |#1| (-1073) (-750 (-1073)) (-489 (-750 (-1073)))) (-952 (-1026 |#1| (-1073)))) (-961)) (T -748)) +NIL +(-13 (-226 |#1| (-1073) (-750 (-1073)) (-489 (-750 (-1073)))) (-952 (-1026 |#1| (-1073)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-333)))) (-1213 (($ $) NIL (|has| |#2| (-333)))) (-2454 (((-107) $) NIL (|has| |#2| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#2| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-333)))) (-1707 (((-107) $ $) NIL (|has| |#2| (-333)))) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL (|has| |#2| (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#2| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-3849 (((-107) $) NIL (|has| |#2| (-333)))) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-1365 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 20 (|has| |#2| (-333)))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3146 (((-703) $) NIL (|has| |#2| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-3127 (($ $ (-703)) NIL) (($ $) 13)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-377 (-517))) NIL (|has| |#2| (-333))) (($ $) NIL (|has| |#2| (-333)))) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) 15 (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ (-517)) 18 (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) NIL (|has| |#2| (-333))) (($ $ (-377 (-517))) NIL (|has| |#2| (-333))))) +(((-749 |#1| |#2| |#3|) (-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |noBranch|) (-15 -2256 ($ |#2|)) (-15 -2256 (|#2| $)))) (-1003) (-822 |#1|) |#1|) (T -749)) +((-2256 (*1 *1 *2) (-12 (-4 *3 (-1003)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-822 *3)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-822 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1003)) (-14 *4 *3)))) +(-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |noBranch|) (-15 -2256 ($ |#2|)) (-15 -2256 (|#2| $)))) +((-2750 (((-107) $ $) NIL)) (-2932 (((-703) $) NIL)) (-1638 ((|#1| $) 10)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3972 (((-703) $) 11)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2656 (($ |#1| (-703)) 9)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3127 (($ $) NIL) (($ $ (-703)) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL))) +(((-750 |#1|) (-239 |#1|) (-779)) (T -750)) +NIL +(-239 |#1|) +((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) 29)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-3791 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1660 (($ $) 31)) (-3621 (((-3 $ "failed") $) NIL)) (-1337 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3848 (((-107) $) NIL)) (-3466 ((|#1| $ (-517)) NIL)) (-3882 (((-703) $ (-517)) NIL)) (-2402 (($ $) 35)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-3109 (((-107) $ $) 33)) (-2195 (((-703) $) 25)) (-3985 (((-1056) $) NIL)) (-2611 (($ $ $) NIL)) (-2301 (($ $ $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 ((|#1| $) 30)) (-2879 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $) NIL)) (-2486 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2409 (($) 14 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 34)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ |#1| (-703)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-751 |#1|) (-13 (-775) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -1647 (|#1| $)) (-15 -1660 ($ $)) (-15 -2402 ($ $)) (-15 -3109 ((-107) $ $)) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -2208 ((-3 $ "failed") $ |#1|)) (-15 -3791 ((-3 $ "failed") $ |#1|)) (-15 -2486 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -2195 ((-703) $)) (-15 -3463 ((-583 |#1|) $)))) (-779)) (T -751)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1647 (*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2402 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3109 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2301 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2611 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2208 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3791 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2208 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3791 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2486 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-1337 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779))))) +(-13 (-775) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -1647 (|#1| $)) (-15 -1660 ($ $)) (-15 -2402 ($ $)) (-15 -3109 ((-107) $ $)) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -2208 ((-3 $ "failed") $ |#1|)) (-15 -3791 ((-3 $ "failed") $ |#1|)) (-15 -2486 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -2195 ((-703) $)) (-15 -3463 ((-583 |#1|) $)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3709 (((-517) $) 53)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3556 (((-107) $) 51)) (-3848 (((-107) $) 31)) (-2475 (((-107) $) 52)) (-2967 (($ $ $) 50)) (-3099 (($ $ $) 49)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 54)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 47)) (-1583 (((-107) $ $) 46)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 48)) (-1572 (((-107) $ $) 45)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-752) (-1184)) (T -752)) +NIL +(-13 (-509) (-777)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2105 (($ (-1021)) 7)) (-2230 (((-107) $ (-1056) (-1021)) 15)) (-2030 (((-754) $) 12)) (-1822 (((-754) $) 11)) (-2021 (((-1158) $) 9)) (-3261 (((-107) $ (-1021)) 16))) +(((-753) (-10 -8 (-15 -2105 ($ (-1021))) (-15 -2021 ((-1158) $)) (-15 -1822 ((-754) $)) (-15 -2030 ((-754) $)) (-15 -2230 ((-107) $ (-1056) (-1021))) (-15 -3261 ((-107) $ (-1021))))) (T -753)) +((-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))) (-2230 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-753)))) (-2105 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-753))))) +(-10 -8 (-15 -2105 ($ (-1021))) (-15 -2021 ((-1158) $)) (-15 -1822 ((-754) $)) (-15 -2030 ((-754) $)) (-15 -2230 ((-107) $ (-1056) (-1021))) (-15 -3261 ((-107) $ (-1021)))) +((-2733 (((-1158) $ (-755)) 12)) (-1493 (((-1158) $ (-1073)) 32)) (-3303 (((-1158) $ (-1056) (-1056)) 34)) (-3231 (((-1158) $ (-1056)) 33)) (-3025 (((-1158) $) 19)) (-3945 (((-1158) $ (-517)) 28)) (-2415 (((-1158) $ (-199)) 30)) (-1417 (((-1158) $) 18)) (-1947 (((-1158) $) 26)) (-2698 (((-1158) $) 25)) (-2755 (((-1158) $) 23)) (-2429 (((-1158) $) 24)) (-2700 (((-1158) $) 22)) (-2998 (((-1158) $) 21)) (-3270 (((-1158) $) 20)) (-2581 (((-1158) $) 16)) (-3956 (((-1158) $) 17)) (-1896 (((-1158) $) 15)) (-3658 (((-1158) $) 14)) (-2642 (((-1158) $) 13)) (-4157 (($ (-1056) (-755)) 9)) (-3013 (($ (-1056) (-1056) (-755)) 8)) (-3508 (((-1073) $) 51)) (-3263 (((-1073) $) 55)) (-2654 (((-2 (|:| |cd| (-1056)) (|:| -1207 (-1056))) $) 54)) (-4110 (((-1056) $) 52)) (-2157 (((-1158) $) 41)) (-3356 (((-517) $) 49)) (-2166 (((-199) $) 50)) (-2282 (((-1158) $) 40)) (-3687 (((-1158) $) 48)) (-3119 (((-1158) $) 47)) (-2884 (((-1158) $) 45)) (-3656 (((-1158) $) 46)) (-2727 (((-1158) $) 44)) (-2855 (((-1158) $) 43)) (-3778 (((-1158) $) 42)) (-1960 (((-1158) $) 38)) (-3378 (((-1158) $) 39)) (-3102 (((-1158) $) 37)) (-2771 (((-1158) $) 36)) (-3571 (((-1158) $) 35)) (-3019 (((-1158) $) 11))) +(((-754) (-10 -8 (-15 -3013 ($ (-1056) (-1056) (-755))) (-15 -4157 ($ (-1056) (-755))) (-15 -3019 ((-1158) $)) (-15 -2733 ((-1158) $ (-755))) (-15 -2642 ((-1158) $)) (-15 -3658 ((-1158) $)) (-15 -1896 ((-1158) $)) (-15 -2581 ((-1158) $)) (-15 -3956 ((-1158) $)) (-15 -1417 ((-1158) $)) (-15 -3025 ((-1158) $)) (-15 -3270 ((-1158) $)) (-15 -2998 ((-1158) $)) (-15 -2700 ((-1158) $)) (-15 -2755 ((-1158) $)) (-15 -2429 ((-1158) $)) (-15 -2698 ((-1158) $)) (-15 -1947 ((-1158) $)) (-15 -3945 ((-1158) $ (-517))) (-15 -2415 ((-1158) $ (-199))) (-15 -1493 ((-1158) $ (-1073))) (-15 -3231 ((-1158) $ (-1056))) (-15 -3303 ((-1158) $ (-1056) (-1056))) (-15 -3571 ((-1158) $)) (-15 -2771 ((-1158) $)) (-15 -3102 ((-1158) $)) (-15 -1960 ((-1158) $)) (-15 -3378 ((-1158) $)) (-15 -2282 ((-1158) $)) (-15 -2157 ((-1158) $)) (-15 -3778 ((-1158) $)) (-15 -2855 ((-1158) $)) (-15 -2727 ((-1158) $)) (-15 -2884 ((-1158) $)) (-15 -3656 ((-1158) $)) (-15 -3119 ((-1158) $)) (-15 -3687 ((-1158) $)) (-15 -3356 ((-517) $)) (-15 -2166 ((-199) $)) (-15 -3508 ((-1073) $)) (-15 -4110 ((-1056) $)) (-15 -2654 ((-2 (|:| |cd| (-1056)) (|:| -1207 (-1056))) $)) (-15 -3263 ((-1073) $)))) (T -754)) +((-3263 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1056)) (|:| -1207 (-1056)))) (-5 *1 (-754)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-754)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3303 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-3231 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-1493 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-2415 (*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-3945 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3658 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2733 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-4157 (*1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754)))) (-3013 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754))))) +(-10 -8 (-15 -3013 ($ (-1056) (-1056) (-755))) (-15 -4157 ($ (-1056) (-755))) (-15 -3019 ((-1158) $)) (-15 -2733 ((-1158) $ (-755))) (-15 -2642 ((-1158) $)) (-15 -3658 ((-1158) $)) (-15 -1896 ((-1158) $)) (-15 -2581 ((-1158) $)) (-15 -3956 ((-1158) $)) (-15 -1417 ((-1158) $)) (-15 -3025 ((-1158) $)) (-15 -3270 ((-1158) $)) (-15 -2998 ((-1158) $)) (-15 -2700 ((-1158) $)) (-15 -2755 ((-1158) $)) (-15 -2429 ((-1158) $)) (-15 -2698 ((-1158) $)) (-15 -1947 ((-1158) $)) (-15 -3945 ((-1158) $ (-517))) (-15 -2415 ((-1158) $ (-199))) (-15 -1493 ((-1158) $ (-1073))) (-15 -3231 ((-1158) $ (-1056))) (-15 -3303 ((-1158) $ (-1056) (-1056))) (-15 -3571 ((-1158) $)) (-15 -2771 ((-1158) $)) (-15 -3102 ((-1158) $)) (-15 -1960 ((-1158) $)) (-15 -3378 ((-1158) $)) (-15 -2282 ((-1158) $)) (-15 -2157 ((-1158) $)) (-15 -3778 ((-1158) $)) (-15 -2855 ((-1158) $)) (-15 -2727 ((-1158) $)) (-15 -2884 ((-1158) $)) (-15 -3656 ((-1158) $)) (-15 -3119 ((-1158) $)) (-15 -3687 ((-1158) $)) (-15 -3356 ((-517) $)) (-15 -2166 ((-199) $)) (-15 -3508 ((-1073) $)) (-15 -4110 ((-1056) $)) (-15 -2654 ((-2 (|:| |cd| (-1056)) (|:| -1207 (-1056))) $)) (-15 -3263 ((-1073) $))) +((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 12)) (-3999 (($) 15)) (-2394 (($) 13)) (-3851 (($) 16)) (-3322 (($) 14)) (-1547 (((-107) $ $) 8))) +(((-755) (-13 (-1003) (-10 -8 (-15 -2394 ($)) (-15 -3999 ($)) (-15 -3851 ($)) (-15 -3322 ($))))) (T -755)) +((-2394 (*1 *1) (-5 *1 (-755))) (-3999 (*1 *1) (-5 *1 (-755))) (-3851 (*1 *1) (-5 *1 (-755))) (-3322 (*1 *1) (-5 *1 (-755)))) +(-13 (-1003) (-10 -8 (-15 -2394 ($)) (-15 -3999 ($)) (-15 -3851 ($)) (-15 -3322 ($)))) +((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 21) (($ (-1073)) 17)) (-2663 (((-107) $) 10)) (-1546 (((-107) $) 9)) (-2763 (((-107) $) 11)) (-1965 (((-107) $) 8)) (-1547 (((-107) $ $) 19))) +(((-756) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -1965 ((-107) $)) (-15 -1546 ((-107) $)) (-15 -2663 ((-107) $)) (-15 -2763 ((-107) $))))) (T -756)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-756)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) +(-13 (-1003) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -1965 ((-107) $)) (-15 -1546 ((-107) $)) (-15 -2663 ((-107) $)) (-15 -2763 ((-107) $)))) +((-2750 (((-107) $ $) NIL)) (-3136 (($ (-756) (-583 (-1073))) 24)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1504 (((-756) $) 25)) (-2509 (((-583 (-1073)) $) 26)) (-2256 (((-787) $) 23)) (-1547 (((-107) $ $) NIL))) +(((-757) (-13 (-1003) (-10 -8 (-15 -1504 ((-756) $)) (-15 -2509 ((-583 (-1073)) $)) (-15 -3136 ($ (-756) (-583 (-1073))))))) (T -757)) +((-1504 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-757)))) (-3136 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1073))) (-5 *1 (-757))))) +(-13 (-1003) (-10 -8 (-15 -1504 ((-756) $)) (-15 -2509 ((-583 (-1073)) $)) (-15 -3136 ($ (-756) (-583 (-1073)))))) +((-2482 (((-1158) (-754) (-286 |#1|) (-107)) 22) (((-1158) (-754) (-286 |#1|)) 76) (((-1056) (-286 |#1|) (-107)) 75) (((-1056) (-286 |#1|)) 74))) +(((-758 |#1|) (-10 -7 (-15 -2482 ((-1056) (-286 |#1|))) (-15 -2482 ((-1056) (-286 |#1|) (-107))) (-15 -2482 ((-1158) (-754) (-286 |#1|))) (-15 -2482 ((-1158) (-754) (-286 |#1|) (-107)))) (-13 (-760) (-779) (-961))) (T -758)) +((-2482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *6)))) (-2482 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *5)))) (-2482 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *5)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *4))))) +(-10 -7 (-15 -2482 ((-1056) (-286 |#1|))) (-15 -2482 ((-1056) (-286 |#1|) (-107))) (-15 -2482 ((-1158) (-754) (-286 |#1|))) (-15 -2482 ((-1158) (-754) (-286 |#1|) (-107)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2837 ((|#1| $) 10)) (-3837 (($ |#1|) 9)) (-3848 (((-107) $) NIL)) (-1339 (($ |#2| (-703)) NIL)) (-2349 (((-703) $) NIL)) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3127 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-3688 (((-703) $) NIL)) (-2256 (((-787) $) 17) (($ (-517)) NIL) (($ |#2|) NIL (|has| |#2| (-156)))) (-2720 ((|#2| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-759 |#1| |#2|) (-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |noBranch|) (-15 -3837 ($ |#1|)) (-15 -2837 (|#1| $)))) (-642 |#2|) (-961)) (T -759)) +((-3837 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))) (-2837 (*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-961))))) +(-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |noBranch|) (-15 -3837 ($ |#1|)) (-15 -2837 (|#1| $)))) +((-2482 (((-1158) (-754) $ (-107)) 9) (((-1158) (-754) $) 8) (((-1056) $ (-107)) 7) (((-1056) $) 6))) +(((-760) (-1184)) (T -760)) +((-2482 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1158)))) (-2482 (*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1158)))) (-2482 (*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1056)))) (-2482 (*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1056))))) +(-13 (-10 -8 (-15 -2482 ((-1056) $)) (-15 -2482 ((-1056) $ (-107))) (-15 -2482 ((-1158) (-754) $)) (-15 -2482 ((-1158) (-754) $ (-107))))) +((-1280 (((-282) (-1056) (-1056)) 12)) (-2972 (((-107) (-1056) (-1056)) 33)) (-2038 (((-107) (-1056)) 32)) (-1808 (((-51) (-1056)) 25)) (-1993 (((-51) (-1056)) 23)) (-2226 (((-51) (-754)) 17)) (-4122 (((-583 (-1056)) (-1056)) 28)) (-2250 (((-583 (-1056))) 27))) +(((-761) (-10 -7 (-15 -2226 ((-51) (-754))) (-15 -1993 ((-51) (-1056))) (-15 -1808 ((-51) (-1056))) (-15 -2250 ((-583 (-1056)))) (-15 -4122 ((-583 (-1056)) (-1056))) (-15 -2038 ((-107) (-1056))) (-15 -2972 ((-107) (-1056) (-1056))) (-15 -1280 ((-282) (-1056) (-1056))))) (T -761)) +((-1280 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-761)))) (-2972 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761)))) (-4122 (*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761)) (-5 *3 (-1056)))) (-2250 (*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761))))) +(-10 -7 (-15 -2226 ((-51) (-754))) (-15 -1993 ((-51) (-1056))) (-15 -1808 ((-51) (-1056))) (-15 -2250 ((-583 (-1056)))) (-15 -4122 ((-583 (-1056)) (-1056))) (-15 -2038 ((-107) (-1056))) (-15 -2972 ((-107) (-1056) (-1056))) (-15 -1280 ((-282) (-1056) (-1056)))) +((-2750 (((-107) $ $) 18)) (-1413 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3245 (($ $ $) 72)) (-3009 (((-107) $ $) 73)) (-2953 (((-107) $ (-703)) 8)) (-1362 (($ (-583 |#1|)) 68) (($) 67)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 62)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2967 ((|#1| $) 78)) (-2797 (($ $ $) 81)) (-3237 (($ $ $) 80)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3099 ((|#1| $) 79)) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22)) (-1812 (($ $ $) 69)) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3206 (((-1021) $) 21)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 61)) (-3170 (($ $ |#1|) 71) (($ $ $) 70)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20)) (-3167 (($ (-583 |#1|)) 66) (($) 65)) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-1572 (((-107) $ $) 64)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-762 |#1|) (-1184) (-779)) (T -762)) +((-2967 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779))))) +(-13 (-669 |t#1|) (-886 |t#1|) (-10 -8 (-15 -2967 (|t#1| $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-628 |#1|) . T) ((-669 |#1|) . T) ((-886 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1108) . T)) +((-1346 (((-1158) (-1021) (-1021)) 47)) (-3178 (((-1158) (-753) (-51)) 44)) (-1532 (((-51) (-753)) 16))) +(((-763) (-10 -7 (-15 -1532 ((-51) (-753))) (-15 -3178 ((-1158) (-753) (-51))) (-15 -1346 ((-1158) (-1021) (-1021))))) (T -763)) +((-1346 (*1 *2 *3 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-1158)) (-5 *1 (-763)))) (-3178 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1158)) (-5 *1 (-763)))) (-1532 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763))))) +(-10 -7 (-15 -1532 ((-51) (-753))) (-15 -3178 ((-1158) (-753) (-51))) (-15 -1346 ((-1158) (-1021) (-1021)))) +((-1893 (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)) 12) (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)) 13))) +(((-764 |#1| |#2|) (-10 -7 (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)))) (-1003) (-1003)) (T -764)) +((-1893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-764 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6))))) +(-10 -7 (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL (|has| |#1| (-21)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3709 (((-517) $) NIL (|has| |#1| (-777)))) (-3092 (($) NIL (|has| |#1| (-21)) CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 15)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 9)) (-3621 (((-3 $ "failed") $) 40 (|has| |#1| (-777)))) (-1256 (((-3 (-377 (-517)) "failed") $) 49 (|has| |#1| (-502)))) (-1355 (((-107) $) 43 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 46 (|has| |#1| (-502)))) (-3556 (((-107) $) NIL (|has| |#1| (-777)))) (-3848 (((-107) $) NIL (|has| |#1| (-777)))) (-2475 (((-107) $) NIL (|has| |#1| (-777)))) (-2967 (($ $ $) NIL (|has| |#1| (-777)))) (-3099 (($ $ $) NIL (|has| |#1| (-777)))) (-3985 (((-1056) $) NIL)) (-2676 (($) 13)) (-2169 (((-107) $) 12)) (-3206 (((-1021) $) NIL)) (-1515 (((-107) $) 11)) (-2256 (((-787) $) 18) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3807 (|has| |#1| (-777)) (|has| |#1| (-952 (-517)))))) (-2961 (((-703)) 34 (|has| |#1| (-777)))) (-3710 (($ $) NIL (|has| |#1| (-777)))) (-2207 (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-2396 (($) 22 (|has| |#1| (-21)) CONST)) (-2409 (($) 31 (|has| |#1| (-777)) CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1547 (((-107) $ $) 20)) (-1595 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) 42 (|has| |#1| (-777)))) (-1654 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1642 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 37 (|has| |#1| (-777))) (($ (-517) $) 25 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-21))))) +(((-765 |#1|) (-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2676 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|))) (-1003)) (T -765)) +((-2676 (*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1003)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-1256 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003))))) +(-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2676 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-109) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-109) $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3447 ((|#1| (-109) |#1|) NIL)) (-3848 (((-107) $) NIL)) (-1261 (($ |#1| (-331 (-109))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1392 (($ $ (-1 |#1| |#1|)) NIL)) (-3269 (($ $ (-1 |#1| |#1|)) NIL)) (-1449 ((|#1| $ |#1|) NIL)) (-3445 ((|#1| |#1|) NIL (|has| |#1| (-156)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-109)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2061 (($ $) NIL (|has| |#1| (-156))) (($ $ $) NIL (|has| |#1| (-156)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) +(((-766 |#1|) (-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#1| |#1|))) (-15 -1392 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#1| (-109) |#1|)) (-15 -1261 ($ |#1| (-331 (-109)))))) (-961)) (T -766)) +((-2061 (*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-2061 (*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-3445 (*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-3269 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))) (-1392 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-961)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-961)))) (-3447 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-961)))) (-1261 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-961))))) +(-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#1| |#1|))) (-15 -1392 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#1| (-109) |#1|)) (-15 -1261 ($ |#1| (-331 (-109)))))) +((-3818 (((-189 (-467)) (-1056)) 8))) +(((-767) (-10 -7 (-15 -3818 ((-189 (-467)) (-1056))))) (T -767)) +((-3818 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-189 (-467))) (-5 *1 (-767))))) +(-10 -7 (-15 -3818 ((-189 (-467)) (-1056)))) +((-2750 (((-107) $ $) 7)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 14) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 13)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 16) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 15)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6))) +(((-768) (-1184)) (T -768)) +((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-3826 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-950)))) (-3826 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-950))))) +(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3826 ((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3826 ((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2507 (((-950) (-583 (-286 (-349))) (-583 (-349))) 143) (((-950) (-286 (-349)) (-583 (-349))) 141) (((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349)))) 140) (((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349)))) 139) (((-950) (-770)) 112) (((-950) (-770) (-973)) 111)) (-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770) (-973)) 76) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770)) 78)) (-2744 (((-950) (-583 (-286 (-349))) (-583 (-349))) 144) (((-950) (-770)) 128))) +(((-769) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770) (-973))) (-15 -2507 ((-950) (-770) (-973))) (-15 -2507 ((-950) (-770))) (-15 -2744 ((-950) (-770))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)))) (-15 -2507 ((-950) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2744 ((-950) (-583 (-286 (-349))) (-583 (-349)))))) (T -769)) +((-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-769)))) (-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769))))) +(-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770) (-973))) (-15 -2507 ((-950) (-770) (-973))) (-15 -2507 ((-950) (-770))) (-15 -2744 ((-950) (-770))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)))) (-15 -2507 ((-950) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2744 ((-950) (-583 (-286 (-349))) (-583 (-349))))) +((-2750 (((-107) $ $) NIL)) (-3189 (((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) $) 15)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 14) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 8) (($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) 12)) (-1547 (((-107) $ $) NIL))) +(((-770) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2256 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -2256 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) $))))) (T -770)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *1 (-770)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770))))) +(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2256 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -2256 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) $)))) +((-1893 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)) 13) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 14))) +(((-771 |#1| |#2|) (-10 -7 (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)))) (-1003) (-1003)) (T -771)) +((-1893 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-771 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6))))) +(-10 -7 (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL (|has| |#1| (-21)))) (-3893 (((-1021) $) 24)) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3709 (((-517) $) NIL (|has| |#1| (-777)))) (-3092 (($) NIL (|has| |#1| (-21)) CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 16)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 9)) (-3621 (((-3 $ "failed") $) 46 (|has| |#1| (-777)))) (-1256 (((-3 (-377 (-517)) "failed") $) 53 (|has| |#1| (-502)))) (-1355 (((-107) $) 48 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 51 (|has| |#1| (-502)))) (-3556 (((-107) $) NIL (|has| |#1| (-777)))) (-2699 (($) 13)) (-3848 (((-107) $) NIL (|has| |#1| (-777)))) (-2475 (((-107) $) NIL (|has| |#1| (-777)))) (-2722 (($) 14)) (-2967 (($ $ $) NIL (|has| |#1| (-777)))) (-3099 (($ $ $) NIL (|has| |#1| (-777)))) (-3985 (((-1056) $) NIL)) (-2169 (((-107) $) 12)) (-3206 (((-1021) $) NIL)) (-1515 (((-107) $) 11)) (-2256 (((-787) $) 22) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3807 (|has| |#1| (-777)) (|has| |#1| (-952 (-517)))))) (-2961 (((-703)) 40 (|has| |#1| (-777)))) (-3710 (($ $) NIL (|has| |#1| (-777)))) (-2207 (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-2396 (($) 28 (|has| |#1| (-21)) CONST)) (-2409 (($) 37 (|has| |#1| (-777)) CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1547 (((-107) $ $) 26)) (-1595 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) 47 (|has| |#1| (-777)))) (-1654 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 33 (|has| |#1| (-21)))) (-1642 (($ $ $) 35 (|has| |#1| (-21)))) (** (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 43 (|has| |#1| (-777))) (($ (-517) $) 31 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-21))))) +(((-772 |#1|) (-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2699 ($)) (-15 -2722 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (-15 -3893 ((-1021) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|))) (-1003)) (T -772)) +((-2699 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))) (-2722 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-3893 (*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-1256 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003))))) +(-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2699 ($)) (-15 -2722 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (-15 -3893 ((-1021) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|))) +((-2750 (((-107) $ $) 7)) (-1611 (((-703)) 20)) (-3209 (($) 23)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-1549 (((-843) $) 22)) (-3985 (((-1056) $) 9)) (-3448 (($ (-843)) 21)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18))) +(((-773) (-1184)) (T -773)) +NIL +(-13 (-779) (-338)) +(((-97) . T) ((-557 (-787)) . T) ((-338) . T) ((-779) . T) ((-1003) . T)) +((-2835 (((-107) (-1153 |#2|) (-1153 |#2|)) 17)) (-3155 (((-107) (-1153 |#2|) (-1153 |#2|)) 18)) (-4154 (((-107) (-1153 |#2|) (-1153 |#2|)) 14))) +(((-774 |#1| |#2|) (-10 -7 (-15 -4154 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -2835 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -3155 ((-107) (-1153 |#2|) (-1153 |#2|)))) (-703) (-724)) (T -774)) +((-3155 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-4154 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703))))) +(-10 -7 (-15 -4154 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -2835 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -3155 ((-107) (-1153 |#2|) (-1153 |#2|)))) +((-2750 (((-107) $ $) 7)) (-3092 (($) 24 T CONST)) (-3621 (((-3 $ "failed") $) 28)) (-3848 (((-107) $) 25)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-703)) 27) (($ $ (-843)) 22)) (-2409 (($) 23 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (** (($ $ (-703)) 26) (($ $ (-843)) 21)) (* (($ $ $) 20))) +(((-775) (-1184)) (T -775)) +NIL +(-13 (-779) (-659)) +(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-779) . T) ((-1015) . T) ((-1003) . T)) +((-3709 (((-517) $) 17)) (-3556 (((-107) $) 10)) (-2475 (((-107) $) 11)) (-3710 (($ $) 19))) +(((-776 |#1|) (-10 -8 (-15 -3710 (|#1| |#1|)) (-15 -3709 ((-517) |#1|)) (-15 -2475 ((-107) |#1|)) (-15 -3556 ((-107) |#1|))) (-777)) (T -776)) +NIL +(-10 -8 (-15 -3710 (|#1| |#1|)) (-15 -3709 ((-517) |#1|)) (-15 -2475 ((-107) |#1|)) (-15 -3556 ((-107) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-4038 (((-3 $ "failed") $ $) 26)) (-3709 (((-517) $) 33)) (-3092 (($) 23 T CONST)) (-3621 (((-3 $ "failed") $) 39)) (-3556 (((-107) $) 35)) (-3848 (((-107) $) 42)) (-2475 (((-107) $) 34)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 45)) (-2961 (((-703)) 44)) (-3710 (($ $) 32)) (-2207 (($ $ (-703)) 40) (($ $ (-843)) 36)) (-2396 (($) 22 T CONST)) (-2409 (($) 43 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1654 (($ $ $) 28) (($ $) 27)) (-1642 (($ $ $) 20)) (** (($ $ (-703)) 41) (($ $ (-843)) 37)) (* (($ (-703) $) 25) (($ (-843) $) 21) (($ (-517) $) 29) (($ $ $) 38))) +(((-777) (-1184)) (T -777)) +((-3556 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) (-3710 (*1 *1 *1) (-4 *1 (-777)))) +(-13 (-723) (-961) (-659) (-10 -8 (-15 -3556 ((-107) $)) (-15 -2475 ((-107) $)) (-15 -3709 ((-517) $)) (-15 -3710 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2967 (($ $ $) 10)) (-3099 (($ $ $) 9)) (-1606 (((-107) $ $) 12)) (-1583 (((-107) $ $) 11)) (-1595 (((-107) $ $) 13))) +(((-778 |#1|) (-10 -8 (-15 -2967 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1|)) (-15 -1595 ((-107) |#1| |#1|)) (-15 -1606 ((-107) |#1| |#1|)) (-15 -1583 ((-107) |#1| |#1|))) (-779)) (T -778)) +NIL +(-10 -8 (-15 -2967 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1|)) (-15 -1595 ((-107) |#1| |#1|)) (-15 -1606 ((-107) |#1| |#1|)) (-15 -1583 ((-107) |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18))) +(((-779) (-1184)) (T -779)) +((-1572 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1583 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1595 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-3099 (*1 *1 *1 *1) (-4 *1 (-779))) (-2967 (*1 *1 *1 *1) (-4 *1 (-779)))) +(-13 (-1003) (-10 -8 (-15 -1572 ((-107) $ $)) (-15 -1583 ((-107) $ $)) (-15 -1606 ((-107) $ $)) (-15 -1595 ((-107) $ $)) (-15 -3099 ($ $ $)) (-15 -2967 ($ $ $)))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-3311 (($ $ $) 45)) (-3527 (($ $ $) 44)) (-2626 (($ $ $) 42)) (-3784 (($ $ $) 51)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 46)) (-2975 (((-3 $ "failed") $ $) 49)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3534 (($ $) 35)) (-4102 (($ $ $) 39)) (-2985 (($ $ $) 38)) (-2218 (($ $ $) 47)) (-1423 (($ $ $) 53)) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 41)) (-1971 (((-3 $ "failed") $ $) 48)) (-2476 (((-3 $ "failed") $ |#2|) 28)) (-3266 ((|#2| $) 32)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#2|) 12)) (-1311 (((-583 |#2|) $) 18)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-780 |#1| |#2|) (-10 -8 (-15 -2218 (|#1| |#1| |#1|)) (-15 -3678 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -2975 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3311 (|#1| |#1| |#1|)) (-15 -3527 (|#1| |#1| |#1|)) (-15 -2626 (|#1| |#1| |#1|)) (-15 -2582 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -2256 ((-787) |#1|))) (-781 |#2|) (-961)) (T -780)) +NIL +(-10 -8 (-15 -2218 (|#1| |#1| |#1|)) (-15 -3678 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -2975 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3311 (|#1| |#1| |#1|)) (-15 -3527 (|#1| |#1| |#1|)) (-15 -2626 (|#1| |#1| |#1|)) (-15 -2582 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3311 (($ $ $) 45 (|has| |#1| (-333)))) (-3527 (($ $ $) 46 (|has| |#1| (-333)))) (-2626 (($ $ $) 48 (|has| |#1| (-333)))) (-3784 (($ $ $) 43 (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 42 (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 47 (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) 74 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3189 (((-517) $) 75 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 68)) (-1212 (($ $) 64)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 55 (|has| |#1| (-421)))) (-3848 (((-107) $) 31)) (-1339 (($ |#1| (-703)) 62)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 58 (|has| |#1| (-509)))) (-2349 (((-703) $) 66)) (-4102 (($ $ $) 52 (|has| |#1| (-333)))) (-2985 (($ $ $) 53 (|has| |#1| (-333)))) (-2218 (($ $ $) 41 (|has| |#1| (-333)))) (-1423 (($ $ $) 50 (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 49 (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 54 (|has| |#1| (-333)))) (-1191 ((|#1| $) 65)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-3688 (((-703) $) 67)) (-3266 ((|#1| $) 56 (|has| |#1| (-421)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 70)) (-1311 (((-583 |#1|) $) 61)) (-2720 ((|#1| $ (-703)) 63)) (-2961 (((-703)) 29)) (-1587 ((|#1| $ |#1| |#1|) 60)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) +(((-781 |#1|) (-1184) (-961)) (T -781)) +((-3688 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) (-1587 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-2856 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-2441 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) (-2962 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-2985 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-4102 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1971 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1423 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2582 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3)))) (-2626 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3551 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-3527 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3311 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2975 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3784 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3678 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3)))) (-2218 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(-13 (-961) (-106 |t#1| |t#1|) (-381 |t#1|) (-10 -8 (-15 -3688 ((-703) $)) (-15 -2349 ((-703) $)) (-15 -1191 (|t#1| $)) (-15 -1212 ($ $)) (-15 -2720 (|t#1| $ (-703))) (-15 -1339 ($ |t#1| (-703))) (-15 -1311 ((-583 |t#1|) $)) (-15 -1587 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2476 ((-3 $ "failed") $ |t#1|)) (-15 -2856 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2441 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -3266 (|t#1| $)) (-15 -3534 ($ $))) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -2962 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2985 ($ $ $)) (-15 -4102 ($ $ $)) (-15 -1971 ((-3 $ "failed") $ $)) (-15 -1423 ($ $ $)) (-15 -2582 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $)) (-15 -2626 ($ $ $)) (-15 -3551 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -3527 ($ $ $)) (-15 -3311 ($ $ $)) (-15 -2975 ((-3 $ "failed") $ $)) (-15 -3784 ($ $ $)) (-15 -3678 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $)) (-15 -2218 ($ $ $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2707 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-3551 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-333)))) (-2441 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-509)))) (-2962 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-333)))) (-1587 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31))) +(((-782 |#1| |#2|) (-10 -7 (-15 -2707 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1587 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -2856 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2441 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2962 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3551 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|)) (-961) (-781 |#1|)) (T -782)) +((-3551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2962 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2441 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2856 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-1587 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))) (-2707 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5))))) +(-10 -7 (-15 -2707 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1587 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -2856 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2441 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2962 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3551 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 25 (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3078 (((-787) $ (-787)) NIL)) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 21 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 19 (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 23 (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) 15)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-783 |#1| |#2| |#3|) (-13 (-781 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787))))) (-961) (-94 |#1|) (-1 |#1| |#1|)) (T -783)) +((-3078 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-781 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#2| (-333)))) (-3527 (($ $ $) NIL (|has| |#2| (-333)))) (-2626 (($ $ $) NIL (|has| |#2| (-333)))) (-3784 (($ $ $) NIL (|has| |#2| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#2| (-703)) 16)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#2| (-333)))) (-2985 (($ $ $) NIL (|has| |#2| (-333)))) (-2218 (($ $ $) NIL (|has| |#2| (-333)))) (-1423 (($ $ $) NIL (|has| |#2| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3688 (((-703) $) NIL)) (-3266 ((|#2| $) NIL (|has| |#2| (-421)))) (-2256 (((-787) $) 23) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (($ (-1149 |#1|)) 18)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#2| $ |#2| |#2|) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) 13 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-784 |#1| |#2| |#3| |#4|) (-13 (-781 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|))))) (-1073) (-961) (-94 |#2|) (-1 |#2| |#2|)) (T -784)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-781 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|))))) +((-2388 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))) (-1394 ((|#1| (-703) (-703) |#1|) 27) ((|#1| (-703) |#1|) 20)) (-1475 ((|#1| (-703) |#1|) 31)) (-2598 ((|#1| (-703) |#1|) 29)) (-1342 ((|#1| (-703) |#1|) 28))) +(((-785 |#1|) (-10 -7 (-15 -1342 (|#1| (-703) |#1|)) (-15 -2598 (|#1| (-703) |#1|)) (-15 -1475 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2388 (|#1| (-703) |#1|)) |noBranch|)) (-156)) (T -785)) +((-2388 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-1394 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-1394 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-1475 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2598 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-1342 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))) +(-10 -7 (-15 -1342 (|#1| (-703) |#1|)) (-15 -2598 (|#1| (-703) |#1|)) (-15 -1475 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2388 (|#1| (-703) |#1|)) |noBranch|)) +((-2750 (((-107) $ $) NIL)) (-3199 (((-517) $) 12)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 18) (($ (-517)) 11)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 8)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 9))) +(((-786) (-13 (-779) (-10 -8 (-15 -2256 ($ (-517))) (-15 -3199 ((-517) $))))) (T -786)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786))))) +(-13 (-779) (-10 -8 (-15 -2256 ($ (-517))) (-15 -3199 ((-517) $)))) +((-2750 (((-107) $ $) NIL)) (-1919 (($ $ $) 115)) (-2095 (((-517) $) 30) (((-517)) 35)) (-2098 (($ (-517)) 44)) (-3831 (($ $ $) 45) (($ (-583 $)) 76)) (-1755 (($ $ (-583 $)) 74)) (-3265 (((-517) $) 33)) (-3301 (($ $ $) 63)) (-2541 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3846 (((-517) $) 32)) (-3083 (($ $ $) 62)) (-3890 (($ $) 105)) (-1534 (($ $ $) 119)) (-3989 (($ (-583 $)) 52)) (-2206 (($ $ (-583 $)) 69)) (-2939 (($ (-517) (-517)) 46)) (-3959 (($ $) 116) (($ $ $) 117)) (-3652 (($ $ (-517)) 40) (($ $) 43)) (-2518 (($ $ $) 89)) (-4125 (($ $ $) 122)) (-3774 (($ $) 106)) (-2497 (($ $ $) 90)) (-3229 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2808 (((-1158) $) 8)) (-2508 (($ $) 109) (($ $ (-703)) 112)) (-2346 (($ $ $) 65)) (-1709 (($ $ $) 64)) (-1623 (($ $ (-583 $)) 100)) (-3773 (($ $ $) 104)) (-4023 (($ (-583 $)) 50)) (-3374 (($ $) 60) (($ (-583 $)) 61)) (-1804 (($ $ $) 113)) (-2323 (($ $) 107)) (-1361 (($ $ $) 118)) (-3078 (($ (-517)) 20) (($ (-1073)) 22) (($ (-1056)) 29) (($ (-199)) 24)) (-4025 (($ $ $) 93)) (-2630 (($ $) 94)) (-1903 (((-1158) (-1056)) 14)) (-2222 (($ (-1056)) 13)) (-1840 (($ (-583 (-583 $))) 48)) (-3639 (($ $ (-517)) 39) (($ $) 42)) (-3985 (((-1056) $) NIL)) (-1243 (($ $ $) 121)) (-2612 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1511 (((-107) $) 98)) (-1621 (($ $ (-583 $)) 102) (($ $ $ $) 103)) (-2756 (($ (-517)) 36)) (-1881 (((-517) $) 31) (((-517)) 34)) (-3940 (($ $ $) 37) (($ (-583 $)) 75)) (-3206 (((-1021) $) NIL)) (-2476 (($ $ $) 91)) (-1746 (($) 12)) (-1449 (($ $ (-583 $)) 99)) (-3501 (($ $) 108) (($ $ (-703)) 111)) (-2486 (($ $ $) 88)) (-3127 (($ $ (-703)) 127)) (-3517 (($ (-583 $)) 51)) (-2256 (((-787) $) 18)) (-2986 (($ $ (-517)) 38) (($ $) 41)) (-2221 (($ $) 58) (($ (-583 $)) 59)) (-3167 (($ $) 56) (($ (-583 $)) 57)) (-4148 (($ $) 114)) (-3472 (($ (-583 $)) 55)) (-1270 (($ $ $) 97)) (-1946 (($ $ $) 120)) (-4035 (($ $ $) 92)) (-2457 (($ $ $) 77)) (-2881 (($ $ $) 95) (($ $) 96)) (-1606 (($ $ $) 81)) (-1583 (($ $ $) 79)) (-1547 (((-107) $ $) 15) (($ $ $) 16)) (-1595 (($ $ $) 80)) (-1572 (($ $ $) 78)) (-1667 (($ $ $) 86)) (-1654 (($ $ $) 83) (($ $) 84)) (-1642 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-787) (-13 (-1003) (-10 -8 (-15 -2808 ((-1158) $)) (-15 -2222 ($ (-1056))) (-15 -1903 ((-1158) (-1056))) (-15 -3078 ($ (-517))) (-15 -3078 ($ (-1073))) (-15 -3078 ($ (-1056))) (-15 -3078 ($ (-199))) (-15 -1746 ($)) (-15 -2095 ((-517) $)) (-15 -1881 ((-517) $)) (-15 -2095 ((-517))) (-15 -1881 ((-517))) (-15 -3846 ((-517) $)) (-15 -3265 ((-517) $)) (-15 -2756 ($ (-517))) (-15 -2098 ($ (-517))) (-15 -2939 ($ (-517) (-517))) (-15 -3639 ($ $ (-517))) (-15 -3652 ($ $ (-517))) (-15 -2986 ($ $ (-517))) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2986 ($ $)) (-15 -3940 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3940 ($ (-583 $))) (-15 -3831 ($ (-583 $))) (-15 -1623 ($ $ (-583 $))) (-15 -1621 ($ $ (-583 $))) (-15 -1621 ($ $ $ $)) (-15 -3773 ($ $ $)) (-15 -1511 ((-107) $)) (-15 -1449 ($ $ (-583 $))) (-15 -3890 ($ $)) (-15 -1243 ($ $ $)) (-15 -4148 ($ $)) (-15 -1840 ($ (-583 (-583 $)))) (-15 -1919 ($ $ $)) (-15 -3959 ($ $)) (-15 -3959 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -1534 ($ $ $)) (-15 -1946 ($ $ $)) (-15 -4125 ($ $ $)) (-15 -3127 ($ $ (-703))) (-15 -1270 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -3301 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -2206 ($ $ (-583 $))) (-15 -1755 ($ $ (-583 $))) (-15 -3774 ($ $)) (-15 -3501 ($ $)) (-15 -3501 ($ $ (-703))) (-15 -2508 ($ $)) (-15 -2508 ($ $ (-703))) (-15 -2323 ($ $)) (-15 -1804 ($ $ $)) (-15 -2541 ($ $)) (-15 -2541 ($ $ $)) (-15 -2541 ($ $ $ $)) (-15 -3229 ($ $)) (-15 -3229 ($ $ $)) (-15 -3229 ($ $ $ $)) (-15 -2612 ($ $)) (-15 -2612 ($ $ $)) (-15 -2612 ($ $ $ $)) (-15 -3167 ($ $)) (-15 -3167 ($ (-583 $))) (-15 -2221 ($ $)) (-15 -2221 ($ (-583 $))) (-15 -3374 ($ $)) (-15 -3374 ($ (-583 $))) (-15 -4023 ($ (-583 $))) (-15 -3517 ($ (-583 $))) (-15 -3989 ($ (-583 $))) (-15 -3472 ($ (-583 $))) (-15 -1547 ($ $ $)) (-15 -2457 ($ $ $)) (-15 -1572 ($ $ $)) (-15 -1583 ($ $ $)) (-15 -1595 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -1654 ($ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ $)) (-15 -2486 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -2497 ($ $ $)) (-15 -2476 ($ $ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2630 ($ $)) (-15 -2881 ($ $ $)) (-15 -2881 ($ $))))) (T -787)) +((-2808 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-787)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) (-1746 (*1 *1) (-5 *1 (-787))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2095 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1881 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2756 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2939 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3639 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2986 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3639 (*1 *1 *1) (-5 *1 (-787))) (-3652 (*1 *1 *1) (-5 *1 (-787))) (-2986 (*1 *1 *1) (-5 *1 (-787))) (-3940 (*1 *1 *1 *1) (-5 *1 (-787))) (-3831 (*1 *1 *1 *1) (-5 *1 (-787))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3831 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1623 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1621 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3773 (*1 *1 *1 *1) (-5 *1 (-787))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3890 (*1 *1 *1) (-5 *1 (-787))) (-1243 (*1 *1 *1 *1) (-5 *1 (-787))) (-4148 (*1 *1 *1) (-5 *1 (-787))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) (-1919 (*1 *1 *1 *1) (-5 *1 (-787))) (-3959 (*1 *1 *1) (-5 *1 (-787))) (-3959 (*1 *1 *1 *1) (-5 *1 (-787))) (-1361 (*1 *1 *1 *1) (-5 *1 (-787))) (-1534 (*1 *1 *1 *1) (-5 *1 (-787))) (-1946 (*1 *1 *1 *1) (-5 *1 (-787))) (-4125 (*1 *1 *1 *1) (-5 *1 (-787))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-1270 (*1 *1 *1 *1) (-5 *1 (-787))) (-3083 (*1 *1 *1 *1) (-5 *1 (-787))) (-3301 (*1 *1 *1 *1) (-5 *1 (-787))) (-1709 (*1 *1 *1 *1) (-5 *1 (-787))) (-2346 (*1 *1 *1 *1) (-5 *1 (-787))) (-2206 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1755 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3774 (*1 *1 *1) (-5 *1 (-787))) (-3501 (*1 *1 *1) (-5 *1 (-787))) (-3501 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-2508 (*1 *1 *1) (-5 *1 (-787))) (-2508 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-2323 (*1 *1 *1) (-5 *1 (-787))) (-1804 (*1 *1 *1 *1) (-5 *1 (-787))) (-2541 (*1 *1 *1) (-5 *1 (-787))) (-2541 (*1 *1 *1 *1) (-5 *1 (-787))) (-2541 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3229 (*1 *1 *1) (-5 *1 (-787))) (-3229 (*1 *1 *1 *1) (-5 *1 (-787))) (-3229 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-2612 (*1 *1 *1) (-5 *1 (-787))) (-2612 (*1 *1 *1 *1) (-5 *1 (-787))) (-2612 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3167 (*1 *1 *1) (-5 *1 (-787))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2221 (*1 *1 *1) (-5 *1 (-787))) (-2221 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3374 (*1 *1 *1) (-5 *1 (-787))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3989 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1547 (*1 *1 *1 *1) (-5 *1 (-787))) (-2457 (*1 *1 *1 *1) (-5 *1 (-787))) (-1572 (*1 *1 *1 *1) (-5 *1 (-787))) (-1583 (*1 *1 *1 *1) (-5 *1 (-787))) (-1595 (*1 *1 *1 *1) (-5 *1 (-787))) (-1606 (*1 *1 *1 *1) (-5 *1 (-787))) (-1642 (*1 *1 *1 *1) (-5 *1 (-787))) (-1654 (*1 *1 *1 *1) (-5 *1 (-787))) (-1654 (*1 *1 *1) (-5 *1 (-787))) (* (*1 *1 *1 *1) (-5 *1 (-787))) (-1667 (*1 *1 *1 *1) (-5 *1 (-787))) (** (*1 *1 *1 *1) (-5 *1 (-787))) (-2486 (*1 *1 *1 *1) (-5 *1 (-787))) (-2518 (*1 *1 *1 *1) (-5 *1 (-787))) (-2497 (*1 *1 *1 *1) (-5 *1 (-787))) (-2476 (*1 *1 *1 *1) (-5 *1 (-787))) (-4035 (*1 *1 *1 *1) (-5 *1 (-787))) (-4025 (*1 *1 *1 *1) (-5 *1 (-787))) (-2630 (*1 *1 *1) (-5 *1 (-787))) (-2881 (*1 *1 *1 *1) (-5 *1 (-787))) (-2881 (*1 *1 *1) (-5 *1 (-787)))) +(-13 (-1003) (-10 -8 (-15 -2808 ((-1158) $)) (-15 -2222 ($ (-1056))) (-15 -1903 ((-1158) (-1056))) (-15 -3078 ($ (-517))) (-15 -3078 ($ (-1073))) (-15 -3078 ($ (-1056))) (-15 -3078 ($ (-199))) (-15 -1746 ($)) (-15 -2095 ((-517) $)) (-15 -1881 ((-517) $)) (-15 -2095 ((-517))) (-15 -1881 ((-517))) (-15 -3846 ((-517) $)) (-15 -3265 ((-517) $)) (-15 -2756 ($ (-517))) (-15 -2098 ($ (-517))) (-15 -2939 ($ (-517) (-517))) (-15 -3639 ($ $ (-517))) (-15 -3652 ($ $ (-517))) (-15 -2986 ($ $ (-517))) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2986 ($ $)) (-15 -3940 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3940 ($ (-583 $))) (-15 -3831 ($ (-583 $))) (-15 -1623 ($ $ (-583 $))) (-15 -1621 ($ $ (-583 $))) (-15 -1621 ($ $ $ $)) (-15 -3773 ($ $ $)) (-15 -1511 ((-107) $)) (-15 -1449 ($ $ (-583 $))) (-15 -3890 ($ $)) (-15 -1243 ($ $ $)) (-15 -4148 ($ $)) (-15 -1840 ($ (-583 (-583 $)))) (-15 -1919 ($ $ $)) (-15 -3959 ($ $)) (-15 -3959 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -1534 ($ $ $)) (-15 -1946 ($ $ $)) (-15 -4125 ($ $ $)) (-15 -3127 ($ $ (-703))) (-15 -1270 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -3301 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -2206 ($ $ (-583 $))) (-15 -1755 ($ $ (-583 $))) (-15 -3774 ($ $)) (-15 -3501 ($ $)) (-15 -3501 ($ $ (-703))) (-15 -2508 ($ $)) (-15 -2508 ($ $ (-703))) (-15 -2323 ($ $)) (-15 -1804 ($ $ $)) (-15 -2541 ($ $)) (-15 -2541 ($ $ $)) (-15 -2541 ($ $ $ $)) (-15 -3229 ($ $)) (-15 -3229 ($ $ $)) (-15 -3229 ($ $ $ $)) (-15 -2612 ($ $)) (-15 -2612 ($ $ $)) (-15 -2612 ($ $ $ $)) (-15 -3167 ($ $)) (-15 -3167 ($ (-583 $))) (-15 -2221 ($ $)) (-15 -2221 ($ (-583 $))) (-15 -3374 ($ $)) (-15 -3374 ($ (-583 $))) (-15 -4023 ($ (-583 $))) (-15 -3517 ($ (-583 $))) (-15 -3989 ($ (-583 $))) (-15 -3472 ($ (-583 $))) (-15 -1547 ($ $ $)) (-15 -2457 ($ $ $)) (-15 -1572 ($ $ $)) (-15 -1583 ($ $ $)) (-15 -1595 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -1654 ($ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ $)) (-15 -2486 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -2497 ($ $ $)) (-15 -2476 ($ $ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2630 ($ $)) (-15 -2881 ($ $ $)) (-15 -2881 ($ $)))) +((-1462 (((-1158) (-583 (-51))) 24)) (-2088 (((-1158) (-1056) (-787)) 14) (((-1158) (-787)) 9) (((-1158) (-1056)) 11))) +(((-788) (-10 -7 (-15 -2088 ((-1158) (-1056))) (-15 -2088 ((-1158) (-787))) (-15 -2088 ((-1158) (-1056) (-787))) (-15 -1462 ((-1158) (-583 (-51)))))) (T -788)) +((-1462 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1158)) (-5 *1 (-788)))) (-2088 (*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-788))))) +(-10 -7 (-15 -2088 ((-1158) (-1056))) (-15 -2088 ((-1158) (-787))) (-15 -2088 ((-1158) (-1056) (-787))) (-15 -1462 ((-1158) (-583 (-51))))) +((-2750 (((-107) $ $) NIL)) (-1638 (((-3 $ "failed") (-1073)) 32)) (-1611 (((-703)) 30)) (-3209 (($) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1549 (((-843) $) 28)) (-3985 (((-1056) $) 38)) (-3448 (($ (-843)) 27)) (-3206 (((-1021) $) NIL)) (-3645 (((-1073) $) 13) (((-493) $) 19) (((-814 (-349)) $) 25) (((-814 (-517)) $) 22)) (-2256 (((-787) $) 16)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 35)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 34))) +(((-789 |#1|) (-13 (-773) (-558 (-1073)) (-558 (-493)) (-558 (-814 (-349))) (-558 (-814 (-517))) (-10 -8 (-15 -1638 ((-3 $ "failed") (-1073))))) (-583 (-1073))) (T -789)) +((-1638 (*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2))))) +(-13 (-773) (-558 (-1073)) (-558 (-493)) (-558 (-814 (-349))) (-558 (-814 (-517))) (-10 -8 (-15 -1638 ((-3 $ "failed") (-1073))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (((-874 |#1|) $) NIL) (($ (-874 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-156)))) (-2961 (((-703)) NIL)) (-2273 (((-1158) (-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) +(((-790 |#1| |#2| |#3| |#4|) (-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 ((-874 |#1|) $)) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2273 ((-1158) (-703))))) (-961) (-583 (-1073)) (-583 (-703)) (-703)) (T -790)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-1667 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 *3)) (-14 *7 *3)))) +(-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 ((-874 |#1|) $)) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2273 ((-1158) (-703))))) +((-3418 (((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|) 31)) (-1883 (((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|) 24))) +(((-791 |#1| |#2| |#3|) (-10 -7 (-15 -1883 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3418 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|))) (-333) (-1145 |#1|) (-1130 |#1|)) (T -791)) +((-3418 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5)))) (-1883 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5))))) +(-10 -7 (-15 -1883 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3418 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|))) +((-1883 (((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|)) 28) (((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) 26))) +(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|)))) (-333) (-1073) |#1|) (T -792)) +((-1883 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) (-1883 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7))))) +(-10 -7 (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $ (-517)) 62)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-3959 (($ (-1069 (-517)) (-517)) 61)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-3531 (($ $) 64)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3972 (((-703) $) 69)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1734 (((-517)) 66)) (-3340 (((-517) $) 65)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1672 (($ $ (-517)) 68)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2930 (((-1054 (-517)) $) 70)) (-1545 (($ $) 67)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-3383 (((-517) $ (-517)) 63)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-793 |#1|) (-1184) (-517)) (T -793)) +((-2930 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1054 (-517))))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) (-1672 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-1545 (*1 *1 *1) (-4 *1 (-793 *2))) (-1734 (*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3531 (*1 *1 *1) (-4 *1 (-793 *2))) (-3383 (*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3959 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4))))) +(-13 (-278) (-134) (-10 -8 (-15 -2930 ((-1054 (-517)) $)) (-15 -3972 ((-703) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $)) (-15 -1734 ((-517))) (-15 -3340 ((-517) $)) (-15 -3531 ($ $)) (-15 -3383 ((-517) $ (-517))) (-15 -3766 ($ $ (-517))) (-15 -3959 ($ (-1069 (-517)) (-517))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $ (-517)) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3959 (($ (-1069 (-517)) (-517)) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3531 (($ $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3972 (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 (((-517)) NIL)) (-3340 (((-517) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1672 (($ $ (-517)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-1054 (-517)) $) NIL)) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-3383 (((-517) $ (-517)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL))) +(((-794 |#1|) (-793 |#1|) (-517)) (T -794)) +NIL +(-793 |#1|) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-794 |#1|) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-794 |#1|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-794 |#1|) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-794 |#1|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-794 |#1|) (-952 (-517))))) (-3189 (((-794 |#1|) $) NIL) (((-1073) $) NIL (|has| (-794 |#1|) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-794 |#1|) (-952 (-517)))) (((-517) $) NIL (|has| (-794 |#1|) (-952 (-517))))) (-2869 (($ $) NIL) (($ (-517) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-794 |#1|))) (|:| |vec| (-1153 (-794 |#1|)))) (-623 $) (-1153 $)) NIL) (((-623 (-794 |#1|)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-794 |#1|) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-794 |#1|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-794 |#1|) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-794 |#1|) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-794 |#1|) (-1049)))) (-2475 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-3099 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-1893 (($ (-1 (-794 |#1|) (-794 |#1|)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-794 |#1|) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-794 |#1|) (-278)))) (-2597 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-794 |#1|)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-794 |#1|) (-794 |#1|)) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-265 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-265 (-794 |#1|)))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-1073)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-478 (-1073) (-794 |#1|)))) (($ $ (-1073) (-794 |#1|)) NIL (|has| (-794 |#1|) (-478 (-1073) (-794 |#1|))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-794 |#1|)) NIL (|has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-794 |#1|) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-794 |#1|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-794 |#1|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-794 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-794 |#1|) (-937))) (((-199) $) NIL (|has| (-794 |#1|) (-937)))) (-2005 (((-157 (-377 (-517))) $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-794 |#1|)) NIL) (($ (-1073)) NIL (|has| (-794 |#1|) (-952 (-1073))))) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-831))) (|has| (-794 |#1|) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ (-517)) NIL)) (-3710 (($ $) NIL (|has| (-794 |#1|) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1667 (($ $ $) NIL) (($ (-794 |#1|) (-794 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-794 |#1|) $) NIL) (($ $ (-794 |#1|)) NIL))) +(((-795 |#1|) (-13 (-909 (-794 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) (-517)) (T -795)) +((-3383 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) (-2869 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2)))) +(-13 (-909 (-794 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 ((|#2| $) NIL (|has| |#2| (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| |#2| (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| |#2| (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517))))) (-3189 ((|#2| $) NIL) (((-1073) $) NIL (|has| |#2| (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-517)))) (((-517) $) NIL (|has| |#2| (-952 (-517))))) (-2869 (($ $) 31) (($ (-517) $) 32)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 53)) (-3209 (($) NIL (|has| |#2| (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| |#2| (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#2| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#2| (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 ((|#2| $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#2| (-1049)))) (-2475 (((-107) $) NIL (|has| |#2| (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 49)) (-2836 (($) NIL (|has| |#2| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| |#2| (-278)))) (-2597 ((|#2| $) NIL (|has| |#2| (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-280 |#2|))) (($ $ (-265 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-265 |#2|))) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-1073)) (-583 |#2|)) NIL (|has| |#2| (-478 (-1073) |#2|))) (($ $ (-1073) |#2|) NIL (|has| |#2| (-478 (-1073) |#2|)))) (-3146 (((-703) $) NIL)) (-1449 (($ $ |#2|) NIL (|has| |#2| (-258 |#2| |#2|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2971 (($ $) NIL)) (-1800 ((|#2| $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| |#2| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#2| (-558 (-814 (-349))))) (((-493) $) NIL (|has| |#2| (-558 (-493)))) (((-349) $) NIL (|has| |#2| (-937))) (((-199) $) NIL (|has| |#2| (-937)))) (-2005 (((-157 (-377 (-517))) $) 68)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) 85) (($ (-517)) 19) (($ $) NIL) (($ (-377 (-517))) 24) (($ |#2|) 18) (($ (-1073)) NIL (|has| |#2| (-952 (-1073))))) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-1949 ((|#2| $) NIL (|has| |#2| (-502)))) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ (-517)) 60)) (-3710 (($ $) NIL (|has| |#2| (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 14 T CONST)) (-2409 (($) 16 T CONST)) (-2731 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) 35)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1654 (($ $) 39) (($ $ $) 41)) (-1642 (($ $ $) 37)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 50)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 42) (($ $ $) 44) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-796 |#1| |#2|) (-13 (-909 |#2|) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) (-517) (-793 |#1|)) (T -796)) +((-3383 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) (-2005 (*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) (-2869 (*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3))))) +(-13 (-909 |#2|) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) +((-2750 (((-107) $ $) NIL)) (-2239 (((-517) $) 15)) (-2280 (($ (-142)) 11)) (-3725 (($ (-142)) 12)) (-3985 (((-1056) $) NIL)) (-3512 (((-142) $) 13)) (-3206 (((-1021) $) NIL)) (-2806 (($ (-142)) 9)) (-2140 (($ (-142)) 8)) (-2256 (((-787) $) 23) (($ (-142)) 16)) (-2012 (($ (-142)) 10)) (-1547 (((-107) $ $) NIL))) +(((-797) (-13 (-1003) (-10 -8 (-15 -2140 ($ (-142))) (-15 -2806 ($ (-142))) (-15 -2012 ($ (-142))) (-15 -2280 ($ (-142))) (-15 -3725 ($ (-142))) (-15 -3512 ((-142) $)) (-15 -2239 ((-517) $)) (-15 -2256 ($ (-142)))))) (T -797)) +((-2140 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2806 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2280 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797))))) +(-13 (-1003) (-10 -8 (-15 -2140 ($ (-142))) (-15 -2806 ($ (-142))) (-15 -2012 ($ (-142))) (-15 -2280 ($ (-142))) (-15 -3725 ($ (-142))) (-15 -3512 ((-142) $)) (-15 -2239 ((-517) $)) (-15 -2256 ($ (-142))))) +((-2256 (((-286 (-517)) (-377 (-874 (-47)))) 21) (((-286 (-517)) (-874 (-47))) 16))) +(((-798) (-10 -7 (-15 -2256 ((-286 (-517)) (-874 (-47)))) (-15 -2256 ((-286 (-517)) (-377 (-874 (-47))))))) (T -798)) +((-2256 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-874 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798))))) +(-10 -7 (-15 -2256 ((-286 (-517)) (-874 (-47)))) (-15 -2256 ((-286 (-517)) (-377 (-874 (-47)))))) +((-1893 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 14))) +(((-799 |#1| |#2|) (-10 -7 (-15 -1893 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1108) (-1108)) (T -799)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6))))) +(-10 -7 (-15 -1893 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) +((-2689 (($ |#1| |#1|) 8)) (-1526 ((|#1| $ (-703)) 10))) +(((-800 |#1|) (-10 -8 (-15 -2689 ($ |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) (-1108)) (T -800)) +((-1526 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1108)))) (-2689 (*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1108))))) +(-10 -8 (-15 -2689 ($ |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) +((-1893 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 14))) +(((-801 |#1| |#2|) (-10 -7 (-15 -1893 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1108) (-1108)) (T -801)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6))))) +(-10 -7 (-15 -1893 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) +((-2689 (($ |#1| |#1| |#1|) 8)) (-1526 ((|#1| $ (-703)) 10))) +(((-802 |#1|) (-10 -8 (-15 -2689 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) (-1108)) (T -802)) +((-1526 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1108)))) (-2689 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1108))))) +(-10 -8 (-15 -2689 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) +((-1893 (((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)) 14))) +(((-803 |#1| |#2|) (-10 -7 (-15 -1893 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)))) (-1108) (-1108)) (T -803)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6))))) +(-10 -7 (-15 -1893 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)))) +((-1860 (($ |#1| |#1| |#1|) 8)) (-1526 ((|#1| $ (-703)) 10))) +(((-804 |#1|) (-10 -8 (-15 -1860 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) (-1108)) (T -804)) +((-1526 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-804 *2)) (-4 *2 (-1108)))) (-1860 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1108))))) +(-10 -8 (-15 -1860 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) +((-2816 (((-1054 (-583 (-517))) (-583 (-517)) (-1054 (-583 (-517)))) 30)) (-1751 (((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517))) 26)) (-1938 (((-1054 (-583 (-517))) (-583 (-517))) 39) (((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517))) 38)) (-1500 (((-1054 (-583 (-517))) (-517)) 40)) (-3587 (((-1054 (-583 (-517))) (-517) (-517)) 22) (((-1054 (-583 (-517))) (-517)) 16) (((-1054 (-583 (-517))) (-517) (-517) (-517)) 12)) (-1622 (((-1054 (-583 (-517))) (-1054 (-583 (-517)))) 24)) (-1487 (((-583 (-517)) (-583 (-517))) 23))) +(((-805) (-10 -7 (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517))) (-15 -1487 ((-583 (-517)) (-583 (-517)))) (-15 -1622 ((-1054 (-583 (-517))) (-1054 (-583 (-517))))) (-15 -1751 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -2816 ((-1054 (-583 (-517))) (-583 (-517)) (-1054 (-583 (-517))))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)))) (-15 -1500 ((-1054 (-583 (-517))) (-517))))) (T -805)) +((-1500 (*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-1938 (*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-1938 (*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-2816 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-805)))) (-1751 (*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)))) (-1487 (*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-805)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-3587 (*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-3587 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517))))) +(-10 -7 (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517))) (-15 -1487 ((-583 (-517)) (-583 (-517)))) (-15 -1622 ((-1054 (-583 (-517))) (-1054 (-583 (-517))))) (-15 -1751 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -2816 ((-1054 (-583 (-517))) (-583 (-517)) (-1054 (-583 (-517))))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)))) (-15 -1500 ((-1054 (-583 (-517))) (-517)))) +((-3645 (((-814 (-349)) $) 9 (|has| |#1| (-558 (-814 (-349))))) (((-814 (-517)) $) 8 (|has| |#1| (-558 (-814 (-517))))))) +(((-806 |#1|) (-1184) (-1108)) (T -806)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-558 (-814 (-517)))) (-6 (-558 (-814 (-517)))) |noBranch|) (IF (|has| |t#1| (-558 (-814 (-349)))) (-6 (-558 (-814 (-349)))) |noBranch|))) +(((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517))))) +((-2750 (((-107) $ $) NIL)) (-3462 (($) 14)) (-3441 (($ (-811 |#1| |#2|) (-811 |#1| |#3|)) 27)) (-2336 (((-811 |#1| |#3|) $) 16)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2945 (((-107) $) 22)) (-3713 (($) 19)) (-2256 (((-787) $) 30)) (-3735 (((-811 |#1| |#2|) $) 15)) (-1547 (((-107) $ $) 25))) +(((-807 |#1| |#2| |#3|) (-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -3441 ($ (-811 |#1| |#2|) (-811 |#1| |#3|))) (-15 -3735 ((-811 |#1| |#2|) $)) (-15 -2336 ((-811 |#1| |#3|) $)))) (-1003) (-1003) (-603 |#2|)) (T -807)) +((-2945 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-3713 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-3462 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-3441 (*1 *1 *2 *3) (-12 (-5 *2 (-811 *4 *5)) (-5 *3 (-811 *4 *6)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-807 *4 *5 *6)))) (-3735 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *4)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-2336 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *5)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4))))) +(-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -3441 ($ (-811 |#1| |#2|) (-811 |#1| |#3|))) (-15 -3735 ((-811 |#1| |#2|) $)) (-15 -2336 ((-811 |#1| |#3|) $)))) +((-2750 (((-107) $ $) 7)) (-4057 (((-811 |#1| $) $ (-814 |#1|) (-811 |#1| $)) 13)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6))) +(((-808 |#1|) (-1184) (-1003)) (T -808)) +((-4057 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-811 *4 *1)) (-5 *3 (-814 *4)) (-4 *1 (-808 *4)) (-4 *4 (-1003))))) +(-13 (-1003) (-10 -8 (-15 -4057 ((-811 |t#1| $) $ (-814 |t#1|) (-811 |t#1| $))))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-1609 (((-107) (-583 |#2|) |#3|) 22) (((-107) |#2| |#3|) 17)) (-1571 (((-811 |#1| |#2|) |#2| |#3|) 42 (-12 (-2630 (|has| |#2| (-952 (-1073)))) (-2630 (|has| |#2| (-961))))) (((-583 (-265 (-874 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-961)) (-2630 (|has| |#2| (-952 (-1073)))))) (((-583 (-265 |#2|)) |#2| |#3|) 34 (|has| |#2| (-952 (-1073)))) (((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 20))) +(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -1609 ((-107) |#2| |#3|)) (-15 -1609 ((-107) (-583 |#2|) |#3|)) (-15 -1571 ((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1073))) (-15 -1571 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -1571 ((-583 (-265 (-874 |#2|))) |#2| |#3|)) (-15 -1571 ((-811 |#1| |#2|) |#2| |#3|))))) (-1003) (-808 |#1|) (-558 (-814 |#1|))) (T -809)) +((-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-811 *5 *3)) (-5 *1 (-809 *5 *3 *4)) (-2630 (-4 *3 (-952 (-1073)))) (-2630 (-4 *3 (-961))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 (-874 *3)))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-961)) (-2630 (-4 *3 (-952 (-1073)))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-952 (-1073))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-5 *2 (-807 *5 *6 (-583 *6))) (-5 *1 (-809 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-814 *5))))) (-1609 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-808 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *6 *4)) (-4 *4 (-558 (-814 *5))))) (-1609 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5)))))) +(-10 -7 (-15 -1609 ((-107) |#2| |#3|)) (-15 -1609 ((-107) (-583 |#2|) |#3|)) (-15 -1571 ((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1073))) (-15 -1571 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -1571 ((-583 (-265 (-874 |#2|))) |#2| |#3|)) (-15 -1571 ((-811 |#1| |#2|) |#2| |#3|))))) +((-1893 (((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|)) 21))) +(((-810 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|)))) (-1003) (-1003) (-1003)) (T -810)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-811 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-811 *5 *7)) (-5 *1 (-810 *5 *6 *7))))) +(-10 -7 (-15 -1893 ((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|)))) +((-2750 (((-107) $ $) NIL)) (-1413 (($ $ $) 37)) (-2843 (((-3 (-107) "failed") $ (-814 |#1|)) 34)) (-3462 (($) 11)) (-3985 (((-1056) $) NIL)) (-1914 (($ (-814 |#1|) |#2| $) 20)) (-3206 (((-1021) $) NIL)) (-2764 (((-3 |#2| "failed") (-814 |#1|) $) 48)) (-2945 (((-107) $) 14)) (-3713 (($) 12)) (-3814 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))) $) 25)) (-2276 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|)))) 23)) (-2256 (((-787) $) 42)) (-2246 (($ (-814 |#1|) |#2| $ |#2|) 46)) (-1598 (($ (-814 |#1|) |#2| $) 45)) (-1547 (((-107) $ $) 39))) +(((-811 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -1413 ($ $ $)) (-15 -2764 ((-3 |#2| "failed") (-814 |#1|) $)) (-15 -1598 ($ (-814 |#1|) |#2| $)) (-15 -1914 ($ (-814 |#1|) |#2| $)) (-15 -2246 ($ (-814 |#1|) |#2| $ |#2|)) (-15 -3814 ((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))))) (-15 -2843 ((-3 (-107) "failed") $ (-814 |#1|))))) (-1003) (-1003)) (T -811)) +((-2945 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3713 (*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3462 (*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1413 (*1 *1 *1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-2764 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-811 *4 *2)))) (-1598 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-1914 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-2246 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-4 *4 (-1003)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)))) (-2843 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1003))))) +(-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -1413 ($ $ $)) (-15 -2764 ((-3 |#2| "failed") (-814 |#1|) $)) (-15 -1598 ($ (-814 |#1|) |#2| $)) (-15 -1914 ($ (-814 |#1|) |#2| $)) (-15 -2246 ($ (-814 |#1|) |#2| $ |#2|)) (-15 -3814 ((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))))) (-15 -2843 ((-3 (-107) "failed") $ (-814 |#1|))))) +((-3820 (((-814 |#1|) (-814 |#1|) (-583 (-1073)) (-1 (-107) (-583 |#2|))) 30) (((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|))) 42) (((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|)) 33)) (-2843 (((-107) (-583 |#2|) (-814 |#1|)) 39) (((-107) |#2| (-814 |#1|)) 35)) (-2286 (((-1 (-107) |#2|) (-814 |#1|)) 14)) (-2935 (((-583 |#2|) (-814 |#1|)) 23)) (-1374 (((-814 |#1|) (-814 |#1|) |#2|) 19))) +(((-812 |#1| |#2|) (-10 -7 (-15 -3820 ((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1073)) (-1 (-107) (-583 |#2|)))) (-15 -2286 ((-1 (-107) |#2|) (-814 |#1|))) (-15 -2843 ((-107) |#2| (-814 |#1|))) (-15 -2843 ((-107) (-583 |#2|) (-814 |#1|))) (-15 -1374 ((-814 |#1|) (-814 |#1|) |#2|)) (-15 -2935 ((-583 |#2|) (-814 |#1|)))) (-1003) (-1108)) (T -812)) +((-2935 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-583 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1108)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-107)) (-5 *1 (-812 *5 *6)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-812 *5 *3)) (-4 *3 (-1108)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108)))) (-3820 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-814 *5)) (-5 *3 (-583 (-1073))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-812 *5 *6)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5))))) +(-10 -7 (-15 -3820 ((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1073)) (-1 (-107) (-583 |#2|)))) (-15 -2286 ((-1 (-107) |#2|) (-814 |#1|))) (-15 -2843 ((-107) |#2| (-814 |#1|))) (-15 -2843 ((-107) (-583 |#2|) (-814 |#1|))) (-15 -1374 ((-814 |#1|) (-814 |#1|) |#2|)) (-15 -2935 ((-583 |#2|) (-814 |#1|)))) +((-1893 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 17))) +(((-813 |#1| |#2|) (-10 -7 (-15 -1893 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)))) (-1003) (-1003)) (T -813)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6))))) +(-10 -7 (-15 -1893 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)))) +((-2750 (((-107) $ $) NIL)) (-1469 (($ $ (-583 (-51))) 62)) (-1364 (((-583 $) $) 116)) (-3187 (((-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51))) $) 22)) (-2710 (((-107) $) 29)) (-1752 (($ $ (-583 (-1073)) (-51)) 24)) (-2664 (($ $ (-583 (-51))) 61)) (-1772 (((-3 |#1| "failed") $) 59) (((-3 (-1073) "failed") $) 138)) (-3189 ((|#1| $) 55) (((-1073) $) NIL)) (-2269 (($ $) 106)) (-2554 (((-107) $) 45)) (-3218 (((-583 (-51)) $) 43)) (-1512 (($ (-1073) (-107) (-107) (-107)) 63)) (-2288 (((-3 (-583 $) "failed") (-583 $)) 70)) (-1685 (((-107) $) 48)) (-3095 (((-107) $) 47)) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) 34)) (-2966 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 41)) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 $)) "failed") $) 81)) (-3401 (((-3 (-583 $) "failed") $) 31)) (-2800 (((-3 (-583 $) "failed") $ (-109)) 105) (((-3 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 $))) "failed") $) 93)) (-1624 (((-3 (-583 $) "failed") $) 35)) (-3174 (((-3 (-2 (|:| |val| $) (|:| -2077 (-703))) "failed") $) 38)) (-2580 (((-107) $) 28)) (-3206 (((-1021) $) NIL)) (-2958 (((-107) $) 20)) (-2608 (((-107) $) 44)) (-2057 (((-583 (-51)) $) 109)) (-3519 (((-107) $) 46)) (-1449 (($ (-109) (-583 $)) 90)) (-1694 (((-703) $) 27)) (-2433 (($ $) 60)) (-3645 (($ (-583 $)) 57)) (-3819 (((-107) $) 25)) (-2256 (((-787) $) 50) (($ |#1|) 18) (($ (-1073)) 64)) (-1374 (($ $ (-51)) 108)) (-2396 (($) 89 T CONST)) (-2409 (($) 71 T CONST)) (-1547 (((-107) $ $) 77)) (-1667 (($ $ $) 98)) (-1642 (($ $ $) 102)) (** (($ $ (-703)) 97) (($ $ $) 51)) (* (($ $ $) 103))) +(((-814 |#1|) (-13 (-1003) (-952 |#1|) (-952 (-1073)) (-10 -8 (-15 0 ($) -1619) (-15 1 ($) -1619) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -2800 ((-3 (-583 $) "failed") $ (-109))) (-15 -2800 ((-3 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |val| $) (|:| -2077 (-703))) "failed") $)) (-15 -2966 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1624 ((-3 (-583 $) "failed") $)) (-15 -1735 ((-3 (-2 (|:| |val| $) (|:| -2077 $)) "failed") $)) (-15 -1449 ($ (-109) (-583 $))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1694 ((-703) $)) (-15 -3645 ($ (-583 $))) (-15 -2433 ($ $)) (-15 -2580 ((-107) $)) (-15 -2554 ((-107) $)) (-15 -2710 ((-107) $)) (-15 -3819 ((-107) $)) (-15 -3519 ((-107) $)) (-15 -3095 ((-107) $)) (-15 -1685 ((-107) $)) (-15 -2608 ((-107) $)) (-15 -3218 ((-583 (-51)) $)) (-15 -2664 ($ $ (-583 (-51)))) (-15 -1469 ($ $ (-583 (-51)))) (-15 -1512 ($ (-1073) (-107) (-107) (-107))) (-15 -1752 ($ $ (-583 (-1073)) (-51))) (-15 -3187 ((-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51))) $)) (-15 -2958 ((-107) $)) (-15 -2269 ($ $)) (-15 -1374 ($ $ (-51))) (-15 -2057 ((-583 (-51)) $)) (-15 -1364 ((-583 $) $)) (-15 -2288 ((-3 (-583 $) "failed") (-583 $))))) (-1003)) (T -814)) +((-2396 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-2409 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-3401 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3703 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2800 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-2800 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 (-814 *3))))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3174 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-703)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2966 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-814 *3)) (|:| |den| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1624 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1735 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1449 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-1642 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1667 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2433 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2664 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1469 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1512 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-107)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-1752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-51)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1374 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2288 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(-13 (-1003) (-952 |#1|) (-952 (-1073)) (-10 -8 (-15 (-2396) ($) -1619) (-15 (-2409) ($) -1619) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -2800 ((-3 (-583 $) "failed") $ (-109))) (-15 -2800 ((-3 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |val| $) (|:| -2077 (-703))) "failed") $)) (-15 -2966 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1624 ((-3 (-583 $) "failed") $)) (-15 -1735 ((-3 (-2 (|:| |val| $) (|:| -2077 $)) "failed") $)) (-15 -1449 ($ (-109) (-583 $))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1694 ((-703) $)) (-15 -3645 ($ (-583 $))) (-15 -2433 ($ $)) (-15 -2580 ((-107) $)) (-15 -2554 ((-107) $)) (-15 -2710 ((-107) $)) (-15 -3819 ((-107) $)) (-15 -3519 ((-107) $)) (-15 -3095 ((-107) $)) (-15 -1685 ((-107) $)) (-15 -2608 ((-107) $)) (-15 -3218 ((-583 (-51)) $)) (-15 -2664 ($ $ (-583 (-51)))) (-15 -1469 ($ $ (-583 (-51)))) (-15 -1512 ($ (-1073) (-107) (-107) (-107))) (-15 -1752 ($ $ (-583 (-1073)) (-51))) (-15 -3187 ((-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51))) $)) (-15 -2958 ((-107) $)) (-15 -2269 ($ $)) (-15 -1374 ($ $ (-51))) (-15 -2057 ((-583 (-51)) $)) (-15 -1364 ((-583 $) $)) (-15 -2288 ((-3 (-583 $) "failed") (-583 $))))) +((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) 16)) (-3153 (((-107) $) 38)) (-1772 (((-3 (-608 |#1|) "failed") $) 41)) (-3189 (((-608 |#1|) $) 39)) (-1660 (($ $) 18)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2195 (((-703) $) 45)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-608 |#1|) $) 17)) (-2256 (((-787) $) 37) (($ (-608 |#1|)) 21) (((-751 |#1|) $) 27) (($ |#1|) 20)) (-2409 (($) 8 T CONST)) (-2332 (((-583 (-608 |#1|)) $) 23)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 11)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 48))) +(((-815 |#1|) (-13 (-779) (-952 (-608 |#1|)) (-10 -8 (-15 1 ($) -1619) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ($ |#1|)) (-15 -1647 ((-608 |#1|) $)) (-15 -2195 ((-703) $)) (-15 -2332 ((-583 (-608 |#1|)) $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3463 ((-583 |#1|) $)))) (-779)) (T -815)) +((-2409 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2256 (*1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779))))) +(-13 (-779) (-952 (-608 |#1|)) (-10 -8 (-15 (-2409) ($) -1619) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ($ |#1|)) (-15 -1647 ((-608 |#1|) $)) (-15 -2195 ((-703) $)) (-15 -2332 ((-583 (-608 |#1|)) $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3463 ((-583 |#1|) $)))) +((-1775 ((|#1| |#1| |#1|) 19))) +(((-816 |#1| |#2|) (-10 -7 (-15 -1775 (|#1| |#1| |#1|))) (-1130 |#2|) (-961)) (T -816)) +((-1775 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1130 *3))))) +(-10 -7 (-15 -1775 (|#1| |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2238 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 13)) (-1547 (((-107) $ $) 6))) +(((-817) (-1184)) (T -817)) +((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-817)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-2238 (*1 *2 *3) (-12 (-4 *1 (-817)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-950))))) +(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))) (-15 -2238 ((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-3566 ((|#1| |#1| (-703)) 23)) (-1304 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2132 (((-3 (-2 (|:| -3639 |#1|) (|:| -3652 |#1|)) "failed") |#1| (-703) (-703)) 26) (((-583 |#1|) |#1|) 28))) +(((-818 |#1| |#2|) (-10 -7 (-15 -2132 ((-583 |#1|) |#1|)) (-15 -2132 ((-3 (-2 (|:| -3639 |#1|) (|:| -3652 |#1|)) "failed") |#1| (-703) (-703))) (-15 -1304 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3566 (|#1| |#1| (-703)))) (-1130 |#2|) (-333)) (T -818)) +((-3566 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-818 *2 *4)) (-4 *2 (-1130 *4)))) (-1304 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1130 *3)))) (-2132 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-818 *3 *5)) (-4 *3 (-1130 *5)))) (-2132 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1130 *4))))) +(-10 -7 (-15 -2132 ((-583 |#1|) |#1|)) (-15 -2132 ((-3 (-2 (|:| -3639 |#1|) (|:| -3652 |#1|)) "failed") |#1| (-703) (-703))) (-15 -1304 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3566 (|#1| |#1| (-703)))) +((-1674 (((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056)) 92) (((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056) (-199)) 87) (((-950) (-820) (-973)) 76) (((-950) (-820)) 77)) (-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820) (-973)) 50) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820)) 52))) +(((-819) (-10 -7 (-15 -1674 ((-950) (-820))) (-15 -1674 ((-950) (-820) (-973))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056) (-199))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820) (-973))))) (T -819)) +((-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819)))) (-1674 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1674 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-950)) (-5 *1 (-819))))) +(-10 -7 (-15 -1674 ((-950) (-820))) (-15 -1674 ((-950) (-820) (-973))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056) (-199))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820) (-973)))) +((-2750 (((-107) $ $) NIL)) (-3189 (((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))) $) 10)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 12) (($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 9)) (-1547 (((-107) $ $) NIL))) +(((-820) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))) $))))) (T -820)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-820)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820))))) +(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))) $)))) +((-3127 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) 10) (($ $ |#2| (-703)) 12) (($ $ (-583 |#2|) (-583 (-703))) 15)) (-2731 (($ $ |#2|) 16) (($ $ (-583 |#2|)) 18) (($ $ |#2| (-703)) 19) (($ $ (-583 |#2|) (-583 (-703))) 21))) +(((-821 |#1| |#2|) (-10 -8 (-15 -2731 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2731 (|#1| |#1| |#2| (-703))) (-15 -2731 (|#1| |#1| (-583 |#2|))) (-15 -2731 (|#1| |#1| |#2|)) (-15 -3127 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#2| (-703))) (-15 -3127 (|#1| |#1| (-583 |#2|))) (-15 -3127 (|#1| |#1| |#2|))) (-822 |#2|) (-1003)) (T -821)) +NIL +(-10 -8 (-15 -2731 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2731 (|#1| |#1| |#2| (-703))) (-15 -2731 (|#1| |#1| (-583 |#2|))) (-15 -2731 (|#1| |#1| |#2|)) (-15 -3127 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#2| (-703))) (-15 -3127 (|#1| |#1| (-583 |#2|))) (-15 -3127 (|#1| |#1| |#2|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $ |#1|) 42) (($ $ (-583 |#1|)) 41) (($ $ |#1| (-703)) 40) (($ $ (-583 |#1|) (-583 (-703))) 39)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#1|) 38) (($ $ (-583 |#1|)) 37) (($ $ |#1| (-703)) 36) (($ $ (-583 |#1|) (-583 (-703))) 35)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-822 |#1|) (-1184) (-1003)) (T -822)) +((-3127 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) (-2731 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003))))) +(-13 (-961) (-10 -8 (-15 -3127 ($ $ |t#1|)) (-15 -3127 ($ $ (-583 |t#1|))) (-15 -3127 ($ $ |t#1| (-703))) (-15 -3127 ($ $ (-583 |t#1|) (-583 (-703)))) (-15 -2731 ($ $ |t#1|)) (-15 -2731 ($ $ (-583 |t#1|))) (-15 -2731 ($ $ |t#1| (-703))) (-15 -2731 ($ $ (-583 |t#1|) (-583 (-703)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 26)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2204 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3449 (($ $ $) NIL (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 25)) (-2913 (($ |#1|) 12) (($ $ $) 17)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 23)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) 20)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) 29 (|has| |#1| (-1003))) (((-1095 |#1|) $) 9)) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 21 (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-823 |#1|) (-13 (-114 |#1|) (-10 -8 (-15 -2913 ($ |#1|)) (-15 -2913 ($ $ $)) (-15 -2256 ((-1095 |#1|) $)))) (-1003)) (T -823)) +((-2913 (*1 *1 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) (-2913 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-823 *3)) (-4 *3 (-1003))))) +(-13 (-114 |#1|) (-10 -8 (-15 -2913 ($ |#1|)) (-15 -2913 ($ $ $)) (-15 -2256 ((-1095 |#1|) $)))) +((-1531 ((|#2| (-1040 |#1| |#2|)) 39))) +(((-824 |#1| |#2|) (-10 -7 (-15 -1531 (|#2| (-1040 |#1| |#2|)))) (-843) (-13 (-961) (-10 -7 (-6 (-4182 "*"))))) (T -824)) +((-1531 (*1 *2 *3) (-12 (-5 *3 (-1040 *4 *2)) (-14 *4 (-843)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-4182 "*"))))) (-5 *1 (-824 *4 *2))))) +(-10 -7 (-15 -1531 (|#2| (-1040 |#1| |#2|)))) +((-2750 (((-107) $ $) 7)) (-3092 (($) 20 T CONST)) (-3621 (((-3 $ "failed") $) 16)) (-3185 (((-1005 |#1|) $ |#1|) 35)) (-3848 (((-107) $) 19)) (-2967 (($ $ $) 33 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-3099 (($ $ $) 32 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 27)) (-3206 (((-1021) $) 10)) (-2051 ((|#1| $ |#1|) 37)) (-1449 ((|#1| $ |#1|) 36)) (-3887 (($ (-583 (-583 |#1|))) 38)) (-1199 (($ (-583 |#1|)) 39)) (-1487 (($ $ $) 23)) (-3394 (($ $ $) 22)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-2409 (($) 21 T CONST)) (-1606 (((-107) $ $) 30 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1583 (((-107) $ $) 29 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 31 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1572 (((-107) $ $) 34)) (-1667 (($ $ $) 26)) (** (($ $ (-843)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15))) +(((-825 |#1|) (-1184) (-1003)) (T -825)) +((-1199 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-825 *3)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-4 *1 (-825 *3)))) (-2051 (*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) (-1449 (*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-1005 *3)))) (-1572 (*1 *2 *1 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-107))))) +(-13 (-442) (-10 -8 (-15 -1199 ($ (-583 |t#1|))) (-15 -3887 ($ (-583 (-583 |t#1|)))) (-15 -2051 (|t#1| $ |t#1|)) (-15 -1449 (|t#1| $ |t#1|)) (-15 -3185 ((-1005 |t#1|) $ |t#1|)) (-15 -1572 ((-107) $ $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-338)) (-6 (-779)) |noBranch|))) +(((-97) . T) ((-557 (-787)) . T) ((-442) . T) ((-659) . T) ((-779) -3807 (|has| |#1| (-779)) (|has| |#1| (-338))) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2842 (((-583 (-583 (-703))) $) 106)) (-4036 (((-583 (-703)) (-827 |#1|) $) 128)) (-1395 (((-583 (-703)) (-827 |#1|) $) 129)) (-4075 (((-583 (-827 |#1|)) $) 96)) (-3209 (((-827 |#1|) $ (-517)) 101) (((-827 |#1|) $) 102)) (-1193 (($ (-583 (-827 |#1|))) 108)) (-3972 (((-703) $) 103)) (-1978 (((-1005 (-1005 |#1|)) $) 126)) (-3185 (((-1005 |#1|) $ |#1|) 119) (((-1005 (-1005 |#1|)) $ (-1005 |#1|)) 137) (((-1005 (-583 |#1|)) $ (-583 |#1|)) 140)) (-2236 (((-1005 |#1|) $) 99)) (-2787 (((-107) (-827 |#1|) $) 90)) (-3985 (((-1056) $) NIL)) (-3408 (((-1158) $) 93) (((-1158) $ (-517) (-517)) 141)) (-3206 (((-1021) $) NIL)) (-3079 (((-583 (-827 |#1|)) $) 94)) (-1449 (((-827 |#1|) $ (-703)) 97)) (-3688 (((-703) $) 104)) (-2256 (((-787) $) 117) (((-583 (-827 |#1|)) $) 22) (($ (-583 (-827 |#1|))) 107)) (-2372 (((-583 |#1|) $) 105)) (-1547 (((-107) $ $) 134)) (-1595 (((-107) $ $) 132)) (-1572 (((-107) $ $) 131))) +(((-826 |#1|) (-13 (-1003) (-10 -8 (-15 -2256 ((-583 (-827 |#1|)) $)) (-15 -3079 ((-583 (-827 |#1|)) $)) (-15 -1449 ((-827 |#1|) $ (-703))) (-15 -3209 ((-827 |#1|) $ (-517))) (-15 -3209 ((-827 |#1|) $)) (-15 -3972 ((-703) $)) (-15 -3688 ((-703) $)) (-15 -2372 ((-583 |#1|) $)) (-15 -4075 ((-583 (-827 |#1|)) $)) (-15 -2842 ((-583 (-583 (-703))) $)) (-15 -2256 ($ (-583 (-827 |#1|)))) (-15 -1193 ($ (-583 (-827 |#1|)))) (-15 -3185 ((-1005 |#1|) $ |#1|)) (-15 -1978 ((-1005 (-1005 |#1|)) $)) (-15 -3185 ((-1005 (-1005 |#1|)) $ (-1005 |#1|))) (-15 -3185 ((-1005 (-583 |#1|)) $ (-583 |#1|))) (-15 -2787 ((-107) (-827 |#1|) $)) (-15 -4036 ((-583 (-703)) (-827 |#1|) $)) (-15 -1395 ((-583 (-703)) (-827 |#1|) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -1572 ((-107) $ $)) (-15 -1595 ((-107) $ $)) (-15 -3408 ((-1158) $)) (-15 -3408 ((-1158) $ (-517) (-517))))) (-1003)) (T -826)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) (-3209 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2372 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) (-1193 (*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) (-3185 (*1 *2 *1 *3) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-1005 (-1005 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-1005 *4))) (-5 *1 (-826 *4)) (-5 *3 (-1005 *4)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-583 *4))) (-5 *1 (-826 *4)) (-5 *3 (-583 *4)))) (-2787 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-826 *4)))) (-4036 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))) (-1395 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1572 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1595 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3408 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-826 *4)) (-4 *4 (-1003))))) +(-13 (-1003) (-10 -8 (-15 -2256 ((-583 (-827 |#1|)) $)) (-15 -3079 ((-583 (-827 |#1|)) $)) (-15 -1449 ((-827 |#1|) $ (-703))) (-15 -3209 ((-827 |#1|) $ (-517))) (-15 -3209 ((-827 |#1|) $)) (-15 -3972 ((-703) $)) (-15 -3688 ((-703) $)) (-15 -2372 ((-583 |#1|) $)) (-15 -4075 ((-583 (-827 |#1|)) $)) (-15 -2842 ((-583 (-583 (-703))) $)) (-15 -2256 ($ (-583 (-827 |#1|)))) (-15 -1193 ($ (-583 (-827 |#1|)))) (-15 -3185 ((-1005 |#1|) $ |#1|)) (-15 -1978 ((-1005 (-1005 |#1|)) $)) (-15 -3185 ((-1005 (-1005 |#1|)) $ (-1005 |#1|))) (-15 -3185 ((-1005 (-583 |#1|)) $ (-583 |#1|))) (-15 -2787 ((-107) (-827 |#1|) $)) (-15 -4036 ((-583 (-703)) (-827 |#1|) $)) (-15 -1395 ((-583 (-703)) (-827 |#1|) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -1572 ((-107) $ $)) (-15 -1595 ((-107) $ $)) (-15 -3408 ((-1158) $)) (-15 -3408 ((-1158) $ (-517) (-517))))) +((-2750 (((-107) $ $) NIL)) (-3166 (((-583 $) (-583 $)) 76)) (-3709 (((-517) $) 59)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3972 (((-703) $) 57)) (-3185 (((-1005 |#1|) $ |#1|) 48)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) 62)) (-3643 (((-703) $) 60)) (-2236 (((-1005 |#1|) $) 41)) (-2967 (($ $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-3099 (($ $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-3897 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 35)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 92)) (-3206 (((-1021) $) NIL)) (-2111 (((-1005 |#1|) $) 99 (|has| |#1| (-338)))) (-3998 (((-107) $) 58)) (-2051 ((|#1| $ |#1|) 46)) (-1449 ((|#1| $ |#1|) 93)) (-3688 (((-703) $) 43)) (-3887 (($ (-583 (-583 |#1|))) 84)) (-3278 (((-888) $) 52)) (-1199 (($ (-583 |#1|)) 21)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2807 (($ (-583 (-583 |#1|))) 38)) (-2408 (($ (-583 (-583 |#1|))) 87)) (-4106 (($ (-583 |#1|)) 95)) (-2256 (((-787) $) 83) (($ (-583 (-583 |#1|))) 65) (($ (-583 |#1|)) 66)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 16 T CONST)) (-1606 (((-107) $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1547 (((-107) $ $) 44)) (-1595 (((-107) $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1572 (((-107) $ $) 64)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 22))) +(((-827 |#1|) (-13 (-825 |#1|) (-10 -8 (-15 -3897 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2807 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 |#1|))) (-15 -2408 ($ (-583 (-583 |#1|)))) (-15 -3688 ((-703) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -3278 ((-888) $)) (-15 -3972 ((-703) $)) (-15 -3643 ((-703) $)) (-15 -3709 ((-517) $)) (-15 -3998 ((-107) $)) (-15 -1769 ((-107) $)) (-15 -3166 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -2111 ((-1005 |#1|) $)) |noBranch|) (IF (|has| |#1| (-502)) (-15 -4106 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -4106 ($ (-583 |#1|))) |noBranch|)))) (-1003)) (T -827)) +((-3897 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2807 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-338)) (-4 *3 (-1003)))) (-4106 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3))))) +(-13 (-825 |#1|) (-10 -8 (-15 -3897 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2807 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 |#1|))) (-15 -2408 ($ (-583 (-583 |#1|)))) (-15 -3688 ((-703) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -3278 ((-888) $)) (-15 -3972 ((-703) $)) (-15 -3643 ((-703) $)) (-15 -3709 ((-517) $)) (-15 -3998 ((-107) $)) (-15 -1769 ((-107) $)) (-15 -3166 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -2111 ((-1005 |#1|) $)) |noBranch|) (IF (|has| |#1| (-502)) (-15 -4106 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -4106 ($ (-583 |#1|))) |noBranch|)))) +((-3994 (((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|)) 127)) (-2916 ((|#1|) 75)) (-3746 (((-388 (-1069 |#4|)) (-1069 |#4|)) 136)) (-1901 (((-388 (-1069 |#4|)) (-583 |#3|) (-1069 |#4|)) 67)) (-3689 (((-388 (-1069 |#4|)) (-1069 |#4|)) 146)) (-2317 (((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|) |#3|) 91))) +(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|))) (-15 -3689 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3746 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -2916 (|#1|)) (-15 -2317 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|) |#3|)) (-15 -1901 ((-388 (-1069 |#4|)) (-583 |#3|) (-1069 |#4|)))) (-831) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -828)) +((-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-1069 *8)))) (-2317 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *5 *6 *4)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-828 *5 *6 *4 *7)))) (-2916 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-828 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3994 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-828 *4 *5 *6 *7))))) +(-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|))) (-15 -3689 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3746 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -2916 (|#1|)) (-15 -2317 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|) |#3|)) (-15 -1901 ((-388 (-1069 |#4|)) (-583 |#3|) (-1069 |#4|)))) +((-3994 (((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|)) 36)) (-2916 ((|#1|) 53)) (-3746 (((-388 (-1069 |#2|)) (-1069 |#2|)) 101)) (-1901 (((-388 (-1069 |#2|)) (-1069 |#2|)) 88)) (-3689 (((-388 (-1069 |#2|)) (-1069 |#2|)) 112))) +(((-829 |#1| |#2|) (-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|))) (-15 -3689 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -3746 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -2916 (|#1|)) (-15 -1901 ((-388 (-1069 |#2|)) (-1069 |#2|)))) (-831) (-1130 |#1|)) (T -829)) +((-1901 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))) (-2916 (*1 *2) (-12 (-4 *2 (-831)) (-5 *1 (-829 *2 *3)) (-4 *3 (-1130 *2)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))) (-3994 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-831)) (-5 *1 (-829 *4 *5))))) +(-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|))) (-15 -3689 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -3746 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -2916 (|#1|)) (-15 -1901 ((-388 (-1069 |#2|)) (-1069 |#2|)))) +((-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 39)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 18)) (-1328 (((-3 $ "failed") $) 33))) +(((-830 |#1|) (-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)))) (-831)) (T -830)) +NIL +(-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 60)) (-2535 (($ $) 51)) (-2759 (((-388 $) $) 52)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 57)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3849 (((-107) $) 53)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2561 (((-388 (-1069 $)) (-1069 $)) 58)) (-2209 (((-388 (-1069 $)) (-1069 $)) 59)) (-3755 (((-388 $) $) 50)) (-2476 (((-3 $ "failed") $ $) 42)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 56 (|has| $ (-132)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1328 (((-3 $ "failed") $) 55 (|has| $ (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-831) (-1184)) (T -831)) +((-1862 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-831)))) (-3143 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))) (-2209 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))) (-2561 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))) (-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *1))) (-5 *3 (-1069 *1)) (-4 *1 (-831)))) (-3870 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-831)) (-5 *2 (-1153 *1)))) (-1328 (*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-831))))) +(-13 (-1112) (-10 -8 (-15 -3143 ((-388 (-1069 $)) (-1069 $))) (-15 -2209 ((-388 (-1069 $)) (-1069 $))) (-15 -2561 ((-388 (-1069 $)) (-1069 $))) (-15 -1862 ((-1069 $) (-1069 $) (-1069 $))) (-15 -3179 ((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $))) (IF (|has| $ (-132)) (PROGN (-15 -3870 ((-3 (-1153 $) "failed") (-623 $))) (-15 -1328 ((-3 $ "failed") $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 $ "failed") $) NIL)) (-3189 (($ $) NIL)) (-1967 (($ (-1153 $)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL)) (-3391 (((-107) $) NIL)) (-2378 (($ $) NIL) (($ $ (-703)) NIL)) (-3849 (((-107) $) NIL)) (-3972 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| $ (-338)))) (-2434 (((-107) $) NIL (|has| $ (-338)))) (-1506 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 $) $ (-843)) NIL (|has| $ (-338))) (((-1069 $) $) NIL)) (-1549 (((-843) $) NIL)) (-1704 (((-1069 $) $) NIL (|has| $ (-338)))) (-2729 (((-3 (-1069 $) "failed") $ $) NIL (|has| $ (-338))) (((-1069 $) $) NIL (|has| $ (-338)))) (-3600 (($ $ (-1069 $)) NIL (|has| $ (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL T CONST)) (-3448 (($ (-843)) NIL)) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| $ (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL)) (-3755 (((-388 $) $) NIL)) (-3327 (((-843)) NIL) (((-765 (-843))) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-3141 (((-125)) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-3688 (((-843) $) NIL) (((-765 (-843)) $) NIL)) (-2135 (((-1069 $)) NIL)) (-1766 (($) NIL)) (-1224 (($) NIL (|has| $ (-338)))) (-4114 (((-623 $) (-1153 $)) NIL) (((-1153 $) $) NIL)) (-3645 (((-517) $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $) (-843)) NIL) (((-1153 $)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) +(((-832 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-843)) (T -832)) +NIL +(-13 (-319) (-299 $) (-558 (-517))) +((-3046 (((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)) 76)) (-3027 (((-107) (-306 |#2| |#3| |#4| |#5|)) 16)) (-3972 (((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|)) 14))) +(((-833 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -3027 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)))) (-13 (-779) (-509) (-952 (-517))) (-400 |#1|) (-1130 |#2|) (-1130 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -833)) +((-3046 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *8))) (-5 *1 (-833 *4 *5 *6 *7 *8)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) (-3972 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-703)) (-5 *1 (-833 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -3027 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)))) +((-3046 (((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 56)) (-3027 (((-107) (-306 (-377 (-517)) |#1| |#2| |#3|)) 13)) (-3972 (((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 11))) +(((-834 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3027 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)))) (-1130 (-377 (-517))) (-1130 (-377 |#1|)) (-312 (-377 (-517)) |#1| |#2|)) (T -834)) +((-3046 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *6))) (-5 *1 (-834 *4 *5 *6)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6)))) (-3972 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6))))) +(-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3027 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)))) +((-2327 ((|#2| |#2|) 25)) (-1284 (((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) 15)) (-3024 (((-843) (-517)) 35)) (-3812 (((-517) |#2|) 42)) (-1962 (((-517) |#2|) 21) (((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|) 20))) +(((-835 |#1| |#2|) (-10 -7 (-15 -3024 ((-843) (-517))) (-15 -1962 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -1962 ((-517) |#2|)) (-15 -1284 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -3812 ((-517) |#2|)) (-15 -2327 (|#2| |#2|))) (-1130 (-377 (-517))) (-1130 (-377 |#1|))) (T -835)) +((-2327 (*1 *2 *2) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *1 (-835 *3 *2)) (-4 *2 (-1130 (-377 *3))))) (-3812 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4))))) (-1284 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4))))) (-1962 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4))))) (-1962 (*1 *2 *3) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-835 *3 *4)) (-4 *4 (-1130 (-377 *3))))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 (-377 *3))) (-5 *2 (-843)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4)))))) +(-10 -7 (-15 -3024 ((-843) (-517))) (-15 -1962 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -1962 ((-517) |#2|)) (-15 -1284 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -3812 ((-517) |#2|)) (-15 -2327 (|#2| |#2|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 ((|#1| $) 80)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 74)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-2121 (($ |#1| (-388 |#1|)) 72)) (-1693 (((-1069 |#1|) |#1| |#1|) 40)) (-2008 (($ $) 48)) (-3848 (((-107) $) NIL)) (-1911 (((-517) $) 77)) (-3894 (($ $ (-517)) 79)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2227 ((|#1| $) 76)) (-1833 (((-388 |#1|) $) 75)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) 73)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3966 (($ $) 38)) (-2256 (((-787) $) 98) (($ (-517)) 53) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 30) (((-377 |#1|) $) 58) (($ (-377 (-388 |#1|))) 66)) (-2961 (((-703)) 51)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 23 T CONST)) (-2409 (($) 11 T CONST)) (-1547 (((-107) $ $) 67)) (-1667 (($ $ $) NIL)) (-1654 (($ $) 87) (($ $ $) NIL)) (-1642 (($ $ $) 37)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 89) (($ $ $) 36) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 88) (($ $ |#1|) NIL))) +(((-836 |#1|) (-13 (-333) (-37 |#1|) (-10 -8 (-15 -2256 ((-377 |#1|) $)) (-15 -2256 ($ (-377 (-388 |#1|)))) (-15 -3966 ($ $)) (-15 -1833 ((-388 |#1|) $)) (-15 -2227 (|#1| $)) (-15 -3894 ($ $ (-517))) (-15 -1911 ((-517) $)) (-15 -1693 ((-1069 |#1|) |#1| |#1|)) (-15 -2008 ($ $)) (-15 -2121 ($ |#1| (-388 |#1|))) (-15 -2668 (|#1| $)))) (-278)) (T -836)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-836 *3)))) (-3966 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2227 (*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-3894 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-1693 (*1 *2 *3 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2008 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-2121 (*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-836 *2)))) (-2668 (*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278))))) +(-13 (-333) (-37 |#1|) (-10 -8 (-15 -2256 ((-377 |#1|) $)) (-15 -2256 ($ (-377 (-388 |#1|)))) (-15 -3966 ($ $)) (-15 -1833 ((-388 |#1|) $)) (-15 -2227 (|#1| $)) (-15 -3894 ($ $ (-517))) (-15 -1911 ((-517) $)) (-15 -1693 ((-1069 |#1|) |#1| |#1|)) (-15 -2008 ($ $)) (-15 -2121 ($ |#1| (-388 |#1|))) (-15 -2668 (|#1| $)))) +((-2121 (((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1073)) 16) (((-51) (-377 (-874 |#1|)) (-1073)) 17))) +(((-837 |#1|) (-10 -7 (-15 -2121 ((-51) (-377 (-874 |#1|)) (-1073))) (-15 -2121 ((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1073)))) (-13 (-278) (-134))) (T -837)) +((-2121 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-874 *6))) (-5 *5 (-1073)) (-5 *3 (-874 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *6)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *5))))) +(-10 -7 (-15 -2121 ((-51) (-377 (-874 |#1|)) (-1073))) (-15 -2121 ((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1073)))) +((-2116 ((|#4| (-583 |#4|)) 118) (((-1069 |#4|) (-1069 |#4|) (-1069 |#4|)) 65) ((|#4| |#4| |#4|) 117)) (-1401 (((-1069 |#4|) (-583 (-1069 |#4|))) 111) (((-1069 |#4|) (-1069 |#4|) (-1069 |#4|)) 48) ((|#4| (-583 |#4|)) 53) ((|#4| |#4| |#4|) 82))) +(((-838 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1401 (|#4| |#4| |#4|)) (-15 -1401 (|#4| (-583 |#4|))) (-15 -1401 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -1401 ((-1069 |#4|) (-583 (-1069 |#4|)))) (-15 -2116 (|#4| |#4| |#4|)) (-15 -2116 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2116 (|#4| (-583 |#4|)))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -838)) +((-2116 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-2116 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) (-2116 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-583 (-1069 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1069 *7)) (-5 *1 (-838 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-1401 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-1401 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4))))) +(-10 -7 (-15 -1401 (|#4| |#4| |#4|)) (-15 -1401 (|#4| (-583 |#4|))) (-15 -1401 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -1401 ((-1069 |#4|) (-583 (-1069 |#4|)))) (-15 -2116 (|#4| |#4| |#4|)) (-15 -2116 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2116 (|#4| (-583 |#4|)))) +((-2548 (((-826 (-517)) (-888)) 22) (((-826 (-517)) (-583 (-517))) 19)) (-3077 (((-826 (-517)) (-583 (-517))) 46) (((-826 (-517)) (-843)) 47)) (-2616 (((-826 (-517))) 23)) (-3275 (((-826 (-517))) 36) (((-826 (-517)) (-583 (-517))) 35)) (-3277 (((-826 (-517))) 34) (((-826 (-517)) (-583 (-517))) 33)) (-3399 (((-826 (-517))) 32) (((-826 (-517)) (-583 (-517))) 31)) (-1952 (((-826 (-517))) 30) (((-826 (-517)) (-583 (-517))) 29)) (-1925 (((-826 (-517))) 28) (((-826 (-517)) (-583 (-517))) 27)) (-3745 (((-826 (-517))) 38) (((-826 (-517)) (-583 (-517))) 37)) (-2519 (((-826 (-517)) (-583 (-517))) 50) (((-826 (-517)) (-843)) 51)) (-2340 (((-826 (-517)) (-583 (-517))) 48) (((-826 (-517)) (-843)) 49)) (-1744 (((-826 (-517)) (-583 (-517))) 43) (((-826 (-517)) (-843)) 45)) (-3436 (((-826 (-517)) (-583 (-843))) 40))) +(((-839) (-10 -7 (-15 -3077 ((-826 (-517)) (-843))) (-15 -3077 ((-826 (-517)) (-583 (-517)))) (-15 -1744 ((-826 (-517)) (-843))) (-15 -1744 ((-826 (-517)) (-583 (-517)))) (-15 -3436 ((-826 (-517)) (-583 (-843)))) (-15 -2340 ((-826 (-517)) (-843))) (-15 -2340 ((-826 (-517)) (-583 (-517)))) (-15 -2519 ((-826 (-517)) (-843))) (-15 -2519 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)))) (-15 -1952 ((-826 (-517)) (-583 (-517)))) (-15 -1952 ((-826 (-517)))) (-15 -3399 ((-826 (-517)) (-583 (-517)))) (-15 -3399 ((-826 (-517)))) (-15 -3277 ((-826 (-517)) (-583 (-517)))) (-15 -3277 ((-826 (-517)))) (-15 -3275 ((-826 (-517)) (-583 (-517)))) (-15 -3275 ((-826 (-517)))) (-15 -3745 ((-826 (-517)) (-583 (-517)))) (-15 -3745 ((-826 (-517)))) (-15 -2616 ((-826 (-517)))) (-15 -2548 ((-826 (-517)) (-583 (-517)))) (-15 -2548 ((-826 (-517)) (-888))))) (T -839)) +((-2548 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2616 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3745 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3275 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3277 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3399 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1952 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1925 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(-10 -7 (-15 -3077 ((-826 (-517)) (-843))) (-15 -3077 ((-826 (-517)) (-583 (-517)))) (-15 -1744 ((-826 (-517)) (-843))) (-15 -1744 ((-826 (-517)) (-583 (-517)))) (-15 -3436 ((-826 (-517)) (-583 (-843)))) (-15 -2340 ((-826 (-517)) (-843))) (-15 -2340 ((-826 (-517)) (-583 (-517)))) (-15 -2519 ((-826 (-517)) (-843))) (-15 -2519 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)))) (-15 -1952 ((-826 (-517)) (-583 (-517)))) (-15 -1952 ((-826 (-517)))) (-15 -3399 ((-826 (-517)) (-583 (-517)))) (-15 -3399 ((-826 (-517)))) (-15 -3277 ((-826 (-517)) (-583 (-517)))) (-15 -3277 ((-826 (-517)))) (-15 -3275 ((-826 (-517)) (-583 (-517)))) (-15 -3275 ((-826 (-517)))) (-15 -3745 ((-826 (-517)) (-583 (-517)))) (-15 -3745 ((-826 (-517)))) (-15 -2616 ((-826 (-517)))) (-15 -2548 ((-826 (-517)) (-583 (-517)))) (-15 -2548 ((-826 (-517)) (-888)))) +((-3833 (((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073))) 10)) (-3161 (((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073))) 9))) +(((-840 |#1|) (-10 -7 (-15 -3161 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3833 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073))))) (-421)) (T -840)) +((-3833 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4)))) (-3161 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4))))) +(-10 -7 (-15 -3161 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3833 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073))))) +((-2256 (((-286 |#1|) (-446)) 15))) +(((-841 |#1|) (-10 -7 (-15 -2256 ((-286 |#1|) (-446)))) (-13 (-779) (-509))) (T -841)) +((-2256 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-841 *4)) (-4 *4 (-13 (-779) (-509)))))) +(-10 -7 (-15 -2256 ((-286 |#1|) (-446)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-842) (-1184)) (T -842)) +((-1780 (*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-2 (|:| -1931 (-583 *1)) (|:| -3220 *1))) (-5 *3 (-583 *1)))) (-1737 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-842))))) +(-13 (-421) (-10 -8 (-15 -1780 ((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $))) (-15 -1737 ((-3 (-583 $) "failed") (-583 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1401 (($ $ $) NIL)) (-2256 (((-787) $) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2409 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ $ $) NIL))) +(((-843) (-13 (-25) (-779) (-659) (-10 -8 (-15 -1401 ($ $ $)) (-6 (-4182 "*"))))) (T -843)) +((-1401 (*1 *1 *1 *1) (-5 *1 (-843)))) +(-13 (-25) (-779) (-659) (-10 -8 (-15 -1401 ($ $ $)) (-6 (-4182 "*")))) +((-4082 ((|#2| (-583 |#1|) (-583 |#1|)) 22))) +(((-844 |#1| |#2|) (-10 -7 (-15 -4082 (|#2| (-583 |#1|) (-583 |#1|)))) (-333) (-1130 |#1|)) (T -844)) +((-4082 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1130 *4)) (-5 *1 (-844 *4 *2))))) +(-10 -7 (-15 -4082 (|#2| (-583 |#1|) (-583 |#1|)))) +((-4058 (((-1069 |#2|) (-583 |#2|) (-583 |#2|)) 17) (((-1127 |#1| |#2|) (-1127 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13))) +(((-845 |#1| |#2|) (-10 -7 (-15 -4058 ((-1127 |#1| |#2|) (-1127 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -4058 ((-1069 |#2|) (-583 |#2|) (-583 |#2|)))) (-1073) (-333)) (T -845)) +((-4058 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1069 *5)) (-5 *1 (-845 *4 *5)) (-14 *4 (-1073)))) (-4058 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1127 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1073)) (-4 *5 (-333)) (-5 *1 (-845 *4 *5))))) +(-10 -7 (-15 -4058 ((-1127 |#1| |#2|) (-1127 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -4058 ((-1069 |#2|) (-583 |#2|) (-583 |#2|)))) +((-3149 (((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056)) 137)) (-3214 ((|#4| |#4|) 153)) (-1798 (((-583 (-377 (-874 |#1|))) (-583 (-1073))) 116)) (-2628 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517)) 73)) (-3758 (((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-583 |#4|)) 57)) (-3938 (((-623 |#4|) (-623 |#4|) (-583 |#4|)) 53)) (-3461 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056)) 149)) (-1246 (((-517) (-623 |#4|) (-843) (-1056)) 130) (((-517) (-623 |#4|) (-583 (-1073)) (-843) (-1056)) 129) (((-517) (-623 |#4|) (-583 |#4|) (-843) (-1056)) 128) (((-517) (-623 |#4|) (-1056)) 125) (((-517) (-623 |#4|) (-583 (-1073)) (-1056)) 124) (((-517) (-623 |#4|) (-583 |#4|) (-1056)) 123) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843)) 122) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)) (-843)) 121) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843)) 120) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|)) 118) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073))) 117) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|)) 114)) (-1301 ((|#4| (-874 |#1|)) 66)) (-1957 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 150)) (-2465 (((-583 (-583 (-517))) (-517) (-517)) 127)) (-3740 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 85)) (-1376 (((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 83)) (-2534 (((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 82)) (-3489 (((-107) (-583 (-874 |#1|))) 17) (((-107) (-583 |#4|)) 13)) (-3787 (((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 69)) (-2440 (((-583 |#4|) |#4|) 47)) (-3240 (((-583 (-377 (-874 |#1|))) (-583 |#4|)) 112) (((-623 (-377 (-874 |#1|))) (-623 |#4|)) 54) (((-377 (-874 |#1|)) |#4|) 109)) (-2739 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1056) (-517)) 89)) (-4093 (((-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703)) 81)) (-3478 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703)) 98)) (-2006 (((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| -2790 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) 46))) +(((-846 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-843) (-1056))) (-15 -3149 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -3461 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -2739 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1056) (-517))) (-15 -3240 ((-377 (-874 |#1|)) |#4|)) (-15 -3240 ((-623 (-377 (-874 |#1|))) (-623 |#4|))) (-15 -3240 ((-583 (-377 (-874 |#1|))) (-583 |#4|))) (-15 -1798 ((-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1301 (|#4| (-874 |#1|))) (-15 -3787 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -4093 ((-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -3758 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-583 |#4|))) (-15 -2006 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| -2790 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -2440 ((-583 |#4|) |#4|)) (-15 -2534 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -1376 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -3740 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2465 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1957 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3478 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3938 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2628 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3214 (|#4| |#4|)) (-15 -3489 ((-107) (-583 |#4|))) (-15 -3489 ((-107) (-583 (-874 |#1|))))) (-13 (-278) (-134)) (-13 (-779) (-558 (-1073))) (-725) (-871 |#1| |#3| |#2|)) (T -846)) +((-3489 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)))) (-3214 (*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *2)) (-4 *2 (-871 *3 *5 *4)))) (-2628 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-874 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-871 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1073)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-874 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *9)))) (|:| -1753 (-583 (-1153 (-377 (-874 *9))))))))) (-5 *1 (-846 *9 *10 *11 *12)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))) (-3478 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *5 *6 *7 *8)))) (-2465 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *6 *5)))) (-3740 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-871 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *6)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))) (-2440 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2790 (-623 (-377 (-874 *4)))) (|:| |vec| (-583 (-377 (-874 *4)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3758 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-871 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))) (-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-703)))) (-3787 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-4 *7 (-871 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1301 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-871 *4 *6 *5)) (-5 *1 (-846 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) (-3240 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-377 (-874 *4))) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) (-2739 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-874 *8)))) (-5 *5 (-703)) (-5 *6 (-1056)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-871 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1073)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-874 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *8)))) (|:| -1753 (-583 (-1153 (-377 (-874 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-846 *8 *9 *10 *11)) (-5 *7 (-517)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *4 (-1056)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-871 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-843)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) (-1246 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1056)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-843)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-1246 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1073))) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) +(-10 -7 (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-843) (-1056))) (-15 -3149 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -3461 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -2739 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1056) (-517))) (-15 -3240 ((-377 (-874 |#1|)) |#4|)) (-15 -3240 ((-623 (-377 (-874 |#1|))) (-623 |#4|))) (-15 -3240 ((-583 (-377 (-874 |#1|))) (-583 |#4|))) (-15 -1798 ((-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1301 (|#4| (-874 |#1|))) (-15 -3787 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -4093 ((-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -3758 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-583 |#4|))) (-15 -2006 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| -2790 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -2440 ((-583 |#4|) |#4|)) (-15 -2534 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -1376 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -3740 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2465 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1957 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3478 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3938 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2628 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3214 (|#4| |#4|)) (-15 -3489 ((-107) (-583 |#4|))) (-15 -3489 ((-107) (-583 (-874 |#1|))))) +((-2059 (((-849) |#1| (-1073)) 16) (((-849) |#1| (-1073) (-998 (-199))) 20)) (-3982 (((-849) |#1| |#1| (-1073) (-998 (-199))) 18) (((-849) |#1| (-1073) (-998 (-199))) 14))) +(((-847 |#1|) (-10 -7 (-15 -3982 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -3982 ((-849) |#1| |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073)))) (-558 (-493))) (T -847)) +((-2059 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-2059 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-3982 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-3982 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493)))))) +(-10 -7 (-15 -3982 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -3982 ((-849) |#1| |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073)))) +((-4132 (($ $ (-998 (-199)) (-998 (-199)) (-998 (-199))) 68)) (-1422 (((-998 (-199)) $) 40)) (-1408 (((-998 (-199)) $) 39)) (-1397 (((-998 (-199)) $) 38)) (-3633 (((-583 (-583 (-199))) $) 43)) (-1557 (((-998 (-199)) $) 41)) (-1353 (((-517) (-517)) 32)) (-1276 (((-517) (-517)) 28)) (-1305 (((-517) (-517)) 30)) (-4050 (((-107) (-107)) 35)) (-2152 (((-517)) 31)) (-3437 (($ $ (-998 (-199))) 71) (($ $) 72)) (-3427 (($ (-1 (-865 (-199)) (-199)) (-998 (-199))) 76) (($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 77)) (-3982 (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199))) 79) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 80) (($ $ (-998 (-199))) 74)) (-3973 (((-517)) 36)) (-3974 (((-517)) 27)) (-3496 (((-517)) 29)) (-2602 (((-583 (-583 (-865 (-199)))) $) 92)) (-3286 (((-107) (-107)) 37)) (-2256 (((-787) $) 91)) (-2215 (((-107)) 34))) +(((-848) (-13 (-891) (-10 -8 (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -3633 ((-583 (-583 (-199))) $)) (-15 -3974 ((-517))) (-15 -1276 ((-517) (-517))) (-15 -3496 ((-517))) (-15 -1305 ((-517) (-517))) (-15 -2152 ((-517))) (-15 -1353 ((-517) (-517))) (-15 -2215 ((-107))) (-15 -4050 ((-107) (-107))) (-15 -3973 ((-517))) (-15 -3286 ((-107) (-107)))))) (T -848)) +((-3427 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3427 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3982 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3982 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-4132 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-3437 (*1 *1 *1) (-5 *1 (-848))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-848)))) (-3974 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1276 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-3496 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1305 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-2152 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-2215 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))) (-4050 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))) (-3973 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848))))) +(-13 (-891) (-10 -8 (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -3633 ((-583 (-583 (-199))) $)) (-15 -3974 ((-517))) (-15 -1276 ((-517) (-517))) (-15 -3496 ((-517))) (-15 -1305 ((-517) (-517))) (-15 -2152 ((-517))) (-15 -1353 ((-517) (-517))) (-15 -2215 ((-107))) (-15 -4050 ((-107) (-107))) (-15 -3973 ((-517))) (-15 -3286 ((-107) (-107))))) +((-4132 (($ $ (-998 (-199))) 69) (($ $ (-998 (-199)) (-998 (-199))) 70)) (-1408 (((-998 (-199)) $) 43)) (-1397 (((-998 (-199)) $) 42)) (-1557 (((-998 (-199)) $) 44)) (-2675 (((-517) (-517)) 36)) (-3223 (((-517) (-517)) 32)) (-1687 (((-517) (-517)) 34)) (-2471 (((-107) (-107)) 38)) (-3553 (((-517)) 35)) (-3437 (($ $ (-998 (-199))) 73) (($ $) 74)) (-3427 (($ (-1 (-865 (-199)) (-199)) (-998 (-199))) 83) (($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 84)) (-2059 (($ (-1 (-199) (-199)) (-998 (-199))) 91) (($ (-1 (-199) (-199))) 94)) (-3982 (($ (-1 (-199) (-199)) (-998 (-199))) 78) (($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199))) 79) (($ (-583 (-1 (-199) (-199))) (-998 (-199))) 86) (($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199))) 87) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199))) 80) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 81) (($ $ (-998 (-199))) 75)) (-2094 (((-107) $) 39)) (-2113 (((-517)) 40)) (-2761 (((-517)) 31)) (-4056 (((-517)) 33)) (-2602 (((-583 (-583 (-865 (-199)))) $) 22)) (-1424 (((-107) (-107)) 41)) (-2256 (((-787) $) 105)) (-2798 (((-107)) 37))) +(((-849) (-13 (-876) (-10 -8 (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -2094 ((-107) $)) (-15 -4132 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -2761 ((-517))) (-15 -3223 ((-517) (-517))) (-15 -4056 ((-517))) (-15 -1687 ((-517) (-517))) (-15 -3553 ((-517))) (-15 -2675 ((-517) (-517))) (-15 -2798 ((-107))) (-15 -2471 ((-107) (-107))) (-15 -2113 ((-517))) (-15 -1424 ((-107) (-107)))))) (T -849)) +((-3982 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3427 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3427 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-2059 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-4132 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-4132 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-3437 (*1 *1 *1) (-5 *1 (-849))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-2761 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3223 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-4056 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1687 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3553 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2798 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2113 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1424 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849))))) +(-13 (-876) (-10 -8 (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -2094 ((-107) $)) (-15 -4132 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -2761 ((-517))) (-15 -3223 ((-517) (-517))) (-15 -4056 ((-517))) (-15 -1687 ((-517) (-517))) (-15 -3553 ((-517))) (-15 -2675 ((-517) (-517))) (-15 -2798 ((-107))) (-15 -2471 ((-107) (-107))) (-15 -2113 ((-517))) (-15 -1424 ((-107) (-107))))) +((-3244 (((-583 (-998 (-199))) (-583 (-583 (-865 (-199))))) 23))) +(((-850) (-10 -7 (-15 -3244 ((-583 (-998 (-199))) (-583 (-583 (-865 (-199)))))))) (T -850)) +((-3244 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-998 (-199)))) (-5 *1 (-850))))) +(-10 -7 (-15 -3244 ((-583 (-998 (-199))) (-583 (-583 (-865 (-199))))))) +((-2167 ((|#2| |#2|) 25)) (-3751 ((|#2| |#2|) 26)) (-1619 ((|#2| |#2|) 24)) (-2107 ((|#2| |#2| (-1056)) 23))) +(((-851 |#1| |#2|) (-10 -7 (-15 -2107 (|#2| |#2| (-1056))) (-15 -1619 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -3751 (|#2| |#2|))) (-779) (-400 |#1|)) (T -851)) +((-3751 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-2167 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-2107 (*1 *2 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-779)) (-5 *1 (-851 *4 *2)) (-4 *2 (-400 *4))))) +(-10 -7 (-15 -2107 (|#2| |#2| (-1056))) (-15 -1619 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -3751 (|#2| |#2|))) +((-2167 (((-286 (-517)) (-1073)) 15)) (-3751 (((-286 (-517)) (-1073)) 13)) (-1619 (((-286 (-517)) (-1073)) 11)) (-2107 (((-286 (-517)) (-1073) (-1056)) 18))) +(((-852) (-10 -7 (-15 -2107 ((-286 (-517)) (-1073) (-1056))) (-15 -1619 ((-286 (-517)) (-1073))) (-15 -2167 ((-286 (-517)) (-1073))) (-15 -3751 ((-286 (-517)) (-1073))))) (T -852)) +((-3751 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1056)) (-5 *2 (-286 (-517))) (-5 *1 (-852))))) +(-10 -7 (-15 -2107 ((-286 (-517)) (-1073) (-1056))) (-15 -1619 ((-286 (-517)) (-1073))) (-15 -2167 ((-286 (-517)) (-1073))) (-15 -3751 ((-286 (-517)) (-1073)))) +((-4057 (((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|)) 24)) (-1216 (((-1 (-107) |#2|) (-1 (-107) |#3|)) 12))) +(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -1216 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -4057 ((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-808 |#1|) (-13 (-1003) (-952 |#2|))) (T -853)) +((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-952 *3))) (-4 *3 (-808 *5)) (-5 *1 (-853 *5 *3 *6)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1003) (-952 *5))) (-4 *5 (-808 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-853 *4 *5 *6))))) +(-10 -7 (-15 -1216 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -4057 ((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|)))) +((-4057 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 29))) +(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-13 (-509) (-779) (-808 |#1|)) (-13 (-400 |#2|) (-558 (-814 |#1|)) (-808 |#1|) (-952 (-556 $)))) (T -854)) +((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-400 *6) (-558 *4) (-808 *5) (-952 (-556 $)))) (-5 *4 (-814 *5)) (-4 *6 (-13 (-509) (-779) (-808 *5))) (-5 *1 (-854 *5 *6 *3))))) +(-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) +((-4057 (((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|)) 12))) +(((-855 |#1|) (-10 -7 (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|)))) (-502)) (T -855)) +((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 (-517) *3)) (-5 *4 (-814 (-517))) (-4 *3 (-502)) (-5 *1 (-855 *3))))) +(-10 -7 (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|)))) +((-4057 (((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|)) 52))) +(((-856 |#1| |#2|) (-10 -7 (-15 -4057 ((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|)))) (-1003) (-13 (-779) (-952 (-556 $)) (-558 (-814 |#1|)) (-808 |#1|))) (T -856)) +((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1003)) (-4 *6 (-13 (-779) (-952 (-556 $)) (-558 *4) (-808 *5))) (-5 *4 (-814 *5)) (-5 *1 (-856 *5 *6))))) +(-10 -7 (-15 -4057 ((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|)))) +((-4057 (((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|)) 14))) +(((-857 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|)))) (-1003) (-808 |#1|) (-603 |#2|)) (T -857)) +((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *5 *6 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-4 *3 (-603 *6)) (-5 *1 (-857 *5 *6 *3))))) +(-10 -7 (-15 -4057 ((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|)))) +((-4057 (((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|)) 17 (|has| |#3| (-808 |#1|))) (((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|))) 16))) +(((-858 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|)))) (IF (|has| |#3| (-808 |#1|)) (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|))) |noBranch|)) (-1003) (-725) (-779) (-13 (-961) (-779) (-808 |#1|)) (-13 (-871 |#4| |#2| |#3|) (-558 (-814 |#1|)))) (T -858)) +((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-871 *8 *6 *7) (-558 *4))) (-5 *4 (-814 *5)) (-4 *7 (-808 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-961) (-779) (-808 *5))) (-5 *1 (-858 *5 *6 *7 *8 *3)))) (-4057 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-811 *6 *3) *8 (-814 *6) (-811 *6 *3))) (-4 *8 (-779)) (-5 *2 (-811 *6 *3)) (-5 *4 (-814 *6)) (-4 *6 (-1003)) (-4 *3 (-13 (-871 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-961) (-779) (-808 *6))) (-5 *1 (-858 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|)))) (IF (|has| |#3| (-808 |#1|)) (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|))) |noBranch|)) +((-3820 ((|#2| |#2| (-583 (-1 (-107) |#3|))) 11) ((|#2| |#2| (-1 (-107) |#3|)) 12))) +(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -3820 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3820 (|#2| |#2| (-583 (-1 (-107) |#3|))))) (-779) (-400 |#1|) (-1108)) (T -859)) +((-3820 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4))))) +(-10 -7 (-15 -3820 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3820 (|#2| |#2| (-583 (-1 (-107) |#3|))))) +((-3820 (((-286 (-517)) (-1073) (-583 (-1 (-107) |#1|))) 16) (((-286 (-517)) (-1073) (-1 (-107) |#1|)) 13))) +(((-860 |#1|) (-10 -7 (-15 -3820 ((-286 (-517)) (-1073) (-1 (-107) |#1|))) (-15 -3820 ((-286 (-517)) (-1073) (-583 (-1 (-107) |#1|))))) (-1108)) (T -860)) +((-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5))))) +(-10 -7 (-15 -3820 ((-286 (-517)) (-1073) (-1 (-107) |#1|))) (-15 -3820 ((-286 (-517)) (-1073) (-583 (-1 (-107) |#1|))))) +((-4057 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 25))) +(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-13 (-509) (-808 |#1|) (-558 (-814 |#1|))) (-909 |#2|)) (T -861)) +((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-909 *6)) (-4 *6 (-13 (-509) (-808 *5) (-558 *4))) (-5 *4 (-814 *5)) (-5 *1 (-861 *5 *6 *3))))) +(-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) +((-4057 (((-811 |#1| (-1073)) (-1073) (-814 |#1|) (-811 |#1| (-1073))) 17))) +(((-862 |#1|) (-10 -7 (-15 -4057 ((-811 |#1| (-1073)) (-1073) (-814 |#1|) (-811 |#1| (-1073))))) (-1003)) (T -862)) +((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 (-1073))) (-5 *3 (-1073)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *1 (-862 *5))))) +(-10 -7 (-15 -4057 ((-811 |#1| (-1073)) (-1073) (-814 |#1|) (-811 |#1| (-1073))))) +((-3906 (((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) 33)) (-4057 (((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) 32))) +(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-15 -3906 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))) (-1003) (-13 (-961) (-779)) (-13 (-961) (-558 (-814 |#1|)) (-952 |#2|))) (T -863)) +((-3906 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-814 *6))) (-5 *5 (-1 (-811 *6 *8) *8 (-814 *6) (-811 *6 *8))) (-4 *6 (-1003)) (-4 *8 (-13 (-961) (-558 (-814 *6)) (-952 *7))) (-5 *2 (-811 *6 *8)) (-4 *7 (-13 (-961) (-779))) (-5 *1 (-863 *6 *7 *8)))) (-4057 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-814 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-811 *7 *9) *9 (-814 *7) (-811 *7 *9))) (-4 *7 (-1003)) (-4 *9 (-13 (-961) (-558 (-814 *7)) (-952 *8))) (-5 *2 (-811 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-961) (-779))) (-5 *1 (-863 *7 *8 *9))))) +(-10 -7 (-15 -4057 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-15 -3906 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))) +((-3357 (((-1069 (-377 (-517))) (-517)) 61)) (-2313 (((-1069 (-517)) (-517)) 64)) (-3682 (((-1069 (-517)) (-517)) 58)) (-1982 (((-517) (-1069 (-517))) 53)) (-3747 (((-1069 (-377 (-517))) (-517)) 47)) (-2765 (((-1069 (-517)) (-517)) 36)) (-2598 (((-1069 (-517)) (-517)) 66)) (-1342 (((-1069 (-517)) (-517)) 65)) (-1781 (((-1069 (-377 (-517))) (-517)) 49))) +(((-864) (-10 -7 (-15 -1781 ((-1069 (-377 (-517))) (-517))) (-15 -1342 ((-1069 (-517)) (-517))) (-15 -2598 ((-1069 (-517)) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3747 ((-1069 (-377 (-517))) (-517))) (-15 -1982 ((-517) (-1069 (-517)))) (-15 -3682 ((-1069 (-517)) (-517))) (-15 -2313 ((-1069 (-517)) (-517))) (-15 -3357 ((-1069 (-377 (-517))) (-517))))) (T -864)) +((-3357 (*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2313 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3682 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-517)) (-5 *1 (-864)))) (-3747 (*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2765 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2598 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-1342 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-1781 (*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517))))) +(-10 -7 (-15 -1781 ((-1069 (-377 (-517))) (-517))) (-15 -1342 ((-1069 (-517)) (-517))) (-15 -2598 ((-1069 (-517)) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3747 ((-1069 (-377 (-517))) (-517))) (-15 -1982 ((-517) (-1069 (-517)))) (-15 -3682 ((-1069 (-517)) (-517))) (-15 -2313 ((-1069 (-517)) (-517))) (-15 -3357 ((-1069 (-377 (-517))) (-517)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703)) NIL (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-2889 (($ (-583 |#1|)) 13)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) 8)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 10 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1292 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3847 (((-107) $ (-703)) NIL)) (-2195 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-1672 (($ $ (-583 |#1|)) 24)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 18) (($ $ (-1121 (-517))) NIL)) (-3501 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3141 (((-843) $) 16)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2862 (($ $ $) 22)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 17)) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1642 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2296 (((-703) $) 14 (|has| $ (-6 -4180))))) +(((-865 |#1|) (-897 |#1|) (-961)) (T -865)) +NIL +(-897 |#1|) +((-2753 (((-449 |#1| |#2|) (-874 |#2|)) 17)) (-4024 (((-221 |#1| |#2|) (-874 |#2|)) 29)) (-3156 (((-874 |#2|) (-449 |#1| |#2|)) 22)) (-3241 (((-221 |#1| |#2|) (-449 |#1| |#2|)) 53)) (-3256 (((-874 |#2|) (-221 |#1| |#2|)) 26)) (-4104 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 44))) +(((-866 |#1| |#2|) (-10 -7 (-15 -4104 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -3241 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2753 ((-449 |#1| |#2|) (-874 |#2|))) (-15 -3156 ((-874 |#2|) (-449 |#1| |#2|))) (-15 -3256 ((-874 |#2|) (-221 |#1| |#2|))) (-15 -4024 ((-221 |#1| |#2|) (-874 |#2|)))) (-583 (-1073)) (-961)) (T -866)) +((-4024 (*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073))))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073))))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5))))) +(-10 -7 (-15 -4104 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -3241 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2753 ((-449 |#1| |#2|) (-874 |#2|))) (-15 -3156 ((-874 |#2|) (-449 |#1| |#2|))) (-15 -3256 ((-874 |#2|) (-221 |#1| |#2|))) (-15 -4024 ((-221 |#1| |#2|) (-874 |#2|)))) +((-1945 (((-583 |#2|) |#2| |#2|) 10)) (-1273 (((-703) (-583 |#1|)) 37 (|has| |#1| (-777)))) (-4002 (((-583 |#2|) |#2|) 11)) (-2026 (((-703) (-583 |#1|) (-517) (-517)) 39 (|has| |#1| (-777)))) (-3495 ((|#1| |#2|) 32 (|has| |#1| (-777))))) +(((-867 |#1| |#2|) (-10 -7 (-15 -1945 ((-583 |#2|) |#2| |#2|)) (-15 -4002 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -3495 (|#1| |#2|)) (-15 -1273 ((-703) (-583 |#1|))) (-15 -2026 ((-703) (-583 |#1|) (-517) (-517)))) |noBranch|)) (-333) (-1130 |#1|)) (T -867)) +((-2026 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *5 *6)) (-4 *6 (-1130 *5)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1130 *4)))) (-3495 (*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1130 *2)))) (-4002 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4)))) (-1945 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4))))) +(-10 -7 (-15 -1945 ((-583 |#2|) |#2| |#2|)) (-15 -4002 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -3495 (|#1| |#2|)) (-15 -1273 ((-703) (-583 |#1|))) (-15 -2026 ((-703) (-583 |#1|) (-517) (-517)))) |noBranch|)) +((-1893 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 18))) +(((-868 |#1| |#2|) (-10 -7 (-15 -1893 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-961) (-961)) (T -868)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-874 *6)) (-5 *1 (-868 *5 *6))))) +(-10 -7 (-15 -1893 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) +((-2352 (((-1127 |#1| (-874 |#2|)) (-874 |#2|) (-1149 |#1|)) 18))) +(((-869 |#1| |#2|) (-10 -7 (-15 -2352 ((-1127 |#1| (-874 |#2|)) (-874 |#2|) (-1149 |#1|)))) (-1073) (-961)) (T -869)) +((-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-1149 *5)) (-14 *5 (-1073)) (-4 *6 (-961)) (-5 *2 (-1127 *5 (-874 *6))) (-5 *1 (-869 *5 *6)) (-5 *3 (-874 *6))))) +(-10 -7 (-15 -2352 ((-1127 |#1| (-874 |#2|)) (-874 |#2|) (-1149 |#1|)))) +((-1369 (((-703) $) 69) (((-703) $ (-583 |#4|)) 72)) (-2535 (($ $) 169)) (-2759 (((-388 $) $) 161)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 112)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) 58)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) 57)) (-3388 (($ $ $ |#4|) 74)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 102) (((-623 |#2|) (-623 $)) 95)) (-3534 (($ $) 176) (($ $ |#4|) 179)) (-1201 (((-583 $) $) 61)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 194) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 188)) (-4094 (((-583 $) $) 27)) (-1339 (($ |#2| |#3|) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) 55)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#4|) 158)) (-3703 (((-3 (-583 $) "failed") $) 41)) (-3401 (((-3 (-583 $) "failed") $) 30)) (-3174 (((-3 (-2 (|:| |var| |#4|) (|:| -2077 (-703))) "failed") $) 45)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 105)) (-2561 (((-388 (-1069 $)) (-1069 $)) 118)) (-2209 (((-388 (-1069 $)) (-1069 $)) 116)) (-3755 (((-388 $) $) 136)) (-2051 (($ $ (-583 (-265 $))) 20) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL)) (-3010 (($ $ |#4|) 76)) (-3645 (((-814 (-349)) $) 208) (((-814 (-517)) $) 201) (((-493) $) 216)) (-3266 ((|#2| $) NIL) (($ $ |#4|) 171)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 150)) (-2720 ((|#2| $ |#3|) NIL) (($ $ |#4| (-703)) 50) (($ $ (-583 |#4|) (-583 (-703))) 53)) (-1328 (((-3 $ "failed") $) 152)) (-1572 (((-107) $ $) 182))) +(((-870 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -3534 (|#1| |#1| |#4|)) (-15 -3266 (|#1| |#1| |#4|)) (-15 -3010 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#1| |#4|)) (-15 -1201 ((-583 |#1|) |#1|)) (-15 -1369 ((-703) |#1| (-583 |#4|))) (-15 -1369 ((-703) |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| |#4|) (|:| -2077 (-703))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1339 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1339 (|#1| |#1| |#4| (-703))) (-15 -2711 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -4094 ((-583 |#1|) |#1|)) (-15 -2720 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2720 (|#1| |#1| |#4| (-703))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1339 (|#1| |#2| |#3|)) (-15 -2720 (|#2| |#1| |#3|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3534 (|#1| |#1|))) (-871 |#2| |#3| |#4|) (-961) (-725) (-779)) (T -870)) +NIL +(-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -3534 (|#1| |#1| |#4|)) (-15 -3266 (|#1| |#1| |#4|)) (-15 -3010 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#1| |#4|)) (-15 -1201 ((-583 |#1|) |#1|)) (-15 -1369 ((-703) |#1| (-583 |#4|))) (-15 -1369 ((-703) |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| |#4|) (|:| -2077 (-703))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1339 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1339 (|#1| |#1| |#4| (-703))) (-15 -2711 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -4094 ((-583 |#1|) |#1|)) (-15 -2720 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2720 (|#1| |#1| |#4| (-703))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1339 (|#1| |#2| |#3|)) (-15 -2720 (|#2| |#1| |#3|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3534 (|#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#3|) $) 110)) (-2352 (((-1069 $) $ |#3|) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136)) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135)) (-3388 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-1212 (($ $) 154)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-1436 (($ $ |#1| |#2| $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1350 (($ (-1069 |#1|) |#3|) 117) (($ (-1069 $) |#3|) 116)) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 120)) (-2349 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 |#2| |#2|) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-1409 (((-3 |#3| "failed") $) 123)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3985 (((-1056) $) 9)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) 113)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3010 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-3127 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-3688 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-509))) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-871 |#1| |#2| |#3|) (-1184) (-961) (-725) (-779)) (T -871)) +((-3534 (*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3688 (*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3688 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) (-4094 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-2352 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *3)))) (-1409 (*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2349 (*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-2349 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-2711 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-871 *4 *5 *3)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *4)) (-4 *4 (-961)) (-4 *1 (-871 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3703 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3174 (*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-703)))))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-1369 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-1201 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3388 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3010 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3266 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-3534 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-2535 (*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-2759 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-871 *3 *4 *5))))) +(-13 (-822 |t#3|) (-296 |t#1| |t#2|) (-280 $) (-478 |t#3| |t#1|) (-478 |t#3| $) (-952 |t#3|) (-347 |t#1|) (-10 -8 (-15 -3688 ((-703) $ |t#3|)) (-15 -3688 ((-583 (-703)) $ (-583 |t#3|))) (-15 -2720 ($ $ |t#3| (-703))) (-15 -2720 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -4094 ((-583 $) $)) (-15 -2352 ((-1069 $) $ |t#3|)) (-15 -2352 ((-1069 |t#1|) $)) (-15 -1409 ((-3 |t#3| "failed") $)) (-15 -2349 ((-703) $ |t#3|)) (-15 -2349 ((-583 (-703)) $ (-583 |t#3|))) (-15 -2711 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |t#3|)) (-15 -1339 ($ $ |t#3| (-703))) (-15 -1339 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -1350 ($ (-1069 |t#1|) |t#3|)) (-15 -1350 ($ (-1069 $) |t#3|)) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |var| |t#3|) (|:| -2077 (-703))) "failed") $)) (-15 -1369 ((-703) $)) (-15 -1369 ((-703) $ (-583 |t#3|))) (-15 -1364 ((-583 |t#3|) $)) (-15 -1201 ((-583 $) $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (IF (|has| |t#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-558 (-814 (-517)))) (IF (|has| |t#3| (-558 (-814 (-517)))) (-6 (-558 (-814 (-517)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-558 (-814 (-349)))) (IF (|has| |t#3| (-558 (-814 (-349)))) (-6 (-558 (-814 (-349)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-808 (-517))) (IF (|has| |t#3| (-808 (-517))) (-6 (-808 (-517))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-808 (-349))) (IF (|has| |t#3| (-808 (-349))) (-6 (-808 (-349))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -3388 ($ $ $ |t#3|)) (-15 -3010 ($ $ |t#3|))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-6 (-421)) (-15 -3266 ($ $ |t#3|)) (-15 -3534 ($ $)) (-15 -3534 ($ $ |t#3|)) (-15 -2759 ((-388 $) $)) (-15 -2535 ($ $))) |noBranch|) (IF (|has| |t#1| (-6 -4178)) (-6 -4178) |noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) |has| |#1| (-831))) +((-1364 (((-583 |#2|) |#5|) 36)) (-2352 (((-1069 |#5|) |#5| |#2| (-1069 |#5|)) 23) (((-377 (-1069 |#5|)) |#5| |#2|) 16)) (-1350 ((|#5| (-377 (-1069 |#5|)) |#2|) 30)) (-1409 (((-3 |#2| "failed") |#5|) 61)) (-3703 (((-3 (-583 |#5|) "failed") |#5|) 55)) (-1735 (((-3 (-2 (|:| |val| |#5|) (|:| -2077 (-517))) "failed") |#5|) 45)) (-3401 (((-3 (-583 |#5|) "failed") |#5|) 57)) (-3174 (((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-517))) "failed") |#5|) 48))) +(((-872 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1364 ((-583 |#2|) |#5|)) (-15 -1409 ((-3 |#2| "failed") |#5|)) (-15 -2352 ((-377 (-1069 |#5|)) |#5| |#2|)) (-15 -1350 (|#5| (-377 (-1069 |#5|)) |#2|)) (-15 -2352 ((-1069 |#5|) |#5| |#2| (-1069 |#5|))) (-15 -3401 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3703 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3174 ((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-517))) "failed") |#5|)) (-15 -1735 ((-3 (-2 (|:| |val| |#5|) (|:| -2077 (-517))) "failed") |#5|))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -2256 ($ |#4|)) (-15 -1787 (|#4| $)) (-15 -1800 (|#4| $))))) (T -872)) +((-1735 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-3174 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-3703 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-3401 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-2352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-4 *7 (-871 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-5 *1 (-872 *5 *4 *6 *7 *3)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-5 *1 (-872 *5 *4 *6 *7 *2)) (-4 *7 (-871 *6 *5 *4)))) (-2352 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-377 (-1069 *3))) (-5 *1 (-872 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-1409 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-961)) (-4 *6 (-871 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-872 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *6)) (-15 -1787 (*6 $)) (-15 -1800 (*6 $))))))) (-1364 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $)))))))) +(-10 -7 (-15 -1364 ((-583 |#2|) |#5|)) (-15 -1409 ((-3 |#2| "failed") |#5|)) (-15 -2352 ((-377 (-1069 |#5|)) |#5| |#2|)) (-15 -1350 (|#5| (-377 (-1069 |#5|)) |#2|)) (-15 -2352 ((-1069 |#5|) |#5| |#2| (-1069 |#5|))) (-15 -3401 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3703 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3174 ((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-517))) "failed") |#5|)) (-15 -1735 ((-3 (-2 (|:| |val| |#5|) (|:| -2077 (-517))) "failed") |#5|))) +((-1893 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) +(((-873 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1893 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (T -873)) +((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *6 (-725)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-873 *6 *7 *8 *5 *2)) (-4 *5 (-871 *8 *6 *7))))) +(-10 -7 (-15 -1893 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-1073)) $) 15)) (-2352 (((-1069 $) $ (-1073)) 21) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-1073))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 8) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-1073) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-1073) $) NIL)) (-3388 (($ $ $ (-1073)) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-1073)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 (-1073)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1073) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1073) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) (-1073)) NIL) (($ (-1069 $) (-1073)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-1073)) NIL)) (-2349 (((-489 (-1073)) $) NIL) (((-703) $ (-1073)) NIL) (((-583 (-703)) $ (-583 (-1073))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 (-1073)) (-489 (-1073))) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1409 (((-3 (-1073) "failed") $) 19)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-1073)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $ (-1073)) 29 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-1073) |#1|) NIL) (($ $ (-583 (-1073)) (-583 |#1|)) NIL) (($ $ (-1073) $) NIL) (($ $ (-583 (-1073)) (-583 $)) NIL)) (-3010 (($ $ (-1073)) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-3688 (((-489 (-1073)) $) NIL) (((-703) $ (-1073)) NIL) (((-583 (-703)) $ (-583 (-1073))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-1073) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-1073) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-1073) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-1073)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 25) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-1073)) 27) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-874 |#1|) (-13 (-871 |#1| (-489 (-1073)) (-1073)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1073))) |noBranch|))) (-961)) (T -874)) +((-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-874 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961))))) +(-13 (-871 |#1| (-489 (-1073)) (-1073)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1073))) |noBranch|))) +((-1434 (((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#3| (-703)) 37)) (-2315 (((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703)) 33)) (-2936 (((-2 (|:| -2077 (-703)) (|:| -1931 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)) 52)) (-3827 (((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#5| (-703)) 62 (|has| |#3| (-421))))) +(((-875 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1434 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -2315 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -3827 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |noBranch|) (-15 -2936 ((-2 (|:| -2077 (-703)) (|:| -1931 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -1787 (|#4| $)) (-15 -1800 (|#4| $)) (-15 -2256 ($ |#4|))))) (T -875)) +((-2936 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-875 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*3 $)) (-15 -1800 (*3 $)) (-15 -2256 ($ *3))))))) (-3827 (*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *3))) (-5 *1 (-875 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8))))))) (-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *9) (|:| |radicand| *9))) (-5 *1 (-875 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8))))))) (-1434 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-871 *3 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *8) (|:| |radicand| *8))) (-5 *1 (-875 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*7 $)) (-15 -1800 (*7 $)) (-15 -2256 ($ *7)))))))) +(-10 -7 (-15 -1434 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -2315 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -3827 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |noBranch|) (-15 -2936 ((-2 (|:| -2077 (-703)) (|:| -1931 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)))) +((-1408 (((-998 (-199)) $) 8)) (-1397 (((-998 (-199)) $) 9)) (-2602 (((-583 (-583 (-865 (-199)))) $) 10)) (-2256 (((-787) $) 6))) +(((-876) (-1184)) (T -876)) +((-2602 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-583 (-583 (-865 (-199))))))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199)))))) +(-13 (-557 (-787)) (-10 -8 (-15 -2602 ((-583 (-583 (-865 (-199)))) $)) (-15 -1397 ((-998 (-199)) $)) (-15 -1408 ((-998 (-199)) $)))) +(((-557 (-787)) . T)) +((-3198 (((-3 (-623 |#1|) "failed") |#2| (-843)) 14))) +(((-877 |#1| |#2|) (-10 -7 (-15 -3198 ((-3 (-623 |#1|) "failed") |#2| (-843)))) (-509) (-593 |#1|)) (T -877)) +((-3198 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-843)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-877 *5 *3)) (-4 *3 (-593 *5))))) +(-10 -7 (-15 -3198 ((-3 (-623 |#1|) "failed") |#2| (-843)))) +((-3905 (((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|) 16)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|) 18)) (-1893 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 13))) +(((-878 |#1| |#2|) (-10 -7 (-15 -3905 ((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1893 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1108) (-1108)) (T -878)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-878 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-879 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-879 *5)) (-5 *1 (-878 *6 *5))))) +(-10 -7 (-15 -3905 ((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1893 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 17 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 16 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 14)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 13)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 10 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) 12 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 11)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 15) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 8 (|has| $ (-6 -4180))))) +(((-879 |#1|) (-19 |#1|) (-1108)) (T -879)) NIL (-19 |#1|) -((-3162 (((-877 |#2|) (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|) 16)) (-3547 ((|#2| (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|) 18)) (-1212 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 13))) -(((-878 |#1| |#2|) (-10 -7 (-15 -3162 ((-877 |#2|) (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|)) (-15 -1212 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1104) (-1104)) (T -878)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-877 *6)) (-5 *1 (-878 *5 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-877 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-878 *5 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-877 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-877 *5)) (-5 *1 (-878 *6 *5))))) -(-10 -7 (-15 -3162 ((-877 |#2|) (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|)) (-15 -1212 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) -((-3028 (($ $ (-993 $)) 7) (($ $ (-1070)) 6))) -(((-879) (-1180)) (T -879)) -((-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-879)))) (-3028 (*1 *1 *1 *2) (-12 (-4 *1 (-879)) (-5 *2 (-1070))))) -(-13 (-10 -8 (-15 -3028 ($ $ (-1070))) (-15 -3028 ($ $ (-993 $))))) -((-1317 (((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070)) (-1070)) 23) (((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070))) 24) (((-2 (|:| |coef1| (-501)) (|:| |coef2| (-501)) (|:| |prim| (-1064 |#1|))) (-866 |#1|) (-1070) (-866 |#1|) (-1070)) 41))) -(((-880 |#1|) (-10 -7 (-15 -1317 ((-2 (|:| |coef1| (-501)) (|:| |coef2| (-501)) (|:| |prim| (-1064 |#1|))) (-866 |#1|) (-1070) (-866 |#1|) (-1070))) (-15 -1317 ((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -1317 ((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070)) (-1070)))) (-13 (-331) (-134))) (T -880)) -((-1317 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-5 *5 (-1070)) (-4 *6 (-13 (-331) (-134))) (-5 *2 (-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 *6))) (|:| |prim| (-1064 *6)))) (-5 *1 (-880 *6)))) (-1317 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-331) (-134))) (-5 *2 (-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 *5))) (|:| |prim| (-1064 *5)))) (-5 *1 (-880 *5)))) (-1317 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-1070)) (-4 *5 (-13 (-331) (-134))) (-5 *2 (-2 (|:| |coef1| (-501)) (|:| |coef2| (-501)) (|:| |prim| (-1064 *5)))) (-5 *1 (-880 *5))))) -(-10 -7 (-15 -1317 ((-2 (|:| |coef1| (-501)) (|:| |coef2| (-501)) (|:| |prim| (-1064 |#1|))) (-866 |#1|) (-1070) (-866 |#1|) (-1070))) (-15 -1317 ((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -1317 ((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070)) (-1070)))) -((-1923 (((-578 |#1|) |#1| |#1|) 42)) (-1628 (((-107) |#1|) 39)) (-1246 ((|#1| |#1|) 64)) (-1856 ((|#1| |#1|) 63))) -(((-881 |#1|) (-10 -7 (-15 -1628 ((-107) |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -1923 ((-578 |#1|) |#1| |#1|))) (-500)) (T -881)) -((-1923 (*1 *2 *3 *3) (-12 (-5 *2 (-578 *3)) (-5 *1 (-881 *3)) (-4 *3 (-500)))) (-1246 (*1 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-500)))) (-1856 (*1 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-500)))) (-1628 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-881 *3)) (-4 *3 (-500))))) -(-10 -7 (-15 -1628 ((-107) |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -1923 ((-578 |#1|) |#1| |#1|))) -((-3802 (((-1154) (-786)) 9))) -(((-882) (-10 -7 (-15 -3802 ((-1154) (-786))))) (T -882)) -((-3802 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-882))))) -(-10 -7 (-15 -3802 ((-1154) (-786)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-3405 (($ $ $) 63 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))) (-3177 (((-3 $ "failed") $ $) 50 (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-3796 (((-701)) 34 (-12 (|has| |#1| (-336)) (|has| |#2| (-336))))) (-3864 ((|#2| $) 21)) (-3349 ((|#1| $) 20)) (-2540 (($) NIL (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) CONST)) (-2174 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))))) (-2890 (($) NIL (-12 (|has| |#1| (-336)) (|has| |#2| (-336))))) (-1355 (((-107) $) NIL (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))))) (-4111 (($ $ $) NIL (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-1323 (($ $ $) NIL (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-1953 (($ |#1| |#2|) 19)) (-3104 (((-839) $) NIL (-12 (|has| |#1| (-336)) (|has| |#2| (-336))))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 37 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))))) (-3506 (($ (-839)) NIL (-12 (|has| |#1| (-336)) (|has| |#2| (-336))))) (-3708 (((-1018) $) NIL)) (-3097 (($ $ $) NIL (-12 (|has| |#1| (-440)) (|has| |#2| (-440))))) (-2144 (($ $ $) NIL (-12 (|has| |#1| (-440)) (|has| |#2| (-440))))) (-3691 (((-786) $) 14)) (-3948 (($ $ (-501)) NIL (-12 (|has| |#1| (-440)) (|has| |#2| (-440)))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657))))) (($ $ (-839)) NIL (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))))) (-1850 (($) 40 (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) CONST)) (-1925 (($) 24 (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))) CONST)) (-3778 (((-107) $ $) NIL (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-3768 (((-107) $ $) NIL (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-3751 (((-107) $ $) 18)) (-3773 (((-107) $ $) NIL (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-3762 (((-107) $ $) 66 (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-3803 (($ $ $) NIL (-12 (|has| |#1| (-440)) (|has| |#2| (-440))))) (-3797 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3790 (($ $ $) 43 (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (** (($ $ (-501)) NIL (-12 (|has| |#1| (-440)) (|has| |#2| (-440)))) (($ $ (-701)) 31 (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657))))) (($ $ (-839)) NIL (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))))) (* (($ (-501) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-701) $) 46 (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))) (($ (-839) $) NIL (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))) (($ $ $) 27 (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657))))))) -(((-883 |#1| |#2|) (-13 (-1001) (-10 -8 (IF (|has| |#1| (-336)) (IF (|has| |#2| (-336)) (-6 (-336)) |noBranch|) |noBranch|) (IF (|has| |#1| (-657)) (IF (|has| |#2| (-657)) (-6 (-657)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-440)) (IF (|has| |#2| (-440)) (-6 (-440)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |noBranch|) |noBranch|) (IF (|has| |#1| (-777)) (IF (|has| |#2| (-777)) (-6 (-777)) |noBranch|) |noBranch|) (-15 -1953 ($ |#1| |#2|)) (-15 -3349 (|#1| $)) (-15 -3864 (|#2| $)))) (-1001) (-1001)) (T -883)) -((-1953 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-3349 (*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1001)))) (-3864 (*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1001))))) -(-13 (-1001) (-10 -8 (IF (|has| |#1| (-336)) (IF (|has| |#2| (-336)) (-6 (-336)) |noBranch|) |noBranch|) (IF (|has| |#1| (-657)) (IF (|has| |#2| (-657)) (-6 (-657)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-440)) (IF (|has| |#2| (-440)) (-6 (-440)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |noBranch|) |noBranch|) (IF (|has| |#1| (-777)) (IF (|has| |#2| (-777)) (-6 (-777)) |noBranch|) |noBranch|) (-15 -1953 ($ |#1| |#2|)) (-15 -3349 (|#1| $)) (-15 -3864 (|#2| $)))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-2213 (($ $ $) 43)) (-3216 (($ $ $) 44)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1323 ((|#1| $) 45)) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-884 |#1|) (-1180) (-777)) (T -884)) -((-1323 (*1 *2 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777)))) (-3216 (*1 *1 *1 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777)))) (-2213 (*1 *1 *1 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4167) (-15 -1323 (|t#1| $)) (-15 -3216 ($ $ $)) (-15 -2213 ($ $ $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-1774 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|) 84)) (-1855 ((|#2| |#2| |#2|) 82)) (-2545 (((-2 (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|) 86)) (-2251 (((-2 (|:| |coef1| |#2|) (|:| -3664 |#2|)) |#2| |#2|) 88)) (-2646 (((-2 (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|) 106 (|has| |#1| (-419)))) (-3922 (((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|) 45)) (-4058 (((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|) 63)) (-3651 (((-2 (|:| |coef1| |#2|) (|:| -1749 |#1|)) |#2| |#2|) 65)) (-3211 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-3119 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701)) 70)) (-2924 (((-2 (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|) 96)) (-3218 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701)) 73)) (-4044 (((-578 (-701)) |#2| |#2|) 81)) (-3175 ((|#1| |#2| |#2|) 41)) (-2998 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|) 104 (|has| |#1| (-419)))) (-1633 ((|#1| |#2| |#2|) 102 (|has| |#1| (-419)))) (-1253 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|) 43)) (-1291 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|) 62)) (-1749 ((|#1| |#2| |#2|) 60)) (-2352 (((-2 (|:| -3189 |#1|) (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|) 35)) (-1652 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-2755 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-2019 ((|#2| |#2| |#2|) 74)) (-3582 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701)) 68)) (-3269 ((|#2| |#2| |#2| (-701)) 66)) (-3664 ((|#2| |#2| |#2|) 110 (|has| |#1| (-419)))) (-3694 (((-1148 |#2|) (-1148 |#2|) |#1|) 21)) (-2419 (((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|) 38)) (-2102 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|) 94)) (-2532 ((|#1| |#2|) 91)) (-3761 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701)) 72)) (-2980 ((|#2| |#2| |#2| (-701)) 71)) (-3222 (((-578 |#2|) |#2| |#2|) 79)) (-3446 ((|#2| |#2| |#1| |#1| (-701)) 49)) (-2224 ((|#1| |#1| |#1| (-701)) 48)) (* (((-1148 |#2|) |#1| (-1148 |#2|)) 16))) -(((-885 |#1| |#2|) (-10 -7 (-15 -1749 (|#1| |#2| |#2|)) (-15 -1291 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -4058 ((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3651 ((-2 (|:| |coef1| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3269 (|#2| |#2| |#2| (-701))) (-15 -3582 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -3119 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -2980 (|#2| |#2| |#2| (-701))) (-15 -3761 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -3218 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -2019 (|#2| |#2| |#2|)) (-15 -2755 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3211 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1855 (|#2| |#2| |#2|)) (-15 -1774 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2545 ((-2 (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2251 ((-2 (|:| |coef1| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2532 (|#1| |#2|)) (-15 -2102 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|)) (-15 -2924 ((-2 (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|)) (-15 -3222 ((-578 |#2|) |#2| |#2|)) (-15 -4044 ((-578 (-701)) |#2| |#2|)) (IF (|has| |#1| (-419)) (PROGN (-15 -1633 (|#1| |#2| |#2|)) (-15 -2998 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|)) (-15 -2646 ((-2 (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|)) (-15 -3664 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1148 |#2|) |#1| (-1148 |#2|))) (-15 -3694 ((-1148 |#2|) (-1148 |#2|) |#1|)) (-15 -2352 ((-2 (|:| -3189 |#1|) (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|)) (-15 -2419 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|)) (-15 -2224 (|#1| |#1| |#1| (-701))) (-15 -3446 (|#2| |#2| |#1| |#1| (-701))) (-15 -1652 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3175 (|#1| |#2| |#2|)) (-15 -1253 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3922 ((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|))) (-508) (-1125 |#1|)) (T -885)) -((-3922 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1253 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-3175 (*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))) (-1652 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) (-3446 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) (-2224 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *2 (-508)) (-5 *1 (-885 *2 *4)) (-4 *4 (-1125 *2)))) (-2419 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2352 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3189 *4) (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-3694 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-508)) (-5 *1 (-885 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-508)) (-5 *1 (-885 *3 *4)))) (-3664 (*1 *2 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) (-2646 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1633 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2998 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1633 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1633 (*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-4 *2 (-419)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))) (-4044 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-701))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-3222 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2532 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2102 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2532 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2532 (*1 *2 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))) (-2251 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2545 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1774 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1855 (*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) (-3211 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2755 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2019 (*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) (-3218 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))) (-3761 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))) (-2980 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-508)) (-5 *1 (-885 *4 *2)) (-4 *2 (-1125 *4)))) (-3119 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))) (-3582 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))) (-3269 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-508)) (-5 *1 (-885 *4 *2)) (-4 *2 (-1125 *4)))) (-3651 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-4058 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1291 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1749 (*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2))))) -(-10 -7 (-15 -1749 (|#1| |#2| |#2|)) (-15 -1291 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -4058 ((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3651 ((-2 (|:| |coef1| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3269 (|#2| |#2| |#2| (-701))) (-15 -3582 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -3119 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -2980 (|#2| |#2| |#2| (-701))) (-15 -3761 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -3218 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -2019 (|#2| |#2| |#2|)) (-15 -2755 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3211 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1855 (|#2| |#2| |#2|)) (-15 -1774 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2545 ((-2 (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2251 ((-2 (|:| |coef1| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2532 (|#1| |#2|)) (-15 -2102 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|)) (-15 -2924 ((-2 (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|)) (-15 -3222 ((-578 |#2|) |#2| |#2|)) (-15 -4044 ((-578 (-701)) |#2| |#2|)) (IF (|has| |#1| (-419)) (PROGN (-15 -1633 (|#1| |#2| |#2|)) (-15 -2998 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|)) (-15 -2646 ((-2 (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|)) (-15 -3664 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1148 |#2|) |#1| (-1148 |#2|))) (-15 -3694 ((-1148 |#2|) (-1148 |#2|) |#1|)) (-15 -2352 ((-2 (|:| -3189 |#1|) (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|)) (-15 -2419 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|)) (-15 -2224 (|#1| |#1| |#1| (-701))) (-15 -3446 (|#2| |#2| |#1| |#1| (-701))) (-15 -1652 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3175 (|#1| |#2| |#2|)) (-15 -1253 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3922 ((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) 26)) (-2540 (($) NIL T CONST)) (-3440 (((-578 (-578 (-501))) (-578 (-501))) 28)) (-2593 (((-501) $) 44)) (-3273 (($ (-578 (-501))) 17)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1248 (((-578 (-501)) $) 11)) (-3097 (($ $) 31)) (-3691 (((-786) $) 42) (((-578 (-501)) $) 9)) (-1850 (($) 7 T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 19)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 18)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 24) (($ (-839) $) NIL))) -(((-886) (-13 (-727) (-556 (-578 (-501))) (-10 -8 (-15 -3273 ($ (-578 (-501)))) (-15 -3440 ((-578 (-578 (-501))) (-578 (-501)))) (-15 -2593 ((-501) $)) (-15 -3097 ($ $)) (-15 -3691 ((-578 (-501)) $))))) (T -886)) -((-3273 (*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-886)))) (-3440 (*1 *2 *3) (-12 (-5 *2 (-578 (-578 (-501)))) (-5 *1 (-886)) (-5 *3 (-578 (-501))))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-886)))) (-3097 (*1 *1 *1) (-5 *1 (-886))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-886))))) -(-13 (-727) (-556 (-578 (-501))) (-10 -8 (-15 -3273 ($ (-578 (-501)))) (-15 -3440 ((-578 (-578 (-501))) (-578 (-501)))) (-15 -2593 ((-501) $)) (-15 -3097 ($ $)) (-15 -3691 ((-578 (-501)) $)))) -((-3803 (($ $ |#2|) 30)) (-3797 (($ $) 22) (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-375 (-501)) $) 26) (($ $ (-375 (-501))) 28))) -(((-887 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) (-888 |#2| |#3| |#4|) (-959) (-722) (-777)) (T -887)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 |#3|) $) 76)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-3331 (((-107) $) 75)) (-1355 (((-107) $) 31)) (-2706 (((-107) $) 64)) (-3787 (($ |#1| |#2|) 63) (($ $ |#3| |#2|) 78) (($ $ (-578 |#3|) (-578 |#2|)) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-1201 ((|#2| $) 66)) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508))) (($ |#1|) 49 (|has| |#1| (-156)))) (-2495 ((|#1| $ |#2|) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501))))))) -(((-888 |#1| |#2| |#3|) (-1180) (-959) (-722) (-777)) (T -888)) -((-3850 (*1 *2 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *3 (-722)) (-4 *4 (-777)) (-4 *2 (-959)))) (-3845 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *4 (-777)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *2 *4)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *2 (-722)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-888 *4 *3 *2)) (-4 *4 (-959)) (-4 *3 (-722)) (-4 *2 (-777)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 *5)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-722)) (-4 *6 (-777)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *5 (-777)) (-5 *2 (-578 *5)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *5 (-777)) (-5 *2 (-107)))) (-1267 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *4 (-777))))) -(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -3787 ($ $ |t#3| |t#2|)) (-15 -3787 ($ $ (-578 |t#3|) (-578 |t#2|))) (-15 -3845 ($ $)) (-15 -3850 (|t#1| $)) (-15 -1201 (|t#2| $)) (-15 -3800 ((-578 |t#3|) $)) (-15 -3331 ((-107) $)) (-15 -1267 ($ $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-260) |has| |#1| (-508)) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3283 (((-991 (-199)) $) 8)) (-1236 (((-991 (-199)) $) 9)) (-3096 (((-991 (-199)) $) 10)) (-2616 (((-578 (-578 (-863 (-199)))) $) 11)) (-3691 (((-786) $) 6))) -(((-889) (-1180)) (T -889)) -((-2616 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-578 (-578 (-863 (-199))))))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199))))) (-1236 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199))))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199)))))) -(-13 (-555 (-786)) (-10 -8 (-15 -2616 ((-578 (-578 (-863 (-199)))) $)) (-15 -3096 ((-991 (-199)) $)) (-15 -1236 ((-991 (-199)) $)) (-15 -3283 ((-991 (-199)) $)))) -(((-555 (-786)) . T)) -((-3800 (((-578 |#4|) $) 23)) (-3482 (((-107) $) 47)) (-1189 (((-107) $) 46)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#4|) 35)) (-2772 (((-107) $) 48)) (-2606 (((-107) $ $) 54)) (-1408 (((-107) $ $) 57)) (-1662 (((-107) $) 52)) (-4110 (((-578 |#5|) (-578 |#5|) $) 89)) (-2339 (((-578 |#5|) (-578 |#5|) $) 86)) (-1852 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-3453 (((-578 |#4|) $) 27)) (-1479 (((-107) |#4| $) 29)) (-2200 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-1638 (($ $ |#4|) 32)) (-2482 (($ $ |#4|) 31)) (-3737 (($ $ |#4|) 33)) (-3751 (((-107) $ $) 39))) -(((-890 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1189 ((-107) |#1|)) (-15 -4110 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -2339 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -1852 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2200 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2772 ((-107) |#1|)) (-15 -1408 ((-107) |#1| |#1|)) (-15 -2606 ((-107) |#1| |#1|)) (-15 -1662 ((-107) |#1|)) (-15 -3482 ((-107) |#1|)) (-15 -2861 ((-2 (|:| |under| |#1|) (|:| -3383 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1638 (|#1| |#1| |#4|)) (-15 -3737 (|#1| |#1| |#4|)) (-15 -2482 (|#1| |#1| |#4|)) (-15 -1479 ((-107) |#4| |#1|)) (-15 -3453 ((-578 |#4|) |#1|)) (-15 -3800 ((-578 |#4|) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-891 |#2| |#3| |#4| |#5|) (-959) (-723) (-777) (-972 |#2| |#3| |#4|)) (T -890)) -NIL -(-10 -8 (-15 -1189 ((-107) |#1|)) (-15 -4110 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -2339 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -1852 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2200 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2772 ((-107) |#1|)) (-15 -1408 ((-107) |#1| |#1|)) (-15 -2606 ((-107) |#1| |#1|)) (-15 -1662 ((-107) |#1|)) (-15 -3482 ((-107) |#1|)) (-15 -2861 ((-2 (|:| |under| |#1|) (|:| -3383 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1638 (|#1| |#1| |#4|)) (-15 -3737 (|#1| |#1| |#4|)) (-15 -2482 (|#1| |#1| |#4|)) (-15 -1479 ((-107) |#4| |#1|)) (-15 -3453 ((-578 |#4|) |#1|)) (-15 -3800 ((-578 |#4|) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167)))) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167)))) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-3708 (((-1018) $) 10)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167))))) -(((-891 |#1| |#2| |#3| |#4|) (-1180) (-959) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -891)) -((-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *1 (-891 *3 *4 *5 *6)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *1 (-891 *3 *4 *5 *6)))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-972 *3 *4 *2)) (-4 *2 (-777)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5)))) (-1479 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *3 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-107)))) (-2482 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2)))) (-3737 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2)))) (-1638 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2)))) (-2861 (*1 *2 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3383 *1) (|:| |upper| *1))) (-4 *1 (-891 *4 *5 *3 *6)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-1662 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))) (-2606 (*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))) (-1408 (*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))) (-2200 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1852 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2339 (*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)))) (-4110 (*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)))) (-1189 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107))))) -(-13 (-1001) (-138 |t#4|) (-555 (-578 |t#4|)) (-10 -8 (-6 -4167) (-15 -3765 ((-3 $ "failed") (-578 |t#4|))) (-15 -3490 ($ (-578 |t#4|))) (-15 -2361 (|t#3| $)) (-15 -3800 ((-578 |t#3|) $)) (-15 -3453 ((-578 |t#3|) $)) (-15 -1479 ((-107) |t#3| $)) (-15 -2482 ($ $ |t#3|)) (-15 -3737 ($ $ |t#3|)) (-15 -1638 ($ $ |t#3|)) (-15 -2861 ((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |t#3|)) (-15 -3482 ((-107) $)) (IF (|has| |t#1| (-508)) (PROGN (-15 -1662 ((-107) $)) (-15 -2606 ((-107) $ $)) (-15 -1408 ((-107) $ $)) (-15 -2772 ((-107) $)) (-15 -2200 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1852 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2339 ((-578 |t#4|) (-578 |t#4|) $)) (-15 -4110 ((-578 |t#4|) (-578 |t#4|) $)) (-15 -1189 ((-107) $))) |noBranch|))) -(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-1001) . T) ((-1104) . T)) -((-3115 (((-578 |#4|) |#4| |#4|) 114)) (-2031 (((-578 |#4|) (-578 |#4|) (-107)) 103 (|has| |#1| (-419))) (((-578 |#4|) (-578 |#4|)) 104 (|has| |#1| (-419)))) (-1598 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 34)) (-2332 (((-107) |#4|) 33)) (-3267 (((-578 |#4|) |#4|) 100 (|has| |#1| (-419)))) (-1937 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-1 (-107) |#4|) (-578 |#4|)) 19)) (-2034 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|)) 21)) (-2687 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|)) 22)) (-1689 (((-3 (-2 (|:| |bas| (-443 |#1| |#2| |#3| |#4|)) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|)) 72)) (-3655 (((-578 |#4|) (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-3398 (((-578 |#4|) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 107)) (-1409 (((-578 |#4|) (-578 |#4|)) 106)) (-2504 (((-578 |#4|) (-578 |#4|) (-578 |#4|) (-107)) 47) (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 49)) (-1202 ((|#4| |#4| (-578 |#4|)) 48)) (-2592 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 110 (|has| |#1| (-419)))) (-3246 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 113 (|has| |#1| (-419)))) (-3111 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 112 (|has| |#1| (-419)))) (-1208 (((-578 |#4|) (-578 |#4|) (-578 |#4|) (-1 (-578 |#4|) (-578 |#4|))) 86) (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 88) (((-578 |#4|) (-578 |#4|) |#4|) 117) (((-578 |#4|) |#4| |#4|) 115) (((-578 |#4|) (-578 |#4|)) 87)) (-3243 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 97 (-12 (|has| |#1| (-134)) (|has| |#1| (-276))))) (-3402 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 40)) (-2279 (((-107) (-578 |#4|)) 61)) (-3589 (((-107) (-578 |#4|) (-578 (-578 |#4|))) 52)) (-2628 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 28)) (-2367 (((-107) |#4|) 27)) (-2205 (((-578 |#4|) (-578 |#4|)) 96 (-12 (|has| |#1| (-134)) (|has| |#1| (-276))))) (-1707 (((-578 |#4|) (-578 |#4|)) 95 (-12 (|has| |#1| (-134)) (|has| |#1| (-276))))) (-1695 (((-578 |#4|) (-578 |#4|)) 65)) (-2248 (((-578 |#4|) (-578 |#4|)) 78)) (-2151 (((-107) (-578 |#4|) (-578 |#4|)) 50)) (-2521 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 38)) (-3410 (((-107) |#4|) 35))) -(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1208 ((-578 |#4|) (-578 |#4|))) (-15 -1208 ((-578 |#4|) |#4| |#4|)) (-15 -1409 ((-578 |#4|) (-578 |#4|))) (-15 -3115 ((-578 |#4|) |#4| |#4|)) (-15 -1208 ((-578 |#4|) (-578 |#4|) |#4|)) (-15 -1208 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -1208 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-1 (-578 |#4|) (-578 |#4|)))) (-15 -2151 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3589 ((-107) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2279 ((-107) (-578 |#4|))) (-15 -1937 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-1 (-107) |#4|) (-578 |#4|))) (-15 -2034 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|))) (-15 -2687 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|))) (-15 -3402 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2332 ((-107) |#4|)) (-15 -1598 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2367 ((-107) |#4|)) (-15 -2628 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -3410 ((-107) |#4|)) (-15 -2521 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2504 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2504 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-107))) (-15 -1202 (|#4| |#4| (-578 |#4|))) (-15 -1695 ((-578 |#4|) (-578 |#4|))) (-15 -1689 ((-3 (-2 (|:| |bas| (-443 |#1| |#2| |#3| |#4|)) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|))) (-15 -2248 ((-578 |#4|) (-578 |#4|))) (-15 -3655 ((-578 |#4|) (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3398 ((-578 |#4|) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-419)) (PROGN (-15 -3267 ((-578 |#4|) |#4|)) (-15 -2031 ((-578 |#4|) (-578 |#4|))) (-15 -2031 ((-578 |#4|) (-578 |#4|) (-107))) (-15 -2592 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -3111 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -3246 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |noBranch|) (IF (|has| |#1| (-276)) (IF (|has| |#1| (-134)) (PROGN (-15 -1707 ((-578 |#4|) (-578 |#4|))) (-15 -2205 ((-578 |#4|) (-578 |#4|))) (-15 -3243 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |noBranch|) |noBranch|)) (-508) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -892)) -((-3243 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1707 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-3246 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-3111 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2592 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2031 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-107)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2031 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-3267 (*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-3398 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-892 *5 *6 *7 *8)))) (-3655 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-578 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *1 (-892 *6 *7 *8 *9)))) (-2248 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1689 (*1 *2 *3) (|partial| -12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-443 *4 *5 *6 *7)) (|:| -2425 (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1202 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *2)))) (-2504 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-107)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2504 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-3410 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-2628 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2367 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-1598 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2332 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-107) *8))) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-107) *8))) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-1937 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *7)))) (-3589 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *5 *6 *7 *8)))) (-2151 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *7)))) (-1208 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-578 *7) (-578 *7))) (-5 *2 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7)))) (-1208 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1208 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *3)))) (-3115 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1208 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-1208 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6))))) -(-10 -7 (-15 -1208 ((-578 |#4|) (-578 |#4|))) (-15 -1208 ((-578 |#4|) |#4| |#4|)) (-15 -1409 ((-578 |#4|) (-578 |#4|))) (-15 -3115 ((-578 |#4|) |#4| |#4|)) (-15 -1208 ((-578 |#4|) (-578 |#4|) |#4|)) (-15 -1208 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -1208 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-1 (-578 |#4|) (-578 |#4|)))) (-15 -2151 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3589 ((-107) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2279 ((-107) (-578 |#4|))) (-15 -1937 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-1 (-107) |#4|) (-578 |#4|))) (-15 -2034 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|))) (-15 -2687 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|))) (-15 -3402 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2332 ((-107) |#4|)) (-15 -1598 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2367 ((-107) |#4|)) (-15 -2628 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -3410 ((-107) |#4|)) (-15 -2521 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2504 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2504 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-107))) (-15 -1202 (|#4| |#4| (-578 |#4|))) (-15 -1695 ((-578 |#4|) (-578 |#4|))) (-15 -1689 ((-3 (-2 (|:| |bas| (-443 |#1| |#2| |#3| |#4|)) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|))) (-15 -2248 ((-578 |#4|) (-578 |#4|))) (-15 -3655 ((-578 |#4|) (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3398 ((-578 |#4|) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-419)) (PROGN (-15 -3267 ((-578 |#4|) |#4|)) (-15 -2031 ((-578 |#4|) (-578 |#4|))) (-15 -2031 ((-578 |#4|) (-578 |#4|) (-107))) (-15 -2592 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -3111 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -3246 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |noBranch|) (IF (|has| |#1| (-276)) (IF (|has| |#1| (-134)) (PROGN (-15 -1707 ((-578 |#4|) (-578 |#4|))) (-15 -2205 ((-578 |#4|) (-578 |#4|))) (-15 -3243 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |noBranch|) |noBranch|)) -((-1315 (((-2 (|:| R (-621 |#1|)) (|:| A (-621 |#1|)) (|:| |Ainv| (-621 |#1|))) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-3382 (((-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|)) 35)) (-1821 (((-621 |#1|) (-621 |#1|) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16))) -(((-893 |#1|) (-10 -7 (-15 -1315 ((-2 (|:| R (-621 |#1|)) (|:| A (-621 |#1|)) (|:| |Ainv| (-621 |#1|))) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1821 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3382 ((-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|)))) (-331)) (T -893)) -((-3382 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| C (-621 *5)) (|:| |g| (-1148 *5))))) (-5 *1 (-893 *5)) (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)))) (-1821 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-621 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-5 *1 (-893 *5)))) (-1315 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-331)) (-5 *2 (-2 (|:| R (-621 *6)) (|:| A (-621 *6)) (|:| |Ainv| (-621 *6)))) (-5 *1 (-893 *6)) (-5 *3 (-621 *6))))) -(-10 -7 (-15 -1315 ((-2 (|:| R (-621 |#1|)) (|:| A (-621 |#1|)) (|:| |Ainv| (-621 |#1|))) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1821 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3382 ((-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|)))) -((-1559 (((-373 |#4|) |#4|) 47))) -(((-894 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1559 ((-373 |#4|) |#4|))) (-777) (-723) (-419) (-870 |#3| |#2| |#1|)) (T -894)) -((-1559 (*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-419)) (-5 *2 (-373 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4))))) -(-10 -7 (-15 -1559 ((-373 |#4|) |#4|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2563 (($ (-701)) 112 (|has| |#1| (-23)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| |#1| (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-1934 (((-501) (-1 (-107) |#1|) $) 97) (((-501) |#1| $) 96 (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) 95 (|has| |#1| (-1001)))) (-1801 (($ (-578 |#1|)) 118)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-2123 (((-621 |#1|) $ $) 105 (|has| |#1| (-959)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3203 ((|#1| $) 102 (-12 (|has| |#1| (-959)) (|has| |#1| (-916))))) (-3155 (((-107) $ (-701)) 10)) (-4139 ((|#1| $) 103 (-12 (|has| |#1| (-959)) (|has| |#1| (-916))))) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-3718 (($ $ (-578 |#1|)) 115)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1293 ((|#1| $ $) 106 (|has| |#1| (-959)))) (-3613 (((-839) $) 117)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-2220 (($ $ $) 104)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490)))) (($ (-578 |#1|)) 116)) (-3699 (($ (-578 |#1|)) 70)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 84 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 83 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) 85 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 82 (|has| |#1| (-777)))) (-3797 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-3790 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-501) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-657))) (($ $ |#1|) 107 (|has| |#1| (-657)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-895 |#1|) (-1180) (-959)) (T -895)) -((-1801 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-895 *3)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-4 *3 (-959)) (-5 *2 (-839)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-895 *3)))) (-2220 (*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-959)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-895 *3)) (-4 *3 (-959))))) -(-13 (-1147 |t#1|) (-10 -8 (-15 -1801 ($ (-578 |t#1|))) (-15 -3613 ((-839) $)) (-15 -1248 ($ (-578 |t#1|))) (-15 -2220 ($ $ $)) (-15 -3718 ($ $ (-578 |t#1|))))) -(((-33) . T) ((-97) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-555 (-786)) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-340 |#1|) . T) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-19 |#1|) . T) ((-777) |has| |#1| (-777)) ((-1001) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-1104) . T) ((-1147 |#1|) . T)) -((-1212 (((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)) 17))) -(((-896 |#1| |#2|) (-10 -7 (-15 -1212 ((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)))) (-959) (-959)) (T -896)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-863 *6)) (-5 *1 (-896 *5 *6))))) -(-10 -7 (-15 -1212 ((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)))) -((-2301 ((|#1| (-863 |#1|)) 13)) (-1687 ((|#1| (-863 |#1|)) 12)) (-3105 ((|#1| (-863 |#1|)) 11)) (-2477 ((|#1| (-863 |#1|)) 15)) (-3052 ((|#1| (-863 |#1|)) 21)) (-2362 ((|#1| (-863 |#1|)) 14)) (-1715 ((|#1| (-863 |#1|)) 16)) (-3531 ((|#1| (-863 |#1|)) 20)) (-3479 ((|#1| (-863 |#1|)) 19))) -(((-897 |#1|) (-10 -7 (-15 -3105 (|#1| (-863 |#1|))) (-15 -1687 (|#1| (-863 |#1|))) (-15 -2301 (|#1| (-863 |#1|))) (-15 -2362 (|#1| (-863 |#1|))) (-15 -2477 (|#1| (-863 |#1|))) (-15 -1715 (|#1| (-863 |#1|))) (-15 -3479 (|#1| (-863 |#1|))) (-15 -3531 (|#1| (-863 |#1|))) (-15 -3052 (|#1| (-863 |#1|)))) (-959)) (T -897)) -((-3052 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959))))) -(-10 -7 (-15 -3105 (|#1| (-863 |#1|))) (-15 -1687 (|#1| (-863 |#1|))) (-15 -2301 (|#1| (-863 |#1|))) (-15 -2362 (|#1| (-863 |#1|))) (-15 -2477 (|#1| (-863 |#1|))) (-15 -1715 (|#1| (-863 |#1|))) (-15 -3479 (|#1| (-863 |#1|))) (-15 -3531 (|#1| (-863 |#1|))) (-15 -3052 (|#1| (-863 |#1|)))) -((-1467 (((-3 |#1| "failed") |#1|) 18)) (-2022 (((-3 |#1| "failed") |#1|) 6)) (-2851 (((-3 |#1| "failed") |#1|) 16)) (-3609 (((-3 |#1| "failed") |#1|) 4)) (-2994 (((-3 |#1| "failed") |#1|) 20)) (-3235 (((-3 |#1| "failed") |#1|) 8)) (-2604 (((-3 |#1| "failed") |#1| (-701)) 1)) (-2371 (((-3 |#1| "failed") |#1|) 3)) (-2829 (((-3 |#1| "failed") |#1|) 2)) (-3255 (((-3 |#1| "failed") |#1|) 21)) (-1602 (((-3 |#1| "failed") |#1|) 9)) (-3125 (((-3 |#1| "failed") |#1|) 19)) (-2107 (((-3 |#1| "failed") |#1|) 7)) (-3202 (((-3 |#1| "failed") |#1|) 17)) (-2926 (((-3 |#1| "failed") |#1|) 5)) (-2872 (((-3 |#1| "failed") |#1|) 24)) (-1360 (((-3 |#1| "failed") |#1|) 12)) (-2601 (((-3 |#1| "failed") |#1|) 22)) (-1510 (((-3 |#1| "failed") |#1|) 10)) (-3153 (((-3 |#1| "failed") |#1|) 26)) (-2009 (((-3 |#1| "failed") |#1|) 14)) (-2098 (((-3 |#1| "failed") |#1|) 27)) (-2445 (((-3 |#1| "failed") |#1|) 15)) (-1311 (((-3 |#1| "failed") |#1|) 25)) (-2418 (((-3 |#1| "failed") |#1|) 13)) (-1820 (((-3 |#1| "failed") |#1|) 23)) (-2413 (((-3 |#1| "failed") |#1|) 11))) -(((-898 |#1|) (-1180) (-1090)) (T -898)) -((-2098 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3153 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1311 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2872 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1820 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2601 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3255 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2994 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3125 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1467 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3202 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2851 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2445 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2009 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2418 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1360 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2413 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1510 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1602 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3235 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2107 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2022 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2926 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3609 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2371 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2829 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2604 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(-13 (-10 -7 (-15 -2604 ((-3 |t#1| "failed") |t#1| (-701))) (-15 -2829 ((-3 |t#1| "failed") |t#1|)) (-15 -2371 ((-3 |t#1| "failed") |t#1|)) (-15 -3609 ((-3 |t#1| "failed") |t#1|)) (-15 -2926 ((-3 |t#1| "failed") |t#1|)) (-15 -2022 ((-3 |t#1| "failed") |t#1|)) (-15 -2107 ((-3 |t#1| "failed") |t#1|)) (-15 -3235 ((-3 |t#1| "failed") |t#1|)) (-15 -1602 ((-3 |t#1| "failed") |t#1|)) (-15 -1510 ((-3 |t#1| "failed") |t#1|)) (-15 -2413 ((-3 |t#1| "failed") |t#1|)) (-15 -1360 ((-3 |t#1| "failed") |t#1|)) (-15 -2418 ((-3 |t#1| "failed") |t#1|)) (-15 -2009 ((-3 |t#1| "failed") |t#1|)) (-15 -2445 ((-3 |t#1| "failed") |t#1|)) (-15 -2851 ((-3 |t#1| "failed") |t#1|)) (-15 -3202 ((-3 |t#1| "failed") |t#1|)) (-15 -1467 ((-3 |t#1| "failed") |t#1|)) (-15 -3125 ((-3 |t#1| "failed") |t#1|)) (-15 -2994 ((-3 |t#1| "failed") |t#1|)) (-15 -3255 ((-3 |t#1| "failed") |t#1|)) (-15 -2601 ((-3 |t#1| "failed") |t#1|)) (-15 -1820 ((-3 |t#1| "failed") |t#1|)) (-15 -2872 ((-3 |t#1| "failed") |t#1|)) (-15 -1311 ((-3 |t#1| "failed") |t#1|)) (-15 -3153 ((-3 |t#1| "failed") |t#1|)) (-15 -2098 ((-3 |t#1| "failed") |t#1|)))) -((-1512 ((|#4| |#4| (-578 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-1827 ((|#4| |#4| (-578 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1212 ((|#4| (-1 |#4| (-866 |#1|)) |#4|) 30))) -(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1827 (|#4| |#4| |#3|)) (-15 -1827 (|#4| |#4| (-578 |#3|))) (-15 -1512 (|#4| |#4| |#3|)) (-15 -1512 (|#4| |#4| (-578 |#3|))) (-15 -1212 (|#4| (-1 |#4| (-866 |#1|)) |#4|))) (-959) (-723) (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070))))) (-870 (-866 |#1|) |#2| |#3|)) (T -899)) -((-1212 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-866 *4))) (-4 *4 (-959)) (-4 *2 (-870 (-866 *4) *5 *6)) (-4 *5 (-723)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *6 *2)))) (-1512 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *4 (-959)) (-4 *5 (-723)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-870 (-866 *4) *5 *6)))) (-1512 (*1 *2 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-870 (-866 *4) *5 *3)))) (-1827 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *4 (-959)) (-4 *5 (-723)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-870 (-866 *4) *5 *6)))) (-1827 (*1 *2 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-870 (-866 *4) *5 *3))))) -(-10 -7 (-15 -1827 (|#4| |#4| |#3|)) (-15 -1827 (|#4| |#4| (-578 |#3|))) (-15 -1512 (|#4| |#4| |#3|)) (-15 -1512 (|#4| |#4| (-578 |#3|))) (-15 -1212 (|#4| (-1 |#4| (-866 |#1|)) |#4|))) -((-1268 ((|#2| |#3|) 34)) (-3819 (((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|) 71)) (-1897 (((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) 86))) -(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|)) (-15 -1268 (|#2| |#3|))) (-318) (-1125 |#1|) (-1125 |#2|) (-655 |#2| |#3|)) (T -900)) -((-1268 (*1 *2 *3) (-12 (-4 *3 (-1125 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-900 *4 *2 *3 *5)) (-4 *4 (-318)) (-4 *5 (-655 *2 *3)))) (-3819 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *6 (-655 *3 *5)))) (-1897 (*1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -4119 (-621 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-621 *4)))) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-655 *4 *5))))) -(-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|)) (-15 -1268 (|#2| |#3|))) -((-3736 (((-107) $ $) NIL)) (-2968 (((-3 (-107) "failed") $) 67)) (-1780 (($ $) 35 (-12 (|has| |#1| (-134)) (|has| |#1| (-276))))) (-1230 (($ $ (-3 (-107) "failed")) 68)) (-1725 (($ (-578 |#4|) |#4|) 24)) (-3460 (((-1053) $) NIL)) (-3742 (($ $) 65)) (-3708 (((-1018) $) NIL)) (-1407 (((-107) $) 66)) (-3122 (($) 29)) (-2524 ((|#4| $) 70)) (-2546 (((-578 |#4|) $) 69)) (-3691 (((-786) $) 64)) (-3751 (((-107) $ $) NIL))) -(((-901 |#1| |#2| |#3| |#4|) (-13 (-1001) (-555 (-786)) (-10 -8 (-15 -3122 ($)) (-15 -1725 ($ (-578 |#4|) |#4|)) (-15 -2968 ((-3 (-107) "failed") $)) (-15 -1230 ($ $ (-3 (-107) "failed"))) (-15 -1407 ((-107) $)) (-15 -2546 ((-578 |#4|) $)) (-15 -2524 (|#4| $)) (-15 -3742 ($ $)) (IF (|has| |#1| (-276)) (IF (|has| |#1| (-134)) (-15 -1780 ($ $)) |noBranch|) |noBranch|))) (-419) (-777) (-723) (-870 |#1| |#3| |#2|)) (T -901)) -((-3122 (*1 *1) (-12 (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3)))) (-1725 (*1 *1 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-870 *4 *6 *5)) (-4 *4 (-419)) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *1 (-901 *4 *5 *6 *3)))) (-2968 (*1 *2 *1) (|partial| -12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) (-1230 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) (-1407 (*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) (-2546 (*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-578 *6)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) (-2524 (*1 *2 *1) (-12 (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)))) (-3742 (*1 *1 *1) (-12 (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3)))) (-1780 (*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-276)) (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3))))) -(-13 (-1001) (-555 (-786)) (-10 -8 (-15 -3122 ($)) (-15 -1725 ($ (-578 |#4|) |#4|)) (-15 -2968 ((-3 (-107) "failed") $)) (-15 -1230 ($ $ (-3 (-107) "failed"))) (-15 -1407 ((-107) $)) (-15 -2546 ((-578 |#4|) $)) (-15 -2524 (|#4| $)) (-15 -3742 ($ $)) (IF (|has| |#1| (-276)) (IF (|has| |#1| (-134)) (-15 -1780 ($ $)) |noBranch|) |noBranch|))) -((-2401 (((-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501)))) (-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501))))) 64))) -(((-902 |#1| |#2|) (-10 -7 (-15 -2401 ((-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501)))) (-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501))))))) (-578 (-1070)) (-701)) (T -902)) -((-2401 (*1 *2 *2) (-12 (-5 *2 (-901 (-375 (-501)) (-787 *3) (-212 *4 (-701)) (-220 *3 (-375 (-501))))) (-14 *3 (-578 (-1070))) (-14 *4 (-701)) (-5 *1 (-902 *3 *4))))) -(-10 -7 (-15 -2401 ((-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501)))) (-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501))))))) -((-1319 (((-107) |#5| |#5|) 37)) (-3494 (((-107) |#5| |#5|) 51)) (-1645 (((-107) |#5| (-578 |#5|)) 73) (((-107) |#5| |#5|) 60)) (-1400 (((-107) (-578 |#4|) (-578 |#4|)) 57)) (-3422 (((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) 62)) (-2394 (((-1154)) 33)) (-2660 (((-1154) (-1053) (-1053) (-1053)) 29)) (-3551 (((-578 |#5|) (-578 |#5|)) 80)) (-1894 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) 78)) (-2221 (((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107)) 100)) (-1461 (((-107) |#5| |#5|) 46)) (-1837 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3882 (((-107) (-578 |#4|) (-578 |#4|)) 56)) (-3091 (((-107) (-578 |#4|) (-578 |#4|)) 58)) (-3523 (((-107) (-578 |#4|) (-578 |#4|)) 59)) (-2918 (((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107)) 96)) (-2638 (((-578 |#5|) (-578 |#5|)) 42))) -(((-903 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2660 ((-1154) (-1053) (-1053) (-1053))) (-15 -2394 ((-1154))) (-15 -1319 ((-107) |#5| |#5|)) (-15 -2638 ((-578 |#5|) (-578 |#5|))) (-15 -1461 ((-107) |#5| |#5|)) (-15 -3494 ((-107) |#5| |#5|)) (-15 -1400 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3882 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3091 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3523 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -1837 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1645 ((-107) |#5| |#5|)) (-15 -1645 ((-107) |#5| (-578 |#5|))) (-15 -3551 ((-578 |#5|) (-578 |#5|))) (-15 -3422 ((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -1894 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-15 -2221 ((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -2918 ((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -903)) -((-2918 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-903 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-977 *6 *7 *8 *9)))) (-2221 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-107)) (-4 *10 (-977 *6 *7 *8 *9)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-903 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -3709 *7)))) (-4 *6 (-972 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-3422 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)))) (-3551 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-1645 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-903 *5 *6 *7 *8 *3)))) (-1645 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3523 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3882 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-1400 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3494 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-1461 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-1319 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-2394 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-903 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-2660 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -(-10 -7 (-15 -2660 ((-1154) (-1053) (-1053) (-1053))) (-15 -2394 ((-1154))) (-15 -1319 ((-107) |#5| |#5|)) (-15 -2638 ((-578 |#5|) (-578 |#5|))) (-15 -1461 ((-107) |#5| |#5|)) (-15 -3494 ((-107) |#5| |#5|)) (-15 -1400 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3882 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3091 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3523 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -1837 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1645 ((-107) |#5| |#5|)) (-15 -1645 ((-107) |#5| (-578 |#5|))) (-15 -3551 ((-578 |#5|) (-578 |#5|))) (-15 -3422 ((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -1894 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-15 -2221 ((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -2918 ((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107)))) -((-3484 (((-1070) $) 15)) (-2150 (((-1053) $) 16)) (-4022 (($ (-1070) (-1053)) 14)) (-3691 (((-786) $) 13))) -(((-904) (-13 (-555 (-786)) (-10 -8 (-15 -4022 ($ (-1070) (-1053))) (-15 -3484 ((-1070) $)) (-15 -2150 ((-1053) $))))) (T -904)) -((-4022 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1053)) (-5 *1 (-904)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-904)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-904))))) -(-13 (-555 (-786)) (-10 -8 (-15 -4022 ($ (-1070) (-1053))) (-15 -3484 ((-1070) $)) (-15 -2150 ((-1053) $)))) -((-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-1070) "failed") $) 65) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) 95)) (-3490 ((|#2| $) NIL) (((-1070) $) 60) (((-375 (-501)) $) NIL) (((-501) $) 92)) (-3868 (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 112) (((-621 |#2|) (-621 $)) 28)) (-2890 (($) 98)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 74) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 83)) (-2117 (($ $) 10)) (-3493 (((-3 $ "failed") $) 20)) (-1212 (($ (-1 |#2| |#2|) $) 22)) (-3746 (($) 16)) (-2801 (($ $) 54)) (-2596 (($ $) NIL) (($ $ (-701)) NIL) (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3307 (($ $) 12)) (-1248 (((-810 (-501)) $) 69) (((-810 (-346)) $) 78) (((-490) $) 40) (((-346) $) 44) (((-199) $) 47)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) 90) (($ |#2|) NIL) (($ (-1070)) 57)) (-3965 (((-701)) 31)) (-3762 (((-107) $ $) 50))) -(((-905 |#1| |#2|) (-10 -8 (-15 -3762 ((-107) |#1| |#1|)) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3691 (|#1| (-1070))) (-15 -2890 (|#1|)) (-15 -2801 (|#1| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -3691 ((-786) |#1|))) (-906 |#2|) (-508)) (T -905)) -((-3965 (*1 *2) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4))))) -(-10 -8 (-15 -3762 ((-107) |#1| |#1|)) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3691 (|#1| (-1070))) (-15 -2890 (|#1|)) (-15 -2801 (|#1| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2197 ((|#1| $) 139 (|has| |#1| (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 130 (|has| |#1| (-830)))) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 133 (|has| |#1| (-830)))) (-2781 (((-107) $ $) 59)) (-1417 (((-501) $) 120 (|has| |#1| (-750)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 178) (((-3 (-1070) "failed") $) 128 (|has| |#1| (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) 112 (|has| |#1| (-950 (-501)))) (((-3 (-501) "failed") $) 110 (|has| |#1| (-950 (-501))))) (-3490 ((|#1| $) 177) (((-1070) $) 127 (|has| |#1| (-950 (-1070)))) (((-375 (-501)) $) 111 (|has| |#1| (-950 (-501)))) (((-501) $) 109 (|has| |#1| (-950 (-501))))) (-3023 (($ $ $) 55)) (-3868 (((-621 (-501)) (-621 $)) 152 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 151 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 150) (((-621 |#1|) (-621 $)) 149)) (-2174 (((-3 $ "failed") $) 34)) (-2890 (($) 137 (|has| |#1| (-500)))) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-2164 (((-107) $) 122 (|has| |#1| (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 146 (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 145 (|has| |#1| (-806 (-346))))) (-1355 (((-107) $) 31)) (-2117 (($ $) 141)) (-2946 ((|#1| $) 143)) (-3493 (((-3 $ "failed") $) 108 (|has| |#1| (-1046)))) (-4067 (((-107) $) 121 (|has| |#1| (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-4111 (($ $ $) 118 (|has| |#1| (-777)))) (-1323 (($ $ $) 117 (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) 169)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3746 (($) 107 (|has| |#1| (-1046)) CONST)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-2801 (($ $) 138 (|has| |#1| (-276)))) (-3383 ((|#1| $) 135 (|has| |#1| (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 132 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 131 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) 175 (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) 173 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) 172 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 171 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) 170 (|has| |#1| (-476 (-1070) |#1|)))) (-1864 (((-701) $) 58)) (-2007 (($ $ |#1|) 176 (|has| |#1| (-256 |#1| |#1|)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-2596 (($ $) 168 (|has| |#1| (-206))) (($ $ (-701)) 166 (|has| |#1| (-206))) (($ $ (-1070)) 164 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 163 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 162 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 161 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-3307 (($ $) 140)) (-2949 ((|#1| $) 142)) (-1248 (((-810 (-501)) $) 148 (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) 147 (|has| |#1| (-556 (-810 (-346))))) (((-490) $) 125 (|has| |#1| (-556 (-490)))) (((-346) $) 124 (|has| |#1| (-933))) (((-199) $) 123 (|has| |#1| (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 134 (-1280 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ |#1|) 181) (($ (-1070)) 129 (|has| |#1| (-950 (-1070))))) (-1274 (((-3 $ "failed") $) 126 (-1405 (|has| |#1| (-132)) (-1280 (|has| $ (-132)) (|has| |#1| (-830)))))) (-3965 (((-701)) 29)) (-2803 ((|#1| $) 136 (|has| |#1| (-500)))) (-2442 (((-107) $ $) 39)) (-1720 (($ $) 119 (|has| |#1| (-750)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $) 167 (|has| |#1| (-206))) (($ $ (-701)) 165 (|has| |#1| (-206))) (($ $ (-1070)) 160 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 159 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 158 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 157 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-3778 (((-107) $ $) 115 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 114 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 116 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 113 (|has| |#1| (-777)))) (-3803 (($ $ $) 64) (($ |#1| |#1|) 144)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179))) -(((-906 |#1|) (-1180) (-508)) (T -906)) -((-3803 (*1 *1 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) (-2946 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) (-2117 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) (-3307 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-276)))) (-2801 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-276)))) (-2890 (*1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-500)) (-4 *2 (-508)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-500)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-500))))) -(-13 (-331) (-37 |t#1|) (-950 |t#1|) (-306 |t#1|) (-204 |t#1|) (-345 |t#1|) (-804 |t#1|) (-368 |t#1|) (-10 -8 (-15 -3803 ($ |t#1| |t#1|)) (-15 -2946 (|t#1| $)) (-15 -2949 (|t#1| $)) (-15 -2117 ($ $)) (-15 -3307 ($ $)) (IF (|has| |t#1| (-1046)) (-6 (-1046)) |noBranch|) (IF (|has| |t#1| (-950 (-501))) (PROGN (-6 (-950 (-501))) (-6 (-950 (-375 (-501))))) |noBranch|) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-750)) (-6 (-750)) |noBranch|) (IF (|has| |t#1| (-933)) (-6 (-933)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-950 (-1070))) (-6 (-950 (-1070))) |noBranch|) (IF (|has| |t#1| (-276)) (PROGN (-15 -2197 (|t#1| $)) (-15 -2801 ($ $))) |noBranch|) (IF (|has| |t#1| (-500)) (PROGN (-15 -2890 ($)) (-15 -2803 (|t#1| $)) (-15 -3383 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-556 (-199)) |has| |#1| (-933)) ((-556 (-346)) |has| |#1| (-933)) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-556 (-810 (-346))) |has| |#1| (-556 (-810 (-346)))) ((-556 (-810 (-501))) |has| |#1| (-556 (-810 (-501)))) ((-204 |#1|) . T) ((-206) |has| |#1| (-206)) ((-216) . T) ((-256 |#1| $) |has| |#1| (-256 |#1| |#1|)) ((-260) . T) ((-276) . T) ((-278 |#1|) |has| |#1| (-278 |#1|)) ((-331) . T) ((-306 |#1|) . T) ((-345 |#1|) . T) ((-368 |#1|) . T) ((-419) . T) ((-476 (-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((-476 |#1| |#1|) |has| |#1| (-278 |#1|)) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-657) . T) ((-721) |has| |#1| (-750)) ((-722) |has| |#1| (-750)) ((-724) |has| |#1| (-750)) ((-727) |has| |#1| (-750)) ((-750) |has| |#1| (-750)) ((-775) |has| |#1| (-750)) ((-777) -1405 (|has| |#1| (-777)) (|has| |#1| (-750))) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-806 (-346)) |has| |#1| (-806 (-346))) ((-806 (-501)) |has| |#1| (-806 (-501))) ((-804 |#1|) . T) ((-830) |has| |#1| (-830)) ((-841) . T) ((-933) |has| |#1| (-933)) ((-950 (-375 (-501))) |has| |#1| (-950 (-501))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 (-1070)) |has| |#1| (-950 (-1070))) ((-950 |#1|) . T) ((-964 (-375 (-501))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| |#1| (-1046)) ((-1104) . T) ((-1108) . T)) -((-1212 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#2| |#1|) |#3|))) (-508) (-508) (-906 |#1|) (-906 |#2|)) (T -907)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-4 *2 (-906 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-906 *5))))) -(-10 -7 (-15 -1212 (|#4| (-1 |#2| |#1|) |#3|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2269 (($ (-1037 |#1| |#2|)) 11)) (-2630 (((-1037 |#1| |#2|) $) 12)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2007 ((|#2| $ (-212 |#1| |#2|)) 16)) (-3691 (((-786) $) NIL)) (-1850 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL))) -(((-908 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2269 ($ (-1037 |#1| |#2|))) (-15 -2630 ((-1037 |#1| |#2|) $)) (-15 -2007 (|#2| $ (-212 |#1| |#2|))))) (-839) (-331)) (T -908)) -((-2269 (*1 *1 *2) (-12 (-5 *2 (-1037 *3 *4)) (-14 *3 (-839)) (-4 *4 (-331)) (-5 *1 (-908 *3 *4)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-1037 *3 *4)) (-5 *1 (-908 *3 *4)) (-14 *3 (-839)) (-4 *4 (-331)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-212 *4 *2)) (-14 *4 (-839)) (-4 *2 (-331)) (-5 *1 (-908 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -2269 ($ (-1037 |#1| |#2|))) (-15 -2630 ((-1037 |#1| |#2|) $)) (-15 -2007 (|#2| $ (-212 |#1| |#2|))))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2253 (($ $) 46)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-4139 (((-701) $) 45)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-3085 ((|#1| $) 44)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2047 ((|#1| |#1| $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-1862 ((|#1| $) 47)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-2366 ((|#1| $) 43)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-909 |#1|) (-1180) (-1104)) (T -909)) -((-2047 (*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))) (-2253 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4167) (-15 -2047 (|t#1| |t#1| $)) (-15 -1862 (|t#1| $)) (-15 -2253 ($ $)) (-15 -4139 ((-701) $)) (-15 -3085 (|t#1| $)) (-15 -2366 (|t#1| $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3749 ((|#1| $) 12)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-500)))) (-1696 (((-107) $) NIL (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) NIL (|has| |#1| (-500)))) (-2508 (($ |#1| |#1| |#1| |#1|) 16)) (-1355 (((-107) $) NIL)) (-2626 ((|#1| $) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3596 ((|#1| $) 15)) (-2531 ((|#1| $) 14)) (-2757 ((|#1| $) 13)) (-3708 (((-1018) $) NIL)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-476 (-1070) |#1|)))) (-2007 (($ $ |#1|) NIL (|has| |#1| (-256 |#1| |#1|)))) (-2596 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3097 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501))))))) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-1720 ((|#1| $) NIL (|has| |#1| (-967)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 8 T CONST)) (-1925 (($) 10 T CONST)) (-3584 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-331))) (($ (-375 (-501)) $) NIL (|has| |#1| (-331))))) -(((-910 |#1|) (-912 |#1|) (-156)) (T -910)) -NIL -(-912 |#1|) -((-3292 (((-107) $) 42)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL) ((|#2| $) 43)) (-2870 (((-3 (-375 (-501)) "failed") $) 78)) (-1696 (((-107) $) 72)) (-3518 (((-375 (-501)) $) 76)) (-1355 (((-107) $) 41)) (-2626 ((|#2| $) 22)) (-1212 (($ (-1 |#2| |#2|) $) 19)) (-3833 (($ $) 61)) (-2596 (($ $) NIL) (($ $ (-701)) NIL) (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1248 (((-490) $) 67)) (-3097 (($ $) 17)) (-3691 (((-786) $) 56) (($ (-501)) 38) (($ |#2|) 36) (($ (-375 (-501))) NIL)) (-3965 (((-701)) 10)) (-1720 ((|#2| $) 71)) (-3751 (((-107) $ $) 25)) (-3762 (((-107) $ $) 69)) (-3797 (($ $) 29) (($ $ $) 28)) (-3790 (($ $ $) 26)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL))) -(((-911 |#1| |#2|) (-10 -8 (-15 -3691 (|#1| (-375 (-501)))) (-15 -3762 ((-107) |#1| |#1|)) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 * (|#1| |#1| (-375 (-501)))) (-15 -3833 (|#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -1720 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -3097 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -1355 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-912 |#2|) (-156)) (T -911)) -((-3965 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4))))) -(-10 -8 (-15 -3691 (|#1| (-375 (-501)))) (-15 -3762 ((-107) |#1| |#1|)) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 * (|#1| |#1| (-375 (-501)))) (-15 -3833 (|#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -1720 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -3097 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -1355 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 119 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 117 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 116)) (-3490 (((-501) $) 120 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 118 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 115)) (-3868 (((-621 (-501)) (-621 $)) 90 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 89 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 88) (((-621 |#1|) (-621 $)) 87)) (-2174 (((-3 $ "failed") $) 34)) (-3749 ((|#1| $) 80)) (-2870 (((-3 (-375 (-501)) "failed") $) 76 (|has| |#1| (-500)))) (-1696 (((-107) $) 78 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 77 (|has| |#1| (-500)))) (-2508 (($ |#1| |#1| |#1| |#1|) 81)) (-1355 (((-107) $) 31)) (-2626 ((|#1| $) 82)) (-4111 (($ $ $) 68 (|has| |#1| (-777)))) (-1323 (($ $ $) 67 (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) 91)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 73 (|has| |#1| (-331)))) (-3596 ((|#1| $) 83)) (-2531 ((|#1| $) 84)) (-2757 ((|#1| $) 85)) (-3708 (((-1018) $) 10)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) 97 (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) 95 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) 94 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 93 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) 92 (|has| |#1| (-476 (-1070) |#1|)))) (-2007 (($ $ |#1|) 98 (|has| |#1| (-256 |#1| |#1|)))) (-2596 (($ $) 114 (|has| |#1| (-206))) (($ $ (-701)) 112 (|has| |#1| (-206))) (($ $ (-1070)) 110 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 109 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 108 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 107 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1248 (((-490) $) 74 (|has| |#1| (-556 (-490))))) (-3097 (($ $) 86)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37) (($ (-375 (-501))) 62 (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501))))))) (-1274 (((-3 $ "failed") $) 75 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-1720 ((|#1| $) 79 (|has| |#1| (-967)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 72 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $) 113 (|has| |#1| (-206))) (($ $ (-701)) 111 (|has| |#1| (-206))) (($ $ (-1070)) 106 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 105 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 104 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 103 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-3778 (((-107) $ $) 65 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 64 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 66 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 63 (|has| |#1| (-777)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 71 (|has| |#1| (-331)))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-375 (-501))) 70 (|has| |#1| (-331))) (($ (-375 (-501)) $) 69 (|has| |#1| (-331))))) -(((-912 |#1|) (-1180) (-156)) (T -912)) -((-3097 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-2508 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) (-2870 (*1 *2 *1) (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501)))))) -(-13 (-37 |t#1|) (-380 |t#1|) (-204 |t#1|) (-306 |t#1|) (-345 |t#1|) (-10 -8 (-15 -3097 ($ $)) (-15 -2757 (|t#1| $)) (-15 -2531 (|t#1| $)) (-15 -3596 (|t#1| $)) (-15 -2626 (|t#1| $)) (-15 -2508 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3749 (|t#1| $)) (IF (|has| |t#1| (-260)) (-6 (-260)) |noBranch|) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-331)) (-6 (-216)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-967)) (-15 -1720 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-331)) ((-37 |#1|) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-331)) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-331)) (|has| |#1| (-260))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-204 |#1|) . T) ((-206) |has| |#1| (-206)) ((-216) |has| |#1| (-331)) ((-256 |#1| $) |has| |#1| (-256 |#1| |#1|)) ((-260) -1405 (|has| |#1| (-331)) (|has| |#1| (-260))) ((-278 |#1|) |has| |#1| (-278 |#1|)) ((-306 |#1|) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-476 (-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((-476 |#1| |#1|) |has| |#1| (-278 |#1|)) ((-583 (-375 (-501))) |has| |#1| (-331)) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) |has| |#1| (-331)) ((-648 |#1|) . T) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 (-375 (-501))) |has| |#1| (-331)) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-331)) (|has| |#1| (-260))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-1212 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|))) (-912 |#2|) (-156) (-912 |#4|) (-156)) (T -913)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-912 *6)) (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5))))) -(-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-2253 (($ $) 20)) (-1994 (($ (-578 |#1|)) 29)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-4139 (((-701) $) 22)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) 24)) (-4114 (($ |#1| $) 15)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3085 ((|#1| $) 23)) (-1251 ((|#1| $) 19)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2047 ((|#1| |#1| $) 14)) (-1407 (((-107) $) 17)) (-3122 (($) NIL)) (-1862 ((|#1| $) 18)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) NIL)) (-2366 ((|#1| $) 26)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-914 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -1994 ($ (-578 |#1|))))) (-1001)) (T -914)) -((-1994 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-914 *3))))) -(-13 (-909 |#1|) (-10 -8 (-15 -1994 ($ (-578 |#1|))))) -((-3743 (($ $) 12)) (-1342 (($ $ (-501)) 13))) -(((-915 |#1|) (-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -1342 (|#1| |#1| (-501)))) (-916)) (T -915)) -NIL -(-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -1342 (|#1| |#1| (-501)))) -((-3743 (($ $) 6)) (-1342 (($ $ (-501)) 7)) (** (($ $ (-375 (-501))) 8))) -(((-916) (-1180)) (T -916)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-375 (-501))))) (-1342 (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-501)))) (-3743 (*1 *1 *1) (-4 *1 (-916)))) -(-13 (-10 -8 (-15 -3743 ($ $)) (-15 -1342 ($ $ (-501))) (-15 ** ($ $ (-375 (-501)))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3767 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| (-375 |#2|) (-331)))) (-2865 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1639 (((-107) $) NIL (|has| (-375 |#2|) (-331)))) (-2239 (((-621 (-375 |#2|)) (-1148 $)) NIL) (((-621 (-375 |#2|))) NIL)) (-2225 (((-375 |#2|) $) NIL)) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-375 |#2|) (-318)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1559 (((-373 $) $) NIL (|has| (-375 |#2|) (-331)))) (-2781 (((-107) $ $) NIL (|has| (-375 |#2|) (-331)))) (-3796 (((-701)) NIL (|has| (-375 |#2|) (-336)))) (-3285 (((-107)) NIL)) (-2330 (((-107) |#1|) 147) (((-107) |#2|) 152)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| (-375 |#2|) (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-3 (-375 |#2|) "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| (-375 |#2|) (-950 (-501)))) (((-375 (-501)) $) NIL (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-375 |#2|) $) NIL)) (-3142 (($ (-1148 (-375 |#2|)) (-1148 $)) NIL) (($ (-1148 (-375 |#2|))) 70) (($ (-1148 |#2|) |#2|) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-375 |#2|) (-318)))) (-3023 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3070 (((-621 (-375 |#2|)) $ (-1148 $)) NIL) (((-621 (-375 |#2|)) $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-375 |#2|))) (|:| |vec| (-1148 (-375 |#2|)))) (-621 $) (-1148 $)) NIL) (((-621 (-375 |#2|)) (-621 $)) NIL)) (-3566 (((-1148 $) (-1148 $)) NIL)) (-3547 (($ |#3|) 65) (((-3 $ "failed") (-375 |#3|)) NIL (|has| (-375 |#2|) (-331)))) (-2174 (((-3 $ "failed") $) NIL)) (-1286 (((-578 (-578 |#1|))) NIL (|has| |#1| (-336)))) (-2142 (((-107) |#1| |#1|) NIL)) (-3689 (((-839)) NIL)) (-2890 (($) NIL (|has| (-375 |#2|) (-336)))) (-2516 (((-107)) NIL)) (-1436 (((-107) |#1|) 56) (((-107) |#2|) 149)) (-3034 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| (-375 |#2|) (-331)))) (-3533 (($ $) NIL)) (-1317 (($) NIL (|has| (-375 |#2|) (-318)))) (-3521 (((-107) $) NIL (|has| (-375 |#2|) (-318)))) (-3067 (($ $ (-701)) NIL (|has| (-375 |#2|) (-318))) (($ $) NIL (|has| (-375 |#2|) (-318)))) (-1628 (((-107) $) NIL (|has| (-375 |#2|) (-331)))) (-3169 (((-839) $) NIL (|has| (-375 |#2|) (-318))) (((-762 (-839)) $) NIL (|has| (-375 |#2|) (-318)))) (-1355 (((-107) $) NIL)) (-1206 (((-701)) NIL)) (-3740 (((-1148 $) (-1148 $)) NIL)) (-2626 (((-375 |#2|) $) NIL)) (-1607 (((-578 (-866 |#1|)) (-1070)) NIL (|has| |#1| (-331)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-375 |#2|) (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-375 |#2|) (-331)))) (-1792 ((|#3| $) NIL (|has| (-375 |#2|) (-331)))) (-3104 (((-839) $) NIL (|has| (-375 |#2|) (-336)))) (-1316 ((|#3| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| (-375 |#2|) (-331))) (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3460 (((-1053) $) NIL)) (-1275 (((-621 (-375 |#2|))) 52)) (-2368 (((-621 (-375 |#2|))) 51)) (-3833 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1318 (($ (-1148 |#2|) |#2|) 71)) (-2466 (((-621 (-375 |#2|))) 50)) (-2796 (((-621 (-375 |#2|))) 49)) (-1276 (((-2 (|:| |num| (-621 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3418 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) 77)) (-2664 (((-1148 $)) 46)) (-1897 (((-1148 $)) 45)) (-3672 (((-107) $) NIL)) (-2131 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-3746 (($) NIL (|has| (-375 |#2|) (-318)) CONST)) (-3506 (($ (-839)) NIL (|has| (-375 |#2|) (-336)))) (-2050 (((-3 |#2| "failed")) 63)) (-3708 (((-1018) $) NIL)) (-4122 (((-701)) NIL)) (-3987 (($) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| (-375 |#2|) (-331)))) (-3664 (($ (-578 $)) NIL (|has| (-375 |#2|) (-331))) (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-375 |#2|) (-318)))) (-3739 (((-373 $) $) NIL (|has| (-375 |#2|) (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-375 |#2|) (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| (-375 |#2|) (-331)))) (-3694 (((-3 $ "failed") $ $) NIL (|has| (-375 |#2|) (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-375 |#2|) (-331)))) (-1864 (((-701) $) NIL (|has| (-375 |#2|) (-331)))) (-2007 ((|#1| $ |#1| |#1|) NIL)) (-2435 (((-3 |#2| "failed")) 62)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| (-375 |#2|) (-331)))) (-2532 (((-375 |#2|) (-1148 $)) NIL) (((-375 |#2|)) 42)) (-1984 (((-701) $) NIL (|has| (-375 |#2|) (-318))) (((-3 (-701) "failed") $ $) NIL (|has| (-375 |#2|) (-318)))) (-2596 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-2231 (((-621 (-375 |#2|)) (-1148 $) (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331)))) (-2264 ((|#3|) 53)) (-1349 (($) NIL (|has| (-375 |#2|) (-318)))) (-2085 (((-1148 (-375 |#2|)) $ (-1148 $)) NIL) (((-621 (-375 |#2|)) (-1148 $) (-1148 $)) NIL) (((-1148 (-375 |#2|)) $) 72) (((-621 (-375 |#2|)) (-1148 $)) NIL)) (-1248 (((-1148 (-375 |#2|)) $) NIL) (($ (-1148 (-375 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-375 |#2|) (-318)))) (-1416 (((-1148 $) (-1148 $)) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 |#2|)) NIL) (($ (-375 (-501))) NIL (-1405 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-950 (-375 (-501)))))) (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1274 (($ $) NIL (|has| (-375 |#2|) (-318))) (((-3 $ "failed") $) NIL (|has| (-375 |#2|) (-132)))) (-2942 ((|#3| $) NIL)) (-3965 (((-701)) NIL)) (-2675 (((-107)) 60)) (-3969 (((-107) |#1|) 153) (((-107) |#2|) 154)) (-4119 (((-1148 $)) 124)) (-2442 (((-107) $ $) NIL (|has| (-375 |#2|) (-331)))) (-2548 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2710 (((-107)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| (-375 |#2|) (-331)))) (-1850 (($) 94 T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| (-375 |#2|) (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 |#2|)) NIL) (($ (-375 |#2|) $) NIL) (($ (-375 (-501)) $) NIL (|has| (-375 |#2|) (-331))) (($ $ (-375 (-501))) NIL (|has| (-375 |#2|) (-331))))) -(((-917 |#1| |#2| |#3| |#4| |#5|) (-310 |#1| |#2| |#3|) (-1108) (-1125 |#1|) (-1125 (-375 |#2|)) (-375 |#2|) (-701)) (T -917)) -NIL -(-310 |#1| |#2| |#3|) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3838 (((-578 (-501)) $) 54)) (-4085 (($ (-578 (-501))) 62)) (-2197 (((-501) $) 40 (|has| (-501) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-501) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) 49) (((-3 (-1070) "failed") $) NIL (|has| (-501) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) 47 (|has| (-501) (-950 (-501)))) (((-3 (-501) "failed") $) 49 (|has| (-501) (-950 (-501))))) (-3490 (((-501) $) NIL) (((-1070) $) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-501) (-950 (-501)))) (((-501) $) NIL (|has| (-501) (-950 (-501))))) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-501) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3640 (((-578 (-501)) $) 60)) (-2164 (((-107) $) NIL (|has| (-501) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-501) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-501) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-501) $) 37)) (-3493 (((-3 $ "failed") $) NIL (|has| (-501) (-1046)))) (-4067 (((-107) $) NIL (|has| (-501) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-501) (-777)))) (-1212 (($ (-1 (-501) (-501)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-501) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-501) (-276))) (((-375 (-501)) $) 42)) (-3306 (((-1048 (-501)) $) 59)) (-2567 (($ (-578 (-501)) (-578 (-501))) 63)) (-3383 (((-501) $) 53 (|has| (-501) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-501)) (-578 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-501) (-501)) NIL (|has| (-501) (-278 (-501)))) (($ $ (-262 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-262 (-501)))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-1070)) (-578 (-501))) NIL (|has| (-501) (-476 (-1070) (-501)))) (($ $ (-1070) (-501)) NIL (|has| (-501) (-476 (-1070) (-501))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-501)) NIL (|has| (-501) (-256 (-501) (-501))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) 11 (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-501) $) 39)) (-3261 (((-578 (-501)) $) 61)) (-1248 (((-810 (-501)) $) NIL (|has| (-501) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-501) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-501) (-556 (-490)))) (((-346) $) NIL (|has| (-501) (-933))) (((-199) $) NIL (|has| (-501) (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-501) (-830))))) (-3691 (((-786) $) 77) (($ (-501)) 43) (($ $) NIL) (($ (-375 (-501))) 19) (($ (-501)) 43) (($ (-1070)) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) 17)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-501) (-830))) (|has| (-501) (-132))))) (-3965 (((-701)) 9)) (-2803 (((-501) $) 51 (|has| (-501) (-500)))) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| (-501) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 10 T CONST)) (-1925 (($) 12 T CONST)) (-3584 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3751 (((-107) $ $) 14)) (-3773 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3762 (((-107) $ $) 33 (|has| (-501) (-777)))) (-3803 (($ $ $) 29) (($ (-501) (-501)) 31)) (-3797 (($ $) 15) (($ $ $) 22)) (-3790 (($ $ $) 20)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 25) (($ $ $) 27) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-501) $) 25) (($ $ (-501)) NIL))) -(((-918 |#1|) (-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -3838 ((-578 (-501)) $)) (-15 -3306 ((-1048 (-501)) $)) (-15 -3640 ((-578 (-501)) $)) (-15 -3261 ((-578 (-501)) $)) (-15 -4085 ($ (-578 (-501)))) (-15 -2567 ($ (-578 (-501)) (-578 (-501)))))) (-501)) (T -918)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-3306 (*1 *2 *1) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-4085 (*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-2567 (*1 *1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501))))) -(-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -3838 ((-578 (-501)) $)) (-15 -3306 ((-1048 (-501)) $)) (-15 -3640 ((-578 (-501)) $)) (-15 -3261 ((-578 (-501)) $)) (-15 -4085 ($ (-578 (-501)))) (-15 -2567 ($ (-578 (-501)) (-578 (-501)))))) -((-3265 (((-50) (-375 (-501)) (-501)) 9))) -(((-919) (-10 -7 (-15 -3265 ((-50) (-375 (-501)) (-501))))) (T -919)) -((-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-501))) (-5 *4 (-501)) (-5 *2 (-50)) (-5 *1 (-919))))) -(-10 -7 (-15 -3265 ((-50) (-375 (-501)) (-501)))) -((-3796 (((-501)) 13)) (-2232 (((-501)) 16)) (-3113 (((-1154) (-501)) 15)) (-3400 (((-501) (-501)) 17) (((-501)) 12))) -(((-920) (-10 -7 (-15 -3400 ((-501))) (-15 -3796 ((-501))) (-15 -3400 ((-501) (-501))) (-15 -3113 ((-1154) (-501))) (-15 -2232 ((-501))))) (T -920)) -((-2232 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-920)))) (-3400 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))) (-3796 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))) (-3400 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920))))) -(-10 -7 (-15 -3400 ((-501))) (-15 -3796 ((-501))) (-15 -3400 ((-501) (-501))) (-15 -3113 ((-1154) (-501))) (-15 -2232 ((-501)))) -((-2452 (((-373 |#1|) |#1|) 40)) (-3739 (((-373 |#1|) |#1|) 39))) -(((-921 |#1|) (-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1|))) (-1125 (-375 (-501)))) (T -921)) -((-2452 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1125 (-375 (-501)))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1125 (-375 (-501))))))) -(-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1|))) -((-2870 (((-3 (-375 (-501)) "failed") |#1|) 14)) (-1696 (((-107) |#1|) 13)) (-3518 (((-375 (-501)) |#1|) 9))) -(((-922 |#1|) (-10 -7 (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|))) (-950 (-375 (-501)))) (T -922)) -((-2870 (*1 *2 *3) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-922 *3)) (-4 *3 (-950 *2)))) (-1696 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-922 *3)) (-4 *3 (-950 (-375 (-501)))))) (-3518 (*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-922 *3)) (-4 *3 (-950 *2))))) -(-10 -7 (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|))) -((-3754 ((|#2| $ "value" |#2|) 12)) (-2007 ((|#2| $ "value") 10)) (-2970 (((-107) $ $) 18))) -(((-923 |#1| |#2|) (-10 -8 (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -2970 ((-107) |#1| |#1|)) (-15 -2007 (|#2| |#1| "value"))) (-924 |#2|) (-1104)) (T -923)) -NIL -(-10 -8 (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -2970 ((-107) |#1| |#1|)) (-15 -2007 (|#2| |#1| "value"))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47)) (-1932 (((-501) $ $) 44)) (-2622 (((-107) $) 46)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-924 |#1|) (-1180) (-1104)) (T -924)) -((-1961 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-5 *2 (-578 *1)) (-4 *1 (-924 *3)))) (-3604 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-5 *2 (-578 *1)) (-4 *1 (-924 *3)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1104)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1104)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3)))) (-1932 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-501)))) (-2970 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))) (-3201 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))) (-1378 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *1)) (|has| *1 (-6 -4168)) (-4 *1 (-924 *3)) (-4 *3 (-1104)))) (-3754 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4168)) (-4 *1 (-924 *2)) (-4 *2 (-1104)))) (-1594 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-924 *2)) (-4 *2 (-1104))))) -(-13 (-454 |t#1|) (-10 -8 (-15 -1961 ((-578 $) $)) (-15 -3604 ((-578 $) $)) (-15 -2341 ((-107) $)) (-15 -2150 (|t#1| $)) (-15 -2007 (|t#1| $ "value")) (-15 -2622 ((-107) $)) (-15 -3386 ((-578 |t#1|) $)) (-15 -1932 ((-501) $ $)) (IF (|has| |t#1| (-1001)) (PROGN (-15 -2970 ((-107) $ $)) (-15 -3201 ((-107) $ $))) |noBranch|) (IF (|has| $ (-6 -4168)) (PROGN (-15 -1378 ($ $ (-578 $))) (-15 -3754 (|t#1| $ "value" |t#1|)) (-15 -1594 (|t#1| $ |t#1|))) |noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-3743 (($ $) 9) (($ $ (-701)) 43) (($ (-375 (-501))) 12) (($ (-501)) 15)) (-2899 (((-3 $ "failed") (-1064 $) (-839) (-786)) 23) (((-3 $ "failed") (-1064 $) (-839)) 28)) (-1342 (($ $ (-501)) 49)) (-3965 (((-701)) 16)) (-1250 (((-578 $) (-1064 $)) NIL) (((-578 $) (-1064 (-375 (-501)))) 54) (((-578 $) (-1064 (-501))) 59) (((-578 $) (-866 $)) 63) (((-578 $) (-866 (-375 (-501)))) 67) (((-578 $) (-866 (-501))) 71)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL) (($ $ (-375 (-501))) 47))) -(((-925 |#1|) (-10 -8 (-15 -3743 (|#1| (-501))) (-15 -3743 (|#1| (-375 (-501)))) (-15 -3743 (|#1| |#1| (-701))) (-15 -1250 ((-578 |#1|) (-866 (-501)))) (-15 -1250 ((-578 |#1|) (-866 (-375 (-501))))) (-15 -1250 ((-578 |#1|) (-866 |#1|))) (-15 -1250 ((-578 |#1|) (-1064 (-501)))) (-15 -1250 ((-578 |#1|) (-1064 (-375 (-501))))) (-15 -1250 ((-578 |#1|) (-1064 |#1|))) (-15 -2899 ((-3 |#1| "failed") (-1064 |#1|) (-839))) (-15 -2899 ((-3 |#1| "failed") (-1064 |#1|) (-839) (-786))) (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -1342 (|#1| |#1| (-501))) (-15 -3743 (|#1| |#1|)) (-15 ** (|#1| |#1| (-501))) (-15 -3965 ((-701))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839)))) (-926)) (T -925)) -((-3965 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) -(-10 -8 (-15 -3743 (|#1| (-501))) (-15 -3743 (|#1| (-375 (-501)))) (-15 -3743 (|#1| |#1| (-701))) (-15 -1250 ((-578 |#1|) (-866 (-501)))) (-15 -1250 ((-578 |#1|) (-866 (-375 (-501))))) (-15 -1250 ((-578 |#1|) (-866 |#1|))) (-15 -1250 ((-578 |#1|) (-1064 (-501)))) (-15 -1250 ((-578 |#1|) (-1064 (-375 (-501))))) (-15 -1250 ((-578 |#1|) (-1064 |#1|))) (-15 -2899 ((-3 |#1| "failed") (-1064 |#1|) (-839))) (-15 -2899 ((-3 |#1| "failed") (-1064 |#1|) (-839) (-786))) (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -1342 (|#1| |#1| (-501))) (-15 -3743 (|#1| |#1|)) (-15 ** (|#1| |#1| (-501))) (-15 -3965 ((-701))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 91)) (-2865 (($ $) 92)) (-1639 (((-107) $) 94)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 111)) (-1559 (((-373 $) $) 112)) (-3743 (($ $) 75) (($ $ (-701)) 61) (($ (-375 (-501))) 60) (($ (-501)) 59)) (-2781 (((-107) $ $) 102)) (-1417 (((-501) $) 129)) (-2540 (($) 17 T CONST)) (-2899 (((-3 $ "failed") (-1064 $) (-839) (-786)) 69) (((-3 $ "failed") (-1064 $) (-839)) 68)) (-3765 (((-3 (-501) "failed") $) 87 (|has| (-375 (-501)) (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 85 (|has| (-375 (-501)) (-950 (-375 (-501))))) (((-3 (-375 (-501)) "failed") $) 83)) (-3490 (((-501) $) 88 (|has| (-375 (-501)) (-950 (-501)))) (((-375 (-501)) $) 86 (|has| (-375 (-501)) (-950 (-375 (-501))))) (((-375 (-501)) $) 82)) (-2636 (($ $ (-786)) 58)) (-2859 (($ $ (-786)) 57)) (-3023 (($ $ $) 106)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 105)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 100)) (-1628 (((-107) $) 113)) (-2164 (((-107) $) 127)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 74)) (-4067 (((-107) $) 128)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 109)) (-4111 (($ $ $) 126)) (-1323 (($ $ $) 125)) (-3786 (((-3 (-1064 $) "failed") $) 70)) (-1741 (((-3 (-786) "failed") $) 72)) (-2731 (((-3 (-1064 $) "failed") $) 71)) (-1697 (($ (-578 $)) 98) (($ $ $) 97)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 114)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 99)) (-3664 (($ (-578 $)) 96) (($ $ $) 95)) (-3739 (((-373 $) $) 110)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 107)) (-3694 (((-3 $ "failed") $ $) 90)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 101)) (-1864 (((-701) $) 103)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 104)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 119) (($ $) 89) (($ (-375 (-501))) 84) (($ (-501)) 81) (($ (-375 (-501))) 78)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 93)) (-2391 (((-375 (-501)) $ $) 56)) (-1250 (((-578 $) (-1064 $)) 67) (((-578 $) (-1064 (-375 (-501)))) 66) (((-578 $) (-1064 (-501))) 65) (((-578 $) (-866 $)) 64) (((-578 $) (-866 (-375 (-501)))) 63) (((-578 $) (-866 (-501))) 62)) (-1720 (($ $) 130)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 115)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 123)) (-3768 (((-107) $ $) 122)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 124)) (-3762 (((-107) $ $) 121)) (-3803 (($ $ $) 120)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 116) (($ $ (-375 (-501))) 73)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ (-375 (-501)) $) 118) (($ $ (-375 (-501))) 117) (($ (-501) $) 80) (($ $ (-501)) 79) (($ (-375 (-501)) $) 77) (($ $ (-375 (-501))) 76))) -(((-926) (-1180)) (T -926)) -((-3743 (*1 *1 *1) (-4 *1 (-926))) (-1741 (*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-786)))) (-2731 (*1 *2 *1) (|partial| -12 (-5 *2 (-1064 *1)) (-4 *1 (-926)))) (-3786 (*1 *2 *1) (|partial| -12 (-5 *2 (-1064 *1)) (-4 *1 (-926)))) (-2899 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1064 *1)) (-5 *3 (-839)) (-5 *4 (-786)) (-4 *1 (-926)))) (-2899 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1064 *1)) (-5 *3 (-839)) (-4 *1 (-926)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-926)) (-5 *2 (-578 *1)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-1064 (-375 (-501)))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-1064 (-501))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-926)) (-5 *2 (-578 *1)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-866 (-501))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) (-3743 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-701)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-926)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-926)))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-786)))) (-2859 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-786)))) (-2391 (*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-375 (-501)))))) -(-13 (-134) (-775) (-156) (-331) (-380 (-375 (-501))) (-37 (-501)) (-37 (-375 (-501))) (-916) (-10 -8 (-15 -1741 ((-3 (-786) "failed") $)) (-15 -2731 ((-3 (-1064 $) "failed") $)) (-15 -3786 ((-3 (-1064 $) "failed") $)) (-15 -2899 ((-3 $ "failed") (-1064 $) (-839) (-786))) (-15 -2899 ((-3 $ "failed") (-1064 $) (-839))) (-15 -1250 ((-578 $) (-1064 $))) (-15 -1250 ((-578 $) (-1064 (-375 (-501))))) (-15 -1250 ((-578 $) (-1064 (-501)))) (-15 -1250 ((-578 $) (-866 $))) (-15 -1250 ((-578 $) (-866 (-375 (-501))))) (-15 -1250 ((-578 $) (-866 (-501)))) (-15 -3743 ($ $ (-701))) (-15 -3743 ($ $)) (-15 -3743 ($ (-375 (-501)))) (-15 -3743 ($ (-501))) (-15 -2636 ($ $ (-786))) (-15 -2859 ($ $ (-786))) (-15 -2391 ((-375 (-501)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 (-501)) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 (-501) (-501)) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-555 (-786)) . T) ((-156) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-380 (-375 (-501))) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 (-501)) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 (-501)) . T) ((-648 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-775) . T) ((-777) . T) ((-841) . T) ((-916) . T) ((-950 (-375 (-501))) . T) ((-950 (-501)) |has| (-375 (-501)) (-950 (-501))) ((-964 (-375 (-501))) . T) ((-964 (-501)) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T)) -((-2839 (((-2 (|:| |ans| |#2|) (|:| -1320 |#2|) (|:| |sol?| (-107))) (-501) |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 61))) -(((-927 |#1| |#2|) (-10 -7 (-15 -2839 ((-2 (|:| |ans| |#2|) (|:| -1320 |#2|) (|:| |sol?| (-107))) (-501) |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-27) (-389 |#1|))) (T -927)) -((-2839 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1070)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1090) (-27) (-389 *8))) (-4 *8 (-13 (-419) (-777) (-134) (-950 *3) (-577 *3))) (-5 *3 (-501)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1320 *4) (|:| |sol?| (-107)))) (-5 *1 (-927 *8 *4))))) -(-10 -7 (-15 -2839 ((-2 (|:| |ans| |#2|) (|:| -1320 |#2|) (|:| |sol?| (-107))) (-501) |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3007 (((-3 (-578 |#2|) "failed") (-501) |#2| |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47))) -(((-928 |#1| |#2|) (-10 -7 (-15 -3007 ((-3 (-578 |#2|) "failed") (-501) |#2| |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-27) (-389 |#1|))) (T -928)) -((-3007 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1070)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1090) (-27) (-389 *8))) (-4 *8 (-13 (-419) (-777) (-134) (-950 *3) (-577 *3))) (-5 *3 (-501)) (-5 *2 (-578 *4)) (-5 *1 (-928 *8 *4))))) -(-10 -7 (-15 -3007 ((-3 (-578 |#2|) "failed") (-501) |#2| |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2788 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2499 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-501)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-501) (-1 |#2| |#2|)) 30)) (-4061 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |c| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|)) 56)) (-4105 (((-2 (|:| |ans| (-375 |#2|)) (|:| |nosol| (-107))) (-375 |#2|) (-375 |#2|)) 61))) -(((-929 |#1| |#2|) (-10 -7 (-15 -4061 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |c| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|))) (-15 -4105 ((-2 (|:| |ans| (-375 |#2|)) (|:| |nosol| (-107))) (-375 |#2|) (-375 |#2|))) (-15 -2788 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2499 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-501)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-501) (-1 |#2| |#2|)))) (-13 (-331) (-134) (-950 (-501))) (-1125 |#1|)) (T -929)) -((-2788 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1125 *6)) (-4 *6 (-13 (-331) (-134) (-950 *4))) (-5 *4 (-501)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2499 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-929 *6 *3)))) (-4105 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |ans| (-375 *5)) (|:| |nosol| (-107)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-375 *5)))) (-4061 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-375 *6)) (|:| |c| (-375 *6)) (|:| -1348 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-375 *6))))) -(-10 -7 (-15 -4061 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |c| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|))) (-15 -4105 ((-2 (|:| |ans| (-375 |#2|)) (|:| |nosol| (-107))) (-375 |#2|) (-375 |#2|))) (-15 -2788 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2499 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-501)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-501) (-1 |#2| |#2|)))) -((-1361 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |h| |#2|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|)) 22)) (-2977 (((-3 (-578 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|)) 32))) -(((-930 |#1| |#2|) (-10 -7 (-15 -1361 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |h| |#2|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|))) (-15 -2977 ((-3 (-578 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|)))) (-13 (-331) (-134) (-950 (-501))) (-1125 |#1|)) (T -930)) -((-2977 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-375 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-375 *5)))) (-1361 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-375 *6)) (|:| |h| *6) (|:| |c1| (-375 *6)) (|:| |c2| (-375 *6)) (|:| -1348 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-375 *6))))) -(-10 -7 (-15 -1361 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |h| |#2|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|))) (-15 -2977 ((-3 (-578 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|)))) -((-2934 (((-1 |#1|) (-578 (-2 (|:| -2150 |#1|) (|:| -1506 (-501))))) 37)) (-1326 (((-1 |#1|) (-997 |#1|)) 45)) (-3927 (((-1 |#1|) (-1148 |#1|) (-1148 (-501)) (-501)) 34))) -(((-931 |#1|) (-10 -7 (-15 -1326 ((-1 |#1|) (-997 |#1|))) (-15 -2934 ((-1 |#1|) (-578 (-2 (|:| -2150 |#1|) (|:| -1506 (-501)))))) (-15 -3927 ((-1 |#1|) (-1148 |#1|) (-1148 (-501)) (-501)))) (-1001)) (T -931)) -((-3927 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 *6)) (-5 *4 (-1148 (-501))) (-5 *5 (-501)) (-4 *6 (-1001)) (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -2150 *4) (|:| -1506 (-501))))) (-4 *4 (-1001)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) (-1326 (*1 *2 *3) (-12 (-5 *3 (-997 *4)) (-4 *4 (-1001)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))) -(-10 -7 (-15 -1326 ((-1 |#1|) (-997 |#1|))) (-15 -2934 ((-1 |#1|) (-578 (-2 (|:| -2150 |#1|) (|:| -1506 (-501)))))) (-15 -3927 ((-1 |#1|) (-1148 |#1|) (-1148 (-501)) (-501)))) -((-3169 (((-701) (-301 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3169 ((-701) (-301 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|) (-13 (-336) (-331))) (T -932)) -((-3169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-301 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-4 *4 (-1125 (-375 *7))) (-4 *8 (-310 *6 *7 *4)) (-4 *9 (-13 (-336) (-331))) (-5 *2 (-701)) (-5 *1 (-932 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3169 ((-701) (-301 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-1248 (((-199) $) 6) (((-346) $) 9))) -(((-933) (-1180)) (T -933)) -NIL -(-13 (-556 (-199)) (-556 (-346))) -(((-556 (-199)) . T) ((-556 (-346)) . T)) -((-3237 (((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) 31) (((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501))) 28)) (-3915 (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501))) 33) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501))) 29) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) 32) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|) 27)) (-2175 (((-578 (-375 (-501))) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) 19)) (-1945 (((-375 (-501)) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) 16))) -(((-934 |#1|) (-10 -7 (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|)) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501)))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -1945 ((-375 (-501)) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -2175 ((-578 (-375 (-501))) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))))) (-1125 (-501))) (T -934)) -((-2175 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *2 (-578 (-375 (-501)))) (-5 *1 (-934 *4)) (-4 *4 (-1125 (-501))))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *2 (-375 (-501))) (-5 *1 (-934 *4)) (-4 *4 (-1125 (-501))))) (-3237 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))))) (-3237 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *4 (-375 (-501))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))))) (-3915 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *5) (|:| -1320 *5)))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-2 (|:| -1313 *5) (|:| -1320 *5))))) (-3915 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-375 (-501))))) (-3915 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) (-3915 (*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501)))))) -(-10 -7 (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|)) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501)))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -1945 ((-375 (-501)) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -2175 ((-578 (-375 (-501))) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))))) -((-3237 (((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) 35) (((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501))) 32)) (-3915 (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501))) 30) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501))) 26) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) 28) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|) 24))) -(((-935 |#1|) (-10 -7 (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|)) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501)))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) (-1125 (-375 (-501)))) (T -935)) -((-3237 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501)))))) (-3237 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *4 (-375 (-501))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *4)))) (-3915 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *5) (|:| -1320 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *5)) (-5 *4 (-2 (|:| -1313 *5) (|:| -1320 *5))))) (-3915 (*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *4) (|:| -1320 *4)))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *4)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501)))) (-5 *4 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) (-3915 (*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501))))))) -(-10 -7 (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|)) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501)))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) -((-2778 (((-578 (-346)) (-866 (-501)) (-346)) 27) (((-578 (-346)) (-866 (-375 (-501))) (-346)) 26)) (-2679 (((-578 (-578 (-346))) (-578 (-866 (-501))) (-578 (-1070)) (-346)) 36))) -(((-936) (-10 -7 (-15 -2778 ((-578 (-346)) (-866 (-375 (-501))) (-346))) (-15 -2778 ((-578 (-346)) (-866 (-501)) (-346))) (-15 -2679 ((-578 (-578 (-346))) (-578 (-866 (-501))) (-578 (-1070)) (-346))))) (T -936)) -((-2679 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 (-346)))) (-5 *1 (-936)) (-5 *5 (-346)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-866 (-501))) (-5 *2 (-578 (-346))) (-5 *1 (-936)) (-5 *4 (-346)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *2 (-578 (-346))) (-5 *1 (-936)) (-5 *4 (-346))))) -(-10 -7 (-15 -2778 ((-578 (-346)) (-866 (-375 (-501))) (-346))) (-15 -2778 ((-578 (-346)) (-866 (-501)) (-346))) (-15 -2679 ((-578 (-578 (-346))) (-578 (-866 (-501))) (-578 (-1070)) (-346)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 70)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) NIL) (($ $ (-701)) NIL) (($ (-375 (-501))) NIL) (($ (-501)) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) 65)) (-2540 (($) NIL T CONST)) (-2899 (((-3 $ "failed") (-1064 $) (-839) (-786)) NIL) (((-3 $ "failed") (-1064 $) (-839)) 49)) (-3765 (((-3 (-375 (-501)) "failed") $) NIL (|has| (-375 (-501)) (-950 (-375 (-501))))) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-501) "failed") $) NIL (-1405 (|has| (-375 (-501)) (-950 (-501))) (|has| |#1| (-950 (-501)))))) (-3490 (((-375 (-501)) $) 14 (|has| (-375 (-501)) (-950 (-375 (-501))))) (((-375 (-501)) $) 14) ((|#1| $) 108) (((-501) $) NIL (-1405 (|has| (-375 (-501)) (-950 (-501))) (|has| |#1| (-950 (-501)))))) (-2636 (($ $ (-786)) 40)) (-2859 (($ $ (-786)) 41)) (-3023 (($ $ $) NIL)) (-2038 (((-375 (-501)) $ $) 18)) (-2174 (((-3 $ "failed") $) 83)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) 60)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL)) (-4067 (((-107) $) 63)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3786 (((-3 (-1064 $) "failed") $) 78)) (-1741 (((-3 (-786) "failed") $) 77)) (-2731 (((-3 (-1064 $) "failed") $) 75)) (-2245 (((-3 (-968 $ (-1064 $)) "failed") $) 73)) (-1697 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 84)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3691 (((-786) $) 82) (($ (-501)) NIL) (($ (-375 (-501))) NIL) (($ $) 57) (($ (-375 (-501))) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 110)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-2391 (((-375 (-501)) $ $) 24)) (-1250 (((-578 $) (-1064 $)) 55) (((-578 $) (-1064 (-375 (-501)))) NIL) (((-578 $) (-1064 (-501))) NIL) (((-578 $) (-866 $)) NIL) (((-578 $) (-866 (-375 (-501)))) NIL) (((-578 $) (-866 (-501))) NIL)) (-1220 (($ (-968 $ (-1064 $)) (-786)) 39)) (-1720 (($ $) 19)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 28 T CONST)) (-1925 (($) 34 T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 71)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 21)) (-3803 (($ $ $) 32)) (-3797 (($ $) 33) (($ $ $) 69)) (-3790 (($ $ $) 103)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL) (($ $ (-375 (-501))) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 91) (($ $ $) 96) (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL) (($ (-501) $) 91) (($ $ (-501)) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-937 |#1|) (-13 (-926) (-380 |#1|) (-37 |#1|) (-10 -8 (-15 -1220 ($ (-968 $ (-1064 $)) (-786))) (-15 -2245 ((-3 (-968 $ (-1064 $)) "failed") $)) (-15 -2038 ((-375 (-501)) $ $)))) (-13 (-775) (-331) (-933))) (T -937)) -((-1220 (*1 *1 *2 *3) (-12 (-5 *2 (-968 (-937 *4) (-1064 (-937 *4)))) (-5 *3 (-786)) (-5 *1 (-937 *4)) (-4 *4 (-13 (-775) (-331) (-933))))) (-2245 (*1 *2 *1) (|partial| -12 (-5 *2 (-968 (-937 *3) (-1064 (-937 *3)))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-775) (-331) (-933))))) (-2038 (*1 *2 *1 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-775) (-331) (-933)))))) -(-13 (-926) (-380 |#1|) (-37 |#1|) (-10 -8 (-15 -1220 ($ (-968 $ (-1064 $)) (-786))) (-15 -2245 ((-3 (-968 $ (-1064 $)) "failed") $)) (-15 -2038 ((-375 (-501)) $ $)))) -((-2201 (((-2 (|:| -2499 |#2|) (|:| -3996 (-578 |#1|))) |#2| (-578 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-938 |#1| |#2|) (-10 -7 (-15 -2201 (|#2| |#2| |#1|)) (-15 -2201 ((-2 (|:| -2499 |#2|) (|:| -3996 (-578 |#1|))) |#2| (-578 |#1|)))) (-331) (-593 |#1|)) (T -938)) -((-2201 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-2 (|:| -2499 *3) (|:| -3996 (-578 *5)))) (-5 *1 (-938 *5 *3)) (-5 *4 (-578 *5)) (-4 *3 (-593 *5)))) (-2201 (*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-938 *3 *2)) (-4 *2 (-593 *3))))) -(-10 -7 (-15 -2201 (|#2| |#2| |#1|)) (-15 -2201 ((-2 (|:| -2499 |#2|) (|:| -3996 (-578 |#1|))) |#2| (-578 |#1|)))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2589 ((|#1| $ |#1|) 14)) (-3754 ((|#1| $ |#1|) 12)) (-4088 (($ |#1|) 10)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2007 ((|#1| $) 11)) (-3993 ((|#1| $) 13)) (-3691 (((-786) $) 21 (|has| |#1| (-1001)))) (-3751 (((-107) $ $) 9))) -(((-939 |#1|) (-13 (-1104) (-10 -8 (-15 -4088 ($ |#1|)) (-15 -2007 (|#1| $)) (-15 -3754 (|#1| $ |#1|)) (-15 -3993 (|#1| $)) (-15 -2589 (|#1| $ |#1|)) (-15 -3751 ((-107) $ $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|))) (-1104)) (T -939)) -((-4088 (*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) (-2007 (*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) (-3754 (*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) (-3993 (*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) (-2589 (*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) (-3751 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-939 *3)) (-4 *3 (-1104))))) -(-13 (-1104) (-10 -8 (-15 -4088 ($ |#1|)) (-15 -2007 (|#1| $)) (-15 -3754 (|#1| $ |#1|)) (-15 -3993 (|#1| $)) (-15 -2589 (|#1| $ |#1|)) (-15 -3751 ((-107) $ $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|))) -((-3736 (((-107) $ $) NIL)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) NIL)) (-2073 (((-578 $) (-578 |#4|)) 104) (((-578 $) (-578 |#4|) (-107)) 105) (((-578 $) (-578 |#4|) (-107) (-107)) 103) (((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107)) 106)) (-3800 (((-578 |#3|) $) NIL)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2599 ((|#4| |#4| $) NIL)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 98)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 53)) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) 26 (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4110 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) NIL)) (-3490 (($ (-578 |#4|)) NIL)) (-1199 (((-3 $ "failed") $) 39)) (-1778 ((|#4| |#4| $) 56)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1526 (($ |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 72 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1379 ((|#4| |#4| $) NIL)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) NIL)) (-3180 (((-107) |#4| $) NIL)) (-1209 (((-107) |#4| $) NIL)) (-1972 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1825 (((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107)) 118)) (-2732 (((-578 |#4|) $) 16 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2361 ((|#3| $) 33)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#4|) $) 17 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-2519 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 21)) (-3453 (((-578 |#3|) $) NIL)) (-1479 (((-107) |#3| $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) NIL)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 96)) (-1383 (((-3 |#4| "failed") $) 37)) (-1618 (((-578 $) |#4| $) 79)) (-2217 (((-3 (-107) (-578 $)) |#4| $) NIL)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 89) (((-107) |#4| $) 51)) (-3420 (((-578 $) |#4| $) 101) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) 102) (((-578 $) |#4| (-578 $)) NIL)) (-3326 (((-578 $) (-578 |#4|) (-107) (-107) (-107)) 113)) (-2297 (($ |#4| $) 69) (($ (-578 |#4|) $) 70) (((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 66)) (-3574 (((-578 |#4|) $) NIL)) (-1590 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1762 ((|#4| |#4| $) NIL)) (-3523 (((-107) $ $) NIL)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3618 ((|#4| |#4| $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-3 |#4| "failed") $) 35)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3478 (((-3 $ "failed") $ |#4|) 47)) (-3718 (($ $ |#4|) NIL) (((-578 $) |#4| $) 81) (((-578 $) |#4| (-578 $)) NIL) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) 76)) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 15)) (-3122 (($) 13)) (-1201 (((-701) $) NIL)) (-3713 (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) 12)) (-1248 (((-490) $) NIL (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 20)) (-1638 (($ $ |#3|) 42)) (-2482 (($ $ |#3|) 43)) (-1218 (($ $) NIL)) (-3737 (($ $ |#3|) NIL)) (-3691 (((-786) $) 31) (((-578 |#4|) $) 40)) (-4104 (((-701) $) NIL (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) NIL)) (-1709 (((-578 $) |#4| $) 78) (((-578 $) |#4| (-578 $)) NIL) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) NIL)) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) NIL)) (-3036 (((-107) |#4| $) NIL)) (-2659 (((-107) |#3| $) 52)) (-3751 (((-107) $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-940 |#1| |#2| |#3| |#4|) (-13 (-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2297 ((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107))) (-15 -3326 ((-578 $) (-578 |#4|) (-107) (-107) (-107))) (-15 -1825 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107))))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -940)) -((-2297 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) (-4 *3 (-972 *5 *6 *7)))) (-2073 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-2073 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3326 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-1825 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-940 *5 *6 *7 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-578 *8))))) -(-13 (-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2297 ((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107))) (-15 -3326 ((-578 $) (-578 |#4|) (-107) (-107) (-107))) (-15 -1825 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107))))) -((-1794 (((-578 (-2 (|:| |radval| (-282 (-501))) (|:| |radmult| (-501)) (|:| |radvect| (-578 (-621 (-282 (-501))))))) (-621 (-375 (-866 (-501))))) 58)) (-3042 (((-578 (-621 (-282 (-501)))) (-282 (-501)) (-621 (-375 (-866 (-501))))) 48)) (-1425 (((-578 (-282 (-501))) (-621 (-375 (-866 (-501))))) 41)) (-1415 (((-578 (-621 (-282 (-501)))) (-621 (-375 (-866 (-501))))) 67)) (-2058 (((-621 (-282 (-501))) (-621 (-282 (-501)))) 33)) (-1568 (((-578 (-621 (-282 (-501)))) (-578 (-621 (-282 (-501))))) 61)) (-3500 (((-3 (-621 (-282 (-501))) "failed") (-621 (-375 (-866 (-501))))) 65))) -(((-941) (-10 -7 (-15 -1794 ((-578 (-2 (|:| |radval| (-282 (-501))) (|:| |radmult| (-501)) (|:| |radvect| (-578 (-621 (-282 (-501))))))) (-621 (-375 (-866 (-501)))))) (-15 -3042 ((-578 (-621 (-282 (-501)))) (-282 (-501)) (-621 (-375 (-866 (-501)))))) (-15 -1425 ((-578 (-282 (-501))) (-621 (-375 (-866 (-501)))))) (-15 -3500 ((-3 (-621 (-282 (-501))) "failed") (-621 (-375 (-866 (-501)))))) (-15 -2058 ((-621 (-282 (-501))) (-621 (-282 (-501))))) (-15 -1568 ((-578 (-621 (-282 (-501)))) (-578 (-621 (-282 (-501)))))) (-15 -1415 ((-578 (-621 (-282 (-501)))) (-621 (-375 (-866 (-501)))))))) (T -941)) -((-1415 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941)))) (-1568 (*1 *2 *2) (-12 (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941)))) (-2058 (*1 *2 *2) (-12 (-5 *2 (-621 (-282 (-501)))) (-5 *1 (-941)))) (-3500 (*1 *2 *3) (|partial| -12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-621 (-282 (-501)))) (-5 *1 (-941)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-282 (-501)))) (-5 *1 (-941)))) (-3042 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941)) (-5 *3 (-282 (-501))))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-2 (|:| |radval| (-282 (-501))) (|:| |radmult| (-501)) (|:| |radvect| (-578 (-621 (-282 (-501)))))))) (-5 *1 (-941))))) -(-10 -7 (-15 -1794 ((-578 (-2 (|:| |radval| (-282 (-501))) (|:| |radmult| (-501)) (|:| |radvect| (-578 (-621 (-282 (-501))))))) (-621 (-375 (-866 (-501)))))) (-15 -3042 ((-578 (-621 (-282 (-501)))) (-282 (-501)) (-621 (-375 (-866 (-501)))))) (-15 -1425 ((-578 (-282 (-501))) (-621 (-375 (-866 (-501)))))) (-15 -3500 ((-3 (-621 (-282 (-501))) "failed") (-621 (-375 (-866 (-501)))))) (-15 -2058 ((-621 (-282 (-501))) (-621 (-282 (-501))))) (-15 -1568 ((-578 (-621 (-282 (-501)))) (-578 (-621 (-282 (-501)))))) (-15 -1415 ((-578 (-621 (-282 (-501)))) (-621 (-375 (-866 (-501))))))) -((-3017 (((-578 (-621 |#1|)) (-578 (-621 |#1|))) 56) (((-621 |#1|) (-621 |#1|)) 55) (((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-578 (-621 |#1|))) 54) (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 51)) (-2590 (((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839)) 50) (((-621 |#1|) (-621 |#1|) (-839)) 49)) (-2374 (((-578 (-621 (-501))) (-578 (-578 (-501)))) 66) (((-578 (-621 (-501))) (-578 (-822 (-501))) (-501)) 65) (((-621 (-501)) (-578 (-501))) 62) (((-621 (-501)) (-822 (-501)) (-501)) 61)) (-3869 (((-621 (-866 |#1|)) (-701)) 79)) (-3595 (((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839)) 36 (|has| |#1| (-6 (-4169 "*")))) (((-621 |#1|) (-621 |#1|) (-839)) 34 (|has| |#1| (-6 (-4169 "*")))))) -(((-942 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4169 "*"))) (-15 -3595 ((-621 |#1|) (-621 |#1|) (-839))) |noBranch|) (IF (|has| |#1| (-6 (-4169 "*"))) (-15 -3595 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839))) |noBranch|) (-15 -3869 ((-621 (-866 |#1|)) (-701))) (-15 -2590 ((-621 |#1|) (-621 |#1|) (-839))) (-15 -2590 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839))) (-15 -3017 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3017 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -3017 ((-621 |#1|) (-621 |#1|))) (-15 -3017 ((-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -2374 ((-621 (-501)) (-822 (-501)) (-501))) (-15 -2374 ((-621 (-501)) (-578 (-501)))) (-15 -2374 ((-578 (-621 (-501))) (-578 (-822 (-501))) (-501))) (-15 -2374 ((-578 (-621 (-501))) (-578 (-578 (-501)))))) (-959)) (T -942)) -((-2374 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-501)))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-942 *4)) (-4 *4 (-959)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-822 (-501)))) (-5 *4 (-501)) (-5 *2 (-578 (-621 *4))) (-5 *1 (-942 *5)) (-4 *5 (-959)))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-942 *4)) (-4 *4 (-959)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *3 (-822 (-501))) (-5 *4 (-501)) (-5 *2 (-621 *4)) (-5 *1 (-942 *5)) (-4 *5 (-959)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-578 (-621 *3))) (-4 *3 (-959)) (-5 *1 (-942 *3)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-942 *3)))) (-3017 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-621 *3))) (-4 *3 (-959)) (-5 *1 (-942 *3)))) (-3017 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-942 *3)))) (-2590 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-621 *4))) (-5 *3 (-839)) (-4 *4 (-959)) (-5 *1 (-942 *4)))) (-2590 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-839)) (-4 *4 (-959)) (-5 *1 (-942 *4)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-621 (-866 *4))) (-5 *1 (-942 *4)) (-4 *4 (-959)))) (-3595 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-621 *4))) (-5 *3 (-839)) (|has| *4 (-6 (-4169 "*"))) (-4 *4 (-959)) (-5 *1 (-942 *4)))) (-3595 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-839)) (|has| *4 (-6 (-4169 "*"))) (-4 *4 (-959)) (-5 *1 (-942 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4169 "*"))) (-15 -3595 ((-621 |#1|) (-621 |#1|) (-839))) |noBranch|) (IF (|has| |#1| (-6 (-4169 "*"))) (-15 -3595 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839))) |noBranch|) (-15 -3869 ((-621 (-866 |#1|)) (-701))) (-15 -2590 ((-621 |#1|) (-621 |#1|) (-839))) (-15 -2590 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839))) (-15 -3017 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3017 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -3017 ((-621 |#1|) (-621 |#1|))) (-15 -3017 ((-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -2374 ((-621 (-501)) (-822 (-501)) (-501))) (-15 -2374 ((-621 (-501)) (-578 (-501)))) (-15 -2374 ((-578 (-621 (-501))) (-578 (-822 (-501))) (-501))) (-15 -2374 ((-578 (-621 (-501))) (-578 (-578 (-501)))))) -((-2704 (((-621 |#1|) (-578 (-621 |#1|)) (-1148 |#1|)) 48 (|has| |#1| (-276)))) (-3205 (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 (-1148 |#1|))) 71 (|has| |#1| (-331))) (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 |#1|)) 69 (|has| |#1| (-331)))) (-2767 (((-1148 |#1|) (-578 (-1148 |#1|)) (-501)) 73 (-12 (|has| |#1| (-331)) (|has| |#1| (-336))))) (-3715 (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-839)) 78 (-12 (|has| |#1| (-331)) (|has| |#1| (-336)))) (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107)) 76 (-12 (|has| |#1| (-331)) (|has| |#1| (-336)))) (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|))) 75 (-12 (|has| |#1| (-331)) (|has| |#1| (-336)))) (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107) (-501) (-501)) 74 (-12 (|has| |#1| (-331)) (|has| |#1| (-336))))) (-1216 (((-107) (-578 (-621 |#1|))) 67 (|has| |#1| (-331))) (((-107) (-578 (-621 |#1|)) (-501)) 66 (|has| |#1| (-331)))) (-2320 (((-1148 (-1148 |#1|)) (-578 (-621 |#1|)) (-1148 |#1|)) 46 (|has| |#1| (-276)))) (-3193 (((-621 |#1|) (-578 (-621 |#1|)) (-621 |#1|)) 32)) (-1940 (((-621 |#1|) (-1148 (-1148 |#1|))) 29)) (-1287 (((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-501)) 62 (|has| |#1| (-331))) (((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|))) 61 (|has| |#1| (-331))) (((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-107) (-501)) 60 (|has| |#1| (-331))))) -(((-943 |#1|) (-10 -7 (-15 -1940 ((-621 |#1|) (-1148 (-1148 |#1|)))) (-15 -3193 ((-621 |#1|) (-578 (-621 |#1|)) (-621 |#1|))) (IF (|has| |#1| (-276)) (PROGN (-15 -2320 ((-1148 (-1148 |#1|)) (-578 (-621 |#1|)) (-1148 |#1|))) (-15 -2704 ((-621 |#1|) (-578 (-621 |#1|)) (-1148 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-107) (-501))) (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-501))) (-15 -1216 ((-107) (-578 (-621 |#1|)) (-501))) (-15 -1216 ((-107) (-578 (-621 |#1|)))) (-15 -3205 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 |#1|))) (-15 -3205 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 (-1148 |#1|))))) |noBranch|) (IF (|has| |#1| (-336)) (IF (|has| |#1| (-331)) (PROGN (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107) (-501) (-501))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-839))) (-15 -2767 ((-1148 |#1|) (-578 (-1148 |#1|)) (-501)))) |noBranch|) |noBranch|)) (-959)) (T -943)) -((-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1148 *5))) (-5 *4 (-501)) (-5 *2 (-1148 *5)) (-5 *1 (-943 *5)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959)))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *4 (-336)) (-4 *4 (-959)) (-5 *2 (-578 (-578 (-621 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-578 (-621 *4))))) (-3715 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-501)) (-4 *6 (-331)) (-4 *6 (-336)) (-4 *6 (-959)) (-5 *2 (-578 (-578 (-621 *6)))) (-5 *1 (-943 *6)) (-5 *3 (-578 (-621 *6))))) (-3205 (*1 *2 *3 *4) (-12 (-5 *4 (-1148 (-1148 *5))) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) (-3205 (*1 *2 *3 *4) (-12 (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-578 (-621 *4))) (-4 *4 (-331)) (-4 *4 (-959)) (-5 *2 (-107)) (-5 *1 (-943 *4)))) (-1216 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-501)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-107)) (-5 *1 (-943 *5)))) (-1287 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-501)) (-5 *2 (-621 *5)) (-5 *1 (-943 *5)) (-4 *5 (-331)) (-4 *5 (-959)))) (-1287 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-621 *4))) (-5 *2 (-621 *4)) (-5 *1 (-943 *4)) (-4 *4 (-331)) (-4 *4 (-959)))) (-1287 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-621 *6))) (-5 *4 (-107)) (-5 *5 (-501)) (-5 *2 (-621 *6)) (-5 *1 (-943 *6)) (-4 *6 (-331)) (-4 *6 (-959)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-1148 *5)) (-4 *5 (-276)) (-4 *5 (-959)) (-5 *2 (-621 *5)) (-5 *1 (-943 *5)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-4 *5 (-276)) (-4 *5 (-959)) (-5 *2 (-1148 (-1148 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1148 *5)))) (-3193 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-621 *4))) (-5 *2 (-621 *4)) (-4 *4 (-959)) (-5 *1 (-943 *4)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-1148 (-1148 *4))) (-4 *4 (-959)) (-5 *2 (-621 *4)) (-5 *1 (-943 *4))))) -(-10 -7 (-15 -1940 ((-621 |#1|) (-1148 (-1148 |#1|)))) (-15 -3193 ((-621 |#1|) (-578 (-621 |#1|)) (-621 |#1|))) (IF (|has| |#1| (-276)) (PROGN (-15 -2320 ((-1148 (-1148 |#1|)) (-578 (-621 |#1|)) (-1148 |#1|))) (-15 -2704 ((-621 |#1|) (-578 (-621 |#1|)) (-1148 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-107) (-501))) (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-501))) (-15 -1216 ((-107) (-578 (-621 |#1|)) (-501))) (-15 -1216 ((-107) (-578 (-621 |#1|)))) (-15 -3205 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 |#1|))) (-15 -3205 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 (-1148 |#1|))))) |noBranch|) (IF (|has| |#1| (-336)) (IF (|has| |#1| (-331)) (PROGN (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107) (-501) (-501))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-839))) (-15 -2767 ((-1148 |#1|) (-578 (-1148 |#1|)) (-501)))) |noBranch|) |noBranch|)) -((-3972 ((|#1| (-839) |#1|) 9))) -(((-944 |#1|) (-10 -7 (-15 -3972 (|#1| (-839) |#1|))) (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $))))) (T -944)) -((-3972 (*1 *2 *3 *2) (-12 (-5 *3 (-839)) (-5 *1 (-944 *2)) (-4 *2 (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $)))))))) -(-10 -7 (-15 -3972 (|#1| (-839) |#1|))) -((-3890 ((|#1| |#1| (-839)) 9))) -(((-945 |#1|) (-10 -7 (-15 -3890 (|#1| |#1| (-839)))) (-13 (-1001) (-10 -8 (-15 * ($ $ $))))) (T -945)) -((-3890 (*1 *2 *2 *3) (-12 (-5 *3 (-839)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1001) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3890 (|#1| |#1| (-839)))) -((-3691 ((|#1| (-280)) 11) (((-1154) |#1|) 9))) -(((-946 |#1|) (-10 -7 (-15 -3691 ((-1154) |#1|)) (-15 -3691 (|#1| (-280)))) (-1104)) (T -946)) -((-3691 (*1 *2 *3) (-12 (-5 *3 (-280)) (-5 *1 (-946 *2)) (-4 *2 (-1104)))) (-3691 (*1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *1 (-946 *3)) (-4 *3 (-1104))))) -(-10 -7 (-15 -3691 ((-1154) |#1|)) (-15 -3691 (|#1| (-280)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3547 (($ |#4|) 25)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-1316 ((|#4| $) 27)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 46) (($ (-501)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3965 (((-701)) 43)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 21 T CONST)) (-1925 (($) 23 T CONST)) (-3751 (((-107) $ $) 40)) (-3797 (($ $) 31) (($ $ $) NIL)) (-3790 (($ $ $) 29)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-947 |#1| |#2| |#3| |#4| |#5|) (-13 (-156) (-37 |#1|) (-10 -8 (-15 -3547 ($ |#4|)) (-15 -3691 ($ |#4|)) (-15 -1316 (|#4| $)))) (-331) (-723) (-777) (-870 |#1| |#2| |#3|) (-578 |#4|)) (T -947)) -((-3547 (*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-870 *3 *4 *5)) (-14 *6 (-578 *2)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-870 *3 *4 *5)) (-14 *6 (-578 *2)))) (-1316 (*1 *2 *1) (-12 (-4 *2 (-870 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-14 *6 (-578 *2))))) -(-13 (-156) (-37 |#1|) (-10 -8 (-15 -3547 ($ |#4|)) (-15 -3691 ($ |#4|)) (-15 -1316 (|#4| $)))) -((-3736 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-1991 (((-1154) $ (-1070) (-1070)) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-1879 (((-107) (-107)) 39)) (-2813 (((-107) (-107)) 38)) (-3754 (((-50) $ (-1070) (-50)) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 (-50) "failed") (-1070) $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-2256 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-3 (-50) "failed") (-1070) $) NIL)) (-1526 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-2156 (((-50) $ (-1070) (-50)) NIL (|has| $ (-6 -4168)))) (-1905 (((-50) $ (-1070)) NIL)) (-2732 (((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-1070) $) NIL (|has| (-1070) (-777)))) (-3380 (((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-1522 (((-1070) $) NIL (|has| (-1070) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4168))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-1500 (((-578 (-1070)) $) 34)) (-3576 (((-107) (-1070) $) NIL)) (-1328 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL)) (-4114 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL)) (-2658 (((-578 (-1070)) $) NIL)) (-2852 (((-107) (-1070) $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-1190 (((-50) $) NIL (|has| (-1070) (-777)))) (-2520 (((-3 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) "failed") (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL)) (-3084 (($ $ (-50)) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-262 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-50)) (-578 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-262 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-578 (-262 (-50)))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-4137 (((-578 (-50)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 (((-50) $ (-1070)) 35) (((-50) $ (-1070) (-50)) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-701) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001)))) (((-701) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-3691 (((-786) $) 37 (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-948) (-13 (-1081 (-1070) (-50)) (-10 -7 (-15 -1879 ((-107) (-107))) (-15 -2813 ((-107) (-107))) (-6 -4167)))) (T -948)) -((-1879 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-948)))) (-2813 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-948))))) -(-13 (-1081 (-1070) (-50)) (-10 -7 (-15 -1879 ((-107) (-107))) (-15 -2813 ((-107) (-107))) (-6 -4167))) -((-3490 ((|#2| $) 10))) -(((-949 |#1| |#2|) (-10 -8 (-15 -3490 (|#2| |#1|))) (-950 |#2|) (-1104)) (T -949)) -NIL -(-10 -8 (-15 -3490 (|#2| |#1|))) -((-3765 (((-3 |#1| "failed") $) 7)) (-3490 ((|#1| $) 8)) (-3691 (($ |#1|) 6))) -(((-950 |#1|) (-1180) (-1104)) (T -950)) -((-3490 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1104)))) (-3765 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1104)))) (-3691 (*1 *1 *2) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1104))))) -(-13 (-10 -8 (-15 -3691 ($ |t#1|)) (-15 -3765 ((-3 |t#1| "failed") $)) (-15 -3490 (|t#1| $)))) -((-1963 (((-578 (-578 (-262 (-375 (-866 |#2|))))) (-578 (-866 |#2|)) (-578 (-1070))) 35))) -(((-951 |#1| |#2|) (-10 -7 (-15 -1963 ((-578 (-578 (-262 (-375 (-866 |#2|))))) (-578 (-866 |#2|)) (-578 (-1070))))) (-508) (-13 (-508) (-950 |#1|))) (T -951)) -((-1963 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-4 *6 (-13 (-508) (-950 *5))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *6)))))) (-5 *1 (-951 *5 *6))))) -(-10 -7 (-15 -1963 ((-578 (-578 (-262 (-375 (-866 |#2|))))) (-578 (-866 |#2|)) (-578 (-1070))))) -((-3800 (((-578 (-1070)) (-375 (-866 |#1|))) 15)) (-3728 (((-375 (-1064 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070)) 22)) (-3794 (((-375 (-866 |#1|)) (-375 (-1064 (-375 (-866 |#1|)))) (-1070)) 24)) (-2752 (((-3 (-1070) "failed") (-375 (-866 |#1|))) 18)) (-3195 (((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-262 (-375 (-866 |#1|))))) 29) (((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|)))) 31) (((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-1070)) (-578 (-375 (-866 |#1|)))) 26) (((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|))) 27)) (-3691 (((-375 (-866 |#1|)) |#1|) 11))) -(((-952 |#1|) (-10 -7 (-15 -3800 ((-578 (-1070)) (-375 (-866 |#1|)))) (-15 -2752 ((-3 (-1070) "failed") (-375 (-866 |#1|)))) (-15 -3728 ((-375 (-1064 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070))) (-15 -3794 ((-375 (-866 |#1|)) (-375 (-1064 (-375 (-866 |#1|)))) (-1070))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|)))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-1070)) (-578 (-375 (-866 |#1|))))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -3691 ((-375 (-866 |#1|)) |#1|))) (-508)) (T -952)) -((-3691 (*1 *2 *3) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-952 *3)) (-4 *3 (-508)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-262 (-375 (-866 *4))))) (-5 *2 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *1 (-952 *4)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *3 (-262 (-375 (-866 *4)))) (-5 *2 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *1 (-952 *4)))) (-3195 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-5 *4 (-578 (-375 (-866 *5)))) (-5 *2 (-375 (-866 *5))) (-4 *5 (-508)) (-5 *1 (-952 *5)))) (-3195 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-375 (-866 *4))) (-5 *3 (-1070)) (-4 *4 (-508)) (-5 *1 (-952 *4)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-1064 (-375 (-866 *5))))) (-5 *4 (-1070)) (-5 *2 (-375 (-866 *5))) (-5 *1 (-952 *5)) (-4 *5 (-508)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-375 (-1064 (-375 (-866 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-375 (-866 *5))))) (-2752 (*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-1070)) (-5 *1 (-952 *4)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-1070))) (-5 *1 (-952 *4))))) -(-10 -7 (-15 -3800 ((-578 (-1070)) (-375 (-866 |#1|)))) (-15 -2752 ((-3 (-1070) "failed") (-375 (-866 |#1|)))) (-15 -3728 ((-375 (-1064 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070))) (-15 -3794 ((-375 (-866 |#1|)) (-375 (-1064 (-375 (-866 |#1|)))) (-1070))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|)))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-1070)) (-578 (-375 (-866 |#1|))))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -3691 ((-375 (-866 |#1|)) |#1|))) -((-3602 (((-346)) 15)) (-1326 (((-1 (-346)) (-346) (-346)) 20)) (-1348 (((-1 (-346)) (-701)) 42)) (-1640 (((-346)) 33)) (-2091 (((-1 (-346)) (-346) (-346)) 34)) (-3783 (((-346)) 26)) (-1802 (((-1 (-346)) (-346)) 27)) (-3322 (((-346) (-701)) 37)) (-1621 (((-1 (-346)) (-701)) 38)) (-2958 (((-1 (-346)) (-701) (-701)) 41)) (-3360 (((-1 (-346)) (-701) (-701)) 39))) -(((-953) (-10 -7 (-15 -3602 ((-346))) (-15 -1640 ((-346))) (-15 -3783 ((-346))) (-15 -3322 ((-346) (-701))) (-15 -1326 ((-1 (-346)) (-346) (-346))) (-15 -2091 ((-1 (-346)) (-346) (-346))) (-15 -1802 ((-1 (-346)) (-346))) (-15 -1621 ((-1 (-346)) (-701))) (-15 -3360 ((-1 (-346)) (-701) (-701))) (-15 -2958 ((-1 (-346)) (-701) (-701))) (-15 -1348 ((-1 (-346)) (-701))))) (T -953)) -((-1348 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))) (-2958 (*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))) (-3360 (*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))) (-1802 (*1 *2 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346)))) (-2091 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346)))) (-1326 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-346)) (-5 *1 (-953)))) (-3783 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953)))) (-1640 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953)))) (-3602 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953))))) -(-10 -7 (-15 -3602 ((-346))) (-15 -1640 ((-346))) (-15 -3783 ((-346))) (-15 -3322 ((-346) (-701))) (-15 -1326 ((-1 (-346)) (-346) (-346))) (-15 -2091 ((-1 (-346)) (-346) (-346))) (-15 -1802 ((-1 (-346)) (-346))) (-15 -1621 ((-1 (-346)) (-701))) (-15 -3360 ((-1 (-346)) (-701) (-701))) (-15 -2958 ((-1 (-346)) (-701) (-701))) (-15 -1348 ((-1 (-346)) (-701)))) -((-3739 (((-373 |#1|) |#1|) 31))) -(((-954 |#1|) (-10 -7 (-15 -3739 ((-373 |#1|) |#1|))) (-1125 (-375 (-866 (-501))))) (T -954)) -((-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-954 *3)) (-4 *3 (-1125 (-375 (-866 (-501)))))))) -(-10 -7 (-15 -3739 ((-373 |#1|) |#1|))) -((-3167 (((-375 (-373 (-866 |#1|))) (-375 (-866 |#1|))) 14))) -(((-955 |#1|) (-10 -7 (-15 -3167 ((-375 (-373 (-866 |#1|))) (-375 (-866 |#1|))))) (-276)) (T -955)) -((-3167 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-276)) (-5 *2 (-375 (-373 (-866 *4)))) (-5 *1 (-955 *4))))) -(-10 -7 (-15 -3167 ((-375 (-373 (-866 |#1|))) (-375 (-866 |#1|))))) -((-3736 (((-107) $ $) NIL)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 (-710 |#1| (-787 |#2|)))))) (-578 (-710 |#1| (-787 |#2|)))) NIL)) (-2073 (((-578 $) (-578 (-710 |#1| (-787 |#2|)))) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-107)) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-107) (-107)) NIL)) (-3800 (((-578 (-787 |#2|)) $) NIL)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-1549 (((-107) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) $) NIL)) (-2599 (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-3676 (((-578 (-2 (|:| |val| (-710 |#1| (-787 |#2|))) (|:| -3709 $))) (-710 |#1| (-787 |#2|)) $) NIL)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ (-787 |#2|)) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 (-710 |#1| (-787 |#2|)) "failed") $ (-787 |#2|)) NIL)) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) NIL (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4113 (((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|))) $ (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) (-1 (-107) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)))) NIL)) (-4110 (((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|))) $) NIL (|has| |#1| (-508)))) (-2339 (((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|))) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 (-710 |#1| (-787 |#2|)))) NIL)) (-3490 (($ (-578 (-710 |#1| (-787 |#2|)))) NIL)) (-1199 (((-3 $ "failed") $) NIL)) (-1778 (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-710 |#1| (-787 |#2|)) (-1001))))) (-1526 (($ (-710 |#1| (-787 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (($ (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-710 |#1| (-787 |#2|))) (|:| |den| |#1|)) (-710 |#1| (-787 |#2|)) $) NIL (|has| |#1| (-508)))) (-2130 (((-107) (-710 |#1| (-787 |#2|)) $ (-1 (-107) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)))) NIL)) (-1379 (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-3547 (((-710 |#1| (-787 |#2|)) (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) $ (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (((-710 |#1| (-787 |#2|)) (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) $ (-710 |#1| (-787 |#2|))) NIL (|has| $ (-6 -4167))) (((-710 |#1| (-787 |#2|)) (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $ (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) (-1 (-107) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)))) NIL)) (-1577 (((-2 (|:| -2109 (-578 (-710 |#1| (-787 |#2|)))) (|:| -2342 (-578 (-710 |#1| (-787 |#2|))))) $) NIL)) (-3180 (((-107) (-710 |#1| (-787 |#2|)) $) NIL)) (-1209 (((-107) (-710 |#1| (-787 |#2|)) $) NIL)) (-1972 (((-107) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) $) NIL)) (-2732 (((-578 (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1964 (((-107) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) $) NIL)) (-2361 (((-787 |#2|) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-710 |#1| (-787 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-710 |#1| (-787 |#2|)) (-1001))))) (-2519 (($ (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) $) NIL)) (-3453 (((-578 (-787 |#2|)) $) NIL)) (-1479 (((-107) (-787 |#2|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2064 (((-3 (-710 |#1| (-787 |#2|)) (-578 $)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-2019 (((-578 (-2 (|:| |val| (-710 |#1| (-787 |#2|))) (|:| -3709 $))) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-1383 (((-3 (-710 |#1| (-787 |#2|)) "failed") $) NIL)) (-1618 (((-578 $) (-710 |#1| (-787 |#2|)) $) NIL)) (-2217 (((-3 (-107) (-578 $)) (-710 |#1| (-787 |#2|)) $) NIL)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) (-710 |#1| (-787 |#2|)) $) NIL)) (-3420 (((-578 $) (-710 |#1| (-787 |#2|)) $) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) $) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-578 $)) NIL) (((-578 $) (-710 |#1| (-787 |#2|)) (-578 $)) NIL)) (-2297 (($ (-710 |#1| (-787 |#2|)) $) NIL) (($ (-578 (-710 |#1| (-787 |#2|))) $) NIL)) (-3574 (((-578 (-710 |#1| (-787 |#2|))) $) NIL)) (-1590 (((-107) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) $) NIL)) (-1762 (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-3523 (((-107) $ $) NIL)) (-2200 (((-2 (|:| |num| (-710 |#1| (-787 |#2|))) (|:| |den| |#1|)) (-710 |#1| (-787 |#2|)) $) NIL (|has| |#1| (-508)))) (-2667 (((-107) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) $) NIL)) (-3618 (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-3 (-710 |#1| (-787 |#2|)) "failed") $) NIL)) (-2520 (((-3 (-710 |#1| (-787 |#2|)) "failed") (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL)) (-3478 (((-3 $ "failed") $ (-710 |#1| (-787 |#2|))) NIL)) (-3718 (($ $ (-710 |#1| (-787 |#2|))) NIL) (((-578 $) (-710 |#1| (-787 |#2|)) $) NIL) (((-578 $) (-710 |#1| (-787 |#2|)) (-578 $)) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) $) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-578 $)) NIL)) (-2369 (((-107) (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|)))) NIL (-12 (|has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|)))) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (($ $ (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) NIL (-12 (|has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|)))) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (($ $ (-262 (-710 |#1| (-787 |#2|)))) NIL (-12 (|has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|)))) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (($ $ (-578 (-262 (-710 |#1| (-787 |#2|))))) NIL (-12 (|has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|)))) (|has| (-710 |#1| (-787 |#2|)) (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-1201 (((-701) $) NIL)) (-3713 (((-701) (-710 |#1| (-787 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (((-701) (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-710 |#1| (-787 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-710 |#1| (-787 |#2|)))) NIL)) (-1638 (($ $ (-787 |#2|)) NIL)) (-2482 (($ $ (-787 |#2|)) NIL)) (-1218 (($ $) NIL)) (-3737 (($ $ (-787 |#2|)) NIL)) (-3691 (((-786) $) NIL) (((-578 (-710 |#1| (-787 |#2|))) $) NIL)) (-4104 (((-701) $) NIL (|has| (-787 |#2|) (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 (-710 |#1| (-787 |#2|))))) "failed") (-578 (-710 |#1| (-787 |#2|))) (-1 (-107) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 (-710 |#1| (-787 |#2|))))) "failed") (-578 (-710 |#1| (-787 |#2|))) (-1 (-107) (-710 |#1| (-787 |#2|))) (-1 (-107) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)))) NIL)) (-2560 (((-107) $ (-1 (-107) (-710 |#1| (-787 |#2|)) (-578 (-710 |#1| (-787 |#2|))))) NIL)) (-1709 (((-578 $) (-710 |#1| (-787 |#2|)) $) NIL) (((-578 $) (-710 |#1| (-787 |#2|)) (-578 $)) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) $) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-578 $)) NIL)) (-1200 (((-107) (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2617 (((-578 (-787 |#2|)) $) NIL)) (-3036 (((-107) (-710 |#1| (-787 |#2|)) $) NIL)) (-2659 (((-107) (-787 |#2|) $) NIL)) (-3751 (((-107) $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-956 |#1| |#2|) (-13 (-977 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|))) (-10 -8 (-15 -2073 ((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-107) (-107))))) (-419) (-578 (-1070))) (T -956)) -((-2073 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-956 *5 *6))))) -(-13 (-977 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|))) (-10 -8 (-15 -2073 ((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-107) (-107))))) -((-1326 (((-1 (-501)) (-991 (-501))) 33)) (-1800 (((-501) (-501) (-501) (-501) (-501)) 30)) (-1670 (((-1 (-501)) |RationalNumber|) NIL)) (-3199 (((-1 (-501)) |RationalNumber|) NIL)) (-1299 (((-1 (-501)) (-501) |RationalNumber|) NIL))) -(((-957) (-10 -7 (-15 -1326 ((-1 (-501)) (-991 (-501)))) (-15 -1299 ((-1 (-501)) (-501) |RationalNumber|)) (-15 -1670 ((-1 (-501)) |RationalNumber|)) (-15 -3199 ((-1 (-501)) |RationalNumber|)) (-15 -1800 ((-501) (-501) (-501) (-501) (-501))))) (T -957)) -((-1800 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-957)))) (-3199 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957)))) (-1670 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957)))) (-1299 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957)) (-5 *3 (-501)))) (-1326 (*1 *2 *3) (-12 (-5 *3 (-991 (-501))) (-5 *2 (-1 (-501))) (-5 *1 (-957))))) -(-10 -7 (-15 -1326 ((-1 (-501)) (-991 (-501)))) (-15 -1299 ((-1 (-501)) (-501) |RationalNumber|)) (-15 -1670 ((-1 (-501)) |RationalNumber|)) (-15 -3199 ((-1 (-501)) |RationalNumber|)) (-15 -1800 ((-501) (-501) (-501) (-501) (-501)))) -((-3691 (((-786) $) NIL) (($ (-501)) 10))) -(((-958 |#1|) (-10 -8 (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-959)) (T -958)) -NIL -(-10 -8 (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-959) (-1180)) (T -959)) -((-3965 (*1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-701)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-959))))) -(-13 (-965) (-657) (-583 $) (-10 -8 (-15 -3965 ((-701))) (-15 -3691 ($ (-501))) (-6 -4164))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-2981 (((-107) $) 27)) (-4007 (((-107) $) 16)) (-1648 (((-701) $) 13)) (-3248 (((-701) $) 14)) (-3697 (((-107) $) 25)) (-3719 (((-107) $) 29))) -(((-960 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3248 ((-701) |#1|)) (-15 -1648 ((-701) |#1|)) (-15 -3719 ((-107) |#1|)) (-15 -2981 ((-107) |#1|)) (-15 -3697 ((-107) |#1|)) (-15 -4007 ((-107) |#1|))) (-961 |#2| |#3| |#4| |#5| |#6|) (-701) (-701) (-959) (-211 |#3| |#4|) (-211 |#2| |#4|)) (T -960)) -NIL -(-10 -8 (-15 -3248 ((-701) |#1|)) (-15 -1648 ((-701) |#1|)) (-15 -3719 ((-107) |#1|)) (-15 -2981 ((-107) |#1|)) (-15 -3697 ((-107) |#1|)) (-15 -4007 ((-107) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2981 (((-107) $) 51)) (-3177 (((-3 $ "failed") $ $) 19)) (-4007 (((-107) $) 53)) (-2997 (((-107) $ (-701)) 61)) (-2540 (($) 17 T CONST)) (-1933 (($ $) 34 (|has| |#3| (-276)))) (-2358 ((|#4| $ (-501)) 39)) (-3689 (((-701) $) 33 (|has| |#3| (-508)))) (-1905 ((|#3| $ (-501) (-501)) 41)) (-2732 (((-578 |#3|) $) 68 (|has| $ (-6 -4167)))) (-3752 (((-701) $) 32 (|has| |#3| (-508)))) (-3552 (((-578 |#5|) $) 31 (|has| |#3| (-508)))) (-1648 (((-701) $) 45)) (-3248 (((-701) $) 44)) (-3379 (((-107) $ (-701)) 60)) (-1567 (((-501) $) 49)) (-2734 (((-501) $) 47)) (-3380 (((-578 |#3|) $) 69 (|has| $ (-6 -4167)))) (-2211 (((-107) |#3| $) 71 (-12 (|has| |#3| (-1001)) (|has| $ (-6 -4167))))) (-2969 (((-501) $) 48)) (-3491 (((-501) $) 46)) (-2630 (($ (-578 (-578 |#3|))) 54)) (-2519 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2237 (((-578 (-578 |#3|)) $) 43)) (-3155 (((-107) $ (-701)) 59)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-508)))) (-2369 (((-107) (-1 (-107) |#3|) $) 66 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#3|) (-578 |#3|)) 75 (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-262 |#3|)) 73 (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-578 (-262 |#3|))) 72 (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))) (-1262 (((-107) $ $) 55)) (-1407 (((-107) $) 58)) (-3122 (($) 57)) (-2007 ((|#3| $ (-501) (-501)) 42) ((|#3| $ (-501) (-501) |#3|) 40)) (-3697 (((-107) $) 52)) (-3713 (((-701) |#3| $) 70 (-12 (|has| |#3| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#3|) $) 67 (|has| $ (-6 -4167)))) (-3764 (($ $) 56)) (-2952 ((|#5| $ (-501)) 38)) (-3691 (((-786) $) 11)) (-1200 (((-107) (-1 (-107) |#3|) $) 65 (|has| $ (-6 -4167)))) (-3719 (((-107) $) 50)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#3|) 35 (|has| |#3| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3581 (((-701) $) 62 (|has| $ (-6 -4167))))) -(((-961 |#1| |#2| |#3| |#4| |#5|) (-1180) (-701) (-701) (-959) (-211 |t#2| |t#3|) (-211 |t#1| |t#3|)) (T -961)) -((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)))) (-2630 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *5))) (-4 *5 (-959)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))) (-1567 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-701)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-701)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-578 (-578 *5))))) (-2007 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)) (-4 *2 (-959)))) (-1905 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)) (-4 *2 (-959)))) (-2007 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *2 (-959)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)))) (-2358 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *6 *2 *7)) (-4 *6 (-959)) (-4 *7 (-211 *4 *6)) (-4 *2 (-211 *5 *6)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *6 *7 *2)) (-4 *6 (-959)) (-4 *7 (-211 *5 *6)) (-4 *2 (-211 *4 *6)))) (-1212 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)))) (-3694 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-961 *3 *4 *2 *5 *6)) (-4 *2 (-959)) (-4 *5 (-211 *4 *2)) (-4 *6 (-211 *3 *2)) (-4 *2 (-508)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-961 *3 *4 *2 *5 *6)) (-4 *2 (-959)) (-4 *5 (-211 *4 *2)) (-4 *6 (-211 *3 *2)) (-4 *2 (-331)))) (-1933 (*1 *1 *1) (-12 (-4 *1 (-961 *2 *3 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *2 *4)) (-4 *4 (-276)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-701)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-701)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-578 *7))))) -(-13 (-106 |t#3| |t#3|) (-454 |t#3|) (-10 -8 (-6 -4167) (IF (|has| |t#3| (-156)) (-6 (-648 |t#3|)) |noBranch|) (-15 -2630 ($ (-578 (-578 |t#3|)))) (-15 -4007 ((-107) $)) (-15 -3697 ((-107) $)) (-15 -2981 ((-107) $)) (-15 -3719 ((-107) $)) (-15 -1567 ((-501) $)) (-15 -2969 ((-501) $)) (-15 -2734 ((-501) $)) (-15 -3491 ((-501) $)) (-15 -1648 ((-701) $)) (-15 -3248 ((-701) $)) (-15 -2237 ((-578 (-578 |t#3|)) $)) (-15 -2007 (|t#3| $ (-501) (-501))) (-15 -1905 (|t#3| $ (-501) (-501))) (-15 -2007 (|t#3| $ (-501) (-501) |t#3|)) (-15 -2358 (|t#4| $ (-501))) (-15 -2952 (|t#5| $ (-501))) (-15 -1212 ($ (-1 |t#3| |t#3|) $)) (-15 -1212 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-508)) (-15 -3694 ((-3 $ "failed") $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-331)) (-15 -3803 ($ $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-276)) (-15 -1933 ($ $)) |noBranch|) (IF (|has| |t#3| (-508)) (PROGN (-15 -3689 ((-701) $)) (-15 -3752 ((-701) $)) (-15 -3552 ((-578 |t#5|) $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-106 |#3| |#3|) . T) ((-123) . T) ((-555 (-786)) . T) ((-278 |#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))) ((-454 |#3|) . T) ((-476 |#3| |#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))) ((-583 |#3|) . T) ((-648 |#3|) |has| |#3| (-156)) ((-964 |#3|) . T) ((-1001) . T) ((-1104) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2981 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-4007 (((-107) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-1933 (($ $) 40 (|has| |#3| (-276)))) (-2358 (((-212 |#2| |#3|) $ (-501)) 29)) (-1380 (($ (-621 |#3|)) 38)) (-3689 (((-701) $) 42 (|has| |#3| (-508)))) (-1905 ((|#3| $ (-501) (-501)) NIL)) (-2732 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-3752 (((-701) $) 44 (|has| |#3| (-508)))) (-3552 (((-578 (-212 |#1| |#3|)) $) 48 (|has| |#3| (-508)))) (-1648 (((-701) $) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-1567 (((-501) $) NIL)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-2969 (((-501) $) NIL)) (-3491 (((-501) $) NIL)) (-2630 (($ (-578 (-578 |#3|))) 24)) (-2519 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2237 (((-578 (-578 |#3|)) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-508)))) (-2369 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-262 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-578 (-262 |#3|))) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#3| $ (-501) (-501)) NIL) ((|#3| $ (-501) (-501) |#3|) NIL)) (-3613 (((-125)) 51 (|has| |#3| (-331)))) (-3697 (((-107) $) NIL)) (-3713 (((-701) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001)))) (((-701) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) 60 (|has| |#3| (-556 (-490))))) (-2952 (((-212 |#1| |#3|) $ (-501)) 33)) (-3691 (((-786) $) 16) (((-621 |#3|) $) 35)) (-1200 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-3719 (((-107) $) NIL)) (-1850 (($) 13 T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#3|) NIL (|has| |#3| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-962 |#1| |#2| |#3|) (-13 (-961 |#1| |#2| |#3| (-212 |#2| |#3|) (-212 |#1| |#3|)) (-555 (-621 |#3|)) (-10 -8 (IF (|has| |#3| (-331)) (-6 (-1156 |#3|)) |noBranch|) (IF (|has| |#3| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (-15 -1380 ($ (-621 |#3|))) (-15 -3691 ((-621 |#3|) $)))) (-701) (-701) (-959)) (T -962)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-621 *5)) (-5 *1 (-962 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-959)))) (-1380 (*1 *1 *2) (-12 (-5 *2 (-621 *5)) (-4 *5 (-959)) (-5 *1 (-962 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701))))) -(-13 (-961 |#1| |#2| |#3| (-212 |#2| |#3|) (-212 |#1| |#3|)) (-555 (-621 |#3|)) (-10 -8 (IF (|has| |#3| (-331)) (-6 (-1156 |#3|)) |noBranch|) (IF (|has| |#3| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (-15 -1380 ($ (-621 |#3|))) (-15 -3691 ((-621 |#3|) $)))) -((-3547 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1212 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-963 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1212 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3547 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-701) (-701) (-959) (-211 |#2| |#3|) (-211 |#1| |#3|) (-961 |#1| |#2| |#3| |#4| |#5|) (-959) (-211 |#2| |#7|) (-211 |#1| |#7|) (-961 |#1| |#2| |#7| |#8| |#9|)) (T -963)) -((-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-959)) (-4 *2 (-959)) (-14 *5 (-701)) (-14 *6 (-701)) (-4 *8 (-211 *6 *7)) (-4 *9 (-211 *5 *7)) (-4 *10 (-211 *6 *2)) (-4 *11 (-211 *5 *2)) (-5 *1 (-963 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-961 *5 *6 *7 *8 *9)) (-4 *12 (-961 *5 *6 *2 *10 *11)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-959)) (-4 *10 (-959)) (-14 *5 (-701)) (-14 *6 (-701)) (-4 *8 (-211 *6 *7)) (-4 *9 (-211 *5 *7)) (-4 *2 (-961 *5 *6 *10 *11 *12)) (-5 *1 (-963 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-961 *5 *6 *7 *8 *9)) (-4 *11 (-211 *6 *10)) (-4 *12 (-211 *5 *10))))) -(-10 -7 (-15 -1212 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3547 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ |#1|) 23))) -(((-964 |#1|) (-1180) (-965)) (T -964)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-965))))) +((-2082 (($ $ (-996 $)) 7) (($ $ (-1073)) 6))) +(((-880) (-1184)) (T -880)) +((-2082 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-880)))) (-2082 (*1 *1 *1 *2) (-12 (-4 *1 (-880)) (-5 *2 (-1073))))) +(-13 (-10 -8 (-15 -2082 ($ $ (-1073))) (-15 -2082 ($ $ (-996 $))))) +((-3442 (((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)) (-1073)) 23) (((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073))) 24) (((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 |#1|))) (-874 |#1|) (-1073) (-874 |#1|) (-1073)) 41))) +(((-881 |#1|) (-10 -7 (-15 -3442 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 |#1|))) (-874 |#1|) (-1073) (-874 |#1|) (-1073))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)) (-1073)))) (-13 (-333) (-134))) (T -881)) +((-3442 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-5 *5 (-1073)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *6))) (|:| |prim| (-1069 *6)))) (-5 *1 (-881 *6)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5)))) (-3442 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1073)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5))))) +(-10 -7 (-15 -3442 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 |#1|))) (-874 |#1|) (-1073) (-874 |#1|) (-1073))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)) (-1073)))) +((-2400 (((-583 |#1|) |#1| |#1|) 42)) (-3849 (((-107) |#1|) 39)) (-2450 ((|#1| |#1|) 64)) (-3090 ((|#1| |#1|) 63))) +(((-882 |#1|) (-10 -7 (-15 -3849 ((-107) |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2400 ((-583 |#1|) |#1| |#1|))) (-502)) (T -882)) +((-2400 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-882 *3)) (-4 *3 (-502)))) (-2450 (*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))) (-3090 (*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))) (-3849 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-882 *3)) (-4 *3 (-502))))) +(-10 -7 (-15 -3849 ((-107) |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2400 ((-583 |#1|) |#1| |#1|))) +((-2808 (((-1158) (-787)) 9))) +(((-883) (-10 -7 (-15 -2808 ((-1158) (-787))))) (T -883)) +((-2808 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-883))))) +(-10 -7 (-15 -2808 ((-1158) (-787)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 62 (|has| |#1| (-509)))) (-1213 (($ $) 63 (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 28)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) 24)) (-3621 (((-3 $ "failed") $) 35)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-1436 (($ $ |#1| |#2| $) 47)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 16)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-2349 ((|#2| $) 19)) (-3328 (($ (-1 |#2| |#2|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ $) 23)) (-1191 ((|#1| $) 21)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 40)) (-4141 ((|#1| $) NIL)) (-1953 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-123)) (|has| |#1| (-509))))) (-2476 (((-3 $ "failed") $ $) 74 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-3688 ((|#2| $) 17)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) 39) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 34) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ |#2|) 31)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 15)) (-2053 (($ $ $ (-703)) 58 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 68 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 54) (($ $ (-703)) 55)) (-2396 (($) 22 T CONST)) (-2409 (($) 12 T CONST)) (-1547 (((-107) $ $) 67)) (-1667 (($ $ |#1|) 75 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) 53) (($ $ (-703)) 51)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-884 |#1| |#2|) (-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -1953 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) (-961) (-724)) (T -884)) +((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-884 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-961)) (-4 *2 (-724))))) +(-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -1953 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-1640 (($ $ $) 63 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (-4038 (((-3 $ "failed") $ $) 50 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-1611 (((-703)) 34 (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3324 ((|#2| $) 21)) (-2234 ((|#1| $) 20)) (-3092 (($) NIL (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3209 (($) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3848 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2967 (($ $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-3099 (($ $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-2599 (($ |#1| |#2|) 19)) (-1549 (((-843) $) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 37 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-3448 (($ (-843)) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3206 (((-1021) $) NIL)) (-1487 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-3394 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2256 (((-787) $) 14)) (-2207 (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-843)) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2396 (($) 40 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-2409 (($) 24 (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) CONST)) (-1606 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1583 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1547 (((-107) $ $) 18)) (-1595 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1572 (((-107) $ $) 66 (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1667 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-1654 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1642 (($ $ $) 43 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (** (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) 31 (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-843)) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (* (($ (-517) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-703) $) 46 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ (-843) $) NIL (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ $ $) 27 (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))))) +(((-885 |#1| |#2|) (-13 (-1003) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |noBranch|) |noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |noBranch|) |noBranch|) (-15 -2599 ($ |#1| |#2|)) (-15 -2234 (|#1| $)) (-15 -3324 (|#2| $)))) (-1003) (-1003)) (T -885)) +((-2599 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-2234 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1003)))) (-3324 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1003))))) +(-13 (-1003) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |noBranch|) |noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |noBranch|) |noBranch|) (-15 -2599 ($ |#1| |#2|)) (-15 -2234 (|#1| $)) (-15 -3324 (|#2| $)))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2797 (($ $ $) 43)) (-3237 (($ $ $) 44)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3099 ((|#1| $) 45)) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-886 |#1|) (-1184) (-779)) (T -886)) +((-3099 (*1 *2 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) (-2797 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4180) (-15 -3099 (|t#1| $)) (-15 -3237 ($ $ $)) (-15 -2797 ($ $ $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-3624 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|) 84)) (-3081 ((|#2| |#2| |#2|) 82)) (-3131 (((-2 (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|) 86)) (-3169 (((-2 (|:| |coef1| |#2|) (|:| -1401 |#2|)) |#2| |#2|) 88)) (-1714 (((-2 (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|) 106 (|has| |#1| (-421)))) (-3850 (((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 45)) (-2406 (((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 63)) (-2312 (((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 65)) (-1385 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-1713 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 70)) (-3498 (((-2 (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|) 96)) (-3253 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 73)) (-2329 (((-583 (-703)) |#2| |#2|) 81)) (-4028 ((|#1| |#2| |#2|) 41)) (-2963 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|) 104 (|has| |#1| (-421)))) (-2407 ((|#1| |#2| |#2|) 102 (|has| |#1| (-421)))) (-4026 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 43)) (-3475 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 62)) (-3388 ((|#1| |#2| |#2|) 60)) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|) 35)) (-2683 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-1446 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-1855 ((|#2| |#2| |#2|) 74)) (-2840 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 68)) (-3753 ((|#2| |#2| |#2| (-703)) 66)) (-1401 ((|#2| |#2| |#2|) 110 (|has| |#1| (-421)))) (-2476 (((-1153 |#2|) (-1153 |#2|) |#1|) 21)) (-1306 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|) 38)) (-1271 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|) 94)) (-3010 ((|#1| |#2|) 91)) (-2015 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 72)) (-2809 ((|#2| |#2| |#2| (-703)) 71)) (-3292 (((-583 |#2|) |#2| |#2|) 79)) (-2072 ((|#2| |#2| |#1| |#1| (-703)) 49)) (-2903 ((|#1| |#1| |#1| (-703)) 48)) (* (((-1153 |#2|) |#1| (-1153 |#2|)) 16))) +(((-887 |#1| |#2|) (-10 -7 (-15 -3388 (|#1| |#2| |#2|)) (-15 -3475 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2406 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2312 ((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| (-703))) (-15 -2840 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1713 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2809 (|#2| |#2| |#2| (-703))) (-15 -2015 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1855 (|#2| |#2| |#2|)) (-15 -1446 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1385 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3081 (|#2| |#2| |#2|)) (-15 -3624 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3131 ((-2 (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3169 ((-2 (|:| |coef1| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3010 (|#1| |#2|)) (-15 -1271 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3498 ((-2 (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3292 ((-583 |#2|) |#2| |#2|)) (-15 -2329 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2407 (|#1| |#2| |#2|)) (-15 -2963 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1714 ((-2 (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1401 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1153 |#2|) |#1| (-1153 |#2|))) (-15 -2476 ((-1153 |#2|) (-1153 |#2|) |#1|)) (-15 -1874 ((-2 (|:| -1931 |#1|) (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -1306 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -2903 (|#1| |#1| |#1| (-703))) (-15 -2072 (|#2| |#2| |#1| |#1| (-703))) (-15 -2683 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4028 (|#1| |#2| |#2|)) (-15 -4026 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3850 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|))) (-509) (-1130 |#1|)) (T -887)) +((-3850 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-4026 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-4028 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) (-2683 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-2072 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-2903 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-887 *2 *4)) (-4 *4 (-1130 *2)))) (-1306 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1874 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1931 *4) (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2476 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) (-1401 (*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-1714 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2963 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2407 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) (-2329 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3292 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3498 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1271 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3010 (*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) (-3169 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3131 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3624 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3081 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-1385 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1446 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1855 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-3253 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-2015 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-2809 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4)))) (-1713 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-2840 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-3753 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4)))) (-2312 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2406 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3475 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3388 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2))))) +(-10 -7 (-15 -3388 (|#1| |#2| |#2|)) (-15 -3475 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2406 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2312 ((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| (-703))) (-15 -2840 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1713 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2809 (|#2| |#2| |#2| (-703))) (-15 -2015 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1855 (|#2| |#2| |#2|)) (-15 -1446 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1385 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3081 (|#2| |#2| |#2|)) (-15 -3624 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3131 ((-2 (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3169 ((-2 (|:| |coef1| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3010 (|#1| |#2|)) (-15 -1271 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3498 ((-2 (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3292 ((-583 |#2|) |#2| |#2|)) (-15 -2329 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2407 (|#1| |#2| |#2|)) (-15 -2963 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1714 ((-2 (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1401 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1153 |#2|) |#1| (-1153 |#2|))) (-15 -2476 ((-1153 |#2|) (-1153 |#2|) |#1|)) (-15 -1874 ((-2 (|:| -1931 |#1|) (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -1306 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -2903 (|#1| |#1| |#1| (-703))) (-15 -2072 (|#2| |#2| |#1| |#1| (-703))) (-15 -2683 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4028 (|#1| |#2| |#2|)) (-15 -4026 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3850 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) NIL T CONST)) (-2027 (((-583 (-583 (-517))) (-583 (-517))) 28)) (-2380 (((-517) $) 44)) (-3790 (($ (-583 (-517))) 17)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3645 (((-583 (-517)) $) 11)) (-1487 (($ $) 31)) (-2256 (((-787) $) 42) (((-583 (-517)) $) 9)) (-2396 (($) 7 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 19)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 24) (($ (-843) $) NIL))) +(((-888) (-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3790 ($ (-583 (-517)))) (-15 -2027 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -2380 ((-517) $)) (-15 -1487 ($ $)) (-15 -2256 ((-583 (-517)) $))))) (T -888)) +((-3790 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))) (-2027 (*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-888)) (-5 *3 (-583 (-517))))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-888)))) (-1487 (*1 *1 *1) (-5 *1 (-888))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888))))) +(-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3790 ($ (-583 (-517)))) (-15 -2027 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -2380 ((-517) $)) (-15 -1487 ($ $)) (-15 -2256 ((-583 (-517)) $)))) +((-1667 (($ $ |#2|) 30)) (-1654 (($ $) 22) (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-377 (-517)) $) 26) (($ $ (-377 (-517))) 28))) +(((-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1667 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-890 |#2| |#3| |#4|) (-961) (-724) (-779)) (T -889)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1667 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#3|) $) 74)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3201 (((-107) $) 73)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-583 |#3|) (-583 |#2|)) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3688 ((|#2| $) 64)) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) +(((-890 |#1| |#2| |#3|) (-1184) (-961) (-724) (-779)) (T -890)) +((-1191 (*1 *2 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-961)))) (-4152 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *2 (-724)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-724)) (-4 *2 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-724)) (-4 *6 (-779)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779))))) +(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -1339 ($ $ |t#3| |t#2|)) (-15 -1339 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -4152 ($ $)) (-15 -1191 (|t#1| $)) (-15 -3688 (|t#2| $)) (-15 -1364 ((-583 |t#3|) $)) (-15 -3201 ((-107) $)) (-15 -1545 ($ $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-1422 (((-998 (-199)) $) 8)) (-1408 (((-998 (-199)) $) 9)) (-1397 (((-998 (-199)) $) 10)) (-2602 (((-583 (-583 (-865 (-199)))) $) 11)) (-2256 (((-787) $) 6))) +(((-891) (-1184)) (T -891)) +((-2602 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-583 (-583 (-865 (-199))))))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199)))))) +(-13 (-557 (-787)) (-10 -8 (-15 -2602 ((-583 (-583 (-865 (-199)))) $)) (-15 -1397 ((-998 (-199)) $)) (-15 -1408 ((-998 (-199)) $)) (-15 -1422 ((-998 (-199)) $)))) +(((-557 (-787)) . T)) +((-1364 (((-583 |#4|) $) 23)) (-1235 (((-107) $) 47)) (-3586 (((-107) $) 46)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#4|) 35)) (-1615 (((-107) $) 48)) (-2512 (((-107) $ $) 54)) (-3630 (((-107) $ $) 57)) (-2703 (((-107) $) 52)) (-1677 (((-583 |#5|) (-583 |#5|) $) 89)) (-1741 (((-583 |#5|) (-583 |#5|) $) 86)) (-3060 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-3921 (((-583 |#4|) $) 27)) (-1792 (((-107) |#4| $) 29)) (-2690 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-2442 (($ $ |#4|) 32)) (-3759 (($ $ |#4|) 31)) (-1846 (($ $ |#4|) 33)) (-1547 (((-107) $ $) 39))) +(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3586 ((-107) |#1|)) (-15 -1677 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -1741 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3060 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2690 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1615 ((-107) |#1|)) (-15 -3630 ((-107) |#1| |#1|)) (-15 -2512 ((-107) |#1| |#1|)) (-15 -2703 ((-107) |#1|)) (-15 -1235 ((-107) |#1|)) (-15 -3166 ((-2 (|:| |under| |#1|) (|:| -2597 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -1846 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1792 ((-107) |#4| |#1|)) (-15 -3921 ((-583 |#4|) |#1|)) (-15 -1364 ((-583 |#4|) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-893 |#2| |#3| |#4| |#5|) (-961) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -892)) +NIL +(-10 -8 (-15 -3586 ((-107) |#1|)) (-15 -1677 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -1741 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3060 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2690 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1615 ((-107) |#1|)) (-15 -3630 ((-107) |#1| |#1|)) (-15 -2512 ((-107) |#1| |#1|)) (-15 -2703 ((-107) |#1|)) (-15 -1235 ((-107) |#1|)) (-15 -3166 ((-2 (|:| |under| |#1|) (|:| -2597 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -1846 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1792 ((-107) |#4| |#1|)) (-15 -3921 ((-583 |#4|) |#1|)) (-15 -1364 ((-583 |#4|) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180)))) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180)))) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3206 (((-1021) $) 10)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180))))) +(((-893 |#1| |#2| |#3| |#4|) (-1184) (-961) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -893)) +((-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-975 *3 *4 *2)) (-4 *2 (-779)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1792 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) (-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-1846 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-2442 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-3166 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2597 *1) (|:| |upper| *1))) (-4 *1 (-893 *4 *5 *3 *6)))) (-1235 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2512 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-3630 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2690 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3060 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1741 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))) (-1677 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107))))) +(-13 (-1003) (-138 |t#4|) (-557 (-583 |t#4|)) (-10 -8 (-6 -4180) (-15 -1772 ((-3 $ "failed") (-583 |t#4|))) (-15 -3189 ($ (-583 |t#4|))) (-15 -1976 (|t#3| $)) (-15 -1364 ((-583 |t#3|) $)) (-15 -3921 ((-583 |t#3|) $)) (-15 -1792 ((-107) |t#3| $)) (-15 -3759 ($ $ |t#3|)) (-15 -1846 ($ $ |t#3|)) (-15 -2442 ($ $ |t#3|)) (-15 -3166 ((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |t#3|)) (-15 -1235 ((-107) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -2703 ((-107) $)) (-15 -2512 ((-107) $ $)) (-15 -3630 ((-107) $ $)) (-15 -1615 ((-107) $)) (-15 -2690 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3060 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1741 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -1677 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -3586 ((-107) $))) |noBranch|))) +(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-1003) . T) ((-1108) . T)) +((-1681 (((-583 |#4|) |#4| |#4|) 116)) (-1935 (((-583 |#4|) (-583 |#4|) (-107)) 105 (|has| |#1| (-421))) (((-583 |#4|) (-583 |#4|)) 106 (|has| |#1| (-421)))) (-1964 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 34)) (-1665 (((-107) |#4|) 33)) (-3734 (((-583 |#4|) |#4|) 101 (|has| |#1| (-421)))) (-2499 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|)) 19)) (-1969 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 21)) (-2100 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 22)) (-2142 (((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|)) 72)) (-2355 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-1558 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 109)) (-3640 (((-583 |#4|) (-583 |#4|)) 108)) (-2783 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107)) 47) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 49)) (-3700 ((|#4| |#4| (-583 |#4|)) 48)) (-2371 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 112 (|has| |#1| (-421)))) (-3528 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 115 (|has| |#1| (-421)))) (-1632 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 114 (|has| |#1| (-421)))) (-1816 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 86) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 88) (((-583 |#4|) (-583 |#4|) |#4|) 119) (((-583 |#4|) |#4| |#4|) 117) (((-583 |#4|) (-583 |#4|)) 87)) (-3503 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 98 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-1603 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 40)) (-2284 (((-107) (-583 |#4|)) 61)) (-2898 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 52)) (-1528 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 28)) (-2035 (((-107) |#4|) 27)) (-2737 (((-583 |#4|) (-583 |#4|)) 96 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3662 (((-583 |#4|) (-583 |#4|)) 97 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-1343 (((-583 |#4|) (-583 |#4|)) 65)) (-3144 (((-583 |#4|) (-583 |#4|)) 78)) (-3451 (((-107) (-583 |#4|) (-583 |#4|)) 50)) (-2899 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 38)) (-1698 (((-107) |#4|) 35))) +(((-894 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1816 ((-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) |#4| |#4|)) (-15 -3640 ((-583 |#4|) (-583 |#4|))) (-15 -1681 ((-583 |#4|) |#4| |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -3451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2898 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2284 ((-107) (-583 |#4|))) (-15 -2499 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -1969 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2100 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -1603 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1665 ((-107) |#4|)) (-15 -1964 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2035 ((-107) |#4|)) (-15 -1528 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1698 ((-107) |#4|)) (-15 -2899 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3700 (|#4| |#4| (-583 |#4|))) (-15 -1343 ((-583 |#4|) (-583 |#4|))) (-15 -2142 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -3144 ((-583 |#4|) (-583 |#4|))) (-15 -2355 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1558 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3734 ((-583 |#4|) |#4|)) (-15 -1935 ((-583 |#4|) (-583 |#4|))) (-15 -1935 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2371 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1632 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3528 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3662 ((-583 |#4|) (-583 |#4|))) (-15 -2737 ((-583 |#4|) (-583 |#4|))) (-15 -3503 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) |noBranch|)) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -894)) +((-3503 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2737 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3662 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3528 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1632 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2371 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1935 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1558 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-894 *5 *6 *7 *8)))) (-2355 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-894 *6 *7 *8 *9)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2142 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -4139 (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1343 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3700 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *2)))) (-2783 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2783 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2899 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1698 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1528 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1665 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1603 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2100 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *5 *6 *7 *8)))) (-3451 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))) (-1816 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-1816 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1816 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *3)))) (-1681 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1816 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1816 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6))))) +(-10 -7 (-15 -1816 ((-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) |#4| |#4|)) (-15 -3640 ((-583 |#4|) (-583 |#4|))) (-15 -1681 ((-583 |#4|) |#4| |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -3451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2898 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2284 ((-107) (-583 |#4|))) (-15 -2499 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -1969 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2100 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -1603 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1665 ((-107) |#4|)) (-15 -1964 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2035 ((-107) |#4|)) (-15 -1528 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1698 ((-107) |#4|)) (-15 -2899 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3700 (|#4| |#4| (-583 |#4|))) (-15 -1343 ((-583 |#4|) (-583 |#4|))) (-15 -2142 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -3144 ((-583 |#4|) (-583 |#4|))) (-15 -2355 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1558 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3734 ((-583 |#4|) |#4|)) (-15 -1935 ((-583 |#4|) (-583 |#4|))) (-15 -1935 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2371 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1632 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3528 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3662 ((-583 |#4|) (-583 |#4|))) (-15 -2737 ((-583 |#4|) (-583 |#4|))) (-15 -3503 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) |noBranch|)) +((-1441 (((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-2584 (((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|)) 35)) (-2838 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16))) +(((-895 |#1|) (-10 -7 (-15 -1441 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2838 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2584 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|)))) (-333)) (T -895)) +((-2584 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5))))) (-5 *1 (-895 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)))) (-2838 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-895 *5)))) (-1441 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-895 *6)) (-5 *3 (-623 *6))))) +(-10 -7 (-15 -1441 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2838 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2584 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|)))) +((-2759 (((-388 |#4|) |#4|) 47))) +(((-896 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2759 ((-388 |#4|) |#4|))) (-779) (-725) (-421) (-871 |#3| |#2| |#1|)) (T -896)) +((-2759 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4))))) +(-10 -7 (-15 -2759 ((-388 |#4|) |#4|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3526 (($ (-703)) 112 (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-2889 (($ (-583 |#1|)) 118)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) 105 (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1292 ((|#1| $) 102 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3847 (((-107) $ (-703)) 10)) (-2195 ((|#1| $) 103 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-1672 (($ $ (-583 |#1|)) 115)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3501 ((|#1| $ $) 106 (|has| |#1| (-961)))) (-3141 (((-843) $) 117)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-2862 (($ $ $) 104)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 116)) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1654 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1642 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-897 |#1|) (-1184) (-961)) (T -897)) +((-2889 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-961)) (-5 *2 (-843)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-961)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-897 *3)) (-4 *3 (-961))))) +(-13 (-1151 |t#1|) (-10 -8 (-15 -2889 ($ (-583 |t#1|))) (-15 -3141 ((-843) $)) (-15 -3645 ($ (-583 |t#1|))) (-15 -2862 ($ $ $)) (-15 -1672 ($ $ (-583 |t#1|))))) +(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T) ((-1151 |#1|) . T)) +((-1893 (((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)) 17))) +(((-898 |#1| |#2|) (-10 -7 (-15 -1893 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)))) (-961) (-961)) (T -898)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-865 *6)) (-5 *1 (-898 *5 *6))))) +(-10 -7 (-15 -1893 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)))) +((-2517 ((|#1| (-865 |#1|)) 13)) (-2017 ((|#1| (-865 |#1|)) 12)) (-1563 ((|#1| (-865 |#1|)) 11)) (-3705 ((|#1| (-865 |#1|)) 15)) (-2239 ((|#1| (-865 |#1|)) 21)) (-1987 ((|#1| (-865 |#1|)) 14)) (-3654 ((|#1| (-865 |#1|)) 16)) (-3512 ((|#1| (-865 |#1|)) 20)) (-1205 ((|#1| (-865 |#1|)) 19))) +(((-899 |#1|) (-10 -7 (-15 -1563 (|#1| (-865 |#1|))) (-15 -2017 (|#1| (-865 |#1|))) (-15 -2517 (|#1| (-865 |#1|))) (-15 -1987 (|#1| (-865 |#1|))) (-15 -3705 (|#1| (-865 |#1|))) (-15 -3654 (|#1| (-865 |#1|))) (-15 -1205 (|#1| (-865 |#1|))) (-15 -3512 (|#1| (-865 |#1|))) (-15 -2239 (|#1| (-865 |#1|)))) (-961)) (T -899)) +((-2239 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1987 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961))))) +(-10 -7 (-15 -1563 (|#1| (-865 |#1|))) (-15 -2017 (|#1| (-865 |#1|))) (-15 -2517 (|#1| (-865 |#1|))) (-15 -1987 (|#1| (-865 |#1|))) (-15 -3705 (|#1| (-865 |#1|))) (-15 -3654 (|#1| (-865 |#1|))) (-15 -1205 (|#1| (-865 |#1|))) (-15 -3512 (|#1| (-865 |#1|))) (-15 -2239 (|#1| (-865 |#1|)))) +((-3885 (((-3 |#1| "failed") |#1|) 18)) (-1878 (((-3 |#1| "failed") |#1|) 6)) (-4078 (((-3 |#1| "failed") |#1|) 16)) (-3113 (((-3 |#1| "failed") |#1|) 4)) (-2944 (((-3 |#1| "failed") |#1|) 20)) (-3413 (((-3 |#1| "failed") |#1|) 8)) (-2492 (((-3 |#1| "failed") |#1| (-703)) 1)) (-2064 (((-3 |#1| "failed") |#1|) 3)) (-3930 (((-3 |#1| "failed") |#1|) 2)) (-3608 (((-3 |#1| "failed") |#1|) 21)) (-2011 (((-3 |#1| "failed") |#1|) 9)) (-1779 (((-3 |#1| "failed") |#1|) 19)) (-1312 (((-3 |#1| "failed") |#1|) 7)) (-1282 (((-3 |#1| "failed") |#1|) 17)) (-3518 (((-3 |#1| "failed") |#1|) 5)) (-1266 (((-3 |#1| "failed") |#1|) 24)) (-3884 (((-3 |#1| "failed") |#1|) 12)) (-2460 (((-3 |#1| "failed") |#1|) 22)) (-2895 (((-3 |#1| "failed") |#1|) 10)) (-3829 (((-3 |#1| "failed") |#1|) 26)) (-1778 (((-3 |#1| "failed") |#1|) 14)) (-1240 (((-3 |#1| "failed") |#1|) 27)) (-3363 (((-3 |#1| "failed") |#1|) 15)) (-1403 (((-3 |#1| "failed") |#1|) 25)) (-1297 (((-3 |#1| "failed") |#1|) 13)) (-2828 (((-3 |#1| "failed") |#1|) 23)) (-1247 (((-3 |#1| "failed") |#1|) 11))) +(((-900 |#1|) (-1184) (-1094)) (T -900)) +((-1240 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3829 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1403 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1266 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2828 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2460 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3608 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2944 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1779 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3885 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1282 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-4078 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1778 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1297 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3884 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1247 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2895 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2011 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3413 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1312 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1878 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3518 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3113 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2064 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3930 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2492 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(-13 (-10 -7 (-15 -2492 ((-3 |t#1| "failed") |t#1| (-703))) (-15 -3930 ((-3 |t#1| "failed") |t#1|)) (-15 -2064 ((-3 |t#1| "failed") |t#1|)) (-15 -3113 ((-3 |t#1| "failed") |t#1|)) (-15 -3518 ((-3 |t#1| "failed") |t#1|)) (-15 -1878 ((-3 |t#1| "failed") |t#1|)) (-15 -1312 ((-3 |t#1| "failed") |t#1|)) (-15 -3413 ((-3 |t#1| "failed") |t#1|)) (-15 -2011 ((-3 |t#1| "failed") |t#1|)) (-15 -2895 ((-3 |t#1| "failed") |t#1|)) (-15 -1247 ((-3 |t#1| "failed") |t#1|)) (-15 -3884 ((-3 |t#1| "failed") |t#1|)) (-15 -1297 ((-3 |t#1| "failed") |t#1|)) (-15 -1778 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -4078 ((-3 |t#1| "failed") |t#1|)) (-15 -1282 ((-3 |t#1| "failed") |t#1|)) (-15 -3885 ((-3 |t#1| "failed") |t#1|)) (-15 -1779 ((-3 |t#1| "failed") |t#1|)) (-15 -2944 ((-3 |t#1| "failed") |t#1|)) (-15 -3608 ((-3 |t#1| "failed") |t#1|)) (-15 -2460 ((-3 |t#1| "failed") |t#1|)) (-15 -2828 ((-3 |t#1| "failed") |t#1|)) (-15 -1266 ((-3 |t#1| "failed") |t#1|)) (-15 -1403 ((-3 |t#1| "failed") |t#1|)) (-15 -3829 ((-3 |t#1| "failed") |t#1|)) (-15 -1240 ((-3 |t#1| "failed") |t#1|)))) +((-2906 ((|#4| |#4| (-583 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-2885 ((|#4| |#4| (-583 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1893 ((|#4| (-1 |#4| (-874 |#1|)) |#4|) 30))) +(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2885 (|#4| |#4| |#3|)) (-15 -2885 (|#4| |#4| (-583 |#3|))) (-15 -2906 (|#4| |#4| |#3|)) (-15 -2906 (|#4| |#4| (-583 |#3|))) (-15 -1893 (|#4| (-1 |#4| (-874 |#1|)) |#4|))) (-961) (-725) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073))))) (-871 (-874 |#1|) |#2| |#3|)) (T -901)) +((-1893 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-874 *4))) (-4 *4 (-961)) (-4 *2 (-871 (-874 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *6 *2)))) (-2906 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))) (-2906 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) (-2885 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))) (-2885 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3))))) +(-10 -7 (-15 -2885 (|#4| |#4| |#3|)) (-15 -2885 (|#4| |#4| (-583 |#3|))) (-15 -2906 (|#4| |#4| |#3|)) (-15 -2906 (|#4| |#4| (-583 |#3|))) (-15 -1893 (|#4| (-1 |#4| (-874 |#1|)) |#4|))) +((-1616 ((|#2| |#3|) 34)) (-4140 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 71)) (-2216 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 86))) +(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -1616 (|#2| |#3|))) (-319) (-1130 |#1|) (-1130 |#2|) (-657 |#2| |#3|)) (T -902)) +((-1616 (*1 *2 *3) (-12 (-4 *3 (-1130 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-902 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))) (-4140 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) (-2216 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5))))) +(-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -1616 (|#2| |#3|))) +((-4099 (((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))) 64))) +(((-903 |#1| |#2|) (-10 -7 (-15 -4099 ((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))))) (-583 (-1073)) (-703)) (T -903)) +((-4099 (*1 *2 *2) (-12 (-5 *2 (-904 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-903 *3 *4))))) +(-10 -7 (-15 -4099 ((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))))) +((-2750 (((-107) $ $) NIL)) (-2324 (((-3 (-107) "failed") $) 67)) (-3670 (($ $) 35 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-4117 (($ $ (-3 (-107) "failed")) 68)) (-3196 (($ (-583 |#4|) |#4|) 24)) (-3985 (((-1056) $) NIL)) (-1891 (($ $) 65)) (-3206 (((-1021) $) NIL)) (-3619 (((-107) $) 66)) (-1746 (($) 29)) (-2923 ((|#4| $) 70)) (-3140 (((-583 |#4|) $) 69)) (-2256 (((-787) $) 64)) (-1547 (((-107) $ $) NIL))) +(((-904 |#1| |#2| |#3| |#4|) (-13 (-1003) (-557 (-787)) (-10 -8 (-15 -1746 ($)) (-15 -3196 ($ (-583 |#4|) |#4|)) (-15 -2324 ((-3 (-107) "failed") $)) (-15 -4117 ($ $ (-3 (-107) "failed"))) (-15 -3619 ((-107) $)) (-15 -3140 ((-583 |#4|) $)) (-15 -2923 (|#4| $)) (-15 -1891 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3670 ($ $)) |noBranch|) |noBranch|))) (-421) (-779) (-725) (-871 |#1| |#3| |#2|)) (T -904)) +((-1746 (*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) (-3196 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-871 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-904 *4 *5 *6 *3)))) (-2324 (*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-3619 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-3140 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-2923 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))) (-1891 (*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) (-3670 (*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3))))) +(-13 (-1003) (-557 (-787)) (-10 -8 (-15 -1746 ($)) (-15 -3196 ($ (-583 |#4|) |#4|)) (-15 -2324 ((-3 (-107) "failed") $)) (-15 -4117 ($ $ (-3 (-107) "failed"))) (-15 -3619 ((-107) $)) (-15 -3140 ((-583 |#4|) $)) (-15 -2923 (|#4| $)) (-15 -1891 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3670 ($ $)) |noBranch|) |noBranch|))) +((-3471 (((-107) |#5| |#5|) 37)) (-1331 (((-107) |#5| |#5|) 51)) (-3499 (((-107) |#5| (-583 |#5|)) 73) (((-107) |#5| |#5|) 60)) (-2254 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-1837 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 62)) (-4034 (((-1158)) 33)) (-1882 (((-1158) (-1056) (-1056) (-1056)) 29)) (-3694 (((-583 |#5|) (-583 |#5|)) 80)) (-2197 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) 78)) (-2871 (((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 100)) (-3576 (((-107) |#5| |#5|) 46)) (-2954 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3506 (((-107) (-583 |#4|) (-583 |#4|)) 56)) (-1451 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-3411 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-3444 (((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 96)) (-1634 (((-583 |#5|) (-583 |#5|)) 42))) +(((-905 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -905)) +((-3444 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) (-2871 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-905 *5 *6 *7 *8 *3)))) (-3499 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-2954 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3411 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1451 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3506 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-2254 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3576 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-3471 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-4034 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1882 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7))))) +(-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) +((-1638 (((-1073) $) 15)) (-3199 (((-1056) $) 16)) (-2126 (($ (-1073) (-1056)) 14)) (-2256 (((-787) $) 13))) +(((-906) (-13 (-557 (-787)) (-10 -8 (-15 -2126 ($ (-1073) (-1056))) (-15 -1638 ((-1073) $)) (-15 -3199 ((-1056) $))))) (T -906)) +((-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-906)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-906)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-906))))) +(-13 (-557 (-787)) (-10 -8 (-15 -2126 ($ (-1073) (-1056))) (-15 -1638 ((-1073) $)) (-15 -3199 ((-1056) $)))) +((-1893 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|))) (-509) (-509) (-909 |#1|) (-909 |#2|)) (T -907)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-909 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-909 *5))))) +(-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|))) +((-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-1073) "failed") $) 65) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) 95)) (-3189 ((|#2| $) NIL) (((-1073) $) 60) (((-377 (-517)) $) NIL) (((-517) $) 92)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 112) (((-623 |#2|) (-623 $)) 28)) (-3209 (($) 98)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 74) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 83)) (-1405 (($ $) 10)) (-1319 (((-3 $ "failed") $) 20)) (-1893 (($ (-1 |#2| |#2|) $) 22)) (-2836 (($) 16)) (-1927 (($ $) 54)) (-3127 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2971 (($ $) 12)) (-3645 (((-814 (-517)) $) 69) (((-814 (-349)) $) 78) (((-493) $) 40) (((-349) $) 44) (((-199) $) 47)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 90) (($ |#2|) NIL) (($ (-1073)) 57)) (-2961 (((-703)) 31)) (-1572 (((-107) $ $) 50))) +(((-908 |#1| |#2|) (-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -3209 (|#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2971 (|#1| |#1|)) (-15 -1405 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|))) (-909 |#2|) (-509)) (T -908)) +((-2961 (*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-908 *3 *4)) (-4 *3 (-909 *4))))) +(-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -3209 (|#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2971 (|#1| |#1|)) (-15 -1405 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 ((|#1| $) 139 (|has| |#1| (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 130 (|has| |#1| (-831)))) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 133 (|has| |#1| (-831)))) (-1707 (((-107) $ $) 59)) (-3709 (((-517) $) 120 (|has| |#1| (-752)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 178) (((-3 (-1073) "failed") $) 128 (|has| |#1| (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) 112 (|has| |#1| (-952 (-517)))) (((-3 (-517) "failed") $) 110 (|has| |#1| (-952 (-517))))) (-3189 ((|#1| $) 177) (((-1073) $) 127 (|has| |#1| (-952 (-1073)))) (((-377 (-517)) $) 111 (|has| |#1| (-952 (-517)))) (((-517) $) 109 (|has| |#1| (-952 (-517))))) (-2518 (($ $ $) 55)) (-3355 (((-623 (-517)) (-623 $)) 152 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 151 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 150) (((-623 |#1|) (-623 $)) 149)) (-3621 (((-3 $ "failed") $) 34)) (-3209 (($) 137 (|has| |#1| (-502)))) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3556 (((-107) $) 122 (|has| |#1| (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 146 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 145 (|has| |#1| (-808 (-349))))) (-3848 (((-107) $) 31)) (-1405 (($ $) 141)) (-1787 ((|#1| $) 143)) (-1319 (((-3 $ "failed") $) 108 (|has| |#1| (-1049)))) (-2475 (((-107) $) 121 (|has| |#1| (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2967 (($ $ $) 118 (|has| |#1| (-779)))) (-3099 (($ $ $) 117 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 169)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2836 (($) 107 (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1927 (($ $) 138 (|has| |#1| (-278)))) (-2597 ((|#1| $) 135 (|has| |#1| (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 132 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 131 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 175 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 173 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 172 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 171 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 170 (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) 58)) (-1449 (($ $ |#1|) 176 (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-3127 (($ $) 168 (|has| |#1| (-207))) (($ $ (-703)) 166 (|has| |#1| (-207))) (($ $ (-1073)) 164 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 163 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 162 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 161 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2971 (($ $) 140)) (-1800 ((|#1| $) 142)) (-3645 (((-814 (-517)) $) 148 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 147 (|has| |#1| (-558 (-814 (-349))))) (((-493) $) 125 (|has| |#1| (-558 (-493)))) (((-349) $) 124 (|has| |#1| (-937))) (((-199) $) 123 (|has| |#1| (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 134 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 181) (($ (-1073)) 129 (|has| |#1| (-952 (-1073))))) (-1328 (((-3 $ "failed") $) 126 (-3807 (|has| |#1| (-132)) (-4035 (|has| $ (-132)) (|has| |#1| (-831)))))) (-2961 (((-703)) 29)) (-1949 ((|#1| $) 136 (|has| |#1| (-502)))) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 119 (|has| |#1| (-752)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 167 (|has| |#1| (-207))) (($ $ (-703)) 165 (|has| |#1| (-207))) (($ $ (-1073)) 160 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 159 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 158 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 157 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1606 (((-107) $ $) 115 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 114 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 116 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 113 (|has| |#1| (-779)))) (-1667 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179))) +(((-909 |#1|) (-1184) (-509)) (T -909)) +((-1667 (*1 *1 *2 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1405 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-2971 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-1927 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-3209 (*1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-502)) (-4 *2 (-509)))) (-1949 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502))))) +(-13 (-333) (-37 |t#1|) (-952 |t#1|) (-308 |t#1|) (-205 |t#1|) (-347 |t#1|) (-806 |t#1|) (-370 |t#1|) (-10 -8 (-15 -1667 ($ |t#1| |t#1|)) (-15 -1787 (|t#1| $)) (-15 -1800 (|t#1| $)) (-15 -1405 ($ $)) (-15 -2971 ($ $)) (IF (|has| |t#1| (-1049)) (-6 (-1049)) |noBranch|) (IF (|has| |t#1| (-952 (-517))) (PROGN (-6 (-952 (-517))) (-6 (-952 (-377 (-517))))) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-752)) (-6 (-752)) |noBranch|) (IF (|has| |t#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-952 (-1073))) (-6 (-952 (-1073))) |noBranch|) (IF (|has| |t#1| (-278)) (PROGN (-15 -2668 (|t#1| $)) (-15 -1927 ($ $))) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3209 ($)) (-15 -1949 (|t#1| $)) (-15 -2597 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) |has| |#1| (-937)) ((-558 (-349)) |has| |#1| (-937)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) . T) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) . T) ((-278) . T) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-421) . T) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-723) |has| |#1| (-752)) ((-724) |has| |#1| (-752)) ((-726) |has| |#1| (-752)) ((-727) |has| |#1| (-752)) ((-752) |has| |#1| (-752)) ((-777) |has| |#1| (-752)) ((-779) -3807 (|has| |#1| (-779)) (|has| |#1| (-752))) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-831) |has| |#1| (-831)) ((-842) . T) ((-937) |has| |#1| (-937)) ((-952 (-377 (-517))) |has| |#1| (-952 (-517))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-1073)) |has| |#1| (-952 (-1073))) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-1049)) ((-1108) . T) ((-1112) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-2182 (($ (-1040 |#1| |#2|)) 11)) (-1840 (((-1040 |#1| |#2|) $) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1449 ((|#2| $ (-214 |#1| |#2|)) 16)) (-2256 (((-787) $) NIL)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL))) +(((-910 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2182 ($ (-1040 |#1| |#2|))) (-15 -1840 ((-1040 |#1| |#2|) $)) (-15 -1449 (|#2| $ (-214 |#1| |#2|))))) (-843) (-333)) (T -910)) +((-2182 (*1 *1 *2) (-12 (-5 *2 (-1040 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)) (-5 *1 (-910 *3 *4)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-1040 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-843)) (-4 *2 (-333)) (-5 *1 (-910 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -2182 ($ (-1040 |#1| |#2|))) (-15 -1840 ((-1040 |#1| |#2|) $)) (-15 -1449 (|#2| $ (-214 |#1| |#2|))))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-3186 (($ $) 46)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-2195 (((-703) $) 45)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2578 ((|#1| $) 44)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3838 ((|#1| |#1| $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3129 ((|#1| $) 47)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-2028 ((|#1| $) 43)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-911 |#1|) (-1184) (-1108)) (T -911)) +((-3838 (*1 *2 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-3186 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4180) (-15 -3838 (|t#1| |t#1| $)) (-15 -3129 (|t#1| $)) (-15 -3186 ($ $)) (-15 -2195 ((-703) $)) (-15 -2578 (|t#1| $)) (-15 -2028 (|t#1| $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-2814 (((-107) $) 42)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 43)) (-1256 (((-3 (-377 (-517)) "failed") $) 78)) (-1355 (((-107) $) 72)) (-3364 (((-377 (-517)) $) 76)) (-3848 (((-107) $) 41)) (-1506 ((|#2| $) 22)) (-1893 (($ (-1 |#2| |#2|) $) 19)) (-4118 (($ $) 61)) (-3127 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3645 (((-493) $) 67)) (-1487 (($ $) 17)) (-2256 (((-787) $) 56) (($ (-517)) 38) (($ |#2|) 36) (($ (-377 (-517))) NIL)) (-2961 (((-703)) 10)) (-3710 ((|#2| $) 71)) (-1547 (((-107) $ $) 25)) (-1572 (((-107) $ $) 69)) (-1654 (($ $) 29) (($ $ $) 28)) (-1642 (($ $ $) 26)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) +(((-912 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -4118 (|#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -3848 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-913 |#2|) (-156)) (T -912)) +((-2961 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4))))) +(-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -4118 (|#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -3848 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 119 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 117 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 116)) (-3189 (((-517) $) 120 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 118 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 115)) (-3355 (((-623 (-517)) (-623 $)) 90 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 89 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 88) (((-623 |#1|) (-623 $)) 87)) (-3621 (((-3 $ "failed") $) 34)) (-3775 ((|#1| $) 80)) (-1256 (((-3 (-377 (-517)) "failed") $) 76 (|has| |#1| (-502)))) (-1355 (((-107) $) 78 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 77 (|has| |#1| (-502)))) (-2802 (($ |#1| |#1| |#1| |#1|) 81)) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 82)) (-2967 (($ $ $) 68 (|has| |#1| (-779)))) (-3099 (($ $ $) 67 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 91)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 73 (|has| |#1| (-333)))) (-2976 ((|#1| $) 83)) (-2999 ((|#1| $) 84)) (-1467 ((|#1| $) 85)) (-3206 (((-1021) $) 10)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 97 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 95 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 94 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 93 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 92 (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) 98 (|has| |#1| (-258 |#1| |#1|)))) (-3127 (($ $) 114 (|has| |#1| (-207))) (($ $ (-703)) 112 (|has| |#1| (-207))) (($ $ (-1073)) 110 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 109 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 108 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 107 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3645 (((-493) $) 74 (|has| |#1| (-558 (-493))))) (-1487 (($ $) 86)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 62 (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (((-3 $ "failed") $) 75 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3710 ((|#1| $) 79 (|has| |#1| (-970)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 72 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 113 (|has| |#1| (-207))) (($ $ (-703)) 111 (|has| |#1| (-207))) (($ $ (-1073)) 106 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 105 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 104 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 103 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1606 (((-107) $ $) 65 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 64 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 66 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 63 (|has| |#1| (-779)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 71 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-377 (-517))) 70 (|has| |#1| (-333))) (($ (-377 (-517)) $) 69 (|has| |#1| (-333))))) +(((-913 |#1|) (-1184) (-156)) (T -913)) +((-1487 (*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-1467 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2802 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517)))))) +(-13 (-37 |t#1|) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1487 ($ $)) (-15 -1467 (|t#1| $)) (-15 -2999 (|t#1| $)) (-15 -2976 (|t#1| $)) (-15 -1506 (|t#1| $)) (-15 -2802 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3775 (|t#1| $)) (IF (|has| |t#1| (-262)) (-6 (-262)) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-217)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -3710 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-333)) ((-37 |#1|) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-333)) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) |has| |#1| (-333)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3807 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 (-377 (-517))) |has| |#1| (-333)) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-333)) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-333)) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-1893 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) (-913 |#2|) (-156) (-913 |#4|) (-156)) (T -914)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5))))) +(-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3775 ((|#1| $) 12)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1355 (((-107) $) NIL (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2802 (($ |#1| |#1| |#1| |#1|) 16)) (-3848 (((-107) $) NIL)) (-1506 ((|#1| $) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-2976 ((|#1| $) 15)) (-2999 ((|#1| $) 14)) (-1467 ((|#1| $) 13)) (-3206 (((-1021) $) NIL)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3127 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1487 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3710 ((|#1| $) NIL (|has| |#1| (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 8 T CONST)) (-2409 (($) 10 T CONST)) (-2731 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))))) +(((-915 |#1|) (-913 |#1|) (-156)) (T -915)) +NIL +(-913 |#1|) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-3186 (($ $) 20)) (-1692 (($ (-583 |#1|)) 29)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-2195 (((-703) $) 22)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 24)) (-1710 (($ |#1| $) 15)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2578 ((|#1| $) 23)) (-4006 ((|#1| $) 19)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3838 ((|#1| |#1| $) 14)) (-3619 (((-107) $) 17)) (-1746 (($) NIL)) (-3129 ((|#1| $) 18)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) NIL)) (-2028 ((|#1| $) 26)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-916 |#1|) (-13 (-911 |#1|) (-10 -8 (-15 -1692 ($ (-583 |#1|))))) (-1003)) (T -916)) +((-1692 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-916 *3))))) +(-13 (-911 |#1|) (-10 -8 (-15 -1692 ($ (-583 |#1|))))) +((-3766 (($ $) 12)) (-3824 (($ $ (-517)) 13))) +(((-917 |#1|) (-10 -8 (-15 -3766 (|#1| |#1|)) (-15 -3824 (|#1| |#1| (-517)))) (-918)) (T -917)) +NIL +(-10 -8 (-15 -3766 (|#1| |#1|)) (-15 -3824 (|#1| |#1| (-517)))) +((-3766 (($ $) 6)) (-3824 (($ $ (-517)) 7)) (** (($ $ (-377 (-517))) 8))) +(((-918) (-1184)) (T -918)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-377 (-517))))) (-3824 (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-517)))) (-3766 (*1 *1 *1) (-4 *1 (-918)))) +(-13 (-10 -8 (-15 -3766 ($ $)) (-15 -3824 ($ $ (-517))) (-15 ** ($ $ (-377 (-517)))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2039 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-1213 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2454 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3055 (((-623 (-377 |#2|)) (-1153 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1472 (((-377 |#2|) $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2759 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1707 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1611 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-2752 (((-107)) NIL)) (-1639 (((-107) |#1|) 147) (((-107) |#2|) 152)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-1967 (($ (-1153 (-377 |#2|)) (-1153 $)) NIL) (($ (-1153 (-377 |#2|))) 70) (($ (-1153 |#2|) |#2|) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2518 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2410 (((-623 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-377 |#2|))) (|:| |vec| (-1153 (-377 |#2|)))) (-623 $) (-1153 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-3843 (((-1153 $) (-1153 $)) NIL)) (-3225 (($ |#3|) 65) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-3407 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3384 (((-107) |#1| |#1|) NIL)) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| (-377 |#2|) (-338)))) (-2866 (((-107)) NIL)) (-2666 (((-107) |#1|) 56) (((-107) |#2|) 149)) (-2497 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-3534 (($ $) NIL)) (-3442 (($) NIL (|has| (-377 |#2|) (-319)))) (-3391 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2378 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-3849 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3972 (((-843) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) NIL (|has| (-377 |#2|) (-319)))) (-3848 (((-107) $) NIL)) (-1790 (((-703)) NIL)) (-1870 (((-1153 $) (-1153 $)) NIL)) (-1506 (((-377 |#2|) $) NIL)) (-2043 (((-583 (-874 |#1|)) (-1073)) NIL (|has| |#1| (-333)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3777 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-1549 (((-843) $) NIL (|has| (-377 |#2|) (-338)))) (-3216 ((|#3| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3985 (((-1056) $) NIL)) (-1909 (((-623 (-377 |#2|))) 52)) (-2041 (((-623 (-377 |#2|))) 51)) (-4118 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3454 (($ (-1153 |#2|) |#2|) 71)) (-3580 (((-623 (-377 |#2|))) 50)) (-1872 (((-623 (-377 |#2|))) 49)) (-1920 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1784 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 77)) (-1924 (((-1153 $)) 46)) (-2216 (((-1153 $)) 45)) (-2491 (((-107) $) NIL)) (-3291 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2836 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| (-377 |#2|) (-338)))) (-3854 (((-3 |#2| "failed")) 63)) (-3206 (((-1021) $) NIL)) (-1786 (((-703)) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| (-377 |#2|) (-333)))) (-1401 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3755 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3146 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-1449 ((|#1| $ |#1| |#1|) NIL)) (-3259 (((-3 |#2| "failed")) 62)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3010 (((-377 |#2|) (-1153 $)) NIL) (((-377 |#2|)) 42)) (-1620 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-3127 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2970 (((-623 (-377 |#2|)) (-1153 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2135 ((|#3|) 53)) (-1766 (($) NIL (|has| (-377 |#2|) (-319)))) (-4114 (((-1153 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) (-1153 $) (-1153 $)) NIL) (((-1153 (-377 |#2|)) $) 72) (((-623 (-377 |#2|)) (-1153 $)) NIL)) (-3645 (((-1153 (-377 |#2|)) $) NIL) (($ (-1153 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-3696 (((-1153 $) (-1153 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| (-377 |#2|) (-952 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1328 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3669 ((|#3| $) NIL)) (-2961 (((-703)) NIL)) (-2025 (((-107)) 60)) (-2992 (((-107) |#1|) 153) (((-107) |#2|) 154)) (-1753 (((-1153 $)) 124)) (-3329 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3148 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4065 (((-107)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-2396 (($) 94 T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333))))) +(((-919 |#1| |#2| |#3| |#4| |#5|) (-312 |#1| |#2| |#3|) (-1112) (-1130 |#1|) (-1130 (-377 |#2|)) (-377 |#2|) (-703)) (T -919)) +NIL +(-312 |#1| |#2| |#3|) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1314 (((-583 (-517)) $) 54)) (-2629 (($ (-583 (-517))) 62)) (-2668 (((-517) $) 40 (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) 49) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) 47 (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) 49 (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-2210 (((-583 (-517)) $) 60)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) 37)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) 42)) (-2959 (((-1054 (-517)) $) 59)) (-2160 (($ (-583 (-517)) (-583 (-517))) 63)) (-2597 (((-517) $) 53 (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) 11 (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) 39)) (-3676 (((-583 (-517)) $) 61)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) 77) (($ (-517)) 43) (($ $) NIL) (($ (-377 (-517))) 19) (($ (-517)) 43) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) 17)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) 9)) (-1949 (((-517) $) 51 (|has| (-517) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 10 T CONST)) (-2409 (($) 12 T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) 14)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) 33 (|has| (-517) (-779)))) (-1667 (($ $ $) 29) (($ (-517) (-517)) 31)) (-1654 (($ $) 15) (($ $ $) 22)) (-1642 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 25) (($ $ $) 27) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) 25) (($ $ (-517)) NIL))) +(((-920 |#1|) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1314 ((-583 (-517)) $)) (-15 -2959 ((-1054 (-517)) $)) (-15 -2210 ((-583 (-517)) $)) (-15 -3676 ((-583 (-517)) $)) (-15 -2629 ($ (-583 (-517)))) (-15 -2160 ($ (-583 (-517)) (-583 (-517)))))) (-517)) (T -920)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2629 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2160 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517))))) +(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1314 ((-583 (-517)) $)) (-15 -2959 ((-1054 (-517)) $)) (-15 -2210 ((-583 (-517)) $)) (-15 -3676 ((-583 (-517)) $)) (-15 -2629 ($ (-583 (-517)))) (-15 -2160 ($ (-583 (-517)) (-583 (-517)))))) +((-3711 (((-51) (-377 (-517)) (-517)) 9))) +(((-921) (-10 -7 (-15 -3711 ((-51) (-377 (-517)) (-517))))) (T -921)) +((-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-921))))) +(-10 -7 (-15 -3711 ((-51) (-377 (-517)) (-517)))) +((-1611 (((-517)) 13)) (-2980 (((-517)) 16)) (-1658 (((-1158) (-517)) 15)) (-1581 (((-517) (-517)) 17) (((-517)) 12))) +(((-922) (-10 -7 (-15 -1581 ((-517))) (-15 -1611 ((-517))) (-15 -1581 ((-517) (-517))) (-15 -1658 ((-1158) (-517))) (-15 -2980 ((-517))))) (T -922)) +((-2980 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-922)))) (-1581 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-1611 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-1581 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922))))) +(-10 -7 (-15 -1581 ((-517))) (-15 -1611 ((-517))) (-15 -1581 ((-517) (-517))) (-15 -1658 ((-1158) (-517))) (-15 -2980 ((-517)))) +((-3432 (((-388 |#1|) |#1|) 40)) (-3755 (((-388 |#1|) |#1|) 39))) +(((-923 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|))) (-1130 (-377 (-517)))) (T -923)) +((-3432 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517)))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517))))))) +(-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|))) +((-1256 (((-3 (-377 (-517)) "failed") |#1|) 14)) (-1355 (((-107) |#1|) 13)) (-3364 (((-377 (-517)) |#1|) 9))) +(((-924 |#1|) (-10 -7 (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|))) (-952 (-377 (-517)))) (T -924)) +((-1256 (*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))) (-1355 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-924 *3)) (-4 *3 (-952 (-377 (-517)))))) (-3364 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2))))) +(-10 -7 (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|))) +((-2411 ((|#2| $ "value" |#2|) 12)) (-1449 ((|#2| $ "value") 10)) (-2732 (((-107) $ $) 18))) +(((-925 |#1| |#2|) (-10 -8 (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -1449 (|#2| |#1| "value"))) (-926 |#2|) (-1108)) (T -925)) +NIL +(-10 -8 (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -1449 (|#2| |#1| "value"))) +((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-926 |#1|) (-1184) (-1108)) (T -926)) +((-1479 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) (-3063 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-926 *2)) (-4 *2 (-1108)))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3992 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) (-2459 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-517)))) (-2732 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-1272 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-4040 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4181)) (-4 *1 (-926 *3)) (-4 *3 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108)))) (-1918 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108))))) +(-13 (-456 |t#1|) (-10 -8 (-15 -1479 ((-583 $) $)) (-15 -3063 ((-583 $) $)) (-15 -1763 ((-107) $)) (-15 -3199 (|t#1| $)) (-15 -1449 (|t#1| $ "value")) (-15 -2655 ((-107) $)) (-15 -3992 ((-583 |t#1|) $)) (-15 -2459 ((-517) $ $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -2732 ((-107) $ $)) (-15 -1272 ((-107) $ $))) |noBranch|) (IF (|has| $ (-6 -4181)) (PROGN (-15 -4040 ($ $ (-583 $))) (-15 -2411 (|t#1| $ "value" |t#1|)) (-15 -1918 (|t#1| $ |t#1|))) |noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-3766 (($ $) 9) (($ $ (-703)) 43) (($ (-377 (-517))) 12) (($ (-517)) 15)) (-3267 (((-3 $ "failed") (-1069 $) (-843) (-787)) 23) (((-3 $ "failed") (-1069 $) (-843)) 28)) (-3824 (($ $ (-517)) 49)) (-2961 (((-703)) 16)) (-3995 (((-583 $) (-1069 $)) NIL) (((-583 $) (-1069 (-377 (-517)))) 54) (((-583 $) (-1069 (-517))) 59) (((-583 $) (-874 $)) 63) (((-583 $) (-874 (-377 (-517)))) 67) (((-583 $) (-874 (-517))) 71)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 47))) +(((-927 |#1|) (-10 -8 (-15 -3766 (|#1| (-517))) (-15 -3766 (|#1| (-377 (-517)))) (-15 -3766 (|#1| |#1| (-703))) (-15 -3995 ((-583 |#1|) (-874 (-517)))) (-15 -3995 ((-583 |#1|) (-874 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-874 |#1|))) (-15 -3995 ((-583 |#1|) (-1069 (-517)))) (-15 -3995 ((-583 |#1|) (-1069 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-1069 |#1|))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -3824 (|#1| |#1| (-517))) (-15 -3766 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843)))) (-928)) (T -927)) +((-2961 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-927 *3)) (-4 *3 (-928))))) +(-10 -8 (-15 -3766 (|#1| (-517))) (-15 -3766 (|#1| (-377 (-517)))) (-15 -3766 (|#1| |#1| (-703))) (-15 -3995 ((-583 |#1|) (-874 (-517)))) (-15 -3995 ((-583 |#1|) (-874 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-874 |#1|))) (-15 -3995 ((-583 |#1|) (-1069 (-517)))) (-15 -3995 ((-583 |#1|) (-1069 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-1069 |#1|))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -3824 (|#1| |#1| (-517))) (-15 -3766 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 89)) (-1213 (($ $) 90)) (-2454 (((-107) $) 92)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 109)) (-2759 (((-388 $) $) 110)) (-3766 (($ $) 73) (($ $ (-703)) 59) (($ (-377 (-517))) 58) (($ (-517)) 57)) (-1707 (((-107) $ $) 100)) (-3709 (((-517) $) 127)) (-3092 (($) 17 T CONST)) (-3267 (((-3 $ "failed") (-1069 $) (-843) (-787)) 67) (((-3 $ "failed") (-1069 $) (-843)) 66)) (-1772 (((-3 (-517) "failed") $) 85 (|has| (-377 (-517)) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 83 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) 81)) (-3189 (((-517) $) 86 (|has| (-377 (-517)) (-952 (-517)))) (((-377 (-517)) $) 84 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-377 (-517)) $) 80)) (-1610 (($ $ (-787)) 56)) (-4144 (($ $ (-787)) 55)) (-2518 (($ $ $) 104)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 103)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 98)) (-3849 (((-107) $) 111)) (-3556 (((-107) $) 125)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 72)) (-2475 (((-107) $) 126)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 107)) (-2967 (($ $ $) 124)) (-3099 (($ $ $) 123)) (-3928 (((-3 (-1069 $) "failed") $) 68)) (-3326 (((-3 (-787) "failed") $) 70)) (-1315 (((-3 (-1069 $) "failed") $) 69)) (-1365 (($ (-583 $)) 96) (($ $ $) 95)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 112)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 97)) (-1401 (($ (-583 $)) 94) (($ $ $) 93)) (-3755 (((-388 $) $) 108)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 105)) (-2476 (((-3 $ "failed") $ $) 88)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 99)) (-3146 (((-703) $) 101)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 102)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 117) (($ $) 87) (($ (-377 (-517))) 82) (($ (-517)) 79) (($ (-377 (-517))) 76)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 91)) (-3383 (((-377 (-517)) $ $) 54)) (-3995 (((-583 $) (-1069 $)) 65) (((-583 $) (-1069 (-377 (-517)))) 64) (((-583 $) (-1069 (-517))) 63) (((-583 $) (-874 $)) 62) (((-583 $) (-874 (-377 (-517)))) 61) (((-583 $) (-874 (-517))) 60)) (-3710 (($ $) 128)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 113)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 121)) (-1583 (((-107) $ $) 120)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 122)) (-1572 (((-107) $ $) 119)) (-1667 (($ $ $) 118)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 114) (($ $ (-377 (-517))) 71)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 116) (($ $ (-377 (-517))) 115) (($ (-517) $) 78) (($ $ (-517)) 77) (($ (-377 (-517)) $) 75) (($ $ (-377 (-517))) 74))) +(((-928) (-1184)) (T -928)) +((-3766 (*1 *1 *1) (-4 *1 (-928))) (-3326 (*1 *2 *1) (|partial| -12 (-4 *1 (-928)) (-5 *2 (-787)))) (-1315 (*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928)))) (-3928 (*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928)))) (-3267 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-5 *4 (-787)) (-4 *1 (-928)))) (-3267 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-1069 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-703)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-928)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-928)))) (-1610 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))) (-4144 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))) (-3383 (*1 *2 *1 *1) (-12 (-4 *1 (-928)) (-5 *2 (-377 (-517)))))) +(-13 (-134) (-777) (-156) (-333) (-381 (-377 (-517))) (-37 (-517)) (-37 (-377 (-517))) (-918) (-10 -8 (-15 -3326 ((-3 (-787) "failed") $)) (-15 -1315 ((-3 (-1069 $) "failed") $)) (-15 -3928 ((-3 (-1069 $) "failed") $)) (-15 -3267 ((-3 $ "failed") (-1069 $) (-843) (-787))) (-15 -3267 ((-3 $ "failed") (-1069 $) (-843))) (-15 -3995 ((-583 $) (-1069 $))) (-15 -3995 ((-583 $) (-1069 (-377 (-517))))) (-15 -3995 ((-583 $) (-1069 (-517)))) (-15 -3995 ((-583 $) (-874 $))) (-15 -3995 ((-583 $) (-874 (-377 (-517))))) (-15 -3995 ((-583 $) (-874 (-517)))) (-15 -3766 ($ $ (-703))) (-15 -3766 ($ $)) (-15 -3766 ($ (-377 (-517)))) (-15 -3766 ($ (-517))) (-15 -1610 ($ $ (-787))) (-15 -4144 ($ $ (-787))) (-15 -3383 ((-377 (-517)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 (-517)) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 (-517) (-517)) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-381 (-377 (-517))) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 (-517)) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-842) . T) ((-918) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) |has| (-377 (-517)) (-952 (-517))) ((-967 (-377 (-517))) . T) ((-967 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T)) +((-3991 (((-2 (|:| |ans| |#2|) (|:| -3652 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 61))) +(((-929 |#1| |#2|) (-10 -7 (-15 -3991 ((-2 (|:| |ans| |#2|) (|:| -3652 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-27) (-400 |#1|))) (T -929)) +((-3991 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107)))) (-5 *1 (-929 *8 *4))))) +(-10 -7 (-15 -3991 ((-2 (|:| |ans| |#2|) (|:| -3652 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3028 (((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47))) +(((-930 |#1| |#2|) (-10 -7 (-15 -3028 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-27) (-400 |#1|))) (T -930)) +((-3028 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-930 *8 *4))))) +(-10 -7 (-15 -3028 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1773 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)) 30)) (-2431 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 56)) (-1618 (((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|)) 61))) +(((-931 |#1| |#2|) (-10 -7 (-15 -2431 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1618 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -1773 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)))) (-13 (-333) (-134) (-952 (-517))) (-1130 |#1|)) (T -931)) +((-1773 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-931 *6 *3)))) (-1618 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-931 *4 *5)) (-5 *3 (-377 *5)))) (-2431 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-377 *6))))) +(-10 -7 (-15 -2431 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1618 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -1773 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)))) +((-3896 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 22)) (-2781 (((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 32))) +(((-932 |#1| |#2|) (-10 -7 (-15 -3896 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2781 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)))) (-13 (-333) (-134) (-952 (-517))) (-1130 |#1|)) (T -932)) +((-2781 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5)))) (-3896 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6))))) +(-10 -7 (-15 -3896 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2781 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)))) +((-3601 (((-1 |#1|) (-583 (-2 (|:| -3199 |#1|) (|:| -2932 (-517))))) 37)) (-3290 (((-1 |#1|) (-1005 |#1|)) 45)) (-3877 (((-1 |#1|) (-1153 |#1|) (-1153 (-517)) (-517)) 34))) +(((-933 |#1|) (-10 -7 (-15 -3290 ((-1 |#1|) (-1005 |#1|))) (-15 -3601 ((-1 |#1|) (-583 (-2 (|:| -3199 |#1|) (|:| -2932 (-517)))))) (-15 -3877 ((-1 |#1|) (-1153 |#1|) (-1153 (-517)) (-517)))) (-1003)) (T -933)) +((-3877 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 *6)) (-5 *4 (-1153 (-517))) (-5 *5 (-517)) (-4 *6 (-1003)) (-5 *2 (-1 *6)) (-5 *1 (-933 *6)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3199 *4) (|:| -2932 (-517))))) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1005 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4))))) +(-10 -7 (-15 -3290 ((-1 |#1|) (-1005 |#1|))) (-15 -3601 ((-1 |#1|) (-583 (-2 (|:| -3199 |#1|) (|:| -2932 (-517)))))) (-15 -3877 ((-1 |#1|) (-1153 |#1|) (-1153 (-517)) (-517)))) +((-3972 (((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-13 (-338) (-333))) (T -934)) +((-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-4 *4 (-1130 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-934 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3437 (((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 31) (((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 28)) (-3813 (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 33) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517))) 29) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 32) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|) 27)) (-3632 (((-583 (-377 (-517))) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) 19)) (-2555 (((-377 (-517)) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 16))) +(((-935 |#1|) (-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -2555 ((-377 (-517)) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3632 ((-583 (-377 (-517))) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))))) (-1130 (-517))) (T -935)) +((-3632 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517))))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517))))) (-3437 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) (-3437 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5))))) (-3813 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-377 (-517))))) (-3813 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-3813 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517)))))) +(-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -2555 ((-377 (-517)) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3632 ((-583 (-377 (-517))) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))))) +((-3437 (((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 35) (((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 32)) (-3813 (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 30) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517))) 26) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 28) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|) 24))) +(((-936 |#1|) (-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-1130 (-377 (-517)))) (T -936)) +((-3437 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))))) (-3437 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *5)) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5))))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *4) (|:| -3652 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-3813 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517))))))) +(-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) +((-3645 (((-199) $) 6) (((-349) $) 9))) +(((-937) (-1184)) (T -937)) +NIL +(-13 (-558 (-199)) (-558 (-349))) +(((-558 (-199)) . T) ((-558 (-349)) . T)) +((-1674 (((-583 (-349)) (-874 (-517)) (-349)) 27) (((-583 (-349)) (-874 (-377 (-517))) (-349)) 26)) (-2047 (((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1073)) (-349)) 36))) +(((-938) (-10 -7 (-15 -1674 ((-583 (-349)) (-874 (-377 (-517))) (-349))) (-15 -1674 ((-583 (-349)) (-874 (-517)) (-349))) (-15 -2047 ((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1073)) (-349))))) (T -938)) +((-2047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-938)) (-5 *5 (-349)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349))))) +(-10 -7 (-15 -1674 ((-583 (-349)) (-874 (-377 (-517))) (-349))) (-15 -1674 ((-583 (-349)) (-874 (-517)) (-349))) (-15 -2047 ((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1073)) (-349)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 70)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL) (($ $ (-703)) NIL) (($ (-377 (-517))) NIL) (($ (-517)) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) 65)) (-3092 (($) NIL T CONST)) (-3267 (((-3 $ "failed") (-1069 $) (-843) (-787)) NIL) (((-3 $ "failed") (-1069 $) (-843)) 49)) (-1772 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-517) "failed") $) NIL (-3807 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))))) (-3189 (((-377 (-517)) $) 14 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-377 (-517)) $) 14) ((|#1| $) 109) (((-517) $) NIL (-3807 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))))) (-1610 (($ $ (-787)) 40)) (-4144 (($ $ (-787)) 41)) (-2518 (($ $ $) NIL)) (-2002 (((-377 (-517)) $ $) 18)) (-3621 (((-3 $ "failed") $) 83)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) 60)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-2475 (((-107) $) 63)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3928 (((-3 (-1069 $) "failed") $) 78)) (-3326 (((-3 (-787) "failed") $) 77)) (-1315 (((-3 (-1069 $) "failed") $) 75)) (-3115 (((-3 (-971 $ (-1069 $)) "failed") $) 73)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 84)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2256 (((-787) $) 82) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) 57) (($ (-377 (-517))) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 111)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ $) 24)) (-3995 (((-583 $) (-1069 $)) 55) (((-583 $) (-1069 (-377 (-517)))) NIL) (((-583 $) (-1069 (-517))) NIL) (((-583 $) (-874 $)) NIL) (((-583 $) (-874 (-377 (-517)))) NIL) (((-583 $) (-874 (-517))) NIL)) (-2325 (($ (-971 $ (-1069 $)) (-787)) 39)) (-3710 (($ $) 19)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 28 T CONST)) (-2409 (($) 34 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 71)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 21)) (-1667 (($ $ $) 32)) (-1654 (($ $) 33) (($ $ $) 69)) (-1642 (($ $ $) 104)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 92) (($ $ $) 97) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ (-517) $) 92) (($ $ (-517)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL))) +(((-939 |#1|) (-13 (-928) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2325 ($ (-971 $ (-1069 $)) (-787))) (-15 -3115 ((-3 (-971 $ (-1069 $)) "failed") $)) (-15 -2002 ((-377 (-517)) $ $)))) (-13 (-777) (-333) (-937))) (T -939)) +((-2325 (*1 *1 *2 *3) (-12 (-5 *2 (-971 (-939 *4) (-1069 (-939 *4)))) (-5 *3 (-787)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-777) (-333) (-937))))) (-3115 (*1 *2 *1) (|partial| -12 (-5 *2 (-971 (-939 *3) (-1069 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))) (-2002 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937)))))) +(-13 (-928) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2325 ($ (-971 $ (-1069 $)) (-787))) (-15 -3115 ((-3 (-971 $ (-1069 $)) "failed") $)) (-15 -2002 ((-377 (-517)) $ $)))) +((-2702 (((-2 (|:| -2131 |#2|) (|:| -3837 (-583 |#1|))) |#2| (-583 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-940 |#1| |#2|) (-10 -7 (-15 -2702 (|#2| |#2| |#1|)) (-15 -2702 ((-2 (|:| -2131 |#2|) (|:| -3837 (-583 |#1|))) |#2| (-583 |#1|)))) (-333) (-593 |#1|)) (T -940)) +((-2702 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3837 (-583 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))) (-2702 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-940 *3 *2)) (-4 *2 (-593 *3))))) +(-10 -7 (-15 -2702 (|#2| |#2| |#1|)) (-15 -2702 ((-2 (|:| -2131 |#2|) (|:| -3837 (-583 |#1|))) |#2| (-583 |#1|)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2356 ((|#1| $ |#1|) 14)) (-2411 ((|#1| $ |#1|) 12)) (-2651 (($ |#1|) 10)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1449 ((|#1| $) 11)) (-3126 ((|#1| $) 13)) (-2256 (((-787) $) 21 (|has| |#1| (-1003)))) (-1547 (((-107) $ $) 9))) +(((-941 |#1|) (-13 (-1108) (-10 -8 (-15 -2651 ($ |#1|)) (-15 -1449 (|#1| $)) (-15 -2411 (|#1| $ |#1|)) (-15 -3126 (|#1| $)) (-15 -2356 (|#1| $ |#1|)) (-15 -1547 ((-107) $ $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1108)) (T -941)) +((-2651 (*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-3126 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-2356 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-1547 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-941 *3)) (-4 *3 (-1108))))) +(-13 (-1108) (-10 -8 (-15 -2651 ($ |#1|)) (-15 -1449 (|#1| $)) (-15 -2411 (|#1| $ |#1|)) (-15 -3126 (|#1| $)) (-15 -2356 (|#1| $ |#1|)) (-15 -1547 ((-107) $ $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) +((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) 104) (((-583 $) (-583 |#4|) (-107)) 105) (((-583 $) (-583 |#4|) (-107) (-107)) 103) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 106)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 98)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 53)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) 26 (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 39)) (-3659 ((|#4| |#4| $) 56)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 72 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-4063 (((-107) |#4| $) NIL)) (-1829 (((-107) |#4| $) NIL)) (-1538 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2865 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 118)) (-1536 (((-583 |#4|) $) 16 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 17 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 96)) (-2068 (((-3 |#4| "failed") $) 37)) (-2117 (((-583 $) |#4| $) 79)) (-2834 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 89) (((-107) |#4| $) 51)) (-1812 (((-583 $) |#4| $) 101) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 102) (((-583 $) |#4| (-583 $)) NIL)) (-3160 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 113)) (-2474 (($ |#4| $) 69) (($ (-583 |#4|) $) 70) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 66)) (-2774 (((-583 |#4|) $) NIL)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) 47)) (-1672 (($ $ |#4|) NIL) (((-583 $) |#4| $) 81) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 76)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 13)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 12)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 20)) (-2442 (($ $ |#3|) 42)) (-3759 (($ $ |#3|) 43)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3596 (((-583 $) |#4| $) 78) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-2119 (((-107) |#4| $) NIL)) (-1871 (((-107) |#3| $) 52)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-942 |#1| |#2| |#3| |#4|) (-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -942)) +((-2474 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) (-4029 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-4029 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3160 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-2865 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) +(-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) +((-3130 (((-583 (-623 |#1|)) (-583 (-623 |#1|))) 57) (((-623 |#1|) (-623 |#1|)) 56) (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 55) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 52)) (-2363 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843)) 51) (((-623 |#1|) (-623 |#1|) (-843)) 50)) (-3860 (((-583 (-623 (-517))) (-583 (-583 (-517)))) 67) (((-583 (-623 (-517))) (-583 (-827 (-517))) (-517)) 66) (((-623 (-517)) (-583 (-517))) 63) (((-623 (-517)) (-827 (-517)) (-517)) 62)) (-3369 (((-623 (-874 |#1|)) (-703)) 80)) (-2965 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843)) 37 (|has| |#1| (-6 (-4182 "*")))) (((-623 |#1|) (-623 |#1|) (-843)) 35 (|has| |#1| (-6 (-4182 "*")))))) +(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-623 |#1|) (-623 |#1|) (-843))) |noBranch|) (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) |noBranch|) (-15 -3369 ((-623 (-874 |#1|)) (-703))) (-15 -2363 ((-623 |#1|) (-623 |#1|) (-843))) (-15 -2363 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) (-15 -3130 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3130 ((-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3860 ((-623 (-517)) (-827 (-517)) (-517))) (-15 -3860 ((-623 (-517)) (-583 (-517)))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-827 (-517))) (-517))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-583 (-517)))))) (-961)) (T -943)) +((-3860 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-827 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-943 *5)) (-4 *5 (-961)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *3 (-827 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-943 *5)) (-4 *5 (-961)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-3130 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-3130 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-2363 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-2363 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-874 *4))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-2965 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-2965 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-623 |#1|) (-623 |#1|) (-843))) |noBranch|) (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) |noBranch|) (-15 -3369 ((-623 (-874 |#1|)) (-703))) (-15 -2363 ((-623 |#1|) (-623 |#1|) (-843))) (-15 -2363 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) (-15 -3130 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3130 ((-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3860 ((-623 (-517)) (-827 (-517)) (-517))) (-15 -3860 ((-623 (-517)) (-583 (-517)))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-827 (-517))) (-517))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-583 (-517)))))) +((-4010 (((-623 |#1|) (-583 (-623 |#1|)) (-1153 |#1|)) 48 (|has| |#1| (-278)))) (-1313 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 (-1153 |#1|))) 73 (|has| |#1| (-333))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 |#1|)) 76 (|has| |#1| (-333)))) (-1555 (((-1153 |#1|) (-583 (-1153 |#1|)) (-517)) 90 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-1646 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843)) 82 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107)) 80 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|))) 79 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517)) 78 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-3348 (((-107) (-583 (-623 |#1|))) 68 (|has| |#1| (-333))) (((-107) (-583 (-623 |#1|)) (-517)) 70 (|has| |#1| (-333)))) (-1521 (((-1153 (-1153 |#1|)) (-583 (-623 |#1|)) (-1153 |#1|)) 46 (|has| |#1| (-278)))) (-1209 (((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|)) 32)) (-2510 (((-623 |#1|) (-1153 (-1153 |#1|))) 29)) (-3421 (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517)) 62 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 61 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517)) 66 (|has| |#1| (-333))))) +(((-944 |#1|) (-10 -7 (-15 -2510 ((-623 |#1|) (-1153 (-1153 |#1|)))) (-15 -1209 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -1521 ((-1153 (-1153 |#1|)) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -4010 ((-623 |#1|) (-583 (-623 |#1|)) (-1153 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 (-1153 |#1|))))) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843))) (-15 -1555 ((-1153 |#1|) (-583 (-1153 |#1|)) (-517)))) |noBranch|) |noBranch|)) (-961)) (T -944)) +((-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1153 *5))) (-5 *4 (-517)) (-5 *2 (-1153 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-1646 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-1646 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-583 (-623 *4))))) (-1646 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-583 (-623 *6))))) (-1313 (*1 *2 *3 *4) (-12 (-5 *4 (-1153 (-1153 *5))) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-1313 (*1 *2 *3 *4) (-12 (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *4)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *5)))) (-3421 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-961)))) (-3421 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)) (-4 *4 (-333)) (-4 *4 (-961)))) (-3421 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-944 *6)) (-4 *6 (-333)) (-4 *6 (-961)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1153 *5)) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)))) (-1521 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-1153 (-1153 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1153 *5)))) (-1209 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-944 *4)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-4 *4 (-961)) (-5 *2 (-623 *4)) (-5 *1 (-944 *4))))) +(-10 -7 (-15 -2510 ((-623 |#1|) (-1153 (-1153 |#1|)))) (-15 -1209 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -1521 ((-1153 (-1153 |#1|)) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -4010 ((-623 |#1|) (-583 (-623 |#1|)) (-1153 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 (-1153 |#1|))))) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843))) (-15 -1555 ((-1153 |#1|) (-583 (-1153 |#1|)) (-517)))) |noBranch|) |noBranch|)) +((-4003 ((|#1| (-843) |#1|) 9))) +(((-945 |#1|) (-10 -7 (-15 -4003 (|#1| (-843) |#1|))) (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $))))) (T -945)) +((-4003 (*1 *2 *3 *2) (-12 (-5 *3 (-843)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)))))))) +(-10 -7 (-15 -4003 (|#1| (-843) |#1|))) +((-2633 (((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517))))) 58)) (-2159 (((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517))))) 48)) (-2559 (((-583 (-286 (-517))) (-623 (-377 (-874 (-517))))) 41)) (-3686 (((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517))))) 67)) (-3915 (((-623 (-286 (-517))) (-623 (-286 (-517)))) 33)) (-2822 (((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517))))) 61)) (-1400 (((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517))))) 65))) +(((-946) (-10 -7 (-15 -2633 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517)))))) (-15 -2159 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517)))))) (-15 -2559 ((-583 (-286 (-517))) (-623 (-377 (-874 (-517)))))) (-15 -1400 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517)))))) (-15 -3915 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2822 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3686 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517)))))))) (T -946)) +((-3686 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))) (-2822 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))) (-1400 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))) (-2559 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-946)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)) (-5 *3 (-286 (-517))))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-946))))) +(-10 -7 (-15 -2633 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517)))))) (-15 -2159 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517)))))) (-15 -2559 ((-583 (-286 (-517))) (-623 (-377 (-874 (-517)))))) (-15 -1400 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517)))))) (-15 -3915 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2822 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3686 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517))))))) +((-3577 ((|#1| |#1| (-843)) 9))) +(((-947 |#1|) (-10 -7 (-15 -3577 (|#1| |#1| (-843)))) (-13 (-1003) (-10 -8 (-15 * ($ $ $))))) (T -947)) +((-3577 (*1 *2 *2 *3) (-12 (-5 *3 (-843)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3577 (|#1| |#1| (-843)))) +((-2256 ((|#1| (-282)) 11) (((-1158) |#1|) 9))) +(((-948 |#1|) (-10 -7 (-15 -2256 ((-1158) |#1|)) (-15 -2256 (|#1| (-282)))) (-1108)) (T -948)) +((-2256 (*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-948 *2)) (-4 *2 (-1108)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-948 *3)) (-4 *3 (-1108))))) +(-10 -7 (-15 -2256 ((-1158) |#1|)) (-15 -2256 (|#1| (-282)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ |#4|) 25)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3216 ((|#4| $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 46) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2961 (((-703)) 43)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 23 T CONST)) (-1547 (((-107) $ $) 40)) (-1654 (($ $) 31) (($ $ $) NIL)) (-1642 (($ $ $) 29)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-949 |#1| |#2| |#3| |#4| |#5|) (-13 (-156) (-37 |#1|) (-10 -8 (-15 -3225 ($ |#4|)) (-15 -2256 ($ |#4|)) (-15 -3216 (|#4| $)))) (-333) (-725) (-779) (-871 |#1| |#2| |#3|) (-583 |#4|)) (T -949)) +((-3225 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3216 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2))))) +(-13 (-156) (-37 |#1|) (-10 -8 (-15 -3225 ($ |#4|)) (-15 -2256 ($ |#4|)) (-15 -3216 (|#4| $)))) +((-2750 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-1668 (((-1158) $ (-1073) (-1073)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2106 (((-107) (-107)) 39)) (-3816 (((-107) (-107)) 38)) (-2411 (((-51) $ (-1073) (-51)) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 (-51) "failed") (-1073) $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-3 (-51) "failed") (-1073) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -4181)))) (-1377 (((-51) $ (-1073)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1073) $) NIL (|has| (-1073) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-3482 (((-1073) $) NIL (|has| (-1073) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2274 (((-583 (-1073)) $) 34)) (-2793 (((-107) (-1073) $) NIL)) (-3309 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-1857 (((-583 (-1073)) $) NIL)) (-4088 (((-107) (-1073) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-1647 (((-51) $) NIL (|has| (-1073) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) "failed") (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL)) (-2565 (($ $ (-51)) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-1941 (((-583 (-51)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-51) $ (-1073)) 35) (((-51) $ (-1073) (-51)) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-2256 (((-787) $) 37 (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-950) (-13 (-1085 (-1073) (-51)) (-10 -7 (-15 -2106 ((-107) (-107))) (-15 -3816 ((-107) (-107))) (-6 -4180)))) (T -950)) +((-2106 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950))))) +(-13 (-1085 (-1073) (-51)) (-10 -7 (-15 -2106 ((-107) (-107))) (-15 -3816 ((-107) (-107))) (-6 -4180))) +((-3189 ((|#2| $) 10))) +(((-951 |#1| |#2|) (-10 -8 (-15 -3189 (|#2| |#1|))) (-952 |#2|) (-1108)) (T -951)) +NIL +(-10 -8 (-15 -3189 (|#2| |#1|))) +((-1772 (((-3 |#1| "failed") $) 7)) (-3189 ((|#1| $) 8)) (-2256 (($ |#1|) 6))) +(((-952 |#1|) (-1184) (-1108)) (T -952)) +((-3189 (*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) (-1772 (*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) (-2256 (*1 *1 *2) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108))))) +(-13 (-10 -8 (-15 -2256 ($ |t#1|)) (-15 -1772 ((-3 |t#1| "failed") $)) (-15 -3189 (|t#1| $)))) +((-1488 (((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1073))) 35))) +(((-953 |#1| |#2|) (-10 -7 (-15 -1488 ((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1073))))) (-509) (-13 (-509) (-952 |#1|))) (T -953)) +((-1488 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-13 (-509) (-952 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *6)))))) (-5 *1 (-953 *5 *6))))) +(-10 -7 (-15 -1488 ((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1073))))) +((-3041 (((-349)) 15)) (-3290 (((-1 (-349)) (-349) (-349)) 20)) (-2147 (((-1 (-349)) (-703)) 42)) (-2466 (((-349)) 33)) (-2527 (((-1 (-349)) (-349) (-349)) 34)) (-3907 (((-349)) 26)) (-2697 (((-1 (-349)) (-349)) 27)) (-3125 (((-349) (-703)) 37)) (-2136 (((-1 (-349)) (-703)) 38)) (-1696 (((-1 (-349)) (-703) (-703)) 41)) (-2350 (((-1 (-349)) (-703) (-703)) 39))) +(((-954) (-10 -7 (-15 -3041 ((-349))) (-15 -2466 ((-349))) (-15 -3907 ((-349))) (-15 -3125 ((-349) (-703))) (-15 -3290 ((-1 (-349)) (-349) (-349))) (-15 -2527 ((-1 (-349)) (-349) (-349))) (-15 -2697 ((-1 (-349)) (-349))) (-15 -2136 ((-1 (-349)) (-703))) (-15 -2350 ((-1 (-349)) (-703) (-703))) (-15 -1696 ((-1 (-349)) (-703) (-703))) (-15 -2147 ((-1 (-349)) (-703))))) (T -954)) +((-2147 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-1696 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2350 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2697 (*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-2527 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-3290 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-954)))) (-3907 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))) (-2466 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))) (-3041 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954))))) +(-10 -7 (-15 -3041 ((-349))) (-15 -2466 ((-349))) (-15 -3907 ((-349))) (-15 -3125 ((-349) (-703))) (-15 -3290 ((-1 (-349)) (-349) (-349))) (-15 -2527 ((-1 (-349)) (-349) (-349))) (-15 -2697 ((-1 (-349)) (-349))) (-15 -2136 ((-1 (-349)) (-703))) (-15 -2350 ((-1 (-349)) (-703) (-703))) (-15 -1696 ((-1 (-349)) (-703) (-703))) (-15 -2147 ((-1 (-349)) (-703)))) +((-3755 (((-388 |#1|) |#1|) 31))) +(((-955 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|))) (-1130 (-377 (-874 (-517))))) (T -955)) +((-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1130 (-377 (-874 (-517)))))))) +(-10 -7 (-15 -3755 ((-388 |#1|) |#1|))) +((-3954 (((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|))) 14))) +(((-956 |#1|) (-10 -7 (-15 -3954 ((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|))))) (-278)) (T -956)) +((-3954 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-874 *4)))) (-5 *1 (-956 *4))))) +(-10 -7 (-15 -3954 ((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|))))) +((-1364 (((-583 (-1073)) (-377 (-874 |#1|))) 15)) (-2352 (((-377 (-1069 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073)) 22)) (-1350 (((-377 (-874 |#1|)) (-377 (-1069 (-377 (-874 |#1|)))) (-1073)) 24)) (-1409 (((-3 (-1073) "failed") (-377 (-874 |#1|))) 18)) (-2051 (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|))))) 29) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 31) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1073)) (-583 (-377 (-874 |#1|)))) 26) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|))) 27)) (-2256 (((-377 (-874 |#1|)) |#1|) 11))) +(((-957 |#1|) (-10 -7 (-15 -1364 ((-583 (-1073)) (-377 (-874 |#1|)))) (-15 -1409 ((-3 (-1073) "failed") (-377 (-874 |#1|)))) (-15 -2352 ((-377 (-1069 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1350 ((-377 (-874 |#1|)) (-377 (-1069 (-377 (-874 |#1|)))) (-1073))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1073)) (-583 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2256 ((-377 (-874 |#1|)) |#1|))) (-509)) (T -957)) +((-2256 (*1 *2 *3) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-957 *3)) (-4 *3 (-509)))) (-2051 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-2051 (*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-2051 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-5 *4 (-583 (-377 (-874 *5)))) (-5 *2 (-377 (-874 *5))) (-4 *5 (-509)) (-5 *1 (-957 *5)))) (-2051 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 (-377 (-874 *5))))) (-5 *4 (-1073)) (-5 *2 (-377 (-874 *5))) (-5 *1 (-957 *5)) (-4 *5 (-509)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-377 (-1069 (-377 (-874 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-377 (-874 *5))))) (-1409 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-1073)) (-5 *1 (-957 *4)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1073))) (-5 *1 (-957 *4))))) +(-10 -7 (-15 -1364 ((-583 (-1073)) (-377 (-874 |#1|)))) (-15 -1409 ((-3 (-1073) "failed") (-377 (-874 |#1|)))) (-15 -2352 ((-377 (-1069 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1350 ((-377 (-874 |#1|)) (-377 (-1069 (-377 (-874 |#1|)))) (-1073))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1073)) (-583 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2256 ((-377 (-874 |#1|)) |#1|))) +((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 (-712 |#1| (-789 |#2|)))))) (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-4029 (((-583 $) (-583 (-712 |#1| (-789 |#2|)))) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)) NIL)) (-1364 (((-583 (-789 |#2|)) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2437 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2535 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3726 $))) (-712 |#1| (-789 |#2|)) $) NIL)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ (-789 |#2|)) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 (-712 |#1| (-789 |#2|)) "failed") $ (-789 |#2|)) NIL)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) NIL (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-1677 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3189 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-1660 (((-3 $ "failed") $) NIL)) (-3659 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-2052 (($ (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-3283 (((-107) (-712 |#1| (-789 |#2|)) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-4049 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3225 (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|))) NIL (|has| $ (-6 -4180))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2901 (((-2 (|:| -1210 (-583 (-712 |#1| (-789 |#2|)))) (|:| -1513 (-583 (-712 |#1| (-789 |#2|))))) $) NIL)) (-4063 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1829 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1538 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-1536 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1497 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-1976 (((-789 |#2|) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-1433 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL)) (-3921 (((-583 (-789 |#2|)) $) NIL)) (-1792 (((-107) (-789 |#2|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3955 (((-3 (-712 |#1| (-789 |#2|)) (-583 $)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1855 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3726 $))) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2068 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-2117 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL)) (-2834 (((-3 (-107) (-583 $)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1812 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL)) (-2474 (($ (-712 |#1| (-789 |#2|)) $) NIL) (($ (-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-2774 (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-3852 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3522 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-1959 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3183 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-2887 (((-3 (-712 |#1| (-789 |#2|)) "failed") (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL)) (-1195 (((-3 $ "failed") $ (-712 |#1| (-789 |#2|))) NIL)) (-1672 (($ $ (-712 |#1| (-789 |#2|))) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-2048 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-265 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-583 (-265 (-712 |#1| (-789 |#2|))))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-3688 (((-703) $) NIL)) (-3217 (((-703) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (((-703) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-712 |#1| (-789 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-2442 (($ $ (-789 |#2|)) NIL)) (-3759 (($ $ (-789 |#2|)) NIL)) (-2303 (($ $) NIL)) (-1846 (($ $ (-789 |#2|)) NIL)) (-2256 (((-787) $) NIL) (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-1605 (((-703) $) NIL (|has| (-789 |#2|) (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2114 (((-107) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-583 (-712 |#1| (-789 |#2|))))) NIL)) (-3596 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-3675 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 (-789 |#2|)) $) NIL)) (-2119 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1871 (((-107) (-789 |#2|) $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-958 |#1| |#2|) (-13 (-980 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -4029 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107))))) (-421) (-583 (-1073))) (T -958)) +((-4029 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6))))) +(-13 (-980 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -4029 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107))))) +((-3290 (((-1 (-517)) (-998 (-517))) 33)) (-2685 (((-517) (-517) (-517) (-517) (-517)) 30)) (-3336 (((-1 (-517)) |RationalNumber|) NIL)) (-1251 (((-1 (-517)) |RationalNumber|) NIL)) (-1270 (((-1 (-517)) (-517) |RationalNumber|) NIL))) +(((-959) (-10 -7 (-15 -3290 ((-1 (-517)) (-998 (-517)))) (-15 -1270 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -3336 ((-1 (-517)) |RationalNumber|)) (-15 -1251 ((-1 (-517)) |RationalNumber|)) (-15 -2685 ((-517) (-517) (-517) (-517) (-517))))) (T -959)) +((-2685 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-959)))) (-1251 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))) (-3336 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))) (-1270 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)) (-5 *3 (-517)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-998 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-959))))) +(-10 -7 (-15 -3290 ((-1 (-517)) (-998 (-517)))) (-15 -1270 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -3336 ((-1 (-517)) |RationalNumber|)) (-15 -1251 ((-1 (-517)) |RationalNumber|)) (-15 -2685 ((-517) (-517) (-517) (-517) (-517)))) +((-2256 (((-787) $) NIL) (($ (-517)) 10))) +(((-960 |#1|) (-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-961)) (T -960)) +NIL +(-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-961) (-1184)) (T -961)) +((-2961 (*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-961))))) +(-13 (-968) (-659) (-585 $) (-10 -8 (-15 -2961 ((-703))) (-15 -2256 ($ (-517))) (-6 -4177))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-4058 (((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)) 45))) +(((-962 |#1| |#2|) (-10 -7 (-15 -4058 ((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)))) (-1073) (-333)) (T -962)) +((-4058 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-874 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1073))))) +(-10 -7 (-15 -4058 ((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)))) +((-2818 (((-107) $) 27)) (-3213 (((-107) $) 16)) (-1477 (((-703) $) 13)) (-1486 (((-703) $) 14)) (-1516 (((-107) $) 25)) (-1683 (((-107) $) 29))) +(((-963 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1486 ((-703) |#1|)) (-15 -1477 ((-703) |#1|)) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|))) (-964 |#2| |#3| |#4| |#5| |#6|) (-703) (-703) (-961) (-212 |#3| |#4|) (-212 |#2| |#4|)) (T -963)) +NIL +(-10 -8 (-15 -1486 ((-703) |#1|)) (-15 -1477 ((-703) |#1|)) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2818 (((-107) $) 51)) (-4038 (((-3 $ "failed") $ $) 19)) (-3213 (((-107) $) 53)) (-2953 (((-107) $ (-703)) 61)) (-3092 (($) 17 T CONST)) (-2468 (($ $) 34 (|has| |#3| (-278)))) (-1939 ((|#4| $ (-517)) 39)) (-2261 (((-703) $) 33 (|has| |#3| (-509)))) (-1377 ((|#3| $ (-517) (-517)) 41)) (-1536 (((-583 |#3|) $) 68 (|has| $ (-6 -4180)))) (-1948 (((-703) $) 32 (|has| |#3| (-509)))) (-3706 (((-583 |#5|) $) 31 (|has| |#3| (-509)))) (-1477 (((-703) $) 45)) (-1486 (((-703) $) 44)) (-2550 (((-107) $ (-703)) 60)) (-2813 (((-517) $) 49)) (-1338 (((-517) $) 47)) (-2560 (((-583 |#3|) $) 69 (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) 71 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 48)) (-1307 (((-517) $) 46)) (-1840 (($ (-583 (-583 |#3|))) 54)) (-1433 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3035 (((-583 (-583 |#3|)) $) 43)) (-3847 (((-107) $ (-703)) 59)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-509)))) (-2048 (((-107) (-1 (-107) |#3|) $) 66 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#3|) (-583 |#3|)) 75 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) 73 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 (-265 |#3|))) 72 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) 55)) (-3619 (((-107) $) 58)) (-1746 (($) 57)) (-1449 ((|#3| $ (-517) (-517)) 42) ((|#3| $ (-517) (-517) |#3|) 40)) (-1516 (((-107) $) 52)) (-3217 (((-703) |#3| $) 70 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#3|) $) 67 (|has| $ (-6 -4180)))) (-2433 (($ $) 56)) (-3728 ((|#5| $ (-517)) 38)) (-2256 (((-787) $) 11)) (-3675 (((-107) (-1 (-107) |#3|) $) 65 (|has| $ (-6 -4180)))) (-1683 (((-107) $) 50)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#3|) 35 (|has| |#3| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2296 (((-703) $) 62 (|has| $ (-6 -4180))))) +(((-964 |#1| |#2| |#3| |#4| |#5|) (-1184) (-703) (-703) (-961) (-212 |t#2| |t#3|) (-212 |t#1| |t#3|)) (T -964)) +((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-1449 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) (-1377 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) (-1449 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7))))) +(-13 (-106 |t#3| |t#3|) (-456 |t#3|) (-10 -8 (-6 -4180) (IF (|has| |t#3| (-156)) (-6 (-650 |t#3|)) |noBranch|) (-15 -1840 ($ (-583 (-583 |t#3|)))) (-15 -3213 ((-107) $)) (-15 -1516 ((-107) $)) (-15 -2818 ((-107) $)) (-15 -1683 ((-107) $)) (-15 -2813 ((-517) $)) (-15 -2718 ((-517) $)) (-15 -1338 ((-517) $)) (-15 -1307 ((-517) $)) (-15 -1477 ((-703) $)) (-15 -1486 ((-703) $)) (-15 -3035 ((-583 (-583 |t#3|)) $)) (-15 -1449 (|t#3| $ (-517) (-517))) (-15 -1377 (|t#3| $ (-517) (-517))) (-15 -1449 (|t#3| $ (-517) (-517) |t#3|)) (-15 -1939 (|t#4| $ (-517))) (-15 -3728 (|t#5| $ (-517))) (-15 -1893 ($ (-1 |t#3| |t#3|) $)) (-15 -1893 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-509)) (-15 -2476 ((-3 $ "failed") $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-333)) (-15 -1667 ($ $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-278)) (-15 -2468 ($ $)) |noBranch|) (IF (|has| |t#3| (-509)) (PROGN (-15 -2261 ((-703) $)) (-15 -1948 ((-703) $)) (-15 -3706 ((-583 |t#5|) $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-106 |#3| |#3|) . T) ((-123) . T) ((-557 (-787)) . T) ((-280 |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))) ((-456 |#3|) . T) ((-478 |#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))) ((-585 |#3|) . T) ((-650 |#3|) |has| |#3| (-156)) ((-967 |#3|) . T) ((-1003) . T) ((-1108) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2818 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 40 (|has| |#3| (-278)))) (-1939 (((-214 |#2| |#3|) $ (-517)) 29)) (-4054 (($ (-623 |#3|)) 38)) (-2261 (((-703) $) 42 (|has| |#3| (-509)))) (-1377 ((|#3| $ (-517) (-517)) NIL)) (-1536 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-1948 (((-703) $) 44 (|has| |#3| (-509)))) (-3706 (((-583 (-214 |#1| |#3|)) $) 48 (|has| |#3| (-509)))) (-1477 (((-703) $) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#3|))) 24)) (-1433 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3035 (((-583 (-583 |#3|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-509)))) (-2048 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#3| $ (-517) (-517)) NIL) ((|#3| $ (-517) (-517) |#3|) NIL)) (-3141 (((-125)) 51 (|has| |#3| (-333)))) (-1516 (((-107) $) NIL)) (-3217 (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003)))) (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 60 (|has| |#3| (-558 (-493))))) (-3728 (((-214 |#1| |#3|) $ (-517)) 33)) (-2256 (((-787) $) 16) (((-623 |#3|) $) 35)) (-3675 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-2396 (($) 13 T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-965 |#1| |#2| |#3|) (-13 (-964 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1160 |#3|)) |noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (-15 -4054 ($ (-623 |#3|))) (-15 -2256 ((-623 |#3|) $)))) (-703) (-703) (-961)) (T -965)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-961)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-961)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703))))) +(-13 (-964 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1160 |#3|)) |noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (-15 -4054 ($ (-623 |#3|))) (-15 -2256 ((-623 |#3|) $)))) +((-3225 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1893 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-966 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1893 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3225 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-703) (-703) (-961) (-212 |#2| |#3|) (-212 |#1| |#3|) (-964 |#1| |#2| |#3| |#4| |#5|) (-961) (-212 |#2| |#7|) (-212 |#1| |#7|) (-964 |#1| |#2| |#7| |#8| |#9|)) (T -966)) +((-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-964 *5 *6 *10 *11 *12)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10))))) +(-10 -7 (-15 -1893 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3225 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ |#1|) 23))) +(((-967 |#1|) (-1184) (-968)) (T -967)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-968))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-839)) 26)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-965) (-1180)) (T -965)) -NIL -(-13 (-21) (-1012)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-1012) . T) ((-1001) . T)) -((-2805 (($ $) 16)) (-1453 (($ $) 22)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 49)) (-2626 (($ $) 24)) (-2801 (($ $) 11)) (-3383 (($ $) 38)) (-1248 (((-346) $) NIL) (((-199) $) NIL) (((-810 (-346)) $) 33)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) 28) (($ (-501)) NIL) (($ (-375 (-501))) 28)) (-3965 (((-701)) 8)) (-2803 (($ $) 39))) -(((-966 |#1|) (-10 -8 (-15 -1453 (|#1| |#1|)) (-15 -2805 (|#1| |#1|)) (-15 -2801 (|#1| |#1|)) (-15 -3383 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -3691 ((-786) |#1|))) (-967)) (T -966)) -((-3965 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-966 *3)) (-4 *3 (-967))))) -(-10 -8 (-15 -1453 (|#1| |#1|)) (-15 -2805 (|#1| |#1|)) (-15 -2801 (|#1| |#1|)) (-15 -3383 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2197 (((-501) $) 98)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-2805 (($ $) 96)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-3743 (($ $) 106)) (-2781 (((-107) $ $) 59)) (-1417 (((-501) $) 123)) (-2540 (($) 17 T CONST)) (-1453 (($ $) 95)) (-3765 (((-3 (-501) "failed") $) 111) (((-3 (-375 (-501)) "failed") $) 108)) (-3490 (((-501) $) 110) (((-375 (-501)) $) 107)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-2164 (((-107) $) 121)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 102)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 105)) (-2626 (($ $) 101)) (-4067 (((-107) $) 122)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-4111 (($ $ $) 120)) (-1323 (($ $ $) 119)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-2801 (($ $) 97)) (-3383 (($ $) 99)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-1248 (((-346) $) 114) (((-199) $) 113) (((-810 (-346)) $) 103)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ (-501)) 112) (($ (-375 (-501))) 109)) (-3965 (((-701)) 29)) (-2803 (($ $) 100)) (-2442 (((-107) $ $) 39)) (-1720 (($ $) 124)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 117)) (-3768 (((-107) $ $) 116)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 118)) (-3762 (((-107) $ $) 115)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68) (($ $ (-375 (-501))) 104)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66))) -(((-967) (-1180)) (T -967)) -((-1720 (*1 *1 *1) (-4 *1 (-967))) (-2626 (*1 *1 *1) (-4 *1 (-967))) (-2803 (*1 *1 *1) (-4 *1 (-967))) (-3383 (*1 *1 *1) (-4 *1 (-967))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-501)))) (-2801 (*1 *1 *1) (-4 *1 (-967))) (-2805 (*1 *1 *1) (-4 *1 (-967))) (-1453 (*1 *1 *1) (-4 *1 (-967)))) -(-13 (-331) (-775) (-933) (-950 (-501)) (-950 (-375 (-501))) (-916) (-556 (-810 (-346))) (-806 (-346)) (-134) (-10 -8 (-15 -2626 ($ $)) (-15 -2803 ($ $)) (-15 -3383 ($ $)) (-15 -2197 ((-501) $)) (-15 -2801 ($ $)) (-15 -2805 ($ $)) (-15 -1453 ($ $)) (-15 -1720 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-555 (-786)) . T) ((-156) . T) ((-556 (-199)) . T) ((-556 (-346)) . T) ((-556 (-810 (-346))) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-775) . T) ((-777) . T) ((-806 (-346)) . T) ((-841) . T) ((-916) . T) ((-933) . T) ((-950 (-375 (-501))) . T) ((-950 (-501)) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) |#2| $) 23)) (-3796 ((|#1| $) 10)) (-1417 (((-501) |#2| $) 87)) (-2899 (((-3 $ "failed") |#2| (-839)) 57)) (-1320 ((|#1| $) 28)) (-2038 ((|#1| |#2| $ |#1|) 37)) (-3237 (($ $) 25)) (-2174 (((-3 |#2| "failed") |#2| $) 86)) (-2164 (((-107) |#2| $) NIL)) (-4067 (((-107) |#2| $) NIL)) (-3769 (((-107) |#2| $) 24)) (-2579 ((|#1| $) 88)) (-1313 ((|#1| $) 27)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2264 ((|#2| $) 78)) (-3691 (((-786) $) 70)) (-2391 ((|#1| |#2| $ |#1|) 38)) (-1250 (((-578 $) |#2|) 59)) (-3751 (((-107) $ $) 73))) -(((-968 |#1| |#2|) (-13 (-974 |#1| |#2|) (-10 -8 (-15 -1313 (|#1| $)) (-15 -1320 (|#1| $)) (-15 -3796 (|#1| $)) (-15 -2579 (|#1| $)) (-15 -3237 ($ $)) (-15 -3769 ((-107) |#2| $)) (-15 -2038 (|#1| |#2| $ |#1|)))) (-13 (-775) (-331)) (-1125 |#1|)) (T -968)) -((-2038 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-1313 (*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-1320 (*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-2579 (*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-3237 (*1 *1 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-3769 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-775) (-331))) (-5 *2 (-107)) (-5 *1 (-968 *4 *3)) (-4 *3 (-1125 *4))))) -(-13 (-974 |#1| |#2|) (-10 -8 (-15 -1313 (|#1| $)) (-15 -1320 (|#1| $)) (-15 -3796 (|#1| $)) (-15 -2579 (|#1| $)) (-15 -3237 ($ $)) (-15 -3769 ((-107) |#2| $)) (-15 -2038 (|#1| |#2| $ |#1|)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2619 (($ $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL)) (-1525 (($ $ $) NIL)) (-2540 (($) NIL T CONST)) (-3804 (($ (-1070)) 10) (($ (-501)) 7)) (-3765 (((-3 (-501) "failed") $) NIL)) (-3490 (((-501) $) NIL)) (-3023 (($ $ $) NIL)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL)) (-1696 (((-107) $) NIL)) (-3518 (((-375 (-501)) $) NIL)) (-2890 (($) NIL) (($ $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3185 (($ $ $ $) NIL)) (-2002 (($ $ $) NIL)) (-2164 (((-107) $) NIL)) (-2940 (($ $ $) NIL)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL)) (-1355 (((-107) $) NIL)) (-3729 (((-107) $) NIL)) (-3493 (((-3 $ "failed") $) NIL)) (-4067 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4124 (($ $ $ $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-4100 (($ $) NIL)) (-4139 (($ $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3437 (($ $ $) NIL)) (-3746 (($) NIL T CONST)) (-2170 (($ $) NIL)) (-3708 (((-1018) $) NIL) (($ $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3260 (($ $) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-2565 (($ $) NIL)) (-3764 (($ $) NIL)) (-1248 (((-501) $) 16) (((-490) $) NIL) (((-810 (-501)) $) NIL) (((-346) $) NIL) (((-199) $) NIL) (($ (-1070)) 9)) (-3691 (((-786) $) 20) (($ (-501)) 6) (($ $) NIL) (($ (-501)) 6)) (-3965 (((-701)) NIL)) (-1808 (((-107) $ $) NIL)) (-1299 (($ $ $) NIL)) (-1965 (($) NIL)) (-2442 (((-107) $ $) NIL)) (-3429 (($ $ $ $) NIL)) (-1720 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3797 (($ $) 19) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL))) -(((-969) (-13 (-500) (-10 -8 (-6 -4154) (-6 -4159) (-6 -4155) (-15 -1248 ($ (-1070))) (-15 -3804 ($ (-1070))) (-15 -3804 ($ (-501)))))) (T -969)) -((-1248 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-969)))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-969)))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-969))))) -(-13 (-500) (-10 -8 (-6 -4154) (-6 -4159) (-6 -4155) (-15 -1248 ($ (-1070))) (-15 -3804 ($ (-1070))) (-15 -3804 ($ (-501))))) -((-3736 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-1991 (((-1154) $ (-1070) (-1070)) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3953 (($) 9)) (-3754 (((-50) $ (-1070) (-50)) NIL)) (-3750 (($ $) 23)) (-2039 (($ $) 21)) (-4112 (($ $) 20)) (-2793 (($ $) 22)) (-1868 (($ $) 25)) (-3363 (($ $) 26)) (-2183 (($ $) 19)) (-1332 (($ $) 24)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) 18 (|has| $ (-6 -4167)))) (-4019 (((-3 (-50) "failed") (-1070) $) 34)) (-2540 (($) NIL T CONST)) (-3692 (($) 7)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-2256 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) 46 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-3 (-50) "failed") (-1070) $) NIL)) (-1526 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-3658 (((-3 (-1053) "failed") $ (-1053) (-501)) 59)) (-2156 (((-50) $ (-1070) (-50)) NIL (|has| $ (-6 -4168)))) (-1905 (((-50) $ (-1070)) NIL)) (-2732 (((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-1070) $) NIL (|has| (-1070) (-777)))) (-3380 (((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) 28 (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-1522 (((-1070) $) NIL (|has| (-1070) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4168))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-1500 (((-578 (-1070)) $) NIL)) (-3576 (((-107) (-1070) $) NIL)) (-1328 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL)) (-4114 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) 37)) (-2658 (((-578 (-1070)) $) NIL)) (-2852 (((-107) (-1070) $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-2695 (((-346) $ (-1070)) 45)) (-4145 (((-578 (-1053)) $ (-1053)) 60)) (-1190 (((-50) $) NIL (|has| (-1070) (-777)))) (-2520 (((-3 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) "failed") (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL)) (-3084 (($ $ (-50)) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-262 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-50)) (-578 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-262 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-578 (-262 (-50)))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-4137 (((-578 (-50)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 (((-50) $ (-1070)) NIL) (((-50) $ (-1070) (-50)) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-3879 (($ $ (-1070)) 47)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-701) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001)))) (((-701) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) 30)) (-3934 (($ $ $) 31)) (-3691 (((-786) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-1231 (($ $ (-1070) (-346)) 43)) (-2556 (($ $ (-1070) (-346)) 44)) (-2866 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-970) (-13 (-1081 (-1070) (-50)) (-10 -8 (-15 -3934 ($ $ $)) (-15 -3692 ($)) (-15 -2183 ($ $)) (-15 -4112 ($ $)) (-15 -2039 ($ $)) (-15 -2793 ($ $)) (-15 -1332 ($ $)) (-15 -3750 ($ $)) (-15 -1868 ($ $)) (-15 -3363 ($ $)) (-15 -1231 ($ $ (-1070) (-346))) (-15 -2556 ($ $ (-1070) (-346))) (-15 -2695 ((-346) $ (-1070))) (-15 -4145 ((-578 (-1053)) $ (-1053))) (-15 -3879 ($ $ (-1070))) (-15 -3953 ($)) (-15 -3658 ((-3 (-1053) "failed") $ (-1053) (-501))) (-6 -4167)))) (T -970)) -((-3934 (*1 *1 *1 *1) (-5 *1 (-970))) (-3692 (*1 *1) (-5 *1 (-970))) (-2183 (*1 *1 *1) (-5 *1 (-970))) (-4112 (*1 *1 *1) (-5 *1 (-970))) (-2039 (*1 *1 *1) (-5 *1 (-970))) (-2793 (*1 *1 *1) (-5 *1 (-970))) (-1332 (*1 *1 *1) (-5 *1 (-970))) (-3750 (*1 *1 *1) (-5 *1 (-970))) (-1868 (*1 *1 *1) (-5 *1 (-970))) (-3363 (*1 *1 *1) (-5 *1 (-970))) (-1231 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-346)) (-5 *1 (-970)))) (-2556 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-346)) (-5 *1 (-970)))) (-2695 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-346)) (-5 *1 (-970)))) (-4145 (*1 *2 *1 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-970)) (-5 *3 (-1053)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-970)))) (-3953 (*1 *1) (-5 *1 (-970))) (-3658 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-970))))) -(-13 (-1081 (-1070) (-50)) (-10 -8 (-15 -3934 ($ $ $)) (-15 -3692 ($)) (-15 -2183 ($ $)) (-15 -4112 ($ $)) (-15 -2039 ($ $)) (-15 -2793 ($ $)) (-15 -1332 ($ $)) (-15 -3750 ($ $)) (-15 -1868 ($ $)) (-15 -3363 ($ $)) (-15 -1231 ($ $ (-1070) (-346))) (-15 -2556 ($ $ (-1070) (-346))) (-15 -2695 ((-346) $ (-1070))) (-15 -4145 ((-578 (-1053)) $ (-1053))) (-15 -3879 ($ $ (-1070))) (-15 -3953 ($)) (-15 -3658 ((-3 (-1053) "failed") $ (-1053) (-501))) (-6 -4167))) -((-1511 (($ $) 45)) (-1441 (((-107) $ $) 74)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-866 (-375 (-501)))) 226) (((-3 $ "failed") (-866 (-501))) 225) (((-3 $ "failed") (-866 |#2|)) 228)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL) (((-501) $) NIL) ((|#4| $) NIL) (($ (-866 (-375 (-501)))) 214) (($ (-866 (-501))) 210) (($ (-866 |#2|)) 230)) (-3858 (($ $) NIL) (($ $ |#4|) 43)) (-2130 (((-107) $ $) 111) (((-107) $ (-578 $)) 112)) (-3132 (((-107) $) 56)) (-2352 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 106)) (-3182 (($ $) 137)) (-2611 (($ $) 133)) (-3855 (($ $) 132)) (-3090 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1936 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1964 (((-107) $ $) 120) (((-107) $ (-578 $)) 121)) (-2361 ((|#4| $) 33)) (-1955 (($ $ $) 109)) (-1257 (((-107) $) 55)) (-2595 (((-701) $) 35)) (-2538 (($ $) 151)) (-1493 (($ $) 148)) (-3723 (((-578 $) $) 68)) (-2682 (($ $) 57)) (-3894 (($ $) 144)) (-2274 (((-578 $) $) 65)) (-3154 (($ $) 59)) (-3850 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2939 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2735 (-701))) $ $) 110)) (-3276 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $) 107) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $ |#4|) 108)) (-2226 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $) 103) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $ |#4|) 104)) (-1782 (($ $ $) 89) (($ $ $ |#4|) 94)) (-3303 (($ $ $) 90) (($ $ $ |#4|) 95)) (-2329 (((-578 $) $) 51)) (-1590 (((-107) $ $) 117) (((-107) $ (-578 $)) 118)) (-1762 (($ $ $) 102)) (-3746 (($ $) 37)) (-3523 (((-107) $ $) 72)) (-2667 (((-107) $ $) 113) (((-107) $ (-578 $)) 115)) (-3618 (($ $ $) 100)) (-1657 (($ $) 40)) (-3664 ((|#2| |#2| $) 141) (($ (-578 $)) NIL) (($ $ $) NIL)) (-1785 (($ $ |#2|) NIL) (($ $ $) 130)) (-3982 (($ $ |#2|) 125) (($ $ $) 128)) (-2295 (($ $) 48)) (-1673 (($ $) 52)) (-1248 (((-810 (-346)) $) NIL) (((-810 (-501)) $) NIL) (((-490) $) NIL) (($ (-866 (-375 (-501)))) 216) (($ (-866 (-501))) 212) (($ (-866 |#2|)) 227) (((-1053) $) 249) (((-866 |#2|) $) 161)) (-3691 (((-786) $) 30) (($ (-501)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-866 |#2|) $) 162) (($ (-375 (-501))) NIL) (($ $) NIL)) (-1814 (((-3 (-107) "failed") $ $) 71))) -(((-971 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3664 (|#1| |#1| |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 ((-866 |#2|) |#1|)) (-15 -1248 ((-866 |#2|) |#1|)) (-15 -1248 ((-1053) |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -3664 (|#2| |#2| |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3982 (|#1| |#1| |#1|)) (-15 -1785 (|#1| |#1| |#2|)) (-15 -3982 (|#1| |#1| |#2|)) (-15 -2611 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -1248 (|#1| (-866 |#2|))) (-15 -3490 (|#1| (-866 |#2|))) (-15 -3765 ((-3 |#1| "failed") (-866 |#2|))) (-15 -1248 (|#1| (-866 (-501)))) (-15 -3490 (|#1| (-866 (-501)))) (-15 -3765 ((-3 |#1| "failed") (-866 (-501)))) (-15 -1248 (|#1| (-866 (-375 (-501))))) (-15 -3490 (|#1| (-866 (-375 (-501))))) (-15 -3765 ((-3 |#1| "failed") (-866 (-375 (-501))))) (-15 -1762 (|#1| |#1| |#1|)) (-15 -3618 (|#1| |#1| |#1|)) (-15 -2939 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2735 (-701))) |#1| |#1|)) (-15 -1955 (|#1| |#1| |#1|)) (-15 -2352 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -2226 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -2226 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3303 (|#1| |#1| |#1| |#4|)) (-15 -1782 (|#1| |#1| |#1| |#4|)) (-15 -3303 (|#1| |#1| |#1|)) (-15 -1782 (|#1| |#1| |#1|)) (-15 -1936 (|#1| |#1| |#1| |#4|)) (-15 -3090 (|#1| |#1| |#1| |#4|)) (-15 -1936 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -1964 ((-107) |#1| (-578 |#1|))) (-15 -1964 ((-107) |#1| |#1|)) (-15 -1590 ((-107) |#1| (-578 |#1|))) (-15 -1590 ((-107) |#1| |#1|)) (-15 -2667 ((-107) |#1| (-578 |#1|))) (-15 -2667 ((-107) |#1| |#1|)) (-15 -2130 ((-107) |#1| (-578 |#1|))) (-15 -2130 ((-107) |#1| |#1|)) (-15 -1441 ((-107) |#1| |#1|)) (-15 -3523 ((-107) |#1| |#1|)) (-15 -1814 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3723 ((-578 |#1|) |#1|)) (-15 -2274 ((-578 |#1|) |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -3132 ((-107) |#1|)) (-15 -1257 ((-107) |#1|)) (-15 -3858 (|#1| |#1| |#4|)) (-15 -3850 (|#1| |#1| |#4|)) (-15 -1673 (|#1| |#1|)) (-15 -2329 ((-578 |#1|) |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1657 (|#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -2595 ((-701) |#1|)) (-15 -2361 (|#4| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3490 (|#4| |#1|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3691 (|#1| |#4|)) (-15 -3850 (|#2| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-972 |#2| |#3| |#4|) (-959) (-723) (-777)) (T -971)) -NIL -(-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3664 (|#1| |#1| |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 ((-866 |#2|) |#1|)) (-15 -1248 ((-866 |#2|) |#1|)) (-15 -1248 ((-1053) |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -3664 (|#2| |#2| |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3982 (|#1| |#1| |#1|)) (-15 -1785 (|#1| |#1| |#2|)) (-15 -3982 (|#1| |#1| |#2|)) (-15 -2611 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -1248 (|#1| (-866 |#2|))) (-15 -3490 (|#1| (-866 |#2|))) (-15 -3765 ((-3 |#1| "failed") (-866 |#2|))) (-15 -1248 (|#1| (-866 (-501)))) (-15 -3490 (|#1| (-866 (-501)))) (-15 -3765 ((-3 |#1| "failed") (-866 (-501)))) (-15 -1248 (|#1| (-866 (-375 (-501))))) (-15 -3490 (|#1| (-866 (-375 (-501))))) (-15 -3765 ((-3 |#1| "failed") (-866 (-375 (-501))))) (-15 -1762 (|#1| |#1| |#1|)) (-15 -3618 (|#1| |#1| |#1|)) (-15 -2939 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2735 (-701))) |#1| |#1|)) (-15 -1955 (|#1| |#1| |#1|)) (-15 -2352 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -2226 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -2226 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3303 (|#1| |#1| |#1| |#4|)) (-15 -1782 (|#1| |#1| |#1| |#4|)) (-15 -3303 (|#1| |#1| |#1|)) (-15 -1782 (|#1| |#1| |#1|)) (-15 -1936 (|#1| |#1| |#1| |#4|)) (-15 -3090 (|#1| |#1| |#1| |#4|)) (-15 -1936 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -1964 ((-107) |#1| (-578 |#1|))) (-15 -1964 ((-107) |#1| |#1|)) (-15 -1590 ((-107) |#1| (-578 |#1|))) (-15 -1590 ((-107) |#1| |#1|)) (-15 -2667 ((-107) |#1| (-578 |#1|))) (-15 -2667 ((-107) |#1| |#1|)) (-15 -2130 ((-107) |#1| (-578 |#1|))) (-15 -2130 ((-107) |#1| |#1|)) (-15 -1441 ((-107) |#1| |#1|)) (-15 -3523 ((-107) |#1| |#1|)) (-15 -1814 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3723 ((-578 |#1|) |#1|)) (-15 -2274 ((-578 |#1|) |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -3132 ((-107) |#1|)) (-15 -1257 ((-107) |#1|)) (-15 -3858 (|#1| |#1| |#4|)) (-15 -3850 (|#1| |#1| |#4|)) (-15 -1673 (|#1| |#1|)) (-15 -2329 ((-578 |#1|) |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1657 (|#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -2595 ((-701) |#1|)) (-15 -2361 (|#4| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3490 (|#4| |#1|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3691 (|#1| |#4|)) (-15 -3850 (|#2| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 |#3|) $) 110)) (-3728 (((-1064 $) $ |#3|) 125) (((-1064 |#1|) $) 124)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 87 (|has| |#1| (-508)))) (-2865 (($ $) 88 (|has| |#1| (-508)))) (-1639 (((-107) $) 90 (|has| |#1| (-508)))) (-1699 (((-701) $) 112) (((-701) $ (-578 |#3|)) 111)) (-1511 (($ $) 271)) (-1441 (((-107) $ $) 257)) (-3177 (((-3 $ "failed") $ $) 19)) (-1855 (($ $ $) 216 (|has| |#1| (-508)))) (-3936 (((-578 $) $ $) 211 (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) 100 (|has| |#1| (-830)))) (-3676 (($ $) 98 (|has| |#1| (-419)))) (-1559 (((-373 $) $) 97 (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 103 (|has| |#1| (-830)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 164) (((-3 (-375 (-501)) "failed") $) 162 (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) 160 (|has| |#1| (-950 (-501)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-866 (-375 (-501)))) 231 (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070))))) (((-3 $ "failed") (-866 (-501))) 228 (-1405 (-12 (-3031 (|has| |#1| (-37 (-375 (-501))))) (|has| |#1| (-37 (-501))) (|has| |#3| (-556 (-1070)))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070)))))) (((-3 $ "failed") (-866 |#1|)) 225 (-1405 (-12 (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-37 (-501)))) (|has| |#3| (-556 (-1070)))) (-12 (-3031 (|has| |#1| (-500))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (|has| |#1| (-37 (-501))) (|has| |#3| (-556 (-1070)))) (-12 (-3031 (|has| |#1| (-906 (-501)))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070))))))) (-3490 ((|#1| $) 165) (((-375 (-501)) $) 161 (|has| |#1| (-950 (-375 (-501))))) (((-501) $) 159 (|has| |#1| (-950 (-501)))) ((|#3| $) 135) (($ (-866 (-375 (-501)))) 230 (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070))))) (($ (-866 (-501))) 227 (-1405 (-12 (-3031 (|has| |#1| (-37 (-375 (-501))))) (|has| |#1| (-37 (-501))) (|has| |#3| (-556 (-1070)))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070)))))) (($ (-866 |#1|)) 224 (-1405 (-12 (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-37 (-501)))) (|has| |#3| (-556 (-1070)))) (-12 (-3031 (|has| |#1| (-500))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (|has| |#1| (-37 (-501))) (|has| |#3| (-556 (-1070)))) (-12 (-3031 (|has| |#1| (-906 (-501)))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070))))))) (-1749 (($ $ $ |#3|) 108 (|has| |#1| (-156))) (($ $ $) 212 (|has| |#1| (-508)))) (-3858 (($ $) 154) (($ $ |#3|) 266)) (-3868 (((-621 (-501)) (-621 $)) 134 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 133 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 132) (((-621 |#1|) (-621 $)) 131)) (-2130 (((-107) $ $) 256) (((-107) $ (-578 $)) 255)) (-2174 (((-3 $ "failed") $) 34)) (-3132 (((-107) $) 264)) (-2352 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 236)) (-3182 (($ $) 205 (|has| |#1| (-419)))) (-3533 (($ $) 176 (|has| |#1| (-419))) (($ $ |#3|) 105 (|has| |#1| (-419)))) (-3854 (((-578 $) $) 109)) (-1628 (((-107) $) 96 (|has| |#1| (-830)))) (-2611 (($ $) 221 (|has| |#1| (-508)))) (-3855 (($ $) 222 (|has| |#1| (-508)))) (-3090 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1936 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3503 (($ $ |#1| |#2| $) 172)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 84 (-12 (|has| |#3| (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 83 (-12 (|has| |#3| (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-1355 (((-107) $) 31)) (-3706 (((-701) $) 169)) (-1964 (((-107) $ $) 250) (((-107) $ (-578 $)) 249)) (-4014 (($ $ $ $ $) 207 (|has| |#1| (-508)))) (-2361 ((|#3| $) 275)) (-3794 (($ (-1064 |#1|) |#3|) 117) (($ (-1064 $) |#3|) 116)) (-2713 (((-578 $) $) 126)) (-2706 (((-107) $) 152)) (-3787 (($ |#1| |#2|) 153) (($ $ |#3| (-701)) 119) (($ $ (-578 |#3|) (-578 (-701))) 118)) (-1955 (($ $ $) 235)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#3|) 120)) (-1257 (((-107) $) 265)) (-2285 ((|#2| $) 170) (((-701) $ |#3|) 122) (((-578 (-701)) $ (-578 |#3|)) 121)) (-4111 (($ $ $) 79 (|has| |#1| (-777)))) (-2595 (((-701) $) 274)) (-1323 (($ $ $) 78 (|has| |#1| (-777)))) (-3515 (($ (-1 |#2| |#2|) $) 171)) (-1212 (($ (-1 |#1| |#1|) $) 151)) (-2752 (((-3 |#3| "failed") $) 123)) (-2538 (($ $) 202 (|has| |#1| (-419)))) (-1493 (($ $) 203 (|has| |#1| (-419)))) (-3723 (((-578 $) $) 260)) (-2682 (($ $) 263)) (-3894 (($ $) 204 (|has| |#1| (-419)))) (-2274 (((-578 $) $) 261)) (-3154 (($ $) 262)) (-3845 (($ $) 149)) (-3850 ((|#1| $) 148) (($ $ |#3|) 267)) (-1697 (($ (-578 $)) 94 (|has| |#1| (-419))) (($ $ $) 93 (|has| |#1| (-419)))) (-2939 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2735 (-701))) $ $) 234)) (-3276 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $) 238) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $ |#3|) 237)) (-2226 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $) 240) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $ |#3|) 239)) (-1782 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3303 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3460 (((-1053) $) 9)) (-2019 (($ $ $) 210 (|has| |#1| (-508)))) (-2329 (((-578 $) $) 269)) (-2948 (((-3 (-578 $) "failed") $) 114)) (-1285 (((-3 (-578 $) "failed") $) 115)) (-2551 (((-3 (-2 (|:| |var| |#3|) (|:| -3027 (-701))) "failed") $) 113)) (-1590 (((-107) $ $) 252) (((-107) $ (-578 $)) 251)) (-1762 (($ $ $) 232)) (-3746 (($ $) 273)) (-3523 (((-107) $ $) 258)) (-2667 (((-107) $ $) 254) (((-107) $ (-578 $)) 253)) (-3618 (($ $ $) 233)) (-1657 (($ $) 272)) (-3708 (((-1018) $) 10)) (-1784 (((-2 (|:| -3664 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-508)))) (-1729 (((-2 (|:| -3664 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-508)))) (-3837 (((-107) $) 166)) (-3841 ((|#1| $) 167)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 95 (|has| |#1| (-419)))) (-3664 ((|#1| |#1| $) 206 (|has| |#1| (-419))) (($ (-578 $)) 92 (|has| |#1| (-419))) (($ $ $) 91 (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 102 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 101 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 99 (|has| |#1| (-830)))) (-3095 (((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-508)))) (-3694 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-508)))) (-1785 (($ $ |#1|) 219 (|has| |#1| (-508))) (($ $ $) 217 (|has| |#1| (-508)))) (-3982 (($ $ |#1|) 220 (|has| |#1| (-508))) (($ $ $) 218 (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) 145) (($ $ (-262 $)) 144) (($ $ $ $) 143) (($ $ (-578 $) (-578 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-578 |#3|) (-578 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-578 |#3|) (-578 $)) 138)) (-2532 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2596 (($ $ |#3|) 42) (($ $ (-578 |#3|)) 41) (($ $ |#3| (-701)) 40) (($ $ (-578 |#3|) (-578 (-701))) 39)) (-1201 ((|#2| $) 150) (((-701) $ |#3|) 130) (((-578 (-701)) $ (-578 |#3|)) 129)) (-2295 (($ $) 270)) (-1673 (($ $) 268)) (-1248 (((-810 (-346)) $) 82 (-12 (|has| |#3| (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) 81 (-12 (|has| |#3| (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) 80 (-12 (|has| |#3| (-556 (-490))) (|has| |#1| (-556 (-490))))) (($ (-866 (-375 (-501)))) 229 (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070))))) (($ (-866 (-501))) 226 (-1405 (-12 (-3031 (|has| |#1| (-37 (-375 (-501))))) (|has| |#1| (-37 (-501))) (|has| |#3| (-556 (-1070)))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070)))))) (($ (-866 |#1|)) 223 (|has| |#3| (-556 (-1070)))) (((-1053) $) 201 (-12 (|has| |#1| (-950 (-501))) (|has| |#3| (-556 (-1070))))) (((-866 |#1|) $) 200 (|has| |#3| (-556 (-1070))))) (-1734 ((|#1| $) 175 (|has| |#1| (-419))) (($ $ |#3|) 106 (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 104 (-1280 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-866 |#1|) $) 199 (|has| |#3| (-556 (-1070)))) (($ (-375 (-501))) 72 (-1405 (|has| |#1| (-950 (-375 (-501)))) (|has| |#1| (-37 (-375 (-501)))))) (($ $) 85 (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) 168)) (-2495 ((|#1| $ |#2|) 155) (($ $ |#3| (-701)) 128) (($ $ (-578 |#3|) (-578 (-701))) 127)) (-1274 (((-3 $ "failed") $) 73 (-1405 (-1280 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 29)) (-3771 (($ $ $ (-701)) 173 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 89 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1814 (((-3 (-107) "failed") $ $) 259)) (-1925 (($) 30 T CONST)) (-3158 (($ $ $ $ (-701)) 208 (|has| |#1| (-508)))) (-1851 (($ $ $ (-701)) 209 (|has| |#1| (-508)))) (-3584 (($ $ |#3|) 38) (($ $ (-578 |#3|)) 37) (($ $ |#3| (-701)) 36) (($ $ (-578 |#3|) (-578 (-701))) 35)) (-3778 (((-107) $ $) 76 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 75 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 77 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 74 (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 156 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 158 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 157 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-972 |#1| |#2| |#3|) (-1180) (-959) (-723) (-777)) (T -972)) -((-2361 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-2595 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-701)))) (-3746 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-1657 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-1511 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-2295 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-2329 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))) (-1673 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-3850 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-3858 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-1257 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-2682 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-2274 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))) (-3723 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))) (-1814 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-3523 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-1441 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-2130 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) (-2667 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-2667 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) (-1590 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-1590 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) (-1964 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-1964 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) (-3090 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-1936 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-3090 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-1936 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-1782 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-3303 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-1782 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-3303 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-2226 (*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5)))) (-2226 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -1852 *1))) (-4 *1 (-972 *4 *5 *3)))) (-3276 (*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5)))) (-3276 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *4 *5 *3)))) (-2352 (*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5)))) (-1955 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-2939 (*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2735 (-701)))) (-4 *1 (-972 *3 *4 *5)))) (-3618 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-1762 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)))) (-3765 (*1 *1 *2) (|partial| -1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) (-3490 (*1 *1 *2) (-1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) (-1248 (*1 *1 *2) (-1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) (-3765 (*1 *1 *2) (|partial| -1405 (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-3031 (-4 *3 (-37 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-500))) (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-906 (-501)))) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))))) (-3490 (*1 *1 *2) (-1405 (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-3031 (-4 *3 (-37 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-500))) (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-906 (-501)))) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *5 (-556 (-1070))) (-4 *4 (-723)) (-4 *5 (-777)))) (-3855 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-2611 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-3982 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-1785 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-3982 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-1785 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-1855 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-3095 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-972 *3 *4 *5)))) (-1729 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef1| *1))) (-4 *1 (-972 *3 *4 *5)))) (-1784 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef2| *1))) (-4 *1 (-972 *3 *4 *5)))) (-1749 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-3936 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))) (-2019 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-1851 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *3 (-508)))) (-3158 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *3 (-508)))) (-4014 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-3664 (*1 *2 *2 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-3182 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-3894 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-1493 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-2538 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419))))) -(-13 (-870 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2361 (|t#3| $)) (-15 -2595 ((-701) $)) (-15 -3746 ($ $)) (-15 -1657 ($ $)) (-15 -1511 ($ $)) (-15 -2295 ($ $)) (-15 -2329 ((-578 $) $)) (-15 -1673 ($ $)) (-15 -3850 ($ $ |t#3|)) (-15 -3858 ($ $ |t#3|)) (-15 -1257 ((-107) $)) (-15 -3132 ((-107) $)) (-15 -2682 ($ $)) (-15 -3154 ($ $)) (-15 -2274 ((-578 $) $)) (-15 -3723 ((-578 $) $)) (-15 -1814 ((-3 (-107) "failed") $ $)) (-15 -3523 ((-107) $ $)) (-15 -1441 ((-107) $ $)) (-15 -2130 ((-107) $ $)) (-15 -2130 ((-107) $ (-578 $))) (-15 -2667 ((-107) $ $)) (-15 -2667 ((-107) $ (-578 $))) (-15 -1590 ((-107) $ $)) (-15 -1590 ((-107) $ (-578 $))) (-15 -1964 ((-107) $ $)) (-15 -1964 ((-107) $ (-578 $))) (-15 -3090 ($ $ $)) (-15 -1936 ($ $ $)) (-15 -3090 ($ $ $ |t#3|)) (-15 -1936 ($ $ $ |t#3|)) (-15 -1782 ($ $ $)) (-15 -3303 ($ $ $)) (-15 -1782 ($ $ $ |t#3|)) (-15 -3303 ($ $ $ |t#3|)) (-15 -2226 ((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $)) (-15 -2226 ((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $ |t#3|)) (-15 -3276 ((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -3276 ((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $ |t#3|)) (-15 -2352 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -1955 ($ $ $)) (-15 -2939 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2735 (-701))) $ $)) (-15 -3618 ($ $ $)) (-15 -1762 ($ $ $)) (IF (|has| |t#3| (-556 (-1070))) (PROGN (-6 (-555 (-866 |t#1|))) (-6 (-556 (-866 |t#1|))) (IF (|has| |t#1| (-37 (-375 (-501)))) (PROGN (-15 -3765 ((-3 $ "failed") (-866 (-375 (-501))))) (-15 -3490 ($ (-866 (-375 (-501))))) (-15 -1248 ($ (-866 (-375 (-501))))) (-15 -3765 ((-3 $ "failed") (-866 (-501)))) (-15 -3490 ($ (-866 (-501)))) (-15 -1248 ($ (-866 (-501)))) (IF (|has| |t#1| (-906 (-501))) |noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-866 |t#1|))) (-15 -3490 ($ (-866 |t#1|)))))) |noBranch|) (IF (|has| |t#1| (-37 (-501))) (IF (|has| |t#1| (-37 (-375 (-501)))) |noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-866 (-501)))) (-15 -3490 ($ (-866 (-501)))) (-15 -1248 ($ (-866 (-501)))) (IF (|has| |t#1| (-500)) |noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-866 |t#1|))) (-15 -3490 ($ (-866 |t#1|))))))) |noBranch|) (IF (|has| |t#1| (-37 (-501))) |noBranch| (IF (|has| |t#1| (-37 (-375 (-501)))) |noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-866 |t#1|))) (-15 -3490 ($ (-866 |t#1|)))))) (-15 -1248 ($ (-866 |t#1|))) (IF (|has| |t#1| (-950 (-501))) (-6 (-556 (-1053))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -3855 ($ $)) (-15 -2611 ($ $)) (-15 -3982 ($ $ |t#1|)) (-15 -1785 ($ $ |t#1|)) (-15 -3982 ($ $ $)) (-15 -1785 ($ $ $)) (-15 -1855 ($ $ $)) (-15 -3095 ((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1729 ((-2 (|:| -3664 $) (|:| |coef1| $)) $ $)) (-15 -1784 ((-2 (|:| -3664 $) (|:| |coef2| $)) $ $)) (-15 -1749 ($ $ $)) (-15 -3936 ((-578 $) $ $)) (-15 -2019 ($ $ $)) (-15 -1851 ($ $ $ (-701))) (-15 -3158 ($ $ $ $ (-701))) (-15 -4014 ($ $ $ $ $))) |noBranch|) (IF (|has| |t#1| (-419)) (PROGN (-15 -3664 (|t#1| |t#1| $)) (-15 -3182 ($ $)) (-15 -3894 ($ $)) (-15 -1493 ($ $)) (-15 -2538 ($ $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-555 (-866 |#1|)) |has| |#3| (-556 (-1070))) ((-156) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-556 (-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#3| (-556 (-490)))) ((-556 (-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#3| (-556 (-810 (-346))))) ((-556 (-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#3| (-556 (-810 (-501))))) ((-556 (-866 |#1|)) |has| |#3| (-556 (-1070))) ((-556 (-1053)) -12 (|has| |#1| (-950 (-501))) (|has| |#3| (-556 (-1070)))) ((-260) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-278 $) . T) ((-294 |#1| |#2|) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-830)) (|has| |#1| (-419))) ((-476 |#3| |#1|) . T) ((-476 |#3| $) . T) ((-476 $ $) . T) ((-508) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 |#3|) . T) ((-806 (-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#3| (-806 (-346)))) ((-806 (-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#3| (-806 (-501)))) ((-870 |#1| |#2| |#3|) . T) ((-830) |has| |#1| (-830)) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) |has| |#1| (-830))) -((-3292 (((-107) |#3| $) 13)) (-2899 (((-3 $ "failed") |#3| (-839)) 23)) (-2174 (((-3 |#3| "failed") |#3| $) 37)) (-2164 (((-107) |#3| $) 16)) (-4067 (((-107) |#3| $) 14))) -(((-973 |#1| |#2| |#3|) (-10 -8 (-15 -2899 ((-3 |#1| "failed") |#3| (-839))) (-15 -2174 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2164 ((-107) |#3| |#1|)) (-15 -4067 ((-107) |#3| |#1|)) (-15 -3292 ((-107) |#3| |#1|))) (-974 |#2| |#3|) (-13 (-775) (-331)) (-1125 |#2|)) (T -973)) -NIL -(-10 -8 (-15 -2899 ((-3 |#1| "failed") |#3| (-839))) (-15 -2174 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2164 ((-107) |#3| |#1|)) (-15 -4067 ((-107) |#3| |#1|)) (-15 -3292 ((-107) |#3| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) |#2| $) 21)) (-1417 (((-501) |#2| $) 22)) (-2899 (((-3 $ "failed") |#2| (-839)) 15)) (-2038 ((|#1| |#2| $ |#1|) 13)) (-2174 (((-3 |#2| "failed") |#2| $) 18)) (-2164 (((-107) |#2| $) 19)) (-4067 (((-107) |#2| $) 20)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2264 ((|#2| $) 17)) (-3691 (((-786) $) 11)) (-2391 ((|#1| |#2| $ |#1|) 14)) (-1250 (((-578 $) |#2|) 16)) (-3751 (((-107) $ $) 6))) -(((-974 |#1| |#2|) (-1180) (-13 (-775) (-331)) (-1125 |t#1|)) (T -974)) -((-1417 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-501)))) (-3292 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107)))) (-4067 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107)))) (-2164 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107)))) (-2174 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-775) (-331))) (-4 *2 (-1125 *3)))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-775) (-331))) (-4 *2 (-1125 *3)))) (-1250 (*1 *2 *3) (-12 (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-578 *1)) (-4 *1 (-974 *4 *3)))) (-2899 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-839)) (-4 *4 (-13 (-775) (-331))) (-4 *1 (-974 *4 *2)) (-4 *2 (-1125 *4)))) (-2391 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-775) (-331))) (-4 *3 (-1125 *2)))) (-2038 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-775) (-331))) (-4 *3 (-1125 *2))))) -(-13 (-1001) (-10 -8 (-15 -1417 ((-501) |t#2| $)) (-15 -3292 ((-107) |t#2| $)) (-15 -4067 ((-107) |t#2| $)) (-15 -2164 ((-107) |t#2| $)) (-15 -2174 ((-3 |t#2| "failed") |t#2| $)) (-15 -2264 (|t#2| $)) (-15 -1250 ((-578 $) |t#2|)) (-15 -2899 ((-3 $ "failed") |t#2| (-839))) (-15 -2391 (|t#1| |t#2| $ |t#1|)) (-15 -2038 (|t#1| |t#2| $ |t#1|)))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3979 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701)) 95)) (-2651 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701)) 55)) (-3733 (((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701)) 87)) (-2674 (((-701) (-578 |#4|) (-578 |#5|)) 27)) (-3679 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701)) 57) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107)) 59)) (-1688 (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107)) 78) (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107)) 79)) (-1248 (((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) 82)) (-3221 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-107)) 54)) (-2195 (((-701) (-578 |#4|) (-578 |#5|)) 19))) -(((-975 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2195 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -2674 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -3221 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-107))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3979 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701))) (-15 -1248 ((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -3733 ((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701)))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -975)) -((-3733 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *4 (-701)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-1154)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1053)) (-5 *1 (-975 *4 *5 *6 *7 *8)))) (-3979 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -3709 *11)))))) (-5 *6 (-701)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -3709 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-972 *7 *8 *9)) (-4 *11 (-977 *7 *8 *9 *10)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-5 *1 (-975 *7 *8 *9 *10 *11)))) (-1688 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-1688 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-3679 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3679 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-3679 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-701)) (-5 *6 (-107)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-4 *3 (-972 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *7 *8 *9 *3 *4)) (-4 *4 (-977 *7 *8 *9 *3)))) (-2651 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2651 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-3221 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-2674 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-975 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2195 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -2674 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -3221 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-107))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3979 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701))) (-15 -1248 ((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -3733 ((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701)))) -((-3180 (((-107) |#5| $) 20)) (-1209 (((-107) |#5| $) 23)) (-1972 (((-107) |#5| $) 16) (((-107) $) 44)) (-3420 (((-578 $) |#5| $) NIL) (((-578 $) (-578 |#5|) $) 76) (((-578 $) (-578 |#5|) (-578 $)) 74) (((-578 $) |#5| (-578 $)) 77)) (-3718 (($ $ |#5|) NIL) (((-578 $) |#5| $) NIL) (((-578 $) |#5| (-578 $)) 59) (((-578 $) (-578 |#5|) $) 61) (((-578 $) (-578 |#5|) (-578 $)) 63)) (-1709 (((-578 $) |#5| $) NIL) (((-578 $) |#5| (-578 $)) 53) (((-578 $) (-578 |#5|) $) 55) (((-578 $) (-578 |#5|) (-578 $)) 57)) (-3036 (((-107) |#5| $) 26))) -(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3718 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3718 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3718 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3718 ((-578 |#1|) |#5| |#1|)) (-15 -1709 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -1709 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -1709 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -1709 ((-578 |#1|) |#5| |#1|)) (-15 -3420 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3420 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3420 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3420 ((-578 |#1|) |#5| |#1|)) (-15 -1209 ((-107) |#5| |#1|)) (-15 -1972 ((-107) |#1|)) (-15 -3036 ((-107) |#5| |#1|)) (-15 -3180 ((-107) |#5| |#1|)) (-15 -1972 ((-107) |#5| |#1|)) (-15 -3718 (|#1| |#1| |#5|))) (-977 |#2| |#3| |#4| |#5|) (-419) (-723) (-777) (-972 |#2| |#3| |#4|)) (T -976)) -NIL -(-10 -8 (-15 -3718 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3718 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3718 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3718 ((-578 |#1|) |#5| |#1|)) (-15 -1709 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -1709 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -1709 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -1709 ((-578 |#1|) |#5| |#1|)) (-15 -3420 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3420 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3420 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3420 ((-578 |#1|) |#5| |#1|)) (-15 -1209 ((-107) |#5| |#1|)) (-15 -1972 ((-107) |#1|)) (-15 -3036 ((-107) |#5| |#1|)) (-15 -3180 ((-107) |#5| |#1|)) (-15 -1972 ((-107) |#5| |#1|)) (-15 -3718 (|#1| |#1| |#5|))) -((-3736 (((-107) $ $) 7)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) 85)) (-2073 (((-578 $) (-578 |#4|)) 86) (((-578 $) (-578 |#4|) (-107)) 111)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) 101) (((-107) $) 97)) (-2599 ((|#4| |#4| $) 92)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 79)) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-1199 (((-3 $ "failed") $) 82)) (-1778 ((|#4| |#4| $) 89)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1379 ((|#4| |#4| $) 87)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) 105)) (-3180 (((-107) |#4| $) 136)) (-1209 (((-107) |#4| $) 133)) (-1972 (((-107) |#4| $) 137) (((-107) $) 134)) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) 104) (((-107) $) 103)) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) 128)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 127)) (-1383 (((-3 |#4| "failed") $) 83)) (-1618 (((-578 $) |#4| $) 129)) (-2217 (((-3 (-107) (-578 $)) |#4| $) 132)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3420 (((-578 $) |#4| $) 125) (((-578 $) (-578 |#4|) $) 124) (((-578 $) (-578 |#4|) (-578 $)) 123) (((-578 $) |#4| (-578 $)) 122)) (-2297 (($ |#4| $) 117) (($ (-578 |#4|) $) 116)) (-3574 (((-578 |#4|) $) 107)) (-1590 (((-107) |#4| $) 99) (((-107) $) 95)) (-1762 ((|#4| |#4| $) 90)) (-3523 (((-107) $ $) 110)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) 100) (((-107) $) 96)) (-3618 ((|#4| |#4| $) 91)) (-3708 (((-1018) $) 10)) (-1190 (((-3 |#4| "failed") $) 84)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3478 (((-3 $ "failed") $ |#4|) 78)) (-3718 (($ $ |#4|) 77) (((-578 $) |#4| $) 115) (((-578 $) |#4| (-578 $)) 114) (((-578 $) (-578 |#4|) $) 113) (((-578 $) (-578 |#4|) (-578 $)) 112)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-1201 (((-701) $) 106)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-1218 (($ $) 88)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-4104 (((-701) $) 76 (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) 98)) (-1709 (((-578 $) |#4| $) 121) (((-578 $) |#4| (-578 $)) 120) (((-578 $) (-578 |#4|) $) 119) (((-578 $) (-578 |#4|) (-578 $)) 118)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) 81)) (-3036 (((-107) |#4| $) 135)) (-2659 (((-107) |#3| $) 80)) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167))))) -(((-977 |#1| |#2| |#3| |#4|) (-1180) (-419) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -977)) -((-1972 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-3180 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-3036 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-1209 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-2217 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-3 (-107) (-578 *1))) (-4 *1 (-977 *4 *5 *6 *3)))) (-1354 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))) (-1354 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-1618 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-2064 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-3 *3 (-578 *1))) (-4 *1 (-977 *4 *5 *6 *3)))) (-2019 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))) (-3676 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))) (-3420 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-3420 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) (-3420 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) (-3420 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) (-1709 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-1709 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) (-1709 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) (-1709 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) (-2297 (*1 *1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *2)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-2297 (*1 *1 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)))) (-3718 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-3718 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) (-3718 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) (-3718 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *5 *6 *7 *8))))) -(-13 (-1099 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1972 ((-107) |t#4| $)) (-15 -3180 ((-107) |t#4| $)) (-15 -3036 ((-107) |t#4| $)) (-15 -1972 ((-107) $)) (-15 -1209 ((-107) |t#4| $)) (-15 -2217 ((-3 (-107) (-578 $)) |t#4| $)) (-15 -1354 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |t#4| $)) (-15 -1354 ((-107) |t#4| $)) (-15 -1618 ((-578 $) |t#4| $)) (-15 -2064 ((-3 |t#4| (-578 $)) |t#4| |t#4| $)) (-15 -2019 ((-578 (-2 (|:| |val| |t#4|) (|:| -3709 $))) |t#4| |t#4| $)) (-15 -3676 ((-578 (-2 (|:| |val| |t#4|) (|:| -3709 $))) |t#4| $)) (-15 -3420 ((-578 $) |t#4| $)) (-15 -3420 ((-578 $) (-578 |t#4|) $)) (-15 -3420 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -3420 ((-578 $) |t#4| (-578 $))) (-15 -1709 ((-578 $) |t#4| $)) (-15 -1709 ((-578 $) |t#4| (-578 $))) (-15 -1709 ((-578 $) (-578 |t#4|) $)) (-15 -1709 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -2297 ($ |t#4| $)) (-15 -2297 ($ (-578 |t#4|) $)) (-15 -3718 ((-578 $) |t#4| $)) (-15 -3718 ((-578 $) |t#4| (-578 $))) (-15 -3718 ((-578 $) (-578 |t#4|) $)) (-15 -3718 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -2073 ((-578 $) (-578 |t#4|) (-107))))) -(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-891 |#1| |#2| |#3| |#4|) . T) ((-1001) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1104) . T)) -((-2381 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|) 81)) (-4027 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|) 112)) (-3323 (((-578 |#5|) |#4| |#5|) 70)) (-3558 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-2634 (((-1154)) 35)) (-2469 (((-1154)) 25)) (-3504 (((-1154) (-1053) (-1053) (-1053)) 31)) (-3344 (((-1154) (-1053) (-1053) (-1053)) 20)) (-2042 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|) 95)) (-2337 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107)) 106) (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-1352 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|) 101))) -(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3344 ((-1154) (-1053) (-1053) (-1053))) (-15 -2469 ((-1154))) (-15 -3504 ((-1154) (-1053) (-1053) (-1053))) (-15 -2634 ((-1154))) (-15 -2042 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -2337 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2337 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107))) (-15 -1352 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -4027 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -3558 ((-107) |#4| |#5|)) (-15 -3558 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -3323 ((-578 |#5|) |#4| |#5|)) (-15 -2381 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -978)) -((-2381 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3323 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3558 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3558 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-4027 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-1352 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2337 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *5 (-107)) (-4 *8 (-972 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *4 (-777)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -3709 *9)))) (-5 *1 (-978 *6 *7 *4 *8 *9)))) (-2337 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-2042 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2634 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3504 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-2469 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3344 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -(-10 -7 (-15 -3344 ((-1154) (-1053) (-1053) (-1053))) (-15 -2469 ((-1154))) (-15 -3504 ((-1154) (-1053) (-1053) (-1053))) (-15 -2634 ((-1154))) (-15 -2042 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -2337 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2337 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107))) (-15 -1352 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -4027 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -3558 ((-107) |#4| |#5|)) (-15 -3558 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -3323 ((-578 |#5|) |#4| |#5|)) (-15 -2381 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|))) -((-3736 (((-107) $ $) NIL)) (-4081 (($ $ (-578 (-1070)) (-1 (-107) (-578 |#3|))) 29)) (-2453 (($ |#3| |#3|) 21) (($ |#3| |#3| (-578 (-1070))) 19)) (-2015 ((|#3| $) 13)) (-3765 (((-3 (-262 |#3|) "failed") $) 56)) (-3490 (((-262 |#3|) $) NIL)) (-3587 (((-578 (-1070)) $) 15)) (-3683 (((-810 |#1|) $) 11)) (-2006 ((|#3| $) 12)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2007 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-839)) 36)) (-3691 (((-786) $) 84) (($ (-262 |#3|)) 20)) (-3751 (((-107) $ $) 33))) -(((-979 |#1| |#2| |#3|) (-13 (-1001) (-256 |#3| |#3|) (-950 (-262 |#3|)) (-10 -8 (-15 -2453 ($ |#3| |#3|)) (-15 -2453 ($ |#3| |#3| (-578 (-1070)))) (-15 -4081 ($ $ (-578 (-1070)) (-1 (-107) (-578 |#3|)))) (-15 -3683 ((-810 |#1|) $)) (-15 -2006 (|#3| $)) (-15 -2015 (|#3| $)) (-15 -2007 (|#3| $ |#3| (-839))) (-15 -3587 ((-578 (-1070)) $)))) (-1001) (-13 (-959) (-806 |#1|) (-777) (-556 (-810 |#1|))) (-13 (-389 |#2|) (-806 |#1|) (-556 (-810 |#1|)))) (T -979)) -((-2453 (*1 *1 *2 *2) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))))) (-2453 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) (-4081 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-1 (-107) (-578 *6))) (-4 *6 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *6)))) (-3683 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 *2))) (-5 *2 (-810 *3)) (-5 *1 (-979 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 *2))))) (-2006 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))))) (-2015 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))))) (-2007 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) (-3587 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *2 (-578 (-1070))) (-5 *1 (-979 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3))))))) -(-13 (-1001) (-256 |#3| |#3|) (-950 (-262 |#3|)) (-10 -8 (-15 -2453 ($ |#3| |#3|)) (-15 -2453 ($ |#3| |#3| (-578 (-1070)))) (-15 -4081 ($ $ (-578 (-1070)) (-1 (-107) (-578 |#3|)))) (-15 -3683 ((-810 |#1|) $)) (-15 -2006 (|#3| $)) (-15 -2015 (|#3| $)) (-15 -2007 (|#3| $ |#3| (-839))) (-15 -3587 ((-578 (-1070)) $)))) -((-3736 (((-107) $ $) NIL)) (-3986 (((-1070) $) 8)) (-3460 (((-1053) $) 16)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 13))) -(((-980 |#1|) (-13 (-1001) (-10 -8 (-15 -3986 ((-1070) $)))) (-1070)) (T -980)) -((-3986 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-980 *3)) (-14 *3 *2)))) -(-13 (-1001) (-10 -8 (-15 -3986 ((-1070) $)))) -((-3736 (((-107) $ $) NIL)) (-4062 (($ (-578 (-979 |#1| |#2| |#3|))) 12)) (-1258 (((-578 (-979 |#1| |#2| |#3|)) $) 19)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2007 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-839)) 25)) (-3691 (((-786) $) 15)) (-3751 (((-107) $ $) 18))) -(((-981 |#1| |#2| |#3|) (-13 (-1001) (-256 |#3| |#3|) (-10 -8 (-15 -4062 ($ (-578 (-979 |#1| |#2| |#3|)))) (-15 -1258 ((-578 (-979 |#1| |#2| |#3|)) $)) (-15 -2007 (|#3| $ |#3| (-839))))) (-1001) (-13 (-959) (-806 |#1|) (-777) (-556 (-810 |#1|))) (-13 (-389 |#2|) (-806 |#1|) (-556 (-810 |#1|)))) (T -981)) -((-4062 (*1 *1 *2) (-12 (-5 *2 (-578 (-979 *3 *4 *5))) (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-981 *3 *4 *5)))) (-1258 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *2 (-578 (-979 *3 *4 *5))) (-5 *1 (-981 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))))) (-2007 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-981 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4))))))) -(-13 (-1001) (-256 |#3| |#3|) (-10 -8 (-15 -4062 ($ (-578 (-979 |#1| |#2| |#3|)))) (-15 -1258 ((-578 (-979 |#1| |#2| |#3|)) $)) (-15 -2007 (|#3| $ |#3| (-839))))) -((-2078 (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107)) 73) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|))) 75) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107)) 74))) -(((-982 |#1| |#2|) (-10 -7 (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107))) (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107)))) (-13 (-276) (-134)) (-578 (-1070))) (T -982)) -((-2078 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))))) (-2078 (*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-982 *4 *5)) (-5 *3 (-578 (-866 *4))) (-14 *5 (-578 (-1070))))) (-2078 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070)))))) -(-10 -7 (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107))) (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 125)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-331)))) (-2865 (($ $) NIL (|has| |#1| (-331)))) (-1639 (((-107) $) NIL (|has| |#1| (-331)))) (-2239 (((-621 |#1|) (-1148 $)) NIL) (((-621 |#1|)) 115)) (-2225 ((|#1| $) 119)) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| |#1| (-318)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3796 (((-701)) 40 (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3142 (($ (-1148 |#1|) (-1148 $)) NIL) (($ (-1148 |#1|)) 43)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-318)))) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3070 (((-621 |#1|) $ (-1148 $)) NIL) (((-621 |#1|) $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 106) (((-621 |#1|) (-621 $)) 100)) (-3547 (($ |#2|) 61) (((-3 $ "failed") (-375 |#2|)) NIL (|has| |#1| (-331)))) (-2174 (((-3 $ "failed") $) NIL)) (-3689 (((-839)) 77)) (-2890 (($) 44 (|has| |#1| (-336)))) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1317 (($) NIL (|has| |#1| (-318)))) (-3521 (((-107) $) NIL (|has| |#1| (-318)))) (-3067 (($ $ (-701)) NIL (|has| |#1| (-318))) (($ $) NIL (|has| |#1| (-318)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3169 (((-839) $) NIL (|has| |#1| (-318))) (((-762 (-839)) $) NIL (|has| |#1| (-318)))) (-1355 (((-107) $) NIL)) (-2626 ((|#1| $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1792 ((|#2| $) 84 (|has| |#1| (-331)))) (-3104 (((-839) $) 129 (|has| |#1| (-336)))) (-1316 ((|#2| $) 58)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3746 (($) NIL (|has| |#1| (-318)) CONST)) (-3506 (($ (-839)) 124 (|has| |#1| (-336)))) (-3708 (((-1018) $) NIL)) (-3987 (($) 121)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| |#1| (-318)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2532 ((|#1| (-1148 $)) NIL) ((|#1|) 109)) (-1984 (((-701) $) NIL (|has| |#1| (-318))) (((-3 (-701) "failed") $ $) NIL (|has| |#1| (-318)))) (-2596 (($ $) NIL (-1405 (-12 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-1 |#1| |#1|) (-701)) NIL (|has| |#1| (-331))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-331)))) (-2231 (((-621 |#1|) (-1148 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-331)))) (-2264 ((|#2|) 73)) (-1349 (($) NIL (|has| |#1| (-318)))) (-2085 (((-1148 |#1|) $ (-1148 $)) 89) (((-621 |#1|) (-1148 $) (-1148 $)) NIL) (((-1148 |#1|) $) 71) (((-621 |#1|) (-1148 $)) 85)) (-1248 (((-1148 |#1|) $) NIL) (($ (-1148 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-318)))) (-3691 (((-786) $) 57) (($ (-501)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-331))) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501))))))) (-1274 (($ $) NIL (|has| |#1| (-318))) (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2942 ((|#2| $) 82)) (-3965 (((-701)) 75)) (-4119 (((-1148 $)) 81)) (-2442 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 30 T CONST)) (-1925 (($) 19 T CONST)) (-3584 (($ $) NIL (-1405 (-12 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-1 |#1| |#1|) (-701)) NIL (|has| |#1| (-331))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-331)))) (-3751 (((-107) $ $) 63)) (-3803 (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) 67) (($ $ $) NIL)) (-3790 (($ $ $) 65)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-375 (-501)) $) NIL (|has| |#1| (-331))) (($ $ (-375 (-501))) NIL (|has| |#1| (-331))))) -(((-983 |#1| |#2| |#3|) (-655 |#1| |#2|) (-156) (-1125 |#1|) |#2|) (T -983)) -NIL -(-655 |#1| |#2|) -((-3739 (((-373 |#3|) |#3|) 16))) -(((-984 |#1| |#2| |#3|) (-10 -7 (-15 -3739 ((-373 |#3|) |#3|))) (-1125 (-375 (-501))) (-13 (-331) (-134) (-655 (-375 (-501)) |#1|)) (-1125 |#2|)) (T -984)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-13 (-331) (-134) (-655 (-375 (-501)) *4))) (-5 *2 (-373 *3)) (-5 *1 (-984 *4 *5 *3)) (-4 *3 (-1125 *5))))) -(-10 -7 (-15 -3739 ((-373 |#3|) |#3|))) -((-3739 (((-373 |#3|) |#3|) 16))) -(((-985 |#1| |#2| |#3|) (-10 -7 (-15 -3739 ((-373 |#3|) |#3|))) (-1125 (-375 (-866 (-501)))) (-13 (-331) (-134) (-655 (-375 (-866 (-501))) |#1|)) (-1125 |#2|)) (T -985)) -((-3739 (*1 *2 *3) (-12 (-4 *4 (-1125 (-375 (-866 (-501))))) (-4 *5 (-13 (-331) (-134) (-655 (-375 (-866 (-501))) *4))) (-5 *2 (-373 *3)) (-5 *1 (-985 *4 *5 *3)) (-4 *3 (-1125 *5))))) -(-10 -7 (-15 -3739 ((-373 |#3|) |#3|))) -((-3736 (((-107) $ $) NIL)) (-4111 (($ $ $) 14)) (-1323 (($ $ $) 15)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3909 (($) 6)) (-1248 (((-1070) $) 18)) (-3691 (((-786) $) 12)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 13)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 8))) -(((-986) (-13 (-777) (-10 -8 (-15 -3909 ($)) (-15 -1248 ((-1070) $))))) (T -986)) -((-3909 (*1 *1) (-5 *1 (-986))) (-1248 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-986))))) -(-13 (-777) (-10 -8 (-15 -3909 ($)) (-15 -1248 ((-1070) $)))) -((-3710 ((|#1| |#1| (-1 (-501) |#1| |#1|)) 21) ((|#1| |#1| (-1 (-107) |#1|)) 18)) (-1968 (((-1154)) 15)) (-3063 (((-578 |#1|)) 9))) -(((-987 |#1|) (-10 -7 (-15 -1968 ((-1154))) (-15 -3063 ((-578 |#1|))) (-15 -3710 (|#1| |#1| (-1 (-107) |#1|))) (-15 -3710 (|#1| |#1| (-1 (-501) |#1| |#1|)))) (-124)) (T -987)) -((-3710 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-501) *2 *2)) (-4 *2 (-124)) (-5 *1 (-987 *2)))) (-3710 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-987 *2)))) (-3063 (*1 *2) (-12 (-5 *2 (-578 *3)) (-5 *1 (-987 *3)) (-4 *3 (-124)))) (-1968 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-987 *3)) (-4 *3 (-124))))) -(-10 -7 (-15 -1968 ((-1154))) (-15 -3063 ((-578 |#1|))) (-15 -3710 (|#1| |#1| (-1 (-107) |#1|))) (-15 -3710 (|#1| |#1| (-1 (-501) |#1| |#1|)))) -((-1763 (((-1148 (-621 |#1|)) (-578 (-621 |#1|))) 41) (((-1148 (-621 (-866 |#1|))) (-578 (-1070)) (-621 (-866 |#1|))) 60) (((-1148 (-621 (-375 (-866 |#1|)))) (-578 (-1070)) (-621 (-375 (-866 |#1|)))) 76)) (-2085 (((-1148 |#1|) (-621 |#1|) (-578 (-621 |#1|))) 35))) -(((-988 |#1|) (-10 -7 (-15 -1763 ((-1148 (-621 (-375 (-866 |#1|)))) (-578 (-1070)) (-621 (-375 (-866 |#1|))))) (-15 -1763 ((-1148 (-621 (-866 |#1|))) (-578 (-1070)) (-621 (-866 |#1|)))) (-15 -1763 ((-1148 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -2085 ((-1148 |#1|) (-621 |#1|) (-578 (-621 |#1|))))) (-331)) (T -988)) -((-2085 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-621 *5))) (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-1148 *5)) (-5 *1 (-988 *5)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-578 (-621 *4))) (-4 *4 (-331)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-988 *4)))) (-1763 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-4 *5 (-331)) (-5 *2 (-1148 (-621 (-866 *5)))) (-5 *1 (-988 *5)) (-5 *4 (-621 (-866 *5))))) (-1763 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-4 *5 (-331)) (-5 *2 (-1148 (-621 (-375 (-866 *5))))) (-5 *1 (-988 *5)) (-5 *4 (-621 (-375 (-866 *5))))))) -(-10 -7 (-15 -1763 ((-1148 (-621 (-375 (-866 |#1|)))) (-578 (-1070)) (-621 (-375 (-866 |#1|))))) (-15 -1763 ((-1148 (-621 (-866 |#1|))) (-578 (-1070)) (-621 (-866 |#1|)))) (-15 -1763 ((-1148 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -2085 ((-1148 |#1|) (-621 |#1|) (-578 (-621 |#1|))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2456 (((-578 (-701)) $) NIL) (((-578 (-701)) $ (-1070)) NIL)) (-1506 (((-701) $) NIL) (((-701) $ (-1070)) NIL)) (-3800 (((-578 (-990 (-1070))) $) NIL)) (-3728 (((-1064 $) $ (-990 (-1070))) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-990 (-1070)))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3457 (($ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-990 (-1070)) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL) (((-3 (-1023 |#1| (-1070)) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-990 (-1070)) $) NIL) (((-1070) $) NIL) (((-1023 |#1| (-1070)) $) NIL)) (-1749 (($ $ $ (-990 (-1070))) NIL (|has| |#1| (-156)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ (-990 (-1070))) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-487 (-990 (-1070))) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-990 (-1070)) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-990 (-1070)) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ (-1070)) NIL) (((-701) $) NIL)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#1|) (-990 (-1070))) NIL) (($ (-1064 $) (-990 (-1070))) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-487 (-990 (-1070)))) NIL) (($ $ (-990 (-1070)) (-701)) NIL) (($ $ (-578 (-990 (-1070))) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-990 (-1070))) NIL)) (-2285 (((-487 (-990 (-1070))) $) NIL) (((-701) $ (-990 (-1070))) NIL) (((-578 (-701)) $ (-578 (-990 (-1070)))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 (-990 (-1070))) (-487 (-990 (-1070)))) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1435 (((-1 $ (-701)) (-1070)) NIL) (((-1 $ (-701)) $) NIL (|has| |#1| (-206)))) (-2752 (((-3 (-990 (-1070)) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-2486 (((-990 (-1070)) $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3597 (((-107) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-990 (-1070))) (|:| -3027 (-701))) "failed") $) NIL)) (-2577 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-990 (-1070)) |#1|) NIL) (($ $ (-578 (-990 (-1070))) (-578 |#1|)) NIL) (($ $ (-990 (-1070)) $) NIL) (($ $ (-578 (-990 (-1070))) (-578 $)) NIL) (($ $ (-1070) $) NIL (|has| |#1| (-206))) (($ $ (-578 (-1070)) (-578 $)) NIL (|has| |#1| (-206))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-206))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-206)))) (-2532 (($ $ (-990 (-1070))) NIL (|has| |#1| (-156)))) (-2596 (($ $ (-990 (-1070))) NIL) (($ $ (-578 (-990 (-1070)))) NIL) (($ $ (-990 (-1070)) (-701)) NIL) (($ $ (-578 (-990 (-1070))) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1490 (((-578 (-1070)) $) NIL)) (-1201 (((-487 (-990 (-1070))) $) NIL) (((-701) $ (-990 (-1070))) NIL) (((-578 (-701)) $ (-578 (-990 (-1070)))) NIL) (((-701) $ (-1070)) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-990 (-1070)) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-990 (-1070)) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-990 (-1070)) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ (-990 (-1070))) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-990 (-1070))) NIL) (($ (-1070)) NIL) (($ (-1023 |#1| (-1070))) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-487 (-990 (-1070)))) NIL) (($ $ (-990 (-1070)) (-701)) NIL) (($ $ (-578 (-990 (-1070))) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-990 (-1070))) NIL) (($ $ (-578 (-990 (-1070)))) NIL) (($ $ (-990 (-1070)) (-701)) NIL) (($ $ (-578 (-990 (-1070))) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-989 |#1|) (-13 (-224 |#1| (-1070) (-990 (-1070)) (-487 (-990 (-1070)))) (-950 (-1023 |#1| (-1070)))) (-959)) (T -989)) -NIL -(-13 (-224 |#1| (-1070) (-990 (-1070)) (-487 (-990 (-1070)))) (-950 (-1023 |#1| (-1070)))) -((-3736 (((-107) $ $) NIL)) (-1506 (((-701) $) NIL)) (-3484 ((|#1| $) 10)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3169 (((-701) $) 11)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1435 (($ |#1| (-701)) 9)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2596 (($ $) NIL) (($ $ (-701)) NIL)) (-3691 (((-786) $) NIL) (($ |#1|) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 15))) -(((-990 |#1|) (-237 |#1|) (-777)) (T -990)) -NIL -(-237 |#1|) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4087 (($ |#1| |#1|) 15)) (-1212 (((-578 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-775)))) (-3014 ((|#1| $) 10)) (-4045 ((|#1| $) 9)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-4053 (((-501) $) 14)) (-1647 ((|#1| $) 12)) (-4060 ((|#1| $) 11)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1967 (((-578 |#1|) $) 35 (|has| |#1| (-775))) (((-578 |#1|) (-578 $)) 34 (|has| |#1| (-775)))) (-1248 (($ |#1|) 26)) (-3691 (((-786) $) 25 (|has| |#1| (-1001)))) (-3686 (($ |#1| |#1|) 8)) (-3005 (($ $ (-501)) 16)) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001))))) -(((-991 |#1|) (-13 (-995 |#1|) (-10 -7 (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-996 |#1| (-578 |#1|))) |noBranch|))) (-1104)) (T -991)) -NIL -(-13 (-995 |#1|) (-10 -7 (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-996 |#1| (-578 |#1|))) |noBranch|))) -((-1212 (((-578 |#2|) (-1 |#2| |#1|) (-991 |#1|)) 23 (|has| |#1| (-775))) (((-991 |#2|) (-1 |#2| |#1|) (-991 |#1|)) 14))) -(((-992 |#1| |#2|) (-10 -7 (-15 -1212 ((-991 |#2|) (-1 |#2| |#1|) (-991 |#1|))) (IF (|has| |#1| (-775)) (-15 -1212 ((-578 |#2|) (-1 |#2| |#1|) (-991 |#1|))) |noBranch|)) (-1104) (-1104)) (T -992)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-991 *5)) (-4 *5 (-775)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-578 *6)) (-5 *1 (-992 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-991 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-991 *6)) (-5 *1 (-992 *5 *6))))) -(-10 -7 (-15 -1212 ((-991 |#2|) (-1 |#2| |#1|) (-991 |#1|))) (IF (|has| |#1| (-775)) (-15 -1212 ((-578 |#2|) (-1 |#2| |#1|) (-991 |#1|))) |noBranch|)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3484 (((-1070) $) 11)) (-4087 (((-991 |#1|) $) 12)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-4022 (($ (-1070) (-991 |#1|)) 10)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-3751 (((-107) $ $) 15 (|has| |#1| (-1001))))) -(((-993 |#1|) (-13 (-1104) (-10 -8 (-15 -4022 ($ (-1070) (-991 |#1|))) (-15 -3484 ((-1070) $)) (-15 -4087 ((-991 |#1|) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|))) (-1104)) (T -993)) -((-4022 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-991 *4)) (-4 *4 (-1104)) (-5 *1 (-993 *4)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-993 *3)) (-4 *3 (-1104)))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-991 *3)) (-5 *1 (-993 *3)) (-4 *3 (-1104))))) -(-13 (-1104) (-10 -8 (-15 -4022 ($ (-1070) (-991 |#1|))) (-15 -3484 ((-1070) $)) (-15 -4087 ((-991 |#1|) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|))) -((-1212 (((-993 |#2|) (-1 |#2| |#1|) (-993 |#1|)) 19))) -(((-994 |#1| |#2|) (-10 -7 (-15 -1212 ((-993 |#2|) (-1 |#2| |#1|) (-993 |#1|)))) (-1104) (-1104)) (T -994)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-993 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-993 *6)) (-5 *1 (-994 *5 *6))))) -(-10 -7 (-15 -1212 ((-993 |#2|) (-1 |#2| |#1|) (-993 |#1|)))) -((-4087 (($ |#1| |#1|) 7)) (-3014 ((|#1| $) 10)) (-4045 ((|#1| $) 12)) (-4053 (((-501) $) 8)) (-1647 ((|#1| $) 9)) (-4060 ((|#1| $) 11)) (-1248 (($ |#1|) 6)) (-3686 (($ |#1| |#1|) 14)) (-3005 (($ $ (-501)) 13))) -(((-995 |#1|) (-1180) (-1104)) (T -995)) -((-3686 (*1 *1 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-3005 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-995 *3)) (-4 *3 (-1104)))) (-4045 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-4060 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1104)) (-5 *2 (-501)))) (-4087 (*1 *1 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104))))) -(-13 (-1104) (-10 -8 (-15 -3686 ($ |t#1| |t#1|)) (-15 -3005 ($ $ (-501))) (-15 -4045 (|t#1| $)) (-15 -4060 (|t#1| $)) (-15 -3014 (|t#1| $)) (-15 -1647 (|t#1| $)) (-15 -4053 ((-501) $)) (-15 -4087 ($ |t#1| |t#1|)) (-15 -1248 ($ |t#1|)))) -(((-1104) . T)) -((-4087 (($ |#1| |#1|) 7)) (-1212 ((|#2| (-1 |#1| |#1|) $) 16)) (-3014 ((|#1| $) 10)) (-4045 ((|#1| $) 12)) (-4053 (((-501) $) 8)) (-1647 ((|#1| $) 9)) (-4060 ((|#1| $) 11)) (-1967 ((|#2| (-578 $)) 18) ((|#2| $) 17)) (-1248 (($ |#1|) 6)) (-3686 (($ |#1| |#1|) 14)) (-3005 (($ $ (-501)) 13))) -(((-996 |#1| |#2|) (-1180) (-775) (-1044 |t#1|)) (T -996)) -((-1967 (*1 *2 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-996 *4 *2)) (-4 *4 (-775)) (-4 *2 (-1044 *4)))) (-1967 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *2)) (-4 *3 (-775)) (-4 *2 (-1044 *3)))) (-1212 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-996 *4 *2)) (-4 *4 (-775)) (-4 *2 (-1044 *4))))) -(-13 (-995 |t#1|) (-10 -8 (-15 -1967 (|t#2| (-578 $))) (-15 -1967 (|t#2| $)) (-15 -1212 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-995 |#1|) . T) ((-1104) . T)) -((-3736 (((-107) $ $) NIL)) (-3524 (($) NIL (|has| |#1| (-336)))) (-1442 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-3217 (($ $ $) 71)) (-3599 (((-107) $ $) 72)) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2198 (($ (-578 |#1|)) NIL) (($) 13)) (-1221 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) 67 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4167)))) (-2890 (($) NIL (|has| |#1| (-336)))) (-2732 (((-578 |#1|) $) 19 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-4111 ((|#1| $) 57 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 66 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1323 ((|#1| $) 55 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 34)) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-3420 (($ $ $) 69)) (-1328 ((|#1| $) 25)) (-4114 (($ |#1| $) 65)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-3708 (((-1018) $) NIL)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 31)) (-1251 ((|#1| $) 27)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 21)) (-3122 (($) 11)) (-3327 (($ $ |#1|) NIL) (($ $ $) 70)) (-3013 (($) NIL) (($ (-578 |#1|)) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 16)) (-1248 (((-490) $) 52 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 61)) (-2655 (($ $) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) NIL)) (-1393 (((-701) $) NIL)) (-3910 (($ (-578 |#1|)) NIL) (($) 12)) (-2866 (($ (-578 |#1|)) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 54)) (-3762 (((-107) $ $) NIL)) (-3581 (((-701) $) 10 (|has| $ (-6 -4167))))) -(((-997 |#1|) (-394 |#1|) (-1001)) (T -997)) -NIL -(-394 |#1|) -((-1442 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3217 (($ $ $) 10)) (-3327 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-998 |#1| |#2|) (-10 -8 (-15 -1442 (|#1| |#2| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#2|)) (-15 -3327 (|#1| |#1| |#1|))) (-999 |#2|) (-1001)) (T -998)) -NIL -(-10 -8 (-15 -1442 (|#1| |#2| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#2|)) (-15 -3327 (|#1| |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-1442 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3217 (($ $ $) 20)) (-3599 (((-107) $ $) 19)) (-2997 (((-107) $ (-701)) 35)) (-2198 (($) 25) (($ (-578 |#1|)) 24)) (-1987 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4167)))) (-2540 (($) 36 T CONST)) (-2673 (($ $) 59 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 43 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 34)) (-3380 (((-578 |#1|) $) 44 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 46 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 38)) (-3155 (((-107) $ (-701)) 33)) (-3460 (((-1053) $) 9)) (-3420 (($ $ $) 23)) (-3708 (((-1018) $) 10)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 52)) (-2369 (((-107) (-1 (-107) |#1|) $) 41 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) 50 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 48 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 (-262 |#1|))) 47 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 29)) (-1407 (((-107) $) 32)) (-3122 (($) 31)) (-3327 (($ $ $) 22) (($ $ |#1|) 21)) (-3713 (((-701) |#1| $) 45 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#1|) $) 42 (|has| $ (-6 -4167)))) (-3764 (($ $) 30)) (-1248 (((-490) $) 60 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 51)) (-3691 (((-786) $) 11)) (-3910 (($) 27) (($ (-578 |#1|)) 26)) (-1200 (((-107) (-1 (-107) |#1|) $) 40 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 6)) (-3762 (((-107) $ $) 28)) (-3581 (((-701) $) 37 (|has| $ (-6 -4167))))) -(((-999 |#1|) (-1180) (-1001)) (T -999)) -((-3762 (*1 *2 *1 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1001)) (-5 *2 (-107)))) (-3910 (*1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-3910 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-999 *3)))) (-2198 (*1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-2198 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-999 *3)))) (-3420 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-3327 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-3327 (*1 *1 *1 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-3217 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-3599 (*1 *2 *1 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1001)) (-5 *2 (-107)))) (-1442 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-1442 (*1 *1 *1 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-1442 (*1 *1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001))))) -(-13 (-1001) (-138 |t#1|) (-10 -8 (-6 -4157) (-15 -3762 ((-107) $ $)) (-15 -3910 ($)) (-15 -3910 ($ (-578 |t#1|))) (-15 -2198 ($)) (-15 -2198 ($ (-578 |t#1|))) (-15 -3420 ($ $ $)) (-15 -3327 ($ $ $)) (-15 -3327 ($ $ |t#1|)) (-15 -3217 ($ $ $)) (-15 -3599 ((-107) $ $)) (-15 -1442 ($ $ $)) (-15 -1442 ($ $ |t#1|)) (-15 -1442 ($ |t#1| $)))) -(((-33) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) . T) ((-1104) . T)) -((-3460 (((-1053) $) 10)) (-3708 (((-1018) $) 8))) -(((-1000 |#1|) (-10 -8 (-15 -3460 ((-1053) |#1|)) (-15 -3708 ((-1018) |#1|))) (-1001)) (T -1000)) -NIL -(-10 -8 (-15 -3460 ((-1053) |#1|)) (-15 -3708 ((-1018) |#1|))) -((-3736 (((-107) $ $) 7)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6))) -(((-1001) (-1180)) (T -1001)) -((-3708 (*1 *2 *1) (-12 (-4 *1 (-1001)) (-5 *2 (-1018)))) (-3460 (*1 *2 *1) (-12 (-4 *1 (-1001)) (-5 *2 (-1053))))) -(-13 (-97) (-555 (-786)) (-10 -8 (-15 -3708 ((-1018) $)) (-15 -3460 ((-1053) $)))) -(((-97) . T) ((-555 (-786)) . T)) -((-3736 (((-107) $ $) NIL)) (-3796 (((-701)) 30)) (-3186 (($ (-578 (-839))) 52)) (-1210 (((-3 $ "failed") $ (-839) (-839)) 57)) (-2890 (($) 32)) (-2211 (((-107) (-839) $) 35)) (-3104 (((-839) $) 50)) (-3460 (((-1053) $) NIL)) (-3506 (($ (-839)) 31)) (-3806 (((-3 $ "failed") $ (-839)) 55)) (-3708 (((-1018) $) NIL)) (-3646 (((-1148 $)) 40)) (-3343 (((-578 (-839)) $) 23)) (-2808 (((-701) $ (-839) (-839)) 56)) (-3691 (((-786) $) 29)) (-3751 (((-107) $ $) 21))) -(((-1002 |#1| |#2|) (-13 (-336) (-10 -8 (-15 -3806 ((-3 $ "failed") $ (-839))) (-15 -1210 ((-3 $ "failed") $ (-839) (-839))) (-15 -3343 ((-578 (-839)) $)) (-15 -3186 ($ (-578 (-839)))) (-15 -3646 ((-1148 $))) (-15 -2211 ((-107) (-839) $)) (-15 -2808 ((-701) $ (-839) (-839))))) (-839) (-839)) (T -1002)) -((-3806 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-839)) (-5 *1 (-1002 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1210 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-839)) (-5 *1 (-1002 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) (-3186 (*1 *1 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) (-3646 (*1 *2) (-12 (-5 *2 (-1148 (-1002 *3 *4))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) (-2211 (*1 *2 *3 *1) (-12 (-5 *3 (-839)) (-5 *2 (-107)) (-5 *1 (-1002 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2808 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-701)) (-5 *1 (-1002 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-336) (-10 -8 (-15 -3806 ((-3 $ "failed") $ (-839))) (-15 -1210 ((-3 $ "failed") $ (-839) (-839))) (-15 -3343 ((-578 (-839)) $)) (-15 -3186 ($ (-578 (-839)))) (-15 -3646 ((-1148 $))) (-15 -2211 ((-107) (-839) $)) (-15 -2808 ((-701) $ (-839) (-839))))) -((-3736 (((-107) $ $) NIL)) (-2494 (((-107) $) NIL)) (-2892 (((-1070) $) NIL)) (-2588 (((-107) $) NIL)) (-2011 (((-1053) $) NIL)) (-2321 (((-107) $) NIL)) (-1536 (((-107) $) NIL)) (-3889 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-1680 (((-107) $) NIL)) (-2004 (((-501) $) NIL)) (-3708 (((-1018) $) NIL)) (-2370 (((-107) $) NIL)) (-2017 (((-199) $) NIL)) (-4055 (((-786) $) NIL)) (-2499 (((-107) $ $) NIL)) (-2007 (($ $ (-501)) NIL) (($ $ (-578 (-501))) NIL)) (-3770 (((-578 $) $) NIL)) (-1248 (($ (-578 $)) NIL) (($ (-1053)) NIL) (($ (-1070)) NIL) (($ (-501)) NIL) (($ (-199)) NIL) (($ (-786)) NIL)) (-3691 (((-786) $) NIL)) (-1329 (($ $) NIL)) (-1321 (($ $) NIL)) (-2750 (((-107) $) NIL)) (-3751 (((-107) $ $) NIL)) (-3581 (((-501) $) NIL))) -(((-1003) (-1004 (-1053) (-1070) (-501) (-199) (-786))) (T -1003)) -NIL -(-1004 (-1053) (-1070) (-501) (-199) (-786)) -((-3736 (((-107) $ $) 7)) (-2494 (((-107) $) 32)) (-2892 ((|#2| $) 27)) (-2588 (((-107) $) 33)) (-2011 ((|#1| $) 28)) (-2321 (((-107) $) 35)) (-1536 (((-107) $) 37)) (-3889 (((-107) $) 34)) (-3460 (((-1053) $) 9)) (-1680 (((-107) $) 31)) (-2004 ((|#3| $) 26)) (-3708 (((-1018) $) 10)) (-2370 (((-107) $) 30)) (-2017 ((|#4| $) 25)) (-4055 ((|#5| $) 24)) (-2499 (((-107) $ $) 38)) (-2007 (($ $ (-501)) 14) (($ $ (-578 (-501))) 13)) (-3770 (((-578 $) $) 29)) (-1248 (($ (-578 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-3691 (((-786) $) 11)) (-1329 (($ $) 16)) (-1321 (($ $) 17)) (-2750 (((-107) $) 36)) (-3751 (((-107) $ $) 6)) (-3581 (((-501) $) 15))) -(((-1004 |#1| |#2| |#3| |#4| |#5|) (-1180) (-1001) (-1001) (-1001) (-1001) (-1001)) (T -1004)) -((-2499 (*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-2750 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-2494 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-3770 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-578 *1)) (-4 *1 (-1004 *3 *4 *5 *6 *7)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *2 *4 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *2 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *2 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *2)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-1004 *3 *2 *4 *5 *6)) (-4 *3 (-1001)) (-4 *2 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *2 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *2 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *5 *2 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *2 (-1001)) (-4 *6 (-1001)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *2)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-1321 (*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) (-1329 (*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-501)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001))))) -(-13 (-1001) (-10 -8 (-15 -2499 ((-107) $ $)) (-15 -1536 ((-107) $)) (-15 -2750 ((-107) $)) (-15 -2321 ((-107) $)) (-15 -3889 ((-107) $)) (-15 -2588 ((-107) $)) (-15 -2494 ((-107) $)) (-15 -1680 ((-107) $)) (-15 -2370 ((-107) $)) (-15 -3770 ((-578 $) $)) (-15 -2011 (|t#1| $)) (-15 -2892 (|t#2| $)) (-15 -2004 (|t#3| $)) (-15 -2017 (|t#4| $)) (-15 -4055 (|t#5| $)) (-15 -1248 ($ (-578 $))) (-15 -1248 ($ |t#1|)) (-15 -1248 ($ |t#2|)) (-15 -1248 ($ |t#3|)) (-15 -1248 ($ |t#4|)) (-15 -1248 ($ |t#5|)) (-15 -1321 ($ $)) (-15 -1329 ($ $)) (-15 -3581 ((-501) $)) (-15 -2007 ($ $ (-501))) (-15 -2007 ($ $ (-578 (-501)))))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-2494 (((-107) $) 37)) (-2892 ((|#2| $) 41)) (-2588 (((-107) $) 36)) (-2011 ((|#1| $) 40)) (-2321 (((-107) $) 34)) (-1536 (((-107) $) 14)) (-3889 (((-107) $) 35)) (-3460 (((-1053) $) NIL)) (-1680 (((-107) $) 38)) (-2004 ((|#3| $) 43)) (-3708 (((-1018) $) NIL)) (-2370 (((-107) $) 39)) (-2017 ((|#4| $) 42)) (-4055 ((|#5| $) 44)) (-2499 (((-107) $ $) 33)) (-2007 (($ $ (-501)) 55) (($ $ (-578 (-501))) 57)) (-3770 (((-578 $) $) 21)) (-1248 (($ (-578 $)) 45) (($ |#1|) 46) (($ |#2|) 47) (($ |#3|) 48) (($ |#4|) 49) (($ |#5|) 50)) (-3691 (((-786) $) 22)) (-1329 (($ $) 20)) (-1321 (($ $) 51)) (-2750 (((-107) $) 18)) (-3751 (((-107) $ $) 32)) (-3581 (((-501) $) 53))) -(((-1005 |#1| |#2| |#3| |#4| |#5|) (-1004 |#1| |#2| |#3| |#4| |#5|) (-1001) (-1001) (-1001) (-1001) (-1001)) (T -1005)) -NIL -(-1004 |#1| |#2| |#3| |#4| |#5|) -((-2522 (((-1154) $) 23)) (-3192 (($ (-1070) (-402) |#2|) 11)) (-3691 (((-786) $) 16))) -(((-1006 |#1| |#2|) (-13 (-364) (-10 -8 (-15 -3192 ($ (-1070) (-402) |#2|)))) (-777) (-389 |#1|)) (T -1006)) -((-3192 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-402)) (-4 *5 (-777)) (-5 *1 (-1006 *5 *4)) (-4 *4 (-389 *5))))) -(-13 (-364) (-10 -8 (-15 -3192 ($ (-1070) (-402) |#2|)))) -((-1319 (((-107) |#5| |#5|) 37)) (-3494 (((-107) |#5| |#5|) 51)) (-1645 (((-107) |#5| (-578 |#5|)) 74) (((-107) |#5| |#5|) 60)) (-1400 (((-107) (-578 |#4|) (-578 |#4|)) 57)) (-3422 (((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) 62)) (-2394 (((-1154)) 33)) (-2660 (((-1154) (-1053) (-1053) (-1053)) 29)) (-3551 (((-578 |#5|) (-578 |#5|)) 81)) (-1894 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) 79)) (-2221 (((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107)) 101)) (-1461 (((-107) |#5| |#5|) 46)) (-1837 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3882 (((-107) (-578 |#4|) (-578 |#4|)) 56)) (-3091 (((-107) (-578 |#4|) (-578 |#4|)) 58)) (-3523 (((-107) (-578 |#4|) (-578 |#4|)) 59)) (-2918 (((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107)) 97)) (-2638 (((-578 |#5|) (-578 |#5|)) 42))) -(((-1007 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2660 ((-1154) (-1053) (-1053) (-1053))) (-15 -2394 ((-1154))) (-15 -1319 ((-107) |#5| |#5|)) (-15 -2638 ((-578 |#5|) (-578 |#5|))) (-15 -1461 ((-107) |#5| |#5|)) (-15 -3494 ((-107) |#5| |#5|)) (-15 -1400 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3882 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3091 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3523 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -1837 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1645 ((-107) |#5| |#5|)) (-15 -1645 ((-107) |#5| (-578 |#5|))) (-15 -3551 ((-578 |#5|) (-578 |#5|))) (-15 -3422 ((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -1894 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-15 -2221 ((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -2918 ((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -1007)) -((-2918 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-977 *6 *7 *8 *9)))) (-2221 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-107)) (-4 *10 (-977 *6 *7 *8 *9)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -3709 *7)))) (-4 *6 (-972 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-3422 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)))) (-3551 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-1645 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1007 *5 *6 *7 *8 *3)))) (-1645 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3523 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3882 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-1400 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3494 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-1461 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-1319 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-2394 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-2660 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -(-10 -7 (-15 -2660 ((-1154) (-1053) (-1053) (-1053))) (-15 -2394 ((-1154))) (-15 -1319 ((-107) |#5| |#5|)) (-15 -2638 ((-578 |#5|) (-578 |#5|))) (-15 -1461 ((-107) |#5| |#5|)) (-15 -3494 ((-107) |#5| |#5|)) (-15 -1400 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3882 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3091 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3523 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -1837 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1645 ((-107) |#5| |#5|)) (-15 -1645 ((-107) |#5| (-578 |#5|))) (-15 -3551 ((-578 |#5|) (-578 |#5|))) (-15 -3422 ((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -1894 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-15 -2221 ((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -2918 ((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107)))) -((-2702 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|) 94)) (-2903 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|) 70)) (-1480 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|) 88)) (-3421 (((-578 |#5|) |#4| |#5|) 109)) (-2167 (((-578 |#5|) |#4| |#5|) 116)) (-2581 (((-578 |#5|) |#4| |#5|) 117)) (-1642 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|) 95)) (-3485 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|) 115)) (-2627 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-1632 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107)) 82) (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-2690 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|) 77)) (-2634 (((-1154)) 35)) (-2469 (((-1154)) 25)) (-3504 (((-1154) (-1053) (-1053) (-1053)) 31)) (-3344 (((-1154) (-1053) (-1053) (-1053)) 20))) -(((-1008 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3344 ((-1154) (-1053) (-1053) (-1053))) (-15 -2469 ((-1154))) (-15 -3504 ((-1154) (-1053) (-1053) (-1053))) (-15 -2634 ((-1154))) (-15 -2903 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -1632 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1632 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107))) (-15 -2690 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -1480 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -2627 ((-107) |#4| |#5|)) (-15 -1642 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -3421 ((-578 |#5|) |#4| |#5|)) (-15 -3485 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2167 ((-578 |#5|) |#4| |#5|)) (-15 -2627 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2581 ((-578 |#5|) |#4| |#5|)) (-15 -2702 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -1008)) -((-2702 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2581 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2627 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2167 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3485 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3421 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-1642 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2627 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-1480 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2690 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *5 (-107)) (-4 *8 (-972 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *4 (-777)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -3709 *9)))) (-5 *1 (-1008 *6 *7 *4 *8 *9)))) (-1632 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-2903 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2634 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3504 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-2469 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3344 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -(-10 -7 (-15 -3344 ((-1154) (-1053) (-1053) (-1053))) (-15 -2469 ((-1154))) (-15 -3504 ((-1154) (-1053) (-1053) (-1053))) (-15 -2634 ((-1154))) (-15 -2903 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -1632 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1632 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107))) (-15 -2690 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -1480 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -2627 ((-107) |#4| |#5|)) (-15 -1642 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -3421 ((-578 |#5|) |#4| |#5|)) (-15 -3485 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2167 ((-578 |#5|) |#4| |#5|)) (-15 -2627 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2581 ((-578 |#5|) |#4| |#5|)) (-15 -2702 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|))) -((-3736 (((-107) $ $) 7)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) 85)) (-2073 (((-578 $) (-578 |#4|)) 86) (((-578 $) (-578 |#4|) (-107)) 111)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) 101) (((-107) $) 97)) (-2599 ((|#4| |#4| $) 92)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 79)) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-1199 (((-3 $ "failed") $) 82)) (-1778 ((|#4| |#4| $) 89)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1379 ((|#4| |#4| $) 87)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) 105)) (-3180 (((-107) |#4| $) 136)) (-1209 (((-107) |#4| $) 133)) (-1972 (((-107) |#4| $) 137) (((-107) $) 134)) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) 104) (((-107) $) 103)) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) 128)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 127)) (-1383 (((-3 |#4| "failed") $) 83)) (-1618 (((-578 $) |#4| $) 129)) (-2217 (((-3 (-107) (-578 $)) |#4| $) 132)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3420 (((-578 $) |#4| $) 125) (((-578 $) (-578 |#4|) $) 124) (((-578 $) (-578 |#4|) (-578 $)) 123) (((-578 $) |#4| (-578 $)) 122)) (-2297 (($ |#4| $) 117) (($ (-578 |#4|) $) 116)) (-3574 (((-578 |#4|) $) 107)) (-1590 (((-107) |#4| $) 99) (((-107) $) 95)) (-1762 ((|#4| |#4| $) 90)) (-3523 (((-107) $ $) 110)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) 100) (((-107) $) 96)) (-3618 ((|#4| |#4| $) 91)) (-3708 (((-1018) $) 10)) (-1190 (((-3 |#4| "failed") $) 84)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3478 (((-3 $ "failed") $ |#4|) 78)) (-3718 (($ $ |#4|) 77) (((-578 $) |#4| $) 115) (((-578 $) |#4| (-578 $)) 114) (((-578 $) (-578 |#4|) $) 113) (((-578 $) (-578 |#4|) (-578 $)) 112)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-1201 (((-701) $) 106)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-1218 (($ $) 88)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-4104 (((-701) $) 76 (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) 98)) (-1709 (((-578 $) |#4| $) 121) (((-578 $) |#4| (-578 $)) 120) (((-578 $) (-578 |#4|) $) 119) (((-578 $) (-578 |#4|) (-578 $)) 118)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) 81)) (-3036 (((-107) |#4| $) 135)) (-2659 (((-107) |#3| $) 80)) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167))))) -(((-1009 |#1| |#2| |#3| |#4|) (-1180) (-419) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -1009)) -NIL -(-13 (-977 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-891 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1001) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1104) . T)) -((-1217 (((-578 (-501)) (-501) (-501) (-501)) 20)) (-1613 (((-578 (-501)) (-501) (-501) (-501)) 12)) (-3416 (((-578 (-501)) (-501) (-501) (-501)) 16)) (-3601 (((-501) (-501) (-501)) 9)) (-3625 (((-1148 (-501)) (-578 (-501)) (-1148 (-501)) (-501)) 44) (((-1148 (-501)) (-1148 (-501)) (-1148 (-501)) (-501)) 39)) (-2976 (((-578 (-501)) (-578 (-501)) (-578 (-501)) (-107)) 26)) (-3525 (((-621 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501))) 43)) (-1858 (((-621 (-501)) (-578 (-501)) (-578 (-501))) 31)) (-3300 (((-578 (-621 (-501))) (-578 (-501))) 33)) (-1284 (((-578 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501))) 46)) (-2190 (((-621 (-501)) (-578 (-501)) (-578 (-501)) (-578 (-501))) 54))) -(((-1010) (-10 -7 (-15 -2190 ((-621 (-501)) (-578 (-501)) (-578 (-501)) (-578 (-501)))) (-15 -1284 ((-578 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501)))) (-15 -3300 ((-578 (-621 (-501))) (-578 (-501)))) (-15 -1858 ((-621 (-501)) (-578 (-501)) (-578 (-501)))) (-15 -3525 ((-621 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501)))) (-15 -2976 ((-578 (-501)) (-578 (-501)) (-578 (-501)) (-107))) (-15 -3625 ((-1148 (-501)) (-1148 (-501)) (-1148 (-501)) (-501))) (-15 -3625 ((-1148 (-501)) (-578 (-501)) (-1148 (-501)) (-501))) (-15 -3601 ((-501) (-501) (-501))) (-15 -3416 ((-578 (-501)) (-501) (-501) (-501))) (-15 -1613 ((-578 (-501)) (-501) (-501) (-501))) (-15 -1217 ((-578 (-501)) (-501) (-501) (-501))))) (T -1010)) -((-1217 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501)))) (-1613 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501)))) (-3416 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501)))) (-3601 (*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-1010)))) (-3625 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1148 (-501))) (-5 *3 (-578 (-501))) (-5 *4 (-501)) (-5 *1 (-1010)))) (-3625 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1148 (-501))) (-5 *3 (-501)) (-5 *1 (-1010)))) (-2976 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *3 (-107)) (-5 *1 (-1010)))) (-3525 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-621 (-501))) (-5 *3 (-578 (-501))) (-5 *1 (-1010)))) (-1858 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-1010)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-1010)))) (-1284 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *3 (-621 (-501))) (-5 *1 (-1010)))) (-2190 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-1010))))) -(-10 -7 (-15 -2190 ((-621 (-501)) (-578 (-501)) (-578 (-501)) (-578 (-501)))) (-15 -1284 ((-578 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501)))) (-15 -3300 ((-578 (-621 (-501))) (-578 (-501)))) (-15 -1858 ((-621 (-501)) (-578 (-501)) (-578 (-501)))) (-15 -3525 ((-621 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501)))) (-15 -2976 ((-578 (-501)) (-578 (-501)) (-578 (-501)) (-107))) (-15 -3625 ((-1148 (-501)) (-1148 (-501)) (-1148 (-501)) (-501))) (-15 -3625 ((-1148 (-501)) (-578 (-501)) (-1148 (-501)) (-501))) (-15 -3601 ((-501) (-501) (-501))) (-15 -3416 ((-578 (-501)) (-501) (-501) (-501))) (-15 -1613 ((-578 (-501)) (-501) (-501) (-501))) (-15 -1217 ((-578 (-501)) (-501) (-501) (-501)))) -((-3948 (($ $ (-839)) 12)) (** (($ $ (-839)) 10))) -(((-1011 |#1|) (-10 -8 (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839)))) (-1012)) (T -1011)) -NIL -(-10 -8 (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839)))) -((-3736 (((-107) $ $) 7)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-839)) 13)) (-3751 (((-107) $ $) 6)) (** (($ $ (-839)) 14)) (* (($ $ $) 15))) -(((-1012) (-1180)) (T -1012)) -((* (*1 *1 *1 *1) (-4 *1 (-1012))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-839)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-839))))) -(-13 (-1001) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-839))) (-15 -3948 ($ $ (-839))))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL (|has| |#3| (-1001)))) (-3292 (((-107) $) NIL (|has| |#3| (-123)))) (-1822 (($ (-839)) NIL (|has| |#3| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) NIL (|has| |#3| (-723)))) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#3| (-123)))) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#3| (-336)))) (-1417 (((-501) $) NIL (|has| |#3| (-775)))) (-3754 ((|#3| $ (-501) |#3|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1001)))) (-3490 (((-501) $) NIL (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001)))) ((|#3| $) NIL (|has| |#3| (-1001)))) (-3868 (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959)))) (((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 $) (-1148 $)) NIL (|has| |#3| (-959))) (((-621 |#3|) (-621 $)) NIL (|has| |#3| (-959)))) (-2174 (((-3 $ "failed") $) NIL (|has| |#3| (-959)))) (-2890 (($) NIL (|has| |#3| (-336)))) (-2156 ((|#3| $ (-501) |#3|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#3| $ (-501)) 12)) (-2164 (((-107) $) NIL (|has| |#3| (-775)))) (-2732 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#3| (-959)))) (-4067 (((-107) $) NIL (|has| |#3| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3380 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-2519 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#3| |#3|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#3| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#3| (-1001)))) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#3| (-336)))) (-3708 (((-1018) $) NIL (|has| |#3| (-1001)))) (-1190 ((|#3| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#3|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#3|))) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-262 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-4137 (((-578 |#3|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#3| $ (-501) |#3|) NIL) ((|#3| $ (-501)) NIL)) (-1293 ((|#3| $ $) NIL (|has| |#3| (-959)))) (-3759 (($ (-1148 |#3|)) NIL)) (-3613 (((-125)) NIL (|has| |#3| (-331)))) (-2596 (($ $) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1 |#3| |#3|) (-701)) NIL (|has| |#3| (-959))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-959)))) (-3713 (((-701) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167))) (((-701) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#3|) $) NIL) (((-786) $) NIL (|has| |#3| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001))) (|has| |#3| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001)))) (($ |#3|) NIL (|has| |#3| (-1001)))) (-3965 (((-701)) NIL (|has| |#3| (-959)))) (-1200 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#3| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#3| (-959))) (($ $ (-839)) NIL (|has| |#3| (-959)))) (-1850 (($) NIL (|has| |#3| (-123)) CONST)) (-1925 (($) NIL (|has| |#3| (-959)) CONST)) (-3584 (($ $) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1 |#3| |#3|) (-701)) NIL (|has| |#3| (-959))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-959)))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3751 (((-107) $ $) NIL (|has| |#3| (-1001)))) (-3773 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3762 (((-107) $ $) 17 (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3803 (($ $ |#3|) NIL (|has| |#3| (-331)))) (-3797 (($ $ $) NIL (|has| |#3| (-959))) (($ $) NIL (|has| |#3| (-959)))) (-3790 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-701)) NIL (|has| |#3| (-959))) (($ $ (-839)) NIL (|has| |#3| (-959)))) (* (($ $ $) NIL (|has| |#3| (-959))) (($ (-501) $) NIL (|has| |#3| (-959))) (($ $ |#3|) NIL (|has| |#3| (-657))) (($ |#3| $) NIL (|has| |#3| (-657))) (($ (-701) $) NIL (|has| |#3| (-123))) (($ (-839) $) NIL (|has| |#3| (-25)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-1013 |#1| |#2| |#3|) (-211 |#1| |#3|) (-701) (-701) (-723)) (T -1013)) -NIL -(-211 |#1| |#3|) -((-2289 (((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|)) 36)) (-3509 (((-501) (-1118 |#2| |#1|)) 67 (|has| |#1| (-419)))) (-2962 (((-501) (-1118 |#2| |#1|)) 53)) (-3722 (((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|)) 44)) (-2555 (((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|)) 55 (|has| |#1| (-419)))) (-3200 (((-578 |#1|) (-1118 |#2| |#1|) (-1118 |#2| |#1|)) 47)) (-1581 (((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|)) 52))) -(((-1014 |#1| |#2|) (-10 -7 (-15 -2289 ((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3722 ((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3200 ((-578 |#1|) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -1581 ((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -2962 ((-501) (-1118 |#2| |#1|))) (IF (|has| |#1| (-419)) (PROGN (-15 -2555 ((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3509 ((-501) (-1118 |#2| |#1|)))) |noBranch|)) (-750) (-1070)) (T -1014)) -((-3509 (*1 *2 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-419)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))) (-2555 (*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-419)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))) (-1581 (*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))) (-3200 (*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 *4)) (-5 *1 (-1014 *4 *5)))) (-3722 (*1 *2 *3 *3) (-12 (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 (-1118 *5 *4))) (-5 *1 (-1014 *4 *5)) (-5 *3 (-1118 *5 *4)))) (-2289 (*1 *2 *3 *3) (-12 (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 (-1118 *5 *4))) (-5 *1 (-1014 *4 *5)) (-5 *3 (-1118 *5 *4))))) -(-10 -7 (-15 -2289 ((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3722 ((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3200 ((-578 |#1|) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -1581 ((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -2962 ((-501) (-1118 |#2| |#1|))) (IF (|has| |#1| (-419)) (PROGN (-15 -2555 ((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3509 ((-501) (-1118 |#2| |#1|)))) |noBranch|)) -((-1417 (((-3 (-501) "failed") |#2| (-1070) |#2| (-1053)) 16) (((-3 (-501) "failed") |#2| (-1070) (-769 |#2|)) 14) (((-3 (-501) "failed") |#2|) 51))) -(((-1015 |#1| |#2|) (-10 -7 (-15 -1417 ((-3 (-501) "failed") |#2|)) (-15 -1417 ((-3 (-501) "failed") |#2| (-1070) (-769 |#2|))) (-15 -1417 ((-3 (-501) "failed") |#2| (-1070) |#2| (-1053)))) (-13 (-508) (-777) (-950 (-501)) (-577 (-501)) (-419)) (-13 (-27) (-1090) (-389 |#1|))) (T -1015)) -((-1417 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-1053)) (-4 *6 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *6 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))))) (-1417 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-769 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *6 *3)))) (-1417 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4)))))) -(-10 -7 (-15 -1417 ((-3 (-501) "failed") |#2|)) (-15 -1417 ((-3 (-501) "failed") |#2| (-1070) (-769 |#2|))) (-15 -1417 ((-3 (-501) "failed") |#2| (-1070) |#2| (-1053)))) -((-1417 (((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|)) (-1053)) 34) (((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-769 (-375 (-866 |#1|)))) 29) (((-3 (-501) "failed") (-375 (-866 |#1|))) 12))) -(((-1016 |#1|) (-10 -7 (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)))) (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-769 (-375 (-866 |#1|))))) (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|)) (-1053)))) (-419)) (T -1016)) -((-1417 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-375 (-866 *6))) (-5 *4 (-1070)) (-5 *5 (-1053)) (-4 *6 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *6)))) (-1417 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-769 (-375 (-866 *6)))) (-5 *3 (-375 (-866 *6))) (-4 *6 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *6)))) (-1417 (*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *4))))) -(-10 -7 (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)))) (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-769 (-375 (-866 |#1|))))) (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|)) (-1053)))) -((-1780 (((-282 (-501)) (-47)) 11))) -(((-1017) (-10 -7 (-15 -1780 ((-282 (-501)) (-47))))) (T -1017)) -((-1780 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-282 (-501))) (-5 *1 (-1017))))) -(-10 -7 (-15 -1780 ((-282 (-501)) (-47)))) -((-3736 (((-107) $ $) NIL)) (-2308 (($ $) 41)) (-3292 (((-107) $) 65)) (-1950 (($ $ $) 48)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 84)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2619 (($ $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) 74)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL)) (-1525 (($ $ $) 71)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL)) (-3490 (((-501) $) NIL)) (-3023 (($ $ $) 59)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 78) (((-621 (-501)) (-621 $)) 28)) (-2174 (((-3 $ "failed") $) NIL)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL)) (-1696 (((-107) $) NIL)) (-3518 (((-375 (-501)) $) NIL)) (-2890 (($) 81) (($ $) 82)) (-3034 (($ $ $) 58)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3185 (($ $ $ $) NIL)) (-2002 (($ $ $) 79)) (-2164 (((-107) $) NIL)) (-2940 (($ $ $) NIL)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL)) (-1355 (((-107) $) 66)) (-3729 (((-107) $) 64)) (-3031 (($ $) 42)) (-3493 (((-3 $ "failed") $) NIL)) (-4067 (((-107) $) 75)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4124 (($ $ $ $) 72)) (-4111 (($ $ $) 68) (($) 39)) (-1323 (($ $ $) 67) (($) 38)) (-4100 (($ $) NIL)) (-4139 (($ $) 70)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3437 (($ $ $) NIL)) (-3746 (($) NIL T CONST)) (-2170 (($ $) 50)) (-3708 (((-1018) $) NIL) (($ $) 69)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) 62) (($ (-578 $)) NIL)) (-3260 (($ $) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 61)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-2565 (($ $) 51)) (-3764 (($ $) NIL)) (-1248 (((-501) $) 32) (((-490) $) NIL) (((-810 (-501)) $) NIL) (((-346) $) NIL) (((-199) $) NIL)) (-3691 (((-786) $) 31) (($ (-501)) 80) (($ $) NIL) (($ (-501)) 80)) (-3965 (((-701)) NIL)) (-1808 (((-107) $ $) NIL)) (-1299 (($ $ $) NIL)) (-1965 (($) 37)) (-2442 (((-107) $ $) NIL)) (-3429 (($ $ $ $) 73)) (-1720 (($ $) 63)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-3099 (($ $ $) 44)) (-1850 (($) 35 T CONST)) (-3038 (($ $ $) 47)) (-1925 (($) 36 T CONST)) (-3671 (((-1053) $) 21) (((-1053) $ (-107)) 23) (((-1154) (-753) $) 24) (((-1154) (-753) $ (-107)) 25)) (-3045 (($ $) 45)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3032 (($ $ $) 46)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 40)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 49)) (-3092 (($ $ $) 43)) (-3797 (($ $) 52) (($ $ $) 54)) (-3790 (($ $ $) 53)) (** (($ $ (-839)) NIL) (($ $ (-701)) 57)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 34) (($ $ $) 55))) -(((-1018) (-13 (-500) (-597) (-751) (-10 -8 (-6 -4154) (-6 -4159) (-6 -4155) (-15 -1323 ($)) (-15 -4111 ($)) (-15 -3031 ($ $)) (-15 -2308 ($ $)) (-15 -3092 ($ $ $)) (-15 -3099 ($ $ $)) (-15 -1950 ($ $ $)) (-15 -3045 ($ $)) (-15 -3032 ($ $ $)) (-15 -3038 ($ $ $))))) (T -1018)) -((-3099 (*1 *1 *1 *1) (-5 *1 (-1018))) (-3092 (*1 *1 *1 *1) (-5 *1 (-1018))) (-2308 (*1 *1 *1) (-5 *1 (-1018))) (-1323 (*1 *1) (-5 *1 (-1018))) (-4111 (*1 *1) (-5 *1 (-1018))) (-3031 (*1 *1 *1) (-5 *1 (-1018))) (-1950 (*1 *1 *1 *1) (-5 *1 (-1018))) (-3045 (*1 *1 *1) (-5 *1 (-1018))) (-3032 (*1 *1 *1 *1) (-5 *1 (-1018))) (-3038 (*1 *1 *1 *1) (-5 *1 (-1018)))) -(-13 (-500) (-597) (-751) (-10 -8 (-6 -4154) (-6 -4159) (-6 -4155) (-15 -1323 ($)) (-15 -4111 ($)) (-15 -3031 ($ $)) (-15 -2308 ($ $)) (-15 -3092 ($ $ $)) (-15 -3099 ($ $ $)) (-15 -1950 ($ $ $)) (-15 -3045 ($ $)) (-15 -3032 ($ $ $)) (-15 -3038 ($ $ $)))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2425 ((|#1| $) 44)) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2988 ((|#1| |#1| $) 46)) (-1260 ((|#1| $) 45)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3661 (((-701) $) 43)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-1019 |#1|) (-1180) (-1104)) (T -1019)) -((-2988 (*1 *2 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104)))) (-1260 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1104)) (-5 *2 (-701))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4167) (-15 -2988 (|t#1| |t#1| $)) (-15 -1260 (|t#1| $)) (-15 -2425 (|t#1| $)) (-15 -3661 ((-701) $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-2225 ((|#3| $) 76)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL) ((|#3| $) 37)) (-3868 (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 $) (-1148 $)) 73) (((-621 |#3|) (-621 $)) 65)) (-2596 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL)) (-1651 ((|#3| $) 78)) (-1566 ((|#4| $) 32)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL) (($ |#3|) 16)) (** (($ $ (-839)) NIL) (($ $ (-701)) 15) (($ $ (-501)) 82))) -(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-501))) (-15 -1651 (|#3| |#1|)) (-15 -2225 (|#3| |#1|)) (-15 -1566 (|#4| |#1|)) (-15 -3868 ((-621 |#3|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3691 (|#1| |#3|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|) (-701))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3691 (|#1| (-501))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839))) (-15 -3691 ((-786) |#1|))) (-1021 |#2| |#3| |#4| |#5|) (-701) (-959) (-211 |#2| |#3|) (-211 |#2| |#3|)) (T -1020)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-501))) (-15 -1651 (|#3| |#1|)) (-15 -2225 (|#3| |#1|)) (-15 -1566 (|#4| |#1|)) (-15 -3868 ((-621 |#3|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3691 (|#1| |#3|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|) (-701))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3691 (|#1| (-501))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2225 ((|#2| $) 72)) (-2981 (((-107) $) 112)) (-3177 (((-3 $ "failed") $ $) 19)) (-4007 (((-107) $) 110)) (-2997 (((-107) $ (-701)) 102)) (-1292 (($ |#2|) 75)) (-2540 (($) 17 T CONST)) (-1933 (($ $) 129 (|has| |#2| (-276)))) (-2358 ((|#3| $ (-501)) 124)) (-3765 (((-3 (-501) "failed") $) 86 (|has| |#2| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 84 (|has| |#2| (-950 (-375 (-501))))) (((-3 |#2| "failed") $) 81)) (-3490 (((-501) $) 87 (|has| |#2| (-950 (-501)))) (((-375 (-501)) $) 85 (|has| |#2| (-950 (-375 (-501))))) ((|#2| $) 80)) (-3868 (((-621 (-501)) (-621 $)) 79 (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 78 (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 77) (((-621 |#2|) (-621 $)) 76)) (-2174 (((-3 $ "failed") $) 34)) (-3689 (((-701) $) 130 (|has| |#2| (-508)))) (-1905 ((|#2| $ (-501) (-501)) 122)) (-2732 (((-578 |#2|) $) 95 (|has| $ (-6 -4167)))) (-1355 (((-107) $) 31)) (-3752 (((-701) $) 131 (|has| |#2| (-508)))) (-3552 (((-578 |#4|) $) 132 (|has| |#2| (-508)))) (-1648 (((-701) $) 118)) (-3248 (((-701) $) 119)) (-3379 (((-107) $ (-701)) 103)) (-3572 ((|#2| $) 67 (|has| |#2| (-6 (-4169 "*"))))) (-1567 (((-501) $) 114)) (-2734 (((-501) $) 116)) (-3380 (((-578 |#2|) $) 94 (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) 92 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-2969 (((-501) $) 115)) (-3491 (((-501) $) 117)) (-2630 (($ (-578 (-578 |#2|))) 109)) (-2519 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-2237 (((-578 (-578 |#2|)) $) 120)) (-3155 (((-107) $ (-701)) 104)) (-3460 (((-1053) $) 9)) (-1616 (((-3 $ "failed") $) 66 (|has| |#2| (-331)))) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-508)))) (-2369 (((-107) (-1 (-107) |#2|) $) 97 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) 91 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) 90 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) 88 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) 108)) (-1407 (((-107) $) 105)) (-3122 (($) 106)) (-2007 ((|#2| $ (-501) (-501) |#2|) 123) ((|#2| $ (-501) (-501)) 121)) (-2596 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-701)) 51) (($ $ (-578 (-1070)) (-578 (-701))) 44 (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) 43 (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) 42 (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) 41 (|has| |#2| (-820 (-1070)))) (($ $ (-701)) 39 (|has| |#2| (-206))) (($ $) 37 (|has| |#2| (-206)))) (-1651 ((|#2| $) 71)) (-3133 (($ (-578 |#2|)) 74)) (-3697 (((-107) $) 111)) (-1566 ((|#3| $) 73)) (-3315 ((|#2| $) 68 (|has| |#2| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#2|) $) 96 (|has| $ (-6 -4167))) (((-701) |#2| $) 93 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 107)) (-2952 ((|#4| $ (-501)) 125)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 83 (|has| |#2| (-950 (-375 (-501))))) (($ |#2|) 82)) (-3965 (((-701)) 29)) (-1200 (((-107) (-1 (-107) |#2|) $) 98 (|has| $ (-6 -4167)))) (-3719 (((-107) $) 113)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-701)) 49) (($ $ (-578 (-1070)) (-578 (-701))) 48 (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) 47 (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) 46 (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) 45 (|has| |#2| (-820 (-1070)))) (($ $ (-701)) 40 (|has| |#2| (-206))) (($ $) 38 (|has| |#2| (-206)))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#2|) 128 (|has| |#2| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 65 (|has| |#2| (-331)))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3581 (((-701) $) 101 (|has| $ (-6 -4167))))) -(((-1021 |#1| |#2| |#3| |#4|) (-1180) (-701) (-959) (-211 |t#1| |t#2|) (-211 |t#1| |t#2|)) (T -1021)) -((-1292 (*1 *1 *2) (-12 (-4 *2 (-959)) (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-578 *4)) (-4 *4 (-959)) (-4 *1 (-1021 *3 *4 *5 *6)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *3 *4)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *2 *5)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *2 (-211 *3 *4)))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (-4 *2 (-959)))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (-4 *2 (-959)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1021 *3 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *2 (-211 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *2 *5)) (-4 *4 (-959)) (-4 *2 (-211 *3 *4)) (-4 *5 (-211 *3 *4)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) (-1616 (*1 *1 *1) (|partial| -12 (-4 *1 (-1021 *2 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-211 *2 *3)) (-4 *5 (-211 *2 *3)) (-4 *3 (-331)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1021 *3 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *3 *4)) (-4 *4 (-331))))) -(-13 (-204 |t#2|) (-106 |t#2| |t#2|) (-961 |t#1| |t#1| |t#2| |t#3| |t#4|) (-380 |t#2|) (-345 |t#2|) (-10 -8 (IF (|has| |t#2| (-156)) (-6 (-648 |t#2|)) |noBranch|) (-15 -1292 ($ |t#2|)) (-15 -3133 ($ (-578 |t#2|))) (-15 -1566 (|t#3| $)) (-15 -2225 (|t#2| $)) (-15 -1651 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4169 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3315 (|t#2| $)) (-15 -3572 (|t#2| $))) |noBranch|) (IF (|has| |t#2| (-331)) (PROGN (-15 -1616 ((-3 $ "failed") $)) (-15 ** ($ $ (-501)))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4169 "*"))) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-555 (-786)) . T) ((-204 |#2|) . T) ((-206) |has| |#2| (-206)) ((-278 |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-345 |#2|) . T) ((-380 |#2|) . T) ((-454 |#2|) . T) ((-476 |#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-583 |#2|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#2| (-577 (-501))) ((-577 |#2|) . T) ((-648 |#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-6 (-4169 "*")))) ((-657) . T) ((-820 (-1070)) |has| |#2| (-820 (-1070))) ((-961 |#1| |#1| |#2| |#3| |#4|) . T) ((-950 (-375 (-501))) |has| |#2| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#2| (-950 (-501))) ((-950 |#2|) . T) ((-964 |#2|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1104) . T)) -((-1755 ((|#4| |#4|) 67)) (-2475 ((|#4| |#4|) 62)) (-2408 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|) 75)) (-1387 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 66)) (-3997 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 64))) -(((-1022 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2475 (|#4| |#4|)) (-15 -3997 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1755 (|#4| |#4|)) (-15 -1387 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2408 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|))) (-276) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|)) (T -1022)) -((-2408 (*1 *2 *3 *4) (-12 (-4 *5 (-276)) (-4 *6 (-340 *5)) (-4 *4 (-340 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-1022 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) (-1387 (*1 *2 *3) (-12 (-4 *4 (-276)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1022 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-1755 (*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1022 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3997 (*1 *2 *3) (-12 (-4 *4 (-276)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1022 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-2475 (*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1022 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5))))) -(-10 -7 (-15 -2475 (|#4| |#4|)) (-15 -3997 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1755 (|#4| |#4|)) (-15 -1387 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2408 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 17)) (-3800 (((-578 |#2|) $) 160)) (-3728 (((-1064 $) $ |#2|) 54) (((-1064 |#1|) $) 43)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 110 (|has| |#1| (-508)))) (-2865 (($ $) 112 (|has| |#1| (-508)))) (-1639 (((-107) $) 114 (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 |#2|)) 193)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 157) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 |#2| "failed") $) NIL)) (-3490 ((|#1| $) 155) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) ((|#2| $) NIL)) (-1749 (($ $ $ |#2|) NIL (|has| |#1| (-156)))) (-3858 (($ $) 197)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) 82)) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ |#2|) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-487 |#2|) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| |#1| (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| |#1| (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) 19)) (-3706 (((-701) $) 26)) (-3794 (($ (-1064 |#1|) |#2|) 48) (($ (-1064 $) |#2|) 64)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) 31)) (-3787 (($ |#1| (-487 |#2|)) 71) (($ $ |#2| (-701)) 52) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#2|) NIL)) (-2285 (((-487 |#2|) $) 187) (((-701) $ |#2|) 188) (((-578 (-701)) $ (-578 |#2|)) 189)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 |#2|) (-487 |#2|)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) 122)) (-2752 (((-3 |#2| "failed") $) 162)) (-3845 (($ $) 196)) (-3850 ((|#1| $) 37)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| |#2|) (|:| -3027 (-701))) "failed") $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) 32)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 140 (|has| |#1| (-419)))) (-3664 (($ (-578 $)) 145 (|has| |#1| (-419))) (($ $ $) 132 (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-578 |#2|) (-578 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-578 |#2|) (-578 $)) 177)) (-2532 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2596 (($ $ |#2|) 195) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1201 (((-487 |#2|) $) 183) (((-701) $ |#2|) 179) (((-578 (-701)) $ (-578 |#2|)) 181)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| |#1| (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#1| $) 128 (|has| |#1| (-419))) (($ $ |#2|) 131 (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 151) (($ (-501)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-508))) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-1303 (((-578 |#1|) $) 154)) (-2495 ((|#1| $ (-487 |#2|)) 73) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 79)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) 117 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 102) (($ $ (-701)) 104)) (-1850 (($) 12 T CONST)) (-1925 (($) 14 T CONST)) (-3584 (($ $ |#2|) NIL) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 97)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 126 (|has| |#1| (-331)))) (-3797 (($ $) 85) (($ $ $) 95)) (-3790 (($ $ $) 49)) (** (($ $ (-839)) 103) (($ $ (-701)) 100)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 88) (($ $ $) 65) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1023 |#1| |#2|) (-870 |#1| (-487 |#2|) |#2|) (-959) (-777)) (T -1023)) -NIL -(-870 |#1| (-487 |#2|) |#2|) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 |#2|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3978 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 117 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 113 (|has| |#1| (-37 (-375 (-501)))))) (-3984 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3430 (((-866 |#1|) $ (-701)) NIL) (((-866 |#1|) $ (-701) (-701)) NIL)) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $ |#2|) NIL) (((-701) $ |#2| (-701)) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2706 (((-107) $) NIL)) (-3787 (($ $ (-578 |#2|) (-578 (-487 |#2|))) NIL) (($ $ |#2| (-487 |#2|)) NIL) (($ |#1| (-487 |#2|)) NIL) (($ $ |#2| (-701)) 57) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) 111 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3188 (($ $ |#2|) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3517 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-37 (-375 (-501)))))) (-3718 (($ $ (-701)) 15)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-1989 (($ $) 109 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (($ $ |#2| $) 95) (($ $ (-578 |#2|) (-578 $)) 88) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL)) (-2596 (($ $ |#2|) 98) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1201 (((-487 |#2|) $) NIL)) (-1401 (((-1 (-1048 |#3|) |#3|) (-578 |#2|) (-578 (-1048 |#3|))) 78)) (-3991 (($ $) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 115 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 17)) (-3691 (((-786) $) 179) (($ (-501)) NIL) (($ |#1|) 44 (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-508))) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#2|) 64) (($ |#3|) 62)) (-2495 ((|#1| $ (-487 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL) ((|#3| $ (-701)) 42)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-4003 (($ $) 153 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) 149 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 157 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3550 (($ $) 159 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 155 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 151 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 18 T CONST)) (-1925 (($) 10 T CONST)) (-3584 (($ $ |#2|) NIL) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) 181 (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 60)) (** (($ $ (-839)) NIL) (($ $ (-701)) 69) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 101 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 59) (($ $ (-375 (-501))) 106 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 104 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) -(((-1024 |#1| |#2| |#3|) (-13 (-671 |#1| |#2|) (-10 -8 (-15 -2495 (|#3| $ (-701))) (-15 -3691 ($ |#2|)) (-15 -3691 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1401 ((-1 (-1048 |#3|) |#3|) (-578 |#2|) (-578 (-1048 |#3|)))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $ |#2| |#1|)) (-15 -3517 ($ (-1 $) |#2| |#1|))) |noBranch|))) (-959) (-777) (-870 |#1| (-487 |#2|) |#2|)) (T -1024)) -((-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *2 (-870 *4 (-487 *5) *5)) (-5 *1 (-1024 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-777)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *2 (-777)) (-5 *1 (-1024 *3 *2 *4)) (-4 *4 (-870 *3 (-487 *2) *2)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-5 *1 (-1024 *3 *4 *2)) (-4 *2 (-870 *3 (-487 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-5 *1 (-1024 *3 *4 *2)) (-4 *2 (-870 *3 (-487 *4) *4)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1048 *7))) (-4 *6 (-777)) (-4 *7 (-870 *5 (-487 *6) *6)) (-4 *5 (-959)) (-5 *2 (-1 (-1048 *7) *7)) (-5 *1 (-1024 *5 *6 *7)))) (-3188 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-4 *2 (-777)) (-5 *1 (-1024 *3 *2 *4)) (-4 *4 (-870 *3 (-487 *2) *2)))) (-3517 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1024 *4 *3 *5))) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959)) (-4 *3 (-777)) (-5 *1 (-1024 *4 *3 *5)) (-4 *5 (-870 *4 (-487 *3) *3))))) -(-13 (-671 |#1| |#2|) (-10 -8 (-15 -2495 (|#3| $ (-701))) (-15 -3691 ($ |#2|)) (-15 -3691 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1401 ((-1 (-1048 |#3|) |#3|) (-578 |#2|) (-578 (-1048 |#3|)))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $ |#2| |#1|)) (-15 -3517 ($ (-1 $) |#2| |#1|))) |noBranch|))) -((-3736 (((-107) $ $) 7)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) 85)) (-2073 (((-578 $) (-578 |#4|)) 86) (((-578 $) (-578 |#4|) (-107)) 111)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) 101) (((-107) $) 97)) (-2599 ((|#4| |#4| $) 92)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 79)) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-1199 (((-3 $ "failed") $) 82)) (-1778 ((|#4| |#4| $) 89)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1379 ((|#4| |#4| $) 87)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) 105)) (-3180 (((-107) |#4| $) 136)) (-1209 (((-107) |#4| $) 133)) (-1972 (((-107) |#4| $) 137) (((-107) $) 134)) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) 104) (((-107) $) 103)) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) 128)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 127)) (-1383 (((-3 |#4| "failed") $) 83)) (-1618 (((-578 $) |#4| $) 129)) (-2217 (((-3 (-107) (-578 $)) |#4| $) 132)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3420 (((-578 $) |#4| $) 125) (((-578 $) (-578 |#4|) $) 124) (((-578 $) (-578 |#4|) (-578 $)) 123) (((-578 $) |#4| (-578 $)) 122)) (-2297 (($ |#4| $) 117) (($ (-578 |#4|) $) 116)) (-3574 (((-578 |#4|) $) 107)) (-1590 (((-107) |#4| $) 99) (((-107) $) 95)) (-1762 ((|#4| |#4| $) 90)) (-3523 (((-107) $ $) 110)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) 100) (((-107) $) 96)) (-3618 ((|#4| |#4| $) 91)) (-3708 (((-1018) $) 10)) (-1190 (((-3 |#4| "failed") $) 84)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3478 (((-3 $ "failed") $ |#4|) 78)) (-3718 (($ $ |#4|) 77) (((-578 $) |#4| $) 115) (((-578 $) |#4| (-578 $)) 114) (((-578 $) (-578 |#4|) $) 113) (((-578 $) (-578 |#4|) (-578 $)) 112)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-1201 (((-701) $) 106)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-1218 (($ $) 88)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-4104 (((-701) $) 76 (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) 98)) (-1709 (((-578 $) |#4| $) 121) (((-578 $) |#4| (-578 $)) 120) (((-578 $) (-578 |#4|) $) 119) (((-578 $) (-578 |#4|) (-578 $)) 118)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) 81)) (-3036 (((-107) |#4| $) 135)) (-2659 (((-107) |#3| $) 80)) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167))))) -(((-1025 |#1| |#2| |#3| |#4|) (-1180) (-419) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -1025)) -NIL -(-13 (-1009 |t#1| |t#2| |t#3| |t#4|) (-714 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-714 |#1| |#2| |#3| |#4|) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1001) . T) ((-1009 |#1| |#2| |#3| |#4|) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1104) . T)) -((-2778 (((-578 |#2|) |#1|) 12)) (-2306 (((-578 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-578 |#2|) |#1|) 47)) (-3865 (((-578 |#2|) |#2| |#2| |#2|) 35) (((-578 |#2|) |#1|) 45)) (-1541 ((|#2| |#1|) 42)) (-1834 (((-2 (|:| |solns| (-578 |#2|)) (|:| |maps| (-578 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2694 (((-578 |#2|) |#2| |#2|) 34) (((-578 |#2|) |#1|) 44)) (-1259 (((-578 |#2|) |#2| |#2| |#2| |#2|) 36) (((-578 |#2|) |#1|) 46)) (-4144 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-3443 ((|#2| |#2| |#2| |#2|) 39)) (-1242 ((|#2| |#2| |#2|) 38)) (-1776 ((|#2| |#2| |#2| |#2| |#2|) 40))) -(((-1026 |#1| |#2|) (-10 -7 (-15 -2778 ((-578 |#2|) |#1|)) (-15 -1541 (|#2| |#1|)) (-15 -1834 ((-2 (|:| |solns| (-578 |#2|)) (|:| |maps| (-578 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2694 ((-578 |#2|) |#1|)) (-15 -3865 ((-578 |#2|) |#1|)) (-15 -1259 ((-578 |#2|) |#1|)) (-15 -2306 ((-578 |#2|) |#1|)) (-15 -2694 ((-578 |#2|) |#2| |#2|)) (-15 -3865 ((-578 |#2|) |#2| |#2| |#2|)) (-15 -1259 ((-578 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2306 ((-578 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1242 (|#2| |#2| |#2|)) (-15 -3443 (|#2| |#2| |#2| |#2|)) (-15 -1776 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4144 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1125 |#2|) (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (T -1026)) -((-4144 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))) (-1776 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))) (-3443 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))) (-1242 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))) (-2306 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))) (-1259 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))) (-3865 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))) (-2694 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))) (-2306 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) (-2694 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-2 (|:| |solns| (-578 *5)) (|:| |maps| (-578 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1026 *3 *5)) (-4 *3 (-1125 *5)))) (-1541 (*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4))))) -(-10 -7 (-15 -2778 ((-578 |#2|) |#1|)) (-15 -1541 (|#2| |#1|)) (-15 -1834 ((-2 (|:| |solns| (-578 |#2|)) (|:| |maps| (-578 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2694 ((-578 |#2|) |#1|)) (-15 -3865 ((-578 |#2|) |#1|)) (-15 -1259 ((-578 |#2|) |#1|)) (-15 -2306 ((-578 |#2|) |#1|)) (-15 -2694 ((-578 |#2|) |#2| |#2|)) (-15 -3865 ((-578 |#2|) |#2| |#2| |#2|)) (-15 -1259 ((-578 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2306 ((-578 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1242 (|#2| |#2| |#2|)) (-15 -3443 (|#2| |#2| |#2| |#2|)) (-15 -1776 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4144 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-2605 (((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|))))) 94) (((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070))) 93) (((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|)))) 91) (((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|))) (-578 (-1070))) 89) (((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|)))) 75) (((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|))) (-1070)) 76) (((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|))) 70) (((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|)) (-1070)) 59)) (-1532 (((-578 (-578 (-282 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070))) 87) (((-578 (-282 |#1|)) (-375 (-866 |#1|)) (-1070)) 43)) (-2759 (((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-375 (-866 |#1|)) (-1070)) 97) (((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070)) 96))) -(((-1027 |#1|) (-10 -7 (-15 -2605 ((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|)))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|))))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|))))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070)))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -1532 ((-578 (-282 |#1|)) (-375 (-866 |#1|)) (-1070))) (-15 -1532 ((-578 (-578 (-282 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2759 ((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2759 ((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-375 (-866 |#1|)) (-1070)))) (-13 (-276) (-777) (-134))) (T -1027)) -((-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-1060 (-578 (-282 *5)) (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 *5)))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-1060 (-578 (-282 *5)) (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) (-1532 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-282 *5)))) (-5 *1 (-1027 *5)))) (-1532 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-282 *5))) (-5 *1 (-1027 *5)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-578 (-262 (-375 (-866 *4))))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *4))))) (-5 *1 (-1027 *4)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 *5))))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-578 (-375 (-866 *4)))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *4))))) (-5 *1 (-1027 *4)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-262 (-375 (-866 *4)))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1027 *4)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 *5)))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1027 *5)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1027 *4)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1027 *5))))) -(-10 -7 (-15 -2605 ((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|)))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|))))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|))))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070)))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -1532 ((-578 (-282 |#1|)) (-375 (-866 |#1|)) (-1070))) (-15 -1532 ((-578 (-578 (-282 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2759 ((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2759 ((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-375 (-866 |#1|)) (-1070)))) -((-2296 (((-375 (-1064 (-282 |#1|))) (-1148 (-282 |#1|)) (-375 (-1064 (-282 |#1|))) (-501)) 27)) (-2897 (((-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|)))) 39))) -(((-1028 |#1|) (-10 -7 (-15 -2897 ((-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))))) (-15 -2296 ((-375 (-1064 (-282 |#1|))) (-1148 (-282 |#1|)) (-375 (-1064 (-282 |#1|))) (-501)))) (-13 (-508) (-777))) (T -1028)) -((-2296 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-375 (-1064 (-282 *5)))) (-5 *3 (-1148 (-282 *5))) (-5 *4 (-501)) (-4 *5 (-13 (-508) (-777))) (-5 *1 (-1028 *5)))) (-2897 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-375 (-1064 (-282 *3)))) (-4 *3 (-13 (-508) (-777))) (-5 *1 (-1028 *3))))) -(-10 -7 (-15 -2897 ((-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))))) (-15 -2296 ((-375 (-1064 (-282 |#1|))) (-1148 (-282 |#1|)) (-375 (-1064 (-282 |#1|))) (-501)))) -((-2778 (((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-282 |#1|))) (-578 (-1070))) 212) (((-578 (-262 (-282 |#1|))) (-282 |#1|) (-1070)) 20) (((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|)) (-1070)) 26) (((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|))) 25) (((-578 (-262 (-282 |#1|))) (-282 |#1|)) 21))) -(((-1029 |#1|) (-10 -7 (-15 -2778 ((-578 (-262 (-282 |#1|))) (-282 |#1|))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|)))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|)) (-1070))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-282 |#1|) (-1070))) (-15 -2778 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-282 |#1|))) (-578 (-1070))))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (T -1029)) -((-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1029 *5)) (-5 *3 (-578 (-262 (-282 *5)))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-282 *5)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-262 (-282 *5))))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-262 (-282 *4))))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-282 *4))))) -(-10 -7 (-15 -2778 ((-578 (-262 (-282 |#1|))) (-282 |#1|))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|)))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|)) (-1070))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-282 |#1|) (-1070))) (-15 -2778 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-282 |#1|))) (-578 (-1070))))) -((-1576 ((|#2| |#2|) 20 (|has| |#1| (-777))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 16)) (-2420 ((|#2| |#2|) 19 (|has| |#1| (-777))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 15))) -(((-1030 |#1| |#2|) (-10 -7 (-15 -2420 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -1576 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-777)) (PROGN (-15 -2420 (|#2| |#2|)) (-15 -1576 (|#2| |#2|))) |noBranch|)) (-1104) (-13 (-548 (-501) |#1|) (-10 -7 (-6 -4167) (-6 -4168)))) (T -1030)) -((-1576 (*1 *2 *2) (-12 (-4 *3 (-777)) (-4 *3 (-1104)) (-5 *1 (-1030 *3 *2)) (-4 *2 (-13 (-548 (-501) *3) (-10 -7 (-6 -4167) (-6 -4168)))))) (-2420 (*1 *2 *2) (-12 (-4 *3 (-777)) (-4 *3 (-1104)) (-5 *1 (-1030 *3 *2)) (-4 *2 (-13 (-548 (-501) *3) (-10 -7 (-6 -4167) (-6 -4168)))))) (-1576 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-1030 *4 *2)) (-4 *2 (-13 (-548 (-501) *4) (-10 -7 (-6 -4167) (-6 -4168)))))) (-2420 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-1030 *4 *2)) (-4 *2 (-13 (-548 (-501) *4) (-10 -7 (-6 -4167) (-6 -4168))))))) -(-10 -7 (-15 -2420 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -1576 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-777)) (PROGN (-15 -2420 (|#2| |#2|)) (-15 -1576 (|#2| |#2|))) |noBranch|)) -((-3736 (((-107) $ $) NIL)) (-1446 (((-1059 3 |#1|) $) 105)) (-3468 (((-107) $) 72)) (-3208 (($ $ (-578 (-863 |#1|))) 20) (($ $ (-578 (-578 |#1|))) 75) (($ (-578 (-863 |#1|))) 74) (((-578 (-863 |#1|)) $) 73)) (-3044 (((-107) $) 41)) (-1801 (($ $ (-863 |#1|)) 46) (($ $ (-578 |#1|)) 51) (($ $ (-701)) 53) (($ (-863 |#1|)) 47) (((-863 |#1|) $) 45)) (-2905 (((-2 (|:| -1654 (-701)) (|:| |curves| (-701)) (|:| |polygons| (-701)) (|:| |constructs| (-701))) $) 103)) (-3401 (((-701) $) 26)) (-1206 (((-701) $) 25)) (-1671 (($ $ (-701) (-863 |#1|)) 39)) (-2014 (((-107) $) 82)) (-3704 (($ $ (-578 (-578 (-863 |#1|))) (-578 (-155)) (-155)) 89) (($ $ (-578 (-578 (-578 |#1|))) (-578 (-155)) (-155)) 91) (($ $ (-578 (-578 (-863 |#1|))) (-107) (-107)) 85) (($ $ (-578 (-578 (-578 |#1|))) (-107) (-107)) 93) (($ (-578 (-578 (-863 |#1|)))) 86) (($ (-578 (-578 (-863 |#1|))) (-107) (-107)) 87) (((-578 (-578 (-863 |#1|))) $) 84)) (-3216 (($ (-578 $)) 28) (($ $ $) 29)) (-1727 (((-578 (-155)) $) 101)) (-3918 (((-578 (-863 |#1|)) $) 96)) (-2511 (((-578 (-578 (-155))) $) 100)) (-4036 (((-578 (-578 (-578 (-863 |#1|)))) $) NIL)) (-3124 (((-578 (-578 (-578 (-701)))) $) 98)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3653 (((-701) $ (-578 (-863 |#1|))) 37)) (-3277 (((-107) $) 54)) (-1542 (($ $ (-578 (-863 |#1|))) 56) (($ $ (-578 (-578 |#1|))) 62) (($ (-578 (-863 |#1|))) 57) (((-578 (-863 |#1|)) $) 55)) (-3569 (($) 23) (($ (-1059 3 |#1|)) 24)) (-3764 (($ $) 35)) (-3249 (((-578 $) $) 34)) (-3913 (($ (-578 $)) 31)) (-4021 (((-578 $) $) 33)) (-3691 (((-786) $) 109)) (-3026 (((-107) $) 64)) (-1330 (($ $ (-578 (-863 |#1|))) 66) (($ $ (-578 (-578 |#1|))) 69) (($ (-578 (-863 |#1|))) 67) (((-578 (-863 |#1|)) $) 65)) (-1266 (($ $) 104)) (-3751 (((-107) $ $) NIL))) -(((-1031 |#1|) (-1032 |#1|) (-959)) (T -1031)) -NIL -(-1032 |#1|) -((-3736 (((-107) $ $) 7)) (-1446 (((-1059 3 |#1|) $) 13)) (-3468 (((-107) $) 29)) (-3208 (($ $ (-578 (-863 |#1|))) 33) (($ $ (-578 (-578 |#1|))) 32) (($ (-578 (-863 |#1|))) 31) (((-578 (-863 |#1|)) $) 30)) (-3044 (((-107) $) 44)) (-1801 (($ $ (-863 |#1|)) 49) (($ $ (-578 |#1|)) 48) (($ $ (-701)) 47) (($ (-863 |#1|)) 46) (((-863 |#1|) $) 45)) (-2905 (((-2 (|:| -1654 (-701)) (|:| |curves| (-701)) (|:| |polygons| (-701)) (|:| |constructs| (-701))) $) 15)) (-3401 (((-701) $) 58)) (-1206 (((-701) $) 59)) (-1671 (($ $ (-701) (-863 |#1|)) 50)) (-2014 (((-107) $) 21)) (-3704 (($ $ (-578 (-578 (-863 |#1|))) (-578 (-155)) (-155)) 28) (($ $ (-578 (-578 (-578 |#1|))) (-578 (-155)) (-155)) 27) (($ $ (-578 (-578 (-863 |#1|))) (-107) (-107)) 26) (($ $ (-578 (-578 (-578 |#1|))) (-107) (-107)) 25) (($ (-578 (-578 (-863 |#1|)))) 24) (($ (-578 (-578 (-863 |#1|))) (-107) (-107)) 23) (((-578 (-578 (-863 |#1|))) $) 22)) (-3216 (($ (-578 $)) 57) (($ $ $) 56)) (-1727 (((-578 (-155)) $) 16)) (-3918 (((-578 (-863 |#1|)) $) 20)) (-2511 (((-578 (-578 (-155))) $) 17)) (-4036 (((-578 (-578 (-578 (-863 |#1|)))) $) 18)) (-3124 (((-578 (-578 (-578 (-701)))) $) 19)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3653 (((-701) $ (-578 (-863 |#1|))) 51)) (-3277 (((-107) $) 39)) (-1542 (($ $ (-578 (-863 |#1|))) 43) (($ $ (-578 (-578 |#1|))) 42) (($ (-578 (-863 |#1|))) 41) (((-578 (-863 |#1|)) $) 40)) (-3569 (($) 61) (($ (-1059 3 |#1|)) 60)) (-3764 (($ $) 52)) (-3249 (((-578 $) $) 53)) (-3913 (($ (-578 $)) 55)) (-4021 (((-578 $) $) 54)) (-3691 (((-786) $) 11)) (-3026 (((-107) $) 34)) (-1330 (($ $ (-578 (-863 |#1|))) 38) (($ $ (-578 (-578 |#1|))) 37) (($ (-578 (-863 |#1|))) 36) (((-578 (-863 |#1|)) $) 35)) (-1266 (($ $) 14)) (-3751 (((-107) $ $) 6))) -(((-1032 |#1|) (-1180) (-959)) (T -1032)) -((-3691 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-786)))) (-3569 (*1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1059 3 *3)) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-1206 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-3216 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-3216 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-4021 (*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)))) (-3249 (*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)))) (-3764 (*1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) (-3653 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-863 *4))) (-4 *1 (-1032 *4)) (-4 *4 (-959)) (-5 *2 (-701)))) (-1671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-863 *4)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-863 *3)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1801 (*1 *1 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-1801 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-863 *3)))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1542 (*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))) (-3208 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-3208 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))) (-3704 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-863 *5)))) (-5 *3 (-578 (-155))) (-5 *4 (-155)) (-4 *1 (-1032 *5)) (-4 *5 (-959)))) (-3704 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-578 (-155))) (-5 *4 (-155)) (-4 *1 (-1032 *5)) (-4 *5 (-959)))) (-3704 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-863 *4)))) (-5 *3 (-107)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) (-3704 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-107)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) (-3704 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 *3)))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-3704 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-863 *4)))) (-5 *3 (-107)) (-4 *4 (-959)) (-4 *1 (-1032 *4)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-863 *3)))))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-578 (-701))))))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-578 (-863 *3))))))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-155)))))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-155))))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -1654 (-701)) (|:| |curves| (-701)) (|:| |polygons| (-701)) (|:| |constructs| (-701)))))) (-1266 (*1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-1059 3 *3))))) -(-13 (-1001) (-10 -8 (-15 -3569 ($)) (-15 -3569 ($ (-1059 3 |t#1|))) (-15 -1206 ((-701) $)) (-15 -3401 ((-701) $)) (-15 -3216 ($ (-578 $))) (-15 -3216 ($ $ $)) (-15 -3913 ($ (-578 $))) (-15 -4021 ((-578 $) $)) (-15 -3249 ((-578 $) $)) (-15 -3764 ($ $)) (-15 -3653 ((-701) $ (-578 (-863 |t#1|)))) (-15 -1671 ($ $ (-701) (-863 |t#1|))) (-15 -1801 ($ $ (-863 |t#1|))) (-15 -1801 ($ $ (-578 |t#1|))) (-15 -1801 ($ $ (-701))) (-15 -1801 ($ (-863 |t#1|))) (-15 -1801 ((-863 |t#1|) $)) (-15 -3044 ((-107) $)) (-15 -1542 ($ $ (-578 (-863 |t#1|)))) (-15 -1542 ($ $ (-578 (-578 |t#1|)))) (-15 -1542 ($ (-578 (-863 |t#1|)))) (-15 -1542 ((-578 (-863 |t#1|)) $)) (-15 -3277 ((-107) $)) (-15 -1330 ($ $ (-578 (-863 |t#1|)))) (-15 -1330 ($ $ (-578 (-578 |t#1|)))) (-15 -1330 ($ (-578 (-863 |t#1|)))) (-15 -1330 ((-578 (-863 |t#1|)) $)) (-15 -3026 ((-107) $)) (-15 -3208 ($ $ (-578 (-863 |t#1|)))) (-15 -3208 ($ $ (-578 (-578 |t#1|)))) (-15 -3208 ($ (-578 (-863 |t#1|)))) (-15 -3208 ((-578 (-863 |t#1|)) $)) (-15 -3468 ((-107) $)) (-15 -3704 ($ $ (-578 (-578 (-863 |t#1|))) (-578 (-155)) (-155))) (-15 -3704 ($ $ (-578 (-578 (-578 |t#1|))) (-578 (-155)) (-155))) (-15 -3704 ($ $ (-578 (-578 (-863 |t#1|))) (-107) (-107))) (-15 -3704 ($ $ (-578 (-578 (-578 |t#1|))) (-107) (-107))) (-15 -3704 ($ (-578 (-578 (-863 |t#1|))))) (-15 -3704 ($ (-578 (-578 (-863 |t#1|))) (-107) (-107))) (-15 -3704 ((-578 (-578 (-863 |t#1|))) $)) (-15 -2014 ((-107) $)) (-15 -3918 ((-578 (-863 |t#1|)) $)) (-15 -3124 ((-578 (-578 (-578 (-701)))) $)) (-15 -4036 ((-578 (-578 (-578 (-863 |t#1|)))) $)) (-15 -2511 ((-578 (-578 (-155))) $)) (-15 -1727 ((-578 (-155)) $)) (-15 -2905 ((-2 (|:| -1654 (-701)) (|:| |curves| (-701)) (|:| |polygons| (-701)) (|:| |constructs| (-701))) $)) (-15 -1266 ($ $)) (-15 -1446 ((-1059 3 |t#1|) $)) (-15 -3691 ((-786) $)))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-2502 (((-1154) (-578 (-786))) 23) (((-1154) (-786)) 22)) (-1859 (((-1154) (-578 (-786))) 21) (((-1154) (-786)) 20)) (-2522 (((-1154) (-578 (-786))) 19) (((-1154) (-786)) 11) (((-1154) (-1053) (-786)) 17))) -(((-1033) (-10 -7 (-15 -2522 ((-1154) (-1053) (-786))) (-15 -2522 ((-1154) (-786))) (-15 -1859 ((-1154) (-786))) (-15 -2502 ((-1154) (-786))) (-15 -2522 ((-1154) (-578 (-786)))) (-15 -1859 ((-1154) (-578 (-786)))) (-15 -2502 ((-1154) (-578 (-786)))))) (T -1033)) -((-2502 (*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-2522 (*1 *2 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033))))) -(-10 -7 (-15 -2522 ((-1154) (-1053) (-786))) (-15 -2522 ((-1154) (-786))) (-15 -1859 ((-1154) (-786))) (-15 -2502 ((-1154) (-786))) (-15 -2522 ((-1154) (-578 (-786)))) (-15 -1859 ((-1154) (-578 (-786)))) (-15 -2502 ((-1154) (-578 (-786))))) -((-2726 (($ $ $) 10)) (-3041 (($ $) 9)) (-1223 (($ $ $) 13)) (-3076 (($ $ $) 15)) (-1730 (($ $ $) 12)) (-2108 (($ $ $) 14)) (-2134 (($ $) 17)) (-2338 (($ $) 16)) (-1720 (($ $) 6)) (-3705 (($ $ $) 11) (($ $) 7)) (-3360 (($ $ $) 8))) -(((-1034) (-1180)) (T -1034)) -((-2134 (*1 *1 *1) (-4 *1 (-1034))) (-2338 (*1 *1 *1) (-4 *1 (-1034))) (-3076 (*1 *1 *1 *1) (-4 *1 (-1034))) (-2108 (*1 *1 *1 *1) (-4 *1 (-1034))) (-1223 (*1 *1 *1 *1) (-4 *1 (-1034))) (-1730 (*1 *1 *1 *1) (-4 *1 (-1034))) (-3705 (*1 *1 *1 *1) (-4 *1 (-1034))) (-2726 (*1 *1 *1 *1) (-4 *1 (-1034))) (-3041 (*1 *1 *1) (-4 *1 (-1034))) (-3360 (*1 *1 *1 *1) (-4 *1 (-1034))) (-3705 (*1 *1 *1) (-4 *1 (-1034))) (-1720 (*1 *1 *1) (-4 *1 (-1034)))) -(-13 (-10 -8 (-15 -1720 ($ $)) (-15 -3705 ($ $)) (-15 -3360 ($ $ $)) (-15 -3041 ($ $)) (-15 -2726 ($ $ $)) (-15 -3705 ($ $ $)) (-15 -1730 ($ $ $)) (-15 -1223 ($ $ $)) (-15 -2108 ($ $ $)) (-15 -3076 ($ $ $)) (-15 -2338 ($ $)) (-15 -2134 ($ $)))) -((-3736 (((-107) $ $) 41)) (-2150 ((|#1| $) 15)) (-4091 (((-107) $ $ (-1 (-107) |#2| |#2|)) 36)) (-2968 (((-107) $) 17)) (-3789 (($ $ |#1|) 28)) (-2345 (($ $ (-107)) 30)) (-3403 (($ $) 31)) (-2804 (($ $ |#2|) 29)) (-3460 (((-1053) $) NIL)) (-2562 (((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|)) 35)) (-3708 (((-1018) $) NIL)) (-1407 (((-107) $) 14)) (-3122 (($) 10)) (-3764 (($ $) 27)) (-3699 (($ |#1| |#2| (-107)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3709 |#2|))) 21) (((-578 $) (-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|)))) 24) (((-578 $) |#1| (-578 |#2|)) 26)) (-3086 ((|#2| $) 16)) (-3691 (((-786) $) 50)) (-3751 (((-107) $ $) 39))) -(((-1035 |#1| |#2|) (-13 (-1001) (-10 -8 (-15 -3122 ($)) (-15 -1407 ((-107) $)) (-15 -2150 (|#1| $)) (-15 -3086 (|#2| $)) (-15 -2968 ((-107) $)) (-15 -3699 ($ |#1| |#2| (-107))) (-15 -3699 ($ |#1| |#2|)) (-15 -3699 ($ (-2 (|:| |val| |#1|) (|:| -3709 |#2|)))) (-15 -3699 ((-578 $) (-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|))))) (-15 -3699 ((-578 $) |#1| (-578 |#2|))) (-15 -3764 ($ $)) (-15 -3789 ($ $ |#1|)) (-15 -2804 ($ $ |#2|)) (-15 -2345 ($ $ (-107))) (-15 -3403 ($ $)) (-15 -2562 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -4091 ((-107) $ $ (-1 (-107) |#2| |#2|))))) (-13 (-1001) (-33)) (-13 (-1001) (-33))) (T -1035)) -((-3122 (*1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))) (-2150 (*1 *2 *1) (-12 (-4 *2 (-13 (-1001) (-33))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-13 (-1001) (-33))))) (-3086 (*1 *2 *1) (-12 (-4 *2 (-13 (-1001) (-33))) (-5 *1 (-1035 *3 *2)) (-4 *3 (-13 (-1001) (-33))))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))) (-3699 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3699 (*1 *1 *2 *3) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3709 *4))) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1035 *3 *4)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |val| *4) (|:| -3709 *5)))) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-578 (-1035 *4 *5))) (-5 *1 (-1035 *4 *5)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-578 (-1035 *3 *5))) (-5 *1 (-1035 *3 *5)) (-4 *3 (-13 (-1001) (-33))))) (-3764 (*1 *1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3789 (*1 *1 *1 *2) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-2804 (*1 *1 *1 *2) (-12 (-5 *1 (-1035 *3 *2)) (-4 *3 (-13 (-1001) (-33))) (-4 *2 (-13 (-1001) (-33))))) (-2345 (*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))) (-3403 (*1 *1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-2562 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1001) (-33))) (-4 *6 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1035 *5 *6)))) (-4091 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1035 *4 *5)) (-4 *4 (-13 (-1001) (-33)))))) -(-13 (-1001) (-10 -8 (-15 -3122 ($)) (-15 -1407 ((-107) $)) (-15 -2150 (|#1| $)) (-15 -3086 (|#2| $)) (-15 -2968 ((-107) $)) (-15 -3699 ($ |#1| |#2| (-107))) (-15 -3699 ($ |#1| |#2|)) (-15 -3699 ($ (-2 (|:| |val| |#1|) (|:| -3709 |#2|)))) (-15 -3699 ((-578 $) (-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|))))) (-15 -3699 ((-578 $) |#1| (-578 |#2|))) (-15 -3764 ($ $)) (-15 -3789 ($ $ |#1|)) (-15 -2804 ($ $ |#2|)) (-15 -2345 ($ $ (-107))) (-15 -3403 ($ $)) (-15 -2562 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -4091 ((-107) $ $ (-1 (-107) |#2| |#2|))))) -((-3736 (((-107) $ $) NIL (|has| (-1035 |#1| |#2|) (-1001)))) (-2150 (((-1035 |#1| |#2|) $) 25)) (-3253 (($ $) 75)) (-1279 (((-107) (-1035 |#1| |#2|) $ (-1 (-107) |#2| |#2|)) 84)) (-3861 (($ $ $ (-578 (-1035 |#1| |#2|))) 89) (($ $ $ (-578 (-1035 |#1| |#2|)) (-1 (-107) |#2| |#2|)) 90)) (-2997 (((-107) $ (-701)) NIL)) (-1594 (((-1035 |#1| |#2|) $ (-1035 |#1| |#2|)) 42 (|has| $ (-6 -4168)))) (-3754 (((-1035 |#1| |#2|) $ "value" (-1035 |#1| |#2|)) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 40 (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-2776 (((-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|))) $) 79)) (-2256 (($ (-1035 |#1| |#2|) $) 38)) (-1526 (($ (-1035 |#1| |#2|) $) 30)) (-2732 (((-578 (-1035 |#1| |#2|)) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-2798 (((-107) (-1035 |#1| |#2|) $) 81)) (-3201 (((-107) $ $) NIL (|has| (-1035 |#1| |#2|) (-1001)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 (-1035 |#1| |#2|)) $) 54 (|has| $ (-6 -4167)))) (-2211 (((-107) (-1035 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-1035 |#1| |#2|) (-1001))))) (-2519 (($ (-1 (-1035 |#1| |#2|) (-1035 |#1| |#2|)) $) 46 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-1035 |#1| |#2|) (-1035 |#1| |#2|)) $) 45)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 (-1035 |#1| |#2|)) $) 52)) (-2341 (((-107) $) 41)) (-3460 (((-1053) $) NIL (|has| (-1035 |#1| |#2|) (-1001)))) (-3708 (((-1018) $) NIL (|has| (-1035 |#1| |#2|) (-1001)))) (-1301 (((-3 $ "failed") $) 74)) (-2369 (((-107) (-1 (-107) (-1035 |#1| |#2|)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-1035 |#1| |#2|)))) NIL (-12 (|has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|))) (|has| (-1035 |#1| |#2|) (-1001)))) (($ $ (-262 (-1035 |#1| |#2|))) NIL (-12 (|has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|))) (|has| (-1035 |#1| |#2|) (-1001)))) (($ $ (-1035 |#1| |#2|) (-1035 |#1| |#2|)) NIL (-12 (|has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|))) (|has| (-1035 |#1| |#2|) (-1001)))) (($ $ (-578 (-1035 |#1| |#2|)) (-578 (-1035 |#1| |#2|))) NIL (-12 (|has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|))) (|has| (-1035 |#1| |#2|) (-1001))))) (-1262 (((-107) $ $) 49)) (-1407 (((-107) $) 22)) (-3122 (($) 24)) (-2007 (((-1035 |#1| |#2|) $ "value") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) 43)) (-3713 (((-701) (-1 (-107) (-1035 |#1| |#2|)) $) NIL (|has| $ (-6 -4167))) (((-701) (-1035 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-1035 |#1| |#2|) (-1001))))) (-3764 (($ $) 48)) (-3699 (($ (-1035 |#1| |#2|)) 9) (($ |#1| |#2| (-578 $)) 12) (($ |#1| |#2| (-578 (-1035 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-578 |#2|)) 17)) (-3916 (((-578 |#2|) $) 80)) (-3691 (((-786) $) 72 (|has| (-1035 |#1| |#2|) (-1001)))) (-1961 (((-578 $) $) 28)) (-2970 (((-107) $ $) NIL (|has| (-1035 |#1| |#2|) (-1001)))) (-1200 (((-107) (-1 (-107) (-1035 |#1| |#2|)) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 63 (|has| (-1035 |#1| |#2|) (-1001)))) (-3581 (((-701) $) 57 (|has| $ (-6 -4167))))) -(((-1036 |#1| |#2|) (-13 (-924 (-1035 |#1| |#2|)) (-10 -8 (-6 -4168) (-6 -4167) (-15 -1301 ((-3 $ "failed") $)) (-15 -3253 ($ $)) (-15 -3699 ($ (-1035 |#1| |#2|))) (-15 -3699 ($ |#1| |#2| (-578 $))) (-15 -3699 ($ |#1| |#2| (-578 (-1035 |#1| |#2|)))) (-15 -3699 ($ |#1| |#2| |#1| (-578 |#2|))) (-15 -3916 ((-578 |#2|) $)) (-15 -2776 ((-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|))) $)) (-15 -2798 ((-107) (-1035 |#1| |#2|) $)) (-15 -1279 ((-107) (-1035 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1526 ($ (-1035 |#1| |#2|) $)) (-15 -2256 ($ (-1035 |#1| |#2|) $)) (-15 -3861 ($ $ $ (-578 (-1035 |#1| |#2|)))) (-15 -3861 ($ $ $ (-578 (-1035 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) (-13 (-1001) (-33)) (-13 (-1001) (-33))) (T -1036)) -((-1301 (*1 *1 *1) (|partial| -12 (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3253 (*1 *1 *1) (-12 (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))) (-3699 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1036 *2 *3))) (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3699 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1035 *2 *3))) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))) (-5 *1 (-1036 *2 *3)))) (-3699 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-1001) (-33))) (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-578 *4)) (-5 *1 (-1036 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1036 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))) (-2798 (*1 *2 *3 *1) (-12 (-5 *3 (-1035 *4 *5)) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1036 *4 *5)))) (-1279 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1035 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1001) (-33))) (-4 *6 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1036 *5 *6)))) (-1526 (*1 *1 *2 *1) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))) (-3861 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-578 (-1035 *3 *4))) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))) (-3861 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1035 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *1 (-1036 *4 *5))))) -(-13 (-924 (-1035 |#1| |#2|)) (-10 -8 (-6 -4168) (-6 -4167) (-15 -1301 ((-3 $ "failed") $)) (-15 -3253 ($ $)) (-15 -3699 ($ (-1035 |#1| |#2|))) (-15 -3699 ($ |#1| |#2| (-578 $))) (-15 -3699 ($ |#1| |#2| (-578 (-1035 |#1| |#2|)))) (-15 -3699 ($ |#1| |#2| |#1| (-578 |#2|))) (-15 -3916 ((-578 |#2|) $)) (-15 -2776 ((-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|))) $)) (-15 -2798 ((-107) (-1035 |#1| |#2|) $)) (-15 -1279 ((-107) (-1035 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1526 ($ (-1035 |#1| |#2|) $)) (-15 -2256 ($ (-1035 |#1| |#2|) $)) (-15 -3861 ($ $ $ (-578 (-1035 |#1| |#2|)))) (-15 -3861 ($ $ $ (-578 (-1035 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2676 (($ $) NIL)) (-2225 ((|#2| $) NIL)) (-2981 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3669 (($ (-621 |#2|)) 45)) (-4007 (((-107) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1292 (($ |#2|) 9)) (-2540 (($) NIL T CONST)) (-1933 (($ $) 58 (|has| |#2| (-276)))) (-2358 (((-212 |#1| |#2|) $ (-501)) 31)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 |#2| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) ((|#2| $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) 72)) (-3689 (((-701) $) 60 (|has| |#2| (-508)))) (-1905 ((|#2| $ (-501) (-501)) NIL)) (-2732 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL)) (-3752 (((-701) $) 62 (|has| |#2| (-508)))) (-3552 (((-578 (-212 |#1| |#2|)) $) 66 (|has| |#2| (-508)))) (-1648 (((-701) $) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3572 ((|#2| $) 56 (|has| |#2| (-6 (-4169 "*"))))) (-1567 (((-501) $) NIL)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-2969 (((-501) $) NIL)) (-3491 (((-501) $) NIL)) (-2630 (($ (-578 (-578 |#2|))) 26)) (-2519 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2237 (((-578 (-578 |#2|)) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1616 (((-3 $ "failed") $) 69 (|has| |#2| (-331)))) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508)))) (-2369 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ (-501) (-501) |#2|) NIL) ((|#2| $ (-501) (-501)) NIL)) (-2596 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-1651 ((|#2| $) NIL)) (-3133 (($ (-578 |#2|)) 40)) (-3697 (((-107) $) NIL)) (-1566 (((-212 |#1| |#2|) $) NIL)) (-3315 ((|#2| $) 54 (|has| |#2| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-3764 (($ $) NIL)) (-1248 (((-490) $) 81 (|has| |#2| (-556 (-490))))) (-2952 (((-212 |#1| |#2|) $ (-501)) 33)) (-3691 (((-786) $) 36) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#2| (-950 (-375 (-501))))) (($ |#2|) NIL) (((-621 |#2|) $) 42)) (-3965 (((-701)) 17)) (-1200 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3719 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 11 T CONST)) (-1925 (($) 14 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) 52) (($ $ (-501)) 71 (|has| |#2| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-212 |#1| |#2|) $ (-212 |#1| |#2|)) 48) (((-212 |#1| |#2|) (-212 |#1| |#2|) $) 50)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-1037 |#1| |#2|) (-13 (-1021 |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) (-555 (-621 |#2|)) (-10 -8 (-15 -2676 ($ $)) (-15 -3669 ($ (-621 |#2|))) (-15 -3691 ((-621 |#2|) $)) (IF (|has| |#2| (-6 (-4169 "*"))) (-6 -4156) |noBranch|) (IF (|has| |#2| (-6 (-4169 "*"))) (IF (|has| |#2| (-6 -4164)) (-6 -4164) |noBranch|) |noBranch|) (IF (|has| |#2| (-556 (-490))) (-6 (-556 (-490))) |noBranch|))) (-701) (-959)) (T -1037)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-621 *4)) (-5 *1 (-1037 *3 *4)) (-14 *3 (-701)) (-4 *4 (-959)))) (-2676 (*1 *1 *1) (-12 (-5 *1 (-1037 *2 *3)) (-14 *2 (-701)) (-4 *3 (-959)))) (-3669 (*1 *1 *2) (-12 (-5 *2 (-621 *4)) (-4 *4 (-959)) (-5 *1 (-1037 *3 *4)) (-14 *3 (-701))))) -(-13 (-1021 |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) (-555 (-621 |#2|)) (-10 -8 (-15 -2676 ($ $)) (-15 -3669 ($ (-621 |#2|))) (-15 -3691 ((-621 |#2|) $)) (IF (|has| |#2| (-6 (-4169 "*"))) (-6 -4156) |noBranch|) (IF (|has| |#2| (-6 (-4169 "*"))) (IF (|has| |#2| (-6 -4164)) (-6 -4164) |noBranch|) |noBranch|) (IF (|has| |#2| (-556 (-490))) (-6 (-556 (-490))) |noBranch|))) -((-3612 (($ $) 19)) (-2474 (($ $ (-131)) 10) (($ $ (-128)) 14)) (-4056 (((-107) $ $) 24)) (-2874 (($ $) 17)) (-2007 (((-131) $ (-501) (-131)) NIL) (((-131) $ (-501)) NIL) (($ $ (-1116 (-501))) NIL) (($ $ $) 29)) (-3691 (($ (-131)) 27) (((-786) $) NIL))) -(((-1038 |#1|) (-10 -8 (-15 -3691 ((-786) |#1|)) (-15 -2007 (|#1| |#1| |#1|)) (-15 -2474 (|#1| |#1| (-128))) (-15 -2474 (|#1| |#1| (-131))) (-15 -3691 (|#1| (-131))) (-15 -4056 ((-107) |#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -2007 ((-131) |#1| (-501))) (-15 -2007 ((-131) |#1| (-501) (-131)))) (-1039)) (T -1038)) -NIL -(-10 -8 (-15 -3691 ((-786) |#1|)) (-15 -2007 (|#1| |#1| |#1|)) (-15 -2474 (|#1| |#1| (-128))) (-15 -2474 (|#1| |#1| (-131))) (-15 -3691 (|#1| (-131))) (-15 -4056 ((-107) |#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -2007 ((-131) |#1| (-501))) (-15 -2007 ((-131) |#1| (-501) (-131)))) -((-3736 (((-107) $ $) 18 (|has| (-131) (-1001)))) (-3449 (($ $) 120)) (-3612 (($ $) 121)) (-2474 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-4042 (((-107) $ $) 118)) (-4032 (((-107) $ $ (-501)) 117)) (-3205 (((-578 $) $ (-131)) 110) (((-578 $) $ (-128)) 109)) (-2045 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-777)))) (-3441 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| (-131) (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 (((-131) $ (-501) (-131)) 52 (|has| $ (-6 -4168))) (((-131) $ (-1116 (-501)) (-131)) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-4089 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-3834 (($ $ (-1116 (-501)) $) 114)) (-2673 (($ $) 78 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ (-131) $) 77 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4167)))) (-3547 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4167)))) (-2156 (((-131) $ (-501) (-131)) 53 (|has| $ (-6 -4168)))) (-1905 (((-131) $ (-501)) 51)) (-4056 (((-107) $ $) 119)) (-1934 (((-501) (-1 (-107) (-131)) $) 97) (((-501) (-131) $) 96 (|has| (-131) (-1001))) (((-501) (-131) $ (-501)) 95 (|has| (-131) (-1001))) (((-501) $ $ (-501)) 113) (((-501) (-128) $ (-501)) 112)) (-2732 (((-578 (-131)) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) (-131)) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| (-131) (-777)))) (-3216 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-777)))) (-3380 (((-578 (-131)) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| (-131) (-777)))) (-3990 (((-107) $ $ (-131)) 115)) (-3921 (((-701) $ $ (-131)) 116)) (-2519 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-1666 (($ $) 122)) (-2874 (($ $) 123)) (-3155 (((-107) $ (-701)) 10)) (-4082 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3460 (((-1053) $) 22 (|has| (-131) (-1001)))) (-1473 (($ (-131) $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| (-131) (-1001)))) (-1190 (((-131) $) 42 (|has| (-501) (-777)))) (-2520 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-3084 (($ $ (-131)) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-131)))) 26 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-262 (-131))) 25 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-578 (-131)) (-578 (-131))) 23 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-4137 (((-578 (-131)) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 (((-131) $ (-501) (-131)) 50) (((-131) $ (-501)) 49) (($ $ (-1116 (-501))) 63) (($ $ $) 102)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4167))) (((-701) (-131) $) 28 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| (-131) (-556 (-490))))) (-3699 (($ (-578 (-131))) 70)) (-3934 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (($ (-131)) 111) (((-786) $) 20 (|has| (-131) (-1001)))) (-1200 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 84 (|has| (-131) (-777)))) (-3768 (((-107) $ $) 83 (|has| (-131) (-777)))) (-3751 (((-107) $ $) 19 (|has| (-131) (-1001)))) (-3773 (((-107) $ $) 85 (|has| (-131) (-777)))) (-3762 (((-107) $ $) 82 (|has| (-131) (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-1039) (-1180)) (T -1039)) -((-2874 (*1 *1 *1) (-4 *1 (-1039))) (-1666 (*1 *1 *1) (-4 *1 (-1039))) (-3612 (*1 *1 *1) (-4 *1 (-1039))) (-3449 (*1 *1 *1) (-4 *1 (-1039))) (-4056 (*1 *2 *1 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-107)))) (-4042 (*1 *2 *1 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-107)))) (-4032 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-501)) (-5 *2 (-107)))) (-3921 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-131)) (-5 *2 (-701)))) (-3990 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-131)) (-5 *2 (-107)))) (-3834 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-1116 (-501))))) (-1934 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-501)))) (-1934 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-501)) (-5 *3 (-128)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1039)))) (-3205 (*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-578 *1)) (-4 *1 (-1039)))) (-3205 (*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-578 *1)) (-4 *1 (-1039)))) (-2474 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131)))) (-2474 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) (-4082 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131)))) (-4082 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) (-4089 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131)))) (-4089 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) (-2007 (*1 *1 *1 *1) (-4 *1 (-1039)))) -(-13 (-19 (-131)) (-10 -8 (-15 -2874 ($ $)) (-15 -1666 ($ $)) (-15 -3612 ($ $)) (-15 -3449 ($ $)) (-15 -4056 ((-107) $ $)) (-15 -4042 ((-107) $ $)) (-15 -4032 ((-107) $ $ (-501))) (-15 -3921 ((-701) $ $ (-131))) (-15 -3990 ((-107) $ $ (-131))) (-15 -3834 ($ $ (-1116 (-501)) $)) (-15 -1934 ((-501) $ $ (-501))) (-15 -1934 ((-501) (-128) $ (-501))) (-15 -3691 ($ (-131))) (-15 -3205 ((-578 $) $ (-131))) (-15 -3205 ((-578 $) $ (-128))) (-15 -2474 ($ $ (-131))) (-15 -2474 ($ $ (-128))) (-15 -4082 ($ $ (-131))) (-15 -4082 ($ $ (-128))) (-15 -4089 ($ $ (-131))) (-15 -4089 ($ $ (-128))) (-15 -2007 ($ $ $)))) -(((-33) . T) ((-97) -1405 (|has| (-131) (-1001)) (|has| (-131) (-777))) ((-555 (-786)) -1405 (|has| (-131) (-1001)) (|has| (-131) (-777))) ((-138 (-131)) . T) ((-556 (-490)) |has| (-131) (-556 (-490))) ((-256 (-501) (-131)) . T) ((-258 (-501) (-131)) . T) ((-278 (-131)) -12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))) ((-340 (-131)) . T) ((-454 (-131)) . T) ((-548 (-501) (-131)) . T) ((-476 (-131) (-131)) -12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))) ((-586 (-131)) . T) ((-19 (-131)) . T) ((-777) |has| (-131) (-777)) ((-1001) -1405 (|has| (-131) (-1001)) (|has| (-131) (-777))) ((-1104) . T)) -((-3979 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701)) 93)) (-2651 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701)) 53)) (-3733 (((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701)) 85)) (-2674 (((-701) (-578 |#4|) (-578 |#5|)) 27)) (-3679 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701)) 55) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107)) 57)) (-1688 (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107)) 76) (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107)) 77)) (-1248 (((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) 80)) (-3221 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|) 52)) (-2195 (((-701) (-578 |#4|) (-578 |#5|)) 19))) -(((-1040 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2195 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -2674 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -3221 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3979 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701))) (-15 -1248 ((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -3733 ((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701)))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-1009 |#1| |#2| |#3| |#4|)) (T -1040)) -((-3733 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *4 (-701)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-1154)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-1009 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1053)) (-5 *1 (-1040 *4 *5 *6 *7 *8)))) (-3979 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -3709 *11)))))) (-5 *6 (-701)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -3709 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-972 *7 *8 *9)) (-4 *11 (-1009 *7 *8 *9 *10)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-5 *1 (-1040 *7 *8 *9 *10 *11)))) (-1688 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))) (-1688 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))) (-3679 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3)))) (-3679 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *6 *7 *8 *3 *4)) (-4 *4 (-1009 *6 *7 *8 *3)))) (-3679 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-701)) (-5 *6 (-107)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-4 *3 (-972 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *7 *8 *9 *3 *4)) (-4 *4 (-1009 *7 *8 *9 *3)))) (-2651 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3)))) (-2651 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *6 *7 *8 *3 *4)) (-4 *4 (-1009 *6 *7 *8 *3)))) (-3221 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3)))) (-2674 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-1040 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2195 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -2674 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -3221 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3979 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701))) (-15 -1248 ((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -3733 ((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701)))) -((-3736 (((-107) $ $) NIL)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) NIL)) (-2073 (((-578 $) (-578 |#4|)) 109) (((-578 $) (-578 |#4|) (-107)) 110) (((-578 $) (-578 |#4|) (-107) (-107)) 108) (((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107)) 111)) (-3800 (((-578 |#3|) $) NIL)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2599 ((|#4| |#4| $) NIL)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 83)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 61)) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) 26 (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4110 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) NIL)) (-3490 (($ (-578 |#4|)) NIL)) (-1199 (((-3 $ "failed") $) 39)) (-1778 ((|#4| |#4| $) 64)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1526 (($ |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 77 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1379 ((|#4| |#4| $) NIL)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) NIL)) (-3180 (((-107) |#4| $) NIL)) (-1209 (((-107) |#4| $) NIL)) (-1972 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1825 (((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107)) 123)) (-2732 (((-578 |#4|) $) 16 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2361 ((|#3| $) 33)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#4|) $) 17 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-2519 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 21)) (-3453 (((-578 |#3|) $) NIL)) (-1479 (((-107) |#3| $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) NIL)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 102)) (-1383 (((-3 |#4| "failed") $) 37)) (-1618 (((-578 $) |#4| $) 87)) (-2217 (((-3 (-107) (-578 $)) |#4| $) NIL)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 97) (((-107) |#4| $) 52)) (-3420 (((-578 $) |#4| $) 106) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) 107) (((-578 $) |#4| (-578 $)) NIL)) (-3326 (((-578 $) (-578 |#4|) (-107) (-107) (-107)) 118)) (-2297 (($ |#4| $) 74) (($ (-578 |#4|) $) 75) (((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 73)) (-3574 (((-578 |#4|) $) NIL)) (-1590 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1762 ((|#4| |#4| $) NIL)) (-3523 (((-107) $ $) NIL)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3618 ((|#4| |#4| $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-3 |#4| "failed") $) 35)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3478 (((-3 $ "failed") $ |#4|) 47)) (-3718 (($ $ |#4|) NIL) (((-578 $) |#4| $) 89) (((-578 $) |#4| (-578 $)) NIL) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) 85)) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 15)) (-3122 (($) 13)) (-1201 (((-701) $) NIL)) (-3713 (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) 12)) (-1248 (((-490) $) NIL (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 20)) (-1638 (($ $ |#3|) 42)) (-2482 (($ $ |#3|) 43)) (-1218 (($ $) NIL)) (-3737 (($ $ |#3|) NIL)) (-3691 (((-786) $) 31) (((-578 |#4|) $) 40)) (-4104 (((-701) $) NIL (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) NIL)) (-1709 (((-578 $) |#4| $) 53) (((-578 $) |#4| (-578 $)) NIL) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) NIL)) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) NIL)) (-3036 (((-107) |#4| $) NIL)) (-2659 (((-107) |#3| $) 60)) (-3751 (((-107) $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-1041 |#1| |#2| |#3| |#4|) (-13 (-1009 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2297 ((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107))) (-15 -3326 ((-578 $) (-578 |#4|) (-107) (-107) (-107))) (-15 -1825 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107))))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -1041)) -((-2297 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *3))) (-5 *1 (-1041 *5 *6 *7 *3)) (-4 *3 (-972 *5 *6 *7)))) (-2073 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8)))) (-2073 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8)))) (-3326 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8)))) (-1825 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-1041 *5 *6 *7 *8))))) (-5 *1 (-1041 *5 *6 *7 *8)) (-5 *3 (-578 *8))))) -(-13 (-1009 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2297 ((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107))) (-15 -3326 ((-578 $) (-578 |#4|) (-107) (-107) (-107))) (-15 -1825 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107))))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2425 ((|#1| $) 28)) (-2947 (($ (-578 |#1|)) 33)) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-2988 ((|#1| |#1| $) 30)) (-1260 ((|#1| $) 26)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) 29)) (-4114 (($ |#1| $) 31)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1251 ((|#1| $) 27)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 24)) (-3122 (($) 32)) (-3661 (((-701) $) 22)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 20)) (-3691 (((-786) $) 17 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 12 (|has| |#1| (-1001)))) (-3581 (((-701) $) 23 (|has| $ (-6 -4167))))) -(((-1042 |#1|) (-13 (-1019 |#1|) (-10 -8 (-15 -2947 ($ (-578 |#1|))))) (-1001)) (T -1042)) -((-2947 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-1042 *3))))) -(-13 (-1019 |#1|) (-10 -8 (-15 -2947 ($ (-578 |#1|))))) -((-3754 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1116 (-501)) |#2|) 43) ((|#2| $ (-501) |#2|) 40)) (-3275 (((-107) $) 11)) (-2519 (($ (-1 |#2| |#2|) $) 38)) (-1190 ((|#2| $) NIL) (($ $ (-701)) 16)) (-3084 (($ $ |#2|) 39)) (-3654 (((-107) $) 10)) (-2007 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1116 (-501))) 30) ((|#2| $ (-501)) 22) ((|#2| $ (-501) |#2|) NIL)) (-1186 (($ $ $) 46) (($ $ |#2|) NIL)) (-3934 (($ $ $) 32) (($ |#2| $) NIL) (($ (-578 $)) 35) (($ $ |#2|) NIL))) -(((-1043 |#1| |#2|) (-10 -8 (-15 -3275 ((-107) |#1|)) (-15 -3654 ((-107) |#1|)) (-15 -3754 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -3934 (|#1| (-578 |#1|))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -3754 (|#2| |#1| (-1116 (-501)) |#2|)) (-15 -3754 (|#2| |#1| "last" |#2|)) (-15 -3754 (|#1| |#1| "rest" |#1|)) (-15 -3754 (|#2| |#1| "first" |#2|)) (-15 -1186 (|#1| |#1| |#2|)) (-15 -1186 (|#1| |#1| |#1|)) (-15 -2007 (|#2| |#1| "last")) (-15 -2007 (|#1| |#1| "rest")) (-15 -1190 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "first")) (-15 -1190 (|#2| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|))) (-1044 |#2|) (-1104)) (T -1043)) -NIL -(-10 -8 (-15 -3275 ((-107) |#1|)) (-15 -3654 ((-107) |#1|)) (-15 -3754 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -3934 (|#1| (-578 |#1|))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -3754 (|#2| |#1| (-1116 (-501)) |#2|)) (-15 -3754 (|#2| |#1| "last" |#2|)) (-15 -3754 (|#1| |#1| "rest" |#1|)) (-15 -3754 (|#2| |#1| "first" |#2|)) (-15 -1186 (|#1| |#1| |#2|)) (-15 -1186 (|#1| |#1| |#1|)) (-15 -2007 (|#2| |#1| "last")) (-15 -2007 (|#1| |#1| "rest")) (-15 -1190 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "first")) (-15 -1190 (|#2| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2786 ((|#1| $) 65)) (-1511 (($ $) 67)) (-1991 (((-1154) $ (-501) (-501)) 97 (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 52 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-3319 (($ $ $) 56 (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 58 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4168))) (($ $ "rest" $) 55 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 117 (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) 86 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4167)))) (-1564 ((|#1| $) 66)) (-2540 (($) 7 T CONST)) (-1199 (($ $) 73) (($ $ (-701)) 71)) (-2673 (($ $) 99 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4167))) (($ |#1| $) 100 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2156 ((|#1| $ (-501) |#1|) 85 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 87)) (-3275 (((-107) $) 83)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) 108)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 95 (|has| (-501) (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 94 (|has| (-501) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1383 ((|#1| $) 70) (($ $ (-701)) 68)) (-1473 (($ $ $ (-501)) 116) (($ |#1| $ (-501)) 115)) (-2658 (((-578 (-501)) $) 92)) (-2852 (((-107) (-501) $) 91)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 76) (($ $ (-701)) 74)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-3084 (($ $ |#1|) 96 (|has| $ (-6 -4168)))) (-3654 (((-107) $) 84)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 90)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1116 (-501))) 112) ((|#1| $ (-501)) 89) ((|#1| $ (-501) |#1|) 88)) (-1932 (((-501) $ $) 44)) (-1468 (($ $ (-1116 (-501))) 114) (($ $ (-501)) 113)) (-2622 (((-107) $) 46)) (-1455 (($ $) 62)) (-3873 (($ $) 59 (|has| $ (-6 -4168)))) (-3278 (((-701) $) 63)) (-2787 (($ $) 64)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 98 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 107)) (-1186 (($ $ $) 61 (|has| $ (-6 -4168))) (($ $ |#1|) 60 (|has| $ (-6 -4168)))) (-3934 (($ $ $) 78) (($ |#1| $) 77) (($ (-578 $)) 110) (($ $ |#1|) 109)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-1044 |#1|) (-1180) (-1104)) (T -1044)) -((-3654 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-1104)) (-5 *2 (-107))))) -(-13 (-1138 |t#1|) (-586 |t#1|) (-10 -8 (-15 -3654 ((-107) $)) (-15 -3275 ((-107) $)))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T) ((-1138 |#1|) . T)) -((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) NIL)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) NIL)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-1045 |#1| |#2| |#3|) (-1081 |#1| |#2|) (-1001) (-1001) |#2|) (T -1045)) -NIL -(-1081 |#1| |#2|) -((-3736 (((-107) $ $) 7)) (-3493 (((-3 $ "failed") $) 13)) (-3460 (((-1053) $) 9)) (-3746 (($) 14 T CONST)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6))) -(((-1046) (-1180)) (T -1046)) -((-3746 (*1 *1) (-4 *1 (-1046))) (-3493 (*1 *1 *1) (|partial| -4 *1 (-1046)))) -(-13 (-1001) (-10 -8 (-15 -3746 ($) -3897) (-15 -3493 ((-3 $ "failed") $)))) -(((-97) . T) ((-555 (-786)) . T) ((-1001) . T)) -((-1677 (((-1048 |#1|) (-1048 |#1|)) 17)) (-3892 (((-1048 |#1|) (-1048 |#1|)) 13)) (-1540 (((-1048 |#1|) (-1048 |#1|) (-501) (-501)) 20)) (-2216 (((-1048 |#1|) (-1048 |#1|)) 15))) -(((-1047 |#1|) (-10 -7 (-15 -3892 ((-1048 |#1|) (-1048 |#1|))) (-15 -2216 ((-1048 |#1|) (-1048 |#1|))) (-15 -1677 ((-1048 |#1|) (-1048 |#1|))) (-15 -1540 ((-1048 |#1|) (-1048 |#1|) (-501) (-501)))) (-13 (-508) (-134))) (T -1047)) -((-1540 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1047 *4)))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3)))) (-2216 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3))))) -(-10 -7 (-15 -3892 ((-1048 |#1|) (-1048 |#1|))) (-15 -2216 ((-1048 |#1|) (-1048 |#1|))) (-15 -1677 ((-1048 |#1|) (-1048 |#1|))) (-15 -1540 ((-1048 |#1|) (-1048 |#1|) (-501) (-501)))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) NIL)) (-2786 ((|#1| $) NIL)) (-1511 (($ $) 48)) (-1991 (((-1154) $ (-501) (-501)) 73 (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 107 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3486 (((-786) $) 37 (|has| |#1| (-1001)))) (-3351 (((-107)) 38 (|has| |#1| (-1001)))) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3319 (($ $ $) 95 (|has| $ (-6 -4168))) (($ $ (-501) $) 117)) (-2193 ((|#1| $ |#1|) 104 (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 99 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 101 (|has| $ (-6 -4168))) (($ $ "rest" $) 103 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) 106 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 86 (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 55)) (-1564 ((|#1| $) NIL)) (-2540 (($) NIL T CONST)) (-1591 (($ $) 14)) (-1199 (($ $) 28) (($ $ (-701)) 85)) (-3345 (((-107) (-578 |#1|) $) 112 (|has| |#1| (-1001)))) (-1946 (($ (-578 |#1|)) 109)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) 54)) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-3275 (((-107) $) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2762 (((-1154) (-501) $) 116 (|has| |#1| (-1001)))) (-2853 (((-701) $) 114)) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 70 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 60) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-2898 (($ $) 87)) (-3346 (((-107) $) 13)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1383 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) 71)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1949 (($ (-1 |#1|)) 119) (($ (-1 |#1| |#1|) |#1|) 120)) (-3648 ((|#1| $) 10)) (-1190 ((|#1| $) 27) (($ $ (-701)) 46)) (-1255 (((-2 (|:| |cycle?| (-107)) (|:| -2995 (-701)) (|:| |period| (-701))) (-701) $) 24)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1974 (($ (-1 (-107) |#1|) $) 121)) (-1981 (($ (-1 (-107) |#1|) $) 122)) (-3084 (($ $ |#1|) 65 (|has| $ (-6 -4168)))) (-3718 (($ $ (-501)) 31)) (-3654 (((-107) $) 69)) (-3170 (((-107) $) 12)) (-3546 (((-107) $) 113)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 20)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) 15)) (-3122 (($) 40)) (-2007 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1116 (-501))) NIL) ((|#1| $ (-501)) 51) ((|#1| $ (-501) |#1|) NIL)) (-1932 (((-501) $ $) 45)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-4086 (($ (-1 $)) 44)) (-2622 (((-107) $) 66)) (-1455 (($ $) 67)) (-3873 (($ $) 96 (|has| $ (-6 -4168)))) (-3278 (((-701) $) NIL)) (-2787 (($ $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 41)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3198 (($ |#1| $) 94)) (-1186 (($ $ $) 97 (|has| $ (-6 -4168))) (($ $ |#1|) 98 (|has| $ (-6 -4168)))) (-3934 (($ $ $) 75) (($ |#1| $) 42) (($ (-578 $)) 80) (($ $ |#1|) 74)) (-1267 (($ $) 47)) (-3691 (((-786) $) 39 (|has| |#1| (-1001))) (($ (-578 |#1|)) 108)) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 111 (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-1048 |#1|) (-13 (-608 |#1|) (-10 -8 (-6 -4168) (-15 -3691 ($ (-578 |#1|))) (-15 -1946 ($ (-578 |#1|))) (IF (|has| |#1| (-1001)) (-15 -3345 ((-107) (-578 |#1|) $)) |noBranch|) (-15 -1255 ((-2 (|:| |cycle?| (-107)) (|:| -2995 (-701)) (|:| |period| (-701))) (-701) $)) (-15 -4086 ($ (-1 $))) (-15 -3198 ($ |#1| $)) (IF (|has| |#1| (-1001)) (PROGN (-15 -2762 ((-1154) (-501) $)) (-15 -3486 ((-786) $)) (-15 -3351 ((-107)))) |noBranch|) (-15 -3319 ($ $ (-501) $)) (-15 -1949 ($ (-1 |#1|))) (-15 -1949 ($ (-1 |#1| |#1|) |#1|)) (-15 -1974 ($ (-1 (-107) |#1|) $)) (-15 -1981 ($ (-1 (-107) |#1|) $)))) (-1104)) (T -1048)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) (-1946 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) (-3345 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-4 *4 (-1104)) (-5 *2 (-107)) (-5 *1 (-1048 *4)))) (-1255 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -2995 (-701)) (|:| |period| (-701)))) (-5 *1 (-1048 *4)) (-4 *4 (-1104)) (-5 *3 (-701)))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-1 (-1048 *3))) (-5 *1 (-1048 *3)) (-4 *3 (-1104)))) (-3198 (*1 *1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1104)))) (-2762 (*1 *2 *3 *1) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1048 *4)) (-4 *4 (-1001)) (-4 *4 (-1104)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1048 *3)) (-4 *3 (-1001)) (-4 *3 (-1104)))) (-3351 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1048 *3)) (-4 *3 (-1001)) (-4 *3 (-1104)))) (-3319 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1048 *3)) (-4 *3 (-1104)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) (-1949 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) (-1974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) (-1981 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3))))) -(-13 (-608 |#1|) (-10 -8 (-6 -4168) (-15 -3691 ($ (-578 |#1|))) (-15 -1946 ($ (-578 |#1|))) (IF (|has| |#1| (-1001)) (-15 -3345 ((-107) (-578 |#1|) $)) |noBranch|) (-15 -1255 ((-2 (|:| |cycle?| (-107)) (|:| -2995 (-701)) (|:| |period| (-701))) (-701) $)) (-15 -4086 ($ (-1 $))) (-15 -3198 ($ |#1| $)) (IF (|has| |#1| (-1001)) (PROGN (-15 -2762 ((-1154) (-501) $)) (-15 -3486 ((-786) $)) (-15 -3351 ((-107)))) |noBranch|) (-15 -3319 ($ $ (-501) $)) (-15 -1949 ($ (-1 |#1|))) (-15 -1949 ($ (-1 |#1| |#1|) |#1|)) (-15 -1974 ($ (-1 (-107) |#1|) $)) (-15 -1981 ($ (-1 (-107) |#1|) $)))) -((-3934 (((-1048 |#1|) (-1048 (-1048 |#1|))) 15))) -(((-1049 |#1|) (-10 -7 (-15 -3934 ((-1048 |#1|) (-1048 (-1048 |#1|))))) (-1104)) (T -1049)) -((-3934 (*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1049 *4)) (-4 *4 (-1104))))) -(-10 -7 (-15 -3934 ((-1048 |#1|) (-1048 (-1048 |#1|))))) -((-3162 (((-1048 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|)) 25)) (-3547 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|)) 26)) (-1212 (((-1048 |#2|) (-1 |#2| |#1|) (-1048 |#1|)) 16))) -(((-1050 |#1| |#2|) (-10 -7 (-15 -1212 ((-1048 |#2|) (-1 |#2| |#1|) (-1048 |#1|))) (-15 -3162 ((-1048 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|))) (-15 -3547 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|)))) (-1104) (-1104)) (T -1050)) -((-3547 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1048 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-1050 *5 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1048 *6)) (-4 *6 (-1104)) (-4 *3 (-1104)) (-5 *2 (-1048 *3)) (-5 *1 (-1050 *6 *3)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1048 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1048 *6)) (-5 *1 (-1050 *5 *6))))) -(-10 -7 (-15 -1212 ((-1048 |#2|) (-1 |#2| |#1|) (-1048 |#1|))) (-15 -3162 ((-1048 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|))) (-15 -3547 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|)))) -((-1212 (((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-1048 |#2|)) 21))) -(((-1051 |#1| |#2| |#3|) (-10 -7 (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-1048 |#2|)))) (-1104) (-1104) (-1104)) (T -1051)) -((-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1048 *6)) (-5 *5 (-1048 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-1051 *6 *7 *8))))) -(-10 -7 (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-1048 |#2|)))) -((-3736 (((-107) $ $) 18)) (-3449 (($ $) 120)) (-3612 (($ $) 121)) (-2474 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-4042 (((-107) $ $) 118)) (-4032 (((-107) $ $ (-501)) 117)) (-2011 (($ (-501)) 127)) (-3205 (((-578 $) $ (-131)) 110) (((-578 $) $ (-128)) 109)) (-2045 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-777)))) (-3441 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| (-131) (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 (((-131) $ (-501) (-131)) 52 (|has| $ (-6 -4168))) (((-131) $ (-1116 (-501)) (-131)) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-4089 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-3834 (($ $ (-1116 (-501)) $) 114)) (-2673 (($ $) 78 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ (-131) $) 77 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4167)))) (-3547 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4167)))) (-2156 (((-131) $ (-501) (-131)) 53 (|has| $ (-6 -4168)))) (-1905 (((-131) $ (-501)) 51)) (-4056 (((-107) $ $) 119)) (-1934 (((-501) (-1 (-107) (-131)) $) 97) (((-501) (-131) $) 96 (|has| (-131) (-1001))) (((-501) (-131) $ (-501)) 95 (|has| (-131) (-1001))) (((-501) $ $ (-501)) 113) (((-501) (-128) $ (-501)) 112)) (-2732 (((-578 (-131)) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) (-131)) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| (-131) (-777)))) (-3216 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-777)))) (-3380 (((-578 (-131)) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| (-131) (-777)))) (-3990 (((-107) $ $ (-131)) 115)) (-3921 (((-701) $ $ (-131)) 116)) (-2519 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-1666 (($ $) 122)) (-2874 (($ $) 123)) (-3155 (((-107) $ (-701)) 10)) (-4082 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3460 (((-1053) $) 22)) (-1473 (($ (-131) $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21)) (-1190 (((-131) $) 42 (|has| (-501) (-777)))) (-2520 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-3084 (($ $ (-131)) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-131)))) 26 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-262 (-131))) 25 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-578 (-131)) (-578 (-131))) 23 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-4137 (((-578 (-131)) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 (((-131) $ (-501) (-131)) 50) (((-131) $ (-501)) 49) (($ $ (-1116 (-501))) 63) (($ $ $) 102)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4167))) (((-701) (-131) $) 28 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| (-131) (-556 (-490))))) (-3699 (($ (-578 (-131))) 70)) (-3934 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (($ (-131)) 111) (((-786) $) 20)) (-1200 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4167)))) (-3671 (((-1053) $) 131) (((-1053) $ (-107)) 130) (((-1154) (-753) $) 129) (((-1154) (-753) $ (-107)) 128)) (-3778 (((-107) $ $) 84 (|has| (-131) (-777)))) (-3768 (((-107) $ $) 83 (|has| (-131) (-777)))) (-3751 (((-107) $ $) 19)) (-3773 (((-107) $ $) 85 (|has| (-131) (-777)))) (-3762 (((-107) $ $) 82 (|has| (-131) (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-1052) (-1180)) (T -1052)) -((-2011 (*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1052))))) -(-13 (-1039) (-1001) (-751) (-10 -8 (-15 -2011 ($ (-501))))) -(((-33) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 (-131)) . T) ((-556 (-490)) |has| (-131) (-556 (-490))) ((-256 (-501) (-131)) . T) ((-258 (-501) (-131)) . T) ((-278 (-131)) -12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))) ((-340 (-131)) . T) ((-454 (-131)) . T) ((-548 (-501) (-131)) . T) ((-476 (-131) (-131)) -12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))) ((-586 (-131)) . T) ((-19 (-131)) . T) ((-751) . T) ((-777) |has| (-131) (-777)) ((-1001) . T) ((-1039) . T) ((-1104) . T)) -((-3736 (((-107) $ $) NIL)) (-3449 (($ $) NIL)) (-3612 (($ $) NIL)) (-2474 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-4042 (((-107) $ $) NIL)) (-4032 (((-107) $ $ (-501)) NIL)) (-2011 (($ (-501)) 7)) (-3205 (((-578 $) $ (-131)) NIL) (((-578 $) $ (-128)) NIL)) (-2045 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-777)))) (-3441 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| (-131) (-777))))) (-2861 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 (((-131) $ (-501) (-131)) NIL (|has| $ (-6 -4168))) (((-131) $ (-1116 (-501)) (-131)) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-4089 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-3834 (($ $ (-1116 (-501)) $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-1526 (($ (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4167)))) (-2156 (((-131) $ (-501) (-131)) NIL (|has| $ (-6 -4168)))) (-1905 (((-131) $ (-501)) NIL)) (-4056 (((-107) $ $) NIL)) (-1934 (((-501) (-1 (-107) (-131)) $) NIL) (((-501) (-131) $) NIL (|has| (-131) (-1001))) (((-501) (-131) $ (-501)) NIL (|has| (-131) (-1001))) (((-501) $ $ (-501)) NIL) (((-501) (-128) $ (-501)) NIL)) (-2732 (((-578 (-131)) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) (-131)) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| (-131) (-777)))) (-3216 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-777)))) (-3380 (((-578 (-131)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-131) (-777)))) (-3990 (((-107) $ $ (-131)) NIL)) (-3921 (((-701) $ $ (-131)) NIL)) (-2519 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-1666 (($ $) NIL)) (-2874 (($ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-4082 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3460 (((-1053) $) NIL)) (-1473 (($ (-131) $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-131) $) NIL (|has| (-501) (-777)))) (-2520 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-3084 (($ $ (-131)) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-131)))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-262 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-578 (-131)) (-578 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-4137 (((-578 (-131)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 (((-131) $ (-501) (-131)) NIL) (((-131) $ (-501)) NIL) (($ $ (-1116 (-501))) NIL) (($ $ $) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167))) (((-701) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-131) (-556 (-490))))) (-3699 (($ (-578 (-131))) NIL)) (-3934 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (($ (-131)) NIL) (((-786) $) NIL)) (-1200 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3671 (((-1053) $) 18) (((-1053) $ (-107)) 20) (((-1154) (-753) $) 21) (((-1154) (-753) $ (-107)) 22)) (-3778 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-1053) (-1052)) (T -1053)) -NIL -(-1052) -((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)) (|has| |#1| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-1991 (((-1154) $ (-1053) (-1053)) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-1053) |#1|) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#1| "failed") (-1053) $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#1| "failed") (-1053) $) NIL)) (-1526 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-1053) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-1053)) NIL)) (-2732 (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-1053) $) NIL (|has| (-1053) (-777)))) (-3380 (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-1053) $) NIL (|has| (-1053) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)) (|has| |#1| (-1001))))) (-1500 (((-578 (-1053)) $) NIL)) (-3576 (((-107) (-1053) $) NIL)) (-1328 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-2658 (((-578 (-1053)) $) NIL)) (-2852 (((-107) (-1053) $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)) (|has| |#1| (-1001))))) (-1190 ((|#1| $) NIL (|has| (-1053) (-777)))) (-2520 (((-3 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) "failed") (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-1053)) NIL) ((|#1| $ (-1053) |#1|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)) (|has| |#1| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)) (|has| |#1| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-1054 |#1|) (-13 (-1081 (-1053) |#1|) (-10 -7 (-6 -4167))) (-1001)) (T -1054)) -NIL -(-13 (-1081 (-1053) |#1|) (-10 -7 (-6 -4167))) -((-3088 (((-1048 |#1|) (-1048 |#1|)) 77)) (-2174 (((-3 (-1048 |#1|) "failed") (-1048 |#1|)) 37)) (-3129 (((-1048 |#1|) (-375 (-501)) (-1048 |#1|)) 116 (|has| |#1| (-37 (-375 (-501)))))) (-2735 (((-1048 |#1|) |#1| (-1048 |#1|)) 120 (|has| |#1| (-331)))) (-1247 (((-1048 |#1|) (-1048 |#1|)) 90)) (-2416 (((-1048 (-501)) (-501)) 57)) (-2665 (((-1048 |#1|) (-1048 (-1048 |#1|))) 108 (|has| |#1| (-37 (-375 (-501)))))) (-3635 (((-1048 |#1|) (-501) (-501) (-1048 |#1|)) 95)) (-2607 (((-1048 |#1|) |#1| (-501)) 45)) (-1214 (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 60)) (-2714 (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 118 (|has| |#1| (-331)))) (-3527 (((-1048 |#1|) |#1| (-1 (-1048 |#1|))) 107 (|has| |#1| (-37 (-375 (-501)))))) (-3857 (((-1048 |#1|) (-1 |#1| (-501)) |#1| (-1 (-1048 |#1|))) 119 (|has| |#1| (-331)))) (-4107 (((-1048 |#1|) (-1048 |#1|)) 89)) (-1942 (((-1048 |#1|) (-1048 |#1|)) 76)) (-3914 (((-1048 |#1|) (-501) (-501) (-1048 |#1|)) 96)) (-3188 (((-1048 |#1|) |#1| (-1048 |#1|)) 105 (|has| |#1| (-37 (-375 (-501)))))) (-4109 (((-1048 (-501)) (-501)) 56)) (-3089 (((-1048 |#1|) |#1|) 59)) (-2059 (((-1048 |#1|) (-1048 |#1|) (-501) (-501)) 92)) (-1578 (((-1048 |#1|) (-1 |#1| (-501)) (-1048 |#1|)) 66)) (-3694 (((-3 (-1048 |#1|) "failed") (-1048 |#1|) (-1048 |#1|)) 35)) (-2159 (((-1048 |#1|) (-1048 |#1|)) 91)) (-3195 (((-1048 |#1|) (-1048 |#1|) |#1|) 71)) (-2621 (((-1048 |#1|) (-1048 |#1|)) 62)) (-3417 (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 72)) (-3691 (((-1048 |#1|) |#1|) 67)) (-2318 (((-1048 |#1|) (-1048 (-1048 |#1|))) 82)) (-3803 (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 36)) (-3797 (((-1048 |#1|) (-1048 |#1|)) 21) (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 23)) (-3790 (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 17)) (* (((-1048 |#1|) (-1048 |#1|) |#1|) 29) (((-1048 |#1|) |#1| (-1048 |#1|)) 26) (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 27))) -(((-1055 |#1|) (-10 -7 (-15 -3790 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3797 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3797 ((-1048 |#1|) (-1048 |#1|))) (-15 * ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 * ((-1048 |#1|) |#1| (-1048 |#1|))) (-15 * ((-1048 |#1|) (-1048 |#1|) |#1|)) (-15 -3694 ((-3 (-1048 |#1|) "failed") (-1048 |#1|) (-1048 |#1|))) (-15 -3803 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -2174 ((-3 (-1048 |#1|) "failed") (-1048 |#1|))) (-15 -2607 ((-1048 |#1|) |#1| (-501))) (-15 -4109 ((-1048 (-501)) (-501))) (-15 -2416 ((-1048 (-501)) (-501))) (-15 -3089 ((-1048 |#1|) |#1|)) (-15 -1214 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -2621 ((-1048 |#1|) (-1048 |#1|))) (-15 -1578 ((-1048 |#1|) (-1 |#1| (-501)) (-1048 |#1|))) (-15 -3691 ((-1048 |#1|) |#1|)) (-15 -3195 ((-1048 |#1|) (-1048 |#1|) |#1|)) (-15 -3417 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -1942 ((-1048 |#1|) (-1048 |#1|))) (-15 -3088 ((-1048 |#1|) (-1048 |#1|))) (-15 -2318 ((-1048 |#1|) (-1048 (-1048 |#1|)))) (-15 -4107 ((-1048 |#1|) (-1048 |#1|))) (-15 -1247 ((-1048 |#1|) (-1048 |#1|))) (-15 -2159 ((-1048 |#1|) (-1048 |#1|))) (-15 -2059 ((-1048 |#1|) (-1048 |#1|) (-501) (-501))) (-15 -3635 ((-1048 |#1|) (-501) (-501) (-1048 |#1|))) (-15 -3914 ((-1048 |#1|) (-501) (-501) (-1048 |#1|))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ((-1048 |#1|) |#1| (-1048 |#1|))) (-15 -3527 ((-1048 |#1|) |#1| (-1 (-1048 |#1|)))) (-15 -2665 ((-1048 |#1|) (-1048 (-1048 |#1|)))) (-15 -3129 ((-1048 |#1|) (-375 (-501)) (-1048 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -2714 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3857 ((-1048 |#1|) (-1 |#1| (-501)) |#1| (-1 (-1048 |#1|)))) (-15 -2735 ((-1048 |#1|) |#1| (-1048 |#1|)))) |noBranch|)) (-959)) (T -1055)) -((-2735 (*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-331)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3857 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-501))) (-5 *5 (-1 (-1048 *4))) (-4 *4 (-331)) (-4 *4 (-959)) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4)))) (-2714 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-331)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3129 (*1 *2 *3 *2) (-12 (-5 *2 (-1048 *4)) (-4 *4 (-37 *3)) (-4 *4 (-959)) (-5 *3 (-375 (-501))) (-5 *1 (-1055 *4)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4)) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959)))) (-3527 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1048 *3))) (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)))) (-3188 (*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3914 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) (-3635 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) (-2059 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) (-2159 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-1247 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4)) (-4 *4 (-959)))) (-3088 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-1942 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3417 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3691 (*1 *2 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959)))) (-1578 (*1 *2 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-1 *4 (-501))) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-1214 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959)))) (-2416 (*1 *2 *3) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-1055 *4)) (-4 *4 (-959)) (-5 *3 (-501)))) (-4109 (*1 *2 *3) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-1055 *4)) (-4 *4 (-959)) (-5 *3 (-501)))) (-2607 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959)))) (-2174 (*1 *2 *2) (|partial| -12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3803 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3694 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3797 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3790 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3))))) -(-10 -7 (-15 -3790 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3797 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3797 ((-1048 |#1|) (-1048 |#1|))) (-15 * ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 * ((-1048 |#1|) |#1| (-1048 |#1|))) (-15 * ((-1048 |#1|) (-1048 |#1|) |#1|)) (-15 -3694 ((-3 (-1048 |#1|) "failed") (-1048 |#1|) (-1048 |#1|))) (-15 -3803 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -2174 ((-3 (-1048 |#1|) "failed") (-1048 |#1|))) (-15 -2607 ((-1048 |#1|) |#1| (-501))) (-15 -4109 ((-1048 (-501)) (-501))) (-15 -2416 ((-1048 (-501)) (-501))) (-15 -3089 ((-1048 |#1|) |#1|)) (-15 -1214 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -2621 ((-1048 |#1|) (-1048 |#1|))) (-15 -1578 ((-1048 |#1|) (-1 |#1| (-501)) (-1048 |#1|))) (-15 -3691 ((-1048 |#1|) |#1|)) (-15 -3195 ((-1048 |#1|) (-1048 |#1|) |#1|)) (-15 -3417 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -1942 ((-1048 |#1|) (-1048 |#1|))) (-15 -3088 ((-1048 |#1|) (-1048 |#1|))) (-15 -2318 ((-1048 |#1|) (-1048 (-1048 |#1|)))) (-15 -4107 ((-1048 |#1|) (-1048 |#1|))) (-15 -1247 ((-1048 |#1|) (-1048 |#1|))) (-15 -2159 ((-1048 |#1|) (-1048 |#1|))) (-15 -2059 ((-1048 |#1|) (-1048 |#1|) (-501) (-501))) (-15 -3635 ((-1048 |#1|) (-501) (-501) (-1048 |#1|))) (-15 -3914 ((-1048 |#1|) (-501) (-501) (-1048 |#1|))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ((-1048 |#1|) |#1| (-1048 |#1|))) (-15 -3527 ((-1048 |#1|) |#1| (-1 (-1048 |#1|)))) (-15 -2665 ((-1048 |#1|) (-1048 (-1048 |#1|)))) (-15 -3129 ((-1048 |#1|) (-375 (-501)) (-1048 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -2714 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3857 ((-1048 |#1|) (-1 |#1| (-501)) |#1| (-1 (-1048 |#1|)))) (-15 -2735 ((-1048 |#1|) |#1| (-1048 |#1|)))) |noBranch|)) -((-3978 (((-1048 |#1|) (-1048 |#1|)) 100)) (-3937 (((-1048 |#1|) (-1048 |#1|)) 64)) (-2455 (((-2 (|:| -3970 (-1048 |#1|)) (|:| -3975 (-1048 |#1|))) (-1048 |#1|)) 96)) (-3970 (((-1048 |#1|) (-1048 |#1|)) 97)) (-1181 (((-2 (|:| -3929 (-1048 |#1|)) (|:| -3933 (-1048 |#1|))) (-1048 |#1|)) 53)) (-3929 (((-1048 |#1|) (-1048 |#1|)) 54)) (-3984 (((-1048 |#1|) (-1048 |#1|)) 102)) (-3945 (((-1048 |#1|) (-1048 |#1|)) 71)) (-1635 (((-1048 |#1|) (-1048 |#1|)) 39)) (-1989 (((-1048 |#1|) (-1048 |#1|)) 36)) (-3991 (((-1048 |#1|) (-1048 |#1|)) 103)) (-3949 (((-1048 |#1|) (-1048 |#1|)) 72)) (-3981 (((-1048 |#1|) (-1048 |#1|)) 101)) (-3940 (((-1048 |#1|) (-1048 |#1|)) 67)) (-3975 (((-1048 |#1|) (-1048 |#1|)) 98)) (-3933 (((-1048 |#1|) (-1048 |#1|)) 55)) (-4003 (((-1048 |#1|) (-1048 |#1|)) 111)) (-3958 (((-1048 |#1|) (-1048 |#1|)) 86)) (-3995 (((-1048 |#1|) (-1048 |#1|)) 105)) (-3952 (((-1048 |#1|) (-1048 |#1|)) 82)) (-4013 (((-1048 |#1|) (-1048 |#1|)) 115)) (-3964 (((-1048 |#1|) (-1048 |#1|)) 90)) (-3550 (((-1048 |#1|) (-1048 |#1|)) 117)) (-3967 (((-1048 |#1|) (-1048 |#1|)) 92)) (-4008 (((-1048 |#1|) (-1048 |#1|)) 113)) (-3961 (((-1048 |#1|) (-1048 |#1|)) 88)) (-3999 (((-1048 |#1|) (-1048 |#1|)) 107)) (-3955 (((-1048 |#1|) (-1048 |#1|)) 84)) (** (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 40))) -(((-1056 |#1|) (-10 -7 (-15 -1989 ((-1048 |#1|) (-1048 |#1|))) (-15 -1635 ((-1048 |#1|) (-1048 |#1|))) (-15 ** ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -1181 ((-2 (|:| -3929 (-1048 |#1|)) (|:| -3933 (-1048 |#1|))) (-1048 |#1|))) (-15 -3929 ((-1048 |#1|) (-1048 |#1|))) (-15 -3933 ((-1048 |#1|) (-1048 |#1|))) (-15 -3937 ((-1048 |#1|) (-1048 |#1|))) (-15 -3940 ((-1048 |#1|) (-1048 |#1|))) (-15 -3945 ((-1048 |#1|) (-1048 |#1|))) (-15 -3949 ((-1048 |#1|) (-1048 |#1|))) (-15 -3952 ((-1048 |#1|) (-1048 |#1|))) (-15 -3955 ((-1048 |#1|) (-1048 |#1|))) (-15 -3958 ((-1048 |#1|) (-1048 |#1|))) (-15 -3961 ((-1048 |#1|) (-1048 |#1|))) (-15 -3964 ((-1048 |#1|) (-1048 |#1|))) (-15 -3967 ((-1048 |#1|) (-1048 |#1|))) (-15 -2455 ((-2 (|:| -3970 (-1048 |#1|)) (|:| -3975 (-1048 |#1|))) (-1048 |#1|))) (-15 -3970 ((-1048 |#1|) (-1048 |#1|))) (-15 -3975 ((-1048 |#1|) (-1048 |#1|))) (-15 -3978 ((-1048 |#1|) (-1048 |#1|))) (-15 -3981 ((-1048 |#1|) (-1048 |#1|))) (-15 -3984 ((-1048 |#1|) (-1048 |#1|))) (-15 -3991 ((-1048 |#1|) (-1048 |#1|))) (-15 -3995 ((-1048 |#1|) (-1048 |#1|))) (-15 -3999 ((-1048 |#1|) (-1048 |#1|))) (-15 -4003 ((-1048 |#1|) (-1048 |#1|))) (-15 -4008 ((-1048 |#1|) (-1048 |#1|))) (-15 -4013 ((-1048 |#1|) (-1048 |#1|))) (-15 -3550 ((-1048 |#1|) (-1048 |#1|)))) (-37 (-375 (-501)))) (T -1056)) -((-3550 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3975 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-2455 (*1 *2 *3) (-12 (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-2 (|:| -3970 (-1048 *4)) (|:| -3975 (-1048 *4)))) (-5 *1 (-1056 *4)) (-5 *3 (-1048 *4)))) (-3967 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3964 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3955 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3949 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3940 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-1181 (*1 *2 *3) (-12 (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-2 (|:| -3929 (-1048 *4)) (|:| -3933 (-1048 *4)))) (-5 *1 (-1056 *4)) (-5 *3 (-1048 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3))))) -(-10 -7 (-15 -1989 ((-1048 |#1|) (-1048 |#1|))) (-15 -1635 ((-1048 |#1|) (-1048 |#1|))) (-15 ** ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -1181 ((-2 (|:| -3929 (-1048 |#1|)) (|:| -3933 (-1048 |#1|))) (-1048 |#1|))) (-15 -3929 ((-1048 |#1|) (-1048 |#1|))) (-15 -3933 ((-1048 |#1|) (-1048 |#1|))) (-15 -3937 ((-1048 |#1|) (-1048 |#1|))) (-15 -3940 ((-1048 |#1|) (-1048 |#1|))) (-15 -3945 ((-1048 |#1|) (-1048 |#1|))) (-15 -3949 ((-1048 |#1|) (-1048 |#1|))) (-15 -3952 ((-1048 |#1|) (-1048 |#1|))) (-15 -3955 ((-1048 |#1|) (-1048 |#1|))) (-15 -3958 ((-1048 |#1|) (-1048 |#1|))) (-15 -3961 ((-1048 |#1|) (-1048 |#1|))) (-15 -3964 ((-1048 |#1|) (-1048 |#1|))) (-15 -3967 ((-1048 |#1|) (-1048 |#1|))) (-15 -2455 ((-2 (|:| -3970 (-1048 |#1|)) (|:| -3975 (-1048 |#1|))) (-1048 |#1|))) (-15 -3970 ((-1048 |#1|) (-1048 |#1|))) (-15 -3975 ((-1048 |#1|) (-1048 |#1|))) (-15 -3978 ((-1048 |#1|) (-1048 |#1|))) (-15 -3981 ((-1048 |#1|) (-1048 |#1|))) (-15 -3984 ((-1048 |#1|) (-1048 |#1|))) (-15 -3991 ((-1048 |#1|) (-1048 |#1|))) (-15 -3995 ((-1048 |#1|) (-1048 |#1|))) (-15 -3999 ((-1048 |#1|) (-1048 |#1|))) (-15 -4003 ((-1048 |#1|) (-1048 |#1|))) (-15 -4008 ((-1048 |#1|) (-1048 |#1|))) (-15 -4013 ((-1048 |#1|) (-1048 |#1|))) (-15 -3550 ((-1048 |#1|) (-1048 |#1|)))) -((-3978 (((-1048 |#1|) (-1048 |#1|)) 57)) (-3937 (((-1048 |#1|) (-1048 |#1|)) 39)) (-3970 (((-1048 |#1|) (-1048 |#1|)) 53)) (-3929 (((-1048 |#1|) (-1048 |#1|)) 35)) (-3984 (((-1048 |#1|) (-1048 |#1|)) 60)) (-3945 (((-1048 |#1|) (-1048 |#1|)) 42)) (-1635 (((-1048 |#1|) (-1048 |#1|)) 31)) (-1989 (((-1048 |#1|) (-1048 |#1|)) 27)) (-3991 (((-1048 |#1|) (-1048 |#1|)) 61)) (-3949 (((-1048 |#1|) (-1048 |#1|)) 43)) (-3981 (((-1048 |#1|) (-1048 |#1|)) 58)) (-3940 (((-1048 |#1|) (-1048 |#1|)) 40)) (-3975 (((-1048 |#1|) (-1048 |#1|)) 55)) (-3933 (((-1048 |#1|) (-1048 |#1|)) 37)) (-4003 (((-1048 |#1|) (-1048 |#1|)) 65)) (-3958 (((-1048 |#1|) (-1048 |#1|)) 47)) (-3995 (((-1048 |#1|) (-1048 |#1|)) 63)) (-3952 (((-1048 |#1|) (-1048 |#1|)) 45)) (-4013 (((-1048 |#1|) (-1048 |#1|)) 68)) (-3964 (((-1048 |#1|) (-1048 |#1|)) 50)) (-3550 (((-1048 |#1|) (-1048 |#1|)) 69)) (-3967 (((-1048 |#1|) (-1048 |#1|)) 51)) (-4008 (((-1048 |#1|) (-1048 |#1|)) 67)) (-3961 (((-1048 |#1|) (-1048 |#1|)) 49)) (-3999 (((-1048 |#1|) (-1048 |#1|)) 66)) (-3955 (((-1048 |#1|) (-1048 |#1|)) 48)) (** (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 33))) -(((-1057 |#1|) (-10 -7 (-15 -1989 ((-1048 |#1|) (-1048 |#1|))) (-15 -1635 ((-1048 |#1|) (-1048 |#1|))) (-15 ** ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3929 ((-1048 |#1|) (-1048 |#1|))) (-15 -3933 ((-1048 |#1|) (-1048 |#1|))) (-15 -3937 ((-1048 |#1|) (-1048 |#1|))) (-15 -3940 ((-1048 |#1|) (-1048 |#1|))) (-15 -3945 ((-1048 |#1|) (-1048 |#1|))) (-15 -3949 ((-1048 |#1|) (-1048 |#1|))) (-15 -3952 ((-1048 |#1|) (-1048 |#1|))) (-15 -3955 ((-1048 |#1|) (-1048 |#1|))) (-15 -3958 ((-1048 |#1|) (-1048 |#1|))) (-15 -3961 ((-1048 |#1|) (-1048 |#1|))) (-15 -3964 ((-1048 |#1|) (-1048 |#1|))) (-15 -3967 ((-1048 |#1|) (-1048 |#1|))) (-15 -3970 ((-1048 |#1|) (-1048 |#1|))) (-15 -3975 ((-1048 |#1|) (-1048 |#1|))) (-15 -3978 ((-1048 |#1|) (-1048 |#1|))) (-15 -3981 ((-1048 |#1|) (-1048 |#1|))) (-15 -3984 ((-1048 |#1|) (-1048 |#1|))) (-15 -3991 ((-1048 |#1|) (-1048 |#1|))) (-15 -3995 ((-1048 |#1|) (-1048 |#1|))) (-15 -3999 ((-1048 |#1|) (-1048 |#1|))) (-15 -4003 ((-1048 |#1|) (-1048 |#1|))) (-15 -4008 ((-1048 |#1|) (-1048 |#1|))) (-15 -4013 ((-1048 |#1|) (-1048 |#1|))) (-15 -3550 ((-1048 |#1|) (-1048 |#1|)))) (-37 (-375 (-501)))) (T -1057)) -((-3550 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3975 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3967 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3964 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3955 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3949 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3940 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(-10 -7 (-15 -1989 ((-1048 |#1|) (-1048 |#1|))) (-15 -1635 ((-1048 |#1|) (-1048 |#1|))) (-15 ** ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3929 ((-1048 |#1|) (-1048 |#1|))) (-15 -3933 ((-1048 |#1|) (-1048 |#1|))) (-15 -3937 ((-1048 |#1|) (-1048 |#1|))) (-15 -3940 ((-1048 |#1|) (-1048 |#1|))) (-15 -3945 ((-1048 |#1|) (-1048 |#1|))) (-15 -3949 ((-1048 |#1|) (-1048 |#1|))) (-15 -3952 ((-1048 |#1|) (-1048 |#1|))) (-15 -3955 ((-1048 |#1|) (-1048 |#1|))) (-15 -3958 ((-1048 |#1|) (-1048 |#1|))) (-15 -3961 ((-1048 |#1|) (-1048 |#1|))) (-15 -3964 ((-1048 |#1|) (-1048 |#1|))) (-15 -3967 ((-1048 |#1|) (-1048 |#1|))) (-15 -3970 ((-1048 |#1|) (-1048 |#1|))) (-15 -3975 ((-1048 |#1|) (-1048 |#1|))) (-15 -3978 ((-1048 |#1|) (-1048 |#1|))) (-15 -3981 ((-1048 |#1|) (-1048 |#1|))) (-15 -3984 ((-1048 |#1|) (-1048 |#1|))) (-15 -3991 ((-1048 |#1|) (-1048 |#1|))) (-15 -3995 ((-1048 |#1|) (-1048 |#1|))) (-15 -3999 ((-1048 |#1|) (-1048 |#1|))) (-15 -4003 ((-1048 |#1|) (-1048 |#1|))) (-15 -4008 ((-1048 |#1|) (-1048 |#1|))) (-15 -4013 ((-1048 |#1|) (-1048 |#1|))) (-15 -3550 ((-1048 |#1|) (-1048 |#1|)))) -((-1910 (((-877 |#2|) |#2| |#2|) 35)) (-3533 ((|#2| |#2| |#1|) 19 (|has| |#1| (-276))))) -(((-1058 |#1| |#2|) (-10 -7 (-15 -1910 ((-877 |#2|) |#2| |#2|)) (IF (|has| |#1| (-276)) (-15 -3533 (|#2| |#2| |#1|)) |noBranch|)) (-508) (-1125 |#1|)) (T -1058)) -((-3533 (*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-4 *3 (-508)) (-5 *1 (-1058 *3 *2)) (-4 *2 (-1125 *3)))) (-1910 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-877 *3)) (-5 *1 (-1058 *4 *3)) (-4 *3 (-1125 *4))))) -(-10 -7 (-15 -1910 ((-877 |#2|) |#2| |#2|)) (IF (|has| |#1| (-276)) (-15 -3533 (|#2| |#2| |#1|)) |noBranch|)) -((-3736 (((-107) $ $) NIL)) (-2265 (($ $ (-578 (-701))) 66)) (-1446 (($) 25)) (-3530 (($ $) 41)) (-1337 (((-578 $) $) 50)) (-3305 (((-107) $) 16)) (-2235 (((-578 (-863 |#2|)) $) 73)) (-3053 (($ $) 67)) (-3477 (((-701) $) 36)) (-3634 (($) 24)) (-3010 (($ $ (-578 (-701)) (-863 |#2|)) 59) (($ $ (-578 (-701)) (-701)) 60) (($ $ (-701) (-863 |#2|)) 62)) (-3216 (($ $ $) 47) (($ (-578 $)) 49)) (-1357 (((-701) $) 74)) (-2341 (((-107) $) 15)) (-3460 (((-1053) $) NIL)) (-2817 (((-107) $) 17)) (-3708 (((-1018) $) NIL)) (-3352 (((-155) $) 72)) (-1737 (((-863 |#2|) $) 68)) (-2025 (((-701) $) 69)) (-4092 (((-107) $) 71)) (-3355 (($ $ (-578 (-701)) (-155)) 65)) (-3250 (($ $) 42)) (-3691 (((-786) $) 84)) (-1345 (($ $ (-578 (-701)) (-107)) 64)) (-1961 (((-578 $) $) 11)) (-1426 (($ $ (-701)) 35)) (-1917 (($ $) 31)) (-2763 (($ $ $ (-863 |#2|) (-701)) 55)) (-2498 (($ $ (-863 |#2|)) 54)) (-2290 (($ $ (-578 (-701)) (-863 |#2|)) 53) (($ $ (-578 (-701)) (-701)) 57) (((-701) $ (-863 |#2|)) 58)) (-3751 (((-107) $ $) 78))) -(((-1059 |#1| |#2|) (-13 (-1001) (-10 -8 (-15 -2341 ((-107) $)) (-15 -3305 ((-107) $)) (-15 -2817 ((-107) $)) (-15 -3634 ($)) (-15 -1446 ($)) (-15 -1917 ($ $)) (-15 -1426 ($ $ (-701))) (-15 -1961 ((-578 $) $)) (-15 -3477 ((-701) $)) (-15 -3530 ($ $)) (-15 -3250 ($ $)) (-15 -3216 ($ $ $)) (-15 -3216 ($ (-578 $))) (-15 -1337 ((-578 $) $)) (-15 -2290 ($ $ (-578 (-701)) (-863 |#2|))) (-15 -2498 ($ $ (-863 |#2|))) (-15 -2763 ($ $ $ (-863 |#2|) (-701))) (-15 -3010 ($ $ (-578 (-701)) (-863 |#2|))) (-15 -2290 ($ $ (-578 (-701)) (-701))) (-15 -3010 ($ $ (-578 (-701)) (-701))) (-15 -2290 ((-701) $ (-863 |#2|))) (-15 -3010 ($ $ (-701) (-863 |#2|))) (-15 -1345 ($ $ (-578 (-701)) (-107))) (-15 -3355 ($ $ (-578 (-701)) (-155))) (-15 -2265 ($ $ (-578 (-701)))) (-15 -1737 ((-863 |#2|) $)) (-15 -2025 ((-701) $)) (-15 -4092 ((-107) $)) (-15 -3352 ((-155) $)) (-15 -1357 ((-701) $)) (-15 -3053 ($ $)) (-15 -2235 ((-578 (-863 |#2|)) $)))) (-839) (-959)) (T -1059)) -((-2341 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3634 (*1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-1446 (*1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-1917 (*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-1426 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3530 (*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-3250 (*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-3216 (*1 *1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-3216 (*1 *1 *2) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-2290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) (-2498 (*1 *1 *1 *2) (-12 (-5 *2 (-863 *4)) (-4 *4 (-959)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)))) (-2763 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-863 *5)) (-5 *3 (-701)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) (-3010 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) (-2290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) (-3010 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) (-2290 (*1 *2 *1 *3) (-12 (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *2 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) (-3010 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) (-1345 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-107)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) (-3355 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-155)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) (-2265 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-863 *4)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3053 (*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-578 (-863 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(-13 (-1001) (-10 -8 (-15 -2341 ((-107) $)) (-15 -3305 ((-107) $)) (-15 -2817 ((-107) $)) (-15 -3634 ($)) (-15 -1446 ($)) (-15 -1917 ($ $)) (-15 -1426 ($ $ (-701))) (-15 -1961 ((-578 $) $)) (-15 -3477 ((-701) $)) (-15 -3530 ($ $)) (-15 -3250 ($ $)) (-15 -3216 ($ $ $)) (-15 -3216 ($ (-578 $))) (-15 -1337 ((-578 $) $)) (-15 -2290 ($ $ (-578 (-701)) (-863 |#2|))) (-15 -2498 ($ $ (-863 |#2|))) (-15 -2763 ($ $ $ (-863 |#2|) (-701))) (-15 -3010 ($ $ (-578 (-701)) (-863 |#2|))) (-15 -2290 ($ $ (-578 (-701)) (-701))) (-15 -3010 ($ $ (-578 (-701)) (-701))) (-15 -2290 ((-701) $ (-863 |#2|))) (-15 -3010 ($ $ (-701) (-863 |#2|))) (-15 -1345 ($ $ (-578 (-701)) (-107))) (-15 -3355 ($ $ (-578 (-701)) (-155))) (-15 -2265 ($ $ (-578 (-701)))) (-15 -1737 ((-863 |#2|) $)) (-15 -2025 ((-701) $)) (-15 -4092 ((-107) $)) (-15 -3352 ((-155) $)) (-15 -1357 ((-701) $)) (-15 -3053 ($ $)) (-15 -2235 ((-578 (-863 |#2|)) $)))) -((-3736 (((-107) $ $) NIL)) (-2015 ((|#2| $) 11)) (-2006 ((|#1| $) 10)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3699 (($ |#1| |#2|) 9)) (-3691 (((-786) $) 16)) (-3751 (((-107) $ $) NIL))) -(((-1060 |#1| |#2|) (-13 (-1001) (-10 -8 (-15 -3699 ($ |#1| |#2|)) (-15 -2006 (|#1| $)) (-15 -2015 (|#2| $)))) (-1001) (-1001)) (T -1060)) -((-3699 (*1 *1 *2 *3) (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-2006 (*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1001)))) (-2015 (*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-1060 *3 *2)) (-4 *3 (-1001))))) -(-13 (-1001) (-10 -8 (-15 -3699 ($ |#1| |#2|)) (-15 -2006 (|#1| $)) (-15 -2015 (|#2| $)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-1068 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-276)) (|has| |#1| (-331))))) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 11)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2865 (($ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-1639 (((-107) $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2805 (($ $ (-501)) NIL) (($ $ (-501) (-501)) 66)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) NIL)) (-1488 (((-1068 |#1| |#2| |#3|) $) 36)) (-1641 (((-3 (-1068 |#1| |#2| |#3|) "failed") $) 29)) (-3818 (((-1068 |#1| |#2| |#3|) $) 30)) (-3978 (($ $) 107 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 83 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) 103 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 79 (|has| |#1| (-37 (-375 (-501)))))) (-1417 (((-501) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) 111 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 87 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-1068 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1070) "failed") $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-501) "failed") $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))))) (-3490 (((-1068 |#1| |#2| |#3|) $) 131) (((-1070) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (((-375 (-501)) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331)))) (((-501) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))))) (-1574 (($ $) 34) (($ (-501) $) 35)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-1068 |#1| |#2| |#3|)) (-621 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-1068 |#1| |#2| |#3|))) (|:| |vec| (-1148 (-1068 |#1| |#2| |#3|)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-577 (-501))) (|has| |#1| (-331)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-577 (-501))) (|has| |#1| (-331))))) (-2174 (((-3 $ "failed") $) 48)) (-1880 (((-375 (-866 |#1|)) $ (-501)) 65 (|has| |#1| (-508))) (((-375 (-866 |#1|)) $ (-501) (-501)) 67 (|has| |#1| (-508)))) (-2890 (($) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-2164 (((-107) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-3331 (((-107) $) 25)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-806 (-501))) (|has| |#1| (-331)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-806 (-346))) (|has| |#1| (-331))))) (-3169 (((-501) $) NIL) (((-501) $ (-501)) 24)) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL (|has| |#1| (-331)))) (-2946 (((-1068 |#1| |#2| |#3|) $) 38 (|has| |#1| (-331)))) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3493 (((-3 $ "failed") $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-1046)) (|has| |#1| (-331))))) (-4067 (((-107) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-2917 (($ $ (-839)) NIL)) (-3608 (($ (-1 |#1| (-501)) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-501)) 18) (($ $ (-986) (-501)) NIL) (($ $ (-578 (-986)) (-578 (-501))) NIL)) (-4111 (($ $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-1323 (($ $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-331)))) (-1635 (($ $) 72 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3822 (($ (-501) (-1068 |#1| |#2| |#3|)) 33)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) 70 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 71 (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-1046)) (|has| |#1| (-331))) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-2801 (($ $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-276)) (|has| |#1| (-331))))) (-3383 (((-1068 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-501)) 145)) (-3694 (((-3 $ "failed") $ $) 49 (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) 73 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-501))))) (($ $ (-1070) (-1068 |#1| |#2| |#3|)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-476 (-1070) (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 (-1068 |#1| |#2| |#3|))) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-476 (-1070) (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-262 (-1068 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-262 (-1068 |#1| |#2| |#3|))) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-1068 |#1| |#2| |#3|)) (-578 (-1068 |#1| |#2| |#3|))) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-501)) NIL) (($ $ $) 54 (|has| (-501) (-1012))) (($ $ (-1068 |#1| |#2| |#3|)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-256 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-1 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|))) NIL (|has| |#1| (-331))) (($ $ (-1 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) (-701)) NIL (|has| |#1| (-331))) (($ $ (-1145 |#2|)) 51) (($ $ (-701)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) 50 (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3307 (($ $) NIL (|has| |#1| (-331)))) (-2949 (((-1068 |#1| |#2| |#3|) $) 41 (|has| |#1| (-331)))) (-1201 (((-501) $) 37)) (-3991 (($ $) 113 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 89 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 109 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 85 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 105 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 81 (|has| |#1| (-37 (-375 (-501)))))) (-1248 (((-490) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-556 (-490))) (|has| |#1| (-331)))) (((-346) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-933)) (|has| |#1| (-331)))) (((-199) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-933)) (|has| |#1| (-331)))) (((-810 (-346)) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-556 (-810 (-346)))) (|has| |#1| (-331)))) (((-810 (-501)) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-556 (-810 (-501)))) (|has| |#1| (-331))))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) 149) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1068 |#1| |#2| |#3|)) 27) (($ (-1145 |#2|)) 23) (($ (-1070)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (($ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508)))) (($ (-375 (-501))) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))) (|has| |#1| (-37 (-375 (-501))))))) (-2495 ((|#1| $ (-501)) 68)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-132)) (|has| |#1| (-331))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 12)) (-2803 (((-1068 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-4003 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 95 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-3995 (($ $) 115 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 91 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 99 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-501)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 101 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 97 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 117 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 93 (|has| |#1| (-37 (-375 (-501)))))) (-1720 (($ $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 20 T CONST)) (-1925 (($) 16 T CONST)) (-3584 (($ $ (-1 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|))) NIL (|has| |#1| (-331))) (($ $ (-1 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) (-701)) NIL (|has| |#1| (-331))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3778 (((-107) $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3768 (((-107) $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3762 (((-107) $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) 44 (|has| |#1| (-331))) (($ (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) 45 (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 21)) (** (($ $ (-839)) NIL) (($ $ (-701)) 53) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) 74 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 128 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1068 |#1| |#2| |#3|)) 43 (|has| |#1| (-331))) (($ (-1068 |#1| |#2| |#3|) $) 42 (|has| |#1| (-331))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-1061 |#1| |#2| |#3|) (-13 (-1113 |#1| (-1068 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1061)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3)))) -(-13 (-1113 |#1| (-1068 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) -((-4063 ((|#2| |#2| (-993 |#2|)) 26) ((|#2| |#2| (-1070)) 28))) -(((-1062 |#1| |#2|) (-10 -7 (-15 -4063 (|#2| |#2| (-1070))) (-15 -4063 (|#2| |#2| (-993 |#2|)))) (-13 (-508) (-777) (-950 (-501)) (-577 (-501))) (-13 (-389 |#1|) (-145) (-27) (-1090))) (T -1062)) -((-4063 (*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-13 (-389 *4) (-145) (-27) (-1090))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1062 *4 *2)))) (-4063 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1062 *4 *2)) (-4 *2 (-13 (-389 *4) (-145) (-27) (-1090)))))) -(-10 -7 (-15 -4063 (|#2| |#2| (-1070))) (-15 -4063 (|#2| |#2| (-993 |#2|)))) -((-4063 (((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-993 (-375 (-866 |#1|)))) 30) (((-375 (-866 |#1|)) (-866 |#1|) (-993 (-866 |#1|))) 44) (((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-1070)) 32) (((-375 (-866 |#1|)) (-866 |#1|) (-1070)) 36))) -(((-1063 |#1|) (-10 -7 (-15 -4063 ((-375 (-866 |#1|)) (-866 |#1|) (-1070))) (-15 -4063 ((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-1070))) (-15 -4063 ((-375 (-866 |#1|)) (-866 |#1|) (-993 (-866 |#1|)))) (-15 -4063 ((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-993 (-375 (-866 |#1|)))))) (-13 (-508) (-777) (-950 (-501)))) (T -1063)) -((-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-993 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-3 *3 (-282 *5))) (-5 *1 (-1063 *5)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-993 (-866 *5))) (-5 *3 (-866 *5)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-375 *3)) (-5 *1 (-1063 *5)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-3 (-375 (-866 *5)) (-282 *5))) (-5 *1 (-1063 *5)) (-5 *3 (-375 (-866 *5))))) (-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-375 (-866 *5))) (-5 *1 (-1063 *5)) (-5 *3 (-866 *5))))) -(-10 -7 (-15 -4063 ((-375 (-866 |#1|)) (-866 |#1|) (-1070))) (-15 -4063 ((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-1070))) (-15 -4063 ((-375 (-866 |#1|)) (-866 |#1|) (-993 (-866 |#1|)))) (-15 -4063 ((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-993 (-375 (-866 |#1|)))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 30)) (-3077 (((-1148 |#1|) $ (-701)) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3081 (($ (-1064 |#1|)) NIL)) (-3728 (((-1064 $) $ (-986)) 59) (((-1064 |#1|) $) 48)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) 132 (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-986))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1855 (($ $ $) 126 (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) 72 (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 92 (|has| |#1| (-830)))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3643 (($ $ (-701)) 42)) (-2222 (($ $ (-701)) 43)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-419)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-986) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-986) $) NIL)) (-1749 (($ $ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $ $) 128 (|has| |#1| (-156)))) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) 57)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-4094 (($ $ $) 104)) (-3470 (($ $ $) NIL (|has| |#1| (-508)))) (-2352 (((-2 (|:| -3189 |#1|) (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-3533 (($ $) 133 (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-701) $) 46)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-986) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-986) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3317 (((-786) $ (-786)) 117)) (-3169 (((-701) $ $) NIL (|has| |#1| (-508)))) (-1355 (((-107) $) 32)) (-3706 (((-701) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-1046)))) (-3794 (($ (-1064 |#1|) (-986)) 50) (($ (-1064 $) (-986)) 66)) (-2917 (($ $ (-701)) 34)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) 64) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-986)) NIL) (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 121)) (-2285 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-701) (-701)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1704 (((-1064 |#1|) $) NIL)) (-2752 (((-3 (-986) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) 53)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) 41)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-986)) (|:| -3027 (-701))) "failed") $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) NIL (|has| |#1| (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) 33)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 80 (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) 135 (|has| |#1| (-419)))) (-4138 (($ $ (-701) |#1| $) 99)) (-2305 (((-373 (-1064 $)) (-1064 $)) 78 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 77 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 85 (|has| |#1| (-830)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-986) |#1|) NIL) (($ $ (-578 (-986)) (-578 |#1|)) NIL) (($ $ (-986) $) NIL) (($ $ (-578 (-986)) (-578 $)) NIL)) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-375 $) (-375 $) (-375 $)) NIL (|has| |#1| (-508))) ((|#1| (-375 $) |#1|) NIL (|has| |#1| (-331))) (((-375 $) $ (-375 $)) NIL (|has| |#1| (-508)))) (-2158 (((-3 $ "failed") $ (-701)) 37)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 137 (|has| |#1| (-331)))) (-2532 (($ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $) 124 (|has| |#1| (-156)))) (-2596 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1201 (((-701) $) 55) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-986) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) 130 (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3913 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508))) (((-3 (-375 $) "failed") (-375 $) $) NIL (|has| |#1| (-508)))) (-3691 (((-786) $) 118) (($ (-501)) NIL) (($ |#1|) 54) (($ (-986)) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) 28 (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 15) (($ $ (-701)) 16)) (-1850 (($) 17 T CONST)) (-1925 (($) 18 T CONST)) (-3584 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 97)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 138 (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 67)) (** (($ $ (-839)) 14) (($ $ (-701)) 12)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 27) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1064 |#1|) (-13 (-1125 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-786))) (-15 -4138 ($ $ (-701) |#1| $)))) (-959)) (T -1064)) -((-3317 (*1 *2 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-1064 *3)) (-4 *3 (-959)))) (-4138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1064 *3)) (-4 *3 (-959))))) -(-13 (-1125 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-786))) (-15 -4138 ($ $ (-701) |#1| $)))) -((-1212 (((-1064 |#2|) (-1 |#2| |#1|) (-1064 |#1|)) 13))) -(((-1065 |#1| |#2|) (-10 -7 (-15 -1212 ((-1064 |#2|) (-1 |#2| |#1|) (-1064 |#1|)))) (-959) (-959)) (T -1065)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1064 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-1064 *6)) (-5 *1 (-1065 *5 *6))))) -(-10 -7 (-15 -1212 ((-1064 |#2|) (-1 |#2| |#1|) (-1064 |#1|)))) -((-1559 (((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|))) 50)) (-3739 (((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|))) 51))) -(((-1066 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|)))) (-15 -1559 ((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|))))) (-723) (-777) (-419) (-870 |#3| |#1| |#2|)) (T -1066)) -((-1559 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-419)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 (-375 *7)))) (-5 *1 (-1066 *4 *5 *6 *7)) (-5 *3 (-1064 (-375 *7))))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-419)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 (-375 *7)))) (-5 *1 (-1066 *4 *5 *6 *7)) (-5 *3 (-1064 (-375 *7)))))) -(-10 -7 (-15 -3739 ((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|)))) (-15 -1559 ((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 11)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) NIL) (($ $ (-375 (-501)) (-375 (-501))) NIL)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) NIL)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-1061 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1068 |#1| |#2| |#3|) "failed") $) 35)) (-3490 (((-1061 |#1| |#2| |#3|) $) NIL) (((-1068 |#1| |#2| |#3|) $) NIL)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2169 (((-375 (-501)) $) 55)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3826 (($ (-375 (-501)) (-1061 |#1| |#2| |#3|)) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) NIL) (((-375 (-501)) $ (-375 (-501))) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) NIL) (($ $ (-375 (-501))) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-375 (-501))) 19) (($ $ (-986) (-375 (-501))) NIL) (($ $ (-578 (-986)) (-578 (-375 (-501)))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-1418 (((-1061 |#1| |#2| |#3|) $) 40)) (-3064 (((-3 (-1061 |#1| |#2| |#3|) "failed") $) NIL)) (-3822 (((-1061 |#1| |#2| |#3|) $) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) 38 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 39 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) NIL) (($ $ $) NIL (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $ (-1145 |#2|)) 37)) (-1201 (((-375 (-501)) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) 58) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1061 |#1| |#2| |#3|)) 29) (($ (-1068 |#1| |#2| |#3|)) 30) (($ (-1145 |#2|)) 25) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 12)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 21 T CONST)) (-1925 (($) 16 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 23)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-1067 |#1| |#2| |#3|) (-13 (-1134 |#1| (-1061 |#1| |#2| |#3|)) (-950 (-1068 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1067)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3)))) -(-13 (-1134 |#1| (-1061 |#1| |#2| |#3|)) (-950 (-1068 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 124)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 115)) (-1562 (((-1118 |#2| |#1|) $ (-701)) 62)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-701)) 78) (($ $ (-701) (-701)) 75)) (-1395 (((-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|))) $) 101)) (-3978 (($ $) 168 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) 164 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|)))) 114) (($ (-1048 |#1|)) 109)) (-3984 (($ $) 172 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 148 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) 23)) (-1338 (($ $) 26)) (-3430 (((-866 |#1|) $ (-701)) 74) (((-866 |#1|) $ (-701) (-701)) 76)) (-3331 (((-107) $) 119)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $) 121) (((-701) $ (-701)) 123)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) NIL)) (-3608 (($ (-1 |#1| (-501)) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) 13) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3188 (($ $) 128 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 129 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3718 (($ $ (-701)) 15)) (-3694 (((-3 $ "failed") $ $) 24 (|has| |#1| (-508)))) (-1989 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-701)))))) (-2007 ((|#1| $ (-701)) 118) (($ $ $) 127 (|has| (-701) (-1012)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $ (-1145 |#2|)) 29)) (-1201 (((-701) $) NIL)) (-3991 (($ $) 174 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 150 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 170 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 146 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 166 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) 200) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508))) (($ |#1|) 125 (|has| |#1| (-156))) (($ (-1118 |#2| |#1|)) 50) (($ (-1145 |#2|)) 32)) (-1303 (((-1048 |#1|) $) 97)) (-2495 ((|#1| $ (-701)) 117)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 53)) (-4003 (($ $) 180 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 156 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) 176 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 152 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 184 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 160 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-701)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-701)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 186 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 162 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 182 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 158 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 178 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 154 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 17 T CONST)) (-1925 (($) 19 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) 193)) (-3790 (($ $ $) 31)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ |#1|) 197 (|has| |#1| (-331))) (($ $ $) 133 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 136 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-1068 |#1| |#2| |#3|) (-13 (-1142 |#1|) (-10 -8 (-15 -3691 ($ (-1118 |#2| |#1|))) (-15 -1562 ((-1118 |#2| |#1|) $ (-701))) (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1068)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1118 *4 *3)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-1068 *3 *4 *5)))) (-1562 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1118 *5 *4)) (-5 *1 (-1068 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-1070)) (-14 *6 *4))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3)))) -(-13 (-1142 |#1|) (-10 -8 (-15 -3691 ($ (-1118 |#2| |#1|))) (-15 -1562 ((-1118 |#2| |#1|) $ (-701))) (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) -((-3691 (((-786) $) 22) (($ (-1070)) 24)) (-1405 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 35)) (-1397 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 28) (($ $) 29)) (-4011 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 30)) (-1888 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 32)) (-4135 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 31)) (-1249 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 33)) (-2373 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 34))) -(((-1069) (-13 (-555 (-786)) (-10 -8 (-15 -3691 ($ (-1070))) (-15 -4011 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -4135 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1888 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1249 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1405 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -2373 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1397 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1397 ($ $))))) (T -1069)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1069)))) (-4011 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-4135 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-1888 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-1249 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-1405 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-2373 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-1397 (*1 *1 *1) (-5 *1 (-1069)))) -(-13 (-555 (-786)) (-10 -8 (-15 -3691 ($ (-1070))) (-15 -4011 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -4135 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1888 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1249 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1405 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -2373 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1397 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1397 ($ $)))) -((-3736 (((-107) $ $) NIL)) (-2478 (($ $ (-578 (-786))) 58)) (-2836 (($ $ (-578 (-786))) 56)) (-2011 (((-1053) $) 82)) (-4147 (((-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786)))) $) 85)) (-1394 (((-107) $) 21)) (-2989 (($ $ (-578 (-578 (-786)))) 54) (($ $ (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786))))) 80)) (-2540 (($) 122 T CONST)) (-3204 (((-1154)) 103)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 65) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 71)) (-3634 (($) 92) (($ $) 98)) (-3986 (($ $) 81)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3143 (((-578 $) $) 104)) (-3460 (((-1053) $) 87)) (-3708 (((-1018) $) NIL)) (-2007 (($ $ (-578 (-786))) 57)) (-1248 (((-490) $) 45) (((-1070) $) 46) (((-810 (-501)) $) 75) (((-810 (-346)) $) 73)) (-3691 (((-786) $) 52) (($ (-1053)) 47)) (-1544 (($ $ (-578 (-786))) 59)) (-3671 (((-1053) $) 33) (((-1053) $ (-107)) 34) (((-1154) (-753) $) 35) (((-1154) (-753) $ (-107)) 36)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 48)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 49))) -(((-1070) (-13 (-777) (-556 (-490)) (-751) (-556 (-1070)) (-556 (-810 (-501))) (-556 (-810 (-346))) (-806 (-501)) (-806 (-346)) (-10 -8 (-15 -3634 ($)) (-15 -3634 ($ $)) (-15 -3204 ((-1154))) (-15 -3691 ($ (-1053))) (-15 -3986 ($ $)) (-15 -1394 ((-107) $)) (-15 -4147 ((-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786)))) $)) (-15 -2989 ($ $ (-578 (-578 (-786))))) (-15 -2989 ($ $ (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786)))))) (-15 -2836 ($ $ (-578 (-786)))) (-15 -2478 ($ $ (-578 (-786)))) (-15 -1544 ($ $ (-578 (-786)))) (-15 -2007 ($ $ (-578 (-786)))) (-15 -2011 ((-1053) $)) (-15 -3143 ((-578 $) $)) (-15 -2540 ($) -3897)))) (T -1070)) -((-3634 (*1 *1) (-5 *1 (-1070))) (-3634 (*1 *1 *1) (-5 *1 (-1070))) (-3204 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1070)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1070)))) (-3986 (*1 *1 *1) (-5 *1 (-1070))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1070)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786))))) (-5 *1 (-1070)))) (-2989 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 (-786)))) (-5 *1 (-1070)))) (-2989 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786))))) (-5 *1 (-1070)))) (-2836 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))) (-2478 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))) (-1544 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1070)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1070)))) (-2540 (*1 *1) (-5 *1 (-1070)))) -(-13 (-777) (-556 (-490)) (-751) (-556 (-1070)) (-556 (-810 (-501))) (-556 (-810 (-346))) (-806 (-501)) (-806 (-346)) (-10 -8 (-15 -3634 ($)) (-15 -3634 ($ $)) (-15 -3204 ((-1154))) (-15 -3691 ($ (-1053))) (-15 -3986 ($ $)) (-15 -1394 ((-107) $)) (-15 -4147 ((-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786)))) $)) (-15 -2989 ($ $ (-578 (-578 (-786))))) (-15 -2989 ($ $ (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786)))))) (-15 -2836 ($ $ (-578 (-786)))) (-15 -2478 ($ $ (-578 (-786)))) (-15 -1544 ($ $ (-578 (-786)))) (-15 -2007 ($ $ (-578 (-786)))) (-15 -2011 ((-1053) $)) (-15 -3143 ((-578 $) $)) (-15 -2540 ($) -3897))) -((-1959 (((-1148 |#1|) |#1| (-839)) 16) (((-1148 |#1|) (-578 |#1|)) 20))) -(((-1071 |#1|) (-10 -7 (-15 -1959 ((-1148 |#1|) (-578 |#1|))) (-15 -1959 ((-1148 |#1|) |#1| (-839)))) (-959)) (T -1071)) -((-1959 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-1148 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-959)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-959)) (-5 *2 (-1148 *4)) (-5 *1 (-1071 *4))))) -(-10 -7 (-15 -1959 ((-1148 |#1|) (-578 |#1|))) (-15 -1959 ((-1148 |#1|) |#1| (-839)))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-3503 (($ $ |#1| (-886) $) NIL)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-886)) NIL)) (-2285 (((-886) $) NIL)) (-3515 (($ (-1 (-886) (-886)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-4138 (($ $ (-886) |#1| $) NIL (-12 (|has| (-886) (-123)) (|has| |#1| (-508))))) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-1201 (((-886) $) NIL)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL (|has| |#1| (-508))) (($ |#1|) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-886)) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 9 T CONST)) (-1925 (($) 14 T CONST)) (-3751 (((-107) $ $) 16)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 19)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-1072 |#1|) (-13 (-294 |#1| (-886)) (-10 -8 (IF (|has| |#1| (-508)) (IF (|has| (-886) (-123)) (-15 -4138 ($ $ (-886) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|))) (-959)) (T -1072)) -((-4138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-886)) (-4 *2 (-123)) (-5 *1 (-1072 *3)) (-4 *3 (-508)) (-4 *3 (-959))))) -(-13 (-294 |#1| (-886)) (-10 -8 (IF (|has| |#1| (-508)) (IF (|has| (-886) (-123)) (-15 -4138 ($ $ (-886) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|))) -((-2928 (((-1074) (-1070) $) 24)) (-3408 (($) 28)) (-1601 (((-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-1070) $) 21)) (-3087 (((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")) $) 40) (((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) 41) (((-1154) (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) 42)) (-2450 (((-1154) (-1070)) 57)) (-2843 (((-1154) (-1070) $) 54) (((-1154) (-1070)) 55) (((-1154)) 56)) (-2227 (((-1154) (-1070)) 36)) (-1269 (((-1070)) 35)) (-3122 (($) 33)) (-4010 (((-404) (-1070) (-404) (-1070) $) 44) (((-404) (-578 (-1070)) (-404) (-1070) $) 48) (((-404) (-1070) (-404)) 45) (((-404) (-1070) (-404) (-1070)) 49)) (-2868 (((-1070)) 34)) (-3691 (((-786) $) 27)) (-2244 (((-1154)) 29) (((-1154) (-1070)) 32)) (-3888 (((-578 (-1070)) (-1070) $) 23)) (-3304 (((-1154) (-1070) (-578 (-1070)) $) 37) (((-1154) (-1070) (-578 (-1070))) 38) (((-1154) (-578 (-1070))) 39))) -(((-1073) (-13 (-555 (-786)) (-10 -8 (-15 -3408 ($)) (-15 -2244 ((-1154))) (-15 -2244 ((-1154) (-1070))) (-15 -4010 ((-404) (-1070) (-404) (-1070) $)) (-15 -4010 ((-404) (-578 (-1070)) (-404) (-1070) $)) (-15 -4010 ((-404) (-1070) (-404))) (-15 -4010 ((-404) (-1070) (-404) (-1070))) (-15 -2227 ((-1154) (-1070))) (-15 -2868 ((-1070))) (-15 -1269 ((-1070))) (-15 -3304 ((-1154) (-1070) (-578 (-1070)) $)) (-15 -3304 ((-1154) (-1070) (-578 (-1070)))) (-15 -3304 ((-1154) (-578 (-1070)))) (-15 -3087 ((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")) $)) (-15 -3087 ((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")))) (-15 -3087 ((-1154) (-3 (|:| |fst| (-402)) (|:| -2645 "void")))) (-15 -2843 ((-1154) (-1070) $)) (-15 -2843 ((-1154) (-1070))) (-15 -2843 ((-1154))) (-15 -2450 ((-1154) (-1070))) (-15 -3122 ($)) (-15 -1601 ((-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-1070) $)) (-15 -3888 ((-578 (-1070)) (-1070) $)) (-15 -2928 ((-1074) (-1070) $))))) (T -1073)) -((-3408 (*1 *1) (-5 *1 (-1073))) (-2244 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-4010 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) (-4010 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-404)) (-5 *3 (-578 (-1070))) (-5 *4 (-1070)) (-5 *1 (-1073)))) (-4010 (*1 *2 *3 *2) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) (-4010 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2868 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1073)))) (-1269 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1073)))) (-3304 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3087 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1070)) (-5 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2843 (*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2843 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2843 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3122 (*1 *1) (-5 *1 (-1073))) (-1601 (*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *1 (-1073)))) (-3888 (*1 *2 *3 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1073)) (-5 *3 (-1070)))) (-2928 (*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-1074)) (-5 *1 (-1073))))) -(-13 (-555 (-786)) (-10 -8 (-15 -3408 ($)) (-15 -2244 ((-1154))) (-15 -2244 ((-1154) (-1070))) (-15 -4010 ((-404) (-1070) (-404) (-1070) $)) (-15 -4010 ((-404) (-578 (-1070)) (-404) (-1070) $)) (-15 -4010 ((-404) (-1070) (-404))) (-15 -4010 ((-404) (-1070) (-404) (-1070))) (-15 -2227 ((-1154) (-1070))) (-15 -2868 ((-1070))) (-15 -1269 ((-1070))) (-15 -3304 ((-1154) (-1070) (-578 (-1070)) $)) (-15 -3304 ((-1154) (-1070) (-578 (-1070)))) (-15 -3304 ((-1154) (-578 (-1070)))) (-15 -3087 ((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")) $)) (-15 -3087 ((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")))) (-15 -3087 ((-1154) (-3 (|:| |fst| (-402)) (|:| -2645 "void")))) (-15 -2843 ((-1154) (-1070) $)) (-15 -2843 ((-1154) (-1070))) (-15 -2843 ((-1154))) (-15 -2450 ((-1154) (-1070))) (-15 -3122 ($)) (-15 -1601 ((-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-1070) $)) (-15 -3888 ((-578 (-1070)) (-1070) $)) (-15 -2928 ((-1074) (-1070) $)))) -((-3801 (((-578 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501))))))))) $) 57)) (-1569 (((-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501)))))))) (-402) $) 40)) (-2488 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-404))))) 15)) (-2450 (((-1154) $) 65)) (-2240 (((-578 (-1070)) $) 20)) (-3831 (((-1003) $) 53)) (-2215 (((-404) (-1070) $) 27)) (-3078 (((-578 (-1070)) $) 30)) (-3122 (($) 17)) (-4010 (((-404) (-578 (-1070)) (-404) $) 25) (((-404) (-1070) (-404) $) 24)) (-3691 (((-786) $) 9) (((-1077 (-1070) (-404)) $) 11))) -(((-1074) (-13 (-555 (-786)) (-10 -8 (-15 -3691 ((-1077 (-1070) (-404)) $)) (-15 -3122 ($)) (-15 -4010 ((-404) (-578 (-1070)) (-404) $)) (-15 -4010 ((-404) (-1070) (-404) $)) (-15 -2215 ((-404) (-1070) $)) (-15 -2240 ((-578 (-1070)) $)) (-15 -1569 ((-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501)))))))) (-402) $)) (-15 -3078 ((-578 (-1070)) $)) (-15 -3801 ((-578 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501))))))))) $)) (-15 -3831 ((-1003) $)) (-15 -2450 ((-1154) $)) (-15 -2488 ($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-404))))))))) (T -1074)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-1077 (-1070) (-404))) (-5 *1 (-1074)))) (-3122 (*1 *1) (-5 *1 (-1074))) (-4010 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-404)) (-5 *3 (-578 (-1070))) (-5 *1 (-1074)))) (-4010 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1074)))) (-2215 (*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-404)) (-5 *1 (-1074)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1074)))) (-1569 (*1 *2 *3 *1) (-12 (-5 *3 (-402)) (-5 *2 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501))))))))) (-5 *1 (-1074)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1074)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501)))))))))) (-5 *1 (-1074)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-1074)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1074)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-404))))) (-5 *1 (-1074))))) -(-13 (-555 (-786)) (-10 -8 (-15 -3691 ((-1077 (-1070) (-404)) $)) (-15 -3122 ($)) (-15 -4010 ((-404) (-578 (-1070)) (-404) $)) (-15 -4010 ((-404) (-1070) (-404) $)) (-15 -2215 ((-404) (-1070) $)) (-15 -2240 ((-578 (-1070)) $)) (-15 -1569 ((-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501)))))))) (-402) $)) (-15 -3078 ((-578 (-1070)) $)) (-15 -3801 ((-578 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501))))))))) $)) (-15 -3831 ((-1003) $)) (-15 -2450 ((-1154) $)) (-15 -2488 ($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-404)))))))) -((-2777 (((-578 (-578 (-866 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070))) 55)) (-2778 (((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|)))) 66) (((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|))) 62) (((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070)) 67) (((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070)) 61) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|))))) 91) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|)))) 90) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070))) 92) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|))) (-578 (-1070))) 89))) -(((-1075 |#1|) (-10 -7 (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|))))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|)))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|))))) (-15 -2777 ((-578 (-578 (-866 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070))))) (-508)) (T -1075)) -((-2777 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-866 *5)))) (-5 *1 (-1075 *5)))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *4))))) (-5 *1 (-1075 *4)) (-5 *3 (-262 (-375 (-866 *4)))))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *4))))) (-5 *1 (-1075 *4)) (-5 *3 (-375 (-866 *4))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *5))))) (-5 *1 (-1075 *5)) (-5 *3 (-262 (-375 (-866 *5)))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *5))))) (-5 *1 (-1075 *5)) (-5 *3 (-375 (-866 *5))))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-1075 *4)) (-5 *3 (-578 (-262 (-375 (-866 *4))))))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-578 (-375 (-866 *4)))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-1075 *4)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-1075 *5)) (-5 *3 (-578 (-262 (-375 (-866 *5))))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-1075 *5))))) -(-10 -7 (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|))))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|)))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|))))) (-15 -2777 ((-578 (-578 (-866 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070))))) -((-2092 (((-578 (-578 |#1|)) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|)))) 38)) (-3029 (((-578 (-578 (-578 |#1|))) (-578 (-578 |#1|))) 24)) (-1504 (((-1078 (-578 |#1|)) (-578 |#1|)) 34)) (-1672 (((-578 (-578 |#1|)) (-578 |#1|)) 30)) (-4141 (((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 (-578 (-578 |#1|)))) 37)) (-1252 (((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 |#1|) (-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|)))) 36)) (-2260 (((-578 (-578 |#1|)) (-578 (-578 |#1|))) 28)) (-1616 (((-578 |#1|) (-578 |#1|)) 31)) (-2053 (((-578 (-578 (-578 |#1|))) (-578 |#1|) (-578 (-578 (-578 |#1|)))) 18)) (-2275 (((-578 (-578 (-578 |#1|))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 (-578 |#1|)))) 15)) (-1486 (((-2 (|:| |fs| (-107)) (|:| |sd| (-578 |#1|)) (|:| |td| (-578 (-578 |#1|)))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 |#1|))) 13)) (-2065 (((-578 (-578 |#1|)) (-578 (-578 (-578 |#1|)))) 39)) (-3075 (((-578 (-578 |#1|)) (-1078 (-578 |#1|))) 41))) -(((-1076 |#1|) (-10 -7 (-15 -1486 ((-2 (|:| |fs| (-107)) (|:| |sd| (-578 |#1|)) (|:| |td| (-578 (-578 |#1|)))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 |#1|)))) (-15 -2275 ((-578 (-578 (-578 |#1|))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -2053 ((-578 (-578 (-578 |#1|))) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -2092 ((-578 (-578 |#1|)) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -2065 ((-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -3075 ((-578 (-578 |#1|)) (-1078 (-578 |#1|)))) (-15 -3029 ((-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)))) (-15 -1504 ((-1078 (-578 |#1|)) (-578 |#1|))) (-15 -2260 ((-578 (-578 |#1|)) (-578 (-578 |#1|)))) (-15 -1672 ((-578 (-578 |#1|)) (-578 |#1|))) (-15 -1616 ((-578 |#1|) (-578 |#1|))) (-15 -1252 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 |#1|) (-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))))) (-15 -4141 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 (-578 (-578 |#1|)))))) (-777)) (T -1076)) -((-4141 (*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-2 (|:| |f1| (-578 *4)) (|:| |f2| (-578 (-578 (-578 *4)))) (|:| |f3| (-578 (-578 *4))) (|:| |f4| (-578 (-578 (-578 *4)))))) (-5 *1 (-1076 *4)) (-5 *3 (-578 (-578 (-578 *4)))))) (-1252 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-777)) (-5 *3 (-578 *6)) (-5 *5 (-578 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-578 *5)) (|:| |f3| *5) (|:| |f4| (-578 *5)))) (-5 *1 (-1076 *6)) (-5 *4 (-578 *5)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-1076 *3)))) (-1672 (*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4)) (-5 *3 (-578 *4)))) (-2260 (*1 *2 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-777)) (-5 *1 (-1076 *3)))) (-1504 (*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-1078 (-578 *4))) (-5 *1 (-1076 *4)) (-5 *3 (-578 *4)))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-578 (-578 (-578 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-578 (-578 *4))))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-1078 (-578 *4))) (-4 *4 (-777)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4)) (-4 *4 (-777)))) (-2092 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-4 *4 (-777)) (-5 *1 (-1076 *4)))) (-2053 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-578 *4)) (-4 *4 (-777)) (-5 *1 (-1076 *4)))) (-2275 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-578 *5)) (-4 *5 (-777)) (-5 *1 (-1076 *5)))) (-1486 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-777)) (-5 *4 (-578 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-578 *4)))) (-5 *1 (-1076 *6)) (-5 *5 (-578 *4))))) -(-10 -7 (-15 -1486 ((-2 (|:| |fs| (-107)) (|:| |sd| (-578 |#1|)) (|:| |td| (-578 (-578 |#1|)))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 |#1|)))) (-15 -2275 ((-578 (-578 (-578 |#1|))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -2053 ((-578 (-578 (-578 |#1|))) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -2092 ((-578 (-578 |#1|)) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -2065 ((-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -3075 ((-578 (-578 |#1|)) (-1078 (-578 |#1|)))) (-15 -3029 ((-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)))) (-15 -1504 ((-1078 (-578 |#1|)) (-578 |#1|))) (-15 -2260 ((-578 (-578 |#1|)) (-578 (-578 |#1|)))) (-15 -1672 ((-578 (-578 |#1|)) (-578 |#1|))) (-15 -1616 ((-578 |#1|) (-578 |#1|))) (-15 -1252 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 |#1|) (-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))))) (-15 -4141 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 (-578 (-578 |#1|)))))) -((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) NIL)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) NIL)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-1077 |#1| |#2|) (-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) (-1001) (-1001)) (T -1077)) -NIL -(-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) -((-3828 (($ (-578 (-578 |#1|))) 9)) (-2237 (((-578 (-578 |#1|)) $) 10)) (-3691 (((-786) $) 25))) -(((-1078 |#1|) (-10 -8 (-15 -3828 ($ (-578 (-578 |#1|)))) (-15 -2237 ((-578 (-578 |#1|)) $)) (-15 -3691 ((-786) $))) (-1001)) (T -1078)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1078 *3)) (-4 *3 (-1001)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 *3))) (-5 *1 (-1078 *3)) (-4 *3 (-1001)))) (-3828 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-1078 *3))))) -(-10 -8 (-15 -3828 ($ (-578 (-578 |#1|)))) (-15 -2237 ((-578 (-578 |#1|)) $)) (-15 -3691 ((-786) $))) -((-1501 ((|#1| (-578 |#1|)) 32)) (-2670 ((|#1| |#1| (-501)) 18)) (-3432 (((-1064 |#1|) |#1| (-839)) 15))) -(((-1079 |#1|) (-10 -7 (-15 -1501 (|#1| (-578 |#1|))) (-15 -3432 ((-1064 |#1|) |#1| (-839))) (-15 -2670 (|#1| |#1| (-501)))) (-331)) (T -1079)) -((-2670 (*1 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-1079 *2)) (-4 *2 (-331)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-1064 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-331)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-1079 *2)) (-4 *2 (-331))))) -(-10 -7 (-15 -1501 (|#1| (-578 |#1|))) (-15 -3432 ((-1064 |#1|) |#1| (-839))) (-15 -2670 (|#1| |#1| (-501)))) -((-3621 (($) 10) (($ (-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)))) 14)) (-2256 (($ (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) 60) (($ (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) 39) (((-578 |#3|) $) 41)) (-2519 (($ (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1212 (($ (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1328 (((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) 53)) (-4114 (($ (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) 16)) (-2658 (((-578 |#2|) $) 19)) (-2852 (((-107) |#2| $) 58)) (-2520 (((-3 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) "failed") (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) 57)) (-1251 (((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) 62)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 65)) (-4137 (((-578 |#3|) $) 43)) (-2007 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) NIL) (((-701) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) NIL) (((-701) |#3| $) NIL) (((-701) (-1 (-107) |#3|) $) 66)) (-3691 (((-786) $) 27)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 64)) (-3751 (((-107) $ $) 48))) -(((-1080 |#1| |#2| |#3|) (-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -1212 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3621 (|#1| (-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))))) (-15 -3621 (|#1|)) (-15 -1212 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2519 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#3|) |#1|)) (-15 -2732 ((-578 |#3|) |#1|)) (-15 -3713 ((-701) |#3| |#1|)) (-15 -2007 (|#3| |#1| |#2| |#3|)) (-15 -2007 (|#3| |#1| |#2|)) (-15 -4137 ((-578 |#3|) |#1|)) (-15 -2852 ((-107) |#2| |#1|)) (-15 -2658 ((-578 |#2|) |#1|)) (-15 -2256 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2256 (|#1| (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2256 (|#1| (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -2520 ((-3 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) "failed") (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1328 ((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -4114 (|#1| (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -1251 ((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -3713 ((-701) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -2732 ((-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -3713 ((-701) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2369 ((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1200 ((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2519 (|#1| (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1212 (|#1| (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|))) (-1081 |#2| |#3|) (-1001) (-1001)) (T -1080)) -NIL -(-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -1212 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3621 (|#1| (-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))))) (-15 -3621 (|#1|)) (-15 -1212 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2519 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#3|) |#1|)) (-15 -2732 ((-578 |#3|) |#1|)) (-15 -3713 ((-701) |#3| |#1|)) (-15 -2007 (|#3| |#1| |#2| |#3|)) (-15 -2007 (|#3| |#1| |#2|)) (-15 -4137 ((-578 |#3|) |#1|)) (-15 -2852 ((-107) |#2| |#1|)) (-15 -2658 ((-578 |#2|) |#1|)) (-15 -2256 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2256 (|#1| (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2256 (|#1| (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -2520 ((-3 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) "failed") (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1328 ((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -4114 (|#1| (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -1251 ((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -3713 ((-701) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -2732 ((-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -3713 ((-701) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2369 ((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1200 ((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2519 (|#1| (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1212 (|#1| (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|))) -((-3736 (((-107) $ $) 18 (-1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-3621 (($) 72) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 71)) (-1991 (((-1154) $ |#1| |#1|) 99 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#2| $ |#1| |#2|) 73)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 55 (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) 61)) (-2540 (($) 7 T CONST)) (-2673 (($ $) 58 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 46 (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 62)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 54 (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 56 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 53 (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 52 (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) 88)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 30 (|has| $ (-6 -4167))) (((-578 |#2|) $) 79 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3627 ((|#1| $) 96 (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 29 (|has| $ (-6 -4167))) (((-578 |#2|) $) 80 (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-1522 ((|#1| $) 95 (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 34 (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (-1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1500 (((-578 |#1|) $) 63)) (-3576 (((-107) |#1| $) 64)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 39)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 40)) (-2658 (((-578 |#1|) $) 93)) (-2852 (((-107) |#1| $) 92)) (-3708 (((-1018) $) 21 (-1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1190 ((|#2| $) 97 (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 51)) (-3084 (($ $ |#2|) 98 (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 41)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 32 (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) 26 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 25 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 24 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 23 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) 86 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) 84 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) 83 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) 91)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3013 (($) 49) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 48)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 31 (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-701) |#2| $) 81 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4167)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 50)) (-3691 (((-786) $) 20 (-1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 42)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 33 (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (-1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-1081 |#1| |#2|) (-1180) (-1001) (-1001)) (T -1081)) -((-3754 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) (-3621 (*1 *1) (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-3621 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 *3) (|:| -2922 *4)))) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *1 (-1081 *3 *4)))) (-1212 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1081 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001))))) -(-13 (-552 |t#1| |t#2|) (-548 |t#1| |t#2|) (-10 -8 (-15 -3754 (|t#2| $ |t#1| |t#2|)) (-15 -3621 ($)) (-15 -3621 ($ (-578 (-2 (|:| -3626 |t#1|) (|:| -2922 |t#2|))))) (-15 -1212 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-33) . T) ((-102 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-97) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-555 (-786)) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-138 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-556 (-490)) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))) ((-202 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-208 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-256 |#1| |#2|) . T) ((-258 |#1| |#2|) . T) ((-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-278 |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-454 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-454 |#2|) . T) ((-548 |#1| |#2|) . T) ((-476 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-476 |#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-552 |#1| |#2|) . T) ((-1001) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-1104) . T)) -((-3353 (((-107)) 24)) (-1211 (((-1154) (-1053)) 26)) (-1391 (((-107)) 36)) (-2834 (((-1154)) 34)) (-1227 (((-1154) (-1053) (-1053)) 25)) (-3230 (((-107)) 37)) (-4114 (((-1154) |#1| |#2|) 44)) (-3932 (((-1154)) 20)) (-2299 (((-3 |#2| "failed") |#1|) 42)) (-1606 (((-1154)) 35))) -(((-1082 |#1| |#2|) (-10 -7 (-15 -3932 ((-1154))) (-15 -1227 ((-1154) (-1053) (-1053))) (-15 -1211 ((-1154) (-1053))) (-15 -2834 ((-1154))) (-15 -1606 ((-1154))) (-15 -3353 ((-107))) (-15 -1391 ((-107))) (-15 -3230 ((-107))) (-15 -2299 ((-3 |#2| "failed") |#1|)) (-15 -4114 ((-1154) |#1| |#2|))) (-1001) (-1001)) (T -1082)) -((-4114 (*1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-2299 (*1 *2 *3) (|partial| -12 (-4 *2 (-1001)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1001)))) (-3230 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-1391 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-3353 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-1606 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-2834 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-1211 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)))) (-1227 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)))) (-3932 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001))))) -(-10 -7 (-15 -3932 ((-1154))) (-15 -1227 ((-1154) (-1053) (-1053))) (-15 -1211 ((-1154) (-1053))) (-15 -2834 ((-1154))) (-15 -1606 ((-1154))) (-15 -3353 ((-107))) (-15 -1391 ((-107))) (-15 -3230 ((-107))) (-15 -2299 ((-3 |#2| "failed") |#1|)) (-15 -4114 ((-1154) |#1| |#2|))) -((-2327 (((-1053) (-1053)) 18)) (-3688 (((-50) (-1053)) 21))) -(((-1083) (-10 -7 (-15 -3688 ((-50) (-1053))) (-15 -2327 ((-1053) (-1053))))) (T -1083)) -((-2327 (*1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1083)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-1083))))) -(-10 -7 (-15 -3688 ((-50) (-1053))) (-15 -2327 ((-1053) (-1053)))) -((-3736 (((-107) $ $) NIL)) (-3006 (((-578 (-1053)) $) 33)) (-2360 (((-578 (-1053)) $ (-578 (-1053))) 36)) (-4103 (((-578 (-1053)) $ (-578 (-1053))) 35)) (-3232 (((-578 (-1053)) $ (-578 (-1053))) 37)) (-3615 (((-578 (-1053)) $) 32)) (-3634 (($) 22)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2680 (((-578 (-1053)) $) 34)) (-2125 (((-1154) $ (-501)) 29) (((-1154) $) 30)) (-1248 (($ (-786) (-501)) 26) (($ (-786) (-501) (-786)) NIL)) (-3691 (((-786) $) 39) (($ (-786)) 24)) (-3751 (((-107) $ $) NIL))) -(((-1084) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-786))) (-15 -1248 ($ (-786) (-501))) (-15 -1248 ($ (-786) (-501) (-786))) (-15 -2125 ((-1154) $ (-501))) (-15 -2125 ((-1154) $)) (-15 -2680 ((-578 (-1053)) $)) (-15 -3006 ((-578 (-1053)) $)) (-15 -3634 ($)) (-15 -3615 ((-578 (-1053)) $)) (-15 -3232 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -2360 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -4103 ((-578 (-1053)) $ (-578 (-1053))))))) (T -1084)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-1084)))) (-1248 (*1 *1 *2 *3) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-1084)))) (-1248 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-1084)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1084)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1084)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))) (-3634 (*1 *1) (-5 *1 (-1084))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))) (-3232 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))) (-2360 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))) (-4103 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084))))) -(-13 (-1001) (-10 -8 (-15 -3691 ($ (-786))) (-15 -1248 ($ (-786) (-501))) (-15 -1248 ($ (-786) (-501) (-786))) (-15 -2125 ((-1154) $ (-501))) (-15 -2125 ((-1154) $)) (-15 -2680 ((-578 (-1053)) $)) (-15 -3006 ((-578 (-1053)) $)) (-15 -3634 ($)) (-15 -3615 ((-578 (-1053)) $)) (-15 -3232 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -2360 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -4103 ((-578 (-1053)) $ (-578 (-1053)))))) -((-3691 (((-1084) |#1|) 11))) -(((-1085 |#1|) (-10 -7 (-15 -3691 ((-1084) |#1|))) (-1001)) (T -1085)) -((-3691 (*1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *1 (-1085 *3)) (-4 *3 (-1001))))) -(-10 -7 (-15 -3691 ((-1084) |#1|))) -((-3736 (((-107) $ $) NIL)) (-4123 (((-1053) $ (-1053)) 15) (((-1053) $) 14)) (-2186 (((-1053) $ (-1053)) 13)) (-1998 (($ $ (-1053)) NIL)) (-3951 (((-3 (-1053) "failed") $) 11)) (-3526 (((-1053) $) 8)) (-1225 (((-3 (-1053) "failed") $) 12)) (-3505 (((-1053) $) 9)) (-2342 (($ (-356)) NIL) (($ (-356) (-1053)) NIL)) (-3986 (((-356) $) NIL)) (-3460 (((-1053) $) NIL)) (-3947 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3451 (((-107) $) 17)) (-3691 (((-786) $) NIL)) (-3371 (($ $) NIL)) (-3751 (((-107) $ $) NIL))) -(((-1086) (-13 (-333 (-356) (-1053)) (-10 -8 (-15 -4123 ((-1053) $ (-1053))) (-15 -4123 ((-1053) $)) (-15 -3526 ((-1053) $)) (-15 -3951 ((-3 (-1053) "failed") $)) (-15 -1225 ((-3 (-1053) "failed") $)) (-15 -3451 ((-107) $))))) (T -1086)) -((-4123 (*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1086)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1086)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1086)))) (-3951 (*1 *2 *1) (|partial| -12 (-5 *2 (-1053)) (-5 *1 (-1086)))) (-1225 (*1 *2 *1) (|partial| -12 (-5 *2 (-1053)) (-5 *1 (-1086)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1086))))) -(-13 (-333 (-356) (-1053)) (-10 -8 (-15 -4123 ((-1053) $ (-1053))) (-15 -4123 ((-1053) $)) (-15 -3526 ((-1053) $)) (-15 -3951 ((-3 (-1053) "failed") $)) (-15 -1225 ((-3 (-1053) "failed") $)) (-15 -3451 ((-107) $)))) -((-1417 (((-3 (-501) "failed") |#1|) 19)) (-2686 (((-3 (-501) "failed") |#1|) 13)) (-2600 (((-501) (-1053)) 28))) -(((-1087 |#1|) (-10 -7 (-15 -1417 ((-3 (-501) "failed") |#1|)) (-15 -2686 ((-3 (-501) "failed") |#1|)) (-15 -2600 ((-501) (-1053)))) (-959)) (T -1087)) -((-2600 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-501)) (-5 *1 (-1087 *4)) (-4 *4 (-959)))) (-2686 (*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-1087 *3)) (-4 *3 (-959)))) (-1417 (*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-1087 *3)) (-4 *3 (-959))))) -(-10 -7 (-15 -1417 ((-3 (-501) "failed") |#1|)) (-15 -2686 ((-3 (-501) "failed") |#1|)) (-15 -2600 ((-501) (-1053)))) -((-3673 (((-1031 (-199))) 8))) -(((-1088) (-10 -7 (-15 -3673 ((-1031 (-199)))))) (T -1088)) -((-3673 (*1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1088))))) -(-10 -7 (-15 -3673 ((-1031 (-199))))) -((-2003 (($) 11)) (-4003 (($ $) 35)) (-3995 (($ $) 33)) (-3952 (($ $) 25)) (-4013 (($ $) 17)) (-3550 (($ $) 15)) (-4008 (($ $) 19)) (-3961 (($ $) 30)) (-3999 (($ $) 34)) (-3955 (($ $) 29))) -(((-1089 |#1|) (-10 -8 (-15 -2003 (|#1|)) (-15 -4003 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3955 (|#1| |#1|))) (-1090)) (T -1089)) -NIL -(-10 -8 (-15 -2003 (|#1|)) (-15 -4003 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3955 (|#1| |#1|))) -((-3978 (($ $) 26)) (-3937 (($ $) 11)) (-3970 (($ $) 27)) (-3929 (($ $) 10)) (-3984 (($ $) 28)) (-3945 (($ $) 9)) (-2003 (($) 16)) (-1635 (($ $) 19)) (-1989 (($ $) 18)) (-3991 (($ $) 29)) (-3949 (($ $) 8)) (-3981 (($ $) 30)) (-3940 (($ $) 7)) (-3975 (($ $) 31)) (-3933 (($ $) 6)) (-4003 (($ $) 20)) (-3958 (($ $) 32)) (-3995 (($ $) 21)) (-3952 (($ $) 33)) (-4013 (($ $) 22)) (-3964 (($ $) 34)) (-3550 (($ $) 23)) (-3967 (($ $) 35)) (-4008 (($ $) 24)) (-3961 (($ $) 36)) (-3999 (($ $) 25)) (-3955 (($ $) 37)) (** (($ $ $) 17))) -(((-1090) (-1180)) (T -1090)) -((-2003 (*1 *1) (-4 *1 (-1090)))) -(-13 (-1093) (-91) (-456) (-34) (-254) (-10 -8 (-15 -2003 ($)))) -(((-34) . T) ((-91) . T) ((-254) . T) ((-456) . T) ((-1093) . T)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) 17)) (-3645 (($ |#1| (-578 $)) 23) (($ (-578 |#1|)) 27) (($ |#1|) 25)) (-2997 (((-107) $ (-701)) 46)) (-1594 ((|#1| $ |#1|) 14 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 13 (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-2732 (((-578 |#1|) $) 50 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 41)) (-3201 (((-107) $ $) 32 (|has| |#1| (-1001)))) (-3379 (((-107) $ (-701)) 39)) (-3380 (((-578 |#1|) $) 51 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 49 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 22)) (-3155 (((-107) $ (-701)) 38)) (-3386 (((-578 |#1|) $) 36)) (-2341 (((-107) $) 35)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 48 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 73)) (-1407 (((-107) $) 9)) (-3122 (($) 10)) (-2007 ((|#1| $ "value") NIL)) (-1932 (((-501) $ $) 31)) (-1608 (((-578 $) $) 57)) (-3242 (((-107) $ $) 75)) (-3390 (((-578 $) $) 70)) (-2128 (($ $) 71)) (-2622 (((-107) $) 54)) (-3713 (((-701) (-1 (-107) |#1|) $) 20 (|has| $ (-6 -4167))) (((-701) |#1| $) 16 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 56)) (-3691 (((-786) $) 59 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 12)) (-2970 (((-107) $ $) 29 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 47 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 28 (|has| |#1| (-1001)))) (-3581 (((-701) $) 37 (|has| $ (-6 -4167))))) -(((-1091 |#1|) (-13 (-924 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -3645 ($ |#1| (-578 $))) (-15 -3645 ($ (-578 |#1|))) (-15 -3645 ($ |#1|)) (-15 -2622 ((-107) $)) (-15 -2128 ($ $)) (-15 -3390 ((-578 $) $)) (-15 -3242 ((-107) $ $)) (-15 -1608 ((-578 $) $)))) (-1001)) (T -1091)) -((-2622 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091 *3)) (-4 *3 (-1001)))) (-3645 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-1091 *2))) (-5 *1 (-1091 *2)) (-4 *2 (-1001)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-1091 *3)))) (-3645 (*1 *1 *2) (-12 (-5 *1 (-1091 *2)) (-4 *2 (-1001)))) (-2128 (*1 *1 *1) (-12 (-5 *1 (-1091 *2)) (-4 *2 (-1001)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-578 (-1091 *3))) (-5 *1 (-1091 *3)) (-4 *3 (-1001)))) (-3242 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091 *3)) (-4 *3 (-1001)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-578 (-1091 *3))) (-5 *1 (-1091 *3)) (-4 *3 (-1001))))) -(-13 (-924 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -3645 ($ |#1| (-578 $))) (-15 -3645 ($ (-578 |#1|))) (-15 -3645 ($ |#1|)) (-15 -2622 ((-107) $)) (-15 -2128 ($ $)) (-15 -3390 ((-578 $) $)) (-15 -3242 ((-107) $ $)) (-15 -1608 ((-578 $) $)))) -((-3937 (($ $) 15)) (-3945 (($ $) 12)) (-3949 (($ $) 10)) (-3940 (($ $) 17))) -(((-1092 |#1|) (-10 -8 (-15 -3940 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3937 (|#1| |#1|))) (-1093)) (T -1092)) -NIL -(-10 -8 (-15 -3940 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3937 (|#1| |#1|))) -((-3937 (($ $) 11)) (-3929 (($ $) 10)) (-3945 (($ $) 9)) (-3949 (($ $) 8)) (-3940 (($ $) 7)) (-3933 (($ $) 6))) -(((-1093) (-1180)) (T -1093)) -((-3937 (*1 *1 *1) (-4 *1 (-1093))) (-3929 (*1 *1 *1) (-4 *1 (-1093))) (-3945 (*1 *1 *1) (-4 *1 (-1093))) (-3949 (*1 *1 *1) (-4 *1 (-1093))) (-3940 (*1 *1 *1) (-4 *1 (-1093))) (-3933 (*1 *1 *1) (-4 *1 (-1093)))) -(-13 (-10 -8 (-15 -3933 ($ $)) (-15 -3940 ($ $)) (-15 -3949 ($ $)) (-15 -3945 ($ $)) (-15 -3929 ($ $)) (-15 -3937 ($ $)))) -((-3471 ((|#2| |#2|) 85)) (-4133 (((-107) |#2|) 25)) (-3749 ((|#2| |#2|) 29)) (-3755 ((|#2| |#2|) 31)) (-2209 ((|#2| |#2| (-1070)) 79) ((|#2| |#2|) 80)) (-3585 (((-152 |#2|) |#2|) 27)) (-1433 ((|#2| |#2| (-1070)) 81) ((|#2| |#2|) 82))) -(((-1094 |#1| |#2|) (-10 -7 (-15 -2209 (|#2| |#2|)) (-15 -2209 (|#2| |#2| (-1070))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1070))) (-15 -3471 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -4133 ((-107) |#2|)) (-15 -3585 ((-152 |#2|) |#2|))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -1094)) -((-3585 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-152 *3)) (-5 *1 (-1094 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-4133 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-107)) (-5 *1 (-1094 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-3755 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) (-1433 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-1433 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) (-2209 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3)))))) -(-10 -7 (-15 -2209 (|#2| |#2|)) (-15 -2209 (|#2| |#2| (-1070))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1070))) (-15 -3471 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -4133 ((-107) |#2|)) (-15 -3585 ((-152 |#2|) |#2|))) -((-1582 ((|#4| |#4| |#1|) 27)) (-3957 ((|#4| |#4| |#1|) 28))) -(((-1095 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1582 (|#4| |#4| |#1|)) (-15 -3957 (|#4| |#4| |#1|))) (-508) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|)) (T -1095)) -((-3957 (*1 *2 *2 *3) (-12 (-4 *3 (-508)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-1582 (*1 *2 *2 *3) (-12 (-4 *3 (-508)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5))))) -(-10 -7 (-15 -1582 (|#4| |#4| |#1|)) (-15 -3957 (|#4| |#4| |#1|))) -((-3234 ((|#2| |#2|) 132)) (-2385 ((|#2| |#2|) 129)) (-2380 ((|#2| |#2|) 120)) (-1739 ((|#2| |#2|) 117)) (-3022 ((|#2| |#2|) 125)) (-2641 ((|#2| |#2|) 113)) (-2076 ((|#2| |#2|) 42)) (-1951 ((|#2| |#2|) 93)) (-1780 ((|#2| |#2|) 73)) (-2740 ((|#2| |#2|) 127)) (-1203 ((|#2| |#2|) 115)) (-2181 ((|#2| |#2|) 137)) (-3497 ((|#2| |#2|) 135)) (-3616 ((|#2| |#2|) 136)) (-2461 ((|#2| |#2|) 134)) (-2310 ((|#2| |#2|) 146)) (-1434 ((|#2| |#2|) 30 (-12 (|has| |#2| (-556 (-810 |#1|))) (|has| |#2| (-806 |#1|)) (|has| |#1| (-556 (-810 |#1|))) (|has| |#1| (-806 |#1|))))) (-3541 ((|#2| |#2|) 74)) (-3859 ((|#2| |#2|) 138)) (-1967 ((|#2| |#2|) 139)) (-3366 ((|#2| |#2|) 126)) (-2080 ((|#2| |#2|) 114)) (-2764 ((|#2| |#2|) 133)) (-1941 ((|#2| |#2|) 131)) (-2784 ((|#2| |#2|) 121)) (-3102 ((|#2| |#2|) 119)) (-3502 ((|#2| |#2|) 123)) (-2460 ((|#2| |#2|) 111))) -(((-1096 |#1| |#2|) (-10 -7 (-15 -1967 (|#2| |#2|)) (-15 -1780 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -1951 (|#2| |#2|)) (-15 -2076 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2764 (|#2| |#2|)) (-15 -2080 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -1203 (|#2| |#2|)) (-15 -2740 (|#2| |#2|)) (-15 -2641 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -3234 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1941 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3616 (|#2| |#2|)) (-15 -2181 (|#2| |#2|)) (IF (|has| |#1| (-806 |#1|)) (IF (|has| |#1| (-556 (-810 |#1|))) (IF (|has| |#2| (-556 (-810 |#1|))) (IF (|has| |#2| (-806 |#1|)) (-15 -1434 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-13 (-777) (-419)) (-13 (-389 |#1|) (-1090))) (T -1096)) -((-1434 (*1 *2 *2) (-12 (-4 *3 (-556 (-810 *3))) (-4 *3 (-806 *3)) (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-556 (-810 *3))) (-4 *2 (-806 *3)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2181 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3616 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2461 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1941 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3102 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2385 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1739 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3234 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3022 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2641 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2740 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1203 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3366 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2080 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2076 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1951 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1780 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1967 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(-10 -7 (-15 -1967 (|#2| |#2|)) (-15 -1780 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -1951 (|#2| |#2|)) (-15 -2076 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2764 (|#2| |#2|)) (-15 -2080 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -1203 (|#2| |#2|)) (-15 -2740 (|#2| |#2|)) (-15 -2641 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -3234 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1941 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3616 (|#2| |#2|)) (-15 -2181 (|#2| |#2|)) (IF (|has| |#1| (-806 |#1|)) (IF (|has| |#1| (-556 (-810 |#1|))) (IF (|has| |#2| (-556 (-810 |#1|))) (IF (|has| |#2| (-806 |#1|)) (-15 -1434 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-1070)) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3430 (((-866 |#1|) $ (-701)) 16) (((-866 |#1|) $ (-701) (-701)) NIL)) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $ (-1070)) NIL) (((-701) $ (-1070) (-701)) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2706 (((-107) $) NIL)) (-3787 (($ $ (-578 (-1070)) (-578 (-487 (-1070)))) NIL) (($ $ (-1070) (-487 (-1070))) NIL) (($ |#1| (-487 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3188 (($ $ (-1070)) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3517 (($ (-1 $) (-1070) |#1|) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3718 (($ $ (-701)) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (($ $ (-1070) $) NIL) (($ $ (-578 (-1070)) (-578 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL)) (-2596 (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-1201 (((-487 (-1070)) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-508))) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-1070)) NIL) (($ (-866 |#1|)) NIL)) (-2495 ((|#1| $ (-487 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (((-866 |#1|) $ (-701)) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1097 |#1|) (-13 (-671 |#1| (-1070)) (-10 -8 (-15 -2495 ((-866 |#1|) $ (-701))) (-15 -3691 ($ (-1070))) (-15 -3691 ($ (-866 |#1|))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $ (-1070) |#1|)) (-15 -3517 ($ (-1 $) (-1070) |#1|))) |noBranch|))) (-959)) (T -1097)) -((-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-866 *4)) (-5 *1 (-1097 *4)) (-4 *4 (-959)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1097 *3)) (-4 *3 (-959)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-5 *1 (-1097 *3)))) (-3188 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *1 (-1097 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)))) (-3517 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1097 *4))) (-5 *3 (-1070)) (-5 *1 (-1097 *4)) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959))))) -(-13 (-671 |#1| (-1070)) (-10 -8 (-15 -2495 ((-866 |#1|) $ (-701))) (-15 -3691 ($ (-1070))) (-15 -3691 ($ (-866 |#1|))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $ (-1070) |#1|)) (-15 -3517 ($ (-1 $) (-1070) |#1|))) |noBranch|))) -((-1549 (((-107) |#5| $) 59) (((-107) $) 101)) (-2599 ((|#5| |#5| $) 74)) (-1987 (($ (-1 (-107) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-4113 (((-578 |#5|) (-578 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 72)) (-3765 (((-3 $ "failed") (-578 |#5|)) 125)) (-1199 (((-3 $ "failed") $) 111)) (-1778 ((|#5| |#5| $) 93)) (-2130 (((-107) |#5| $ (-1 (-107) |#5| |#5|)) 30)) (-1379 ((|#5| |#5| $) 97)) (-3547 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 68)) (-1577 (((-2 (|:| -2109 (-578 |#5|)) (|:| -2342 (-578 |#5|))) $) 54)) (-1964 (((-107) |#5| $) 57) (((-107) $) 102)) (-2361 ((|#4| $) 107)) (-1383 (((-3 |#5| "failed") $) 109)) (-3574 (((-578 |#5|) $) 48)) (-1590 (((-107) |#5| $) 66) (((-107) $) 106)) (-1762 ((|#5| |#5| $) 80)) (-3523 (((-107) $ $) 26)) (-2667 (((-107) |#5| $) 62) (((-107) $) 104)) (-3618 ((|#5| |#5| $) 77)) (-1190 (((-3 |#5| "failed") $) 108)) (-3718 (($ $ |#5|) 126)) (-1201 (((-701) $) 51)) (-3699 (($ (-578 |#5|)) 123)) (-1638 (($ $ |#4|) 121)) (-2482 (($ $ |#4|) 120)) (-1218 (($ $) 119)) (-3691 (((-786) $) NIL) (((-578 |#5|) $) 112)) (-4104 (((-701) $) 129)) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|)) 44)) (-2560 (((-107) $ (-1 (-107) |#5| (-578 |#5|))) 99)) (-2617 (((-578 |#4|) $) 114)) (-2659 (((-107) |#4| $) 117)) (-3751 (((-107) $ $) 19))) -(((-1098 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4104 ((-701) |#1|)) (-15 -3718 (|#1| |#1| |#5|)) (-15 -1987 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2659 ((-107) |#4| |#1|)) (-15 -2617 ((-578 |#4|) |#1|)) (-15 -1199 ((-3 |#1| "failed") |#1|)) (-15 -1383 ((-3 |#5| "failed") |#1|)) (-15 -1190 ((-3 |#5| "failed") |#1|)) (-15 -1379 (|#5| |#5| |#1|)) (-15 -1218 (|#1| |#1|)) (-15 -1778 (|#5| |#5| |#1|)) (-15 -1762 (|#5| |#5| |#1|)) (-15 -3618 (|#5| |#5| |#1|)) (-15 -2599 (|#5| |#5| |#1|)) (-15 -4113 ((-578 |#5|) (-578 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3547 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1590 ((-107) |#1|)) (-15 -2667 ((-107) |#1|)) (-15 -1549 ((-107) |#1|)) (-15 -2560 ((-107) |#1| (-1 (-107) |#5| (-578 |#5|)))) (-15 -1590 ((-107) |#5| |#1|)) (-15 -2667 ((-107) |#5| |#1|)) (-15 -1549 ((-107) |#5| |#1|)) (-15 -2130 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1964 ((-107) |#1|)) (-15 -1964 ((-107) |#5| |#1|)) (-15 -1577 ((-2 (|:| -2109 (-578 |#5|)) (|:| -2342 (-578 |#5|))) |#1|)) (-15 -1201 ((-701) |#1|)) (-15 -3574 ((-578 |#5|) |#1|)) (-15 -1596 ((-3 (-2 (|:| |bas| |#1|) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1596 ((-3 (-2 (|:| |bas| |#1|) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3523 ((-107) |#1| |#1|)) (-15 -1638 (|#1| |#1| |#4|)) (-15 -2482 (|#1| |#1| |#4|)) (-15 -2361 (|#4| |#1|)) (-15 -3765 ((-3 |#1| "failed") (-578 |#5|))) (-15 -3691 ((-578 |#5|) |#1|)) (-15 -3699 (|#1| (-578 |#5|))) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1987 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-1099 |#2| |#3| |#4| |#5|) (-508) (-723) (-777) (-972 |#2| |#3| |#4|)) (T -1098)) -NIL -(-10 -8 (-15 -4104 ((-701) |#1|)) (-15 -3718 (|#1| |#1| |#5|)) (-15 -1987 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2659 ((-107) |#4| |#1|)) (-15 -2617 ((-578 |#4|) |#1|)) (-15 -1199 ((-3 |#1| "failed") |#1|)) (-15 -1383 ((-3 |#5| "failed") |#1|)) (-15 -1190 ((-3 |#5| "failed") |#1|)) (-15 -1379 (|#5| |#5| |#1|)) (-15 -1218 (|#1| |#1|)) (-15 -1778 (|#5| |#5| |#1|)) (-15 -1762 (|#5| |#5| |#1|)) (-15 -3618 (|#5| |#5| |#1|)) (-15 -2599 (|#5| |#5| |#1|)) (-15 -4113 ((-578 |#5|) (-578 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3547 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1590 ((-107) |#1|)) (-15 -2667 ((-107) |#1|)) (-15 -1549 ((-107) |#1|)) (-15 -2560 ((-107) |#1| (-1 (-107) |#5| (-578 |#5|)))) (-15 -1590 ((-107) |#5| |#1|)) (-15 -2667 ((-107) |#5| |#1|)) (-15 -1549 ((-107) |#5| |#1|)) (-15 -2130 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1964 ((-107) |#1|)) (-15 -1964 ((-107) |#5| |#1|)) (-15 -1577 ((-2 (|:| -2109 (-578 |#5|)) (|:| -2342 (-578 |#5|))) |#1|)) (-15 -1201 ((-701) |#1|)) (-15 -3574 ((-578 |#5|) |#1|)) (-15 -1596 ((-3 (-2 (|:| |bas| |#1|) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1596 ((-3 (-2 (|:| |bas| |#1|) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3523 ((-107) |#1| |#1|)) (-15 -1638 (|#1| |#1| |#4|)) (-15 -2482 (|#1| |#1| |#4|)) (-15 -2361 (|#4| |#1|)) (-15 -3765 ((-3 |#1| "failed") (-578 |#5|))) (-15 -3691 ((-578 |#5|) |#1|)) (-15 -3699 (|#1| (-578 |#5|))) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1987 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) -((-3736 (((-107) $ $) 7)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) 85)) (-2073 (((-578 $) (-578 |#4|)) 86)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) 101) (((-107) $) 97)) (-2599 ((|#4| |#4| $) 92)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 79)) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-1199 (((-3 $ "failed") $) 82)) (-1778 ((|#4| |#4| $) 89)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1379 ((|#4| |#4| $) 87)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) 105)) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) 104) (((-107) $) 103)) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-1383 (((-3 |#4| "failed") $) 83)) (-3574 (((-578 |#4|) $) 107)) (-1590 (((-107) |#4| $) 99) (((-107) $) 95)) (-1762 ((|#4| |#4| $) 90)) (-3523 (((-107) $ $) 110)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) 100) (((-107) $) 96)) (-3618 ((|#4| |#4| $) 91)) (-3708 (((-1018) $) 10)) (-1190 (((-3 |#4| "failed") $) 84)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3478 (((-3 $ "failed") $ |#4|) 78)) (-3718 (($ $ |#4|) 77)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-1201 (((-701) $) 106)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-1218 (($ $) 88)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-4104 (((-701) $) 76 (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) 98)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) 81)) (-2659 (((-107) |#3| $) 80)) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167))))) -(((-1099 |#1| |#2| |#3| |#4|) (-1180) (-508) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -1099)) -((-3523 (*1 *2 *1 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-1596 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2425 (-578 *8)))) (-5 *3 (-578 *8)) (-4 *1 (-1099 *5 *6 *7 *8)))) (-1596 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2425 (-578 *9)))) (-5 *3 (-578 *9)) (-4 *1 (-1099 *6 *7 *8 *9)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *6)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-701)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-2 (|:| -2109 (-578 *6)) (|:| -2342 (-578 *6)))))) (-1964 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-2130 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1099 *5 *6 *7 *3)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107)))) (-1549 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-2667 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-1590 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-2560 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-578 *7))) (-4 *1 (-1099 *4 *5 *6 *7)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-3547 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1099 *5 *6 *7 *2)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *2 (-972 *5 *6 *7)))) (-4113 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1099 *5 *6 *7 *8)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)))) (-2599 (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-3618 (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-1762 (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-1778 (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-1218 (*1 *1 *1) (-12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *2 (-508)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-972 *2 *3 *4)))) (-1379 (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-1099 *4 *5 *6 *7)))) (-3016 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| -2109 *1) (|:| -2342 (-578 *7))))) (-5 *3 (-578 *7)) (-4 *1 (-1099 *4 *5 *6 *7)))) (-1190 (*1 *2 *1) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-1383 (*1 *2 *1) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-1199 (*1 *1 *1) (|partial| -12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *2 (-508)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-972 *2 *3 *4)))) (-2617 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5)))) (-2659 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *3 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-107)))) (-1987 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1099 *4 *5 *3 *2)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *2 (-972 *4 *5 *3)))) (-3478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-3718 (*1 *1 *1 *2) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *5 (-336)) (-5 *2 (-701))))) -(-13 (-891 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -3523 ((-107) $ $)) (-15 -1596 ((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |t#4|))) "failed") (-578 |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -1596 ((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |t#4|))) "failed") (-578 |t#4|) (-1 (-107) |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3574 ((-578 |t#4|) $)) (-15 -1201 ((-701) $)) (-15 -1577 ((-2 (|:| -2109 (-578 |t#4|)) (|:| -2342 (-578 |t#4|))) $)) (-15 -1964 ((-107) |t#4| $)) (-15 -1964 ((-107) $)) (-15 -2130 ((-107) |t#4| $ (-1 (-107) |t#4| |t#4|))) (-15 -1549 ((-107) |t#4| $)) (-15 -2667 ((-107) |t#4| $)) (-15 -1590 ((-107) |t#4| $)) (-15 -2560 ((-107) $ (-1 (-107) |t#4| (-578 |t#4|)))) (-15 -1549 ((-107) $)) (-15 -2667 ((-107) $)) (-15 -1590 ((-107) $)) (-15 -3547 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -4113 ((-578 |t#4|) (-578 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2599 (|t#4| |t#4| $)) (-15 -3618 (|t#4| |t#4| $)) (-15 -1762 (|t#4| |t#4| $)) (-15 -1778 (|t#4| |t#4| $)) (-15 -1218 ($ $)) (-15 -1379 (|t#4| |t#4| $)) (-15 -2073 ((-578 $) (-578 |t#4|))) (-15 -3016 ((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |t#4|)))) (-578 |t#4|))) (-15 -1190 ((-3 |t#4| "failed") $)) (-15 -1383 ((-3 |t#4| "failed") $)) (-15 -1199 ((-3 $ "failed") $)) (-15 -2617 ((-578 |t#3|) $)) (-15 -2659 ((-107) |t#3| $)) (-15 -1987 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3478 ((-3 $ "failed") $ |t#4|)) (-15 -3718 ($ $ |t#4|)) (IF (|has| |t#3| (-336)) (-15 -4104 ((-701) $)) |noBranch|))) -(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-891 |#1| |#2| |#3| |#4|) . T) ((-1001) . T) ((-1104) . T)) -((-2810 (($ |#1| (-578 (-578 (-863 (-199)))) (-107)) 15)) (-3183 (((-107) $ (-107)) 14)) (-2954 (((-107) $) 13)) (-2785 (((-578 (-578 (-863 (-199)))) $) 10)) (-1459 ((|#1| $) 8)) (-3340 (((-107) $) 12))) -(((-1100 |#1|) (-10 -8 (-15 -1459 (|#1| $)) (-15 -2785 ((-578 (-578 (-863 (-199)))) $)) (-15 -3340 ((-107) $)) (-15 -2954 ((-107) $)) (-15 -3183 ((-107) $ (-107))) (-15 -2810 ($ |#1| (-578 (-578 (-863 (-199)))) (-107)))) (-889)) (T -1100)) -((-2810 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-107)) (-5 *1 (-1100 *2)) (-4 *2 (-889)))) (-3183 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889)))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-1100 *3)) (-4 *3 (-889)))) (-1459 (*1 *2 *1) (-12 (-5 *1 (-1100 *2)) (-4 *2 (-889))))) -(-10 -8 (-15 -1459 (|#1| $)) (-15 -2785 ((-578 (-578 (-863 (-199)))) $)) (-15 -3340 ((-107) $)) (-15 -2954 ((-107) $)) (-15 -3183 ((-107) $ (-107))) (-15 -2810 ($ |#1| (-578 (-578 (-863 (-199)))) (-107)))) -((-1822 (((-863 (-199)) (-863 (-199))) 25)) (-1801 (((-863 (-199)) (-199) (-199) (-199) (-199)) 10)) (-3187 (((-578 (-863 (-199))) (-863 (-199)) (-863 (-199)) (-863 (-199)) (-199) (-578 (-578 (-199)))) 35)) (-1293 (((-199) (-863 (-199)) (-863 (-199))) 21)) (-2220 (((-863 (-199)) (-863 (-199)) (-863 (-199))) 22)) (-1700 (((-578 (-578 (-199))) (-501)) 31)) (-3797 (((-863 (-199)) (-863 (-199)) (-863 (-199))) 20)) (-3790 (((-863 (-199)) (-863 (-199)) (-863 (-199))) 19)) (* (((-863 (-199)) (-199) (-863 (-199))) 18))) -(((-1101) (-10 -7 (-15 -1801 ((-863 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-863 (-199)) (-199) (-863 (-199)))) (-15 -3790 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -3797 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -1293 ((-199) (-863 (-199)) (-863 (-199)))) (-15 -2220 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -1822 ((-863 (-199)) (-863 (-199)))) (-15 -1700 ((-578 (-578 (-199))) (-501))) (-15 -3187 ((-578 (-863 (-199))) (-863 (-199)) (-863 (-199)) (-863 (-199)) (-199) (-578 (-578 (-199))))))) (T -1101)) -((-3187 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-578 (-578 (-199)))) (-5 *4 (-199)) (-5 *2 (-578 (-863 *4))) (-5 *1 (-1101)) (-5 *3 (-863 *4)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-578 (-578 (-199)))) (-5 *1 (-1101)))) (-1822 (*1 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) (-2220 (*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) (-1293 (*1 *2 *3 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-199)) (-5 *1 (-1101)))) (-3797 (*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) (-3790 (*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-863 (-199))) (-5 *3 (-199)) (-5 *1 (-1101)))) (-1801 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)) (-5 *3 (-199))))) -(-10 -7 (-15 -1801 ((-863 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-863 (-199)) (-199) (-863 (-199)))) (-15 -3790 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -3797 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -1293 ((-199) (-863 (-199)) (-863 (-199)))) (-15 -2220 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -1822 ((-863 (-199)) (-863 (-199)))) (-15 -1700 ((-578 (-578 (-199))) (-501))) (-15 -3187 ((-578 (-863 (-199))) (-863 (-199)) (-863 (-199)) (-863 (-199)) (-199) (-578 (-578 (-199)))))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1987 ((|#1| $ (-701)) 13)) (-4139 (((-701) $) 12)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3691 (((-877 |#1|) $) 10) (($ (-877 |#1|)) 9) (((-786) $) 23 (|has| |#1| (-1001)))) (-3751 (((-107) $ $) 16 (|has| |#1| (-1001))))) -(((-1102 |#1|) (-13 (-555 (-877 |#1|)) (-10 -8 (-15 -3691 ($ (-877 |#1|))) (-15 -1987 (|#1| $ (-701))) (-15 -4139 ((-701) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|))) (-1104)) (T -1102)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1104)) (-5 *1 (-1102 *3)))) (-1987 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-1102 *2)) (-4 *2 (-1104)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1102 *3)) (-4 *3 (-1104))))) -(-13 (-555 (-877 |#1|)) (-10 -8 (-15 -3691 ($ (-877 |#1|))) (-15 -1987 (|#1| $ (-701))) (-15 -4139 ((-701) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|))) -((-4131 (((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)) (-501)) 79)) (-1846 (((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|))) 73)) (-3082 (((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|))) 58))) -(((-1103 |#1|) (-10 -7 (-15 -1846 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)))) (-15 -3082 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)))) (-15 -4131 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)) (-501)))) (-318)) (T -1103)) -((-4131 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *5 (-318)) (-5 *2 (-373 (-1064 (-1064 *5)))) (-5 *1 (-1103 *5)) (-5 *3 (-1064 (-1064 *5))))) (-3082 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 (-1064 (-1064 *4)))) (-5 *1 (-1103 *4)) (-5 *3 (-1064 (-1064 *4))))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 (-1064 (-1064 *4)))) (-5 *1 (-1103 *4)) (-5 *3 (-1064 (-1064 *4)))))) -(-10 -7 (-15 -1846 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)))) (-15 -3082 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)))) (-15 -4131 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)) (-501)))) -NIL -(((-1104) (-1180)) (T -1104)) -NIL -(-13 (-10 -7 (-6 -2951))) -((-2501 (((-107)) 14)) (-1702 (((-1154) (-578 |#1|) (-578 |#1|)) 18) (((-1154) (-578 |#1|)) 19)) (-3379 (((-107) |#1| |#1|) 30 (|has| |#1| (-777)))) (-3155 (((-107) |#1| |#1| (-1 (-107) |#1| |#1|)) 26) (((-3 (-107) "failed") |#1| |#1|) 24)) (-2807 ((|#1| (-578 |#1|)) 31 (|has| |#1| (-777))) ((|#1| (-578 |#1|) (-1 (-107) |#1| |#1|)) 27)) (-1772 (((-2 (|:| -3014 (-578 |#1|)) (|:| -1647 (-578 |#1|)))) 16))) -(((-1105 |#1|) (-10 -7 (-15 -1702 ((-1154) (-578 |#1|))) (-15 -1702 ((-1154) (-578 |#1|) (-578 |#1|))) (-15 -1772 ((-2 (|:| -3014 (-578 |#1|)) (|:| -1647 (-578 |#1|))))) (-15 -3155 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3155 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -2807 (|#1| (-578 |#1|) (-1 (-107) |#1| |#1|))) (-15 -2501 ((-107))) (IF (|has| |#1| (-777)) (PROGN (-15 -2807 (|#1| (-578 |#1|))) (-15 -3379 ((-107) |#1| |#1|))) |noBranch|)) (-1001)) (T -1105)) -((-3379 (*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-777)) (-4 *3 (-1001)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-777)) (-5 *1 (-1105 *2)))) (-2501 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-1001)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1105 *2)) (-4 *2 (-1001)))) (-3155 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1001)) (-5 *2 (-107)) (-5 *1 (-1105 *3)))) (-3155 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-1001)))) (-1772 (*1 *2) (-12 (-5 *2 (-2 (|:| -3014 (-578 *3)) (|:| -1647 (-578 *3)))) (-5 *1 (-1105 *3)) (-4 *3 (-1001)))) (-1702 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-5 *2 (-1154)) (-5 *1 (-1105 *4)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-5 *2 (-1154)) (-5 *1 (-1105 *4))))) -(-10 -7 (-15 -1702 ((-1154) (-578 |#1|))) (-15 -1702 ((-1154) (-578 |#1|) (-578 |#1|))) (-15 -1772 ((-2 (|:| -3014 (-578 |#1|)) (|:| -1647 (-578 |#1|))))) (-15 -3155 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3155 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -2807 (|#1| (-578 |#1|) (-1 (-107) |#1| |#1|))) (-15 -2501 ((-107))) (IF (|has| |#1| (-777)) (PROGN (-15 -2807 (|#1| (-578 |#1|))) (-15 -3379 ((-107) |#1| |#1|))) |noBranch|)) -((-3791 (((-1154) (-578 (-1070)) (-578 (-1070))) 12) (((-1154) (-578 (-1070))) 10)) (-1761 (((-1154)) 13)) (-3593 (((-2 (|:| -1647 (-578 (-1070))) (|:| -3014 (-578 (-1070))))) 17))) -(((-1106) (-10 -7 (-15 -3791 ((-1154) (-578 (-1070)))) (-15 -3791 ((-1154) (-578 (-1070)) (-578 (-1070)))) (-15 -3593 ((-2 (|:| -1647 (-578 (-1070))) (|:| -3014 (-578 (-1070)))))) (-15 -1761 ((-1154))))) (T -1106)) -((-1761 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1106)))) (-3593 (*1 *2) (-12 (-5 *2 (-2 (|:| -1647 (-578 (-1070))) (|:| -3014 (-578 (-1070))))) (-5 *1 (-1106)))) (-3791 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1106)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1106))))) -(-10 -7 (-15 -3791 ((-1154) (-578 (-1070)))) (-15 -3791 ((-1154) (-578 (-1070)) (-578 (-1070)))) (-15 -3593 ((-2 (|:| -1647 (-578 (-1070))) (|:| -3014 (-578 (-1070)))))) (-15 -1761 ((-1154)))) -((-3676 (($ $) 16)) (-1628 (((-107) $) 23))) -(((-1107 |#1|) (-10 -8 (-15 -3676 (|#1| |#1|)) (-15 -1628 ((-107) |#1|))) (-1108)) (T -1107)) -NIL -(-10 -8 (-15 -3676 (|#1| |#1|)) (-15 -1628 ((-107) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 51)) (-1559 (((-373 $) $) 52)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1628 (((-107) $) 53)) (-1355 (((-107) $) 31)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3739 (((-373 $) $) 50)) (-3694 (((-3 $ "failed") $ $) 42)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24))) -(((-1108) (-1180)) (T -1108)) -((-1628 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-107)))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-373 *1)) (-4 *1 (-1108)))) (-3676 (*1 *1 *1) (-4 *1 (-1108))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-373 *1)) (-4 *1 (-1108))))) -(-13 (-419) (-10 -8 (-15 -1628 ((-107) $)) (-15 -1559 ((-373 $) $)) (-15 -3676 ($ $)) (-15 -3739 ((-373 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-1139 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-276)) (|has| |#1| (-331))))) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 10)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2865 (($ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-1639 (((-107) $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2805 (($ $ (-501)) NIL) (($ $ (-501) (-501)) NIL)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) NIL)) (-1488 (((-1139 |#1| |#2| |#3|) $) NIL)) (-1641 (((-3 (-1139 |#1| |#2| |#3|) "failed") $) NIL)) (-3818 (((-1139 |#1| |#2| |#3|) $) NIL)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1417 (((-501) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-1139 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-501) "failed") $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))))) (-3490 (((-1139 |#1| |#2| |#3|) $) NIL) (((-1070) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (((-375 (-501)) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331)))) (((-501) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))))) (-1574 (($ $) NIL) (($ (-501) $) NIL)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-1139 |#1| |#2| |#3|)) (-621 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-1139 |#1| |#2| |#3|))) (|:| |vec| (-1148 (-1139 |#1| |#2| |#3|)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-577 (-501))) (|has| |#1| (-331)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-577 (-501))) (|has| |#1| (-331))))) (-2174 (((-3 $ "failed") $) NIL)) (-1880 (((-375 (-866 |#1|)) $ (-501)) NIL (|has| |#1| (-508))) (((-375 (-866 |#1|)) $ (-501) (-501)) NIL (|has| |#1| (-508)))) (-2890 (($) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-2164 (((-107) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-806 (-501))) (|has| |#1| (-331)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-806 (-346))) (|has| |#1| (-331))))) (-3169 (((-501) $) NIL) (((-501) $ (-501)) NIL)) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL (|has| |#1| (-331)))) (-2946 (((-1139 |#1| |#2| |#3|) $) NIL (|has| |#1| (-331)))) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3493 (((-3 $ "failed") $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-1046)) (|has| |#1| (-331))))) (-4067 (((-107) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-2917 (($ $ (-839)) NIL)) (-3608 (($ (-1 |#1| (-501)) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-501)) 17) (($ $ (-986) (-501)) NIL) (($ $ (-578 (-986)) (-578 (-501))) NIL)) (-4111 (($ $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-1323 (($ $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-331)))) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3822 (($ (-501) (-1139 |#1| |#2| |#3|)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) 25 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 26 (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-1046)) (|has| |#1| (-331))) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-2801 (($ $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-276)) (|has| |#1| (-331))))) (-3383 (((-1139 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-501)) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-501))))) (($ $ (-1070) (-1139 |#1| |#2| |#3|)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-476 (-1070) (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 (-1139 |#1| |#2| |#3|))) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-476 (-1070) (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-262 (-1139 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-262 (-1139 |#1| |#2| |#3|))) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-1139 |#1| |#2| |#3|)) (-578 (-1139 |#1| |#2| |#3|))) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-501)) NIL) (($ $ $) NIL (|has| (-501) (-1012))) (($ $ (-1139 |#1| |#2| |#3|)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-256 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-1 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) NIL (|has| |#1| (-331))) (($ $ (-1 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) (-701)) NIL (|has| |#1| (-331))) (($ $ (-1145 |#2|)) 24) (($ $ (-701)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) 23 (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3307 (($ $) NIL (|has| |#1| (-331)))) (-2949 (((-1139 |#1| |#2| |#3|) $) NIL (|has| |#1| (-331)))) (-1201 (((-501) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1248 (((-490) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-556 (-490))) (|has| |#1| (-331)))) (((-346) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-933)) (|has| |#1| (-331)))) (((-199) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-933)) (|has| |#1| (-331)))) (((-810 (-346)) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-556 (-810 (-346)))) (|has| |#1| (-331)))) (((-810 (-501)) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-556 (-810 (-501)))) (|has| |#1| (-331))))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1139 |#1| |#2| |#3|)) NIL) (($ (-1145 |#2|)) 22) (($ (-1070)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (($ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508)))) (($ (-375 (-501))) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))) (|has| |#1| (-37 (-375 (-501))))))) (-2495 ((|#1| $ (-501)) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-132)) (|has| |#1| (-331))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 11)) (-2803 (((-1139 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-501)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1720 (($ $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 19 T CONST)) (-1925 (($) 15 T CONST)) (-3584 (($ $ (-1 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) NIL (|has| |#1| (-331))) (($ $ (-1 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) (-701)) NIL (|has| |#1| (-331))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3778 (((-107) $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3768 (((-107) $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3762 (((-107) $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331))) (($ (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 20)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1139 |#1| |#2| |#3|)) NIL (|has| |#1| (-331))) (($ (-1139 |#1| |#2| |#3|) $) NIL (|has| |#1| (-331))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-1109 |#1| |#2| |#3|) (-13 (-1113 |#1| (-1139 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1109)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3)))) -(-13 (-1113 |#1| (-1139 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) -((-1212 (((-1109 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1109 |#1| |#3| |#5|)) 23))) -(((-1110 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1212 ((-1109 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1109 |#1| |#3| |#5|)))) (-959) (-959) (-1070) (-1070) |#1| |#2|) (T -1110)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5 *7 *9)) (-4 *5 (-959)) (-4 *6 (-959)) (-14 *7 (-1070)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1109 *6 *8 *10)) (-5 *1 (-1110 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1070))))) -(-10 -7 (-15 -1212 ((-1109 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1109 |#1| |#3| |#5|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ (-501)) 100) (($ $ (-501) (-501)) 99)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) 107)) (-3978 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 164 (|has| |#1| (-331)))) (-1559 (((-373 $) $) 165 (|has| |#1| (-331)))) (-3743 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) 155 (|has| |#1| (-331)))) (-3970 (($ $) 136 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) 176)) (-3984 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 122 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3023 (($ $ $) 159 (|has| |#1| (-331)))) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-1880 (((-375 (-866 |#1|)) $ (-501)) 174 (|has| |#1| (-508))) (((-375 (-866 |#1|)) $ (-501) (-501)) 173 (|has| |#1| (-508)))) (-3034 (($ $ $) 158 (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 153 (|has| |#1| (-331)))) (-1628 (((-107) $) 166 (|has| |#1| (-331)))) (-3331 (((-107) $) 75)) (-2003 (($) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-501) $) 102) (((-501) $ (-501)) 101)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 118 (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) 103)) (-3608 (($ (-1 |#1| (-501)) $) 175)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 162 (|has| |#1| (-331)))) (-2706 (((-107) $) 64)) (-3787 (($ |#1| (-501)) 63) (($ $ (-986) (-501)) 78) (($ $ (-578 (-986)) (-578 (-501))) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-1635 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-1697 (($ (-578 $)) 151 (|has| |#1| (-331))) (($ $ $) 150 (|has| |#1| (-331)))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 167 (|has| |#1| (-331)))) (-3188 (($ $) 172 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 171 (-1405 (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-879)) (|has| |#1| (-1090)) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-37 (-375 (-501)))))))) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 152 (|has| |#1| (-331)))) (-3664 (($ (-578 $)) 149 (|has| |#1| (-331))) (($ $ $) 148 (|has| |#1| (-331)))) (-3739 (((-373 $) $) 163 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 161 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 160 (|has| |#1| (-331)))) (-3718 (($ $ (-501)) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 154 (|has| |#1| (-331)))) (-1989 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-501)))))) (-1864 (((-701) $) 156 (|has| |#1| (-331)))) (-2007 ((|#1| $ (-501)) 106) (($ $ $) 83 (|has| (-501) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 157 (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 91 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-1070) (-701)) 90 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070))) 89 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-1070)) 88 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-701)) 86 (|has| |#1| (-15 * (|#1| (-501) |#1|)))) (($ $) 84 (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (-1201 (((-501) $) 66)) (-3991 (($ $) 134 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 124 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 49 (|has| |#1| (-156))) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508)))) (-2495 ((|#1| $ (-501)) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-4003 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3995 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-501)) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 128 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 138 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 126 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 168 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 95 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-1070) (-701)) 94 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070))) 93 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-1070)) 92 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-701)) 87 (|has| |#1| (-15 * (|#1| (-501) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331))) (($ $ $) 170 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 169 (|has| |#1| (-331))) (($ $ $) 146 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 117 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501))))))) -(((-1111 |#1|) (-1180) (-959)) (T -1111)) -((-2973 (*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-4 *3 (-959)) (-4 *1 (-1111 *3)))) (-3608 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *1 (-1111 *3)) (-4 *3 (-959)))) (-1880 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-1111 *4)) (-4 *4 (-959)) (-4 *4 (-508)) (-5 *2 (-375 (-866 *4))))) (-1880 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-1111 *4)) (-4 *4 (-959)) (-4 *4 (-508)) (-5 *2 (-375 (-866 *4))))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) (-3188 (*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1111 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1111 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501))))))))) -(-13 (-1128 |t#1| (-501)) (-10 -8 (-15 -2973 ($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |t#1|))))) (-15 -3608 ($ (-1 |t#1| (-501)) $)) (IF (|has| |t#1| (-508)) (PROGN (-15 -1880 ((-375 (-866 |t#1|)) $ (-501))) (-15 -1880 ((-375 (-866 |t#1|)) $ (-501) (-501)))) |noBranch|) (IF (|has| |t#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $)) (IF (|has| |t#1| (-15 -3188 (|t#1| |t#1| (-1070)))) (IF (|has| |t#1| (-15 -3800 ((-578 (-1070)) |t#1|))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1090)) (IF (|has| |t#1| (-879)) (IF (|has| |t#1| (-29 (-501))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) |noBranch|) (-6 (-916)) (-6 (-1090))) |noBranch|) (IF (|has| |t#1| (-331)) (-6 (-331)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| (-501)) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-206) |has| |#1| (-15 * (|#1| (-501) |#1|))) ((-216) |has| |#1| (-331)) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-256 $ $) |has| (-501) (-1012)) ((-260) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-276) |has| |#1| (-331)) ((-331) |has| |#1| (-331)) ((-419) |has| |#1| (-331)) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-508) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))) ((-888 |#1| (-501) (-986)) . T) ((-841) |has| |#1| (-331)) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-964 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501)))) ((-1108) |has| |#1| (-331)) ((-1128 |#1| (-501)) . T)) -((-3292 (((-107) $) 12)) (-3765 (((-3 |#3| "failed") $) 17) (((-3 (-1070) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) NIL)) (-3490 ((|#3| $) 14) (((-1070) $) NIL) (((-375 (-501)) $) NIL) (((-501) $) NIL))) -(((-1112 |#1| |#2| |#3|) (-10 -8 (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3292 ((-107) |#1|))) (-1113 |#2| |#3|) (-959) (-1142 |#2|)) (T -1112)) -NIL -(-10 -8 (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3292 ((-107) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2197 ((|#2| $) 233 (-1280 (|has| |#2| (-276)) (|has| |#1| (-331))))) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ (-501)) 100) (($ $ (-501) (-501)) 99)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) 107)) (-1488 ((|#2| $) 269)) (-1641 (((-3 |#2| "failed") $) 265)) (-3818 ((|#2| $) 266)) (-3978 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 242 (-1280 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-3676 (($ $) 164 (|has| |#1| (-331)))) (-1559 (((-373 $) $) 165 (|has| |#1| (-331)))) (-3743 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 239 (-1280 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-2781 (((-107) $ $) 155 (|has| |#1| (-331)))) (-3970 (($ $) 136 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-1417 (((-501) $) 251 (-1280 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) 176)) (-3984 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 122 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#2| "failed") $) 272) (((-3 (-501) "failed") $) 261 (-1280 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-375 (-501)) "failed") $) 259 (-1280 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-1070) "failed") $) 244 (-1280 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331))))) (-3490 ((|#2| $) 271) (((-501) $) 262 (-1280 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-375 (-501)) $) 260 (-1280 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-1070) $) 245 (-1280 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331))))) (-1574 (($ $) 268) (($ (-501) $) 267)) (-3023 (($ $ $) 159 (|has| |#1| (-331)))) (-3858 (($ $) 62)) (-3868 (((-621 |#2|) (-621 $)) 223 (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 222 (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 221 (-1280 (|has| |#2| (-577 (-501))) (|has| |#1| (-331)))) (((-621 (-501)) (-621 $)) 220 (-1280 (|has| |#2| (-577 (-501))) (|has| |#1| (-331))))) (-2174 (((-3 $ "failed") $) 34)) (-1880 (((-375 (-866 |#1|)) $ (-501)) 174 (|has| |#1| (-508))) (((-375 (-866 |#1|)) $ (-501) (-501)) 173 (|has| |#1| (-508)))) (-2890 (($) 235 (-1280 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-3034 (($ $ $) 158 (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 153 (|has| |#1| (-331)))) (-1628 (((-107) $) 166 (|has| |#1| (-331)))) (-2164 (((-107) $) 249 (-1280 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-3331 (((-107) $) 75)) (-2003 (($) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 227 (-1280 (|has| |#2| (-806 (-346))) (|has| |#1| (-331)))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 226 (-1280 (|has| |#2| (-806 (-501))) (|has| |#1| (-331))))) (-3169 (((-501) $) 102) (((-501) $ (-501)) 101)) (-1355 (((-107) $) 31)) (-2117 (($ $) 231 (|has| |#1| (-331)))) (-2946 ((|#2| $) 229 (|has| |#1| (-331)))) (-1342 (($ $ (-501)) 118 (|has| |#1| (-37 (-375 (-501)))))) (-3493 (((-3 $ "failed") $) 263 (-1280 (|has| |#2| (-1046)) (|has| |#1| (-331))))) (-4067 (((-107) $) 250 (-1280 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-2917 (($ $ (-839)) 103)) (-3608 (($ (-1 |#1| (-501)) $) 175)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 162 (|has| |#1| (-331)))) (-2706 (((-107) $) 64)) (-3787 (($ |#1| (-501)) 63) (($ $ (-986) (-501)) 78) (($ $ (-578 (-986)) (-578 (-501))) 77)) (-4111 (($ $ $) 253 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-1323 (($ $ $) 254 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-1212 (($ (-1 |#1| |#1|) $) 65) (($ (-1 |#2| |#2|) $) 215 (|has| |#1| (-331)))) (-1635 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-1697 (($ (-578 $)) 151 (|has| |#1| (-331))) (($ $ $) 150 (|has| |#1| (-331)))) (-3822 (($ (-501) |#2|) 270)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 167 (|has| |#1| (-331)))) (-3188 (($ $) 172 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 171 (-1405 (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-879)) (|has| |#1| (-1090)) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-37 (-375 (-501)))))))) (-3746 (($) 264 (-1280 (|has| |#2| (-1046)) (|has| |#1| (-331))) CONST)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 152 (|has| |#1| (-331)))) (-3664 (($ (-578 $)) 149 (|has| |#1| (-331))) (($ $ $) 148 (|has| |#1| (-331)))) (-2801 (($ $) 234 (-1280 (|has| |#2| (-276)) (|has| |#1| (-331))))) (-3383 ((|#2| $) 237 (-1280 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-2305 (((-373 (-1064 $)) (-1064 $)) 240 (-1280 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-2572 (((-373 (-1064 $)) (-1064 $)) 241 (-1280 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-3739 (((-373 $) $) 163 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 161 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 160 (|has| |#1| (-331)))) (-3718 (($ $ (-501)) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 154 (|has| |#1| (-331)))) (-1989 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-501))))) (($ $ (-1070) |#2|) 214 (-1280 (|has| |#2| (-476 (-1070) |#2|)) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 |#2|)) 213 (-1280 (|has| |#2| (-476 (-1070) |#2|)) (|has| |#1| (-331)))) (($ $ (-578 (-262 |#2|))) 212 (-1280 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ (-262 |#2|)) 211 (-1280 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ |#2| |#2|) 210 (-1280 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ (-578 |#2|) (-578 |#2|)) 209 (-1280 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331))))) (-1864 (((-701) $) 156 (|has| |#1| (-331)))) (-2007 ((|#1| $ (-501)) 106) (($ $ $) 83 (|has| (-501) (-1012))) (($ $ |#2|) 208 (-1280 (|has| |#2| (-256 |#2| |#2|)) (|has| |#1| (-331))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 157 (|has| |#1| (-331)))) (-2596 (($ $ (-1 |#2| |#2|)) 219 (|has| |#1| (-331))) (($ $ (-1 |#2| |#2|) (-701)) 218 (|has| |#1| (-331))) (($ $ (-701)) 86 (-1405 (-1280 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) 84 (-1405 (-1280 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) 91 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-1070) (-701)) 90 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-578 (-1070))) 89 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-1070)) 88 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))))) (-3307 (($ $) 232 (|has| |#1| (-331)))) (-2949 ((|#2| $) 230 (|has| |#1| (-331)))) (-1201 (((-501) $) 66)) (-3991 (($ $) 134 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 124 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-1248 (((-199) $) 248 (-1280 (|has| |#2| (-933)) (|has| |#1| (-331)))) (((-346) $) 247 (-1280 (|has| |#2| (-933)) (|has| |#1| (-331)))) (((-490) $) 246 (-1280 (|has| |#2| (-556 (-490))) (|has| |#1| (-331)))) (((-810 (-346)) $) 225 (-1280 (|has| |#2| (-556 (-810 (-346)))) (|has| |#1| (-331)))) (((-810 (-501)) $) 224 (-1280 (|has| |#2| (-556 (-810 (-501)))) (|has| |#1| (-331))))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 238 (-1280 (-1280 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#1| (-331))))) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 49 (|has| |#1| (-156))) (($ |#2|) 273) (($ (-1070)) 243 (-1280 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331)))) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508)))) (-2495 ((|#1| $ (-501)) 61)) (-1274 (((-3 $ "failed") $) 50 (-1405 (-1280 (-1405 (|has| |#2| (-132)) (-1280 (|has| $ (-132)) (|has| |#2| (-830)))) (|has| |#1| (-331))) (|has| |#1| (-132))))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-2803 ((|#2| $) 236 (-1280 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-4003 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3995 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-501)) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 128 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 138 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 126 (|has| |#1| (-37 (-375 (-501)))))) (-1720 (($ $) 252 (-1280 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 168 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-331))) (($ $ (-1 |#2| |#2|) (-701)) 216 (|has| |#1| (-331))) (($ $ (-701)) 87 (-1405 (-1280 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) 85 (-1405 (-1280 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) 95 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-1070) (-701)) 94 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-578 (-1070))) 93 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-1070)) 92 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))))) (-3778 (((-107) $ $) 256 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3768 (((-107) $ $) 257 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 255 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3762 (((-107) $ $) 258 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331))) (($ $ $) 170 (|has| |#1| (-331))) (($ |#2| |#2|) 228 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 169 (|has| |#1| (-331))) (($ $ $) 146 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 117 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ $ |#2|) 207 (|has| |#1| (-331))) (($ |#2| $) 206 (|has| |#1| (-331))) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501))))))) -(((-1113 |#1| |#2|) (-1180) (-959) (-1142 |t#1|)) (T -1113)) -((-1201 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1142 *3)) (-5 *2 (-501)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-1113 *3 *2)) (-4 *2 (-1142 *3)))) (-3822 (*1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *4 (-959)) (-4 *1 (-1113 *4 *3)) (-4 *3 (-1142 *4)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3)))) (-1574 (*1 *1 *1) (-12 (-4 *1 (-1113 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1142 *2)))) (-1574 (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-1113 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1142 *3)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3)))) (-1641 (*1 *2 *1) (|partial| -12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3))))) -(-13 (-1111 |t#1|) (-950 |t#2|) (-10 -8 (-15 -3822 ($ (-501) |t#2|)) (-15 -1201 ((-501) $)) (-15 -1488 (|t#2| $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $)) (-15 -3691 ($ |t#2|)) (-15 -3818 (|t#2| $)) (-15 -1641 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-331)) (-6 (-906 |t#2|)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| (-501)) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 |#2|) |has| |#1| (-331)) ((-37 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-106 |#1| |#1|) . T) ((-106 |#2| |#2|) |has| |#1| (-331)) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-123) . T) ((-132) -1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-132))) (|has| |#1| (-132))) ((-134) -1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-556 (-199)) -12 (|has| |#1| (-331)) (|has| |#2| (-933))) ((-556 (-346)) -12 (|has| |#1| (-331)) (|has| |#2| (-933))) ((-556 (-490)) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-490)))) ((-556 (-810 (-346))) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-810 (-346))))) ((-556 (-810 (-501))) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-810 (-501))))) ((-204 |#2|) |has| |#1| (-331)) ((-206) -1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-206))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))) ((-216) |has| |#1| (-331)) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-256 |#2| $) -12 (|has| |#1| (-331)) (|has| |#2| (-256 |#2| |#2|))) ((-256 $ $) |has| (-501) (-1012)) ((-260) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-276) |has| |#1| (-331)) ((-278 |#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-278 |#2|))) ((-331) |has| |#1| (-331)) ((-306 |#2|) |has| |#1| (-331)) ((-345 |#2|) |has| |#1| (-331)) ((-368 |#2|) |has| |#1| (-331)) ((-419) |has| |#1| (-331)) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-476 (-1070) |#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-476 (-1070) |#2|))) ((-476 |#2| |#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-278 |#2|))) ((-508) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-583 |#1|) . T) ((-583 |#2|) |has| |#1| (-331)) ((-583 $) . T) ((-577 (-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-577 (-501)))) ((-577 |#2|) |has| |#1| (-331)) ((-648 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-648 |#1|) |has| |#1| (-156)) ((-648 |#2|) |has| |#1| (-331)) ((-648 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-657) . T) ((-721) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-722) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-724) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-727) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-750) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-775) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-777) -1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-777))) (-12 (|has| |#1| (-331)) (|has| |#2| (-750)))) ((-820 (-1070)) -1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-820 (-1070)))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) ((-806 (-346)) -12 (|has| |#1| (-331)) (|has| |#2| (-806 (-346)))) ((-806 (-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-806 (-501)))) ((-804 |#2|) |has| |#1| (-331)) ((-830) -12 (|has| |#1| (-331)) (|has| |#2| (-830))) ((-888 |#1| (-501) (-986)) . T) ((-841) |has| |#1| (-331)) ((-906 |#2|) |has| |#1| (-331)) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-933) -12 (|has| |#1| (-331)) (|has| |#2| (-933))) ((-950 (-375 (-501))) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-501)))) ((-950 (-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-501)))) ((-950 (-1070)) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-1070)))) ((-950 |#2|) . T) ((-964 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-964 |#1|) . T) ((-964 |#2|) |has| |#1| (-331)) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) -12 (|has| |#1| (-331)) (|has| |#2| (-1046))) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501)))) ((-1104) |has| |#1| (-331)) ((-1108) |has| |#1| (-331)) ((-1111 |#1|) . T) ((-1128 |#1| (-501)) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 70)) (-2197 ((|#2| $) NIL (-12 (|has| |#2| (-276)) (|has| |#1| (-331))))) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 88)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-501)) 97) (($ $ (-501) (-501)) 99)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) 47)) (-1488 ((|#2| $) 11)) (-1641 (((-3 |#2| "failed") $) 30)) (-3818 ((|#2| $) 31)) (-3978 (($ $) 192 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 168 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) 188 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 164 (|has| |#1| (-37 (-375 (-501)))))) (-1417 (((-501) $) NIL (-12 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) 57)) (-3984 (($ $) 196 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 172 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 144) (((-3 (-501) "failed") $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-1070) "failed") $) NIL (-12 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331))))) (-3490 ((|#2| $) 143) (((-501) $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-375 (-501)) $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-1070) $) NIL (-12 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331))))) (-1574 (($ $) 61) (($ (-501) $) 24)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-3868 (((-621 |#2|) (-621 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#1| (-331)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#1| (-331))))) (-2174 (((-3 $ "failed") $) 77)) (-1880 (((-375 (-866 |#1|)) $ (-501)) 112 (|has| |#1| (-508))) (((-375 (-866 |#1|)) $ (-501) (-501)) 114 (|has| |#1| (-508)))) (-2890 (($) NIL (-12 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-2164 (((-107) $) NIL (-12 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-3331 (((-107) $) 64)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| |#2| (-806 (-346))) (|has| |#1| (-331)))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| |#2| (-806 (-501))) (|has| |#1| (-331))))) (-3169 (((-501) $) 93) (((-501) $ (-501)) 95)) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL (|has| |#1| (-331)))) (-2946 ((|#2| $) 151 (|has| |#1| (-331)))) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3493 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1046)) (|has| |#1| (-331))))) (-4067 (((-107) $) NIL (-12 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-2917 (($ $ (-839)) 136)) (-3608 (($ (-1 |#1| (-501)) $) 132)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-501)) 19) (($ $ (-986) (-501)) NIL) (($ $ (-578 (-986)) (-578 (-501))) NIL)) (-4111 (($ $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-1323 (($ $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-1212 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-331)))) (-1635 (($ $) 162 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3822 (($ (-501) |#2|) 10)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 145 (|has| |#1| (-331)))) (-3188 (($ $) 214 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 219 (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090)))))) (-3746 (($) NIL (-12 (|has| |#2| (-1046)) (|has| |#1| (-331))) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-2801 (($ $) NIL (-12 (|has| |#2| (-276)) (|has| |#1| (-331))))) (-3383 ((|#2| $) NIL (-12 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-501)) 126)) (-3694 (((-3 $ "failed") $ $) 116 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) 160 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-501))))) (($ $ (-1070) |#2|) NIL (-12 (|has| |#2| (-476 (-1070) |#2|)) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 |#2|)) NIL (-12 (|has| |#2| (-476 (-1070) |#2|)) (|has| |#1| (-331)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-501)) 91) (($ $ $) 79 (|has| (-501) (-1012))) (($ $ |#2|) NIL (-12 (|has| |#2| (-256 |#2| |#2|)) (|has| |#1| (-331))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-331))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#1| (-331))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) 137 (-1405 (-12 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) 140 (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3307 (($ $) NIL (|has| |#1| (-331)))) (-2949 ((|#2| $) 152 (|has| |#1| (-331)))) (-1201 (((-501) $) 12)) (-3991 (($ $) 198 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 174 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 194 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 170 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 190 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 166 (|has| |#1| (-37 (-375 (-501)))))) (-1248 (((-199) $) NIL (-12 (|has| |#2| (-933)) (|has| |#1| (-331)))) (((-346) $) NIL (-12 (|has| |#2| (-933)) (|has| |#1| (-331)))) (((-490) $) NIL (-12 (|has| |#2| (-556 (-490))) (|has| |#1| (-331)))) (((-810 (-346)) $) NIL (-12 (|has| |#2| (-556 (-810 (-346)))) (|has| |#1| (-331)))) (((-810 (-501)) $) NIL (-12 (|has| |#2| (-556 (-810 (-501)))) (|has| |#1| (-331))))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830)) (|has| |#1| (-331))))) (-1267 (($ $) 124)) (-3691 (((-786) $) 242) (($ (-501)) 23) (($ |#1|) 21 (|has| |#1| (-156))) (($ |#2|) 20) (($ (-1070)) NIL (-12 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331)))) (($ (-375 (-501))) 155 (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-501)) 74)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830)) (|has| |#1| (-331))) (-12 (|has| |#2| (-132)) (|has| |#1| (-331))) (|has| |#1| (-132))))) (-3965 (((-701)) 142)) (-2896 ((|#1| $) 90)) (-2803 ((|#2| $) NIL (-12 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-4003 (($ $) 204 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 180 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) 200 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 176 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 208 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 184 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-501)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 210 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 186 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 206 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 182 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 202 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 178 (|has| |#1| (-37 (-375 (-501)))))) (-1720 (($ $) NIL (-12 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 13 T CONST)) (-1925 (($) 17 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-331))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#1| (-331))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) NIL (-1405 (-12 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3778 (((-107) $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3768 (((-107) $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3751 (((-107) $ $) 63)) (-3773 (((-107) $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3762 (((-107) $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) 149 (|has| |#1| (-331))) (($ |#2| |#2|) 150 (|has| |#1| (-331)))) (-3797 (($ $) 213) (($ $ $) 68)) (-3790 (($ $ $) 66)) (** (($ $ (-839)) NIL) (($ $ (-701)) 73) (($ $ (-501)) 146 (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 158 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-331))) (($ |#2| $) 147 (|has| |#1| (-331))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-1114 |#1| |#2|) (-1113 |#1| |#2|) (-959) (-1142 |#1|)) (T -1114)) -NIL -(-1113 |#1| |#2|) -((-3120 (((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107)) 10)) (-2452 (((-373 |#1|) |#1|) 21)) (-3739 (((-373 |#1|) |#1|) 20))) -(((-1115 |#1|) (-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1|)) (-15 -3120 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107)))) (-1125 (-501))) (T -1115)) -((-3120 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501))))) (-2452 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501)))))) -(-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1|)) (-15 -3120 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107)))) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4087 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1212 (((-1048 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-775)))) (-3014 ((|#1| $) 14)) (-4045 ((|#1| $) 10)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-4053 (((-501) $) 18)) (-1647 ((|#1| $) 17)) (-4060 ((|#1| $) 11)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-4126 (((-107) $) 16)) (-1967 (((-1048 |#1|) $) 38 (|has| |#1| (-775))) (((-1048 |#1|) (-578 $)) 37 (|has| |#1| (-775)))) (-1248 (($ |#1|) 25)) (-3691 (($ (-991 |#1|)) 24) (((-786) $) 34 (|has| |#1| (-1001)))) (-3686 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3005 (($ $ (-501)) 13)) (-3751 (((-107) $ $) 27 (|has| |#1| (-1001))))) -(((-1116 |#1|) (-13 (-995 |#1|) (-10 -8 (-15 -3686 ($ |#1|)) (-15 -4087 ($ |#1|)) (-15 -3691 ($ (-991 |#1|))) (-15 -4126 ((-107) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-996 |#1| (-1048 |#1|))) |noBranch|))) (-1104)) (T -1116)) -((-3686 (*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1104)))) (-4087 (*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1104)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-991 *3)) (-4 *3 (-1104)) (-5 *1 (-1116 *3)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1116 *3)) (-4 *3 (-1104))))) -(-13 (-995 |#1|) (-10 -8 (-15 -3686 ($ |#1|)) (-15 -4087 ($ |#1|)) (-15 -3691 ($ (-991 |#1|))) (-15 -4126 ((-107) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-996 |#1| (-1048 |#1|))) |noBranch|))) -((-1212 (((-1048 |#2|) (-1 |#2| |#1|) (-1116 |#1|)) 23 (|has| |#1| (-775))) (((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|)) 17))) -(((-1117 |#1| |#2|) (-10 -7 (-15 -1212 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (IF (|has| |#1| (-775)) (-15 -1212 ((-1048 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) |noBranch|)) (-1104) (-1104)) (T -1117)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-775)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1048 *6)) (-5 *1 (-1117 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1116 *6)) (-5 *1 (-1117 *5 *6))))) -(-10 -7 (-15 -1212 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (IF (|has| |#1| (-775)) (-15 -1212 ((-1048 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) |noBranch|)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3077 (((-1148 |#2|) $ (-701)) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3081 (($ (-1064 |#2|)) NIL)) (-3728 (((-1064 $) $ (-986)) NIL) (((-1064 |#2|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-508)))) (-2865 (($ $) NIL (|has| |#2| (-508)))) (-1639 (((-107) $) NIL (|has| |#2| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-986))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1855 (($ $ $) NIL (|has| |#2| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL (|has| |#2| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2781 (((-107) $ $) NIL (|has| |#2| (-331)))) (-3643 (($ $ (-701)) NIL)) (-2222 (($ $ (-701)) NIL)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-419)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-986) "failed") $) NIL)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-986) $) NIL)) (-1749 (($ $ $ (-986)) NIL (|has| |#2| (-156))) ((|#2| $ $) NIL (|has| |#2| (-156)))) (-3023 (($ $ $) NIL (|has| |#2| (-331)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#2| (-331)))) (-4094 (($ $ $) NIL)) (-3470 (($ $ $) NIL (|has| |#2| (-508)))) (-2352 (((-2 (|:| -3189 |#2|) (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#2| (-331)))) (-3533 (($ $) NIL (|has| |#2| (-419))) (($ $ (-986)) NIL (|has| |#2| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#2| (-830)))) (-3503 (($ $ |#2| (-701) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-986) (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-986) (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-3169 (((-701) $ $) NIL (|has| |#2| (-508)))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#2| (-1046)))) (-3794 (($ (-1064 |#2|) (-986)) NIL) (($ (-1064 $) (-986)) NIL)) (-2917 (($ $ (-701)) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#2| (-331)))) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#2| (-701)) 17) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-986)) NIL) (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2285 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-3515 (($ (-1 (-701) (-701)) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-1704 (((-1064 |#2|) $) NIL)) (-2752 (((-3 (-986) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#2| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-3460 (((-1053) $) NIL)) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-986)) (|:| -3027 (-701))) "failed") $) NIL)) (-3188 (($ $) NIL (|has| |#2| (-37 (-375 (-501)))))) (-3746 (($) NIL (|has| |#2| (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#2| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-4138 (($ $ (-701) |#2| $) NIL)) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-830)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#2| (-331)))) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#2| (-331)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-986) |#2|) NIL) (($ $ (-578 (-986)) (-578 |#2|)) NIL) (($ $ (-986) $) NIL) (($ $ (-578 (-986)) (-578 $)) NIL)) (-1864 (((-701) $) NIL (|has| |#2| (-331)))) (-2007 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-375 $) (-375 $) (-375 $)) NIL (|has| |#2| (-508))) ((|#2| (-375 $) |#2|) NIL (|has| |#2| (-331))) (((-375 $) $ (-375 $)) NIL (|has| |#2| (-508)))) (-2158 (((-3 $ "failed") $ (-701)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-331)))) (-2532 (($ $ (-986)) NIL (|has| |#2| (-156))) ((|#2| $) NIL (|has| |#2| (-156)))) (-2596 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1201 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-986) (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#2| $) NIL (|has| |#2| (-419))) (($ $ (-986)) NIL (|has| |#2| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3913 (((-3 $ "failed") $ $) NIL (|has| |#2| (-508))) (((-3 (-375 $) "failed") (-375 $) $) NIL (|has| |#2| (-508)))) (-3691 (((-786) $) 13) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-986)) NIL) (($ (-1145 |#1|)) 19) (($ (-375 (-501))) NIL (-1405 (|has| |#2| (-37 (-375 (-501)))) (|has| |#2| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#2| (-508)))) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-701)) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#2| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#2| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) 14 T CONST)) (-3584 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#2| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#2| (-37 (-375 (-501))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1118 |#1| |#2|) (-13 (-1125 |#2|) (-10 -8 (-15 -3691 ($ (-1145 |#1|))) (-15 -4138 ($ $ (-701) |#2| $)))) (-1070) (-959)) (T -1118)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-14 *3 (-1070)) (-5 *1 (-1118 *3 *4)) (-4 *4 (-959)))) (-4138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1118 *4 *3)) (-14 *4 (-1070)) (-4 *3 (-959))))) -(-13 (-1125 |#2|) (-10 -8 (-15 -3691 ($ (-1145 |#1|))) (-15 -4138 ($ $ (-701) |#2| $)))) -((-1212 (((-1118 |#3| |#4|) (-1 |#4| |#2|) (-1118 |#1| |#2|)) 15))) -(((-1119 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 ((-1118 |#3| |#4|) (-1 |#4| |#2|) (-1118 |#1| |#2|)))) (-1070) (-959) (-1070) (-959)) (T -1119)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1118 *5 *6)) (-14 *5 (-1070)) (-4 *6 (-959)) (-4 *8 (-959)) (-5 *2 (-1118 *7 *8)) (-5 *1 (-1119 *5 *6 *7 *8)) (-14 *7 (-1070))))) -(-10 -7 (-15 -1212 ((-1118 |#3| |#4|) (-1 |#4| |#2|) (-1118 |#1| |#2|)))) -((-3473 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1644 ((|#1| |#3|) 13)) (-4132 ((|#3| |#3|) 19))) -(((-1120 |#1| |#2| |#3|) (-10 -7 (-15 -1644 (|#1| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-508) (-906 |#1|) (-1125 |#2|)) (T -1120)) -((-3473 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1120 *4 *5 *3)) (-4 *3 (-1125 *5)))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *4 (-906 *3)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-1125 *4)))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-1120 *2 *4 *3)) (-4 *3 (-1125 *4))))) -(-10 -7 (-15 -1644 (|#1| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1722 (((-3 |#2| "failed") |#2| (-701) |#1|) 29)) (-1492 (((-3 |#2| "failed") |#2| (-701)) 30)) (-3726 (((-3 (-2 (|:| -1313 |#2|) (|:| -1320 |#2|)) "failed") |#2|) 42)) (-2335 (((-578 |#2|) |#2|) 44)) (-2967 (((-3 |#2| "failed") |#2| |#2|) 39))) -(((-1121 |#1| |#2|) (-10 -7 (-15 -1492 ((-3 |#2| "failed") |#2| (-701))) (-15 -1722 ((-3 |#2| "failed") |#2| (-701) |#1|)) (-15 -2967 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3726 ((-3 (-2 (|:| -1313 |#2|) (|:| -1320 |#2|)) "failed") |#2|)) (-15 -2335 ((-578 |#2|) |#2|))) (-13 (-508) (-134)) (-1125 |#1|)) (T -1121)) -((-2335 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-134))) (-5 *2 (-578 *3)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-1125 *4)))) (-3726 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-134))) (-5 *2 (-2 (|:| -1313 *3) (|:| -1320 *3))) (-5 *1 (-1121 *4 *3)) (-4 *3 (-1125 *4)))) (-2967 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-1125 *3)))) (-1722 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-1125 *4)))) (-1492 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-1125 *4))))) -(-10 -7 (-15 -1492 ((-3 |#2| "failed") |#2| (-701))) (-15 -1722 ((-3 |#2| "failed") |#2| (-701) |#1|)) (-15 -2967 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3726 ((-3 (-2 (|:| -1313 |#2|) (|:| -1320 |#2|)) "failed") |#2|)) (-15 -2335 ((-578 |#2|) |#2|))) -((-3511 (((-3 (-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) "failed") |#2| |#2|) 31))) -(((-1122 |#1| |#2|) (-10 -7 (-15 -3511 ((-3 (-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) "failed") |#2| |#2|))) (-508) (-1125 |#1|)) (T -1122)) -((-3511 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-1122 *4 *3)) (-4 *3 (-1125 *4))))) -(-10 -7 (-15 -3511 ((-3 (-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) "failed") |#2| |#2|))) -((-2956 ((|#2| |#2| |#2|) 19)) (-3459 ((|#2| |#2| |#2|) 30)) (-2880 ((|#2| |#2| |#2| (-701) (-701)) 36))) -(((-1123 |#1| |#2|) (-10 -7 (-15 -2956 (|#2| |#2| |#2|)) (-15 -3459 (|#2| |#2| |#2|)) (-15 -2880 (|#2| |#2| |#2| (-701) (-701)))) (-959) (-1125 |#1|)) (T -1123)) -((-2880 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-1123 *4 *2)) (-4 *2 (-1125 *4)))) (-3459 (*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-1125 *3)))) (-2956 (*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-1125 *3))))) -(-10 -7 (-15 -2956 (|#2| |#2| |#2|)) (-15 -3459 (|#2| |#2| |#2|)) (-15 -2880 (|#2| |#2| |#2| (-701) (-701)))) -((-3077 (((-1148 |#2|) $ (-701)) 113)) (-3800 (((-578 (-986)) $) 15)) (-3081 (($ (-1064 |#2|)) 66)) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-986))) 18)) (-3324 (((-373 (-1064 $)) (-1064 $)) 183)) (-3676 (($ $) 173)) (-1559 (((-373 $) $) 171)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 81)) (-3643 (($ $ (-701)) 70)) (-2222 (($ $ (-701)) 72)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-3765 (((-3 |#2| "failed") $) 116) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 (-986) "failed") $) NIL)) (-3490 ((|#2| $) 114) (((-375 (-501)) $) NIL) (((-501) $) NIL) (((-986) $) NIL)) (-3470 (($ $ $) 150)) (-2352 (((-2 (|:| -3189 |#2|) (|:| -3236 $) (|:| -1852 $)) $ $) 152)) (-3169 (((-701) $ $) 168)) (-3493 (((-3 $ "failed") $) 122)) (-3787 (($ |#2| (-701)) NIL) (($ $ (-986) (-701)) 46) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-2285 (((-701) $) NIL) (((-701) $ (-986)) 41) (((-578 (-701)) $ (-578 (-986))) 42)) (-1704 (((-1064 |#2|) $) 58)) (-2752 (((-3 (-986) "failed") $) 39)) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) 69)) (-3188 (($ $) 194)) (-3746 (($) 118)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 180)) (-2305 (((-373 (-1064 $)) (-1064 $)) 87)) (-2572 (((-373 (-1064 $)) (-1064 $)) 85)) (-3739 (((-373 $) $) 105)) (-3195 (($ $ (-578 (-262 $))) 38) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-986) |#2|) 31) (($ $ (-578 (-986)) (-578 |#2|)) 28) (($ $ (-986) $) 25) (($ $ (-578 (-986)) (-578 $)) 23)) (-1864 (((-701) $) 186)) (-2007 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-375 $) (-375 $) (-375 $)) 146) ((|#2| (-375 $) |#2|) 185) (((-375 $) $ (-375 $)) 167)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 189)) (-2596 (($ $ (-986)) 139) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) 137) (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-1201 (((-701) $) NIL) (((-701) $ (-986)) 16) (((-578 (-701)) $ (-578 (-986))) 20)) (-1734 ((|#2| $) NIL) (($ $ (-986)) 124)) (-3913 (((-3 $ "failed") $ $) 160) (((-3 (-375 $) "failed") (-375 $) $) 156)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-986)) 50) (($ (-375 (-501))) NIL) (($ $) NIL))) -(((-1124 |#1| |#2|) (-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -2007 ((-375 |#1|) |#1| (-375 |#1|))) (-15 -1864 ((-701) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3188 (|#1| |#1|)) (-15 -2007 (|#2| (-375 |#1|) |#2|)) (-15 -1337 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2352 ((-2 (|:| -3189 |#2|) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3470 (|#1| |#1| |#1|)) (-15 -3913 ((-3 (-375 |#1|) "failed") (-375 |#1|) |#1|)) (-15 -3913 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3169 ((-701) |#1| |#1|)) (-15 -2007 ((-375 |#1|) (-375 |#1|) (-375 |#1|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2222 (|#1| |#1| (-701))) (-15 -3643 (|#1| |#1| (-701))) (-15 -3179 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| (-701))) (-15 -3081 (|#1| (-1064 |#2|))) (-15 -1704 ((-1064 |#2|) |#1|)) (-15 -3077 ((-1148 |#2|) |#1| (-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| |#1|)) (-15 -2007 (|#2| |#1| |#2|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3324 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -1734 (|#1| |#1| (-986))) (-15 -3800 ((-578 (-986)) |#1|)) (-15 -1699 ((-701) |#1| (-578 (-986)))) (-15 -1699 ((-701) |#1|)) (-15 -3787 (|#1| |#1| (-578 (-986)) (-578 (-701)))) (-15 -3787 (|#1| |#1| (-986) (-701))) (-15 -2285 ((-578 (-701)) |#1| (-578 (-986)))) (-15 -2285 ((-701) |#1| (-986))) (-15 -2752 ((-3 (-986) "failed") |#1|)) (-15 -1201 ((-578 (-701)) |#1| (-578 (-986)))) (-15 -1201 ((-701) |#1| (-986))) (-15 -3490 ((-986) |#1|)) (-15 -3765 ((-3 (-986) "failed") |#1|)) (-15 -3691 (|#1| (-986))) (-15 -3195 (|#1| |#1| (-578 (-986)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-986) |#1|)) (-15 -3195 (|#1| |#1| (-578 (-986)) (-578 |#2|))) (-15 -3195 (|#1| |#1| (-986) |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -1201 ((-701) |#1|)) (-15 -3787 (|#1| |#2| (-701))) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -2285 ((-701) |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -2596 (|#1| |#1| (-578 (-986)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-986) (-701))) (-15 -2596 (|#1| |#1| (-578 (-986)))) (-15 -2596 (|#1| |#1| (-986))) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-1125 |#2|) (-959)) (T -1124)) -NIL -(-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -2007 ((-375 |#1|) |#1| (-375 |#1|))) (-15 -1864 ((-701) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3188 (|#1| |#1|)) (-15 -2007 (|#2| (-375 |#1|) |#2|)) (-15 -1337 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2352 ((-2 (|:| -3189 |#2|) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3470 (|#1| |#1| |#1|)) (-15 -3913 ((-3 (-375 |#1|) "failed") (-375 |#1|) |#1|)) (-15 -3913 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3169 ((-701) |#1| |#1|)) (-15 -2007 ((-375 |#1|) (-375 |#1|) (-375 |#1|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2222 (|#1| |#1| (-701))) (-15 -3643 (|#1| |#1| (-701))) (-15 -3179 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| (-701))) (-15 -3081 (|#1| (-1064 |#2|))) (-15 -1704 ((-1064 |#2|) |#1|)) (-15 -3077 ((-1148 |#2|) |#1| (-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| |#1|)) (-15 -2007 (|#2| |#1| |#2|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3324 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -1734 (|#1| |#1| (-986))) (-15 -3800 ((-578 (-986)) |#1|)) (-15 -1699 ((-701) |#1| (-578 (-986)))) (-15 -1699 ((-701) |#1|)) (-15 -3787 (|#1| |#1| (-578 (-986)) (-578 (-701)))) (-15 -3787 (|#1| |#1| (-986) (-701))) (-15 -2285 ((-578 (-701)) |#1| (-578 (-986)))) (-15 -2285 ((-701) |#1| (-986))) (-15 -2752 ((-3 (-986) "failed") |#1|)) (-15 -1201 ((-578 (-701)) |#1| (-578 (-986)))) (-15 -1201 ((-701) |#1| (-986))) (-15 -3490 ((-986) |#1|)) (-15 -3765 ((-3 (-986) "failed") |#1|)) (-15 -3691 (|#1| (-986))) (-15 -3195 (|#1| |#1| (-578 (-986)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-986) |#1|)) (-15 -3195 (|#1| |#1| (-578 (-986)) (-578 |#2|))) (-15 -3195 (|#1| |#1| (-986) |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -1201 ((-701) |#1|)) (-15 -3787 (|#1| |#2| (-701))) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -2285 ((-701) |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -2596 (|#1| |#1| (-578 (-986)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-986) (-701))) (-15 -2596 (|#1| |#1| (-578 (-986)))) (-15 -2596 (|#1| |#1| (-986))) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3077 (((-1148 |#1|) $ (-701)) 238)) (-3800 (((-578 (-986)) $) 110)) (-3081 (($ (-1064 |#1|)) 236)) (-3728 (((-1064 $) $ (-986)) 125) (((-1064 |#1|) $) 124)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 87 (|has| |#1| (-508)))) (-2865 (($ $) 88 (|has| |#1| (-508)))) (-1639 (((-107) $) 90 (|has| |#1| (-508)))) (-1699 (((-701) $) 112) (((-701) $ (-578 (-986))) 111)) (-3177 (((-3 $ "failed") $ $) 19)) (-1855 (($ $ $) 223 (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) 100 (|has| |#1| (-830)))) (-3676 (($ $) 98 (|has| |#1| (-419)))) (-1559 (((-373 $) $) 97 (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 103 (|has| |#1| (-830)))) (-2781 (((-107) $ $) 208 (|has| |#1| (-331)))) (-3643 (($ $ (-701)) 231)) (-2222 (($ $ (-701)) 230)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-419)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 164) (((-3 (-375 (-501)) "failed") $) 162 (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) 160 (|has| |#1| (-950 (-501)))) (((-3 (-986) "failed") $) 136)) (-3490 ((|#1| $) 165) (((-375 (-501)) $) 161 (|has| |#1| (-950 (-375 (-501))))) (((-501) $) 159 (|has| |#1| (-950 (-501)))) (((-986) $) 135)) (-1749 (($ $ $ (-986)) 108 (|has| |#1| (-156))) ((|#1| $ $) 226 (|has| |#1| (-156)))) (-3023 (($ $ $) 212 (|has| |#1| (-331)))) (-3858 (($ $) 154)) (-3868 (((-621 (-501)) (-621 $)) 134 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 133 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 132) (((-621 |#1|) (-621 $)) 131)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 211 (|has| |#1| (-331)))) (-4094 (($ $ $) 229)) (-3470 (($ $ $) 220 (|has| |#1| (-508)))) (-2352 (((-2 (|:| -3189 |#1|) (|:| -3236 $) (|:| -1852 $)) $ $) 219 (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 206 (|has| |#1| (-331)))) (-3533 (($ $) 176 (|has| |#1| (-419))) (($ $ (-986)) 105 (|has| |#1| (-419)))) (-3854 (((-578 $) $) 109)) (-1628 (((-107) $) 96 (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-701) $) 172)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 84 (-12 (|has| (-986) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 83 (-12 (|has| (-986) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ $) 224 (|has| |#1| (-508)))) (-1355 (((-107) $) 31)) (-3706 (((-701) $) 169)) (-3493 (((-3 $ "failed") $) 204 (|has| |#1| (-1046)))) (-3794 (($ (-1064 |#1|) (-986)) 117) (($ (-1064 $) (-986)) 116)) (-2917 (($ $ (-701)) 235)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 215 (|has| |#1| (-331)))) (-2713 (((-578 $) $) 126)) (-2706 (((-107) $) 152)) (-3787 (($ |#1| (-701)) 153) (($ $ (-986) (-701)) 119) (($ $ (-578 (-986)) (-578 (-701))) 118)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-986)) 120) (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 233)) (-2285 (((-701) $) 170) (((-701) $ (-986)) 122) (((-578 (-701)) $ (-578 (-986))) 121)) (-4111 (($ $ $) 79 (|has| |#1| (-777)))) (-1323 (($ $ $) 78 (|has| |#1| (-777)))) (-3515 (($ (-1 (-701) (-701)) $) 171)) (-1212 (($ (-1 |#1| |#1|) $) 151)) (-1704 (((-1064 |#1|) $) 237)) (-2752 (((-3 (-986) "failed") $) 123)) (-3845 (($ $) 149)) (-3850 ((|#1| $) 148)) (-1697 (($ (-578 $)) 94 (|has| |#1| (-419))) (($ $ $) 93 (|has| |#1| (-419)))) (-3460 (((-1053) $) 9)) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) 232)) (-2948 (((-3 (-578 $) "failed") $) 114)) (-1285 (((-3 (-578 $) "failed") $) 115)) (-2551 (((-3 (-2 (|:| |var| (-986)) (|:| -3027 (-701))) "failed") $) 113)) (-3188 (($ $) 216 (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) 203 (|has| |#1| (-1046)) CONST)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 166)) (-3841 ((|#1| $) 167)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 95 (|has| |#1| (-419)))) (-3664 (($ (-578 $)) 92 (|has| |#1| (-419))) (($ $ $) 91 (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 102 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 101 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 99 (|has| |#1| (-830)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 213 (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 207 (|has| |#1| (-331)))) (-3195 (($ $ (-578 (-262 $))) 145) (($ $ (-262 $)) 144) (($ $ $ $) 143) (($ $ (-578 $) (-578 $)) 142) (($ $ (-986) |#1|) 141) (($ $ (-578 (-986)) (-578 |#1|)) 140) (($ $ (-986) $) 139) (($ $ (-578 (-986)) (-578 $)) 138)) (-1864 (((-701) $) 209 (|has| |#1| (-331)))) (-2007 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-375 $) (-375 $) (-375 $)) 225 (|has| |#1| (-508))) ((|#1| (-375 $) |#1|) 217 (|has| |#1| (-331))) (((-375 $) $ (-375 $)) 205 (|has| |#1| (-508)))) (-2158 (((-3 $ "failed") $ (-701)) 234)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 210 (|has| |#1| (-331)))) (-2532 (($ $ (-986)) 107 (|has| |#1| (-156))) ((|#1| $) 227 (|has| |#1| (-156)))) (-2596 (($ $ (-986)) 42) (($ $ (-578 (-986))) 41) (($ $ (-986) (-701)) 40) (($ $ (-578 (-986)) (-578 (-701))) 39) (($ $ (-701)) 253) (($ $) 251) (($ $ (-1070)) 250 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 249 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 248 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 247 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-1201 (((-701) $) 150) (((-701) $ (-986)) 130) (((-578 (-701)) $ (-578 (-986))) 129)) (-1248 (((-810 (-346)) $) 82 (-12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) 81 (-12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) 80 (-12 (|has| (-986) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) 175 (|has| |#1| (-419))) (($ $ (-986)) 106 (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 104 (-1280 (|has| $ (-132)) (|has| |#1| (-830))))) (-3913 (((-3 $ "failed") $ $) 222 (|has| |#1| (-508))) (((-3 (-375 $) "failed") (-375 $) $) 221 (|has| |#1| (-508)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 163) (($ (-986)) 137) (($ (-375 (-501))) 72 (-1405 (|has| |#1| (-950 (-375 (-501)))) (|has| |#1| (-37 (-375 (-501)))))) (($ $) 85 (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) 168)) (-2495 ((|#1| $ (-701)) 155) (($ $ (-986) (-701)) 128) (($ $ (-578 (-986)) (-578 (-701))) 127)) (-1274 (((-3 $ "failed") $) 73 (-1405 (-1280 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 29)) (-3771 (($ $ $ (-701)) 173 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 89 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-986)) 38) (($ $ (-578 (-986))) 37) (($ $ (-986) (-701)) 36) (($ $ (-578 (-986)) (-578 (-701))) 35) (($ $ (-701)) 254) (($ $) 252) (($ $ (-1070)) 246 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 245 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 244 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 243 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-3778 (((-107) $ $) 76 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 75 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 77 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 74 (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 156 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 158 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 157 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1125 |#1|) (-1180) (-959)) (T -1125)) -((-3077 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1125 *4)) (-4 *4 (-959)) (-5 *2 (-1148 *4)))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-5 *2 (-1064 *3)))) (-3081 (*1 *1 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-959)) (-4 *1 (-1125 *3)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) (-2158 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) (-1554 (*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *3)))) (-3179 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *4)))) (-3643 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) (-2222 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) (-4094 (*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)))) (-2596 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-156)))) (-1749 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-156)))) (-2007 (*1 *2 *2 *2) (-12 (-5 *2 (-375 *1)) (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)))) (-3169 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)) (-5 *2 (-701)))) (-1855 (*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508)))) (-3913 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508)))) (-3913 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-375 *1)) (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)))) (-3470 (*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508)))) (-2352 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3189 *3) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *3)))) (-1337 (*1 *2 *1 *1) (-12 (-4 *3 (-419)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1125 *3)))) (-2007 (*1 *2 *3 *2) (-12 (-5 *3 (-375 *1)) (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501))))))) -(-13 (-870 |t#1| (-701) (-986)) (-256 |t#1| |t#1|) (-256 $ $) (-206) (-204 |t#1|) (-10 -8 (-15 -3077 ((-1148 |t#1|) $ (-701))) (-15 -1704 ((-1064 |t#1|) $)) (-15 -3081 ($ (-1064 |t#1|))) (-15 -2917 ($ $ (-701))) (-15 -2158 ((-3 $ "failed") $ (-701))) (-15 -1554 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -3179 ((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701))) (-15 -3643 ($ $ (-701))) (-15 -2222 ($ $ (-701))) (-15 -4094 ($ $ $)) (-15 -2596 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1046)) (-6 (-1046)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -2532 (|t#1| $)) (-15 -1749 (|t#1| $ $))) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-6 (-256 (-375 $) (-375 $))) (-15 -2007 ((-375 $) (-375 $) (-375 $))) (-15 -3169 ((-701) $ $)) (-15 -1855 ($ $ $)) (-15 -3913 ((-3 $ "failed") $ $)) (-15 -3913 ((-3 (-375 $) "failed") (-375 $) $)) (-15 -3470 ($ $ $)) (-15 -2352 ((-2 (|:| -3189 |t#1|) (|:| -3236 $) (|:| -1852 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-419)) (-15 -1337 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |noBranch|) (IF (|has| |t#1| (-331)) (PROGN (-6 (-276)) (-6 -4163) (-15 -2007 (|t#1| (-375 $) |t#1|))) |noBranch|) (IF (|has| |t#1| (-37 (-375 (-501)))) (-15 -3188 ($ $)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| (-701)) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-556 (-490)) -12 (|has| (-986) (-556 (-490))) (|has| |#1| (-556 (-490)))) ((-556 (-810 (-346))) -12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346))))) ((-556 (-810 (-501))) -12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501))))) ((-204 |#1|) . T) ((-206) . T) ((-256 (-375 $) (-375 $)) |has| |#1| (-508)) ((-256 |#1| |#1|) . T) ((-256 $ $) . T) ((-260) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331))) ((-276) |has| |#1| (-331)) ((-278 $) . T) ((-294 |#1| (-701)) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-830)) (|has| |#1| (-419)) (|has| |#1| (-331))) ((-476 (-986) |#1|) . T) ((-476 (-986) $) . T) ((-476 $ $) . T) ((-508) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331))) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331))) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 (-986)) . T) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-806 (-346)) -12 (|has| (-986) (-806 (-346))) (|has| |#1| (-806 (-346)))) ((-806 (-501)) -12 (|has| (-986) (-806 (-501))) (|has| |#1| (-806 (-501)))) ((-870 |#1| (-701) (-986)) . T) ((-830) |has| |#1| (-830)) ((-841) |has| |#1| (-331)) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 (-986)) . T) ((-950 |#1|) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| |#1| (-1046)) ((-1108) |has| |#1| (-830))) -((-1212 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|))) (-959) (-1125 |#1|) (-959) (-1125 |#3|)) (T -1126)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *2 (-1125 *6)) (-5 *1 (-1126 *5 *4 *6 *2)) (-4 *4 (-1125 *5))))) -(-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|))) -((-3800 (((-578 (-986)) $) 28)) (-3858 (($ $) 25)) (-3787 (($ |#2| |#3|) NIL) (($ $ (-986) |#3|) 22) (($ $ (-578 (-986)) (-578 |#3|)) 20)) (-3845 (($ $) 14)) (-3850 ((|#2| $) 12)) (-1201 ((|#3| $) 10))) -(((-1127 |#1| |#2| |#3|) (-10 -8 (-15 -3800 ((-578 (-986)) |#1|)) (-15 -3787 (|#1| |#1| (-578 (-986)) (-578 |#3|))) (-15 -3787 (|#1| |#1| (-986) |#3|)) (-15 -3858 (|#1| |#1|)) (-15 -3787 (|#1| |#2| |#3|)) (-15 -1201 (|#3| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3850 (|#2| |#1|))) (-1128 |#2| |#3|) (-959) (-722)) (T -1127)) -NIL -(-10 -8 (-15 -3800 ((-578 (-986)) |#1|)) (-15 -3787 (|#1| |#1| (-578 (-986)) (-578 |#3|))) (-15 -3787 (|#1| |#1| (-986) |#3|)) (-15 -3858 (|#1| |#1|)) (-15 -3787 (|#1| |#2| |#3|)) (-15 -1201 (|#3| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3850 (|#2| |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ |#2|) 100) (($ $ |#2| |#2|) 99)) (-1395 (((-1048 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 107)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-3331 (((-107) $) 75)) (-3169 ((|#2| $) 102) ((|#2| $ |#2|) 101)) (-1355 (((-107) $) 31)) (-2917 (($ $ (-839)) 103)) (-2706 (((-107) $) 64)) (-3787 (($ |#1| |#2|) 63) (($ $ (-986) |#2|) 78) (($ $ (-578 (-986)) (-578 |#2|)) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3718 (($ $ |#2|) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2007 ((|#1| $ |#2|) 106) (($ $ $) 83 (|has| |#2| (-1012)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 91 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1070) (-701)) 90 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-578 (-1070))) 89 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1070)) 88 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-701)) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1201 ((|#2| $) 66)) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508))) (($ |#1|) 49 (|has| |#1| (-156)))) (-2495 ((|#1| $ |#2|) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-2391 ((|#1| $ |#2|) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 95 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1070) (-701)) 94 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-578 (-1070))) 93 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1070)) 92 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-701)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501))))))) -(((-1128 |#1| |#2|) (-1180) (-959) (-722)) (T -1128)) -((-1395 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-1048 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2007 (*1 *2 *1 *3) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-1070)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-3169 (*1 *2 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-2805 (*1 *1 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-2805 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-2391 (*1 *2 *1 *3) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3691 (*2 (-1070)))) (-4 *2 (-959)))) (-3718 (*1 *1 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-3195 (*1 *2 *1 *3) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1048 *3))))) -(-13 (-888 |t#1| |t#2| (-986)) (-10 -8 (-15 -1395 ((-1048 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2007 (|t#1| $ |t#2|)) (-15 -3484 ((-1070) $)) (-15 -2896 (|t#1| $)) (-15 -2917 ($ $ (-839))) (-15 -3169 (|t#2| $)) (-15 -3169 (|t#2| $ |t#2|)) (-15 -2805 ($ $ |t#2|)) (-15 -2805 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3691 (|t#1| (-1070)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2391 (|t#1| $ |t#2|)) |noBranch|) |noBranch|) (-15 -3718 ($ $ |t#2|)) (IF (|has| |t#2| (-1012)) (-6 (-256 $ $)) |noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-206)) (IF (|has| |t#1| (-820 (-1070))) (-6 (-820 (-1070))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3195 ((-1048 |t#1|) $ |t#1|)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-206) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-256 $ $) |has| |#2| (-1012)) ((-260) |has| |#1| (-508)) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-820 (-1070)))) ((-888 |#1| |#2| (-986)) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3676 ((|#2| |#2|) 12)) (-1559 (((-373 |#2|) |#2|) 14)) (-1369 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501)))) 30))) -(((-1129 |#1| |#2|) (-10 -7 (-15 -1559 ((-373 |#2|) |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -1369 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501)))))) (-508) (-13 (-1125 |#1|) (-508) (-10 -8 (-15 -3664 ($ $ $))))) (T -1129)) -((-1369 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-501)))) (-4 *4 (-13 (-1125 *3) (-508) (-10 -8 (-15 -3664 ($ $ $))))) (-4 *3 (-508)) (-5 *1 (-1129 *3 *4)))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-13 (-1125 *3) (-508) (-10 -8 (-15 -3664 ($ $ $))))))) (-1559 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-1129 *4 *3)) (-4 *3 (-13 (-1125 *4) (-508) (-10 -8 (-15 -3664 ($ $ $)))))))) -(-10 -7 (-15 -1559 ((-373 |#2|) |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -1369 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501)))))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 11)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) NIL) (($ $ (-375 (-501)) (-375 (-501))) NIL)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) NIL)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-1109 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1139 |#1| |#2| |#3|) "failed") $) 22)) (-3490 (((-1109 |#1| |#2| |#3|) $) NIL) (((-1139 |#1| |#2| |#3|) $) NIL)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2169 (((-375 (-501)) $) 57)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3826 (($ (-375 (-501)) (-1109 |#1| |#2| |#3|)) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) NIL) (((-375 (-501)) $ (-375 (-501))) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) NIL) (($ $ (-375 (-501))) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-375 (-501))) 29) (($ $ (-986) (-375 (-501))) NIL) (($ $ (-578 (-986)) (-578 (-375 (-501)))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-1418 (((-1109 |#1| |#2| |#3|) $) 60)) (-3064 (((-3 (-1109 |#1| |#2| |#3|) "failed") $) NIL)) (-3822 (((-1109 |#1| |#2| |#3|) $) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) 38 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 39 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) NIL) (($ $ $) NIL (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $ (-1145 |#2|)) 37)) (-1201 (((-375 (-501)) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) 87) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1109 |#1| |#2| |#3|)) 16) (($ (-1139 |#1| |#2| |#3|)) 17) (($ (-1145 |#2|)) 35) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 12)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 31 T CONST)) (-1925 (($) 26 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 33)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-1130 |#1| |#2| |#3|) (-13 (-1134 |#1| (-1109 |#1| |#2| |#3|)) (-950 (-1139 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1130)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3)))) -(-13 (-1134 |#1| (-1109 |#1| |#2| |#3|)) (-950 (-1139 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) -((-1212 (((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)) 23))) -(((-1131 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1212 ((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)))) (-959) (-959) (-1070) (-1070) |#1| |#2|) (T -1131)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5 *7 *9)) (-4 *5 (-959)) (-4 *6 (-959)) (-14 *7 (-1070)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1130 *6 *8 *10)) (-5 *1 (-1131 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1070))))) -(-10 -7 (-15 -1212 ((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) 100) (($ $ (-375 (-501)) (-375 (-501))) 99)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) 107)) (-3978 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 164 (|has| |#1| (-331)))) (-1559 (((-373 $) $) 165 (|has| |#1| (-331)))) (-3743 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) 155 (|has| |#1| (-331)))) (-3970 (($ $) 136 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) 174)) (-3984 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 122 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3023 (($ $ $) 159 (|has| |#1| (-331)))) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 158 (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 153 (|has| |#1| (-331)))) (-1628 (((-107) $) 166 (|has| |#1| (-331)))) (-3331 (((-107) $) 75)) (-2003 (($) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) 102) (((-375 (-501)) $ (-375 (-501))) 101)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 118 (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) 103) (($ $ (-375 (-501))) 173)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 162 (|has| |#1| (-331)))) (-2706 (((-107) $) 64)) (-3787 (($ |#1| (-375 (-501))) 63) (($ $ (-986) (-375 (-501))) 78) (($ $ (-578 (-986)) (-578 (-375 (-501)))) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-1635 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-1697 (($ (-578 $)) 151 (|has| |#1| (-331))) (($ $ $) 150 (|has| |#1| (-331)))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 167 (|has| |#1| (-331)))) (-3188 (($ $) 172 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 171 (-1405 (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-879)) (|has| |#1| (-1090)) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-37 (-375 (-501)))))))) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 152 (|has| |#1| (-331)))) (-3664 (($ (-578 $)) 149 (|has| |#1| (-331))) (($ $ $) 148 (|has| |#1| (-331)))) (-3739 (((-373 $) $) 163 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 161 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 160 (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 154 (|has| |#1| (-331)))) (-1989 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) 156 (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) 106) (($ $ $) 83 (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 157 (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 91 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070) (-701)) 90 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-578 (-1070))) 89 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070)) 88 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-701)) 86 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 84 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-1201 (((-375 (-501)) $) 66)) (-3991 (($ $) 134 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 124 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 49 (|has| |#1| (-156))) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-4003 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3995 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 128 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 138 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 126 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 168 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 95 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070) (-701)) 94 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-578 (-1070))) 93 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070)) 92 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-701)) 87 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331))) (($ $ $) 170 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 169 (|has| |#1| (-331))) (($ $ $) 146 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 117 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501))))))) -(((-1132 |#1|) (-1180) (-959)) (T -1132)) -((-2973 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| *4)))) (-4 *4 (-959)) (-4 *1 (-1132 *4)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-1132 *3)) (-4 *3 (-959)))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) (-3188 (*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1132 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1132 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501))))))))) -(-13 (-1128 |t#1| (-375 (-501))) (-10 -8 (-15 -2973 ($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |t#1|))))) (-15 -2917 ($ $ (-375 (-501)))) (IF (|has| |t#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $)) (IF (|has| |t#1| (-15 -3188 (|t#1| |t#1| (-1070)))) (IF (|has| |t#1| (-15 -3800 ((-578 (-1070)) |t#1|))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1090)) (IF (|has| |t#1| (-879)) (IF (|has| |t#1| (-29 (-501))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) |noBranch|) (-6 (-916)) (-6 (-1090))) |noBranch|) (IF (|has| |t#1| (-331)) (-6 (-331)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| (-375 (-501))) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-206) |has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) ((-216) |has| |#1| (-331)) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-256 $ $) |has| (-375 (-501)) (-1012)) ((-260) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-276) |has| |#1| (-331)) ((-331) |has| |#1| (-331)) ((-419) |has| |#1| (-331)) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-508) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070)))) ((-888 |#1| (-375 (-501)) (-986)) . T) ((-841) |has| |#1| (-331)) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-964 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501)))) ((-1108) |has| |#1| (-331)) ((-1128 |#1| (-375 (-501))) . T)) -((-3292 (((-107) $) 12)) (-3765 (((-3 |#3| "failed") $) 17)) (-3490 ((|#3| $) 14))) -(((-1133 |#1| |#2| |#3|) (-10 -8 (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3292 ((-107) |#1|))) (-1134 |#2| |#3|) (-959) (-1111 |#2|)) (T -1133)) -NIL -(-10 -8 (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3292 ((-107) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) 100) (($ $ (-375 (-501)) (-375 (-501))) 99)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) 107)) (-3978 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 164 (|has| |#1| (-331)))) (-1559 (((-373 $) $) 165 (|has| |#1| (-331)))) (-3743 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) 155 (|has| |#1| (-331)))) (-3970 (($ $) 136 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) 174)) (-3984 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 122 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#2| "failed") $) 185)) (-3490 ((|#2| $) 184)) (-3023 (($ $ $) 159 (|has| |#1| (-331)))) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-2169 (((-375 (-501)) $) 182)) (-3034 (($ $ $) 158 (|has| |#1| (-331)))) (-3826 (($ (-375 (-501)) |#2|) 183)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 153 (|has| |#1| (-331)))) (-1628 (((-107) $) 166 (|has| |#1| (-331)))) (-3331 (((-107) $) 75)) (-2003 (($) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) 102) (((-375 (-501)) $ (-375 (-501))) 101)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 118 (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) 103) (($ $ (-375 (-501))) 173)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 162 (|has| |#1| (-331)))) (-2706 (((-107) $) 64)) (-3787 (($ |#1| (-375 (-501))) 63) (($ $ (-986) (-375 (-501))) 78) (($ $ (-578 (-986)) (-578 (-375 (-501)))) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-1635 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-1697 (($ (-578 $)) 151 (|has| |#1| (-331))) (($ $ $) 150 (|has| |#1| (-331)))) (-1418 ((|#2| $) 181)) (-3064 (((-3 |#2| "failed") $) 179)) (-3822 ((|#2| $) 180)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 167 (|has| |#1| (-331)))) (-3188 (($ $) 172 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 171 (-1405 (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-879)) (|has| |#1| (-1090)) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-37 (-375 (-501)))))))) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 152 (|has| |#1| (-331)))) (-3664 (($ (-578 $)) 149 (|has| |#1| (-331))) (($ $ $) 148 (|has| |#1| (-331)))) (-3739 (((-373 $) $) 163 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 161 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 160 (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 154 (|has| |#1| (-331)))) (-1989 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) 156 (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) 106) (($ $ $) 83 (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 157 (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 91 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070) (-701)) 90 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-578 (-1070))) 89 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070)) 88 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-701)) 86 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 84 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-1201 (((-375 (-501)) $) 66)) (-3991 (($ $) 134 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 124 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 49 (|has| |#1| (-156))) (($ |#2|) 186) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-4003 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3995 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 128 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 138 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 126 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 168 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 95 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070) (-701)) 94 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-578 (-1070))) 93 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070)) 92 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-701)) 87 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331))) (($ $ $) 170 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 169 (|has| |#1| (-331))) (($ $ $) 146 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 117 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501))))))) -(((-1134 |#1| |#2|) (-1180) (-959) (-1111 |t#1|)) (T -1134)) -((-1201 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1111 *3)) (-5 *2 (-375 (-501))))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-1134 *3 *2)) (-4 *2 (-1111 *3)))) (-3826 (*1 *1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-4 *4 (-959)) (-4 *1 (-1134 *4 *3)) (-4 *3 (-1111 *4)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1111 *3)) (-5 *2 (-375 (-501))))) (-1418 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3)))) (-3064 (*1 *2 *1) (|partial| -12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3))))) -(-13 (-1132 |t#1|) (-950 |t#2|) (-10 -8 (-15 -3826 ($ (-375 (-501)) |t#2|)) (-15 -2169 ((-375 (-501)) $)) (-15 -1418 (|t#2| $)) (-15 -1201 ((-375 (-501)) $)) (-15 -3691 ($ |t#2|)) (-15 -3822 (|t#2| $)) (-15 -3064 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| (-375 (-501))) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-206) |has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) ((-216) |has| |#1| (-331)) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-256 $ $) |has| (-375 (-501)) (-1012)) ((-260) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-276) |has| |#1| (-331)) ((-331) |has| |#1| (-331)) ((-419) |has| |#1| (-331)) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-508) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070)))) ((-888 |#1| (-375 (-501)) (-986)) . T) ((-841) |has| |#1| (-331)) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-950 |#2|) . T) ((-964 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501)))) ((-1108) |has| |#1| (-331)) ((-1128 |#1| (-375 (-501))) . T) ((-1132 |#1|) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 96)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) 106) (($ $ (-375 (-501)) (-375 (-501))) 108)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) 51)) (-3978 (($ $) 179 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 155 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) 175 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 151 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) 61)) (-3984 (($ $) 183 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 159 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL)) (-3490 ((|#2| $) NIL)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) 79)) (-2169 (((-375 (-501)) $) 12)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3826 (($ (-375 (-501)) |#2|) 10)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3331 (((-107) $) 68)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) 103) (((-375 (-501)) $ (-375 (-501))) 104)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) 120) (($ $ (-375 (-501))) 118)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-375 (-501))) 31) (($ $ (-986) (-375 (-501))) NIL) (($ $ (-578 (-986)) (-578 (-375 (-501)))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) 115)) (-1635 (($ $) 149 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-1418 ((|#2| $) 11)) (-3064 (((-3 |#2| "failed") $) 41)) (-3822 ((|#2| $) 42)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 93 (|has| |#1| (-331)))) (-3188 (($ $) 135 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 140 (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090)))))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) 112)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) 100) (($ $ $) 86 (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) 127 (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-1201 (((-375 (-501)) $) 16)) (-3991 (($ $) 185 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 161 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 181 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 157 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 177 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 153 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 110)) (-3691 (((-786) $) NIL) (($ (-501)) 35) (($ |#1|) 27 (|has| |#1| (-156))) (($ |#2|) 32) (($ (-375 (-501))) 128 (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) 99)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) 117)) (-2896 ((|#1| $) 98)) (-4003 (($ $) 191 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 167 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) 187 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 163 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 195 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 171 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 197 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 173 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 193 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 169 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 189 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 165 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 21 T CONST)) (-1925 (($) 17 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) 66)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) 92 (|has| |#1| (-331)))) (-3797 (($ $) 131) (($ $ $) 72)) (-3790 (($ $ $) 70)) (** (($ $ (-839)) NIL) (($ $ (-701)) 76) (($ $ (-501)) 144 (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 145 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-1135 |#1| |#2|) (-1134 |#1| |#2|) (-959) (-1111 |#1|)) (T -1135)) -NIL -(-1134 |#1| |#2|) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 32)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| (-1130 |#2| |#3| |#4|) (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-1130 |#2| |#3| |#4|) (-950 (-375 (-501))))) (((-3 (-1130 |#2| |#3| |#4|) "failed") $) 20)) (-3490 (((-501) $) NIL (|has| (-1130 |#2| |#3| |#4|) (-950 (-501)))) (((-375 (-501)) $) NIL (|has| (-1130 |#2| |#3| |#4|) (-950 (-375 (-501))))) (((-1130 |#2| |#3| |#4|) $) NIL)) (-3858 (($ $) 33)) (-2174 (((-3 $ "failed") $) 25)) (-3533 (($ $) NIL (|has| (-1130 |#2| |#3| |#4|) (-419)))) (-3503 (($ $ (-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|) $) NIL)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) 11)) (-2706 (((-107) $) NIL)) (-3787 (($ (-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) 23)) (-2285 (((-287 |#2| |#3| |#4|) $) NIL)) (-3515 (($ (-1 (-287 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) $) NIL)) (-1212 (($ (-1 (-1130 |#2| |#3| |#4|) (-1130 |#2| |#3| |#4|)) $) NIL)) (-2533 (((-3 (-769 |#2|) "failed") $) 72)) (-3845 (($ $) NIL)) (-3850 (((-1130 |#2| |#3| |#4|) $) 18)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 (((-1130 |#2| |#3| |#4|) $) NIL)) (-3694 (((-3 $ "failed") $ (-1130 |#2| |#3| |#4|)) NIL (|has| (-1130 |#2| |#3| |#4|) (-508))) (((-3 $ "failed") $ $) NIL)) (-2427 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1130 |#2| |#3| |#4|)) (|:| |%expon| (-287 |#2| |#3| |#4|)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#2|)))))) (|:| |%type| (-1053))) "failed") $) 55)) (-1201 (((-287 |#2| |#3| |#4|) $) 14)) (-1734 (((-1130 |#2| |#3| |#4|) $) NIL (|has| (-1130 |#2| |#3| |#4|) (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-1130 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL (-1405 (|has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501)))) (|has| (-1130 |#2| |#3| |#4|) (-950 (-375 (-501))))))) (-1303 (((-578 (-1130 |#2| |#3| |#4|)) $) NIL)) (-2495 (((-1130 |#2| |#3| |#4|) $ (-287 |#2| |#3| |#4|)) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| (-1130 |#2| |#3| |#4|) (-132)))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| (-1130 |#2| |#3| |#4|) (-156)))) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 60 T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ (-1130 |#2| |#3| |#4|)) NIL (|has| (-1130 |#2| |#3| |#4|) (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-1130 |#2| |#3| |#4|)) NIL) (($ (-1130 |#2| |#3| |#4|) $) NIL) (($ (-375 (-501)) $) NIL (|has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501))))))) -(((-1136 |#1| |#2| |#3| |#4|) (-13 (-294 (-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) (-508) (-10 -8 (-15 -2533 ((-3 (-769 |#2|) "failed") $)) (-15 -2427 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1130 |#2| |#3| |#4|)) (|:| |%expon| (-287 |#2| |#3| |#4|)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#2|)))))) (|:| |%type| (-1053))) "failed") $)))) (-13 (-777) (-950 (-501)) (-577 (-501)) (-419)) (-13 (-27) (-1090) (-389 |#1|)) (-1070) |#2|) (T -1136)) -((-2533 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-769 *4)) (-5 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4))) (-2427 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1130 *4 *5 *6)) (|:| |%expon| (-287 *4 *5 *6)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-375 (-501))) (|:| |c| *4)))))) (|:| |%type| (-1053)))) (-5 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4)))) -(-13 (-294 (-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) (-508) (-10 -8 (-15 -2533 ((-3 (-769 |#2|) "failed") $)) (-15 -2427 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1130 |#2| |#3| |#4|)) (|:| |%expon| (-287 |#2| |#3| |#4|)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#2|)))))) (|:| |%type| (-1053))) "failed") $)))) -((-2150 ((|#2| $) 28)) (-2786 ((|#2| $) 18)) (-1511 (($ $) 35)) (-1306 (($ $ (-501)) 63)) (-2997 (((-107) $ (-701)) 32)) (-1594 ((|#2| $ |#2|) 60)) (-2193 ((|#2| $ |#2|) 58)) (-3754 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-1378 (($ $ (-578 $)) 59)) (-1564 ((|#2| $) 17)) (-1199 (($ $) NIL) (($ $ (-701)) 41)) (-3604 (((-578 $) $) 25)) (-3201 (((-107) $ $) 49)) (-3379 (((-107) $ (-701)) 31)) (-3155 (((-107) $ (-701)) 30)) (-2341 (((-107) $) 27)) (-1383 ((|#2| $) 23) (($ $ (-701)) 45)) (-2007 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2622 (((-107) $) 21)) (-1455 (($ $) 38)) (-3873 (($ $) 64)) (-3278 (((-701) $) 40)) (-2787 (($ $) 39)) (-3934 (($ $ $) 57) (($ |#2| $) NIL)) (-1961 (((-578 $) $) 26)) (-3751 (((-107) $ $) 47)) (-3581 (((-701) $) 34))) -(((-1137 |#1| |#2|) (-10 -8 (-15 -1306 (|#1| |#1| (-501))) (-15 -3754 (|#2| |#1| "last" |#2|)) (-15 -2193 (|#2| |#1| |#2|)) (-15 -3754 (|#1| |#1| "rest" |#1|)) (-15 -3754 (|#2| |#1| "first" |#2|)) (-15 -3873 (|#1| |#1|)) (-15 -1455 (|#1| |#1|)) (-15 -3278 ((-701) |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -2786 (|#2| |#1|)) (-15 -1564 (|#2| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1383 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "last")) (-15 -1383 (|#2| |#1|)) (-15 -1199 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| "rest")) (-15 -1199 (|#1| |#1|)) (-15 -2007 (|#2| |#1| "first")) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#1|)) (-15 -1594 (|#2| |#1| |#2|)) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -1378 (|#1| |#1| (-578 |#1|))) (-15 -3201 ((-107) |#1| |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701)))) (-1138 |#2|) (-1104)) (T -1137)) -NIL -(-10 -8 (-15 -1306 (|#1| |#1| (-501))) (-15 -3754 (|#2| |#1| "last" |#2|)) (-15 -2193 (|#2| |#1| |#2|)) (-15 -3754 (|#1| |#1| "rest" |#1|)) (-15 -3754 (|#2| |#1| "first" |#2|)) (-15 -3873 (|#1| |#1|)) (-15 -1455 (|#1| |#1|)) (-15 -3278 ((-701) |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -2786 (|#2| |#1|)) (-15 -1564 (|#2| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1383 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "last")) (-15 -1383 (|#2| |#1|)) (-15 -1199 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| "rest")) (-15 -1199 (|#1| |#1|)) (-15 -2007 (|#2| |#1| "first")) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#1|)) (-15 -1594 (|#2| |#1| |#2|)) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -1378 (|#1| |#1| (-578 |#1|))) (-15 -3201 ((-107) |#1| |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701)))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2786 ((|#1| $) 65)) (-1511 (($ $) 67)) (-1306 (($ $ (-501)) 52 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-3319 (($ $ $) 56 (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 58 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4168))) (($ $ "rest" $) 55 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-1564 ((|#1| $) 66)) (-2540 (($) 7 T CONST)) (-1199 (($ $) 73) (($ $ (-701)) 71)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1383 ((|#1| $) 70) (($ $ (-701)) 68)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 76) (($ $ (-701)) 74)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1932 (((-501) $ $) 44)) (-2622 (((-107) $) 46)) (-1455 (($ $) 62)) (-3873 (($ $) 59 (|has| $ (-6 -4168)))) (-3278 (((-701) $) 63)) (-2787 (($ $) 64)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1186 (($ $ $) 61 (|has| $ (-6 -4168))) (($ $ |#1|) 60 (|has| $ (-6 -4168)))) (-3934 (($ $ $) 78) (($ |#1| $) 77)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-1138 |#1|) (-1180) (-1104)) (T -1138)) -((-3934 (*1 *1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3934 (*1 *1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1190 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1190 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) (-1199 (*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) (-1199 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) (-1383 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1383 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) (-1511 (*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2786 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2787 (*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) (-1455 (*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1186 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1186 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3873 (*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2535 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3754 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3319 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3754 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) (-2193 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3754 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1306 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (|has| *1 (-6 -4168)) (-4 *1 (-1138 *3)) (-4 *3 (-1104))))) -(-13 (-924 |t#1|) (-10 -8 (-15 -3934 ($ $ $)) (-15 -3934 ($ |t#1| $)) (-15 -1190 (|t#1| $)) (-15 -2007 (|t#1| $ "first")) (-15 -1190 ($ $ (-701))) (-15 -1199 ($ $)) (-15 -2007 ($ $ "rest")) (-15 -1199 ($ $ (-701))) (-15 -1383 (|t#1| $)) (-15 -2007 (|t#1| $ "last")) (-15 -1383 ($ $ (-701))) (-15 -1511 ($ $)) (-15 -1564 (|t#1| $)) (-15 -2786 (|t#1| $)) (-15 -2787 ($ $)) (-15 -3278 ((-701) $)) (-15 -1455 ($ $)) (IF (|has| $ (-6 -4168)) (PROGN (-15 -1186 ($ $ $)) (-15 -1186 ($ $ |t#1|)) (-15 -3873 ($ $)) (-15 -2535 (|t#1| $ |t#1|)) (-15 -3754 (|t#1| $ "first" |t#1|)) (-15 -3319 ($ $ $)) (-15 -3754 ($ $ "rest" $)) (-15 -2193 (|t#1| $ |t#1|)) (-15 -3754 (|t#1| $ "last" |t#1|)) (-15 -1306 ($ $ (-501)))) |noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 86)) (-1562 (((-1118 |#2| |#1|) $ (-701)) 73)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) 135 (|has| |#1| (-508)))) (-2805 (($ $ (-701)) 120) (($ $ (-701) (-701)) 122)) (-1395 (((-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|))) $) 42)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|)))) 53) (($ (-1048 |#1|)) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3088 (($ $) 126)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-1338 (($ $) 133)) (-3430 (((-866 |#1|) $ (-701)) 63) (((-866 |#1|) $ (-701) (-701)) 65)) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $) NIL) (((-701) $ (-701)) NIL)) (-1355 (((-107) $) NIL)) (-1247 (($ $) 110)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3635 (($ (-501) (-501) $) 128)) (-2917 (($ $ (-839)) 132)) (-3608 (($ (-1 |#1| (-501)) $) 104)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) 15) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) 92)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-4107 (($ $) 108)) (-1942 (($ $) 106)) (-3914 (($ (-501) (-501) $) 130)) (-3188 (($ $) 143 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 149 (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-2059 (($ $ (-501) (-501)) 114)) (-3718 (($ $ (-701)) 116)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2159 (($ $) 112)) (-3195 (((-1048 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-701)))))) (-2007 ((|#1| $ (-701)) 89) (($ $ $) 124 (|has| (-701) (-1012)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) 101 (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $ (-1145 |#2|)) 97)) (-1201 (((-701) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 118)) (-3691 (((-786) $) NIL) (($ (-501)) 24) (($ (-375 (-501))) 141 (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508))) (($ |#1|) 23 (|has| |#1| (-156))) (($ (-1118 |#2| |#1|)) 79) (($ (-1145 |#2|)) 20)) (-1303 (((-1048 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) 88)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 87)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-701)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-701)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 17 T CONST)) (-1925 (($) 13 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) 100)) (-3790 (($ $ $) 18)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ |#1|) 138 (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 99) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))))) -(((-1139 |#1| |#2| |#3|) (-13 (-1142 |#1|) (-10 -8 (-15 -3691 ($ (-1118 |#2| |#1|))) (-15 -1562 ((-1118 |#2| |#1|) $ (-701))) (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (-15 -1942 ($ $)) (-15 -4107 ($ $)) (-15 -1247 ($ $)) (-15 -2159 ($ $)) (-15 -2059 ($ $ (-501) (-501))) (-15 -3088 ($ $)) (-15 -3635 ($ (-501) (-501) $)) (-15 -3914 ($ (-501) (-501) $)) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1139)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-1118 *4 *3)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-1139 *3 *4 *5)))) (-1562 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1118 *5 *4)) (-5 *1 (-1139 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-1070)) (-14 *6 *4))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-1942 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))) (-4107 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))) (-1247 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))) (-2059 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3))) (-3088 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))) (-3635 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3))) (-3914 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3)))) -(-13 (-1142 |#1|) (-10 -8 (-15 -3691 ($ (-1118 |#2| |#1|))) (-15 -1562 ((-1118 |#2| |#1|) $ (-701))) (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (-15 -1942 ($ $)) (-15 -4107 ($ $)) (-15 -1247 ($ $)) (-15 -2159 ($ $)) (-15 -2059 ($ $ (-501) (-501))) (-15 -3088 ($ $)) (-15 -3635 ($ (-501) (-501) $)) (-15 -3914 ($ (-501) (-501) $)) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) -((-1212 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#2| |#1|) |#3|))) (-959) (-959) (-1142 |#1|) (-1142 |#2|)) (T -1140)) -((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *2 (-1142 *6)) (-5 *1 (-1140 *5 *6 *4 *2)) (-4 *4 (-1142 *5))))) -(-10 -7 (-15 -1212 (|#4| (-1 |#2| |#1|) |#3|))) -((-3292 (((-107) $) 15)) (-3978 (($ $) 90)) (-3937 (($ $) 66)) (-3970 (($ $) 86)) (-3929 (($ $) 62)) (-3984 (($ $) 94)) (-3945 (($ $) 70)) (-1635 (($ $) 60)) (-1989 (($ $) 58)) (-3991 (($ $) 96)) (-3949 (($ $) 72)) (-3981 (($ $) 92)) (-3940 (($ $) 68)) (-3975 (($ $) 88)) (-3933 (($ $) 64)) (-3691 (((-786) $) 46) (($ (-501)) NIL) (($ (-375 (-501))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4003 (($ $) 102)) (-3958 (($ $) 78)) (-3995 (($ $) 98)) (-3952 (($ $) 74)) (-4013 (($ $) 106)) (-3964 (($ $) 82)) (-3550 (($ $) 108)) (-3967 (($ $) 84)) (-4008 (($ $) 104)) (-3961 (($ $) 80)) (-3999 (($ $) 100)) (-3955 (($ $) 76)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ |#2|) 50) (($ $ $) 53) (($ $ (-375 (-501))) 56))) -(((-1141 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -3937 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3967 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839))) (-15 -3292 ((-107) |#1|)) (-15 -3691 ((-786) |#1|))) (-1142 |#2|) (-959)) (T -1141)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -3937 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3967 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839))) (-15 -3292 ((-107) |#1|)) (-15 -3691 ((-786) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ (-701)) 100) (($ $ (-701) (-701)) 99)) (-1395 (((-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|))) $) 107)) (-3978 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3743 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) 136 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|)))) 157) (($ (-1048 |#1|)) 155)) (-3984 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 122 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-1338 (($ $) 154)) (-3430 (((-866 |#1|) $ (-701)) 152) (((-866 |#1|) $ (-701) (-701)) 151)) (-3331 (((-107) $) 75)) (-2003 (($) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $) 102) (((-701) $ (-701)) 101)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 118 (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) 103)) (-3608 (($ (-1 |#1| (-501)) $) 153)) (-2706 (((-107) $) 64)) (-3787 (($ |#1| (-701)) 63) (($ $ (-986) (-701)) 78) (($ $ (-578 (-986)) (-578 (-701))) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-1635 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-3460 (((-1053) $) 9)) (-3188 (($ $) 149 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 148 (-1405 (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-879)) (|has| |#1| (-1090)) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-37 (-375 (-501)))))))) (-3708 (((-1018) $) 10)) (-3718 (($ $ (-701)) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-1989 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-701)))))) (-2007 ((|#1| $ (-701)) 106) (($ $ $) 83 (|has| (-701) (-1012)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 91 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-1070) (-701)) 90 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-578 (-1070))) 89 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-1070)) 88 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-701)) 86 (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) 84 (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (-1201 (((-701) $) 66)) (-3991 (($ $) 134 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 124 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508))) (($ |#1|) 49 (|has| |#1| (-156)))) (-1303 (((-1048 |#1|) $) 156)) (-2495 ((|#1| $ (-701)) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-4003 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3995 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-701)) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-701)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 128 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 138 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 126 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 95 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-1070) (-701)) 94 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-578 (-1070))) 93 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-1070)) 92 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-701)) 87 (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ |#1|) 150 (|has| |#1| (-331))) (($ $ $) 146 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 117 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501))))))) -(((-1142 |#1|) (-1180) (-959)) (T -1142)) -((-2973 (*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-701)) (|:| |c| *3)))) (-4 *3 (-959)) (-4 *1 (-1142 *3)))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-5 *2 (-1048 *3)))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-4 *1 (-1142 *3)))) (-1338 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959)))) (-3608 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *1 (-1142 *3)) (-4 *3 (-959)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1142 *4)) (-4 *4 (-959)) (-5 *2 (-866 *4)))) (-3430 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1142 *4)) (-4 *4 (-959)) (-5 *2 (-866 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) (-3188 (*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501))))))))) -(-13 (-1128 |t#1| (-701)) (-10 -8 (-15 -2973 ($ (-1048 (-2 (|:| |k| (-701)) (|:| |c| |t#1|))))) (-15 -1303 ((-1048 |t#1|) $)) (-15 -2973 ($ (-1048 |t#1|))) (-15 -1338 ($ $)) (-15 -3608 ($ (-1 |t#1| (-501)) $)) (-15 -3430 ((-866 |t#1|) $ (-701))) (-15 -3430 ((-866 |t#1|) $ (-701) (-701))) (IF (|has| |t#1| (-331)) (-15 ** ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $)) (IF (|has| |t#1| (-15 -3188 (|t#1| |t#1| (-1070)))) (IF (|has| |t#1| (-15 -3800 ((-578 (-1070)) |t#1|))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1090)) (IF (|has| |t#1| (-879)) (IF (|has| |t#1| (-29 (-501))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) |noBranch|) (-6 (-916)) (-6 (-1090))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| (-701)) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-206) |has| |#1| (-15 * (|#1| (-701) |#1|))) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-256 $ $) |has| (-701) (-1012)) ((-260) |has| |#1| (-508)) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070)))) ((-888 |#1| (-701) (-986)) . T) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501)))) ((-1128 |#1| (-701)) . T)) -((-3392 (((-1 (-1048 |#1|) (-578 (-1048 |#1|))) (-1 |#2| (-578 |#2|))) 24)) (-2849 (((-1 (-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1370 (((-1 (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2|)) 13)) (-2684 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1658 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4037 ((|#2| (-1 |#2| (-578 |#2|)) (-578 |#1|)) 54)) (-4038 (((-578 |#2|) (-578 |#1|) (-578 (-1 |#2| (-578 |#2|)))) 61)) (-2631 ((|#2| |#2| |#2|) 43))) -(((-1143 |#1| |#2|) (-10 -7 (-15 -1370 ((-1 (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2|))) (-15 -2849 ((-1 (-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3392 ((-1 (-1048 |#1|) (-578 (-1048 |#1|))) (-1 |#2| (-578 |#2|)))) (-15 -2631 (|#2| |#2| |#2|)) (-15 -1658 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2684 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4037 (|#2| (-1 |#2| (-578 |#2|)) (-578 |#1|))) (-15 -4038 ((-578 |#2|) (-578 |#1|) (-578 (-1 |#2| (-578 |#2|)))))) (-37 (-375 (-501))) (-1142 |#1|)) (T -1143)) -((-4038 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 (-1 *6 (-578 *6)))) (-4 *5 (-37 (-375 (-501)))) (-4 *6 (-1142 *5)) (-5 *2 (-578 *6)) (-5 *1 (-1143 *5 *6)))) (-4037 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-578 *2))) (-5 *4 (-578 *5)) (-4 *5 (-37 (-375 (-501)))) (-4 *2 (-1142 *5)) (-5 *1 (-1143 *5 *2)))) (-2684 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-1143 *4 *2)) (-4 *4 (-37 (-375 (-501)))))) (-1658 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-1143 *4 *2)) (-4 *4 (-37 (-375 (-501)))))) (-2631 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1142 *3)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-578 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-578 (-1048 *4)))) (-5 *1 (-1143 *4 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-1048 *4) (-1048 *4))) (-5 *1 (-1143 *4 *5)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-1048 *4))) (-5 *1 (-1143 *4 *5))))) -(-10 -7 (-15 -1370 ((-1 (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2|))) (-15 -2849 ((-1 (-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3392 ((-1 (-1048 |#1|) (-578 (-1048 |#1|))) (-1 |#2| (-578 |#2|)))) (-15 -2631 (|#2| |#2| |#2|)) (-15 -1658 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2684 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4037 (|#2| (-1 |#2| (-578 |#2|)) (-578 |#1|))) (-15 -4038 ((-578 |#2|) (-578 |#1|) (-578 (-1 |#2| (-578 |#2|)))))) -((-1507 ((|#2| |#4| (-701)) 30)) (-4136 ((|#4| |#2|) 25)) (-1716 ((|#4| (-375 |#2|)) 51 (|has| |#1| (-508)))) (-1927 (((-1 |#4| (-578 |#4|)) |#3|) 45))) -(((-1144 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4136 (|#4| |#2|)) (-15 -1507 (|#2| |#4| (-701))) (-15 -1927 ((-1 |#4| (-578 |#4|)) |#3|)) (IF (|has| |#1| (-508)) (-15 -1716 (|#4| (-375 |#2|))) |noBranch|)) (-959) (-1125 |#1|) (-593 |#2|) (-1142 |#1|)) (T -1144)) -((-1716 (*1 *2 *3) (-12 (-5 *3 (-375 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-508)) (-4 *4 (-959)) (-4 *2 (-1142 *4)) (-5 *1 (-1144 *4 *5 *6 *2)) (-4 *6 (-593 *5)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-1125 *4)) (-5 *2 (-1 *6 (-578 *6))) (-5 *1 (-1144 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1142 *4)))) (-1507 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-1144 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1142 *5)))) (-4136 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *3 (-1125 *4)) (-4 *2 (-1142 *4)) (-5 *1 (-1144 *4 *3 *5 *2)) (-4 *5 (-593 *3))))) -(-10 -7 (-15 -4136 (|#4| |#2|)) (-15 -1507 (|#2| |#4| (-701))) (-15 -1927 ((-1 |#4| (-578 |#4|)) |#3|)) (IF (|has| |#1| (-508)) (-15 -1716 (|#4| (-375 |#2|))) |noBranch|)) -((-3736 (((-107) $ $) NIL)) (-3484 (((-1070)) 12)) (-3460 (((-1053) $) 17)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 11) (((-1070) $) 8)) (-3751 (((-107) $ $) 14))) -(((-1145 |#1|) (-13 (-1001) (-555 (-1070)) (-10 -8 (-15 -3691 ((-1070) $)) (-15 -3484 ((-1070))))) (-1070)) (T -1145)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1145 *3)) (-14 *3 *2))) (-3484 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1145 *3)) (-14 *3 *2)))) -(-13 (-1001) (-555 (-1070)) (-10 -8 (-15 -3691 ((-1070) $)) (-15 -3484 ((-1070))))) -((-2563 (($ (-701)) 16)) (-2123 (((-621 |#2|) $ $) 37)) (-3203 ((|#2| $) 46)) (-4139 ((|#2| $) 45)) (-1293 ((|#2| $ $) 33)) (-2220 (($ $ $) 42)) (-3797 (($ $) 20) (($ $ $) 26)) (-3790 (($ $ $) 13)) (* (($ (-501) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28))) -(((-1146 |#1| |#2|) (-10 -8 (-15 -3203 (|#2| |#1|)) (-15 -4139 (|#2| |#1|)) (-15 -2220 (|#1| |#1| |#1|)) (-15 -2123 ((-621 |#2|) |#1| |#1|)) (-15 -1293 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -2563 (|#1| (-701))) (-15 -3790 (|#1| |#1| |#1|))) (-1147 |#2|) (-1104)) (T -1146)) -NIL -(-10 -8 (-15 -3203 (|#2| |#1|)) (-15 -4139 (|#2| |#1|)) (-15 -2220 (|#1| |#1| |#1|)) (-15 -2123 ((-621 |#2|) |#1| |#1|)) (-15 -1293 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -2563 (|#1| (-701))) (-15 -3790 (|#1| |#1| |#1|))) -((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2563 (($ (-701)) 112 (|has| |#1| (-23)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| |#1| (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-1934 (((-501) (-1 (-107) |#1|) $) 97) (((-501) |#1| $) 96 (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) 95 (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-2123 (((-621 |#1|) $ $) 105 (|has| |#1| (-959)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3203 ((|#1| $) 102 (-12 (|has| |#1| (-959)) (|has| |#1| (-916))))) (-3155 (((-107) $ (-701)) 10)) (-4139 ((|#1| $) 103 (-12 (|has| |#1| (-959)) (|has| |#1| (-916))))) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1293 ((|#1| $ $) 106 (|has| |#1| (-959)))) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-2220 (($ $ $) 104 (|has| |#1| (-959)))) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 70)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 84 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 83 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) 85 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 82 (|has| |#1| (-777)))) (-3797 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-3790 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-501) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-657))) (($ $ |#1|) 107 (|has| |#1| (-657)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167))))) -(((-1147 |#1|) (-1180) (-1104)) (T -1147)) -((-3790 (*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-25)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1147 *3)) (-4 *3 (-23)) (-4 *3 (-1104)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-21)))) (-3797 (*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-1147 *3)) (-4 *3 (-1104)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) (-1293 (*1 *2 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-959)))) (-2123 (*1 *2 *1 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1104)) (-4 *3 (-959)) (-5 *2 (-621 *3)))) (-2220 (*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-959)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-916)) (-4 *2 (-959)))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-916)) (-4 *2 (-959))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3790 ($ $ $)) |noBranch|) (IF (|has| |t#1| (-23)) (-15 -2563 ($ (-701))) |noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3797 ($ $)) (-15 -3797 ($ $ $)) (-15 * ($ (-501) $))) |noBranch|) (IF (|has| |t#1| (-657)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-959)) (PROGN (-15 -1293 (|t#1| $ $)) (-15 -2123 ((-621 |t#1|) $ $)) (-15 -2220 ($ $ $))) |noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-959)) (PROGN (-15 -4139 (|t#1| $)) (-15 -3203 (|t#1| $))) |noBranch|) |noBranch|))) -(((-33) . T) ((-97) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-555 (-786)) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-340 |#1|) . T) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-19 |#1|) . T) ((-777) |has| |#1| (-777)) ((-1001) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-1104) . T)) -((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2563 (($ (-701)) NIL (|has| |#1| (-23)))) (-2613 (($ (-578 |#1|)) 9)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) 15 (|has| $ (-6 -4167)))) (-2123 (((-621 |#1|) $ $) NIL (|has| |#1| (-959)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3203 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3155 (((-107) $ (-701)) NIL)) (-4139 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-1293 ((|#1| $ $) NIL (|has| |#1| (-959)))) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-2220 (($ $ $) NIL (|has| |#1| (-959)))) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) 19 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 8)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3797 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3790 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-501) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-657))) (($ $ |#1|) NIL (|has| |#1| (-657)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-1148 |#1|) (-13 (-1147 |#1|) (-10 -8 (-15 -2613 ($ (-578 |#1|))))) (-1104)) (T -1148)) -((-2613 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1148 *3))))) -(-13 (-1147 |#1|) (-10 -8 (-15 -2613 ($ (-578 |#1|))))) -((-3162 (((-1148 |#2|) (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|) 13)) (-3547 ((|#2| (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|) 15)) (-1212 (((-3 (-1148 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1148 |#1|)) 28) (((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 18))) -(((-1149 |#1| |#2|) (-10 -7 (-15 -3162 ((-1148 |#2|) (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|)) (-15 -1212 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (-15 -1212 ((-3 (-1148 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1148 |#1|)))) (-1104) (-1104)) (T -1149)) -((-1212 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-1149 *5 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1148 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1148 *5)) (-5 *1 (-1149 *6 *5))))) -(-10 -7 (-15 -3162 ((-1148 |#2|) (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|)) (-15 -1212 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (-15 -1212 ((-3 (-1148 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1148 |#1|)))) -((-2972 (((-435) (-578 (-578 (-863 (-199)))) (-578 (-232))) 17) (((-435) (-578 (-578 (-863 (-199))))) 16) (((-435) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232))) 15)) (-2008 (((-1151) (-578 (-578 (-863 (-199)))) (-578 (-232))) 23) (((-1151) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232))) 22)) (-3691 (((-1151) (-435)) 34))) -(((-1150) (-10 -7 (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232)))) (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))))) (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))) (-578 (-232)))) (-15 -2008 ((-1151) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232)))) (-15 -2008 ((-1151) (-578 (-578 (-863 (-199)))) (-578 (-232)))) (-15 -3691 ((-1151) (-435))))) (T -1150)) -((-3691 (*1 *2 *3) (-12 (-5 *3 (-435)) (-5 *2 (-1151)) (-5 *1 (-1150)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-1150)))) (-2008 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *6 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-1150)))) (-2972 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-578 (-232))) (-5 *2 (-435)) (-5 *1 (-1150)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-435)) (-5 *1 (-1150)))) (-2972 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *6 (-578 (-232))) (-5 *2 (-435)) (-5 *1 (-1150))))) -(-10 -7 (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232)))) (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))))) (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))) (-578 (-232)))) (-15 -2008 ((-1151) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232)))) (-15 -2008 ((-1151) (-578 (-578 (-863 (-199)))) (-578 (-232)))) (-15 -3691 ((-1151) (-435)))) -((-3736 (((-107) $ $) NIL)) (-3000 (((-1053) $ (-1053)) 87) (((-1053) $ (-1053) (-1053)) 85) (((-1053) $ (-1053) (-578 (-1053))) 84)) (-3065 (($) 56)) (-1243 (((-1154) $ (-435) (-839)) 42)) (-3876 (((-1154) $ (-839) (-1053)) 70) (((-1154) $ (-839) (-795)) 71)) (-2953 (((-1154) $ (-839) (-346) (-346)) 45)) (-3971 (((-1154) $ (-1053)) 66)) (-2203 (((-1154) $ (-839) (-1053)) 75)) (-3487 (((-1154) $ (-839) (-346) (-346)) 46)) (-3559 (((-1154) $ (-839) (-839)) 43)) (-2996 (((-1154) $) 67)) (-3274 (((-1154) $ (-839) (-1053)) 74)) (-2518 (((-1154) $ (-435) (-839)) 30)) (-1654 (((-1154) $ (-839) (-1053)) 73)) (-1477 (((-578 (-232)) $) 22) (($ $ (-578 (-232))) 23)) (-2364 (((-1154) $ (-701) (-701)) 40)) (-2914 (($ $) 57) (($ (-435) (-578 (-232))) 58)) (-3460 (((-1053) $) NIL)) (-3626 (((-501) $) 37)) (-3708 (((-1018) $) NIL)) (-3146 (((-1148 (-3 (-435) "undefined")) $) 36)) (-1691 (((-1148 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1654 (-501)) (|:| -2473 (-501)) (|:| |spline| (-501)) (|:| -1184 (-501)) (|:| |axesColor| (-795)) (|:| -3876 (-501)) (|:| |unitsColor| (-795)) (|:| |showing| (-501)))) $) 35)) (-3624 (((-1154) $ (-839) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-795) (-501) (-795) (-501)) 65)) (-2056 (((-578 (-863 (-199))) $) NIL)) (-3442 (((-435) $ (-839)) 32)) (-3399 (((-1154) $ (-701) (-701) (-839) (-839)) 39)) (-3586 (((-1154) $ (-1053)) 76)) (-2473 (((-1154) $ (-839) (-1053)) 72)) (-3691 (((-786) $) 82)) (-2109 (((-1154) $) 77)) (-1184 (((-1154) $ (-839) (-1053)) 68) (((-1154) $ (-839) (-795)) 69)) (-3751 (((-107) $ $) NIL))) -(((-1151) (-13 (-1001) (-10 -8 (-15 -2056 ((-578 (-863 (-199))) $)) (-15 -3065 ($)) (-15 -2914 ($ $)) (-15 -1477 ((-578 (-232)) $)) (-15 -1477 ($ $ (-578 (-232)))) (-15 -2914 ($ (-435) (-578 (-232)))) (-15 -3624 ((-1154) $ (-839) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-795) (-501) (-795) (-501))) (-15 -1691 ((-1148 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1654 (-501)) (|:| -2473 (-501)) (|:| |spline| (-501)) (|:| -1184 (-501)) (|:| |axesColor| (-795)) (|:| -3876 (-501)) (|:| |unitsColor| (-795)) (|:| |showing| (-501)))) $)) (-15 -3146 ((-1148 (-3 (-435) "undefined")) $)) (-15 -3971 ((-1154) $ (-1053))) (-15 -2518 ((-1154) $ (-435) (-839))) (-15 -3442 ((-435) $ (-839))) (-15 -1184 ((-1154) $ (-839) (-1053))) (-15 -1184 ((-1154) $ (-839) (-795))) (-15 -3876 ((-1154) $ (-839) (-1053))) (-15 -3876 ((-1154) $ (-839) (-795))) (-15 -1654 ((-1154) $ (-839) (-1053))) (-15 -3274 ((-1154) $ (-839) (-1053))) (-15 -2473 ((-1154) $ (-839) (-1053))) (-15 -3586 ((-1154) $ (-1053))) (-15 -2109 ((-1154) $)) (-15 -3399 ((-1154) $ (-701) (-701) (-839) (-839))) (-15 -3487 ((-1154) $ (-839) (-346) (-346))) (-15 -2953 ((-1154) $ (-839) (-346) (-346))) (-15 -2203 ((-1154) $ (-839) (-1053))) (-15 -2364 ((-1154) $ (-701) (-701))) (-15 -1243 ((-1154) $ (-435) (-839))) (-15 -3559 ((-1154) $ (-839) (-839))) (-15 -3000 ((-1053) $ (-1053))) (-15 -3000 ((-1053) $ (-1053) (-1053))) (-15 -3000 ((-1053) $ (-1053) (-578 (-1053)))) (-15 -2996 ((-1154) $)) (-15 -3626 ((-501) $)) (-15 -3691 ((-786) $))))) (T -1151)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1151)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-578 (-863 (-199)))) (-5 *1 (-1151)))) (-3065 (*1 *1) (-5 *1 (-1151))) (-2914 (*1 *1 *1) (-5 *1 (-1151))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1151)))) (-1477 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1151)))) (-2914 (*1 *1 *2 *3) (-12 (-5 *2 (-435)) (-5 *3 (-578 (-232))) (-5 *1 (-1151)))) (-3624 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-839)) (-5 *4 (-199)) (-5 *5 (-501)) (-5 *6 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1148 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1654 (-501)) (|:| -2473 (-501)) (|:| |spline| (-501)) (|:| -1184 (-501)) (|:| |axesColor| (-795)) (|:| -3876 (-501)) (|:| |unitsColor| (-795)) (|:| |showing| (-501))))) (-5 *1 (-1151)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-1148 (-3 (-435) "undefined"))) (-5 *1 (-1151)))) (-3971 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2518 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-435)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-5 *2 (-435)) (-5 *1 (-1151)))) (-1184 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-1184 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3876 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3876 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-1654 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3274 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2473 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3586 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3399 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-701)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3487 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-839)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2953 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-839)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2203 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2364 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-1243 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-435)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3559 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3000 (*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1151)))) (-3000 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1151)))) (-3000 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-1151)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1151))))) -(-13 (-1001) (-10 -8 (-15 -2056 ((-578 (-863 (-199))) $)) (-15 -3065 ($)) (-15 -2914 ($ $)) (-15 -1477 ((-578 (-232)) $)) (-15 -1477 ($ $ (-578 (-232)))) (-15 -2914 ($ (-435) (-578 (-232)))) (-15 -3624 ((-1154) $ (-839) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-795) (-501) (-795) (-501))) (-15 -1691 ((-1148 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1654 (-501)) (|:| -2473 (-501)) (|:| |spline| (-501)) (|:| -1184 (-501)) (|:| |axesColor| (-795)) (|:| -3876 (-501)) (|:| |unitsColor| (-795)) (|:| |showing| (-501)))) $)) (-15 -3146 ((-1148 (-3 (-435) "undefined")) $)) (-15 -3971 ((-1154) $ (-1053))) (-15 -2518 ((-1154) $ (-435) (-839))) (-15 -3442 ((-435) $ (-839))) (-15 -1184 ((-1154) $ (-839) (-1053))) (-15 -1184 ((-1154) $ (-839) (-795))) (-15 -3876 ((-1154) $ (-839) (-1053))) (-15 -3876 ((-1154) $ (-839) (-795))) (-15 -1654 ((-1154) $ (-839) (-1053))) (-15 -3274 ((-1154) $ (-839) (-1053))) (-15 -2473 ((-1154) $ (-839) (-1053))) (-15 -3586 ((-1154) $ (-1053))) (-15 -2109 ((-1154) $)) (-15 -3399 ((-1154) $ (-701) (-701) (-839) (-839))) (-15 -3487 ((-1154) $ (-839) (-346) (-346))) (-15 -2953 ((-1154) $ (-839) (-346) (-346))) (-15 -2203 ((-1154) $ (-839) (-1053))) (-15 -2364 ((-1154) $ (-701) (-701))) (-15 -1243 ((-1154) $ (-435) (-839))) (-15 -3559 ((-1154) $ (-839) (-839))) (-15 -3000 ((-1053) $ (-1053))) (-15 -3000 ((-1053) $ (-1053) (-1053))) (-15 -3000 ((-1053) $ (-1053) (-578 (-1053)))) (-15 -2996 ((-1154) $)) (-15 -3626 ((-501) $)) (-15 -3691 ((-786) $)))) -((-3736 (((-107) $ $) NIL)) (-2857 (((-1154) $ (-346)) 138) (((-1154) $ (-346) (-346) (-346)) 139)) (-3000 (((-1053) $ (-1053)) 146) (((-1053) $ (-1053) (-1053)) 144) (((-1053) $ (-1053) (-578 (-1053))) 143)) (-1595 (($) 49)) (-4009 (((-1154) $ (-346) (-346) (-346) (-346) (-346)) 114) (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $) 112) (((-1154) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 113) (((-1154) $ (-501) (-501) (-346) (-346) (-346)) 115) (((-1154) $ (-346) (-346)) 116) (((-1154) $ (-346) (-346) (-346)) 123)) (-1904 (((-346)) 96) (((-346) (-346)) 97)) (-1449 (((-346)) 91) (((-346) (-346)) 93)) (-1723 (((-346)) 94) (((-346) (-346)) 95)) (-3853 (((-346)) 100) (((-346) (-346)) 101)) (-1841 (((-346)) 98) (((-346) (-346)) 99)) (-2953 (((-1154) $ (-346) (-346)) 140)) (-3971 (((-1154) $ (-1053)) 124)) (-1446 (((-1031 (-199)) $) 50) (($ $ (-1031 (-199))) 51)) (-2300 (((-1154) $ (-1053)) 152)) (-2661 (((-1154) $ (-1053)) 153)) (-2411 (((-1154) $ (-346) (-346)) 122) (((-1154) $ (-501) (-501)) 137)) (-3559 (((-1154) $ (-839) (-839)) 130)) (-2996 (((-1154) $) 110)) (-2500 (((-1154) $ (-1053)) 151)) (-2864 (((-1154) $ (-1053)) 107)) (-1477 (((-578 (-232)) $) 52) (($ $ (-578 (-232))) 53)) (-2364 (((-1154) $ (-701) (-701)) 129)) (-1671 (((-1154) $ (-701) (-863 (-199))) 158)) (-2386 (($ $) 56) (($ (-1031 (-199)) (-1053)) 57) (($ (-1031 (-199)) (-578 (-232))) 58)) (-3163 (((-1154) $ (-346) (-346) (-346)) 104)) (-3460 (((-1053) $) NIL)) (-3626 (((-501) $) 102)) (-3824 (((-1154) $ (-346)) 141)) (-2509 (((-1154) $ (-346)) 156)) (-3708 (((-1018) $) NIL)) (-1975 (((-1154) $ (-346)) 155)) (-2230 (((-1154) $ (-1053)) 109)) (-3399 (((-1154) $ (-701) (-701) (-839) (-839)) 128)) (-1560 (((-1154) $ (-1053)) 106)) (-3586 (((-1154) $ (-1053)) 108)) (-1663 (((-1154) $ (-142) (-142)) 127)) (-3691 (((-786) $) 135)) (-2109 (((-1154) $) 111)) (-4047 (((-1154) $ (-1053)) 154)) (-1184 (((-1154) $ (-1053)) 105)) (-3751 (((-107) $ $) NIL))) -(((-1152) (-13 (-1001) (-10 -8 (-15 -1449 ((-346))) (-15 -1449 ((-346) (-346))) (-15 -1723 ((-346))) (-15 -1723 ((-346) (-346))) (-15 -1904 ((-346))) (-15 -1904 ((-346) (-346))) (-15 -1841 ((-346))) (-15 -1841 ((-346) (-346))) (-15 -3853 ((-346))) (-15 -3853 ((-346) (-346))) (-15 -1595 ($)) (-15 -2386 ($ $)) (-15 -2386 ($ (-1031 (-199)) (-1053))) (-15 -2386 ($ (-1031 (-199)) (-578 (-232)))) (-15 -1446 ((-1031 (-199)) $)) (-15 -1446 ($ $ (-1031 (-199)))) (-15 -1671 ((-1154) $ (-701) (-863 (-199)))) (-15 -1477 ((-578 (-232)) $)) (-15 -1477 ($ $ (-578 (-232)))) (-15 -2364 ((-1154) $ (-701) (-701))) (-15 -3559 ((-1154) $ (-839) (-839))) (-15 -3971 ((-1154) $ (-1053))) (-15 -3399 ((-1154) $ (-701) (-701) (-839) (-839))) (-15 -4009 ((-1154) $ (-346) (-346) (-346) (-346) (-346))) (-15 -4009 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -4009 ((-1154) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4009 ((-1154) $ (-501) (-501) (-346) (-346) (-346))) (-15 -4009 ((-1154) $ (-346) (-346))) (-15 -4009 ((-1154) $ (-346) (-346) (-346))) (-15 -3586 ((-1154) $ (-1053))) (-15 -1184 ((-1154) $ (-1053))) (-15 -1560 ((-1154) $ (-1053))) (-15 -2864 ((-1154) $ (-1053))) (-15 -2230 ((-1154) $ (-1053))) (-15 -2411 ((-1154) $ (-346) (-346))) (-15 -2411 ((-1154) $ (-501) (-501))) (-15 -2857 ((-1154) $ (-346))) (-15 -2857 ((-1154) $ (-346) (-346) (-346))) (-15 -2953 ((-1154) $ (-346) (-346))) (-15 -2500 ((-1154) $ (-1053))) (-15 -1975 ((-1154) $ (-346))) (-15 -2509 ((-1154) $ (-346))) (-15 -2300 ((-1154) $ (-1053))) (-15 -2661 ((-1154) $ (-1053))) (-15 -4047 ((-1154) $ (-1053))) (-15 -3163 ((-1154) $ (-346) (-346) (-346))) (-15 -3824 ((-1154) $ (-346))) (-15 -2996 ((-1154) $)) (-15 -1663 ((-1154) $ (-142) (-142))) (-15 -3000 ((-1053) $ (-1053))) (-15 -3000 ((-1053) $ (-1053) (-1053))) (-15 -3000 ((-1053) $ (-1053) (-578 (-1053)))) (-15 -2109 ((-1154) $)) (-15 -3626 ((-501) $))))) (T -1152)) -((-1449 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1449 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1723 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1723 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1904 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1904 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1841 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-3853 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1595 (*1 *1) (-5 *1 (-1152))) (-2386 (*1 *1 *1) (-5 *1 (-1152))) (-2386 (*1 *1 *2 *3) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-1053)) (-5 *1 (-1152)))) (-2386 (*1 *1 *2 *3) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-578 (-232))) (-5 *1 (-1152)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1152)))) (-1446 (*1 *1 *1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1152)))) (-1671 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1152)))) (-1477 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1152)))) (-2364 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3559 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3971 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3399 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-701)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4009 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1152)))) (-4009 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4009 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-501)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4009 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4009 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3586 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-1184 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-1560 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2864 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2230 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2411 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2411 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2857 (*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2857 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2953 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2500 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-1975 (*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2509 (*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2661 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3163 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3824 (*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1152)))) (-1663 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3000 (*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1152)))) (-3000 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1152)))) (-3000 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-1152)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1152))))) -(-13 (-1001) (-10 -8 (-15 -1449 ((-346))) (-15 -1449 ((-346) (-346))) (-15 -1723 ((-346))) (-15 -1723 ((-346) (-346))) (-15 -1904 ((-346))) (-15 -1904 ((-346) (-346))) (-15 -1841 ((-346))) (-15 -1841 ((-346) (-346))) (-15 -3853 ((-346))) (-15 -3853 ((-346) (-346))) (-15 -1595 ($)) (-15 -2386 ($ $)) (-15 -2386 ($ (-1031 (-199)) (-1053))) (-15 -2386 ($ (-1031 (-199)) (-578 (-232)))) (-15 -1446 ((-1031 (-199)) $)) (-15 -1446 ($ $ (-1031 (-199)))) (-15 -1671 ((-1154) $ (-701) (-863 (-199)))) (-15 -1477 ((-578 (-232)) $)) (-15 -1477 ($ $ (-578 (-232)))) (-15 -2364 ((-1154) $ (-701) (-701))) (-15 -3559 ((-1154) $ (-839) (-839))) (-15 -3971 ((-1154) $ (-1053))) (-15 -3399 ((-1154) $ (-701) (-701) (-839) (-839))) (-15 -4009 ((-1154) $ (-346) (-346) (-346) (-346) (-346))) (-15 -4009 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -4009 ((-1154) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4009 ((-1154) $ (-501) (-501) (-346) (-346) (-346))) (-15 -4009 ((-1154) $ (-346) (-346))) (-15 -4009 ((-1154) $ (-346) (-346) (-346))) (-15 -3586 ((-1154) $ (-1053))) (-15 -1184 ((-1154) $ (-1053))) (-15 -1560 ((-1154) $ (-1053))) (-15 -2864 ((-1154) $ (-1053))) (-15 -2230 ((-1154) $ (-1053))) (-15 -2411 ((-1154) $ (-346) (-346))) (-15 -2411 ((-1154) $ (-501) (-501))) (-15 -2857 ((-1154) $ (-346))) (-15 -2857 ((-1154) $ (-346) (-346) (-346))) (-15 -2953 ((-1154) $ (-346) (-346))) (-15 -2500 ((-1154) $ (-1053))) (-15 -1975 ((-1154) $ (-346))) (-15 -2509 ((-1154) $ (-346))) (-15 -2300 ((-1154) $ (-1053))) (-15 -2661 ((-1154) $ (-1053))) (-15 -4047 ((-1154) $ (-1053))) (-15 -3163 ((-1154) $ (-346) (-346) (-346))) (-15 -3824 ((-1154) $ (-346))) (-15 -2996 ((-1154) $)) (-15 -1663 ((-1154) $ (-142) (-142))) (-15 -3000 ((-1053) $ (-1053))) (-15 -3000 ((-1053) $ (-1053) (-1053))) (-15 -3000 ((-1053) $ (-1053) (-578 (-1053)))) (-15 -2109 ((-1154) $)) (-15 -3626 ((-501) $)))) -((-1471 (((-578 (-1053)) (-578 (-1053))) 94) (((-578 (-1053))) 89)) (-2632 (((-578 (-1053))) 87)) (-1372 (((-578 (-839)) (-578 (-839))) 62) (((-578 (-839))) 59)) (-1817 (((-578 (-701)) (-578 (-701))) 56) (((-578 (-701))) 52)) (-2920 (((-1154)) 64)) (-3268 (((-839) (-839)) 80) (((-839)) 79)) (-3389 (((-839) (-839)) 78) (((-839)) 77)) (-2553 (((-795) (-795)) 74) (((-795)) 73)) (-3903 (((-199)) 84) (((-199) (-346)) 86)) (-2723 (((-839)) 81) (((-839) (-839)) 82)) (-3617 (((-839) (-839)) 76) (((-839)) 75)) (-3377 (((-795) (-795)) 68) (((-795)) 66)) (-2179 (((-795) (-795)) 70) (((-795)) 69)) (-2904 (((-795) (-795)) 72) (((-795)) 71))) -(((-1153) (-10 -7 (-15 -3377 ((-795))) (-15 -3377 ((-795) (-795))) (-15 -2179 ((-795))) (-15 -2179 ((-795) (-795))) (-15 -2904 ((-795))) (-15 -2904 ((-795) (-795))) (-15 -2553 ((-795))) (-15 -2553 ((-795) (-795))) (-15 -3617 ((-839))) (-15 -3617 ((-839) (-839))) (-15 -1817 ((-578 (-701)))) (-15 -1817 ((-578 (-701)) (-578 (-701)))) (-15 -1372 ((-578 (-839)))) (-15 -1372 ((-578 (-839)) (-578 (-839)))) (-15 -2920 ((-1154))) (-15 -1471 ((-578 (-1053)))) (-15 -1471 ((-578 (-1053)) (-578 (-1053)))) (-15 -2632 ((-578 (-1053)))) (-15 -3389 ((-839))) (-15 -3268 ((-839))) (-15 -3389 ((-839) (-839))) (-15 -3268 ((-839) (-839))) (-15 -2723 ((-839) (-839))) (-15 -2723 ((-839))) (-15 -3903 ((-199) (-346))) (-15 -3903 ((-199))))) (T -1153)) -((-3903 (*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1153)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-199)) (-5 *1 (-1153)))) (-2723 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-2723 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-3268 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-3389 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-2632 (*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153)))) (-1471 (*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153)))) (-2920 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1153)))) (-1372 (*1 *2 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1153)))) (-1372 (*1 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1153)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1153)))) (-1817 (*1 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1153)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-3617 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-2553 (*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-2553 (*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-2904 (*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-2904 (*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-2179 (*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-2179 (*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-3377 (*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-3377 (*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153))))) -(-10 -7 (-15 -3377 ((-795))) (-15 -3377 ((-795) (-795))) (-15 -2179 ((-795))) (-15 -2179 ((-795) (-795))) (-15 -2904 ((-795))) (-15 -2904 ((-795) (-795))) (-15 -2553 ((-795))) (-15 -2553 ((-795) (-795))) (-15 -3617 ((-839))) (-15 -3617 ((-839) (-839))) (-15 -1817 ((-578 (-701)))) (-15 -1817 ((-578 (-701)) (-578 (-701)))) (-15 -1372 ((-578 (-839)))) (-15 -1372 ((-578 (-839)) (-578 (-839)))) (-15 -2920 ((-1154))) (-15 -1471 ((-578 (-1053)))) (-15 -1471 ((-578 (-1053)) (-578 (-1053)))) (-15 -2632 ((-578 (-1053)))) (-15 -3389 ((-839))) (-15 -3268 ((-839))) (-15 -3389 ((-839) (-839))) (-15 -3268 ((-839) (-839))) (-15 -2723 ((-839) (-839))) (-15 -2723 ((-839))) (-15 -3903 ((-199) (-346))) (-15 -3903 ((-199)))) -((-2645 (($) 7)) (-3691 (((-786) $) 10))) -(((-1154) (-10 -8 (-15 -2645 ($)) (-15 -3691 ((-786) $)))) (T -1154)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1154)))) (-2645 (*1 *1) (-5 *1 (-1154)))) -(-10 -8 (-15 -2645 ($)) (-15 -3691 ((-786) $))) -((-3803 (($ $ |#2|) 10))) -(((-1155 |#1| |#2|) (-10 -8 (-15 -3803 (|#1| |#1| |#2|))) (-1156 |#2|) (-331)) (T -1155)) -NIL -(-10 -8 (-15 -3803 (|#1| |#1| |#2|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3613 (((-125)) 29)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 30)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 24) (($ $ |#1|) 27))) -(((-1156 |#1|) (-1180) (-331)) (T -1156)) -((-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-331)))) (-3613 (*1 *2) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-331)) (-5 *2 (-125))))) -(-13 (-648 |t#1|) (-10 -8 (-15 -3803 ($ $ |t#1|)) (-15 -3613 ((-125))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-648 |#1|) . T) ((-964 |#1|) . T) ((-1001) . T)) -((-2326 (((-578 (-1097 |#1|)) (-1070) (-1097 |#1|)) 78)) (-2074 (((-1048 (-1048 (-866 |#1|))) (-1070) (-1048 (-866 |#1|))) 57)) (-1781 (((-1 (-1048 (-1097 |#1|)) (-1048 (-1097 |#1|))) (-701) (-1097 |#1|) (-1048 (-1097 |#1|))) 68)) (-3738 (((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701)) 59)) (-1713 (((-1 (-1064 (-866 |#1|)) (-866 |#1|)) (-1070)) 27)) (-1883 (((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701)) 58))) -(((-1157 |#1|) (-10 -7 (-15 -3738 ((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701))) (-15 -1883 ((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701))) (-15 -2074 ((-1048 (-1048 (-866 |#1|))) (-1070) (-1048 (-866 |#1|)))) (-15 -1713 ((-1 (-1064 (-866 |#1|)) (-866 |#1|)) (-1070))) (-15 -2326 ((-578 (-1097 |#1|)) (-1070) (-1097 |#1|))) (-15 -1781 ((-1 (-1048 (-1097 |#1|)) (-1048 (-1097 |#1|))) (-701) (-1097 |#1|) (-1048 (-1097 |#1|))))) (-331)) (T -1157)) -((-1781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701)) (-4 *6 (-331)) (-5 *4 (-1097 *6)) (-5 *2 (-1 (-1048 *4) (-1048 *4))) (-5 *1 (-1157 *6)) (-5 *5 (-1048 *4)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-4 *5 (-331)) (-5 *2 (-578 (-1097 *5))) (-5 *1 (-1157 *5)) (-5 *4 (-1097 *5)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 (-1064 (-866 *4)) (-866 *4))) (-5 *1 (-1157 *4)) (-4 *4 (-331)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-4 *5 (-331)) (-5 *2 (-1048 (-1048 (-866 *5)))) (-5 *1 (-1157 *5)) (-5 *4 (-1048 (-866 *5))))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-1048 (-866 *4)) (-1048 (-866 *4)))) (-5 *1 (-1157 *4)) (-4 *4 (-331)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-1048 (-866 *4)) (-1048 (-866 *4)))) (-5 *1 (-1157 *4)) (-4 *4 (-331))))) -(-10 -7 (-15 -3738 ((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701))) (-15 -1883 ((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701))) (-15 -2074 ((-1048 (-1048 (-866 |#1|))) (-1070) (-1048 (-866 |#1|)))) (-15 -1713 ((-1 (-1064 (-866 |#1|)) (-866 |#1|)) (-1070))) (-15 -2326 ((-578 (-1097 |#1|)) (-1070) (-1097 |#1|))) (-15 -1781 ((-1 (-1048 (-1097 |#1|)) (-1048 (-1097 |#1|))) (-701) (-1097 |#1|) (-1048 (-1097 |#1|))))) -((-3819 (((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|) 74)) (-1897 (((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) 73))) -(((-1158 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|))) (-318) (-1125 |#1|) (-1125 |#2|) (-378 |#2| |#3|)) (T -1158)) -((-3819 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-1158 *4 *3 *5 *6)) (-4 *6 (-378 *3 *5)))) (-1897 (*1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -4119 (-621 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-621 *4)))) (-5 *1 (-1158 *3 *4 *5 *6)) (-4 *6 (-378 *4 *5))))) -(-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 41)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 62) (($ (-501)) NIL) ((|#4| $) 52) (($ |#4|) 47) (($ |#1|) NIL (|has| |#1| (-156)))) (-3965 (((-701)) NIL)) (-1333 (((-1154) (-701)) 16)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 26 T CONST)) (-1925 (($) 65 T CONST)) (-3751 (((-107) $ $) 67)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) 69) (($ $ $) NIL)) (-3790 (($ $ $) 45)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 71) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) -(((-1159 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-959) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -3691 (|#4| $)) (IF (|has| |#1| (-331)) (-15 -3803 ((-3 $ "failed") $ $)) |noBranch|) (-15 -3691 ($ |#4|)) (-15 -1333 ((-1154) (-701))))) (-959) (-777) (-723) (-870 |#1| |#3| |#2|) (-578 |#2|) (-578 (-701)) (-701)) (T -1159)) -((-3691 (*1 *2 *1) (-12 (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-1159 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-14 *6 (-578 *4)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) (-3803 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-331)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-723)) (-14 *6 (-578 *3)) (-5 *1 (-1159 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-870 *2 *4 *3)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-14 *6 (-578 *4)) (-5 *1 (-1159 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-870 *3 *5 *4)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-14 *8 (-578 *5)) (-5 *2 (-1154)) (-5 *1 (-1159 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-870 *4 *6 *5)) (-14 *9 (-578 *3)) (-14 *10 *3)))) -(-13 (-959) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -3691 (|#4| $)) (IF (|has| |#1| (-331)) (-15 -3803 ((-3 $ "failed") $ $)) |noBranch|) (-15 -3691 ($ |#4|)) (-15 -1333 ((-1154) (-701))))) -((-3736 (((-107) $ $) NIL)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) NIL)) (-2073 (((-578 $) (-578 |#4|)) 87)) (-3800 (((-578 |#3|) $) NIL)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2599 ((|#4| |#4| $) NIL)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) NIL (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 27)) (-4110 (((-578 |#4|) (-578 |#4|) $) 24 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) NIL)) (-3490 (($ (-578 |#4|)) NIL)) (-1199 (((-3 $ "failed") $) 69)) (-1778 ((|#4| |#4| $) 74)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1526 (($ |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1379 ((|#4| |#4| $) NIL)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) NIL)) (-2732 (((-578 |#4|) $) NIL (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2361 ((|#3| $) 75)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#4|) $) 28 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-2814 (((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 31) (((-3 $ "failed") (-578 |#4|)) 34)) (-2519 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) NIL)) (-3453 (((-578 |#3|) $) NIL)) (-1479 (((-107) |#3| $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1383 (((-3 |#4| "failed") $) NIL)) (-3574 (((-578 |#4|) $) 49)) (-1590 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1762 ((|#4| |#4| $) 73)) (-3523 (((-107) $ $) 84)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3618 ((|#4| |#4| $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-3 |#4| "failed") $) 68)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3478 (((-3 $ "failed") $ |#4|) NIL)) (-3718 (($ $ |#4|) NIL)) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 66)) (-3122 (($) 41)) (-1201 (((-701) $) NIL)) (-3713 (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) NIL)) (-1638 (($ $ |#3|) NIL)) (-2482 (($ $ |#3|) NIL)) (-1218 (($ $) NIL)) (-3737 (($ $ |#3|) NIL)) (-3691 (((-786) $) NIL) (((-578 |#4|) $) 56)) (-4104 (((-701) $) NIL (|has| |#3| (-336)))) (-3805 (((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 39) (((-3 $ "failed") (-578 |#4|)) 40)) (-3367 (((-578 $) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 64) (((-578 $) (-578 |#4|)) 65)) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 23) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) NIL)) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) NIL)) (-2659 (((-107) |#3| $) NIL)) (-3751 (((-107) $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167))))) -(((-1160 |#1| |#2| |#3| |#4|) (-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2814 ((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2814 ((-3 $ "failed") (-578 |#4|))) (-15 -3805 ((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3805 ((-3 $ "failed") (-578 |#4|))) (-15 -3367 ((-578 $) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3367 ((-578 $) (-578 |#4|))))) (-508) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -1160)) -((-2814 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1160 *5 *6 *7 *8)))) (-2814 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1160 *3 *4 *5 *6)))) (-3805 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1160 *5 *6 *7 *8)))) (-3805 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1160 *3 *4 *5 *6)))) (-3367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-578 (-1160 *6 *7 *8 *9))) (-5 *1 (-1160 *6 *7 *8 *9)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-1160 *4 *5 *6 *7))) (-5 *1 (-1160 *4 *5 *6 *7))))) -(-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2814 ((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2814 ((-3 $ "failed") (-578 |#4|))) (-15 -3805 ((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3805 ((-3 $ "failed") (-578 |#4|))) (-15 -3367 ((-578 $) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3367 ((-578 $) (-578 |#4|))))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 40)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 42) (($ |#1| $) 41))) -(((-1161 |#1|) (-1180) (-959)) (T -1161)) -((-3691 (*1 *1 *2) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-959))))) -(-13 (-959) (-106 |t#1| |t#1|) (-10 -8 (-15 -3691 ($ |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) |has| |#1| (-156)) ((-657) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3514 (((-578 |#1|) $) 45)) (-2055 (($ $ (-701)) 39)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $ (-701)) 17 (|has| |#2| (-156))) (($ $ $) 18 (|has| |#2| (-156)))) (-2540 (($) NIL T CONST)) (-2194 (($ $ $) 61) (($ $ (-749 |#1|)) 48) (($ $ |#1|) 52)) (-3765 (((-3 (-749 |#1|) "failed") $) NIL)) (-3490 (((-749 |#1|) $) NIL)) (-3858 (($ $) 32)) (-2174 (((-3 $ "failed") $) NIL)) (-2083 (((-107) $) NIL)) (-2957 (($ $) NIL)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ (-749 |#1|) |#2|) 31)) (-3660 (($ $) 33)) (-3622 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) 11)) (-2344 (((-749 |#1|) $) NIL)) (-3295 (((-749 |#1|) $) 34)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-3049 (($ $ $) 60) (($ $ (-749 |#1|)) 50) (($ $ |#1|) 54)) (-3950 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3845 (((-749 |#1|) $) 28)) (-3850 ((|#2| $) 30)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1201 (((-701) $) 36)) (-2490 (((-107) $) 40)) (-3897 ((|#2| $) NIL)) (-3691 (((-786) $) NIL) (($ (-749 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-501)) NIL)) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-749 |#1|)) NIL)) (-3189 ((|#2| $ $) 63) ((|#2| $ (-749 |#1|)) NIL)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) 12 T CONST)) (-1925 (($) 14 T CONST)) (-1914 (((-578 (-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3751 (((-107) $ $) 38)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 21)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 59) (($ |#2| (-749 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1162 |#1| |#2|) (-13 (-352 |#2| (-749 |#1|)) (-1169 |#1| |#2|)) (-777) (-959)) (T -1162)) -NIL -(-13 (-352 |#2| (-749 |#1|)) (-1169 |#1| |#2|)) -((-1635 ((|#3| |#3| (-701)) 23)) (-1989 ((|#3| |#3| (-701)) 28)) (-2472 ((|#3| |#3| |#3| (-701)) 29))) -(((-1163 |#1| |#2| |#3|) (-10 -7 (-15 -1989 (|#3| |#3| (-701))) (-15 -1635 (|#3| |#3| (-701))) (-15 -2472 (|#3| |#3| |#3| (-701)))) (-13 (-959) (-648 (-375 (-501)))) (-777) (-1169 |#2| |#1|)) (T -1163)) -((-2472 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4)))) (-1635 (*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4)))) (-1989 (*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4))))) -(-10 -7 (-15 -1989 (|#3| |#3| (-701))) (-15 -1635 (|#3| |#3| (-701))) (-15 -2472 (|#3| |#3| |#3| (-701)))) -((-3590 (((-107) $) 13)) (-2659 (((-107) $) 12)) (-3184 (($ $) 17) (($ $ (-701)) 18))) -(((-1164 |#1| |#2|) (-10 -8 (-15 -3184 (|#1| |#1| (-701))) (-15 -3184 (|#1| |#1|)) (-15 -3590 ((-107) |#1|)) (-15 -2659 ((-107) |#1|))) (-1165 |#2|) (-331)) (T -1164)) -NIL -(-10 -8 (-15 -3184 (|#1| |#1| (-701))) (-15 -3184 (|#1| |#1|)) (-15 -3590 ((-107) |#1|)) (-15 -2659 ((-107) |#1|))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3590 (((-107) $) 95)) (-1732 (((-701)) 91)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 102)) (-3490 ((|#1| $) 101)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-3067 (($ $ (-701)) 88 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) 87 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) 71)) (-3169 (((-762 (-839)) $) 85 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) 31)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-2255 (((-107) $) 94)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3739 (((-373 $) $) 74)) (-2906 (((-762 (-839))) 92)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-1984 (((-3 (-701) "failed") $ $) 86 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) 100)) (-1201 (((-762 (-839)) $) 93)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ |#1|) 103)) (-1274 (((-3 $ "failed") $) 84 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-2659 (((-107) $) 96)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3184 (($ $) 90 (|has| |#1| (-336))) (($ $ (-701)) 89 (|has| |#1| (-336)))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64) (($ $ |#1|) 99)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66) (($ $ |#1|) 98) (($ |#1| $) 97))) -(((-1165 |#1|) (-1180) (-331)) (T -1165)) -((-2659 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-762 (-839))))) (-2906 (*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-762 (-839))))) (-1732 (*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-701)))) (-3184 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-331)) (-4 *2 (-336)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-4 *3 (-336))))) -(-13 (-331) (-950 |t#1|) (-1156 |t#1|) (-10 -8 (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-370)) |noBranch|) (-15 -2659 ((-107) $)) (-15 -3590 ((-107) $)) (-15 -2255 ((-107) $)) (-15 -1201 ((-762 (-839)) $)) (-15 -2906 ((-762 (-839)))) (-15 -1732 ((-701))) (IF (|has| |t#1| (-336)) (PROGN (-6 (-370)) (-15 -3184 ($ $)) (-15 -3184 ($ $ (-701)))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -1405 (|has| |#1| (-336)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-370) -1405 (|has| |#1| (-336)) (|has| |#1| (-132))) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-950 |#1|) . T) ((-964 (-375 (-501))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T) ((-1156 |#1|) . T)) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3514 (((-578 |#1|) $) 42)) (-3177 (((-3 $ "failed") $ $) 19)) (-3321 (($ $ $) 45 (|has| |#2| (-156))) (($ $ (-701)) 44 (|has| |#2| (-156)))) (-2540 (($) 17 T CONST)) (-2194 (($ $ |#1|) 56) (($ $ (-749 |#1|)) 55) (($ $ $) 54)) (-3765 (((-3 (-749 |#1|) "failed") $) 66)) (-3490 (((-749 |#1|) $) 65)) (-2174 (((-3 $ "failed") $) 34)) (-2083 (((-107) $) 47)) (-2957 (($ $) 46)) (-1355 (((-107) $) 31)) (-2706 (((-107) $) 52)) (-2607 (($ (-749 |#1|) |#2|) 53)) (-3660 (($ $) 51)) (-3622 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) 62)) (-2344 (((-749 |#1|) $) 63)) (-1212 (($ (-1 |#2| |#2|) $) 43)) (-3049 (($ $ |#1|) 59) (($ $ (-749 |#1|)) 58) (($ $ $) 57)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2490 (((-107) $) 49)) (-3897 ((|#2| $) 48)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#2|) 70) (($ (-749 |#1|)) 67) (($ |#1|) 50)) (-3189 ((|#2| $ (-749 |#1|)) 61) ((|#2| $ $) 60)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ |#2| $) 69) (($ $ |#2|) 68) (($ |#1| $) 64))) -(((-1166 |#1| |#2|) (-1180) (-777) (-959)) (T -1166)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-2344 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-749 *3)))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-2 (|:| |k| (-749 *3)) (|:| |c| *4))))) (-3189 (*1 *2 *1 *3) (-12 (-5 *3 (-749 *4)) (-4 *1 (-1166 *4 *2)) (-4 *4 (-777)) (-4 *2 (-959)))) (-3189 (*1 *2 *1 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) (-3049 (*1 *1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) (-3049 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-2194 (*1 *1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-2194 (*1 *1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) (-2194 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-749 *4)) (-4 *4 (-777)) (-4 *1 (-1166 *4 *3)) (-4 *3 (-959)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107)))) (-3660 (*1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-3691 (*1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) (-2083 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107)))) (-2957 (*1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-3321 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)) (-4 *3 (-156)))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-4 *4 (-156)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-578 *3))))) -(-13 (-959) (-1161 |t#2|) (-950 (-749 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2344 ((-749 |t#1|) $)) (-15 -3622 ((-2 (|:| |k| (-749 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3189 (|t#2| $ (-749 |t#1|))) (-15 -3189 (|t#2| $ $)) (-15 -3049 ($ $ |t#1|)) (-15 -3049 ($ $ (-749 |t#1|))) (-15 -3049 ($ $ $)) (-15 -2194 ($ $ |t#1|)) (-15 -2194 ($ $ (-749 |t#1|))) (-15 -2194 ($ $ $)) (-15 -2607 ($ (-749 |t#1|) |t#2|)) (-15 -2706 ((-107) $)) (-15 -3660 ($ $)) (-15 -3691 ($ |t#1|)) (-15 -2490 ((-107) $)) (-15 -3897 (|t#2| $)) (-15 -2083 ((-107) $)) (-15 -2957 ($ $)) (IF (|has| |t#2| (-156)) (PROGN (-15 -3321 ($ $ $)) (-15 -3321 ($ $ (-701)))) |noBranch|) (-15 -1212 ($ (-1 |t#2| |t#2|) $)) (-15 -3514 ((-578 |t#1|) $)) (IF (|has| |t#2| (-6 -4160)) (-6 -4160) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#2|) . T) ((-583 $) . T) ((-648 |#2|) |has| |#2| (-156)) ((-657) . T) ((-950 (-749 |#1|)) . T) ((-964 |#2|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1161 |#2|) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3514 (((-578 |#1|) $) 84)) (-2055 (($ $ (-701)) 87)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $ $) NIL (|has| |#2| (-156))) (($ $ (-701)) NIL (|has| |#2| (-156)))) (-2540 (($) NIL T CONST)) (-2194 (($ $ |#1|) NIL) (($ $ (-749 |#1|)) NIL) (($ $ $) NIL)) (-3765 (((-3 (-749 |#1|) "failed") $) NIL) (((-3 (-813 |#1|) "failed") $) NIL)) (-3490 (((-749 |#1|) $) NIL) (((-813 |#1|) $) NIL)) (-3858 (($ $) 86)) (-2174 (((-3 $ "failed") $) NIL)) (-2083 (((-107) $) 75)) (-2957 (($ $) 79)) (-1758 (($ $ $ (-701)) 88)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ (-749 |#1|) |#2|) NIL) (($ (-813 |#1|) |#2|) 25)) (-3660 (($ $) 101)) (-3622 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2344 (((-749 |#1|) $) NIL)) (-3295 (((-749 |#1|) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-3049 (($ $ |#1|) NIL) (($ $ (-749 |#1|)) NIL) (($ $ $) NIL)) (-1635 (($ $ (-701)) 95 (|has| |#2| (-648 (-375 (-501)))))) (-3950 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3845 (((-813 |#1|) $) 69)) (-3850 ((|#2| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1989 (($ $ (-701)) 92 (|has| |#2| (-648 (-375 (-501)))))) (-1201 (((-701) $) 85)) (-2490 (((-107) $) 70)) (-3897 ((|#2| $) 74)) (-3691 (((-786) $) 56) (($ (-501)) NIL) (($ |#2|) 50) (($ (-749 |#1|)) NIL) (($ |#1|) 58) (($ (-813 |#1|)) NIL) (($ (-599 |#1| |#2|)) 42) (((-1162 |#1| |#2|) $) 63) (((-1171 |#1| |#2|) $) 68)) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-813 |#1|)) NIL)) (-3189 ((|#2| $ (-749 |#1|)) NIL) ((|#2| $ $) NIL)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 21 T CONST)) (-1925 (($) 24 T CONST)) (-1914 (((-578 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1832 (((-3 (-599 |#1| |#2|) "failed") $) 100)) (-3751 (((-107) $ $) 64)) (-3797 (($ $) 94) (($ $ $) 93)) (-3790 (($ $ $) 20)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-813 |#1|)) NIL))) -(((-1167 |#1| |#2|) (-13 (-1169 |#1| |#2|) (-352 |#2| (-813 |#1|)) (-10 -8 (-15 -3691 ($ (-599 |#1| |#2|))) (-15 -3691 ((-1162 |#1| |#2|) $)) (-15 -3691 ((-1171 |#1| |#2|) $)) (-15 -1832 ((-3 (-599 |#1| |#2|) "failed") $)) (-15 -1758 ($ $ $ (-701))) (IF (|has| |#2| (-648 (-375 (-501)))) (PROGN (-15 -1989 ($ $ (-701))) (-15 -1635 ($ $ (-701)))) |noBranch|))) (-777) (-156)) (T -1167)) -((-3691 (*1 *1 *2) (-12 (-5 *2 (-599 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *1 (-1167 *3 *4)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-1832 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-1758 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-1989 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *4 (-648 (-375 (-501)))) (-4 *3 (-777)) (-4 *4 (-156)))) (-1635 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *4 (-648 (-375 (-501)))) (-4 *3 (-777)) (-4 *4 (-156))))) -(-13 (-1169 |#1| |#2|) (-352 |#2| (-813 |#1|)) (-10 -8 (-15 -3691 ($ (-599 |#1| |#2|))) (-15 -3691 ((-1162 |#1| |#2|) $)) (-15 -3691 ((-1171 |#1| |#2|) $)) (-15 -1832 ((-3 (-599 |#1| |#2|) "failed") $)) (-15 -1758 ($ $ $ (-701))) (IF (|has| |#2| (-648 (-375 (-501)))) (PROGN (-15 -1989 ($ $ (-701))) (-15 -1635 ($ $ (-701)))) |noBranch|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3514 (((-578 (-1070)) $) NIL)) (-1538 (($ (-1162 (-1070) |#1|)) NIL)) (-2055 (($ $ (-701)) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $ $) NIL (|has| |#1| (-156))) (($ $ (-701)) NIL (|has| |#1| (-156)))) (-2540 (($) NIL T CONST)) (-2194 (($ $ (-1070)) NIL) (($ $ (-749 (-1070))) NIL) (($ $ $) NIL)) (-3765 (((-3 (-749 (-1070)) "failed") $) NIL)) (-3490 (((-749 (-1070)) $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2083 (((-107) $) NIL)) (-2957 (($ $) NIL)) (-1355 (((-107) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ (-749 (-1070)) |#1|) NIL)) (-3660 (($ $) NIL)) (-3622 (((-2 (|:| |k| (-749 (-1070))) (|:| |c| |#1|)) $) NIL)) (-2344 (((-749 (-1070)) $) NIL)) (-3295 (((-749 (-1070)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3049 (($ $ (-1070)) NIL) (($ $ (-749 (-1070))) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1967 (((-1162 (-1070) |#1|) $) NIL)) (-1201 (((-701) $) NIL)) (-2490 (((-107) $) NIL)) (-3897 ((|#1| $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-749 (-1070))) NIL) (($ (-1070)) NIL)) (-3189 ((|#1| $ (-749 (-1070))) NIL) ((|#1| $ $) NIL)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-2912 (((-578 (-2 (|:| |k| (-1070)) (|:| |c| $))) $) NIL)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1070) $) NIL))) -(((-1168 |#1|) (-13 (-1169 (-1070) |#1|) (-10 -8 (-15 -1967 ((-1162 (-1070) |#1|) $)) (-15 -1538 ($ (-1162 (-1070) |#1|))) (-15 -2912 ((-578 (-2 (|:| |k| (-1070)) (|:| |c| $))) $)))) (-959)) (T -1168)) -((-1967 (*1 *2 *1) (-12 (-5 *2 (-1162 (-1070) *3)) (-5 *1 (-1168 *3)) (-4 *3 (-959)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-1162 (-1070) *3)) (-4 *3 (-959)) (-5 *1 (-1168 *3)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-1070)) (|:| |c| (-1168 *3))))) (-5 *1 (-1168 *3)) (-4 *3 (-959))))) -(-13 (-1169 (-1070) |#1|) (-10 -8 (-15 -1967 ((-1162 (-1070) |#1|) $)) (-15 -1538 ($ (-1162 (-1070) |#1|))) (-15 -2912 ((-578 (-2 (|:| |k| (-1070)) (|:| |c| $))) $)))) -((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3514 (((-578 |#1|) $) 42)) (-2055 (($ $ (-701)) 75)) (-3177 (((-3 $ "failed") $ $) 19)) (-3321 (($ $ $) 45 (|has| |#2| (-156))) (($ $ (-701)) 44 (|has| |#2| (-156)))) (-2540 (($) 17 T CONST)) (-2194 (($ $ |#1|) 56) (($ $ (-749 |#1|)) 55) (($ $ $) 54)) (-3765 (((-3 (-749 |#1|) "failed") $) 66)) (-3490 (((-749 |#1|) $) 65)) (-2174 (((-3 $ "failed") $) 34)) (-2083 (((-107) $) 47)) (-2957 (($ $) 46)) (-1355 (((-107) $) 31)) (-2706 (((-107) $) 52)) (-2607 (($ (-749 |#1|) |#2|) 53)) (-3660 (($ $) 51)) (-3622 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) 62)) (-2344 (((-749 |#1|) $) 63)) (-3295 (((-749 |#1|) $) 77)) (-1212 (($ (-1 |#2| |#2|) $) 43)) (-3049 (($ $ |#1|) 59) (($ $ (-749 |#1|)) 58) (($ $ $) 57)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-1201 (((-701) $) 76)) (-2490 (((-107) $) 49)) (-3897 ((|#2| $) 48)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#2|) 70) (($ (-749 |#1|)) 67) (($ |#1|) 50)) (-3189 ((|#2| $ (-749 |#1|)) 61) ((|#2| $ $) 60)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ |#2| $) 69) (($ $ |#2|) 68) (($ |#1| $) 64))) -(((-1169 |#1| |#2|) (-1180) (-777) (-959)) (T -1169)) -((-3295 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-749 *3)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-701)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959))))) -(-13 (-1166 |t#1| |t#2|) (-10 -8 (-15 -3295 ((-749 |t#1|) $)) (-15 -1201 ((-701) $)) (-15 -2055 ($ $ (-701))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#2|) . T) ((-583 $) . T) ((-648 |#2|) |has| |#2| (-156)) ((-657) . T) ((-950 (-749 |#1|)) . T) ((-964 |#2|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1161 |#2|) . T) ((-1166 |#1| |#2|) . T)) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL)) (-3490 ((|#2| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) 34)) (-2083 (((-107) $) 29)) (-2957 (($ $) 30)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ |#2| |#1|) NIL)) (-2344 ((|#2| $) 19)) (-3295 ((|#2| $) 16)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3950 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3845 ((|#2| $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2490 (((-107) $) 27)) (-3897 ((|#1| $) 28)) (-3691 (((-786) $) 53) (($ (-501)) 38) (($ |#1|) 33) (($ |#2|) NIL)) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ |#2|) NIL)) (-3189 ((|#1| $ |#2|) 24)) (-3965 (((-701)) 14)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 25 T CONST)) (-1925 (($) 11 T CONST)) (-1914 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3751 (((-107) $ $) 26)) (-3803 (($ $ |#1|) 55 (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 42)) (** (($ $ (-839)) NIL) (($ $ (-701)) 44)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 43) (($ |#1| $) 39) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3581 (((-701) $) 15))) -(((-1170 |#1| |#2|) (-13 (-959) (-1161 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3581 ((-701) $)) (-15 -3691 ($ |#2|)) (-15 -3295 (|#2| $)) (-15 -2344 (|#2| $)) (-15 -3858 ($ $)) (-15 -3189 (|#1| $ |#2|)) (-15 -2490 ((-107) $)) (-15 -3897 (|#1| $)) (-15 -2083 ((-107) $)) (-15 -2957 ($ $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-331)) (-15 -3803 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4160)) (-6 -4160) |noBranch|) (IF (|has| |#1| (-6 -4164)) (-6 -4164) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|))) (-959) (-773)) (T -1170)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773)))) (-3858 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-1170 *3 *4)) (-4 *4 (-773)))) (-3691 (*1 *1 *2) (-12 (-5 *1 (-1170 *3 *2)) (-4 *3 (-959)) (-4 *2 (-773)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773)))) (-3295 (*1 *2 *1) (-12 (-4 *2 (-773)) (-5 *1 (-1170 *3 *2)) (-4 *3 (-959)))) (-2344 (*1 *2 *1) (-12 (-4 *2 (-773)) (-5 *1 (-1170 *3 *2)) (-4 *3 (-959)))) (-3189 (*1 *2 *1 *3) (-12 (-4 *2 (-959)) (-5 *1 (-1170 *2 *3)) (-4 *3 (-773)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773)))) (-3897 (*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-1170 *2 *3)) (-4 *3 (-773)))) (-2083 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773)))) (-2957 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-331)) (-4 *2 (-959)) (-4 *3 (-773))))) -(-13 (-959) (-1161 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3581 ((-701) $)) (-15 -3691 ($ |#2|)) (-15 -3295 (|#2| $)) (-15 -2344 (|#2| $)) (-15 -3858 ($ $)) (-15 -3189 (|#1| $ |#2|)) (-15 -2490 ((-107) $)) (-15 -3897 (|#1| $)) (-15 -2083 ((-107) $)) (-15 -2957 ($ $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-331)) (-15 -3803 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4160)) (-6 -4160) |noBranch|) (IF (|has| |#1| (-6 -4164)) (-6 -4164) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3514 (((-578 |#1|) $) 119)) (-1538 (($ (-1162 |#1| |#2|)) 43)) (-2055 (($ $ (-701)) 31)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $ $) 47 (|has| |#2| (-156))) (($ $ (-701)) 45 (|has| |#2| (-156)))) (-2540 (($) NIL T CONST)) (-2194 (($ $ |#1|) 101) (($ $ (-749 |#1|)) 102) (($ $ $) 25)) (-3765 (((-3 (-749 |#1|) "failed") $) NIL)) (-3490 (((-749 |#1|) $) NIL)) (-2174 (((-3 $ "failed") $) 109)) (-2083 (((-107) $) 104)) (-2957 (($ $) 105)) (-1355 (((-107) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ (-749 |#1|) |#2|) 19)) (-3660 (($ $) NIL)) (-3622 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2344 (((-749 |#1|) $) 110)) (-3295 (((-749 |#1|) $) 113)) (-1212 (($ (-1 |#2| |#2|) $) 118)) (-3049 (($ $ |#1|) 99) (($ $ (-749 |#1|)) 100) (($ $ $) 55)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1967 (((-1162 |#1| |#2|) $) 83)) (-1201 (((-701) $) 116)) (-2490 (((-107) $) 69)) (-3897 ((|#2| $) 27)) (-3691 (((-786) $) 62) (($ (-501)) 76) (($ |#2|) 73) (($ (-749 |#1|)) 17) (($ |#1|) 72)) (-3189 ((|#2| $ (-749 |#1|)) 103) ((|#2| $ $) 26)) (-3965 (((-701)) 107)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 14 T CONST)) (-2912 (((-578 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 52)) (-1925 (($) 28 T CONST)) (-3751 (((-107) $ $) 13)) (-3797 (($ $) 87) (($ $ $) 90)) (-3790 (($ $ $) 54)) (** (($ $ (-839)) NIL) (($ $ (-701)) 48)) (* (($ (-839) $) NIL) (($ (-701) $) 46) (($ (-501) $) 93) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 81))) -(((-1171 |#1| |#2|) (-13 (-1169 |#1| |#2|) (-10 -8 (-15 -1967 ((-1162 |#1| |#2|) $)) (-15 -1538 ($ (-1162 |#1| |#2|))) (-15 -2912 ((-578 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-777) (-959)) (T -1171)) -((-1967 (*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *1 (-1171 *3 *4)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| *3) (|:| |c| (-1171 *3 *4))))) (-5 *1 (-1171 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959))))) -(-13 (-1169 |#1| |#2|) (-10 -8 (-15 -1967 ((-1162 |#1| |#2|) $)) (-15 -1538 ($ (-1162 |#1| |#2|))) (-15 -2912 ((-578 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1893 (((-578 (-1048 |#1|)) (-1 (-578 (-1048 |#1|)) (-578 (-1048 |#1|))) (-501)) 15) (((-1048 |#1|) (-1 (-1048 |#1|) (-1048 |#1|))) 11))) -(((-1172 |#1|) (-10 -7 (-15 -1893 ((-1048 |#1|) (-1 (-1048 |#1|) (-1048 |#1|)))) (-15 -1893 ((-578 (-1048 |#1|)) (-1 (-578 (-1048 |#1|)) (-578 (-1048 |#1|))) (-501)))) (-1104)) (T -1172)) -((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 (-1048 *5)) (-578 (-1048 *5)))) (-5 *4 (-501)) (-5 *2 (-578 (-1048 *5))) (-5 *1 (-1172 *5)) (-4 *5 (-1104)))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-1 (-1048 *4) (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1172 *4)) (-4 *4 (-1104))))) -(-10 -7 (-15 -1893 ((-1048 |#1|) (-1 (-1048 |#1|) (-1048 |#1|)))) (-15 -1893 ((-578 (-1048 |#1|)) (-1 (-578 (-1048 |#1|)) (-578 (-1048 |#1|))) (-501)))) -((-1617 (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|))) 145) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107)) 144) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107)) 143) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107) (-107)) 142) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-956 |#1| |#2|)) 127)) (-1625 (((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|))) 70) (((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107)) 69) (((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107) (-107)) 68)) (-1559 (((-578 (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|)))) (-956 |#1| |#2|)) 59)) (-2679 (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|))) 112) (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107)) 111) (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107)) 110) (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107) (-107)) 109) (((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|)) 104)) (-1634 (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|))) 117) (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107)) 116) (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107)) 115) (((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|)) 114)) (-1248 (((-578 (-710 |#1| (-787 |#3|))) (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|)))) 96) (((-1064 (-937 (-375 |#1|))) (-1064 |#1|)) 87) (((-866 (-937 (-375 |#1|))) (-710 |#1| (-787 |#3|))) 94) (((-866 (-937 (-375 |#1|))) (-866 |#1|)) 92) (((-710 |#1| (-787 |#3|)) (-710 |#1| (-787 |#2|))) 32))) -(((-1173 |#1| |#2| |#3|) (-10 -7 (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107))) (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-956 |#1| |#2|))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)))) (-15 -1559 ((-578 (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|)))) (-956 |#1| |#2|))) (-15 -1248 ((-710 |#1| (-787 |#3|)) (-710 |#1| (-787 |#2|)))) (-15 -1248 ((-866 (-937 (-375 |#1|))) (-866 |#1|))) (-15 -1248 ((-866 (-937 (-375 |#1|))) (-710 |#1| (-787 |#3|)))) (-15 -1248 ((-1064 (-937 (-375 |#1|))) (-1064 |#1|))) (-15 -1248 ((-578 (-710 |#1| (-787 |#3|))) (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|)))))) (-13 (-775) (-276) (-134) (-933)) (-578 (-1070)) (-578 (-1070))) (T -1173)) -((-1248 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 (-487 (-787 *6)) (-787 *6) (-710 *4 (-787 *6)))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-710 *4 (-787 *6)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-1064 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-710 *4 (-787 *6))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *6 (-578 (-1070))) (-5 *2 (-866 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-866 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-710 *4 (-787 *5))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-710 *4 (-787 *6))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-1041 *4 (-487 (-787 *6)) (-787 *6) (-710 *4 (-787 *6))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1634 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-2679 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-2679 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) (-1617 (*1 *2 *3) (-12 (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-1173 *4 *5 *6)) (-5 *3 (-578 (-866 *4))) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-1617 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1617 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1617 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *4 *5))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1625 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070)))))) -(-10 -7 (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107))) (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-956 |#1| |#2|))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)))) (-15 -1559 ((-578 (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|)))) (-956 |#1| |#2|))) (-15 -1248 ((-710 |#1| (-787 |#3|)) (-710 |#1| (-787 |#2|)))) (-15 -1248 ((-866 (-937 (-375 |#1|))) (-866 |#1|))) (-15 -1248 ((-866 (-937 (-375 |#1|))) (-710 |#1| (-787 |#3|)))) (-15 -1248 ((-1064 (-937 (-375 |#1|))) (-1064 |#1|))) (-15 -1248 ((-578 (-710 |#1| (-787 |#3|))) (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|)))))) -((-2800 (((-3 (-1148 (-375 (-501))) "failed") (-1148 |#1|) |#1|) 17)) (-2738 (((-107) (-1148 |#1|)) 11)) (-1585 (((-3 (-1148 (-501)) "failed") (-1148 |#1|)) 14))) -(((-1174 |#1|) (-10 -7 (-15 -2738 ((-107) (-1148 |#1|))) (-15 -1585 ((-3 (-1148 (-501)) "failed") (-1148 |#1|))) (-15 -2800 ((-3 (-1148 (-375 (-501))) "failed") (-1148 |#1|) |#1|))) (-577 (-501))) (T -1174)) -((-2800 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-1148 (-375 (-501)))) (-5 *1 (-1174 *4)))) (-1585 (*1 *2 *3) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-1148 (-501))) (-5 *1 (-1174 *4)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-107)) (-5 *1 (-1174 *4))))) -(-10 -7 (-15 -2738 ((-107) (-1148 |#1|))) (-15 -1585 ((-3 (-1148 (-501)) "failed") (-1148 |#1|))) (-15 -2800 ((-3 (-1148 (-375 (-501))) "failed") (-1148 |#1|) |#1|))) -((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 11)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701)) 8)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) 43)) (-2890 (($) 36)) (-1355 (((-107) $) NIL)) (-3493 (((-3 $ "failed") $) 29)) (-3104 (((-839) $) 15)) (-3460 (((-1053) $) NIL)) (-3746 (($) 25 T CONST)) (-3506 (($ (-839)) 37)) (-3708 (((-1018) $) NIL)) (-1248 (((-501) $) 13)) (-3691 (((-786) $) 22) (($ (-501)) 19)) (-3965 (((-701)) 9)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 23 T CONST)) (-1925 (($) 24 T CONST)) (-3751 (((-107) $ $) 27)) (-3797 (($ $) 38) (($ $ $) 35)) (-3790 (($ $ $) 26)) (** (($ $ (-839)) NIL) (($ $ (-701)) 40)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 32) (($ $ $) 31))) -(((-1175 |#1|) (-13 (-156) (-336) (-556 (-501)) (-1046)) (-839)) (T -1175)) -NIL -(-13 (-156) (-336) (-556 (-501)) (-1046)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-1180 3116125 3116130 3116135 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3116110 3116115 3116120 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3116095 3116100 3116105 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3116080 3116085 3116090 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3116065 3116070 3116075 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1175 3115195 3115940 3116017 "ZMOD" 3116022 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1174 3114305 3114469 3114678 "ZLINDEP" 3115027 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1173 3103709 3105454 3107406 "ZDSOLVE" 3112454 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1172 3102955 3103096 3103285 "YSTREAM" 3103555 NIL YSTREAM (NIL T) -7 NIL NIL) (-1171 3100724 3102260 3102463 "XRPOLY" 3102798 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1170 3097194 3098523 3099101 "XPR" 3100192 NIL XPR (NIL T T) -8 NIL NIL) (-1169 3095007 3096385 3096440 "XPOLYC" 3096725 NIL XPOLYC (NIL T T) -9 NIL 3096838) (-1168 3092721 3094342 3094545 "XPOLY" 3094838 NIL XPOLY (NIL T) -8 NIL NIL) (-1167 3089095 3091240 3091627 "XPBWPOLY" 3092380 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1166 3084476 3085775 3085830 "XFALG" 3087978 NIL XFALG (NIL T T) -9 NIL 3088763) (-1165 3080358 3082672 3082715 "XF" 3083336 NIL XF (NIL T) -9 NIL 3083732) (-1164 3079979 3080067 3080236 "XF-" 3080241 NIL XF- (NIL T T) -8 NIL NIL) (-1163 3079116 3079220 3079424 "XEXPPKG" 3079871 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1162 3077214 3078967 3079062 "XDPOLY" 3079067 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1161 3076093 3076703 3076746 "XALG" 3076808 NIL XALG (NIL T) -9 NIL 3076926) (-1160 3069569 3074077 3074570 "WUTSET" 3075685 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1159 3067385 3068192 3068541 "WP" 3069353 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1158 3066271 3066469 3066764 "WFFINTBS" 3067182 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1157 3064175 3064602 3065064 "WEIER" 3065843 NIL WEIER (NIL T) -7 NIL NIL) (-1156 3063323 3063747 3063790 "VSPACE" 3063926 NIL VSPACE (NIL T) -9 NIL 3064000) (-1155 3063161 3063188 3063279 "VSPACE-" 3063284 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1154 3062907 3062950 3063021 "VOID" 3063112 T VOID (NIL) -8 NIL NIL) (-1153 3059332 3059970 3060707 "VIEWDEF" 3062192 T VIEWDEF (NIL) -7 NIL NIL) (-1152 3048671 3050880 3053053 "VIEW3D" 3057181 T VIEW3D (NIL) -8 NIL NIL) (-1151 3040953 3042582 3044161 "VIEW2D" 3047114 T VIEW2D (NIL) -8 NIL NIL) (-1150 3039089 3039448 3039854 "VIEW" 3040569 T VIEW (NIL) -7 NIL NIL) (-1149 3037666 3037925 3038243 "VECTOR2" 3038819 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1148 3033081 3037436 3037528 "VECTOR" 3037609 NIL VECTOR (NIL T) -8 NIL NIL) (-1147 3026657 3030903 3030947 "VECTCAT" 3031935 NIL VECTCAT (NIL T) -9 NIL 3032512) (-1146 3025671 3025925 3026315 "VECTCAT-" 3026320 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1145 3025152 3025322 3025442 "VARIABLE" 3025586 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1144 3023989 3024143 3024403 "UTSODETL" 3024979 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1143 3021429 3021889 3022413 "UTSODE" 3023530 NIL UTSODE (NIL T T) -7 NIL NIL) (-1142 3012732 3018096 3018139 "UTSCAT" 3019240 NIL UTSCAT (NIL T) -9 NIL 3019990) (-1141 3010088 3010803 3011791 "UTSCAT-" 3011796 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1140 3009719 3009762 3009893 "UTS2" 3010039 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1139 3001569 3007361 3007848 "UTS" 3009289 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1138 2995886 2998445 2998489 "URAGG" 3000559 NIL URAGG (NIL T) -9 NIL 3001280) (-1137 2992825 2993688 2994811 "URAGG-" 2994816 NIL URAGG- (NIL T T) -8 NIL NIL) (-1136 2988511 2991442 2991913 "UPXSSING" 2992489 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1135 2981543 2988416 2988487 "UPXSCONS" 2988492 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1134 2971769 2978598 2978660 "UPXSCCA" 2979309 NIL UPXSCCA (NIL T T) -9 NIL 2979550) (-1133 2971408 2971493 2971666 "UPXSCCA-" 2971671 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1132 2961563 2968165 2968208 "UPXSCAT" 2968851 NIL UPXSCAT (NIL T) -9 NIL 2969452) (-1131 2960997 2961076 2961253 "UPXS2" 2961478 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1130 2952893 2960120 2960399 "UPXS" 2960775 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1129 2951547 2951800 2952151 "UPSQFREE" 2952636 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1128 2945399 2948453 2948508 "UPSCAT" 2949657 NIL UPSCAT (NIL T T) -9 NIL 2950424) (-1127 2944613 2944817 2945140 "UPSCAT-" 2945145 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1126 2944244 2944287 2944418 "UPOLYC2" 2944564 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1125 2930323 2938320 2938363 "UPOLYC" 2940441 NIL UPOLYC (NIL T) -9 NIL 2941655) (-1124 2921716 2924120 2927245 "UPOLYC-" 2927250 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1123 2921059 2921166 2921329 "UPMP" 2921605 NIL UPMP (NIL T T) -7 NIL NIL) (-1122 2920612 2920693 2920832 "UPDIVP" 2920972 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1121 2919180 2919429 2919745 "UPDECOMP" 2920361 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1120 2918415 2918527 2918712 "UPCDEN" 2919064 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1119 2917938 2918007 2918154 "UP2" 2918340 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1118 2909397 2917507 2917644 "UP" 2917848 NIL UP (NIL NIL T) -8 NIL NIL) (-1117 2908614 2908741 2908945 "UNISEG2" 2909241 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1116 2907143 2907829 2908101 "UNISEG" 2908377 NIL UNISEG (NIL T) -8 NIL NIL) (-1115 2906203 2906383 2906609 "UNIFACT" 2906959 NIL UNIFACT (NIL T) -7 NIL NIL) (-1114 2894171 2906108 2906179 "ULSCONS" 2906184 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1113 2876873 2888885 2888947 "ULSCCAT" 2889659 NIL ULSCCAT (NIL T T) -9 NIL 2889954) (-1112 2875924 2876169 2876556 "ULSCCAT-" 2876561 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1111 2865873 2872389 2872432 "ULSCAT" 2873288 NIL ULSCAT (NIL T) -9 NIL 2874010) (-1110 2865307 2865386 2865563 "ULS2" 2865788 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1109 2849208 2864490 2864739 "ULS" 2865115 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1108 2847605 2848572 2848603 "UFD" 2848815 T UFD (NIL) -9 NIL 2848929) (-1107 2847399 2847445 2847540 "UFD-" 2847545 NIL UFD- (NIL T) -8 NIL NIL) (-1106 2846481 2846664 2846880 "UDVO" 2847205 T UDVO (NIL) -7 NIL NIL) (-1105 2844299 2844708 2845178 "UDPO" 2846046 NIL UDPO (NIL T) -7 NIL NIL) (-1104 2844231 2844236 2844267 "TYPE" 2844272 T TYPE (NIL) -9 NIL NIL) (-1103 2843202 2843404 2843644 "TWOFACT" 2844025 NIL TWOFACT (NIL T) -7 NIL NIL) (-1102 2842274 2842605 2842804 "TUPLE" 2843038 NIL TUPLE (NIL T) -8 NIL NIL) (-1101 2839965 2840484 2841023 "TUBETOOL" 2841757 T TUBETOOL (NIL) -7 NIL NIL) (-1100 2838814 2839019 2839260 "TUBE" 2839758 NIL TUBE (NIL T) -8 NIL NIL) (-1099 2827518 2831610 2831707 "TSETCAT" 2836941 NIL TSETCAT (NIL T T T T) -9 NIL 2838471) (-1098 2822254 2823851 2825741 "TSETCAT-" 2825746 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1097 2816980 2821234 2821515 "TS" 2822007 NIL TS (NIL T) -8 NIL NIL) (-1096 2811251 2812097 2813035 "TRMANIP" 2816120 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1095 2810692 2810755 2810918 "TRIMAT" 2811183 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1094 2808498 2808735 2809098 "TRIGMNIP" 2810441 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1093 2808017 2808130 2808161 "TRIGCAT" 2808374 T TRIGCAT (NIL) -9 NIL NIL) (-1092 2807686 2807765 2807906 "TRIGCAT-" 2807911 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1091 2804591 2806546 2806826 "TREE" 2807441 NIL TREE (NIL T) -8 NIL NIL) (-1090 2803864 2804392 2804423 "TRANFUN" 2804458 T TRANFUN (NIL) -9 NIL 2804524) (-1089 2803143 2803334 2803614 "TRANFUN-" 2803619 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1088 2802947 2802979 2803040 "TOPSP" 2803104 T TOPSP (NIL) -7 NIL NIL) (-1087 2802299 2802414 2802567 "TOOLSIGN" 2802828 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1086 2800960 2801476 2801715 "TEXTFILE" 2802082 T TEXTFILE (NIL) -8 NIL NIL) (-1085 2800741 2800772 2800844 "TEX1" 2800923 NIL TEX1 (NIL T) -7 NIL NIL) (-1084 2798606 2799120 2799558 "TEX" 2800325 T TEX (NIL) -8 NIL NIL) (-1083 2798254 2798317 2798407 "TEMUTL" 2798538 T TEMUTL (NIL) -7 NIL NIL) (-1082 2796408 2796688 2797013 "TBCMPPK" 2797977 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1081 2788154 2794414 2794471 "TBAGG" 2794871 NIL TBAGG (NIL T T) -9 NIL 2795082) (-1080 2783224 2784712 2786466 "TBAGG-" 2786471 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1079 2782608 2782715 2782860 "TANEXP" 2783113 NIL TANEXP (NIL T) -7 NIL NIL) (-1078 2782021 2782119 2782257 "TABLEAU" 2782505 NIL TABLEAU (NIL T) -8 NIL NIL) (-1077 2775534 2781878 2781971 "TABLE" 2781976 NIL TABLE (NIL T T) -8 NIL NIL) (-1076 2770142 2771362 2772610 "TABLBUMP" 2774320 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1075 2766605 2767300 2768083 "SYSSOLP" 2769393 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1074 2763739 2764347 2764985 "SYMTAB" 2765989 T SYMTAB (NIL) -8 NIL NIL) (-1073 2758988 2759890 2760873 "SYMS" 2762778 T SYMS (NIL) -8 NIL NIL) (-1072 2756227 2758454 2758680 "SYMPOLY" 2758796 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1071 2755747 2755822 2755944 "SYMFUNC" 2756139 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1070 2751725 2752984 2753806 "SYMBOL" 2754947 T SYMBOL (NIL) -8 NIL NIL) (-1069 2745264 2746953 2748673 "SWITCH" 2750027 T SWITCH (NIL) -8 NIL NIL) (-1068 2738499 2744093 2744394 "SUTS" 2745020 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1067 2730394 2737622 2737901 "SUPXS" 2738277 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1066 2729553 2729680 2729897 "SUPFRACF" 2730262 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1065 2729178 2729237 2729348 "SUP2" 2729488 NIL SUP2 (NIL T T) -7 NIL NIL) (-1064 2720711 2728799 2728924 "SUP" 2729087 NIL SUP (NIL T) -8 NIL NIL) (-1063 2719137 2719409 2719769 "SUMRF" 2720412 NIL SUMRF (NIL T) -7 NIL NIL) (-1062 2718458 2718523 2718720 "SUMFS" 2719059 NIL SUMFS (NIL T T) -7 NIL NIL) (-1061 2702399 2717641 2717890 "SULS" 2718266 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1060 2701721 2701924 2702064 "SUCH" 2702307 NIL SUCH (NIL T T) -8 NIL NIL) (-1059 2695648 2696660 2697618 "SUBSPACE" 2700809 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1058 2695080 2695170 2695333 "SUBRESP" 2695537 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1057 2689253 2690373 2691520 "STTFNC" 2693980 NIL STTFNC (NIL T) -7 NIL NIL) (-1056 2682622 2683918 2685229 "STTF" 2687989 NIL STTF (NIL T) -7 NIL NIL) (-1055 2673977 2675844 2677635 "STTAYLOR" 2680865 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1054 2667233 2673841 2673924 "STRTBL" 2673929 NIL STRTBL (NIL T) -8 NIL NIL) (-1053 2662624 2667188 2667219 "STRING" 2667224 T STRING (NIL) -8 NIL NIL) (-1052 2657482 2661967 2661998 "STRICAT" 2662057 T STRICAT (NIL) -9 NIL 2662119) (-1051 2656992 2657069 2657213 "STREAM3" 2657399 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1050 2655974 2656157 2656392 "STREAM2" 2656805 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1049 2655662 2655714 2655807 "STREAM1" 2655916 NIL STREAM1 (NIL T) -7 NIL NIL) (-1048 2648389 2653189 2653807 "STREAM" 2655079 NIL STREAM (NIL T) -8 NIL NIL) (-1047 2647405 2647586 2647817 "STINPROD" 2648205 NIL STINPROD (NIL T) -7 NIL NIL) (-1046 2646983 2647167 2647198 "STEP" 2647278 T STEP (NIL) -9 NIL 2647356) (-1045 2640538 2646882 2646959 "STBL" 2646964 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1044 2635751 2639792 2639836 "STAGG" 2639989 NIL STAGG (NIL T) -9 NIL 2640078) (-1043 2633453 2634055 2634927 "STAGG-" 2634932 NIL STAGG- (NIL T T) -8 NIL NIL) (-1042 2631651 2633223 2633315 "STACK" 2633396 NIL STACK (NIL T) -8 NIL NIL) (-1041 2624382 2629798 2630253 "SREGSET" 2631281 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1040 2616822 2618190 2619702 "SRDCMPK" 2622988 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1039 2609794 2614261 2614292 "SRAGG" 2615595 T SRAGG (NIL) -9 NIL 2616203) (-1038 2608811 2609066 2609445 "SRAGG-" 2609450 NIL SRAGG- (NIL T) -8 NIL NIL) (-1037 2603268 2607738 2608161 "SQMATRIX" 2608434 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1036 2597026 2599988 2600714 "SPLTREE" 2602614 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1035 2593016 2593682 2594328 "SPLNODE" 2596452 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1034 2592062 2592295 2592326 "SPFCAT" 2592770 T SPFCAT (NIL) -9 NIL NIL) (-1033 2590799 2591009 2591273 "SPECOUT" 2591820 T SPECOUT (NIL) -7 NIL NIL) (-1032 2582821 2584568 2584611 "SPACEC" 2588934 NIL SPACEC (NIL T) -9 NIL 2590750) (-1031 2580993 2582754 2582802 "SPACE3" 2582807 NIL SPACE3 (NIL T) -8 NIL NIL) (-1030 2579747 2579918 2580208 "SORTPAK" 2580799 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1029 2577803 2578106 2578524 "SOLVETRA" 2579411 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1028 2576814 2577036 2577310 "SOLVESER" 2577576 NIL SOLVESER (NIL T) -7 NIL NIL) (-1027 2572034 2572915 2573917 "SOLVERAD" 2575866 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1026 2567849 2568458 2569187 "SOLVEFOR" 2571401 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1025 2562148 2567200 2567297 "SNTSCAT" 2567302 NIL SNTSCAT (NIL T T T T) -9 NIL 2567372) (-1024 2556255 2560481 2560870 "SMTS" 2561839 NIL SMTS (NIL T T T) -8 NIL NIL) (-1023 2550665 2556144 2556220 "SMP" 2556225 NIL SMP (NIL T T) -8 NIL NIL) (-1022 2548824 2549125 2549523 "SMITH" 2550362 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1021 2541791 2545987 2546090 "SMATCAT" 2547430 NIL SMATCAT (NIL NIL T T T) -9 NIL 2547976) (-1020 2538732 2539555 2540732 "SMATCAT-" 2540737 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1019 2536486 2538003 2538047 "SKAGG" 2538308 NIL SKAGG (NIL T) -9 NIL 2538443) (-1018 2532544 2535590 2535868 "SINT" 2536230 T SINT (NIL) -8 NIL NIL) (-1017 2532316 2532354 2532420 "SIMPAN" 2532500 T SIMPAN (NIL) -7 NIL NIL) (-1016 2531154 2531375 2531650 "SIGNRF" 2532075 NIL SIGNRF (NIL T) -7 NIL NIL) (-1015 2529963 2530114 2530404 "SIGNEF" 2530983 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1014 2527655 2528109 2528614 "SHP" 2529505 NIL SHP (NIL T NIL) -7 NIL NIL) (-1013 2521514 2527556 2527632 "SHDP" 2527637 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1012 2521003 2521195 2521226 "SGROUP" 2521378 T SGROUP (NIL) -9 NIL 2521465) (-1011 2520773 2520825 2520929 "SGROUP-" 2520934 NIL SGROUP- (NIL T) -8 NIL NIL) (-1010 2517609 2518306 2519029 "SGCF" 2520072 T SGCF (NIL) -7 NIL NIL) (-1009 2512007 2517059 2517156 "SFRTCAT" 2517161 NIL SFRTCAT (NIL T T T T) -9 NIL 2517199) (-1008 2505467 2506482 2507616 "SFRGCD" 2510990 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1007 2498633 2499704 2500888 "SFQCMPK" 2504400 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1006 2498255 2498344 2498454 "SFORT" 2498574 NIL SFORT (NIL T T) -8 NIL NIL) (-1005 2497400 2498095 2498216 "SEXOF" 2498221 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1004 2492176 2492865 2492961 "SEXCAT" 2496732 NIL SEXCAT (NIL T T T T T) -9 NIL 2497351) (-1003 2491310 2492057 2492125 "SEX" 2492130 T SEX (NIL) -8 NIL NIL) (-1002 2489561 2490023 2490328 "SETMN" 2491051 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1001 2489168 2489294 2489325 "SETCAT" 2489442 T SETCAT (NIL) -9 NIL 2489526) (-1000 2488948 2489000 2489099 "SETCAT-" 2489104 NIL SETCAT- (NIL T) -8 NIL NIL) (-999 2485350 2487424 2487466 "SETAGG" 2488323 NIL SETAGG (NIL T) -9 NIL 2488663) (-998 2484811 2484927 2485161 "SETAGG-" 2485166 NIL SETAGG- (NIL T T) -8 NIL NIL) (-997 2481993 2484747 2484793 "SET" 2484798 NIL SET (NIL T) -8 NIL NIL) (-996 2481203 2481496 2481556 "SEGXCAT" 2481839 NIL SEGXCAT (NIL T T) -9 NIL 2481958) (-995 2480120 2480333 2480375 "SEGCAT" 2480948 NIL SEGCAT (NIL T) -9 NIL 2481186) (-994 2479752 2479809 2479918 "SEGBIND2" 2480057 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-993 2478816 2479144 2479339 "SEGBIND" 2479590 NIL SEGBIND (NIL T) -8 NIL NIL) (-992 2478053 2478176 2478374 "SEG2" 2478664 NIL SEG2 (NIL T T) -7 NIL NIL) (-991 2477119 2477729 2477905 "SEG" 2477910 NIL SEG (NIL T) -8 NIL NIL) (-990 2476558 2477056 2477101 "SDVAR" 2477106 NIL SDVAR (NIL T) -8 NIL NIL) (-989 2468864 2476337 2476461 "SDPOL" 2476466 NIL SDPOL (NIL T) -8 NIL NIL) (-988 2467463 2467729 2468046 "SCPKG" 2468579 NIL SCPKG (NIL T) -7 NIL NIL) (-987 2466690 2466823 2467000 "SCACHE" 2467318 NIL SCACHE (NIL T) -7 NIL NIL) (-986 2466133 2466454 2466537 "SAOS" 2466627 T SAOS (NIL) -8 NIL NIL) (-985 2465701 2465736 2465907 "SAERFFC" 2466092 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-984 2465297 2465332 2465489 "SAEFACT" 2465660 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-983 2459193 2465196 2465274 "SAE" 2465279 NIL SAE (NIL T T NIL) -8 NIL NIL) (-982 2457519 2457833 2458232 "RURPK" 2458859 NIL RURPK (NIL T NIL) -7 NIL NIL) (-981 2456172 2456449 2456756 "RULESET" 2457355 NIL RULESET (NIL T T T) -8 NIL NIL) (-980 2455814 2455969 2456050 "RULECOLD" 2456124 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-979 2453022 2453525 2453986 "RULE" 2455496 NIL RULE (NIL T T T) -8 NIL NIL) (-978 2447914 2448708 2449624 "RSETGCD" 2452221 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-977 2437228 2442280 2442375 "RSETCAT" 2446440 NIL RSETCAT (NIL T T T T) -9 NIL 2447537) (-976 2435159 2435698 2436518 "RSETCAT-" 2436523 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-975 2427589 2428964 2430480 "RSDCMPK" 2433758 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-974 2425606 2426047 2426120 "RRCC" 2427196 NIL RRCC (NIL T T) -9 NIL 2427540) (-973 2424960 2425134 2425410 "RRCC-" 2425415 NIL RRCC- (NIL T T T) -8 NIL NIL) (-972 2399290 2408915 2408980 "RPOLCAT" 2419482 NIL RPOLCAT (NIL T T T) -9 NIL 2422629) (-971 2390794 2393132 2396250 "RPOLCAT-" 2396255 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-970 2381872 2389024 2389504 "ROUTINE" 2390334 T ROUTINE (NIL) -8 NIL NIL) (-969 2378577 2381428 2381575 "ROMAN" 2381745 T ROMAN (NIL) -8 NIL NIL) (-968 2376863 2377448 2377705 "ROIRC" 2378383 NIL ROIRC (NIL T T) -8 NIL NIL) (-967 2373211 2375524 2375553 "RNS" 2375849 T RNS (NIL) -9 NIL 2376119) (-966 2371725 2372108 2372639 "RNS-" 2372712 NIL RNS- (NIL T) -8 NIL NIL) (-965 2371150 2371558 2371587 "RNG" 2371592 T RNG (NIL) -9 NIL 2371613) (-964 2370547 2370909 2370950 "RMODULE" 2371010 NIL RMODULE (NIL T) -9 NIL 2371052) (-963 2369399 2369493 2369823 "RMCAT2" 2370448 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-962 2366117 2368586 2368905 "RMATRIX" 2369136 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-961 2359118 2361352 2361465 "RMATCAT" 2364774 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2365751) (-960 2358497 2358644 2358947 "RMATCAT-" 2358952 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-959 2357547 2358111 2358140 "RING" 2358250 T RING (NIL) -9 NIL 2358344) (-958 2357342 2357386 2357480 "RING-" 2357485 NIL RING- (NIL T) -8 NIL NIL) (-957 2356194 2356430 2356685 "RIDIST" 2357107 T RIDIST (NIL) -7 NIL NIL) (-956 2347516 2355668 2355871 "RGCHAIN" 2356043 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-955 2347165 2347228 2347329 "RFFACTOR" 2347447 NIL RFFACTOR (NIL T) -7 NIL NIL) (-954 2346893 2346928 2347023 "RFFACT" 2347124 NIL RFFACT (NIL T) -7 NIL NIL) (-953 2345023 2345387 2345767 "RFDIST" 2346533 T RFDIST (NIL) -7 NIL NIL) (-952 2342028 2342642 2343310 "RF" 2344387 NIL RF (NIL T) -7 NIL NIL) (-951 2341486 2341578 2341738 "RETSOL" 2341930 NIL RETSOL (NIL T T) -7 NIL NIL) (-950 2341078 2341158 2341200 "RETRACT" 2341390 NIL RETRACT (NIL T) -9 NIL NIL) (-949 2340930 2340955 2341039 "RETRACT-" 2341044 NIL RETRACT- (NIL T T) -8 NIL NIL) (-948 2333800 2340587 2340712 "RESULT" 2340825 T RESULT (NIL) -8 NIL NIL) (-947 2332385 2333074 2333271 "RESRING" 2333703 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-946 2332025 2332074 2332170 "RESLATC" 2332322 NIL RESLATC (NIL T) -7 NIL NIL) (-945 2331734 2331768 2331873 "REPSQ" 2331984 NIL REPSQ (NIL T) -7 NIL NIL) (-944 2331435 2331469 2331578 "REPDB" 2331693 NIL REPDB (NIL T) -7 NIL NIL) (-943 2325388 2326767 2327983 "REP2" 2330251 NIL REP2 (NIL T) -7 NIL NIL) (-942 2321798 2322479 2323282 "REP1" 2324617 NIL REP1 (NIL T) -7 NIL NIL) (-941 2319229 2319809 2320409 "REP" 2321218 T REP (NIL) -7 NIL NIL) (-940 2311975 2317390 2317842 "REGSET" 2318860 NIL REGSET (NIL T T T T) -8 NIL NIL) (-939 2310798 2311133 2311380 "REF" 2311761 NIL REF (NIL T) -8 NIL NIL) (-938 2310179 2310282 2310447 "REDORDER" 2310682 NIL REDORDER (NIL T T) -7 NIL NIL) (-937 2306148 2309413 2309634 "RECLOS" 2310010 NIL RECLOS (NIL T) -8 NIL NIL) (-936 2305205 2305386 2305599 "REALSOLV" 2305955 T REALSOLV (NIL) -7 NIL NIL) (-935 2301696 2302498 2303380 "REAL0Q" 2304370 NIL REAL0Q (NIL T) -7 NIL NIL) (-934 2297307 2298295 2299354 "REAL0" 2300677 NIL REAL0 (NIL T) -7 NIL NIL) (-933 2297154 2297195 2297224 "REAL" 2297229 T REAL (NIL) -9 NIL 2297264) (-932 2296562 2296634 2296839 "RDIV" 2297076 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-931 2295639 2295812 2296022 "RDIST" 2296385 NIL RDIST (NIL T) -7 NIL NIL) (-930 2294243 2294530 2294899 "RDETRS" 2295347 NIL RDETRS (NIL T T) -7 NIL NIL) (-929 2292064 2292518 2293053 "RDETR" 2293785 NIL RDETR (NIL T T) -7 NIL NIL) (-928 2290680 2290958 2291359 "RDEEFS" 2291780 NIL RDEEFS (NIL T T) -7 NIL NIL) (-927 2289180 2289486 2289915 "RDEEF" 2290368 NIL RDEEF (NIL T T) -7 NIL NIL) (-926 2283403 2286337 2286366 "RCFIELD" 2287643 T RCFIELD (NIL) -9 NIL 2288373) (-925 2281472 2281976 2282669 "RCFIELD-" 2282742 NIL RCFIELD- (NIL T) -8 NIL NIL) (-924 2277846 2279625 2279667 "RCAGG" 2280738 NIL RCAGG (NIL T) -9 NIL 2281201) (-923 2277477 2277571 2277731 "RCAGG-" 2277736 NIL RCAGG- (NIL T T) -8 NIL NIL) (-922 2276822 2276933 2277095 "RATRET" 2277361 NIL RATRET (NIL T) -7 NIL NIL) (-921 2276379 2276446 2276565 "RATFACT" 2276750 NIL RATFACT (NIL T) -7 NIL NIL) (-920 2275694 2275814 2275964 "RANDSRC" 2276249 T RANDSRC (NIL) -7 NIL NIL) (-919 2275431 2275475 2275546 "RADUTIL" 2275643 T RADUTIL (NIL) -7 NIL NIL) (-918 2268438 2274174 2274491 "RADIX" 2275146 NIL RADIX (NIL NIL) -8 NIL NIL) (-917 2260008 2268282 2268410 "RADFF" 2268415 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-916 2259659 2259734 2259763 "RADCAT" 2259920 T RADCAT (NIL) -9 NIL NIL) (-915 2259444 2259492 2259589 "RADCAT-" 2259594 NIL RADCAT- (NIL T) -8 NIL NIL) (-914 2257601 2259219 2259308 "QUEUE" 2259388 NIL QUEUE (NIL T) -8 NIL NIL) (-913 2257239 2257282 2257409 "QUATCT2" 2257552 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-912 2250993 2254373 2254414 "QUATCAT" 2255193 NIL QUATCAT (NIL T) -9 NIL 2255950) (-911 2247137 2248174 2249561 "QUATCAT-" 2249655 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-910 2243634 2247074 2247119 "QUAT" 2247124 NIL QUAT (NIL T) -8 NIL NIL) (-909 2241195 2242753 2242795 "QUAGG" 2243170 NIL QUAGG (NIL T) -9 NIL 2243345) (-908 2240120 2240593 2240765 "QFORM" 2241067 NIL QFORM (NIL NIL T) -8 NIL NIL) (-907 2239758 2239801 2239928 "QFCAT2" 2240071 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-906 2231019 2236277 2236318 "QFCAT" 2236976 NIL QFCAT (NIL T) -9 NIL 2237957) (-905 2226591 2227792 2229383 "QFCAT-" 2229477 NIL QFCAT- (NIL T T) -8 NIL NIL) (-904 2226051 2226161 2226291 "QEQUAT" 2226481 T QEQUAT (NIL) -8 NIL NIL) (-903 2219237 2220308 2221490 "QCMPACK" 2224984 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-902 2218482 2218656 2218888 "QALGSET2" 2219057 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-901 2216062 2216483 2216909 "QALGSET" 2218139 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-900 2214753 2214976 2215293 "PWFFINTB" 2215835 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-899 2212941 2213109 2213462 "PUSHVAR" 2214567 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-898 2208858 2209912 2209954 "PTRANFN" 2211838 NIL PTRANFN (NIL T) -9 NIL NIL) (-897 2207270 2207561 2207882 "PTPACK" 2208569 NIL PTPACK (NIL T) -7 NIL NIL) (-896 2206906 2206963 2207070 "PTFUNC2" 2207207 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-895 2201412 2205747 2205788 "PTCAT" 2206156 NIL PTCAT (NIL T) -9 NIL 2206318) (-894 2201070 2201105 2201229 "PSQFR" 2201371 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-893 2199665 2199963 2200297 "PSEUDLIN" 2200768 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-892 2186479 2188843 2191163 "PSETPK" 2197428 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-891 2179566 2182280 2182375 "PSETCAT" 2185356 NIL PSETCAT (NIL T T T T) -9 NIL 2186169) (-890 2177404 2178038 2178857 "PSETCAT-" 2178862 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-889 2176761 2176923 2176952 "PSCURVE" 2177217 T PSCURVE (NIL) -9 NIL 2177381) (-888 2173165 2174691 2174756 "PSCAT" 2175592 NIL PSCAT (NIL T T T) -9 NIL 2175832) (-887 2172229 2172445 2172844 "PSCAT-" 2172849 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-886 2170882 2171514 2171728 "PRTITION" 2172035 T PRTITION (NIL) -8 NIL NIL) (-885 2159982 2162188 2164375 "PRS" 2168745 NIL PRS (NIL T T) -7 NIL NIL) (-884 2157881 2159367 2159408 "PRQAGG" 2159591 NIL PRQAGG (NIL T) -9 NIL 2159693) (-883 2151687 2156079 2156883 "PRODUCT" 2157123 NIL PRODUCT (NIL T T) -8 NIL NIL) (-882 2151483 2151515 2151574 "PRINT" 2151648 T PRINT (NIL) -7 NIL NIL) (-881 2150823 2150940 2151092 "PRIMES" 2151363 NIL PRIMES (NIL T) -7 NIL NIL) (-880 2148888 2149289 2149755 "PRIMELT" 2150402 NIL PRIMELT (NIL T) -7 NIL NIL) (-879 2148619 2148667 2148696 "PRIMCAT" 2148819 T PRIMCAT (NIL) -9 NIL NIL) (-878 2147626 2147804 2148032 "PRIMARR2" 2148437 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-877 2143793 2147564 2147609 "PRIMARR" 2147614 NIL PRIMARR (NIL T) -8 NIL NIL) (-876 2143436 2143492 2143603 "PREASSOC" 2143731 NIL PREASSOC (NIL T T) -7 NIL NIL) (-875 2140718 2142902 2143132 "PR" 2143250 NIL PR (NIL T T) -8 NIL NIL) (-874 2140198 2140329 2140358 "PPCURVE" 2140561 T PPCURVE (NIL) -9 NIL 2140695) (-873 2137559 2137958 2138549 "POLYROOT" 2139780 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-872 2136944 2137002 2137235 "POLYLIFT" 2137495 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-871 2133229 2133678 2134306 "POLYCATQ" 2136489 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-870 2120235 2125634 2125699 "POLYCAT" 2129184 NIL POLYCAT (NIL T T T) -9 NIL 2131096) (-869 2113686 2115547 2117930 "POLYCAT-" 2117935 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-868 2113275 2113343 2113462 "POLY2UP" 2113612 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-867 2112911 2112968 2113075 "POLY2" 2113212 NIL POLY2 (NIL T T) -7 NIL NIL) (-866 2106819 2112519 2112677 "POLY" 2112785 NIL POLY (NIL T) -8 NIL NIL) (-865 2105506 2105745 2106020 "POLUTIL" 2106594 NIL POLUTIL (NIL T T) -7 NIL NIL) (-864 2103868 2104145 2104475 "POLTOPOL" 2105228 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-863 2099397 2103805 2103850 "POINT" 2103855 NIL POINT (NIL T) -8 NIL NIL) (-862 2097584 2097941 2098316 "PNTHEORY" 2099042 T PNTHEORY (NIL) -7 NIL NIL) (-861 2096012 2096309 2096718 "PMTOOLS" 2097282 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-860 2095605 2095683 2095800 "PMSYM" 2095928 NIL PMSYM (NIL T) -7 NIL NIL) (-859 2095115 2095184 2095358 "PMQFCAT" 2095530 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-858 2094511 2094597 2094758 "PMPREDFS" 2095016 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-857 2093866 2093976 2094132 "PMPRED" 2094388 NIL PMPRED (NIL T) -7 NIL NIL) (-856 2092514 2092722 2093105 "PMPLCAT" 2093629 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-855 2092046 2092125 2092277 "PMLSAGG" 2092429 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-854 2091523 2091599 2091779 "PMKERNEL" 2091964 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-853 2091140 2091215 2091328 "PMINS" 2091442 NIL PMINS (NIL T) -7 NIL NIL) (-852 2090570 2090639 2090854 "PMFS" 2091065 NIL PMFS (NIL T T T) -7 NIL NIL) (-851 2089801 2089919 2090123 "PMDOWN" 2090447 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-850 2089075 2089186 2089349 "PMASSFS" 2089687 NIL PMASSFS (NIL T T) -7 NIL NIL) (-849 2088238 2088397 2088579 "PMASS" 2088913 T PMASS (NIL) -7 NIL NIL) (-848 2087897 2087964 2088057 "PLOTTOOL" 2088165 T PLOTTOOL (NIL) -7 NIL NIL) (-847 2083770 2084785 2085690 "PLOT3D" 2087012 T PLOT3D (NIL) -8 NIL NIL) (-846 2082694 2082868 2083100 "PLOT1" 2083577 NIL PLOT1 (NIL T) -7 NIL NIL) (-845 2077395 2078561 2079688 "PLOT" 2081587 T PLOT (NIL) -8 NIL NIL) (-844 2053386 2057990 2062768 "PLEQN" 2072734 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-843 2053079 2053126 2053229 "PINTERPA" 2053333 NIL PINTERPA (NIL T T) -7 NIL NIL) (-842 2052397 2052519 2052699 "PINTERP" 2052944 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-841 2050788 2051773 2051802 "PID" 2051984 T PID (NIL) -9 NIL 2052118) (-840 2050513 2050550 2050638 "PICOERCE" 2050745 NIL PICOERCE (NIL T) -7 NIL NIL) (-839 2049740 2050307 2050400 "PI" 2050440 T PI (NIL) -8 NIL NIL) (-838 2049061 2049199 2049375 "PGROEB" 2049596 NIL PGROEB (NIL T) -7 NIL NIL) (-837 2044648 2045462 2046367 "PGE" 2048176 T PGE (NIL) -7 NIL NIL) (-836 2042772 2043018 2043384 "PGCD" 2044365 NIL PGCD (NIL T T T T) -7 NIL NIL) (-835 2042110 2042213 2042374 "PFRPAC" 2042656 NIL PFRPAC (NIL T) -7 NIL NIL) (-834 2038725 2040658 2041011 "PFR" 2041789 NIL PFR (NIL T) -8 NIL NIL) (-833 2037114 2037358 2037683 "PFOTOOLS" 2038472 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-832 2035647 2035886 2036237 "PFOQ" 2036871 NIL PFOQ (NIL T T T) -7 NIL NIL) (-831 2034124 2034336 2034698 "PFO" 2035431 NIL PFO (NIL T T T T T) -7 NIL NIL) (-830 2031553 2032834 2032863 "PFECAT" 2033448 T PFECAT (NIL) -9 NIL 2033831) (-829 2030998 2031152 2031366 "PFECAT-" 2031371 NIL PFECAT- (NIL T) -8 NIL NIL) (-828 2029602 2029853 2030154 "PFBRU" 2030747 NIL PFBRU (NIL T T) -7 NIL NIL) (-827 2027469 2027820 2028252 "PFBR" 2029253 NIL PFBR (NIL T T T T) -7 NIL NIL) (-826 2023992 2027358 2027427 "PF" 2027432 NIL PF (NIL NIL) -8 NIL NIL) (-825 2019291 2020223 2021085 "PERMGRP" 2023163 NIL PERMGRP (NIL T) -8 NIL NIL) (-824 2017366 2018358 2018400 "PERMCAT" 2018845 NIL PERMCAT (NIL T) -9 NIL 2019147) (-823 2017021 2017062 2017185 "PERMAN" 2017319 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-822 2012886 2014407 2015079 "PERM" 2016382 NIL PERM (NIL T) -8 NIL NIL) (-821 2010332 2012455 2012586 "PENDTREE" 2012788 NIL PENDTREE (NIL T) -8 NIL NIL) (-820 2008404 2009182 2009224 "PDRING" 2009881 NIL PDRING (NIL T) -9 NIL 2010166) (-819 2007507 2007725 2008087 "PDRING-" 2008092 NIL PDRING- (NIL T T) -8 NIL NIL) (-818 2004649 2005399 2006090 "PDEPROB" 2006836 T PDEPROB (NIL) -8 NIL NIL) (-817 2002220 2002716 2003265 "PDEPACK" 2004120 T PDEPACK (NIL) -7 NIL NIL) (-816 2001132 2001322 2001573 "PDECOMP" 2002019 NIL PDECOMP (NIL T T) -7 NIL NIL) (-815 1998743 1999558 1999587 "PDECAT" 2000372 T PDECAT (NIL) -9 NIL 2001083) (-814 1998496 1998529 1998618 "PCOMP" 1998704 NIL PCOMP (NIL T T) -7 NIL NIL) (-813 1996703 1997299 1997595 "PBWLB" 1998226 NIL PBWLB (NIL T) -8 NIL NIL) (-812 1996335 1996392 1996501 "PATTERN2" 1996640 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-811 1994092 1994480 1994937 "PATTERN1" 1995924 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-810 1986601 1988169 1989505 "PATTERN" 1992777 NIL PATTERN (NIL T) -8 NIL NIL) (-809 1986165 1986232 1986364 "PATRES2" 1986528 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-808 1983560 1984114 1984595 "PATRES" 1985730 NIL PATRES (NIL T T) -8 NIL NIL) (-807 1981457 1981857 1982262 "PATMATCH" 1983229 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-806 1980993 1981176 1981218 "PATMAB" 1981325 NIL PATMAB (NIL T) -9 NIL 1981408) (-805 1979538 1979847 1980105 "PATLRES" 1980798 NIL PATLRES (NIL T T T) -8 NIL NIL) (-804 1979085 1979208 1979250 "PATAB" 1979255 NIL PATAB (NIL T) -9 NIL 1979425) (-803 1976566 1977098 1977671 "PARTPERM" 1978532 T PARTPERM (NIL) -7 NIL NIL) (-802 1976187 1976250 1976352 "PARSURF" 1976497 NIL PARSURF (NIL T) -8 NIL NIL) (-801 1975819 1975876 1975985 "PARSU2" 1976124 NIL PARSU2 (NIL T T) -7 NIL NIL) (-800 1975440 1975503 1975605 "PARSCURV" 1975750 NIL PARSCURV (NIL T) -8 NIL NIL) (-799 1975072 1975129 1975238 "PARSC2" 1975377 NIL PARSC2 (NIL T T) -7 NIL NIL) (-798 1974711 1974769 1974866 "PARPCURV" 1975008 NIL PARPCURV (NIL T) -8 NIL NIL) (-797 1974343 1974400 1974509 "PARPC2" 1974648 NIL PARPC2 (NIL T T) -7 NIL NIL) (-796 1973863 1973949 1974068 "PAN2EXPR" 1974244 T PAN2EXPR (NIL) -7 NIL NIL) (-795 1972669 1972984 1973212 "PALETTE" 1973655 T PALETTE (NIL) -8 NIL NIL) (-794 1966519 1971928 1972122 "PADICRC" 1972524 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-793 1959727 1965865 1966049 "PADICRAT" 1966367 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-792 1956931 1958505 1958546 "PADICCT" 1959127 NIL PADICCT (NIL NIL) -9 NIL 1959409) (-791 1955235 1956868 1956913 "PADIC" 1956918 NIL PADIC (NIL NIL) -8 NIL NIL) (-790 1954192 1954392 1954660 "PADEPAC" 1955022 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-789 1953404 1953537 1953743 "PADE" 1954054 NIL PADE (NIL T T T) -7 NIL NIL) (-788 1951419 1952251 1952564 "OWP" 1953174 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-787 1950528 1951024 1951196 "OVAR" 1951287 NIL OVAR (NIL NIL) -8 NIL NIL) (-786 1939574 1941753 1943923 "OUTFORM" 1948378 T OUTFORM (NIL) -8 NIL NIL) (-785 1938838 1938959 1939120 "OUT" 1939433 T OUT (NIL) -7 NIL NIL) (-784 1938246 1938567 1938656 "OSI" 1938769 T OSI (NIL) -8 NIL NIL) (-783 1936993 1937220 1937504 "ORTHPOL" 1937994 NIL ORTHPOL (NIL T) -7 NIL NIL) (-782 1934364 1936654 1936792 "OREUP" 1936936 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-781 1931760 1934057 1934183 "ORESUP" 1934306 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-780 1929299 1929799 1930357 "OREPCTO" 1931251 NIL OREPCTO (NIL T T) -7 NIL NIL) (-779 1923212 1925418 1925459 "OREPCAT" 1927780 NIL OREPCAT (NIL T) -9 NIL 1928879) (-778 1920360 1921142 1922199 "OREPCAT-" 1922204 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-777 1919537 1919809 1919838 "ORDSET" 1920147 T ORDSET (NIL) -9 NIL 1920311) (-776 1919056 1919178 1919371 "ORDSET-" 1919376 NIL ORDSET- (NIL T) -8 NIL NIL) (-775 1917669 1918470 1918499 "ORDRING" 1918701 T ORDRING (NIL) -9 NIL 1918825) (-774 1917314 1917408 1917552 "ORDRING-" 1917557 NIL ORDRING- (NIL T) -8 NIL NIL) (-773 1916689 1917170 1917199 "ORDMON" 1917204 T ORDMON (NIL) -9 NIL 1917225) (-772 1915851 1915998 1916193 "ORDFUNS" 1916538 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-771 1915362 1915721 1915750 "ORDFIN" 1915755 T ORDFIN (NIL) -9 NIL 1915776) (-770 1914628 1914755 1914941 "ORDCOMP2" 1915222 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-769 1911146 1913220 1913626 "ORDCOMP" 1914255 NIL ORDCOMP (NIL T) -8 NIL NIL) (-768 1907654 1908536 1909373 "OPTPROB" 1910329 T OPTPROB (NIL) -8 NIL NIL) (-767 1904496 1905125 1905819 "OPTPACK" 1906980 T OPTPACK (NIL) -7 NIL NIL) (-766 1902221 1902957 1902986 "OPTCAT" 1903801 T OPTCAT (NIL) -9 NIL 1904447) (-765 1901989 1902028 1902094 "OPQUERY" 1902175 T OPQUERY (NIL) -7 NIL NIL) (-764 1899131 1900322 1900819 "OP" 1901524 NIL OP (NIL T) -8 NIL NIL) (-763 1898436 1898551 1898725 "ONECOMP2" 1899003 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-762 1895207 1897239 1897605 "ONECOMP" 1898103 NIL ONECOMP (NIL T) -8 NIL NIL) (-761 1894626 1894732 1894862 "OMSERVER" 1895097 T OMSERVER (NIL) -7 NIL NIL) (-760 1891515 1894067 1894108 "OMSAGG" 1894169 NIL OMSAGG (NIL T) -9 NIL 1894233) (-759 1890138 1890401 1890683 "OMPKG" 1891253 T OMPKG (NIL) -7 NIL NIL) (-758 1888679 1889692 1889859 "OMLO" 1890020 NIL OMLO (NIL T T) -8 NIL NIL) (-757 1887609 1887756 1887982 "OMEXPR" 1888505 NIL OMEXPR (NIL T) -7 NIL NIL) (-756 1886787 1887030 1887190 "OMERRK" 1887469 T OMERRK (NIL) -8 NIL NIL) (-755 1886105 1886333 1886469 "OMERR" 1886671 T OMERR (NIL) -8 NIL NIL) (-754 1885583 1885782 1885890 "OMENC" 1886017 T OMENC (NIL) -8 NIL NIL) (-753 1879478 1880663 1881834 "OMDEV" 1884432 T OMDEV (NIL) -8 NIL NIL) (-752 1878547 1878718 1878912 "OMCONN" 1879304 T OMCONN (NIL) -8 NIL NIL) (-751 1877976 1878079 1878108 "OM" 1878407 T OM (NIL) -9 NIL NIL) (-750 1876591 1877577 1877606 "OINTDOM" 1877611 T OINTDOM (NIL) -9 NIL 1877632) (-749 1872353 1873583 1874298 "OFMONOID" 1875908 NIL OFMONOID (NIL T) -8 NIL NIL) (-748 1871791 1872290 1872335 "ODVAR" 1872340 NIL ODVAR (NIL T) -8 NIL NIL) (-747 1868918 1871290 1871474 "ODR" 1871667 NIL ODR (NIL T T NIL) -8 NIL NIL) (-746 1861224 1868697 1868821 "ODPOL" 1868826 NIL ODPOL (NIL T) -8 NIL NIL) (-745 1855053 1861096 1861201 "ODP" 1861206 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-744 1853819 1854034 1854309 "ODETOOLS" 1854827 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-743 1850788 1851444 1852160 "ODESYS" 1853152 NIL ODESYS (NIL T T) -7 NIL NIL) (-742 1845694 1846602 1847624 "ODERTRIC" 1849864 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-741 1845120 1845202 1845396 "ODERED" 1845606 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-740 1842022 1842570 1843245 "ODERAT" 1844543 NIL ODERAT (NIL T T) -7 NIL NIL) (-739 1838990 1839454 1840050 "ODEPRRIC" 1841551 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-738 1836861 1837428 1837937 "ODEPROB" 1838501 T ODEPROB (NIL) -8 NIL NIL) (-737 1833393 1833876 1834522 "ODEPRIM" 1836340 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-736 1832646 1832748 1833006 "ODEPAL" 1833285 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-735 1828848 1829629 1830483 "ODEPACK" 1831812 T ODEPACK (NIL) -7 NIL NIL) (-734 1827885 1827992 1828220 "ODEINT" 1828737 NIL ODEINT (NIL T T) -7 NIL NIL) (-733 1821986 1823411 1824858 "ODEIFTBL" 1826458 T ODEIFTBL (NIL) -8 NIL NIL) (-732 1817330 1818116 1819074 "ODEEF" 1821145 NIL ODEEF (NIL T T) -7 NIL NIL) (-731 1816667 1816756 1816985 "ODECONST" 1817235 NIL ODECONST (NIL T T T) -7 NIL NIL) (-730 1814824 1815457 1815486 "ODECAT" 1816089 T ODECAT (NIL) -9 NIL 1816618) (-729 1814462 1814505 1814632 "OCTCT2" 1814775 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-728 1811334 1814174 1814293 "OCT" 1814375 NIL OCT (NIL T) -8 NIL NIL) (-727 1810712 1811154 1811183 "OCAMON" 1811188 T OCAMON (NIL) -9 NIL 1811209) (-726 1805553 1807991 1808032 "OC" 1809128 NIL OC (NIL T) -9 NIL 1809977) (-725 1802780 1803528 1804518 "OC-" 1804612 NIL OC- (NIL T T) -8 NIL NIL) (-724 1802233 1802640 1802669 "OASGP" 1802674 T OASGP (NIL) -9 NIL 1802694) (-723 1801520 1801983 1802012 "OAMONS" 1802052 T OAMONS (NIL) -9 NIL 1802095) (-722 1800960 1801367 1801396 "OAMON" 1801401 T OAMON (NIL) -9 NIL 1801421) (-721 1800264 1800756 1800785 "OAGROUP" 1800790 T OAGROUP (NIL) -9 NIL 1800810) (-720 1799954 1800004 1800092 "NUMTUBE" 1800208 NIL NUMTUBE (NIL T) -7 NIL NIL) (-719 1793527 1795045 1796581 "NUMQUAD" 1798438 T NUMQUAD (NIL) -7 NIL NIL) (-718 1789283 1790271 1791296 "NUMODE" 1792522 T NUMODE (NIL) -7 NIL NIL) (-717 1786698 1787540 1787569 "NUMINT" 1788482 T NUMINT (NIL) -9 NIL 1789234) (-716 1785646 1785843 1786061 "NUMFMT" 1786500 T NUMFMT (NIL) -7 NIL NIL) (-715 1772044 1774978 1777500 "NUMERIC" 1783163 NIL NUMERIC (NIL T) -7 NIL NIL) (-714 1766444 1771496 1771591 "NTSCAT" 1771596 NIL NTSCAT (NIL T T T T) -9 NIL 1771634) (-713 1765640 1765805 1765997 "NTPOLFN" 1766284 NIL NTPOLFN (NIL T) -7 NIL NIL) (-712 1765276 1765333 1765440 "NSUP2" 1765577 NIL NSUP2 (NIL T T) -7 NIL NIL) (-711 1753134 1762120 1762929 "NSUP" 1764499 NIL NSUP (NIL T) -8 NIL NIL) (-710 1743096 1752913 1753043 "NSMP" 1753048 NIL NSMP (NIL T T) -8 NIL NIL) (-709 1741528 1741829 1742186 "NREP" 1742784 NIL NREP (NIL T) -7 NIL NIL) (-708 1740119 1740371 1740729 "NPCOEF" 1741271 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-707 1739185 1739300 1739516 "NORMRETR" 1740000 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-706 1737238 1737528 1737935 "NORMPK" 1738893 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-705 1736923 1736951 1737075 "NORMMA" 1737204 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-704 1736712 1736741 1736810 "NONE1" 1736887 NIL NONE1 (NIL T) -7 NIL NIL) (-703 1736539 1736669 1736698 "NONE" 1736703 T NONE (NIL) -8 NIL NIL) (-702 1736024 1736086 1736271 "NODE1" 1736471 NIL NODE1 (NIL T T) -7 NIL NIL) (-701 1734318 1735187 1735442 "NNI" 1735789 T NNI (NIL) -8 NIL NIL) (-700 1732738 1733051 1733415 "NLINSOL" 1733986 NIL NLINSOL (NIL T) -7 NIL NIL) (-699 1728930 1729891 1730807 "NIPROB" 1731842 T NIPROB (NIL) -8 NIL NIL) (-698 1727687 1727921 1728223 "NFINTBAS" 1728692 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-697 1726395 1726626 1726907 "NCODIV" 1727455 NIL NCODIV (NIL T T) -7 NIL NIL) (-696 1726157 1726194 1726269 "NCNTFRAC" 1726352 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-695 1724337 1724701 1725121 "NCEP" 1725782 NIL NCEP (NIL T) -7 NIL NIL) (-694 1723248 1723987 1724016 "NASRING" 1724126 T NASRING (NIL) -9 NIL 1724200) (-693 1723043 1723087 1723181 "NASRING-" 1723186 NIL NASRING- (NIL T) -8 NIL NIL) (-692 1722196 1722695 1722724 "NARNG" 1722841 T NARNG (NIL) -9 NIL 1722932) (-691 1721888 1721955 1722089 "NARNG-" 1722094 NIL NARNG- (NIL T) -8 NIL NIL) (-690 1720767 1720974 1721209 "NAGSP" 1721673 T NAGSP (NIL) -7 NIL NIL) (-689 1712191 1713837 1715472 "NAGS" 1719152 T NAGS (NIL) -7 NIL NIL) (-688 1710755 1711059 1711386 "NAGF07" 1711884 T NAGF07 (NIL) -7 NIL NIL) (-687 1705337 1706617 1707913 "NAGF04" 1709479 T NAGF04 (NIL) -7 NIL NIL) (-686 1698369 1699967 1701584 "NAGF02" 1703740 T NAGF02 (NIL) -7 NIL NIL) (-685 1693633 1694723 1695830 "NAGF01" 1697282 T NAGF01 (NIL) -7 NIL NIL) (-684 1687293 1688851 1690428 "NAGE04" 1692076 T NAGE04 (NIL) -7 NIL NIL) (-683 1678534 1680637 1682749 "NAGE02" 1685201 T NAGE02 (NIL) -7 NIL NIL) (-682 1674527 1675464 1676418 "NAGE01" 1677600 T NAGE01 (NIL) -7 NIL NIL) (-681 1672334 1672865 1673420 "NAGD03" 1673992 T NAGD03 (NIL) -7 NIL NIL) (-680 1664120 1666039 1667984 "NAGD02" 1670409 T NAGD02 (NIL) -7 NIL NIL) (-679 1657979 1659392 1660820 "NAGD01" 1662712 T NAGD01 (NIL) -7 NIL NIL) (-678 1654236 1655046 1655871 "NAGC06" 1657174 T NAGC06 (NIL) -7 NIL NIL) (-677 1652713 1653042 1653395 "NAGC05" 1653903 T NAGC05 (NIL) -7 NIL NIL) (-676 1652097 1652214 1652356 "NAGC02" 1652591 T NAGC02 (NIL) -7 NIL NIL) (-675 1651158 1651715 1651756 "NAALG" 1651835 NIL NAALG (NIL T) -9 NIL 1651896) (-674 1650993 1651022 1651112 "NAALG-" 1651117 NIL NAALG- (NIL T T) -8 NIL NIL) (-673 1644943 1646051 1647238 "MULTSQFR" 1649889 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-672 1644262 1644337 1644521 "MULTFACT" 1644855 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-671 1637397 1641315 1641368 "MTSCAT" 1642428 NIL MTSCAT (NIL T T) -9 NIL 1642941) (-670 1637109 1637163 1637255 "MTHING" 1637337 NIL MTHING (NIL T) -7 NIL NIL) (-669 1636901 1636934 1636994 "MSYSCMD" 1637069 T MSYSCMD (NIL) -7 NIL NIL) (-668 1633998 1636464 1636506 "MSETAGG" 1636511 NIL MSETAGG (NIL T) -9 NIL 1636544) (-667 1630110 1632753 1633073 "MSET" 1633711 NIL MSET (NIL T) -8 NIL NIL) (-666 1625978 1627520 1628255 "MRING" 1629419 NIL MRING (NIL T T) -8 NIL NIL) (-665 1625548 1625615 1625744 "MRF2" 1625905 NIL MRF2 (NIL T T T) -7 NIL NIL) (-664 1625166 1625201 1625345 "MRATFAC" 1625507 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-663 1622778 1623073 1623504 "MPRFF" 1624871 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-662 1616798 1622633 1622729 "MPOLY" 1622734 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-661 1616288 1616323 1616531 "MPCPF" 1616757 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-660 1615804 1615847 1616030 "MPC3" 1616239 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-659 1615005 1615086 1615305 "MPC2" 1615719 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-658 1613306 1613643 1614033 "MONOTOOL" 1614665 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-657 1612430 1612765 1612794 "MONOID" 1613071 T MONOID (NIL) -9 NIL 1613243) (-656 1611808 1611971 1612214 "MONOID-" 1612219 NIL MONOID- (NIL T) -8 NIL NIL) (-655 1602744 1608730 1608790 "MONOGEN" 1609464 NIL MONOGEN (NIL T T) -9 NIL 1609917) (-654 1599962 1600697 1601697 "MONOGEN-" 1601816 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-653 1598821 1599241 1599270 "MONADWU" 1599662 T MONADWU (NIL) -9 NIL 1599900) (-652 1598193 1598352 1598600 "MONADWU-" 1598605 NIL MONADWU- (NIL T) -8 NIL NIL) (-651 1597578 1597796 1597825 "MONAD" 1598032 T MONAD (NIL) -9 NIL 1598144) (-650 1597263 1597341 1597473 "MONAD-" 1597478 NIL MONAD- (NIL T) -8 NIL NIL) (-649 1595514 1596176 1596455 "MOEBIUS" 1597016 NIL MOEBIUS (NIL T) -8 NIL NIL) (-648 1594907 1595285 1595326 "MODULE" 1595331 NIL MODULE (NIL T) -9 NIL 1595357) (-647 1594475 1594571 1594761 "MODULE-" 1594766 NIL MODULE- (NIL T T) -8 NIL NIL) (-646 1592146 1592841 1593167 "MODRING" 1594300 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-645 1589108 1590273 1590787 "MODOP" 1591681 NIL MODOP (NIL T T) -8 NIL NIL) (-644 1587295 1587747 1588088 "MODMONOM" 1588907 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-643 1577017 1585503 1585923 "MODMON" 1586925 NIL MODMON (NIL T T) -8 NIL NIL) (-642 1574143 1575861 1576137 "MODFIELD" 1576892 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-641 1573669 1573712 1573891 "MMAP" 1574094 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-640 1571906 1572683 1572724 "MLO" 1573141 NIL MLO (NIL T) -9 NIL 1573381) (-639 1569273 1569788 1570390 "MLIFT" 1571387 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-638 1568664 1568748 1568902 "MKUCFUNC" 1569184 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-637 1568263 1568333 1568456 "MKRECORD" 1568587 NIL MKRECORD (NIL T T) -7 NIL NIL) (-636 1567311 1567472 1567700 "MKFUNC" 1568074 NIL MKFUNC (NIL T) -7 NIL NIL) (-635 1566699 1566803 1566959 "MKFLCFN" 1567194 NIL MKFLCFN (NIL T) -7 NIL NIL) (-634 1566125 1566492 1566581 "MKCHSET" 1566643 NIL MKCHSET (NIL T) -8 NIL NIL) (-633 1565402 1565504 1565689 "MKBCFUNC" 1566018 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-632 1562086 1564956 1565092 "MINT" 1565286 T MINT (NIL) -8 NIL NIL) (-631 1560898 1561141 1561418 "MHROWRED" 1561841 NIL MHROWRED (NIL T) -7 NIL NIL) (-630 1556169 1559343 1559767 "MFLOAT" 1560494 T MFLOAT (NIL) -8 NIL NIL) (-629 1555526 1555602 1555773 "MFINFACT" 1556081 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-628 1551873 1552712 1553587 "MESH" 1554671 T MESH (NIL) -7 NIL NIL) (-627 1550263 1550575 1550928 "MDDFACT" 1551560 NIL MDDFACT (NIL T) -7 NIL NIL) (-626 1547146 1549457 1549499 "MDAGG" 1549754 NIL MDAGG (NIL T) -9 NIL 1549897) (-625 1536844 1546439 1546646 "MCMPLX" 1546959 T MCMPLX (NIL) -8 NIL NIL) (-624 1535985 1536131 1536331 "MCDEN" 1536693 NIL MCDEN (NIL T T) -7 NIL NIL) (-623 1533875 1534145 1534525 "MCALCFN" 1535715 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-622 1531497 1532020 1532581 "MATSTOR" 1533346 NIL MATSTOR (NIL T) -7 NIL NIL) (-621 1527515 1530876 1531121 "MATRIX" 1531284 NIL MATRIX (NIL T) -8 NIL NIL) (-620 1523291 1523994 1524727 "MATLIN" 1526875 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-619 1521893 1522046 1522377 "MATCAT2" 1523126 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-618 1512137 1515269 1515346 "MATCAT" 1520184 NIL MATCAT (NIL T T T) -9 NIL 1521595) (-617 1508502 1509515 1510870 "MATCAT-" 1510875 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-616 1506614 1506938 1507322 "MAPPKG3" 1508177 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-615 1505595 1505768 1505990 "MAPPKG2" 1506438 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-614 1504094 1504378 1504705 "MAPPKG1" 1505301 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-613 1503705 1503763 1503886 "MAPHACK3" 1504030 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-612 1503297 1503358 1503472 "MAPHACK2" 1503637 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-611 1502735 1502838 1502980 "MAPHACK1" 1503188 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-610 1500843 1501437 1501740 "MAGMA" 1502464 NIL MAGMA (NIL T) -8 NIL NIL) (-609 1497326 1499089 1499548 "M3D" 1500417 NIL M3D (NIL T) -8 NIL NIL) (-608 1491519 1495728 1495770 "LZSTAGG" 1496552 NIL LZSTAGG (NIL T) -9 NIL 1496847) (-607 1487493 1488650 1490107 "LZSTAGG-" 1490112 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-606 1484609 1485386 1485872 "LWORD" 1487039 NIL LWORD (NIL T) -8 NIL NIL) (-605 1477769 1484380 1484514 "LSQM" 1484519 NIL LSQM (NIL NIL T) -8 NIL NIL) (-604 1476993 1477132 1477360 "LSPP" 1477624 NIL LSPP (NIL T T T T) -7 NIL NIL) (-603 1473772 1474446 1475176 "LSMP1" 1476295 NIL LSMP1 (NIL T) -7 NIL NIL) (-602 1471584 1471885 1472341 "LSMP" 1473461 NIL LSMP (NIL T T T T) -7 NIL NIL) (-601 1465540 1470776 1470818 "LSAGG" 1470880 NIL LSAGG (NIL T) -9 NIL 1470958) (-600 1462235 1463159 1464372 "LSAGG-" 1464377 NIL LSAGG- (NIL T T) -8 NIL NIL) (-599 1459861 1461379 1461628 "LPOLY" 1462030 NIL LPOLY (NIL T T) -8 NIL NIL) (-598 1459443 1459528 1459651 "LPEFRAC" 1459770 NIL LPEFRAC (NIL T) -7 NIL NIL) (-597 1459096 1459208 1459237 "LOGIC" 1459348 T LOGIC (NIL) -9 NIL 1459428) (-596 1458958 1458981 1459052 "LOGIC-" 1459057 NIL LOGIC- (NIL T) -8 NIL NIL) (-595 1458151 1458291 1458484 "LODOOPS" 1458814 NIL LODOOPS (NIL T T) -7 NIL NIL) (-594 1456699 1456934 1457284 "LODOF" 1457899 NIL LODOF (NIL T T) -7 NIL NIL) (-593 1453119 1455555 1455596 "LODOCAT" 1456028 NIL LODOCAT (NIL T) -9 NIL 1456238) (-592 1452853 1452911 1453037 "LODOCAT-" 1453042 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-591 1450167 1452694 1452812 "LODO2" 1452817 NIL LODO2 (NIL T T) -8 NIL NIL) (-590 1447596 1450104 1450149 "LODO1" 1450154 NIL LODO1 (NIL T) -8 NIL NIL) (-589 1445014 1447513 1447578 "LODO" 1447583 NIL LODO (NIL T NIL) -8 NIL NIL) (-588 1443877 1444042 1444353 "LODEEF" 1444837 NIL LODEEF (NIL T T T) -7 NIL NIL) (-587 1442226 1442973 1443225 "LO" 1443710 NIL LO (NIL T T T) -8 NIL NIL) (-586 1437551 1440389 1440431 "LNAGG" 1441378 NIL LNAGG (NIL T) -9 NIL 1441821) (-585 1436698 1436912 1437254 "LNAGG-" 1437259 NIL LNAGG- (NIL T T) -8 NIL NIL) (-584 1432863 1433625 1434263 "LMOPS" 1436114 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-583 1432260 1432622 1432663 "LMODULE" 1432723 NIL LMODULE (NIL T) -9 NIL 1432765) (-582 1429512 1431905 1432028 "LMDICT" 1432170 NIL LMDICT (NIL T) -8 NIL NIL) (-581 1429037 1429111 1429250 "LIST3" 1429432 NIL LIST3 (NIL T T T) -7 NIL NIL) (-580 1427171 1427483 1427882 "LIST2MAP" 1428684 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-579 1426178 1426356 1426584 "LIST2" 1426989 NIL LIST2 (NIL T T) -7 NIL NIL) (-578 1419415 1425128 1425424 "LIST" 1425915 NIL LIST (NIL T) -8 NIL NIL) (-577 1418127 1418807 1418848 "LINEXP" 1419101 NIL LINEXP (NIL T) -9 NIL 1419249) (-576 1416774 1417034 1417331 "LINDEP" 1417879 NIL LINDEP (NIL T T) -7 NIL NIL) (-575 1413541 1414260 1415037 "LIMITRF" 1416029 NIL LIMITRF (NIL T) -7 NIL NIL) (-574 1411822 1412116 1412531 "LIMITPS" 1413236 NIL LIMITPS (NIL T T) -7 NIL NIL) (-573 1410873 1411316 1411357 "LIECAT" 1411497 NIL LIECAT (NIL T) -9 NIL 1411647) (-572 1410714 1410741 1410829 "LIECAT-" 1410834 NIL LIECAT- (NIL T T) -8 NIL NIL) (-571 1405173 1410229 1410455 "LIE" 1410537 NIL LIE (NIL T T) -8 NIL NIL) (-570 1397797 1404622 1404787 "LIB" 1405028 T LIB (NIL) -8 NIL NIL) (-569 1393434 1394315 1395250 "LGROBP" 1396914 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-568 1392274 1392965 1392994 "LFCAT" 1393201 T LFCAT (NIL) -9 NIL 1393340) (-567 1390144 1390417 1390778 "LF" 1391996 NIL LF (NIL T T) -7 NIL NIL) (-566 1387056 1387682 1388368 "LEXTRIPK" 1389510 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-565 1383762 1384626 1385129 "LEXP" 1386636 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-564 1382160 1382473 1382874 "LEADCDET" 1383444 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-563 1381356 1381430 1381657 "LAZM3PK" 1382081 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-562 1376279 1379441 1379975 "LAUPOL" 1380872 NIL LAUPOL (NIL T T) -8 NIL NIL) (-561 1375846 1375890 1376057 "LAPLACE" 1376229 NIL LAPLACE (NIL T T) -7 NIL NIL) (-560 1374908 1375502 1375543 "LALG" 1375604 NIL LALG (NIL T) -9 NIL 1375662) (-559 1374623 1374682 1374817 "LALG-" 1374822 NIL LALG- (NIL T T) -8 NIL NIL) (-558 1372553 1373726 1373976 "LA" 1374457 NIL LA (NIL T T T) -8 NIL NIL) (-557 1371463 1371650 1371947 "KOVACIC" 1372353 NIL KOVACIC (NIL T T) -7 NIL NIL) (-556 1371297 1371321 1371363 "KONVERT" 1371425 NIL KONVERT (NIL T) -9 NIL NIL) (-555 1371131 1371155 1371197 "KOERCE" 1371259 NIL KOERCE (NIL T) -9 NIL NIL) (-554 1370633 1370714 1370844 "KERNEL2" 1371045 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-553 1368369 1369129 1369521 "KERNEL" 1370273 NIL KERNEL (NIL T) -8 NIL NIL) (-552 1362053 1366735 1366790 "KDAGG" 1367167 NIL KDAGG (NIL T T) -9 NIL 1367373) (-551 1361582 1361706 1361911 "KDAGG-" 1361916 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-550 1354757 1361243 1361398 "KAFILE" 1361460 NIL KAFILE (NIL T) -8 NIL NIL) (-549 1349216 1354272 1354498 "JORDAN" 1354580 NIL JORDAN (NIL T T) -8 NIL NIL) (-548 1345560 1347460 1347515 "IXAGG" 1348444 NIL IXAGG (NIL T T) -9 NIL 1348899) (-547 1344479 1344785 1345204 "IXAGG-" 1345209 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-546 1340070 1344401 1344460 "IVECTOR" 1344465 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-545 1338836 1339073 1339339 "ITUPLE" 1339837 NIL ITUPLE (NIL T) -8 NIL NIL) (-544 1337272 1337449 1337755 "ITRIGMNP" 1338658 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-543 1336017 1336221 1336504 "ITFUN3" 1337048 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-542 1335649 1335706 1335815 "ITFUN2" 1335954 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-541 1333453 1334524 1334820 "ITAYLOR" 1335385 NIL ITAYLOR (NIL T) -8 NIL NIL) (-540 1322447 1327641 1328799 "ISUPS" 1332327 NIL ISUPS (NIL T) -8 NIL NIL) (-539 1321555 1321694 1321929 "ISUMP" 1322295 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-538 1316825 1321356 1321435 "ISTRING" 1321508 NIL ISTRING (NIL NIL) -8 NIL NIL) (-537 1316038 1316119 1316334 "IRURPK" 1316739 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-536 1314974 1315175 1315415 "IRSN" 1315818 T IRSN (NIL) -7 NIL NIL) (-535 1313011 1313366 1313800 "IRRF2F" 1314613 NIL IRRF2F (NIL T) -7 NIL NIL) (-534 1312758 1312796 1312872 "IRREDFFX" 1312967 NIL IRREDFFX (NIL T) -7 NIL NIL) (-533 1311373 1311632 1311931 "IROOT" 1312491 NIL IROOT (NIL T) -7 NIL NIL) (-532 1310449 1310562 1310782 "IR2F" 1311256 NIL IR2F (NIL T T) -7 NIL NIL) (-531 1308062 1308557 1309123 "IR2" 1309927 NIL IR2 (NIL T T) -7 NIL NIL) (-530 1304704 1305755 1306443 "IR" 1307406 NIL IR (NIL T) -8 NIL NIL) (-529 1304495 1304529 1304589 "IPRNTPK" 1304664 T IPRNTPK (NIL) -7 NIL NIL) (-528 1301049 1304384 1304453 "IPF" 1304458 NIL IPF (NIL NIL) -8 NIL NIL) (-527 1299366 1300974 1301031 "IPADIC" 1301036 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-526 1298865 1298923 1299112 "INVLAPLA" 1299302 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-525 1288514 1290867 1293253 "INTTR" 1296529 NIL INTTR (NIL T T) -7 NIL NIL) (-524 1284876 1285617 1286473 "INTTOOLS" 1287707 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-523 1284462 1284553 1284670 "INTSLPE" 1284779 T INTSLPE (NIL) -7 NIL NIL) (-522 1282412 1284385 1284444 "INTRVL" 1284449 NIL INTRVL (NIL T) -8 NIL NIL) (-521 1280019 1280531 1281105 "INTRF" 1281897 NIL INTRF (NIL T) -7 NIL NIL) (-520 1279434 1279531 1279672 "INTRET" 1279917 NIL INTRET (NIL T) -7 NIL NIL) (-519 1277436 1277825 1278294 "INTRAT" 1279042 NIL INTRAT (NIL T T) -7 NIL NIL) (-518 1274677 1275260 1275881 "INTPM" 1276925 NIL INTPM (NIL T T) -7 NIL NIL) (-517 1271388 1271987 1272730 "INTPAF" 1274064 NIL INTPAF (NIL T T T) -7 NIL NIL) (-516 1266671 1267607 1268632 "INTPACK" 1270383 T INTPACK (NIL) -7 NIL NIL) (-515 1265923 1266075 1266283 "INTHERTR" 1266513 NIL INTHERTR (NIL T T) -7 NIL NIL) (-514 1265362 1265442 1265630 "INTHERAL" 1265837 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-513 1263208 1263651 1264108 "INTHEORY" 1264925 T INTHEORY (NIL) -7 NIL NIL) (-512 1254533 1256153 1257930 "INTG0" 1261561 NIL INTG0 (NIL T T T) -7 NIL NIL) (-511 1235130 1239914 1244718 "INTFTBL" 1249749 T INTFTBL (NIL) -8 NIL NIL) (-510 1234379 1234517 1234690 "INTFACT" 1234989 NIL INTFACT (NIL T) -7 NIL NIL) (-509 1231770 1232216 1232779 "INTEF" 1233933 NIL INTEF (NIL T T) -7 NIL NIL) (-508 1230231 1230980 1231009 "INTDOM" 1231310 T INTDOM (NIL) -9 NIL 1231517) (-507 1229600 1229774 1230016 "INTDOM-" 1230021 NIL INTDOM- (NIL T) -8 NIL NIL) (-506 1226092 1228024 1228079 "INTCAT" 1228878 NIL INTCAT (NIL T) -9 NIL 1229197) (-505 1225565 1225667 1225795 "INTBIT" 1225984 T INTBIT (NIL) -7 NIL NIL) (-504 1224240 1224394 1224707 "INTALG" 1225410 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-503 1223697 1223787 1223957 "INTAF" 1224144 NIL INTAF (NIL T T) -7 NIL NIL) (-502 1217163 1223507 1223647 "INTABL" 1223652 NIL INTABL (NIL T T T) -8 NIL NIL) (-501 1214017 1216892 1217019 "INT" 1217056 T INT (NIL) -8 NIL NIL) (-500 1208952 1211696 1211725 "INS" 1212693 T INS (NIL) -9 NIL 1213374) (-499 1206192 1206963 1207937 "INS-" 1208010 NIL INS- (NIL T) -8 NIL NIL) (-498 1204971 1205198 1205495 "INPSIGN" 1205945 NIL INPSIGN (NIL T T) -7 NIL NIL) (-497 1204089 1204206 1204403 "INPRODPF" 1204851 NIL INPRODPF (NIL T T) -7 NIL NIL) (-496 1202983 1203100 1203337 "INPRODFF" 1203969 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-495 1201983 1202135 1202395 "INNMFACT" 1202819 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-494 1201180 1201277 1201465 "INMODGCD" 1201882 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-493 1199689 1199933 1200257 "INFSP" 1200925 NIL INFSP (NIL T T T) -7 NIL NIL) (-492 1198873 1198990 1199173 "INFPROD0" 1199569 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-491 1198483 1198543 1198641 "INFORM1" 1198808 NIL INFORM1 (NIL T) -7 NIL NIL) (-490 1195493 1196652 1197143 "INFORM" 1198000 T INFORM (NIL) -8 NIL NIL) (-489 1195016 1195105 1195219 "INFINITY" 1195399 T INFINITY (NIL) -7 NIL NIL) (-488 1193634 1193882 1194203 "INEP" 1194764 NIL INEP (NIL T T T) -7 NIL NIL) (-487 1192910 1193531 1193596 "INDE" 1193601 NIL INDE (NIL T) -8 NIL NIL) (-486 1192474 1192542 1192659 "INCRMAPS" 1192837 NIL INCRMAPS (NIL T) -7 NIL NIL) (-485 1187785 1188710 1189654 "INBFF" 1191562 NIL INBFF (NIL T) -7 NIL NIL) (-484 1184286 1187630 1187733 "IMATRIX" 1187738 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-483 1183000 1183123 1183437 "IMATQF" 1184143 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-482 1181222 1181449 1181785 "IMATLIN" 1182757 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-481 1175854 1181146 1181204 "ILIST" 1181209 NIL ILIST (NIL T NIL) -8 NIL NIL) (-480 1173813 1175714 1175827 "IIARRAY2" 1175832 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-479 1169181 1173724 1173788 "IFF" 1173793 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-478 1164230 1168473 1168661 "IFARRAY" 1169038 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-477 1163437 1164134 1164207 "IFAMON" 1164212 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-476 1163020 1163085 1163140 "IEVALAB" 1163347 NIL IEVALAB (NIL T T) -9 NIL NIL) (-475 1162695 1162763 1162923 "IEVALAB-" 1162928 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-474 1161972 1162584 1162659 "IDPOAMS" 1162664 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-473 1161306 1161861 1161936 "IDPOAM" 1161941 NIL IDPOAM (NIL T T) -8 NIL NIL) (-472 1160964 1161220 1161283 "IDPO" 1161288 NIL IDPO (NIL T T) -8 NIL NIL) (-471 1160049 1160299 1160353 "IDPC" 1160766 NIL IDPC (NIL T T) -9 NIL 1160915) (-470 1159545 1159941 1160014 "IDPAM" 1160019 NIL IDPAM (NIL T T) -8 NIL NIL) (-469 1158948 1159437 1159510 "IDPAG" 1159515 NIL IDPAG (NIL T T) -8 NIL NIL) (-468 1155203 1156051 1156946 "IDECOMP" 1158105 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-467 1148079 1149128 1150174 "IDEAL" 1154240 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-466 1147243 1147355 1147554 "ICDEN" 1147963 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-465 1146342 1146723 1146870 "ICARD" 1147116 T ICARD (NIL) -8 NIL NIL) (-464 1144414 1144727 1145130 "IBPTOOLS" 1146019 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-463 1140028 1144034 1144147 "IBITS" 1144333 NIL IBITS (NIL NIL) -8 NIL NIL) (-462 1136751 1137327 1138022 "IBATOOL" 1139445 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-461 1134531 1134992 1135525 "IBACHIN" 1136286 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-460 1132414 1134377 1134480 "IARRAY2" 1134485 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-459 1128573 1132340 1132397 "IARRAY1" 1132402 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-458 1122513 1126991 1127469 "IAN" 1128115 T IAN (NIL) -8 NIL NIL) (-457 1122024 1122081 1122254 "IALGFACT" 1122450 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-456 1121551 1121664 1121693 "HYPCAT" 1121900 T HYPCAT (NIL) -9 NIL NIL) (-455 1121089 1121206 1121392 "HYPCAT-" 1121397 NIL HYPCAT- (NIL T) -8 NIL NIL) (-454 1117879 1119204 1119246 "HOAGG" 1120227 NIL HOAGG (NIL T) -9 NIL 1120836) (-453 1116473 1116872 1117398 "HOAGG-" 1117403 NIL HOAGG- (NIL T T) -8 NIL NIL) (-452 1110304 1115914 1116080 "HEXADEC" 1116327 T HEXADEC (NIL) -8 NIL NIL) (-451 1109052 1109274 1109537 "HEUGCD" 1110081 NIL HEUGCD (NIL T) -7 NIL NIL) (-450 1108155 1108889 1109019 "HELLFDIV" 1109024 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-449 1106389 1107932 1108020 "HEAP" 1108099 NIL HEAP (NIL T) -8 NIL NIL) (-448 1100262 1106304 1106366 "HDP" 1106371 NIL HDP (NIL NIL T) -8 NIL NIL) (-447 1093974 1099899 1100050 "HDMP" 1100163 NIL HDMP (NIL NIL T) -8 NIL NIL) (-446 1093299 1093438 1093602 "HB" 1093830 T HB (NIL) -7 NIL NIL) (-445 1086808 1093145 1093249 "HASHTBL" 1093254 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-444 1084561 1086436 1086615 "HACKPI" 1086649 T HACKPI (NIL) -8 NIL NIL) (-443 1080257 1084415 1084527 "GTSET" 1084532 NIL GTSET (NIL T T T T) -8 NIL NIL) (-442 1073795 1080135 1080233 "GSTBL" 1080238 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-441 1066033 1072833 1073096 "GSERIES" 1073587 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-440 1065055 1065508 1065537 "GROUP" 1065798 T GROUP (NIL) -9 NIL 1065957) (-439 1064171 1064394 1064738 "GROUP-" 1064743 NIL GROUP- (NIL T) -8 NIL NIL) (-438 1062540 1062859 1063246 "GROEBSOL" 1063848 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-437 1061480 1061742 1061794 "GRMOD" 1062323 NIL GRMOD (NIL T T) -9 NIL 1062491) (-436 1061248 1061284 1061412 "GRMOD-" 1061417 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-435 1056588 1057610 1058607 "GRIMAGE" 1060271 T GRIMAGE (NIL) -8 NIL NIL) (-434 1055055 1055315 1055639 "GRDEF" 1056284 T GRDEF (NIL) -7 NIL NIL) (-433 1054499 1054615 1054756 "GRAY" 1054934 T GRAY (NIL) -7 NIL NIL) (-432 1053732 1054112 1054164 "GRALG" 1054317 NIL GRALG (NIL T T) -9 NIL 1054409) (-431 1053393 1053466 1053629 "GRALG-" 1053634 NIL GRALG- (NIL T T T) -8 NIL NIL) (-430 1050201 1052982 1053158 "GPOLSET" 1053300 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-429 1049557 1049614 1049871 "GOSPER" 1050138 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-428 1045316 1045995 1046521 "GMODPOL" 1049256 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-427 1044321 1044505 1044743 "GHENSEL" 1045128 NIL GHENSEL (NIL T T) -7 NIL NIL) (-426 1038387 1039230 1040256 "GENUPS" 1043405 NIL GENUPS (NIL T T) -7 NIL NIL) (-425 1038084 1038135 1038224 "GENUFACT" 1038330 NIL GENUFACT (NIL T) -7 NIL NIL) (-424 1037496 1037573 1037738 "GENPGCD" 1038002 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-423 1036970 1037005 1037218 "GENMFACT" 1037455 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-422 1035538 1035793 1036100 "GENEEZ" 1036713 NIL GENEEZ (NIL T T) -7 NIL NIL) (-421 1029412 1035151 1035312 "GDMP" 1035461 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-420 1018796 1023185 1024290 "GCNAALG" 1028396 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-419 1017217 1018089 1018118 "GCDDOM" 1018373 T GCDDOM (NIL) -9 NIL 1018530) (-418 1016687 1016814 1017029 "GCDDOM-" 1017034 NIL GCDDOM- (NIL T) -8 NIL NIL) (-417 1005307 1007633 1010025 "GBINTERN" 1014378 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-416 1003144 1003436 1003857 "GBF" 1004982 NIL GBF (NIL T T T T) -7 NIL NIL) (-415 1001925 1002090 1002357 "GBEUCLID" 1002960 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-414 1000599 1000784 1001087 "GB" 1001705 NIL GB (NIL T T T T) -7 NIL NIL) (-413 999948 1000073 1000222 "GAUSSFAC" 1000470 T GAUSSFAC (NIL) -7 NIL NIL) (-412 998327 998629 998941 "GALUTIL" 999668 NIL GALUTIL (NIL T) -7 NIL NIL) (-411 996644 996918 997241 "GALPOLYU" 998054 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-410 994033 994323 994728 "GALFACTU" 996341 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-409 985843 987341 988948 "GALFACT" 992466 NIL GALFACT (NIL T) -7 NIL NIL) (-408 983230 983888 983917 "FVFUN" 985073 T FVFUN (NIL) -9 NIL 985793) (-407 982495 982677 982706 "FVC" 982997 T FVC (NIL) -9 NIL 983180) (-406 982137 982292 982373 "FUNCTION" 982447 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-405 980955 981438 981641 "FTEM" 981954 T FTEM (NIL) -8 NIL NIL) (-404 978625 979176 979665 "FT" 980486 T FT (NIL) -8 NIL NIL) (-403 976892 977180 977581 "FSUPFACT" 978318 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-402 975289 975578 975910 "FST" 976580 T FST (NIL) -8 NIL NIL) (-401 974464 974570 974764 "FSRED" 975171 NIL FSRED (NIL T T) -7 NIL NIL) (-400 973145 973400 973753 "FSPRMELT" 974180 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-399 970230 970668 971167 "FSPECF" 972708 NIL FSPECF (NIL T T) -7 NIL NIL) (-398 969746 969800 969976 "FSINT" 970171 NIL FSINT (NIL T T) -7 NIL NIL) (-397 968031 968743 969044 "FSERIES" 969527 NIL FSERIES (NIL T T) -8 NIL NIL) (-396 967049 967165 967395 "FSCINT" 967911 NIL FSCINT (NIL T T) -7 NIL NIL) (-395 966091 966234 966461 "FSAGG2" 966902 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-394 962329 965039 965081 "FSAGG" 965451 NIL FSAGG (NIL T) -9 NIL 965707) (-393 960091 960692 961488 "FSAGG-" 961583 NIL FSAGG- (NIL T T) -8 NIL NIL) (-392 957750 958029 958582 "FS2UPS" 959809 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-391 956610 956781 957089 "FS2EXPXP" 957575 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-390 956196 956239 956392 "FS2" 956561 NIL FS2 (NIL T T T T) -7 NIL NIL) (-389 938533 947090 947131 "FS" 950969 NIL FS (NIL T) -9 NIL 953240) (-388 927183 930173 934229 "FS-" 934526 NIL FS- (NIL T T) -8 NIL NIL) (-387 926609 926724 926876 "FRUTIL" 927063 NIL FRUTIL (NIL T) -7 NIL NIL) (-386 921686 924329 924370 "FRNAALG" 925766 NIL FRNAALG (NIL T) -9 NIL 926372) (-385 917365 918435 919710 "FRNAALG-" 920460 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-384 917003 917046 917173 "FRNAAF2" 917316 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-383 915370 915862 916155 "FRMOD" 916817 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-382 914569 914656 914943 "FRIDEAL2" 915277 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-381 912292 912960 913276 "FRIDEAL" 914360 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-380 911551 911959 912001 "FRETRCT" 912006 NIL FRETRCT (NIL T) -9 NIL 912175) (-379 910663 910894 911245 "FRETRCT-" 911250 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-378 907872 909092 909152 "FRAMALG" 910034 NIL FRAMALG (NIL T T) -9 NIL 910326) (-377 906005 906461 907091 "FRAMALG-" 907314 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-376 905641 905698 905805 "FRAC2" 905942 NIL FRAC2 (NIL T T) -7 NIL NIL) (-375 899553 905126 905397 "FRAC" 905402 NIL FRAC (NIL T) -8 NIL NIL) (-374 899189 899246 899353 "FR2" 899490 NIL FR2 (NIL T T) -7 NIL NIL) (-373 890626 894704 896052 "FR" 897873 NIL FR (NIL T) -8 NIL NIL) (-372 885255 888168 888197 "FPS" 889316 T FPS (NIL) -9 NIL 889869) (-371 884704 884813 884977 "FPS-" 885123 NIL FPS- (NIL T) -8 NIL NIL) (-370 882105 883802 883831 "FPC" 884056 T FPC (NIL) -9 NIL 884198) (-369 881898 881938 882035 "FPC-" 882040 NIL FPC- (NIL T) -8 NIL NIL) (-368 880778 881388 881430 "FPATMAB" 881435 NIL FPATMAB (NIL T) -9 NIL 881585) (-367 878478 878954 879380 "FPARFRAC" 880415 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-366 873873 874370 875052 "FORTRAN" 877910 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-365 871548 872110 872139 "FORTFN" 873199 T FORTFN (NIL) -9 NIL 873823) (-364 871311 871361 871390 "FORTCAT" 871449 T FORTCAT (NIL) -9 NIL 871511) (-363 869027 869527 870066 "FORT" 870792 T FORT (NIL) -7 NIL NIL) (-362 868815 868845 868914 "FORMULA1" 868991 NIL FORMULA1 (NIL T) -7 NIL NIL) (-361 866875 867358 867757 "FORMULA" 868436 T FORMULA (NIL) -8 NIL NIL) (-360 866398 866450 866623 "FORDER" 866817 NIL FORDER (NIL T T T T) -7 NIL NIL) (-359 865494 865658 865851 "FOP" 866225 T FOP (NIL) -7 NIL NIL) (-358 864102 864774 864948 "FNLA" 865376 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-357 862770 863159 863188 "FNCAT" 863760 T FNCAT (NIL) -9 NIL 864053) (-356 862336 862729 862757 "FNAME" 862762 T FNAME (NIL) -8 NIL NIL) (-355 860995 861968 861997 "FMTC" 862002 T FMTC (NIL) -9 NIL 862037) (-354 857315 858522 859149 "FMONOID" 860401 NIL FMONOID (NIL T) -8 NIL NIL) (-353 854738 855384 855413 "FMFUN" 856557 T FMFUN (NIL) -9 NIL 857265) (-352 851968 852802 852856 "FMCAT" 854038 NIL FMCAT (NIL T T) -9 NIL 854531) (-351 851236 851417 851446 "FMC" 851736 T FMC (NIL) -9 NIL 851918) (-350 850131 851004 851103 "FM1" 851181 NIL FM1 (NIL T T) -8 NIL NIL) (-349 849353 849876 850023 "FM" 850028 NIL FM (NIL T T) -8 NIL NIL) (-348 847127 847543 848037 "FLOATRP" 848904 NIL FLOATRP (NIL T) -7 NIL NIL) (-347 844565 845065 845643 "FLOATCP" 846594 NIL FLOATCP (NIL T) -7 NIL NIL) (-346 838053 842221 842851 "FLOAT" 843955 T FLOAT (NIL) -8 NIL NIL) (-345 836842 837690 837731 "FLINEXP" 837736 NIL FLINEXP (NIL T) -9 NIL 837828) (-344 835997 836232 836559 "FLINEXP-" 836564 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-343 835073 835217 835441 "FLASORT" 835849 NIL FLASORT (NIL T T) -7 NIL NIL) (-342 832291 833133 833186 "FLALG" 834413 NIL FLALG (NIL T T) -9 NIL 834880) (-341 831333 831476 831703 "FLAGG2" 832144 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-340 825151 828847 828889 "FLAGG" 830151 NIL FLAGG (NIL T) -9 NIL 830799) (-339 823877 824216 824706 "FLAGG-" 824711 NIL FLAGG- (NIL T T) -8 NIL NIL) (-338 820852 821870 821930 "FINRALG" 823058 NIL FINRALG (NIL T T) -9 NIL 823563) (-337 820012 820241 820580 "FINRALG-" 820585 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-336 819418 819631 819660 "FINITE" 819856 T FINITE (NIL) -9 NIL 819963) (-335 811878 814039 814080 "FINAALG" 817747 NIL FINAALG (NIL T) -9 NIL 819199) (-334 807219 808260 809404 "FINAALG-" 810783 NIL FINAALG- (NIL T T) -8 NIL NIL) (-333 805903 806215 806270 "FILECAT" 806954 NIL FILECAT (NIL T T) -9 NIL 807170) (-332 805298 805658 805761 "FILE" 805833 NIL FILE (NIL T) -8 NIL NIL) (-331 803113 804669 804698 "FIELD" 804738 T FIELD (NIL) -9 NIL 804818) (-330 801733 802118 802629 "FIELD-" 802634 NIL FIELD- (NIL T) -8 NIL NIL) (-329 799548 800370 800716 "FGROUP" 801420 NIL FGROUP (NIL T) -8 NIL NIL) (-328 798638 798802 799022 "FGLMICPK" 799380 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-327 794440 798563 798620 "FFX" 798625 NIL FFX (NIL T NIL) -8 NIL NIL) (-326 794041 794102 794237 "FFSLPE" 794373 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-325 793545 793581 793790 "FFPOLY2" 793999 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-324 789541 790317 791113 "FFPOLY" 792781 NIL FFPOLY (NIL T) -7 NIL NIL) (-323 785363 789460 789523 "FFP" 789528 NIL FFP (NIL T NIL) -8 NIL NIL) (-322 780459 784706 784896 "FFNBX" 785217 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-321 775369 779594 779852 "FFNBP" 780313 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-320 769972 774653 774864 "FFNB" 775202 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-319 768804 769002 769317 "FFINTBAS" 769769 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-318 764980 767220 767249 "FFIELDC" 767869 T FFIELDC (NIL) -9 NIL 768245) (-317 763643 764013 764510 "FFIELDC-" 764515 NIL FFIELDC- (NIL T) -8 NIL NIL) (-316 763213 763258 763382 "FFHOM" 763585 NIL FFHOM (NIL T T T) -7 NIL NIL) (-315 760911 761395 761912 "FFF" 762728 NIL FFF (NIL T) -7 NIL NIL) (-314 756499 760653 760754 "FFCGX" 760854 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-313 752101 756231 756338 "FFCGP" 756442 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-312 747254 751828 751936 "FFCG" 752037 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-311 746665 746708 746943 "FFCAT2" 747205 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-310 728464 737587 737674 "FFCAT" 742839 NIL FFCAT (NIL T T T) -9 NIL 744324) (-309 723662 724709 726023 "FFCAT-" 727253 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-308 719030 723573 723637 "FF" 723642 NIL FF (NIL NIL NIL) -8 NIL NIL) (-307 708234 712024 713239 "FEXPR" 717887 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-306 707236 707671 707713 "FEVALAB" 707797 NIL FEVALAB (NIL T) -9 NIL 708055) (-305 706395 706605 706943 "FEVALAB-" 706948 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-304 703461 704176 704292 "FDIVCAT" 705860 NIL FDIVCAT (NIL T T T T) -9 NIL 706297) (-303 703223 703250 703420 "FDIVCAT-" 703425 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-302 702443 702530 702807 "FDIV2" 703130 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-301 701036 701826 702029 "FDIV" 702342 NIL FDIV (NIL T T T T) -8 NIL NIL) (-300 699729 699986 700273 "FCPAK1" 700769 T FCPAK1 (NIL) -7 NIL NIL) (-299 698857 699229 699370 "FCOMP" 699620 NIL FCOMP (NIL T) -8 NIL NIL) (-298 682497 685909 689469 "FC" 695317 T FC (NIL) -8 NIL NIL) (-297 675045 679092 679133 "FAXF" 680935 NIL FAXF (NIL T) -9 NIL 681625) (-296 672324 672979 673804 "FAXF-" 674269 NIL FAXF- (NIL T T) -8 NIL NIL) (-295 667430 671700 671876 "FARRAY" 672181 NIL FARRAY (NIL T) -8 NIL NIL) (-294 662776 664847 664900 "FAMR" 665912 NIL FAMR (NIL T T) -9 NIL 666369) (-293 661667 661969 662403 "FAMR-" 662408 NIL FAMR- (NIL T T T) -8 NIL NIL) (-292 660863 661589 661642 "FAMONOID" 661647 NIL FAMONOID (NIL T) -8 NIL NIL) (-291 658696 659380 659434 "FAMONC" 660375 NIL FAMONC (NIL T T) -9 NIL 660759) (-290 657390 658452 658588 "FAGROUP" 658593 NIL FAGROUP (NIL T) -8 NIL NIL) (-289 655193 655512 655914 "FACUTIL" 657071 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-288 654292 654477 654699 "FACTFUNC" 655003 NIL FACTFUNC (NIL T) -7 NIL NIL) (-287 646615 653543 653755 "EXPUPXS" 654148 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-286 644114 644650 645232 "EXPRTUBE" 646053 T EXPRTUBE (NIL) -7 NIL NIL) (-285 640308 640900 641637 "EXPRODE" 643453 NIL EXPRODE (NIL T T) -7 NIL NIL) (-284 634736 635323 636135 "EXPR2UPS" 639606 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-283 634372 634429 634536 "EXPR2" 634673 NIL EXPR2 (NIL T T) -7 NIL NIL) (-282 619540 633037 633460 "EXPR" 633981 NIL EXPR (NIL T) -8 NIL NIL) (-281 610894 618677 618972 "EXPEXPAN" 619378 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-280 610721 610851 610880 "EXIT" 610885 T EXIT (NIL) -8 NIL NIL) (-279 610348 610410 610523 "EVALCYC" 610653 NIL EVALCYC (NIL T) -7 NIL NIL) (-278 609888 610006 610048 "EVALAB" 610218 NIL EVALAB (NIL T) -9 NIL 610322) (-277 609369 609491 609712 "EVALAB-" 609717 NIL EVALAB- (NIL T T) -8 NIL NIL) (-276 606831 608143 608172 "EUCDOM" 608727 T EUCDOM (NIL) -9 NIL 609077) (-275 605236 605678 606268 "EUCDOM-" 606273 NIL EUCDOM- (NIL T) -8 NIL NIL) (-274 604872 604929 605036 "ESTOOLS2" 605173 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-273 604623 604665 604745 "ESTOOLS1" 604824 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-272 592236 594975 597706 "ESTOOLS" 601912 T ESTOOLS (NIL) -7 NIL NIL) (-271 591981 592013 592095 "ESCONT1" 592198 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-270 588388 589140 589912 "ESCONT" 591229 T ESCONT (NIL) -7 NIL NIL) (-269 588063 588113 588213 "ES2" 588332 NIL ES2 (NIL T T) -7 NIL NIL) (-268 587693 587751 587860 "ES1" 587999 NIL ES1 (NIL T T) -7 NIL NIL) (-267 581632 583356 583385 "ES" 586149 T ES (NIL) -9 NIL 587553) (-266 576580 577866 579683 "ES-" 579847 NIL ES- (NIL T) -8 NIL NIL) (-265 575796 575925 576101 "ERROR" 576424 T ERROR (NIL) -7 NIL NIL) (-264 569311 575655 575746 "EQTBL" 575751 NIL EQTBL (NIL T T) -8 NIL NIL) (-263 568943 569000 569109 "EQ2" 569248 NIL EQ2 (NIL T T) -7 NIL NIL) (-262 561408 564289 565722 "EQ" 567543 NIL -2373 (NIL T) -8 NIL NIL) (-261 556700 557746 558839 "EP" 560347 NIL EP (NIL T) -7 NIL NIL) (-260 555859 556423 556452 "ENTIRER" 556457 T ENTIRER (NIL) -9 NIL 556502) (-259 552315 553814 554184 "EMR" 555658 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-258 551459 551644 551699 "ELTAGG" 552079 NIL ELTAGG (NIL T T) -9 NIL 552289) (-257 551178 551240 551381 "ELTAGG-" 551386 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-256 550966 550995 551050 "ELTAB" 551134 NIL ELTAB (NIL T T) -9 NIL NIL) (-255 550092 550238 550437 "ELFUTS" 550817 NIL ELFUTS (NIL T T) -7 NIL NIL) (-254 549833 549889 549918 "ELEMFUN" 550023 T ELEMFUN (NIL) -9 NIL NIL) (-253 549703 549724 549792 "ELEMFUN-" 549797 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-252 544634 547837 547879 "ELAGG" 548819 NIL ELAGG (NIL T) -9 NIL 549280) (-251 542919 543353 544016 "ELAGG-" 544021 NIL ELAGG- (NIL T T) -8 NIL NIL) (-250 535789 537588 538414 "EFUPXS" 542196 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-249 529241 531042 531851 "EFULS" 535066 NIL EFULS (NIL T T T) -8 NIL NIL) (-248 526672 527030 527508 "EFSTRUC" 528873 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-247 515744 517309 518869 "EF" 525187 NIL EF (NIL T T) -7 NIL NIL) (-246 514845 515229 515378 "EAB" 515615 T EAB (NIL) -8 NIL NIL) (-245 514058 514804 514832 "E04UCFA" 514837 T E04UCFA (NIL) -8 NIL NIL) (-244 513271 514017 514045 "E04NAFA" 514050 T E04NAFA (NIL) -8 NIL NIL) (-243 512484 513230 513258 "E04MBFA" 513263 T E04MBFA (NIL) -8 NIL NIL) (-242 511697 512443 512471 "E04JAFA" 512476 T E04JAFA (NIL) -8 NIL NIL) (-241 510912 511656 511684 "E04GCFA" 511689 T E04GCFA (NIL) -8 NIL NIL) (-240 510127 510871 510899 "E04FDFA" 510904 T E04FDFA (NIL) -8 NIL NIL) (-239 509340 510086 510114 "E04DGFA" 510119 T E04DGFA (NIL) -8 NIL NIL) (-238 503526 504870 506232 "E04AGNT" 507998 T E04AGNT (NIL) -7 NIL NIL) (-237 502252 502732 502773 "DVARCAT" 503248 NIL DVARCAT (NIL T) -9 NIL 503446) (-236 501456 501668 501982 "DVARCAT-" 501987 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-235 494318 501258 501385 "DSMP" 501390 NIL DSMP (NIL T T T) -8 NIL NIL) (-234 493983 494042 494140 "DROPT1" 494253 NIL DROPT1 (NIL T) -7 NIL NIL) (-233 489105 490229 491364 "DROPT0" 492868 T DROPT0 (NIL) -7 NIL NIL) (-232 483931 485062 486126 "DROPT" 488061 T DROPT (NIL) -8 NIL NIL) (-231 482276 482601 482987 "DRAWPT" 483565 T DRAWPT (NIL) -7 NIL NIL) (-230 481917 481968 482084 "DRAWHACK" 482219 NIL DRAWHACK (NIL T) -7 NIL NIL) (-229 480662 480927 481214 "DRAWCX" 481650 T DRAWCX (NIL) -7 NIL NIL) (-228 480180 480248 480398 "DRAWCURV" 480588 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-227 470784 472706 474785 "DRAWCFUN" 478121 T DRAWCFUN (NIL) -7 NIL NIL) (-226 465459 466358 467413 "DRAW" 469782 NIL DRAW (NIL T) -7 NIL NIL) (-225 462313 464189 464231 "DQAGG" 464860 NIL DQAGG (NIL T) -9 NIL 465133) (-224 450773 457511 457594 "DPOLCAT" 459432 NIL DPOLCAT (NIL T T T T) -9 NIL 459975) (-223 445613 446959 448916 "DPOLCAT-" 448921 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-222 439697 445475 445572 "DPMO" 445577 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-221 433684 439478 439644 "DPMM" 439649 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-220 427396 433321 433472 "DMP" 433585 NIL DMP (NIL NIL T) -8 NIL NIL) (-219 426996 427052 427196 "DLP" 427334 NIL DLP (NIL T) -7 NIL NIL) (-218 420646 426097 426324 "DLIST" 426801 NIL DLIST (NIL T) -8 NIL NIL) (-217 417534 419537 419579 "DLAGG" 420129 NIL DLAGG (NIL T) -9 NIL 420357) (-216 416196 416888 416917 "DIVRING" 417067 T DIVRING (NIL) -9 NIL 417175) (-215 415184 415437 415830 "DIVRING-" 415835 NIL DIVRING- (NIL T) -8 NIL NIL) (-214 413286 413643 414049 "DISPLAY" 414798 T DISPLAY (NIL) -7 NIL NIL) (-213 412134 412337 412602 "DIRPROD2" 413079 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-212 406029 412048 412111 "DIRPROD" 412116 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-211 395700 401699 401753 "DIRPCAT" 402161 NIL DIRPCAT (NIL NIL T) -9 NIL 402977) (-210 393026 393668 394549 "DIRPCAT-" 394886 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-209 392313 392473 392659 "DIOSP" 392860 T DIOSP (NIL) -7 NIL NIL) (-208 389057 391261 391303 "DIOPS" 391737 NIL DIOPS (NIL T) -9 NIL 391965) (-207 388606 388720 388911 "DIOPS-" 388916 NIL DIOPS- (NIL T T) -8 NIL NIL) (-206 387477 388115 388144 "DIFRING" 388331 T DIFRING (NIL) -9 NIL 388440) (-205 387123 387200 387352 "DIFRING-" 387357 NIL DIFRING- (NIL T) -8 NIL NIL) (-204 384914 386196 386237 "DIFEXT" 386596 NIL DIFEXT (NIL T) -9 NIL 386887) (-203 383200 383628 384293 "DIFEXT-" 384298 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-202 380563 382767 382809 "DIAGG" 382814 NIL DIAGG (NIL T) -9 NIL 382834) (-201 379947 380104 380356 "DIAGG-" 380361 NIL DIAGG- (NIL T T) -8 NIL NIL) (-200 375559 376468 377478 "DFSFUN" 378957 T DFSFUN (NIL) -7 NIL NIL) (-199 370493 374389 374724 "DFLOAT" 375244 T DFLOAT (NIL) -8 NIL NIL) (-198 368726 369007 369402 "DFINTTLS" 370201 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-197 365759 366761 367159 "DERHAM" 368393 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-196 363614 365534 365623 "DEQUEUE" 365703 NIL DEQUEUE (NIL T) -8 NIL NIL) (-195 362832 362965 363160 "DEGRED" 363476 NIL DEGRED (NIL T T) -7 NIL NIL) (-194 359248 359989 360837 "DEFINTRF" 362064 NIL DEFINTRF (NIL T) -7 NIL NIL) (-193 356787 357254 357850 "DEFINTEF" 358769 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-192 350618 356228 356394 "DECIMAL" 356641 T DECIMAL (NIL) -8 NIL NIL) (-191 348130 348588 349094 "DDFACT" 350162 NIL DDFACT (NIL T T) -7 NIL NIL) (-190 347726 347769 347920 "DBLRESP" 348081 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-189 345436 345770 346139 "DBASE" 347484 NIL DBASE (NIL T) -8 NIL NIL) (-188 344571 345395 345423 "D03FAFA" 345428 T D03FAFA (NIL) -8 NIL NIL) (-187 343707 344530 344558 "D03EEFA" 344563 T D03EEFA (NIL) -8 NIL NIL) (-186 341657 342123 342612 "D03AGNT" 343238 T D03AGNT (NIL) -7 NIL NIL) (-185 340975 341616 341644 "D02EJFA" 341649 T D02EJFA (NIL) -8 NIL NIL) (-184 340293 340934 340962 "D02CJFA" 340967 T D02CJFA (NIL) -8 NIL NIL) (-183 339611 340252 340280 "D02BHFA" 340285 T D02BHFA (NIL) -8 NIL NIL) (-182 338929 339570 339598 "D02BBFA" 339603 T D02BBFA (NIL) -8 NIL NIL) (-181 332128 333715 335321 "D02AGNT" 337343 T D02AGNT (NIL) -7 NIL NIL) (-180 329909 330428 330971 "D01WGTS" 331605 T D01WGTS (NIL) -7 NIL NIL) (-179 329016 329868 329896 "D01TRNS" 329901 T D01TRNS (NIL) -8 NIL NIL) (-178 328123 328975 329003 "D01GBFA" 329008 T D01GBFA (NIL) -8 NIL NIL) (-177 327230 328082 328110 "D01FCFA" 328115 T D01FCFA (NIL) -8 NIL NIL) (-176 326337 327189 327217 "D01ASFA" 327222 T D01ASFA (NIL) -8 NIL NIL) (-175 325444 326296 326324 "D01AQFA" 326329 T D01AQFA (NIL) -8 NIL NIL) (-174 324551 325403 325431 "D01APFA" 325436 T D01APFA (NIL) -8 NIL NIL) (-173 323658 324510 324538 "D01ANFA" 324543 T D01ANFA (NIL) -8 NIL NIL) (-172 322765 323617 323645 "D01AMFA" 323650 T D01AMFA (NIL) -8 NIL NIL) (-171 321872 322724 322752 "D01ALFA" 322757 T D01ALFA (NIL) -8 NIL NIL) (-170 320979 321831 321859 "D01AKFA" 321864 T D01AKFA (NIL) -8 NIL NIL) (-169 320086 320938 320966 "D01AJFA" 320971 T D01AJFA (NIL) -8 NIL NIL) (-168 313418 314960 316512 "D01AGNT" 318554 T D01AGNT (NIL) -7 NIL NIL) (-167 312755 312883 313035 "CYCLOTOM" 313286 T CYCLOTOM (NIL) -7 NIL NIL) (-166 309490 310203 310930 "CYCLES" 312048 T CYCLES (NIL) -7 NIL NIL) (-165 308802 308936 309107 "CVMP" 309351 NIL CVMP (NIL T) -7 NIL NIL) (-164 306584 306841 307216 "CTRIGMNP" 308530 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-163 305958 306057 306210 "CSTTOOLS" 306481 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-162 301757 302414 303172 "CRFP" 305270 NIL CRFP (NIL T T) -7 NIL NIL) (-161 300804 300989 301217 "CRAPACK" 301561 NIL CRAPACK (NIL T) -7 NIL NIL) (-160 300190 300291 300494 "CPMATCH" 300681 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-159 299915 299943 300049 "CPIMA" 300156 NIL CPIMA (NIL T T T) -7 NIL NIL) (-158 296279 296951 297669 "COORDSYS" 299250 NIL COORDSYS (NIL T) -7 NIL NIL) (-157 292140 294282 294774 "CONTFRAC" 295819 NIL CONTFRAC (NIL T) -8 NIL NIL) (-156 291293 291857 291886 "COMRING" 291891 T COMRING (NIL) -9 NIL 291942) (-155 290374 290651 290835 "COMPPROP" 291129 T COMPPROP (NIL) -8 NIL NIL) (-154 290035 290070 290198 "COMPLPAT" 290333 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-153 289671 289728 289835 "COMPLEX2" 289972 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-152 279654 289482 289590 "COMPLEX" 289595 NIL COMPLEX (NIL T) -8 NIL NIL) (-151 279372 279407 279505 "COMPFACT" 279613 NIL COMPFACT (NIL T T) -7 NIL NIL) (-150 263652 273946 273987 "COMPCAT" 274989 NIL COMPCAT (NIL T) -9 NIL 276365) (-149 253168 256091 259718 "COMPCAT-" 260074 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-148 252899 252927 253029 "COMMUPC" 253134 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-147 252694 252727 252786 "COMMONOP" 252860 T COMMONOP (NIL) -7 NIL NIL) (-146 252277 252445 252532 "COMM" 252627 T COMM (NIL) -8 NIL NIL) (-145 251531 251723 251752 "COMBOPC" 252088 T COMBOPC (NIL) -9 NIL 252261) (-144 250427 250637 250879 "COMBINAT" 251321 NIL COMBINAT (NIL T) -7 NIL NIL) (-143 246633 247204 247842 "COMBF" 249851 NIL COMBF (NIL T T) -7 NIL NIL) (-142 245419 245749 245984 "COLOR" 246418 T COLOR (NIL) -8 NIL NIL) (-141 245059 245106 245231 "CMPLXRT" 245366 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-140 240617 241631 242697 "CLIP" 244013 T CLIP (NIL) -7 NIL NIL) (-139 238955 239725 239963 "CLIF" 240445 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-138 235221 237139 237181 "CLAGG" 238110 NIL CLAGG (NIL T) -9 NIL 238643) (-137 233643 234100 234683 "CLAGG-" 234688 NIL CLAGG- (NIL T T) -8 NIL NIL) (-136 233187 233272 233412 "CINTSLPE" 233552 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-135 230688 231159 231707 "CHVAR" 232715 NIL CHVAR (NIL T T T) -7 NIL NIL) (-134 229910 230474 230503 "CHARZ" 230508 T CHARZ (NIL) -9 NIL 230522) (-133 229664 229704 229782 "CHARPOL" 229864 NIL CHARPOL (NIL T) -7 NIL NIL) (-132 228770 229367 229396 "CHARNZ" 229443 T CHARNZ (NIL) -9 NIL 229498) (-131 226793 227460 227795 "CHAR" 228455 T CHAR (NIL) -8 NIL NIL) (-130 226518 226579 226608 "CFCAT" 226719 T CFCAT (NIL) -9 NIL NIL) (-129 225763 225874 226056 "CDEN" 226402 NIL CDEN (NIL T T T) -7 NIL NIL) (-128 221755 224916 225196 "CCLASS" 225503 T CCLASS (NIL) -8 NIL NIL) (-127 220863 221011 221232 "CARTEN2" 221602 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-126 215916 216892 217645 "CARTEN" 220166 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-125 214213 215068 215324 "CARD" 215680 T CARD (NIL) -8 NIL NIL) (-124 213585 213913 213942 "CACHSET" 214074 T CACHSET (NIL) -9 NIL 214151) (-123 213081 213377 213406 "CABMON" 213456 T CABMON (NIL) -9 NIL 213512) (-122 210644 212773 212880 "BTREE" 213007 NIL BTREE (NIL T) -8 NIL NIL) (-121 208148 210292 210414 "BTOURN" 210554 NIL BTOURN (NIL T) -8 NIL NIL) (-120 205607 207654 207696 "BTCAT" 207764 NIL BTCAT (NIL T) -9 NIL 207841) (-119 205274 205354 205503 "BTCAT-" 205508 NIL BTCAT- (NIL T T) -8 NIL NIL) (-118 200464 204335 204364 "BTAGG" 204620 T BTAGG (NIL) -9 NIL 204799) (-117 199887 200031 200261 "BTAGG-" 200266 NIL BTAGG- (NIL T) -8 NIL NIL) (-116 196937 199165 199380 "BSTREE" 199704 NIL BSTREE (NIL T) -8 NIL NIL) (-115 196075 196201 196385 "BRILL" 196793 NIL BRILL (NIL T) -7 NIL NIL) (-114 192818 194839 194881 "BRAGG" 195530 NIL BRAGG (NIL T) -9 NIL 195786) (-113 191347 191753 192308 "BRAGG-" 192313 NIL BRAGG- (NIL T T) -8 NIL NIL) (-112 184555 190693 190877 "BPADICRT" 191195 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-111 182859 184492 184537 "BPADIC" 184542 NIL BPADIC (NIL NIL) -8 NIL NIL) (-110 182559 182589 182702 "BOUNDZRO" 182823 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-109 180182 180626 181145 "BOP1" 182073 NIL BOP1 (NIL T) -7 NIL NIL) (-108 175697 176788 177655 "BOP" 179335 T BOP (NIL) -8 NIL NIL) (-107 174050 174740 175034 "BOOLEAN" 175423 T BOOLEAN (NIL) -8 NIL NIL) (-106 173416 173794 173847 "BMODULE" 173852 NIL BMODULE (NIL T T) -9 NIL 173916) (-105 169226 173214 173287 "BITS" 173363 T BITS (NIL) -8 NIL NIL) (-104 168323 168758 168910 "BINFILE" 169094 T BINFILE (NIL) -8 NIL NIL) (-103 162158 167767 167932 "BINARY" 168178 T BINARY (NIL) -8 NIL NIL) (-102 160026 161448 161490 "BGAGG" 161750 NIL BGAGG (NIL T) -9 NIL 161887) (-101 159857 159889 159980 "BGAGG-" 159985 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158955 159241 159446 "BFUNCT" 159672 T BFUNCT (NIL) -8 NIL NIL) (-99 157658 157836 158120 "BEZOUT" 158780 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154189 156518 156846 "BBTREE" 157361 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153926 153979 154006 "BASTYPE" 154123 T BASTYPE (NIL) -9 NIL NIL) (-96 153782 153810 153880 "BASTYPE-" 153885 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153220 153296 153446 "BALFACT" 153693 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 152042 152639 152824 "AUTOMOR" 153065 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151767 151772 151799 "ATTREG" 151804 T ATTREG (NIL) -9 NIL NIL) (-92 150046 150464 150816 "ATTRBUT" 151433 T ATTRBUT (NIL) -8 NIL NIL) (-91 149581 149694 149721 "ATRIG" 149922 T ATRIG (NIL) -9 NIL NIL) (-90 149390 149431 149518 "ATRIG-" 149523 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147593 149166 149254 "ASTACK" 149333 NIL ASTACK (NIL T) -8 NIL NIL) (-88 146100 146397 146761 "ASSOCEQ" 147276 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 145132 145759 145883 "ASP9" 146007 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144002 144737 144879 "ASP80" 145021 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 143766 143950 143989 "ASP8" 143994 NIL ASP8 (NIL NIL) -8 NIL NIL) (-84 142722 143443 143561 "ASP78" 143679 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 141693 142402 142519 "ASP77" 142636 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 140608 141331 141462 "ASP74" 141593 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 139509 140243 140375 "ASP73" 140507 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 138408 139144 139276 "ASP7" 139408 NIL ASP7 (NIL NIL) -8 NIL NIL) (-79 137363 138085 138203 "ASP6" 138321 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136312 137040 137158 "ASP55" 137276 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135262 135986 136105 "ASP50" 136224 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134350 134963 135073 "ASP49" 135183 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 133135 133889 134057 "ASP42" 134239 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131913 132668 132838 "ASP41" 133022 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 131001 131614 131724 "ASP4" 131834 NIL ASP4 (NIL NIL) -8 NIL NIL) (-72 129953 130678 130796 "ASP35" 130914 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129718 129901 129940 "ASP34" 129945 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129455 129522 129598 "ASP33" 129673 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128351 129090 129222 "ASP31" 129354 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 128116 128299 128338 "ASP30" 128343 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127851 127920 127996 "ASP29" 128071 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127616 127799 127838 "ASP28" 127843 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127381 127564 127603 "ASP27" 127608 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126465 127079 127190 "ASP24" 127301 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125382 126106 126236 "ASP20" 126366 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124326 125056 125175 "ASP19" 125294 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 124063 124130 124206 "ASP12" 124281 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122916 123662 123806 "ASP10" 123950 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 122004 122617 122727 "ASP1" 122837 NIL ASP1 (NIL NIL) -8 NIL NIL) (-58 119909 121848 121939 "ARRAY2" 121944 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 118941 119114 119335 "ARRAY12" 119732 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 114763 118589 118703 "ARRAY1" 118858 NIL ARRAY1 (NIL T) -8 NIL NIL) (-55 109163 111028 111104 "ARR2CAT" 113734 NIL ARR2CAT (NIL T T T) -9 NIL 114492) (-54 106597 107341 108295 "ARR2CAT-" 108300 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105357 105507 105810 "APPRULE" 106435 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 105010 105058 105176 "APPLYORE" 105303 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 104288 104411 104568 "ANY1" 104884 NIL ANY1 (NIL T) -7 NIL NIL) (-50 103262 103553 103748 "ANY" 104111 T ANY (NIL) -8 NIL NIL) (-49 100794 101712 102037 "ANTISYM" 102987 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100621 100753 100780 "ANON" 100785 T ANON (NIL) -8 NIL NIL) (-47 94698 99166 99617 "AN" 100188 T AN (NIL) -8 NIL NIL) (-46 91010 92408 92459 "AMR" 93198 NIL AMR (NIL T T) -9 NIL 93791) (-45 90123 90344 90706 "AMR-" 90711 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74685 90040 90101 "ALIST" 90106 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71522 74279 74448 "ALGSC" 74603 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 68080 68634 69240 "ALGPKG" 70963 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 67357 67458 67642 "ALGMFACT" 67966 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 63115 63795 64445 "ALGMANIP" 66885 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 54434 62741 62891 "ALGFF" 63048 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53630 53761 53940 "ALGFACT" 54292 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52620 53230 53269 "ALGEBRA" 53329 NIL ALGEBRA (NIL T) -9 NIL 53387) (-36 52338 52397 52529 "ALGEBRA-" 52534 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34147 49872 49925 "ALAGG" 50061 NIL ALAGG (NIL T T) -9 NIL 50222) (-34 33682 33795 33822 "AHYP" 34023 T AHYP (NIL) -9 NIL NIL) (-33 32613 32861 32888 "AGG" 33387 T AGG (NIL) -9 NIL 33665) (-32 32047 32209 32423 "AGG-" 32428 NIL AGG- (NIL T) -8 NIL NIL) (-31 29736 30154 30570 "AF" 31691 NIL AF (NIL T T) -7 NIL NIL) (-30 29014 29268 29422 "ACPLOT" 29600 T ACPLOT (NIL) -8 NIL NIL) (-29 18433 26379 26431 "ACFS" 27142 NIL ACFS (NIL T) -9 NIL 27381) (-28 16447 16937 17712 "ACFS-" 17717 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12667 14623 14650 "ACF" 15529 T ACF (NIL) -9 NIL 15941) (-26 11371 11705 12198 "ACF-" 12203 NIL ACF- (NIL T) -8 NIL NIL) (-25 10969 11138 11165 "ABELSG" 11257 T ABELSG (NIL) -9 NIL 11322) (-24 10836 10861 10927 "ABELSG-" 10932 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10205 10466 10493 "ABELMON" 10663 T ABELMON (NIL) -9 NIL 10775) (-22 9869 9953 10091 "ABELMON-" 10096 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9203 9549 9576 "ABELGRP" 9701 T ABELGRP (NIL) -9 NIL 9783) (-20 8666 8795 9011 "ABELGRP-" 9016 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8029 8069 "A1AGG" 8074 NIL A1AGG (NIL T) -9 NIL 8114) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 26)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-968) (-1184)) (T -968)) +NIL +(-13 (-21) (-1015)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1015) . T) ((-1003) . T)) +((-1974 (($ $) 16)) (-2531 (($ $) 22)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 49)) (-1506 (($ $) 24)) (-1927 (($ $) 11)) (-2597 (($ $) 38)) (-3645 (((-349) $) NIL) (((-199) $) NIL) (((-814 (-349)) $) 33)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 28) (($ (-517)) NIL) (($ (-377 (-517))) 28)) (-2961 (((-703)) 8)) (-1949 (($ $) 39))) +(((-969 |#1|) (-10 -8 (-15 -2531 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2597 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|))) (-970)) (T -969)) +((-2961 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-969 *3)) (-4 *3 (-970))))) +(-10 -8 (-15 -2531 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2597 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 (((-517) $) 89)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1974 (($ $) 87)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 97)) (-1707 (((-107) $ $) 59)) (-3709 (((-517) $) 114)) (-3092 (($) 17 T CONST)) (-2531 (($ $) 86)) (-1772 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3189 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3556 (((-107) $) 112)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 93)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 96)) (-1506 (($ $) 92)) (-2475 (((-107) $) 113)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2967 (($ $ $) 111)) (-3099 (($ $ $) 110)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1927 (($ $) 88)) (-2597 (($ $) 90)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-3645 (((-349) $) 105) (((-199) $) 104) (((-814 (-349)) $) 94)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-2961 (((-703)) 29)) (-1949 (($ $) 91)) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 115)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 108)) (-1583 (((-107) $ $) 107)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 109)) (-1572 (((-107) $ $) 106)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) +(((-970) (-1184)) (T -970)) +((-3710 (*1 *1 *1) (-4 *1 (-970))) (-1506 (*1 *1 *1) (-4 *1 (-970))) (-1949 (*1 *1 *1) (-4 *1 (-970))) (-2597 (*1 *1 *1) (-4 *1 (-970))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-517)))) (-1927 (*1 *1 *1) (-4 *1 (-970))) (-1974 (*1 *1 *1) (-4 *1 (-970))) (-2531 (*1 *1 *1) (-4 *1 (-970)))) +(-13 (-333) (-777) (-937) (-952 (-517)) (-952 (-377 (-517))) (-918) (-558 (-814 (-349))) (-808 (-349)) (-134) (-10 -8 (-15 -1506 ($ $)) (-15 -1949 ($ $)) (-15 -2597 ($ $)) (-15 -2668 ((-517) $)) (-15 -1927 ($ $)) (-15 -1974 ($ $)) (-15 -2531 ($ $)) (-15 -3710 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-814 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-808 (-349)) . T) ((-842) . T) ((-918) . T) ((-937) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) |#2| $) 23)) (-1611 ((|#1| $) 10)) (-3709 (((-517) |#2| $) 88)) (-3267 (((-3 $ "failed") |#2| (-843)) 58)) (-3652 ((|#1| $) 28)) (-2002 ((|#1| |#2| $ |#1|) 37)) (-3437 (($ $) 25)) (-3621 (((-3 |#2| "failed") |#2| $) 87)) (-3556 (((-107) |#2| $) NIL)) (-2475 (((-107) |#2| $) NIL)) (-2046 (((-107) |#2| $) 24)) (-2270 ((|#1| $) 89)) (-3639 ((|#1| $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2135 ((|#2| $) 79)) (-2256 (((-787) $) 71)) (-3383 ((|#1| |#2| $ |#1|) 38)) (-3995 (((-583 $) |#2|) 60)) (-1547 (((-107) $ $) 74))) +(((-971 |#1| |#2|) (-13 (-977 |#1| |#2|) (-10 -8 (-15 -3639 (|#1| $)) (-15 -3652 (|#1| $)) (-15 -1611 (|#1| $)) (-15 -2270 (|#1| $)) (-15 -3437 ($ $)) (-15 -2046 ((-107) |#2| $)) (-15 -2002 (|#1| |#2| $ |#1|)))) (-13 (-777) (-333)) (-1130 |#1|)) (T -971)) +((-2002 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-3639 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-3652 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-1611 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-2270 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-3437 (*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-2046 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1130 *4))))) +(-13 (-977 |#1| |#2|) (-10 -8 (-15 -3639 (|#1| $)) (-15 -3652 (|#1| $)) (-15 -1611 (|#1| $)) (-15 -2270 (|#1| $)) (-15 -3437 ($ $)) (-15 -2046 ((-107) |#2| $)) (-15 -2002 (|#1| |#2| $ |#1|)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) NIL)) (-3092 (($) NIL T CONST)) (-4011 (($ (-1073)) 10) (($ (-517)) 7)) (-1772 (((-3 (-517) "failed") $) NIL)) (-3189 (((-517) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($) NIL) (($ $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) NIL)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1522 (($ $) NIL)) (-2195 (($ $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) NIL)) (-3206 (((-1021) $) NIL) (($ $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-2789 (($ $) NIL)) (-2433 (($ $) NIL)) (-3645 (((-517) $) 16) (((-493) $) NIL) (((-814 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL) (($ (-1073)) 9)) (-2256 (((-787) $) 20) (($ (-517)) 6) (($ $) NIL) (($ (-517)) 6)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) NIL)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1654 (($ $) 19) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL))) +(((-972) (-13 (-502) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3645 ($ (-1073))) (-15 -4011 ($ (-1073))) (-15 -4011 ($ (-517)))))) (T -972)) +((-3645 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-972))))) +(-13 (-502) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3645 ($ (-1073))) (-15 -4011 ($ (-1073))) (-15 -4011 ($ (-517))))) +((-2750 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-1668 (((-1158) $ (-1073) (-1073)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2872 (($) 9)) (-2411 (((-51) $ (-1073) (-51)) NIL)) (-1936 (($ $) 23)) (-2014 (($ $) 21)) (-1688 (($ $) 20)) (-1835 (($ $) 22)) (-3172 (($ $) 25)) (-2375 (($ $) 26)) (-3699 (($ $) 19)) (-2263 (($ $) 24)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) 18 (|has| $ (-6 -4180)))) (-3254 (((-3 (-51) "failed") (-1073) $) 34)) (-3092 (($) NIL T CONST)) (-2665 (($) 7)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) 46 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-3 (-51) "failed") (-1073) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-2381 (((-3 (-1056) "failed") $ (-1056) (-517)) 59)) (-1445 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -4181)))) (-1377 (((-51) $ (-1073)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1073) $) NIL (|has| (-1073) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) 28 (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-3482 (((-1073) $) NIL (|has| (-1073) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2274 (((-583 (-1073)) $) NIL)) (-2793 (((-107) (-1073) $) NIL)) (-3309 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) 37)) (-1857 (((-583 (-1073)) $) NIL)) (-4088 (((-107) (-1073) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3947 (((-349) $ (-1073)) 45)) (-2000 (((-583 (-1056)) $ (-1056)) 60)) (-1647 (((-51) $) NIL (|has| (-1073) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) "failed") (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL)) (-2565 (($ $ (-51)) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-1941 (((-583 (-51)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-51) $ (-1073)) NIL) (((-51) $ (-1073) (-51)) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3468 (($ $ (-1073)) 47)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) 30)) (-2452 (($ $ $) 31)) (-2256 (((-787) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-4129 (($ $ (-1073) (-349)) 43)) (-3219 (($ $ (-1073) (-349)) 44)) (-1222 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-973) (-13 (-1085 (-1073) (-51)) (-10 -8 (-15 -2452 ($ $ $)) (-15 -2665 ($)) (-15 -3699 ($ $)) (-15 -1688 ($ $)) (-15 -2014 ($ $)) (-15 -1835 ($ $)) (-15 -2263 ($ $)) (-15 -1936 ($ $)) (-15 -3172 ($ $)) (-15 -2375 ($ $)) (-15 -4129 ($ $ (-1073) (-349))) (-15 -3219 ($ $ (-1073) (-349))) (-15 -3947 ((-349) $ (-1073))) (-15 -2000 ((-583 (-1056)) $ (-1056))) (-15 -3468 ($ $ (-1073))) (-15 -2872 ($)) (-15 -2381 ((-3 (-1056) "failed") $ (-1056) (-517))) (-6 -4180)))) (T -973)) +((-2452 (*1 *1 *1 *1) (-5 *1 (-973))) (-2665 (*1 *1) (-5 *1 (-973))) (-3699 (*1 *1 *1) (-5 *1 (-973))) (-1688 (*1 *1 *1) (-5 *1 (-973))) (-2014 (*1 *1 *1) (-5 *1 (-973))) (-1835 (*1 *1 *1) (-5 *1 (-973))) (-2263 (*1 *1 *1) (-5 *1 (-973))) (-1936 (*1 *1 *1) (-5 *1 (-973))) (-3172 (*1 *1 *1) (-5 *1 (-973))) (-2375 (*1 *1 *1) (-5 *1 (-973))) (-4129 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973)))) (-3219 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973)))) (-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-349)) (-5 *1 (-973)))) (-2000 (*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-973)) (-5 *3 (-1056)))) (-3468 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-973)))) (-2872 (*1 *1) (-5 *1 (-973))) (-2381 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-973))))) +(-13 (-1085 (-1073) (-51)) (-10 -8 (-15 -2452 ($ $ $)) (-15 -2665 ($)) (-15 -3699 ($ $)) (-15 -1688 ($ $)) (-15 -2014 ($ $)) (-15 -1835 ($ $)) (-15 -2263 ($ $)) (-15 -1936 ($ $)) (-15 -3172 ($ $)) (-15 -2375 ($ $)) (-15 -4129 ($ $ (-1073) (-349))) (-15 -3219 ($ $ (-1073) (-349))) (-15 -3947 ((-349) $ (-1073))) (-15 -2000 ((-583 (-1056)) $ (-1056))) (-15 -3468 ($ $ (-1073))) (-15 -2872 ($)) (-15 -2381 ((-3 (-1056) "failed") $ (-1056) (-517))) (-6 -4180))) +((-2779 (($ $) 45)) (-2421 (((-107) $ $) 74)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-874 (-377 (-517)))) 226) (((-3 $ "failed") (-874 (-517))) 225) (((-3 $ "failed") (-874 |#2|)) 228)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) NIL) (($ (-874 (-377 (-517)))) 214) (($ (-874 (-517))) 210) (($ (-874 |#2|)) 230)) (-1212 (($ $) NIL) (($ $ |#4|) 43)) (-3283 (((-107) $ $) 111) (((-107) $ (-583 $)) 112)) (-1869 (((-107) $) 56)) (-1874 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106)) (-4083 (($ $) 137)) (-2557 (($ $) 133)) (-1454 (($ $) 132)) (-1440 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2489 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1497 (((-107) $ $) 120) (((-107) $ (-583 $)) 121)) (-1976 ((|#4| $) 33)) (-1439 (($ $ $) 109)) (-4156 (((-107) $) 55)) (-2401 (((-703) $) 35)) (-3074 (($ $) 151)) (-1923 (($ $) 148)) (-1726 (((-583 $) $) 68)) (-2070 (($ $) 57)) (-3622 (($ $) 144)) (-2235 (((-583 $) $) 65)) (-3839 (($ $) 59)) (-1191 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $) 110)) (-2669 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 107) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |#4|) 108)) (-2915 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $) 103) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |#4|) 104)) (-3692 (($ $ $) 89) (($ $ $ |#4|) 94)) (-2928 (($ $ $) 90) (($ $ $ |#4|) 95)) (-1628 (((-583 $) $) 51)) (-3852 (((-107) $ $) 117) (((-107) $ (-583 $)) 118)) (-3522 (($ $ $) 102)) (-2836 (($ $) 37)) (-3411 (((-107) $ $) 72)) (-1959 (((-107) $ $) 113) (((-107) $ (-583 $)) 115)) (-3183 (($ $ $) 100)) (-3059 (($ $) 40)) (-1401 ((|#2| |#2| $) 141) (($ (-583 $)) NIL) (($ $ $) NIL)) (-3716 (($ $ |#2|) NIL) (($ $ $) 130)) (-3068 (($ $ |#2|) 125) (($ $ $) 128)) (-2451 (($ $) 48)) (-3443 (($ $) 52)) (-3645 (((-814 (-349)) $) NIL) (((-814 (-517)) $) NIL) (((-493) $) NIL) (($ (-874 (-377 (-517)))) 216) (($ (-874 (-517))) 212) (($ (-874 |#2|)) 227) (((-1056) $) 249) (((-874 |#2|) $) 161)) (-2256 (((-787) $) 30) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-874 |#2|) $) 162) (($ (-377 (-517))) NIL) (($ $) NIL)) (-2791 (((-3 (-107) "failed") $ $) 71))) +(((-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1401 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 ((-874 |#2|) |#1|)) (-15 -3645 ((-874 |#2|) |#1|)) (-15 -3645 ((-1056) |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -1401 (|#2| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3068 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -3068 (|#1| |#1| |#2|)) (-15 -2557 (|#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -3645 (|#1| (-874 |#2|))) (-15 -3189 (|#1| (-874 |#2|))) (-15 -1772 ((-3 |#1| "failed") (-874 |#2|))) (-15 -3645 (|#1| (-874 (-517)))) (-15 -3189 (|#1| (-874 (-517)))) (-15 -1772 ((-3 |#1| "failed") (-874 (-517)))) (-15 -3645 (|#1| (-874 (-377 (-517))))) (-15 -3189 (|#1| (-874 (-377 (-517))))) (-15 -1772 ((-3 |#1| "failed") (-874 (-377 (-517))))) (-15 -3522 (|#1| |#1| |#1|)) (-15 -3183 (|#1| |#1| |#1|)) (-15 -3634 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1349 (-703))) |#1| |#1|)) (-15 -1439 (|#1| |#1| |#1|)) (-15 -1874 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2928 (|#1| |#1| |#1| |#4|)) (-15 -3692 (|#1| |#1| |#1| |#4|)) (-15 -2928 (|#1| |#1| |#1|)) (-15 -3692 (|#1| |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1| |#4|)) (-15 -1440 (|#1| |#1| |#1| |#4|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1497 ((-107) |#1| (-583 |#1|))) (-15 -1497 ((-107) |#1| |#1|)) (-15 -3852 ((-107) |#1| (-583 |#1|))) (-15 -3852 ((-107) |#1| |#1|)) (-15 -1959 ((-107) |#1| (-583 |#1|))) (-15 -1959 ((-107) |#1| |#1|)) (-15 -3283 ((-107) |#1| (-583 |#1|))) (-15 -3283 ((-107) |#1| |#1|)) (-15 -2421 ((-107) |#1| |#1|)) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2791 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1726 ((-583 |#1|) |#1|)) (-15 -2235 ((-583 |#1|) |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -1869 ((-107) |#1|)) (-15 -4156 ((-107) |#1|)) (-15 -1212 (|#1| |#1| |#4|)) (-15 -1191 (|#1| |#1| |#4|)) (-15 -3443 (|#1| |#1|)) (-15 -1628 ((-583 |#1|) |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -3059 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2401 ((-703) |#1|)) (-15 -1976 (|#4| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -1191 (|#2| |#1|)) (-15 -1212 (|#1| |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-975 |#2| |#3| |#4|) (-961) (-725) (-779)) (T -974)) +NIL +(-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1401 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 ((-874 |#2|) |#1|)) (-15 -3645 ((-874 |#2|) |#1|)) (-15 -3645 ((-1056) |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -1401 (|#2| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3068 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -3068 (|#1| |#1| |#2|)) (-15 -2557 (|#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -3645 (|#1| (-874 |#2|))) (-15 -3189 (|#1| (-874 |#2|))) (-15 -1772 ((-3 |#1| "failed") (-874 |#2|))) (-15 -3645 (|#1| (-874 (-517)))) (-15 -3189 (|#1| (-874 (-517)))) (-15 -1772 ((-3 |#1| "failed") (-874 (-517)))) (-15 -3645 (|#1| (-874 (-377 (-517))))) (-15 -3189 (|#1| (-874 (-377 (-517))))) (-15 -1772 ((-3 |#1| "failed") (-874 (-377 (-517))))) (-15 -3522 (|#1| |#1| |#1|)) (-15 -3183 (|#1| |#1| |#1|)) (-15 -3634 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1349 (-703))) |#1| |#1|)) (-15 -1439 (|#1| |#1| |#1|)) (-15 -1874 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2928 (|#1| |#1| |#1| |#4|)) (-15 -3692 (|#1| |#1| |#1| |#4|)) (-15 -2928 (|#1| |#1| |#1|)) (-15 -3692 (|#1| |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1| |#4|)) (-15 -1440 (|#1| |#1| |#1| |#4|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1497 ((-107) |#1| (-583 |#1|))) (-15 -1497 ((-107) |#1| |#1|)) (-15 -3852 ((-107) |#1| (-583 |#1|))) (-15 -3852 ((-107) |#1| |#1|)) (-15 -1959 ((-107) |#1| (-583 |#1|))) (-15 -1959 ((-107) |#1| |#1|)) (-15 -3283 ((-107) |#1| (-583 |#1|))) (-15 -3283 ((-107) |#1| |#1|)) (-15 -2421 ((-107) |#1| |#1|)) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2791 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1726 ((-583 |#1|) |#1|)) (-15 -2235 ((-583 |#1|) |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -1869 ((-107) |#1|)) (-15 -4156 ((-107) |#1|)) (-15 -1212 (|#1| |#1| |#4|)) (-15 -1191 (|#1| |#1| |#4|)) (-15 -3443 (|#1| |#1|)) (-15 -1628 ((-583 |#1|) |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -3059 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2401 ((-703) |#1|)) (-15 -1976 (|#4| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -1191 (|#2| |#1|)) (-15 -1212 (|#1| |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#3|) $) 110)) (-2352 (((-1069 $) $ |#3|) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-2779 (($ $) 271)) (-2421 (((-107) $ $) 257)) (-4038 (((-3 $ "failed") $ $) 19)) (-3081 (($ $ $) 216 (|has| |#1| (-509)))) (-2788 (((-583 $) $ $) 211 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-874 (-377 (-517)))) 231 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))) (((-3 $ "failed") (-874 (-517))) 228 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073)))))) (((-3 $ "failed") (-874 |#1|)) 225 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-502))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-909 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))))) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135) (($ (-874 (-377 (-517)))) 230 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))) (($ (-874 (-517))) 227 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073)))))) (($ (-874 |#1|)) 224 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-502))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-909 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))))) (-3388 (($ $ $ |#3|) 108 (|has| |#1| (-156))) (($ $ $) 212 (|has| |#1| (-509)))) (-1212 (($ $) 154) (($ $ |#3|) 266)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3283 (((-107) $ $) 256) (((-107) $ (-583 $)) 255)) (-3621 (((-3 $ "failed") $) 34)) (-1869 (((-107) $) 264)) (-1874 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 236)) (-4083 (($ $) 205 (|has| |#1| (-421)))) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-2557 (($ $) 221 (|has| |#1| (-509)))) (-1454 (($ $) 222 (|has| |#1| (-509)))) (-1440 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2489 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1436 (($ $ |#1| |#2| $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1497 (((-107) $ $) 250) (((-107) $ (-583 $)) 249)) (-3239 (($ $ $ $ $) 207 (|has| |#1| (-509)))) (-1976 ((|#3| $) 275)) (-1350 (($ (-1069 |#1|) |#3|) 117) (($ (-1069 $) |#3|) 116)) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-1439 (($ $ $) 235)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 120)) (-4156 (((-107) $) 265)) (-2349 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-2401 (((-703) $) 274)) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 |#2| |#2|) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-1409 (((-3 |#3| "failed") $) 123)) (-3074 (($ $) 202 (|has| |#1| (-421)))) (-1923 (($ $) 203 (|has| |#1| (-421)))) (-1726 (((-583 $) $) 260)) (-2070 (($ $) 263)) (-3622 (($ $) 204 (|has| |#1| (-421)))) (-2235 (((-583 $) $) 261)) (-3839 (($ $) 262)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148) (($ $ |#3|) 267)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $) 234)) (-2669 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 238) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 237)) (-2915 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $) 240) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |#3|) 239)) (-3692 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2928 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3985 (((-1056) $) 9)) (-1855 (($ $ $) 210 (|has| |#1| (-509)))) (-1628 (((-583 $) $) 269)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) 113)) (-3852 (((-107) $ $) 252) (((-107) $ (-583 $)) 251)) (-3522 (($ $ $) 232)) (-2836 (($ $) 273)) (-3411 (((-107) $ $) 258)) (-1959 (((-107) $ $) 254) (((-107) $ (-583 $)) 253)) (-3183 (($ $ $) 233)) (-3059 (($ $) 272)) (-3206 (((-1021) $) 10)) (-3704 (((-2 (|:| -1401 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-509)))) (-3224 (((-2 (|:| -1401 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-509)))) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 ((|#1| |#1| $) 206 (|has| |#1| (-421))) (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-1478 (((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3716 (($ $ |#1|) 219 (|has| |#1| (-509))) (($ $ $) 217 (|has| |#1| (-509)))) (-3068 (($ $ |#1|) 220 (|has| |#1| (-509))) (($ $ $) 218 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3010 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-3127 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-3688 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-2451 (($ $) 270)) (-3443 (($ $) 268)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493))))) (($ (-874 (-377 (-517)))) 229 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))) (($ (-874 (-517))) 226 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073)))))) (($ (-874 |#1|)) 223 (|has| |#3| (-558 (-1073)))) (((-1056) $) 201 (-12 (|has| |#1| (-952 (-517))) (|has| |#3| (-558 (-1073))))) (((-874 |#1|) $) 200 (|has| |#3| (-558 (-1073))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-874 |#1|) $) 199 (|has| |#3| (-558 (-1073)))) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2791 (((-3 (-107) "failed") $ $) 259)) (-2409 (($) 30 T CONST)) (-3872 (($ $ $ $ (-703)) 208 (|has| |#1| (-509)))) (-3051 (($ $ $ (-703)) 209 (|has| |#1| (-509)))) (-2731 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-975 |#1| |#2| |#3|) (-1184) (-961) (-725) (-779)) (T -975)) +((-1976 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-2836 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3059 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2451 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1628 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-3443 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1191 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1212 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3839 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2235 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-1726 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-2791 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3411 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2421 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3283 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3283 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1959 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1959 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3852 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1497 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1497 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1440 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2489 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1440 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2489 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3692 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2928 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3692 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2928 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2915 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) (-2915 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) (-2669 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) (-2669 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) (-1874 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) (-1439 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3634 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1349 (-703)))) (-4 *1 (-975 *3 *4 *5)))) (-3183 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3522 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-1772 (*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3189 (*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3645 (*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-1772 (*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3189 (*1 *1 *2) (-3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *5 (-558 (-1073))) (-4 *4 (-725)) (-4 *5 (-779)))) (-1454 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2557 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3068 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3716 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3068 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3716 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3081 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1478 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3224 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3704 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3388 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2788 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-1855 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3051 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-3872 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-3239 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1401 (*1 *2 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-4083 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3622 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1923 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3074 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421))))) +(-13 (-871 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1976 (|t#3| $)) (-15 -2401 ((-703) $)) (-15 -2836 ($ $)) (-15 -3059 ($ $)) (-15 -2779 ($ $)) (-15 -2451 ($ $)) (-15 -1628 ((-583 $) $)) (-15 -3443 ($ $)) (-15 -1191 ($ $ |t#3|)) (-15 -1212 ($ $ |t#3|)) (-15 -4156 ((-107) $)) (-15 -1869 ((-107) $)) (-15 -2070 ($ $)) (-15 -3839 ($ $)) (-15 -2235 ((-583 $) $)) (-15 -1726 ((-583 $) $)) (-15 -2791 ((-3 (-107) "failed") $ $)) (-15 -3411 ((-107) $ $)) (-15 -2421 ((-107) $ $)) (-15 -3283 ((-107) $ $)) (-15 -3283 ((-107) $ (-583 $))) (-15 -1959 ((-107) $ $)) (-15 -1959 ((-107) $ (-583 $))) (-15 -3852 ((-107) $ $)) (-15 -3852 ((-107) $ (-583 $))) (-15 -1497 ((-107) $ $)) (-15 -1497 ((-107) $ (-583 $))) (-15 -1440 ($ $ $)) (-15 -2489 ($ $ $)) (-15 -1440 ($ $ $ |t#3|)) (-15 -2489 ($ $ $ |t#3|)) (-15 -3692 ($ $ $)) (-15 -2928 ($ $ $)) (-15 -3692 ($ $ $ |t#3|)) (-15 -2928 ($ $ $ |t#3|)) (-15 -2915 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $)) (-15 -2915 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |t#3|)) (-15 -2669 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2669 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |t#3|)) (-15 -1874 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -1439 ($ $ $)) (-15 -3634 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $)) (-15 -3183 ($ $ $)) (-15 -3522 ($ $ $)) (IF (|has| |t#3| (-558 (-1073))) (PROGN (-6 (-557 (-874 |t#1|))) (-6 (-558 (-874 |t#1|))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -1772 ((-3 $ "failed") (-874 (-377 (-517))))) (-15 -3189 ($ (-874 (-377 (-517))))) (-15 -3645 ($ (-874 (-377 (-517))))) (-15 -1772 ((-3 $ "failed") (-874 (-517)))) (-15 -3189 ($ (-874 (-517)))) (-15 -3645 ($ (-874 (-517)))) (IF (|has| |t#1| (-909 (-517))) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 |t#1|))) (-15 -3189 ($ (-874 |t#1|)))))) |noBranch|) (IF (|has| |t#1| (-37 (-517))) (IF (|has| |t#1| (-37 (-377 (-517)))) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 (-517)))) (-15 -3189 ($ (-874 (-517)))) (-15 -3645 ($ (-874 (-517)))) (IF (|has| |t#1| (-502)) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 |t#1|))) (-15 -3189 ($ (-874 |t#1|))))))) |noBranch|) (IF (|has| |t#1| (-37 (-517))) |noBranch| (IF (|has| |t#1| (-37 (-377 (-517)))) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 |t#1|))) (-15 -3189 ($ (-874 |t#1|)))))) (-15 -3645 ($ (-874 |t#1|))) (IF (|has| |t#1| (-952 (-517))) (-6 (-558 (-1056))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -1454 ($ $)) (-15 -2557 ($ $)) (-15 -3068 ($ $ |t#1|)) (-15 -3716 ($ $ |t#1|)) (-15 -3068 ($ $ $)) (-15 -3716 ($ $ $)) (-15 -3081 ($ $ $)) (-15 -1478 ((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3224 ((-2 (|:| -1401 $) (|:| |coef1| $)) $ $)) (-15 -3704 ((-2 (|:| -1401 $) (|:| |coef2| $)) $ $)) (-15 -3388 ($ $ $)) (-15 -2788 ((-583 $) $ $)) (-15 -1855 ($ $ $)) (-15 -3051 ($ $ $ (-703))) (-15 -3872 ($ $ $ $ (-703))) (-15 -3239 ($ $ $ $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -1401 (|t#1| |t#1| $)) (-15 -4083 ($ $)) (-15 -3622 ($ $)) (-15 -1923 ($ $)) (-15 -3074 ($ $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-557 (-874 |#1|)) |has| |#3| (-558 (-1073))) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-558 (-874 |#1|)) |has| |#3| (-558 (-1073))) ((-558 (-1056)) -12 (|has| |#1| (-952 (-517))) (|has| |#3| (-558 (-1073)))) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-871 |#1| |#2| |#3|) . T) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) |has| |#1| (-831))) +((-2814 (((-107) |#3| $) 13)) (-3267 (((-3 $ "failed") |#3| (-843)) 23)) (-3621 (((-3 |#3| "failed") |#3| $) 37)) (-3556 (((-107) |#3| $) 16)) (-2475 (((-107) |#3| $) 14))) +(((-976 |#1| |#2| |#3|) (-10 -8 (-15 -3267 ((-3 |#1| "failed") |#3| (-843))) (-15 -3621 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3556 ((-107) |#3| |#1|)) (-15 -2475 ((-107) |#3| |#1|)) (-15 -2814 ((-107) |#3| |#1|))) (-977 |#2| |#3|) (-13 (-777) (-333)) (-1130 |#2|)) (T -976)) +NIL +(-10 -8 (-15 -3267 ((-3 |#1| "failed") |#3| (-843))) (-15 -3621 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3556 ((-107) |#3| |#1|)) (-15 -2475 ((-107) |#3| |#1|)) (-15 -2814 ((-107) |#3| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) |#2| $) 21)) (-3709 (((-517) |#2| $) 22)) (-3267 (((-3 $ "failed") |#2| (-843)) 15)) (-2002 ((|#1| |#2| $ |#1|) 13)) (-3621 (((-3 |#2| "failed") |#2| $) 18)) (-3556 (((-107) |#2| $) 19)) (-2475 (((-107) |#2| $) 20)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2135 ((|#2| $) 17)) (-2256 (((-787) $) 11)) (-3383 ((|#1| |#2| $ |#1|) 14)) (-3995 (((-583 $) |#2|) 16)) (-1547 (((-107) $ $) 6))) +(((-977 |#1| |#2|) (-1184) (-13 (-777) (-333)) (-1130 |t#1|)) (T -977)) +((-3709 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-517)))) (-2814 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))) (-2475 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))) (-3556 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))) (-3621 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3)))) (-2135 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3)))) (-3995 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-583 *1)) (-4 *1 (-977 *4 *3)))) (-3267 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-977 *4 *2)) (-4 *2 (-1130 *4)))) (-3383 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2)))) (-2002 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2))))) +(-13 (-1003) (-10 -8 (-15 -3709 ((-517) |t#2| $)) (-15 -2814 ((-107) |t#2| $)) (-15 -2475 ((-107) |t#2| $)) (-15 -3556 ((-107) |t#2| $)) (-15 -3621 ((-3 |t#2| "failed") |t#2| $)) (-15 -2135 (|t#2| $)) (-15 -3995 ((-583 $) |t#2|)) (-15 -3267 ((-3 $ "failed") |t#2| (-843))) (-15 -3383 (|t#1| |t#2| $ |t#1|)) (-15 -2002 (|t#1| |t#2| $ |t#1|)))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-3047 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703)) 95)) (-1770 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 55)) (-3830 (((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)) 87)) (-2016 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2567 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 57) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107)) 59)) (-2132 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 78) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 79)) (-3645 (((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 82)) (-3282 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-107)) 54)) (-3800 (((-703) (-583 |#4|) (-583 |#5|)) 19))) +(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-107))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -978)) +((-3830 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) (-3047 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-980 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-978 *7 *8 *9 *10 *11)))) (-2132 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-2132 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-2567 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2567 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-2567 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *7 *8 *9 *3 *4)) (-4 *4 (-980 *7 *8 *9 *3)))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-3282 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-107))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)))) +((-4063 (((-107) |#5| $) 20)) (-1829 (((-107) |#5| $) 23)) (-1538 (((-107) |#5| $) 16) (((-107) $) 44)) (-1812 (((-583 $) |#5| $) NIL) (((-583 $) (-583 |#5|) $) 76) (((-583 $) (-583 |#5|) (-583 $)) 74) (((-583 $) |#5| (-583 $)) 77)) (-1672 (($ $ |#5|) NIL) (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 59) (((-583 $) (-583 |#5|) $) 61) (((-583 $) (-583 |#5|) (-583 $)) 63)) (-3596 (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 53) (((-583 $) (-583 |#5|) $) 55) (((-583 $) (-583 |#5|) (-583 $)) 57)) (-2119 (((-107) |#5| $) 26))) +(((-979 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1672 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1672 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1672 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1672 ((-583 |#1|) |#5| |#1|)) (-15 -3596 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3596 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3596 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3596 ((-583 |#1|) |#5| |#1|)) (-15 -1812 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1812 ((-583 |#1|) |#5| |#1|)) (-15 -1829 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#1|)) (-15 -2119 ((-107) |#5| |#1|)) (-15 -4063 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#5| |#1|)) (-15 -1672 (|#1| |#1| |#5|))) (-980 |#2| |#3| |#4| |#5|) (-421) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -979)) +NIL +(-10 -8 (-15 -1672 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1672 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1672 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1672 ((-583 |#1|) |#5| |#1|)) (-15 -3596 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3596 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3596 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3596 ((-583 |#1|) |#5| |#1|)) (-15 -1812 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1812 ((-583 |#1|) |#5| |#1|)) (-15 -1829 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#1|)) (-15 -2119 ((-107) |#5| |#1|)) (-15 -4063 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#5| |#1|)) (-15 -1672 (|#1| |#1| |#5|))) +((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180))))) +(((-980 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -980)) +((-1538 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-4063 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2119 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1829 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2834 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))) (-3802 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-3802 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2117 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-3955 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))) (-1855 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-2535 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-1812 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-1812 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-1812 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-1812 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-3596 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-3596 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-3596 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-3596 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-2474 (*1 *1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2474 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)))) (-1672 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-1672 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-1672 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-1672 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *5 *6 *7 *8))))) +(-13 (-1102 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1538 ((-107) |t#4| $)) (-15 -4063 ((-107) |t#4| $)) (-15 -2119 ((-107) |t#4| $)) (-15 -1538 ((-107) $)) (-15 -1829 ((-107) |t#4| $)) (-15 -2834 ((-3 (-107) (-583 $)) |t#4| $)) (-15 -3802 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |t#4| $)) (-15 -3802 ((-107) |t#4| $)) (-15 -2117 ((-583 $) |t#4| $)) (-15 -3955 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -1855 ((-583 (-2 (|:| |val| |t#4|) (|:| -3726 $))) |t#4| |t#4| $)) (-15 -2535 ((-583 (-2 (|:| |val| |t#4|) (|:| -3726 $))) |t#4| $)) (-15 -1812 ((-583 $) |t#4| $)) (-15 -1812 ((-583 $) (-583 |t#4|) $)) (-15 -1812 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -1812 ((-583 $) |t#4| (-583 $))) (-15 -3596 ((-583 $) |t#4| $)) (-15 -3596 ((-583 $) |t#4| (-583 $))) (-15 -3596 ((-583 $) (-583 |t#4|) $)) (-15 -3596 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2474 ($ |t#4| $)) (-15 -2474 ($ (-583 |t#4|) $)) (-15 -1672 ((-583 $) |t#4| $)) (-15 -1672 ((-583 $) |t#4| (-583 $))) (-15 -1672 ((-583 $) (-583 |t#4|) $)) (-15 -1672 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -4029 ((-583 $) (-583 |t#4|) (-107))))) +(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T)) +((-3932 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|) 81)) (-2193 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 112)) (-3135 (((-583 |#5|) |#4| |#5|) 70)) (-3770 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-1588 (((-1158)) 35)) (-3615 (((-1158)) 25)) (-1448 (((-1158) (-1056) (-1056) (-1056)) 31)) (-2183 (((-1158) (-1056) (-1056) (-1056)) 20)) (-2031 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|) 95)) (-1719 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107)) 106) (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-3782 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 101))) +(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -2031 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3782 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2193 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -3770 ((-107) |#4| |#5|)) (-15 -3770 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3135 ((-583 |#5|) |#4| |#5|)) (-15 -3932 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -981)) +((-3932 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3135 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2193 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3782 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1719 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-981 *6 *7 *4 *8 *9)))) (-1719 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-2031 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1588 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1448 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3615 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-2183 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7))))) +(-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -2031 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3782 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2193 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -3770 ((-107) |#4| |#5|)) (-15 -3770 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3135 ((-583 |#5|) |#4| |#5|)) (-15 -3932 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|))) +((-2750 (((-107) $ $) NIL)) (-1207 (((-1073) $) 8)) (-3985 (((-1056) $) 16)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 13))) +(((-982 |#1|) (-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $)))) (-1073)) (T -982)) +((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-982 *3)) (-14 *3 *2)))) +(-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $)))) +((-2750 (((-107) $ $) NIL)) (-3820 (($ $ (-583 (-1073)) (-1 (-107) (-583 |#3|))) 29)) (-2631 (($ |#3| |#3|) 21) (($ |#3| |#3| (-583 (-1073))) 19)) (-3616 ((|#3| $) 13)) (-1772 (((-3 (-265 |#3|) "failed") $) 56)) (-3189 (((-265 |#3|) $) NIL)) (-2876 (((-583 (-1073)) $) 15)) (-2185 (((-814 |#1|) $) 11)) (-3603 ((|#3| $) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1449 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-843)) 36)) (-2256 (((-787) $) 84) (($ (-265 |#3|)) 20)) (-1547 (((-107) $ $) 33))) +(((-983 |#1| |#2| |#3|) (-13 (-1003) (-258 |#3| |#3|) (-952 (-265 |#3|)) (-10 -8 (-15 -2631 ($ |#3| |#3|)) (-15 -2631 ($ |#3| |#3| (-583 (-1073)))) (-15 -3820 ($ $ (-583 (-1073)) (-1 (-107) (-583 |#3|)))) (-15 -2185 ((-814 |#1|) $)) (-15 -3603 (|#3| $)) (-15 -3616 (|#3| $)) (-15 -1449 (|#3| $ |#3| (-843))) (-15 -2876 ((-583 (-1073)) $)))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -983)) +((-2631 (*1 *1 *2 *2) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))) (-2631 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-3820 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *6)))) (-2185 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 *2))) (-5 *2 (-814 *3)) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 *2))))) (-3603 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) (-3616 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) (-1449 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-2876 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-1073))) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3))))))) +(-13 (-1003) (-258 |#3| |#3|) (-952 (-265 |#3|)) (-10 -8 (-15 -2631 ($ |#3| |#3|)) (-15 -2631 ($ |#3| |#3| (-583 (-1073)))) (-15 -3820 ($ $ (-583 (-1073)) (-1 (-107) (-583 |#3|)))) (-15 -2185 ((-814 |#1|) $)) (-15 -3603 (|#3| $)) (-15 -3616 (|#3| $)) (-15 -1449 (|#3| $ |#3| (-843))) (-15 -2876 ((-583 (-1073)) $)))) +((-2750 (((-107) $ $) NIL)) (-3788 (($ (-583 (-983 |#1| |#2| |#3|))) 12)) (-3455 (((-583 (-983 |#1| |#2| |#3|)) $) 19)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1449 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-843)) 25)) (-2256 (((-787) $) 15)) (-1547 (((-107) $ $) 18))) +(((-984 |#1| |#2| |#3|) (-13 (-1003) (-258 |#3| |#3|) (-10 -8 (-15 -3788 ($ (-583 (-983 |#1| |#2| |#3|)))) (-15 -3455 ((-583 (-983 |#1| |#2| |#3|)) $)) (-15 -1449 (|#3| $ |#3| (-843))))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -984)) +((-3788 (*1 *1 *2) (-12 (-5 *2 (-583 (-983 *3 *4 *5))) (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-984 *3 *4 *5)))) (-3455 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-983 *3 *4 *5))) (-5 *1 (-984 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))) (-1449 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4))))))) +(-13 (-1003) (-258 |#3| |#3|) (-10 -8 (-15 -3788 ($ (-583 (-983 |#1| |#2| |#3|)))) (-15 -3455 ((-583 (-983 |#1| |#2| |#3|)) $)) (-15 -1449 (|#3| $ |#3| (-843))))) +((-4064 (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)) 73) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|))) 75) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107)) 74))) +(((-985 |#1| |#2|) (-10 -7 (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)))) (-13 (-278) (-134)) (-583 (-1073))) (T -985)) +((-4064 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))))) (-4064 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-985 *4 *5)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))))) (-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073)))))) +(-10 -7 (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)))) +((-3755 (((-388 |#3|) |#3|) 16))) +(((-986 |#1| |#2| |#3|) (-10 -7 (-15 -3755 ((-388 |#3|) |#3|))) (-1130 (-377 (-517))) (-13 (-333) (-134) (-657 (-377 (-517)) |#1|)) (-1130 |#2|)) (T -986)) +((-3755 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1130 *5))))) +(-10 -7 (-15 -3755 ((-388 |#3|) |#3|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 125)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-333)))) (-1213 (($ $) NIL (|has| |#1| (-333)))) (-2454 (((-107) $) NIL (|has| |#1| (-333)))) (-3055 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) 115)) (-1472 ((|#1| $) 119)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1611 (((-703)) 40 (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|) (-1153 $)) NIL) (($ (-1153 |#1|)) 43)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-2410 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 106) (((-623 |#1|) (-623 $)) 100)) (-3225 (($ |#2|) 61) (((-3 $ "failed") (-377 |#2|)) NIL (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-2261 (((-843)) 77)) (-3209 (($) 44 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3442 (($) NIL (|has| |#1| (-319)))) (-3391 (((-107) $) NIL (|has| |#1| (-319)))) (-2378 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3972 (((-843) $) NIL (|has| |#1| (-319))) (((-765 (-843)) $) NIL (|has| |#1| (-319)))) (-3848 (((-107) $) NIL)) (-1506 ((|#1| $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3777 ((|#2| $) 84 (|has| |#1| (-333)))) (-1549 (((-843) $) 129 (|has| |#1| (-338)))) (-3216 ((|#2| $) 58)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-2836 (($) NIL (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) 124 (|has| |#1| (-338)))) (-3206 (((-1021) $) NIL)) (-3220 (($) 121)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-319)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3010 ((|#1| (-1153 $)) NIL) ((|#1|) 109)) (-1620 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-3127 (($ $) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2135 ((|#2|) 73)) (-1766 (($) NIL (|has| |#1| (-319)))) (-4114 (((-1153 |#1|) $ (-1153 $)) 89) (((-623 |#1|) (-1153 $) (-1153 $)) NIL) (((-1153 |#1|) $) 71) (((-623 |#1|) (-1153 $)) 85)) (-3645 (((-1153 |#1|) $) NIL) (($ (-1153 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-319)))) (-2256 (((-787) $) 57) (($ (-517)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-333))) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3669 ((|#2| $) 82)) (-2961 (((-703)) 75)) (-1753 (((-1153 $)) 81)) (-3329 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 30 T CONST)) (-2409 (($) 19 T CONST)) (-2731 (($ $) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-1547 (((-107) $ $) 63)) (-1667 (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) 67) (($ $ $) NIL)) (-1642 (($ $ $) 65)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))))) +(((-987 |#1| |#2| |#3|) (-657 |#1| |#2|) (-156) (-1130 |#1|) |#2|) (T -987)) +NIL +(-657 |#1| |#2|) +((-3755 (((-388 |#3|) |#3|) 16))) +(((-988 |#1| |#2| |#3|) (-10 -7 (-15 -3755 ((-388 |#3|) |#3|))) (-1130 (-377 (-874 (-517)))) (-13 (-333) (-134) (-657 (-377 (-874 (-517))) |#1|)) (-1130 |#2|)) (T -988)) +((-3755 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-874 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-874 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1130 *5))))) +(-10 -7 (-15 -3755 ((-388 |#3|) |#3|))) +((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) 14)) (-3099 (($ $ $) 15)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3764 (($) 6)) (-3645 (((-1073) $) 18)) (-2256 (((-787) $) 12)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 13)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 8))) +(((-989) (-13 (-779) (-10 -8 (-15 -3764 ($)) (-15 -3645 ((-1073) $))))) (T -989)) +((-3764 (*1 *1) (-5 *1 (-989))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-989))))) +(-13 (-779) (-10 -8 (-15 -3764 ($)) (-15 -3645 ((-1073) $)))) +((-1599 ((|#1| |#1| (-1 (-517) |#1| |#1|)) 21) ((|#1| |#1| (-1 (-107) |#1|)) 18)) (-1396 (((-1158)) 15)) (-2062 (((-583 |#1|)) 9))) +(((-990 |#1|) (-10 -7 (-15 -1396 ((-1158))) (-15 -2062 ((-583 |#1|))) (-15 -1599 (|#1| |#1| (-1 (-107) |#1|))) (-15 -1599 (|#1| |#1| (-1 (-517) |#1| |#1|)))) (-124)) (T -990)) +((-1599 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) (-1599 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) (-2062 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-990 *3)) (-4 *3 (-124)))) (-1396 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-990 *3)) (-4 *3 (-124))))) +(-10 -7 (-15 -1396 ((-1158))) (-15 -2062 ((-583 |#1|))) (-15 -1599 (|#1| |#1| (-1 (-107) |#1|))) (-15 -1599 (|#1| |#1| (-1 (-517) |#1| |#1|)))) +((-3533 (((-1153 (-623 |#1|)) (-583 (-623 |#1|))) 41) (((-1153 (-623 (-874 |#1|))) (-583 (-1073)) (-623 (-874 |#1|))) 60) (((-1153 (-623 (-377 (-874 |#1|)))) (-583 (-1073)) (-623 (-377 (-874 |#1|)))) 76)) (-4114 (((-1153 |#1|) (-623 |#1|) (-583 (-623 |#1|))) 35))) +(((-991 |#1|) (-10 -7 (-15 -3533 ((-1153 (-623 (-377 (-874 |#1|)))) (-583 (-1073)) (-623 (-377 (-874 |#1|))))) (-15 -3533 ((-1153 (-623 (-874 |#1|))) (-583 (-1073)) (-623 (-874 |#1|)))) (-15 -3533 ((-1153 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -4114 ((-1153 |#1|) (-623 |#1|) (-583 (-623 |#1|))))) (-333)) (T -991)) +((-4114 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1153 *5)) (-5 *1 (-991 *5)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-991 *4)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-874 *5)))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-874 *5))))) (-3533 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-377 (-874 *5))))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-377 (-874 *5))))))) +(-10 -7 (-15 -3533 ((-1153 (-623 (-377 (-874 |#1|)))) (-583 (-1073)) (-623 (-377 (-874 |#1|))))) (-15 -3533 ((-1153 (-623 (-874 |#1|))) (-583 (-1073)) (-623 (-874 |#1|)))) (-15 -3533 ((-1153 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -4114 ((-1153 |#1|) (-623 |#1|) (-583 (-623 |#1|))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3469 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1073)) NIL)) (-2932 (((-703) $) NIL) (((-703) $ (-1073)) NIL)) (-1364 (((-583 (-993 (-1073))) $) NIL)) (-2352 (((-1069 $) $ (-993 (-1073))) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-993 (-1073)))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3960 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-993 (-1073)) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL) (((-3 (-1026 |#1| (-1073)) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-993 (-1073)) $) NIL) (((-1073) $) NIL) (((-1026 |#1| (-1073)) $) NIL)) (-3388 (($ $ $ (-993 (-1073))) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-993 (-1073))) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 (-993 (-1073))) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-993 (-1073)) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-993 (-1073)) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ (-1073)) NIL) (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) (-993 (-1073))) NIL) (($ (-1069 $) (-993 (-1073))) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-993 (-1073))) NIL)) (-2349 (((-489 (-993 (-1073))) $) NIL) (((-703) $ (-993 (-1073))) NIL) (((-583 (-703)) $ (-583 (-993 (-1073)))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 (-993 (-1073))) (-489 (-993 (-1073)))) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2656 (((-1 $ (-703)) (-1073)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1409 (((-3 (-993 (-1073)) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-2133 (((-993 (-1073)) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2982 (((-107) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-993 (-1073))) (|:| -2077 (-703))) "failed") $) NIL)) (-2604 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-993 (-1073)) |#1|) NIL) (($ $ (-583 (-993 (-1073))) (-583 |#1|)) NIL) (($ $ (-993 (-1073)) $) NIL) (($ $ (-583 (-993 (-1073))) (-583 $)) NIL) (($ $ (-1073) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3010 (($ $ (-993 (-1073))) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-993 (-1073))) NIL) (($ $ (-583 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1890 (((-583 (-1073)) $) NIL)) (-3688 (((-489 (-993 (-1073))) $) NIL) (((-703) $ (-993 (-1073))) NIL) (((-583 (-703)) $ (-583 (-993 (-1073)))) NIL) (((-703) $ (-1073)) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-993 (-1073)) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-993 (-1073)) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-993 (-1073)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-993 (-1073))) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-993 (-1073))) NIL) (($ (-1073)) NIL) (($ (-1026 |#1| (-1073))) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-993 (-1073))) NIL) (($ $ (-583 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-992 |#1|) (-13 (-226 |#1| (-1073) (-993 (-1073)) (-489 (-993 (-1073)))) (-952 (-1026 |#1| (-1073)))) (-961)) (T -992)) +NIL +(-13 (-226 |#1| (-1073) (-993 (-1073)) (-489 (-993 (-1073)))) (-952 (-1026 |#1| (-1073)))) +((-2750 (((-107) $ $) NIL)) (-2932 (((-703) $) NIL)) (-1638 ((|#1| $) 10)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3972 (((-703) $) 11)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2656 (($ |#1| (-703)) 9)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3127 (($ $) NIL) (($ $ (-703)) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 15))) +(((-993 |#1|) (-239 |#1|) (-779)) (T -993)) +NIL +(-239 |#1|) +((-1893 (((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 23 (|has| |#1| (-777))) (((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 14))) +(((-994 |#1| |#2|) (-10 -7 (-15 -1893 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|))) |noBranch|)) (-1108) (-1108)) (T -994)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-994 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-998 *6)) (-5 *1 (-994 *5 *6))))) +(-10 -7 (-15 -1893 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|))) |noBranch|)) +((-1893 (((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)) 19))) +(((-995 |#1| |#2|) (-10 -7 (-15 -1893 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)))) (-1108) (-1108)) (T -995)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-996 *6)) (-5 *1 (-995 *5 *6))))) +(-10 -7 (-15 -1893 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1638 (((-1073) $) 11)) (-2515 (((-998 |#1|) $) 12)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2126 (($ (-1073) (-998 |#1|)) 10)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1547 (((-107) $ $) 15 (|has| |#1| (-1003))))) +(((-996 |#1|) (-13 (-1108) (-10 -8 (-15 -2126 ($ (-1073) (-998 |#1|))) (-15 -1638 ((-1073) $)) (-15 -2515 ((-998 |#1|) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1108)) (T -996)) +((-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-998 *4)) (-4 *4 (-1108)) (-5 *1 (-996 *4)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-996 *3)) (-4 *3 (-1108)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-998 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1108))))) +(-13 (-1108) (-10 -8 (-15 -2126 ($ (-1073) (-998 |#1|))) (-15 -1638 ((-1073) $)) (-15 -2515 ((-998 |#1|) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) +((-2515 (($ |#1| |#1|) 7)) (-3100 ((|#1| $) 10)) (-3310 ((|#1| $) 12)) (-3320 (((-517) $) 8)) (-3521 ((|#1| $) 9)) (-3330 ((|#1| $) 11)) (-3645 (($ |#1|) 6)) (-2881 (($ |#1| |#1|) 14)) (-1321 (($ $ (-517)) 13))) +(((-997 |#1|) (-1184) (-1108)) (T -997)) +((-2881 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-1321 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-997 *3)) (-4 *3 (-1108)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1108)) (-5 *2 (-517)))) (-2515 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108))))) +(-13 (-1108) (-10 -8 (-15 -2881 ($ |t#1| |t#1|)) (-15 -1321 ($ $ (-517))) (-15 -3310 (|t#1| $)) (-15 -3330 (|t#1| $)) (-15 -3100 (|t#1| $)) (-15 -3521 (|t#1| $)) (-15 -3320 ((-517) $)) (-15 -2515 ($ |t#1| |t#1|)) (-15 -3645 ($ |t#1|)))) +(((-1108) . T)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2515 (($ |#1| |#1|) 15)) (-1893 (((-583 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-777)))) (-3100 ((|#1| $) 10)) (-3310 ((|#1| $) 9)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3320 (((-517) $) 14)) (-3521 ((|#1| $) 12)) (-3330 ((|#1| $) 11)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3502 (((-583 |#1|) $) 35 (|has| |#1| (-777))) (((-583 |#1|) (-583 $)) 34 (|has| |#1| (-777)))) (-3645 (($ |#1|) 26)) (-2256 (((-787) $) 25 (|has| |#1| (-1003)))) (-2881 (($ |#1| |#1|) 8)) (-1321 (($ $ (-517)) 16)) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003))))) +(((-998 |#1|) (-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-583 |#1|))) |noBranch|))) (-1108)) (T -998)) +NIL +(-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-583 |#1|))) |noBranch|))) +((-2515 (($ |#1| |#1|) 7)) (-1893 ((|#2| (-1 |#1| |#1|) $) 16)) (-3100 ((|#1| $) 10)) (-3310 ((|#1| $) 12)) (-3320 (((-517) $) 8)) (-3521 ((|#1| $) 9)) (-3330 ((|#1| $) 11)) (-3502 ((|#2| (-583 $)) 18) ((|#2| $) 17)) (-3645 (($ |#1|) 6)) (-2881 (($ |#1| |#1|) 14)) (-1321 (($ $ (-517)) 13))) +(((-999 |#1| |#2|) (-1184) (-777) (-1047 |t#1|)) (T -999)) +((-3502 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1047 *3)))) (-1893 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4))))) +(-13 (-997 |t#1|) (-10 -8 (-15 -3502 (|t#2| (-583 $))) (-15 -3502 (|t#2| $)) (-15 -1893 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-997 |#1|) . T) ((-1108) . T)) +((-1413 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3245 (($ $ $) 10)) (-3170 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1000 |#1| |#2|) (-10 -8 (-15 -1413 (|#1| |#2| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3170 (|#1| |#1| |#1|))) (-1001 |#2|) (-1003)) (T -1000)) +NIL +(-10 -8 (-15 -1413 (|#1| |#2| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3170 (|#1| |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-1413 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3245 (($ $ $) 20)) (-3009 (((-107) $ $) 19)) (-2953 (((-107) $ (-703)) 35)) (-1362 (($) 25) (($ (-583 |#1|)) 24)) (-3536 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4180)))) (-3092 (($) 36 T CONST)) (-1679 (($ $) 59 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 43 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 34)) (-2560 (((-583 |#1|) $) 44 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 46 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 38)) (-3847 (((-107) $ (-703)) 33)) (-3985 (((-1056) $) 9)) (-1812 (($ $ $) 23)) (-3206 (((-1021) $) 10)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 52)) (-2048 (((-107) (-1 (-107) |#1|) $) 41 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 50 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 48 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-265 |#1|))) 47 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 29)) (-3619 (((-107) $) 32)) (-1746 (($) 31)) (-3170 (($ $ $) 22) (($ $ |#1|) 21)) (-3217 (((-703) |#1| $) 45 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#1|) $) 42 (|has| $ (-6 -4180)))) (-2433 (($ $) 30)) (-3645 (((-493) $) 60 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 51)) (-2256 (((-787) $) 11)) (-3167 (($) 27) (($ (-583 |#1|)) 26)) (-3675 (((-107) (-1 (-107) |#1|) $) 40 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 6)) (-1572 (((-107) $ $) 28)) (-2296 (((-703) $) 37 (|has| $ (-6 -4180))))) +(((-1001 |#1|) (-1184) (-1003)) (T -1001)) +((-1572 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-3167 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-1362 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-1812 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3170 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3170 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3245 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-1413 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1413 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1413 (*1 *1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) +(-13 (-1003) (-138 |t#1|) (-10 -8 (-6 -4170) (-15 -1572 ((-107) $ $)) (-15 -3167 ($)) (-15 -3167 ($ (-583 |t#1|))) (-15 -1362 ($)) (-15 -1362 ($ (-583 |t#1|))) (-15 -1812 ($ $ $)) (-15 -3170 ($ $ $)) (-15 -3170 ($ $ |t#1|)) (-15 -3245 ($ $ $)) (-15 -3009 ((-107) $ $)) (-15 -1413 ($ $ $)) (-15 -1413 ($ $ |t#1|)) (-15 -1413 ($ |t#1| $)))) +(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) . T) ((-1108) . T)) +((-3985 (((-1056) $) 10)) (-3206 (((-1021) $) 8))) +(((-1002 |#1|) (-10 -8 (-15 -3985 ((-1056) |#1|)) (-15 -3206 ((-1021) |#1|))) (-1003)) (T -1002)) +NIL +(-10 -8 (-15 -3985 ((-1056) |#1|)) (-15 -3206 ((-1021) |#1|))) +((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6))) +(((-1003) (-1184)) (T -1003)) +((-3206 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1021)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1056))))) +(-13 (-97) (-557 (-787)) (-10 -8 (-15 -3206 ((-1021) $)) (-15 -3985 ((-1056) $)))) +(((-97) . T) ((-557 (-787)) . T)) +((-2750 (((-107) $ $) NIL)) (-1611 (((-703)) 30)) (-4126 (($ (-583 (-843))) 52)) (-1842 (((-3 $ "failed") $ (-843) (-843)) 57)) (-3209 (($) 32)) (-2787 (((-107) (-843) $) 35)) (-1549 (((-843) $) 50)) (-3985 (((-1056) $) NIL)) (-3448 (($ (-843)) 31)) (-4030 (((-3 $ "failed") $ (-843)) 55)) (-3206 (((-1021) $) NIL)) (-2260 (((-1153 $)) 40)) (-2175 (((-583 (-843)) $) 23)) (-1330 (((-703) $ (-843) (-843)) 56)) (-2256 (((-787) $) 29)) (-1547 (((-107) $ $) 21))) +(((-1004 |#1| |#2|) (-13 (-338) (-10 -8 (-15 -4030 ((-3 $ "failed") $ (-843))) (-15 -1842 ((-3 $ "failed") $ (-843) (-843))) (-15 -2175 ((-583 (-843)) $)) (-15 -4126 ($ (-583 (-843)))) (-15 -2260 ((-1153 $))) (-15 -2787 ((-107) (-843) $)) (-15 -1330 ((-703) $ (-843) (-843))))) (-843) (-843)) (T -1004)) +((-4030 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1842 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2260 (*1 *2) (-12 (-5 *2 (-1153 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2787 (*1 *2 *3 *1) (-12 (-5 *3 (-843)) (-5 *2 (-107)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1330 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-703)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-338) (-10 -8 (-15 -4030 ((-3 $ "failed") $ (-843))) (-15 -1842 ((-3 $ "failed") $ (-843) (-843))) (-15 -2175 ((-583 (-843)) $)) (-15 -4126 ($ (-583 (-843)))) (-15 -2260 ((-1153 $))) (-15 -2787 ((-107) (-843) $)) (-15 -1330 ((-703) $ (-843) (-843))))) +((-2750 (((-107) $ $) NIL)) (-3416 (($) NIL (|has| |#1| (-338)))) (-1413 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-3245 (($ $ $) 71)) (-3009 (((-107) $ $) 72)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-1362 (($ (-583 |#1|)) NIL) (($) 13)) (-2337 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) 67 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4180)))) (-3209 (($) NIL (|has| |#1| (-338)))) (-1536 (((-583 |#1|) $) 19 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2967 ((|#1| $) 57 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 66 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3099 ((|#1| $) 55 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 34)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 69)) (-3309 ((|#1| $) 25)) (-1710 (($ |#1| $) 65)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3206 (((-1021) $) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 31)) (-4006 ((|#1| $) 27)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 21)) (-1746 (($) 11)) (-3170 (($ $ |#1|) NIL) (($ $ $) 70)) (-3089 (($) NIL) (($ (-583 |#1|)) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 16)) (-3645 (((-493) $) 52 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 61)) (-1819 (($ $) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL)) (-2201 (((-703) $) NIL)) (-3167 (($ (-583 |#1|)) NIL) (($) 12)) (-1222 (($ (-583 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 54)) (-1572 (((-107) $ $) NIL)) (-2296 (((-703) $) 10 (|has| $ (-6 -4180))))) +(((-1005 |#1|) (-395 |#1|) (-1003)) (T -1005)) +NIL +(-395 |#1|) +((-2750 (((-107) $ $) 7)) (-2710 (((-107) $) 32)) (-3881 ((|#2| $) 27)) (-2347 (((-107) $) 33)) (-3890 ((|#1| $) 28)) (-1533 (((-107) $) 35)) (-2636 (((-107) $) 37)) (-3567 (((-107) $) 34)) (-3985 (((-1056) $) 9)) (-1973 (((-107) $) 31)) (-3912 ((|#3| $) 26)) (-3206 (((-1021) $) 10)) (-2056 (((-107) $) 30)) (-4005 ((|#4| $) 25)) (-1556 ((|#5| $) 24)) (-2131 (((-107) $ $) 38)) (-1449 (($ $ (-517)) 14) (($ $ (-583 (-517))) 13)) (-3814 (((-583 $) $) 29)) (-3645 (($ (-583 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2256 (((-787) $) 11)) (-2705 (($ $) 16)) (-2694 (($ $) 17)) (-1491 (((-107) $) 36)) (-1547 (((-107) $ $) 6)) (-2296 (((-517) $) 15))) +(((-1006 |#1| |#2| |#3| |#4| |#5|) (-1184) (-1003) (-1003) (-1003) (-1003) (-1003)) (T -1006)) +((-2131 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2056 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3814 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *2 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-2694 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-2705 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-2296 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-517)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003))))) +(-13 (-1003) (-10 -8 (-15 -2131 ((-107) $ $)) (-15 -2636 ((-107) $)) (-15 -1491 ((-107) $)) (-15 -1533 ((-107) $)) (-15 -3567 ((-107) $)) (-15 -2347 ((-107) $)) (-15 -2710 ((-107) $)) (-15 -1973 ((-107) $)) (-15 -2056 ((-107) $)) (-15 -3814 ((-583 $) $)) (-15 -3890 (|t#1| $)) (-15 -3881 (|t#2| $)) (-15 -3912 (|t#3| $)) (-15 -4005 (|t#4| $)) (-15 -1556 (|t#5| $)) (-15 -3645 ($ (-583 $))) (-15 -3645 ($ |t#1|)) (-15 -3645 ($ |t#2|)) (-15 -3645 ($ |t#3|)) (-15 -3645 ($ |t#4|)) (-15 -3645 ($ |t#5|)) (-15 -2694 ($ $)) (-15 -2705 ($ $)) (-15 -2296 ((-517) $)) (-15 -1449 ($ $ (-517))) (-15 -1449 ($ $ (-583 (-517)))))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2710 (((-107) $) NIL)) (-3881 (((-1073) $) NIL)) (-2347 (((-107) $) NIL)) (-3890 (((-1056) $) NIL)) (-1533 (((-107) $) NIL)) (-2636 (((-107) $) NIL)) (-3567 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-1973 (((-107) $) NIL)) (-3912 (((-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-2056 (((-107) $) NIL)) (-4005 (((-199) $) NIL)) (-1556 (((-787) $) NIL)) (-2131 (((-107) $ $) NIL)) (-1449 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3814 (((-583 $) $) NIL)) (-3645 (($ (-583 $)) NIL) (($ (-1056)) NIL) (($ (-1073)) NIL) (($ (-517)) NIL) (($ (-199)) NIL) (($ (-787)) NIL)) (-2256 (((-787) $) NIL)) (-2705 (($ $) NIL)) (-2694 (($ $) NIL)) (-1491 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-517) $) NIL))) +(((-1007) (-1006 (-1056) (-1073) (-517) (-199) (-787))) (T -1007)) +NIL +(-1006 (-1056) (-1073) (-517) (-199) (-787)) +((-2750 (((-107) $ $) NIL)) (-2710 (((-107) $) 37)) (-3881 ((|#2| $) 41)) (-2347 (((-107) $) 36)) (-3890 ((|#1| $) 40)) (-1533 (((-107) $) 34)) (-2636 (((-107) $) 14)) (-3567 (((-107) $) 35)) (-3985 (((-1056) $) NIL)) (-1973 (((-107) $) 38)) (-3912 ((|#3| $) 43)) (-3206 (((-1021) $) NIL)) (-2056 (((-107) $) 39)) (-4005 ((|#4| $) 42)) (-1556 ((|#5| $) 44)) (-2131 (((-107) $ $) 33)) (-1449 (($ $ (-517)) 55) (($ $ (-583 (-517))) 57)) (-3814 (((-583 $) $) 21)) (-3645 (($ (-583 $)) 45) (($ |#1|) 46) (($ |#2|) 47) (($ |#3|) 48) (($ |#4|) 49) (($ |#5|) 50)) (-2256 (((-787) $) 22)) (-2705 (($ $) 20)) (-2694 (($ $) 51)) (-1491 (((-107) $) 18)) (-1547 (((-107) $ $) 32)) (-2296 (((-517) $) 53))) +(((-1008 |#1| |#2| |#3| |#4| |#5|) (-1006 |#1| |#2| |#3| |#4| |#5|) (-1003) (-1003) (-1003) (-1003) (-1003)) (T -1008)) +NIL +(-1006 |#1| |#2| |#3| |#4| |#5|) +((-4155 (((-1158) $) 23)) (-2231 (($ (-1073) (-404) |#2|) 11)) (-2256 (((-787) $) 16))) +(((-1009 |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2231 ($ (-1073) (-404) |#2|)))) (-779) (-400 |#1|)) (T -1009)) +((-2231 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1009 *5 *4)) (-4 *4 (-400 *5))))) +(-13 (-365) (-10 -8 (-15 -2231 ($ (-1073) (-404) |#2|)))) +((-3471 (((-107) |#5| |#5|) 37)) (-1331 (((-107) |#5| |#5|) 51)) (-3499 (((-107) |#5| (-583 |#5|)) 74) (((-107) |#5| |#5|) 60)) (-2254 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-1837 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 62)) (-4034 (((-1158)) 33)) (-1882 (((-1158) (-1056) (-1056) (-1056)) 29)) (-3694 (((-583 |#5|) (-583 |#5|)) 81)) (-2197 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) 79)) (-2871 (((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 101)) (-3576 (((-107) |#5| |#5|) 46)) (-2954 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3506 (((-107) (-583 |#4|) (-583 |#4|)) 56)) (-1451 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-3411 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-3444 (((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 97)) (-1634 (((-583 |#5|) (-583 |#5|)) 42))) +(((-1010 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -1010)) +((-3444 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) (-2871 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))) (-3499 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-2954 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3411 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1451 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3506 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-2254 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3576 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3471 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-4034 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1882 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7))))) +(-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) +((-3990 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|) 94)) (-3305 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|) 70)) (-1806 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 88)) (-1824 (((-583 |#5|) |#4| |#5|) 109)) (-3575 (((-583 |#5|) |#4| |#5|) 116)) (-2290 (((-583 |#5|) |#4| |#5|) 117)) (-2487 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 95)) (-1258 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 115)) (-1517 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-2395 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107)) 82) (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-3918 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 77)) (-1588 (((-1158)) 35)) (-3615 (((-1158)) 25)) (-1448 (((-1158) (-1056) (-1056) (-1056)) 31)) (-2183 (((-1158) (-1056) (-1056) (-1056)) 20))) +(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -3305 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3918 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1806 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1517 ((-107) |#4| |#5|)) (-15 -2487 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -1824 ((-583 |#5|) |#4| |#5|)) (-15 -1258 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3575 ((-583 |#5|) |#4| |#5|)) (-15 -1517 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -2290 ((-583 |#5|) |#4| |#5|)) (-15 -3990 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -1011)) +((-3990 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2290 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1517 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3575 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1258 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1824 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2487 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1517 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1806 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3918 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2395 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-1011 *6 *7 *4 *8 *9)))) (-2395 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-3305 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1588 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1448 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3615 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-2183 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7))))) +(-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -3305 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3918 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1806 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1517 ((-107) |#4| |#5|)) (-15 -2487 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -1824 ((-583 |#5|) |#4| |#5|)) (-15 -1258 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3575 ((-583 |#5|) |#4| |#5|)) (-15 -1517 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -2290 ((-583 |#5|) |#4| |#5|)) (-15 -3990 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|))) +((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180))))) +(((-1012 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1012)) +NIL +(-13 (-980 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T)) +((-2291 (((-583 (-517)) (-517) (-517) (-517)) 20)) (-2080 (((-583 (-517)) (-517) (-517) (-517)) 12)) (-1762 (((-583 (-517)) (-517) (-517) (-517)) 16)) (-3031 (((-517) (-517) (-517)) 9)) (-3235 (((-1153 (-517)) (-583 (-517)) (-1153 (-517)) (-517)) 44) (((-1153 (-517)) (-1153 (-517)) (-1153 (-517)) (-517)) 39)) (-2772 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107)) 26)) (-3431 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 43)) (-3101 (((-623 (-517)) (-583 (-517)) (-583 (-517))) 31)) (-2893 (((-583 (-623 (-517))) (-583 (-517))) 33)) (-2004 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 46)) (-3763 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517))) 54))) +(((-1013) (-10 -7 (-15 -3763 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2004 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2893 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3101 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3431 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2772 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -3235 ((-1153 (-517)) (-1153 (-517)) (-1153 (-517)) (-517))) (-15 -3235 ((-1153 (-517)) (-583 (-517)) (-1153 (-517)) (-517))) (-15 -3031 ((-517) (-517) (-517))) (-15 -1762 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2080 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2291 ((-583 (-517)) (-517) (-517) (-517))))) (T -1013)) +((-2291 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-2080 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-1762 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1013)))) (-3235 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1013)))) (-3235 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-517)) (-5 *1 (-1013)))) (-2772 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1013)))) (-3431 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1013)))) (-3101 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1013)))) (-2004 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1013)))) (-3763 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013))))) +(-10 -7 (-15 -3763 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2004 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2893 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3101 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3431 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2772 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -3235 ((-1153 (-517)) (-1153 (-517)) (-1153 (-517)) (-517))) (-15 -3235 ((-1153 (-517)) (-583 (-517)) (-1153 (-517)) (-517))) (-15 -3031 ((-517) (-517) (-517))) (-15 -1762 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2080 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2291 ((-583 (-517)) (-517) (-517) (-517)))) +((-2207 (($ $ (-843)) 12)) (** (($ $ (-843)) 10))) +(((-1014 |#1|) (-10 -8 (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-1015)) (T -1014)) +NIL +(-10 -8 (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) +((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 14)) (* (($ $ $) 15))) +(((-1015) (-1184)) (T -1015)) +((* (*1 *1 *1 *1) (-4 *1 (-1015))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843))))) +(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-843))) (-15 -2207 ($ $ (-843))))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL (|has| |#3| (-1003)))) (-2814 (((-107) $) NIL (|has| |#3| (-123)))) (-2847 (($ (-843)) NIL (|has| |#3| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#3| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#3| (-123)))) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#3| (-338)))) (-3709 (((-517) $) NIL (|has| |#3| (-777)))) (-2411 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) ((|#3| $) NIL (|has| |#3| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) NIL (|has| |#3| (-961))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-961)))) (-3621 (((-3 $ "failed") $) NIL (|has| |#3| (-961)))) (-3209 (($) NIL (|has| |#3| (-338)))) (-1445 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#3| $ (-517)) 12)) (-3556 (((-107) $) NIL (|has| |#3| (-777)))) (-1536 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#3| (-961)))) (-2475 (((-107) $) NIL (|has| |#3| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2560 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1433 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#3| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#3| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#3| (-338)))) (-3206 (((-1021) $) NIL (|has| |#3| (-1003)))) (-1647 ((|#3| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#3|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-1941 (((-583 |#3|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) NIL)) (-3501 ((|#3| $ $) NIL (|has| |#3| (-961)))) (-3794 (($ (-1153 |#3|)) NIL)) (-3141 (((-125)) NIL (|has| |#3| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)))) (-3217 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#3|) $) NIL) (((-787) $) NIL (|has| |#3| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (|has| |#3| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) (($ |#3|) NIL (|has| |#3| (-1003)))) (-2961 (((-703)) NIL (|has| |#3| (-961)))) (-3675 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#3| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (-2396 (($) NIL (|has| |#3| (-123)) CONST)) (-2409 (($) NIL (|has| |#3| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1547 (((-107) $ $) NIL (|has| |#3| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1572 (((-107) $ $) 17 (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1667 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1654 (($ $ $) NIL (|has| |#3| (-961))) (($ $) NIL (|has| |#3| (-961)))) (-1642 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (* (($ $ $) NIL (|has| |#3| (-961))) (($ (-517) $) NIL (|has| |#3| (-961))) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ (-703) $) NIL (|has| |#3| (-123))) (($ (-843) $) NIL (|has| |#3| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-1016 |#1| |#2| |#3|) (-212 |#1| |#3|) (-703) (-703) (-725)) (T -1016)) +NIL +(-212 |#1| |#3|) +((-2384 (((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 36)) (-3279 (((-517) (-1127 |#2| |#1|)) 68 (|has| |#1| (-421)))) (-2653 (((-517) (-1127 |#2| |#1|)) 53)) (-1715 (((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 44)) (-3207 (((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 67 (|has| |#1| (-421)))) (-1262 (((-583 |#1|) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 47)) (-2938 (((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 52))) +(((-1017 |#1| |#2|) (-10 -7 (-15 -2384 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1715 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1262 ((-583 |#1|) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2938 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2653 ((-517) (-1127 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3207 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -3279 ((-517) (-1127 |#2| |#1|)))) |noBranch|)) (-752) (-1073)) (T -1017)) +((-3279 (*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-3207 (*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-2938 (*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-1262 (*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 *4)) (-5 *1 (-1017 *4 *5)))) (-1715 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4)))) (-2384 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4))))) +(-10 -7 (-15 -2384 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1715 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1262 ((-583 |#1|) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2938 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2653 ((-517) (-1127 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3207 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -3279 ((-517) (-1127 |#2| |#1|)))) |noBranch|)) +((-3709 (((-3 (-517) "failed") |#2| (-1073) |#2| (-1056)) 16) (((-3 (-517) "failed") |#2| (-1073) (-772 |#2|)) 14) (((-3 (-517) "failed") |#2|) 51))) +(((-1018 |#1| |#2|) (-10 -7 (-15 -3709 ((-3 (-517) "failed") |#2|)) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) (-772 |#2|))) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) |#2| (-1056)))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1094) (-400 |#1|))) (T -1018)) +((-3709 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))))) (-3709 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)))) (-3709 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4)))))) +(-10 -7 (-15 -3709 ((-3 (-517) "failed") |#2|)) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) (-772 |#2|))) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) |#2| (-1056)))) +((-3709 (((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)) (-1056)) 34) (((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-772 (-377 (-874 |#1|)))) 29) (((-3 (-517) "failed") (-377 (-874 |#1|))) 12))) +(((-1019 |#1|) (-10 -7 (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-772 (-377 (-874 |#1|))))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)) (-1056)))) (-421)) (T -1019)) +((-3709 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) (-3709 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) (-3709 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *4))))) +(-10 -7 (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-772 (-377 (-874 |#1|))))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)) (-1056)))) +((-3670 (((-286 (-517)) (-47)) 11))) +(((-1020) (-10 -7 (-15 -3670 ((-286 (-517)) (-47))))) (T -1020)) +((-3670 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1020))))) +(-10 -7 (-15 -3670 ((-286 (-517)) (-47)))) +((-2750 (((-107) $ $) NIL)) (-1460 (($ $) 41)) (-2814 (((-107) $) 65)) (-2775 (($ $ $) 48)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 84)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) 74)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) 71)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL)) (-3189 (((-517) $) NIL)) (-2518 (($ $ $) 59)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 78) (((-623 (-517)) (-623 $)) 28)) (-3621 (((-3 $ "failed") $) NIL)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($) 81) (($ $) 82)) (-2497 (($ $ $) 58)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) 79)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) 66)) (-1769 (((-107) $) 64)) (-2630 (($ $) 42)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) 75)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) 72)) (-2967 (($ $ $) 68) (($) 39)) (-3099 (($ $ $) 67) (($) 38)) (-1522 (($ $) NIL)) (-2195 (($ $) 70)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) 50)) (-3206 (((-1021) $) NIL) (($ $) 69)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) 62) (($ (-583 $)) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 61)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-2789 (($ $) 51)) (-2433 (($ $) NIL)) (-3645 (((-517) $) 32) (((-493) $) NIL) (((-814 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL)) (-2256 (((-787) $) 31) (($ (-517)) 80) (($ $) NIL) (($ (-517)) 80)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) 37)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) 73)) (-3710 (($ $) 63)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2391 (($ $ $) 44)) (-2396 (($) 35 T CONST)) (-3555 (($ $ $) 47)) (-2409 (($) 36 T CONST)) (-2482 (((-1056) $) 21) (((-1056) $ (-107)) 23) (((-1158) (-754) $) 24) (((-1158) (-754) $ (-107)) 25)) (-3563 (($ $) 45)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-3545 (($ $ $) 46)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 40)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 49)) (-2382 (($ $ $) 43)) (-1654 (($ $) 52) (($ $ $) 54)) (-1642 (($ $ $) 53)) (** (($ $ (-843)) NIL) (($ $ (-703)) 57)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 55))) +(((-1021) (-13 (-502) (-598) (-760) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3099 ($)) (-15 -2967 ($)) (-15 -2630 ($ $)) (-15 -1460 ($ $)) (-15 -2382 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -3563 ($ $)) (-15 -3545 ($ $ $)) (-15 -3555 ($ $ $))))) (T -1021)) +((-2391 (*1 *1 *1 *1) (-5 *1 (-1021))) (-2382 (*1 *1 *1 *1) (-5 *1 (-1021))) (-1460 (*1 *1 *1) (-5 *1 (-1021))) (-3099 (*1 *1) (-5 *1 (-1021))) (-2967 (*1 *1) (-5 *1 (-1021))) (-2630 (*1 *1 *1) (-5 *1 (-1021))) (-2775 (*1 *1 *1 *1) (-5 *1 (-1021))) (-3563 (*1 *1 *1) (-5 *1 (-1021))) (-3545 (*1 *1 *1 *1) (-5 *1 (-1021))) (-3555 (*1 *1 *1 *1) (-5 *1 (-1021)))) +(-13 (-502) (-598) (-760) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3099 ($)) (-15 -2967 ($)) (-15 -2630 ($ $)) (-15 -1460 ($ $)) (-15 -2382 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -3563 ($ $)) (-15 -3545 ($ $ $)) (-15 -3555 ($ $ $)))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-4139 ((|#1| $) 44)) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-2886 ((|#1| |#1| $) 46)) (-1200 ((|#1| $) 45)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1694 (((-703) $) 43)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-1022 |#1|) (-1184) (-1108)) (T -1022)) +((-2886 (*1 *2 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))) (-1200 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1108)) (-5 *2 (-703))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4180) (-15 -2886 (|t#1| |t#1| $)) (-15 -1200 (|t#1| $)) (-15 -4139 (|t#1| $)) (-15 -1694 ((-703) $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-1472 ((|#3| $) 76)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#3| $) 37)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) 73) (((-623 |#3|) (-623 $)) 65)) (-3127 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2671 ((|#3| $) 78)) (-2803 ((|#4| $) 32)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#3|) 16)) (** (($ $ (-843)) NIL) (($ $ (-703)) 15) (($ $ (-517)) 82))) +(((-1023 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -2671 (|#3| |#1|)) (-15 -1472 (|#3| |#1|)) (-15 -2803 (|#4| |#1|)) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2256 ((-787) |#1|))) (-1024 |#2| |#3| |#4| |#5|) (-703) (-961) (-212 |#2| |#3|) (-212 |#2| |#3|)) (T -1023)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -2671 (|#3| |#1|)) (-15 -1472 (|#3| |#1|)) (-15 -2803 (|#4| |#1|)) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1472 ((|#2| $) 72)) (-2818 (((-107) $) 112)) (-4038 (((-3 $ "failed") $ $) 19)) (-3213 (((-107) $) 110)) (-2953 (((-107) $ (-703)) 102)) (-3487 (($ |#2|) 75)) (-3092 (($) 17 T CONST)) (-2468 (($ $) 129 (|has| |#2| (-278)))) (-1939 ((|#3| $ (-517)) 124)) (-1772 (((-3 (-517) "failed") $) 86 (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 84 (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) 81)) (-3189 (((-517) $) 87 (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) 85 (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) 80)) (-3355 (((-623 (-517)) (-623 $)) 79 (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 78 (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 77) (((-623 |#2|) (-623 $)) 76)) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-703) $) 130 (|has| |#2| (-509)))) (-1377 ((|#2| $ (-517) (-517)) 122)) (-1536 (((-583 |#2|) $) 95 (|has| $ (-6 -4180)))) (-3848 (((-107) $) 31)) (-1948 (((-703) $) 131 (|has| |#2| (-509)))) (-3706 (((-583 |#4|) $) 132 (|has| |#2| (-509)))) (-1477 (((-703) $) 118)) (-1486 (((-703) $) 119)) (-2550 (((-107) $ (-703)) 103)) (-2757 ((|#2| $) 67 (|has| |#2| (-6 (-4182 "*"))))) (-2813 (((-517) $) 114)) (-1338 (((-517) $) 116)) (-2560 (((-583 |#2|) $) 94 (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) 92 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 115)) (-1307 (((-517) $) 117)) (-1840 (($ (-583 (-583 |#2|))) 109)) (-1433 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3035 (((-583 (-583 |#2|)) $) 120)) (-3847 (((-107) $ (-703)) 104)) (-3985 (((-1056) $) 9)) (-2104 (((-3 $ "failed") $) 66 (|has| |#2| (-333)))) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-509)))) (-2048 (((-107) (-1 (-107) |#2|) $) 97 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) 91 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 90 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 88 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 108)) (-3619 (((-107) $) 105)) (-1746 (($) 106)) (-1449 ((|#2| $ (-517) (-517) |#2|) 123) ((|#2| $ (-517) (-517)) 121)) (-3127 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-703)) 51) (($ $ (-583 (-1073)) (-583 (-703))) 44 (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) 43 (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) 42 (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) 41 (|has| |#2| (-822 (-1073)))) (($ $ (-703)) 39 (|has| |#2| (-207))) (($ $) 37 (|has| |#2| (-207)))) (-2671 ((|#2| $) 71)) (-1879 (($ (-583 |#2|)) 74)) (-1516 (((-107) $) 111)) (-2803 ((|#3| $) 73)) (-3057 ((|#2| $) 68 (|has| |#2| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#2|) $) 96 (|has| $ (-6 -4180))) (((-703) |#2| $) 93 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 107)) (-3728 ((|#4| $ (-517)) 125)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 83 (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) 82)) (-2961 (((-703)) 29)) (-3675 (((-107) (-1 (-107) |#2|) $) 98 (|has| $ (-6 -4180)))) (-1683 (((-107) $) 113)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-703)) 49) (($ $ (-583 (-1073)) (-583 (-703))) 48 (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) 47 (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) 46 (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) 45 (|has| |#2| (-822 (-1073)))) (($ $ (-703)) 40 (|has| |#2| (-207))) (($ $) 38 (|has| |#2| (-207)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#2|) 128 (|has| |#2| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 65 (|has| |#2| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2296 (((-703) $) 101 (|has| $ (-6 -4180))))) +(((-1024 |#1| |#2| |#3| |#4|) (-1184) (-703) (-961) (-212 |t#1| |t#2|) (-212 |t#1| |t#2|)) (T -1024)) +((-3487 (*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2104 (*1 *1 *1) (|partial| -12 (-4 *1 (-1024 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333))))) +(-13 (-205 |t#2|) (-106 |t#2| |t#2|) (-964 |t#1| |t#1| |t#2| |t#3| |t#4|) (-381 |t#2|) (-347 |t#2|) (-10 -8 (IF (|has| |t#2| (-156)) (-6 (-650 |t#2|)) |noBranch|) (-15 -3487 ($ |t#2|)) (-15 -1879 ($ (-583 |t#2|))) (-15 -2803 (|t#3| $)) (-15 -1472 (|t#2| $)) (-15 -2671 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4182 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3057 (|t#2| $)) (-15 -2757 (|t#2| $))) |noBranch|) (IF (|has| |t#2| (-333)) (PROGN (-15 -2104 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4182 "*"))) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-205 |#2|) . T) ((-207) |has| |#2| (-207)) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-347 |#2|) . T) ((-381 |#2|) . T) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-585 |#2|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#2| (-579 (-517))) ((-579 |#2|) . T) ((-650 |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-6 (-4182 "*")))) ((-659) . T) ((-822 (-1073)) |has| |#2| (-822 (-1073))) ((-964 |#1| |#1| |#2| |#3| |#4|) . T) ((-952 (-377 (-517))) |has| |#2| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#2| (-952 (-517))) ((-952 |#2|) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1108) . T)) +((-3458 ((|#4| |#4|) 67)) (-3682 ((|#4| |#4|) 62)) (-1194 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|) 75)) (-2165 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 66)) (-3145 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 64))) +(((-1025 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3682 (|#4| |#4|)) (-15 -3145 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3458 (|#4| |#4|)) (-15 -2165 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1194 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|))) (-278) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1025)) +((-1194 (*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-1025 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-2165 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3458 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3145 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3682 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) +(-10 -7 (-15 -3682 (|#4| |#4|)) (-15 -3145 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3458 (|#4| |#4|)) (-15 -2165 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1194 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 17)) (-1364 (((-583 |#2|) $) 160)) (-2352 (((-1069 $) $ |#2|) 54) (((-1069 |#1|) $) 43)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 110 (|has| |#1| (-509)))) (-1213 (($ $) 112 (|has| |#1| (-509)))) (-2454 (((-107) $) 114 (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 |#2|)) 193)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 157) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#2| "failed") $) NIL)) (-3189 ((|#1| $) 155) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#2| $) NIL)) (-3388 (($ $ $ |#2|) NIL (|has| |#1| (-156)))) (-1212 (($ $) 197)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 82)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 |#2|) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) 19)) (-1577 (((-703) $) 26)) (-1350 (($ (-1069 |#1|) |#2|) 48) (($ (-1069 $) |#2|) 64)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) 31)) (-1339 (($ |#1| (-489 |#2|)) 71) (($ $ |#2| (-703)) 52) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#2|) NIL)) (-2349 (((-489 |#2|) $) 187) (((-703) $ |#2|) 188) (((-583 (-703)) $ (-583 |#2|)) 189)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 122)) (-1409 (((-3 |#2| "failed") $) 162)) (-4152 (($ $) 196)) (-1191 ((|#1| $) 37)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 32)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 140 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 145 (|has| |#1| (-421))) (($ $ $) 132 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-583 |#2|) (-583 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-583 |#2|) (-583 $)) 177)) (-3010 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-3127 (($ $ |#2|) 195) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3688 (((-489 |#2|) $) 183) (((-703) $ |#2|) 179) (((-583 (-703)) $ (-583 |#2|)) 181)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#1| $) 128 (|has| |#1| (-421))) (($ $ |#2|) 131 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 151) (($ (-517)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1311 (((-583 |#1|) $) 154)) (-2720 ((|#1| $ (-489 |#2|)) 73) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 79)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) 117 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 102) (($ $ (-703)) 104)) (-2396 (($) 12 T CONST)) (-2409 (($) 14 T CONST)) (-2731 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 97)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 126 (|has| |#1| (-333)))) (-1654 (($ $) 85) (($ $ $) 95)) (-1642 (($ $ $) 49)) (** (($ $ (-843)) 103) (($ $ (-703)) 100)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 88) (($ $ $) 65) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1026 |#1| |#2|) (-871 |#1| (-489 |#2|) |#2|) (-961) (-779)) (T -1026)) +NIL +(-871 |#1| (-489 |#2|) |#2|) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1865 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1887 (($ $) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3520 (((-874 |#1|) $ (-703)) NIL) (((-874 |#1|) $ (-703) (-703)) NIL)) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $ |#2|) NIL) (((-703) $ |#2| (-703)) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4031 (((-107) $) NIL)) (-1339 (($ $ (-583 |#2|) (-583 (-489 |#2|))) NIL) (($ $ |#2| (-489 |#2|)) NIL) (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 57) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $ |#2|) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-3352 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-37 (-377 (-517)))))) (-1672 (($ $ (-703)) 15)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2624 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (($ $ |#2| $) 95) (($ $ (-583 |#2|) (-583 $)) 88) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-3127 (($ $ |#2|) 98) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3688 (((-489 |#2|) $) NIL)) (-2265 (((-1 (-1054 |#3|) |#3|) (-583 |#2|) (-583 (-1054 |#3|))) 78)) (-1898 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 17)) (-2256 (((-787) $) 179) (($ (-517)) NIL) (($ |#1|) 44 (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#2|) 64) (($ |#3|) 62)) (-2720 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL) ((|#3| $ (-703)) 42)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3707 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1492 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 18 T CONST)) (-2409 (($) 10 T CONST)) (-2731 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) 181 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 60)) (** (($ $ (-843)) NIL) (($ $ (-703)) 69) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 101 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) 106 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 104 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) +(((-1027 |#1| |#2| |#3|) (-13 (-673 |#1| |#2|) (-10 -8 (-15 -2720 (|#3| $ (-703))) (-15 -2256 ($ |#2|)) (-15 -2256 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2265 ((-1 (-1054 |#3|) |#3|) (-583 |#2|) (-583 (-1054 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ |#2| |#1|)) (-15 -3352 ($ (-1 $) |#2| |#1|))) |noBranch|))) (-961) (-779) (-871 |#1| (-489 |#2|) |#2|)) (T -1027)) +((-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-871 *4 (-489 *5) *5)) (-5 *1 (-1027 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-779)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1054 *7))) (-4 *6 (-779)) (-4 *7 (-871 *5 (-489 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1054 *7) *7)) (-5 *1 (-1027 *5 *6 *7)))) (-4151 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) (-3352 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1027 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *1 (-1027 *4 *3 *5)) (-4 *5 (-871 *4 (-489 *3) *3))))) +(-13 (-673 |#1| |#2|) (-10 -8 (-15 -2720 (|#3| $ (-703))) (-15 -2256 ($ |#2|)) (-15 -2256 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2265 ((-1 (-1054 |#3|) |#3|) (-583 |#2|) (-583 (-1054 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ |#2| |#1|)) (-15 -3352 ($ (-1 $) |#2| |#1|))) |noBranch|))) +((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180))))) +(((-1028 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1028)) +NIL +(-13 (-1012 |t#1| |t#2| |t#3| |t#4|) (-716 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-716 |#1| |#2| |#3| |#4|) . T) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1012 |#1| |#2| |#3| |#4|) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T)) +((-1674 (((-583 |#2|) |#1|) 12)) (-2573 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-583 |#2|) |#1|) 47)) (-3334 (((-583 |#2|) |#2| |#2| |#2|) 35) (((-583 |#2|) |#1|) 45)) (-2679 ((|#2| |#1|) 42)) (-2934 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-3497 (((-583 |#2|) |#2| |#2|) 34) (((-583 |#2|) |#1|) 44)) (-1190 (((-583 |#2|) |#2| |#2| |#2| |#2|) 36) (((-583 |#2|) |#1|) 46)) (-1989 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-2049 ((|#2| |#2| |#2| |#2|) 39)) (-2416 ((|#2| |#2| |#2|) 38)) (-3635 ((|#2| |#2| |#2| |#2| |#2|) 40))) +(((-1029 |#1| |#2|) (-10 -7 (-15 -1674 ((-583 |#2|) |#1|)) (-15 -2679 (|#2| |#1|)) (-15 -2934 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3497 ((-583 |#2|) |#1|)) (-15 -3334 ((-583 |#2|) |#1|)) (-15 -1190 ((-583 |#2|) |#1|)) (-15 -2573 ((-583 |#2|) |#1|)) (-15 -3497 ((-583 |#2|) |#2| |#2|)) (-15 -3334 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -1190 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2573 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2416 (|#2| |#2| |#2|)) (-15 -2049 (|#2| |#2| |#2| |#2|)) (-15 -3635 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1989 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1130 |#2|) (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (T -1029)) +((-1989 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-3635 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-2049 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-2416 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-2573 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-1190 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-3334 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-3497 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-2573 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-1190 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-3334 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-3497 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-2934 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1029 *3 *5)) (-4 *3 (-1130 *5)))) (-2679 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4))))) +(-10 -7 (-15 -1674 ((-583 |#2|) |#1|)) (-15 -2679 (|#2| |#1|)) (-15 -2934 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3497 ((-583 |#2|) |#1|)) (-15 -3334 ((-583 |#2|) |#1|)) (-15 -1190 ((-583 |#2|) |#1|)) (-15 -2573 ((-583 |#2|) |#1|)) (-15 -3497 ((-583 |#2|) |#2| |#2|)) (-15 -3334 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -1190 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2573 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2416 (|#2| |#2| |#2|)) (-15 -2049 (|#2| |#2| |#2| |#2|)) (-15 -3635 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1989 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-2501 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|))))) 94) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073))) 93) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|)))) 91) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 89) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|)))) 75) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1073)) 76) (((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|))) 70) (((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1073)) 59)) (-2606 (((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 87) (((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1073)) 43)) (-1483 (((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1073)) 97) (((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073)) 96))) +(((-1030 |#1|) (-10 -7 (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2606 ((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2606 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1073)))) (-13 (-278) (-779) (-134))) (T -1030)) +((-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1030 *5)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 *5))))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5))))) +(-10 -7 (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2606 ((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2606 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1073)))) +((-2464 (((-377 (-1069 (-286 |#1|))) (-1153 (-286 |#1|)) (-377 (-1069 (-286 |#1|))) (-517)) 27)) (-3249 (((-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|)))) 39))) +(((-1031 |#1|) (-10 -7 (-15 -3249 ((-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))))) (-15 -2464 ((-377 (-1069 (-286 |#1|))) (-1153 (-286 |#1|)) (-377 (-1069 (-286 |#1|))) (-517)))) (-13 (-509) (-779))) (T -1031)) +((-2464 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1069 (-286 *5)))) (-5 *3 (-1153 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1031 *5)))) (-3249 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1069 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1031 *3))))) +(-10 -7 (-15 -3249 ((-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))))) (-15 -2464 ((-377 (-1069 (-286 |#1|))) (-1153 (-286 |#1|)) (-377 (-1069 (-286 |#1|))) (-517)))) +((-1674 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1073))) 216) (((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1073)) 20) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1073)) 26) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|))) 25) (((-583 (-265 (-286 |#1|))) (-286 |#1|)) 21))) +(((-1032 |#1|) (-10 -7 (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1073))) (-15 -1674 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1073))))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (T -1032)) +((-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-286 *5)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-265 (-286 *5))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-265 (-286 *4))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-286 *4))))) +(-10 -7 (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1073))) (-15 -1674 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1073))))) +((-2891 ((|#2| |#2|) 20 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 16)) (-1318 ((|#2| |#2|) 19 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 15))) +(((-1033 |#1| |#2|) (-10 -7 (-15 -1318 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2891 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -1318 (|#2| |#2|)) (-15 -2891 (|#2| |#2|))) |noBranch|)) (-1108) (-13 (-550 (-517) |#1|) (-10 -7 (-6 -4180) (-6 -4181)))) (T -1033)) +((-2891 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181)))))) (-1318 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181)))))) (-2891 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181)))))) (-1318 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181))))))) +(-10 -7 (-15 -1318 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2891 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -1318 (|#2| |#2|)) (-15 -2891 (|#2| |#2|))) |noBranch|)) +((-2750 (((-107) $ $) NIL)) (-2467 (((-1062 3 |#1|) $) 105)) (-4061 (((-107) $) 72)) (-1347 (($ $ (-583 (-865 |#1|))) 20) (($ $ (-583 (-583 |#1|))) 75) (($ (-583 (-865 |#1|))) 74) (((-583 (-865 |#1|)) $) 73)) (-2178 (((-107) $) 41)) (-2889 (($ $ (-865 |#1|)) 46) (($ $ (-583 |#1|)) 51) (($ $ (-703)) 53) (($ (-865 |#1|)) 47) (((-865 |#1|) $) 45)) (-2364 (((-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 103)) (-1592 (((-703) $) 26)) (-1790 (((-703) $) 25)) (-3347 (($ $ (-703) (-865 |#1|)) 39)) (-1818 (((-107) $) 82)) (-1552 (($ $ (-583 (-583 (-865 |#1|))) (-583 (-155)) (-155)) 89) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 91) (($ $ (-583 (-583 (-865 |#1|))) (-107) (-107)) 85) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 93) (($ (-583 (-583 (-865 |#1|)))) 86) (($ (-583 (-583 (-865 |#1|))) (-107) (-107)) 87) (((-583 (-583 (-865 |#1|))) $) 84)) (-3237 (($ (-583 $)) 28) (($ $ $) 29)) (-3215 (((-583 (-155)) $) 101)) (-2927 (((-583 (-865 |#1|)) $) 96)) (-2830 (((-583 (-583 (-155))) $) 100)) (-2266 (((-583 (-583 (-583 (-865 |#1|)))) $) NIL)) (-1767 (((-583 (-583 (-583 (-703)))) $) 98)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2334 (((-703) $ (-583 (-865 |#1|))) 37)) (-2681 (((-107) $) 54)) (-2689 (($ $ (-583 (-865 |#1|))) 56) (($ $ (-583 (-583 |#1|))) 62) (($ (-583 (-865 |#1|))) 57) (((-583 (-865 |#1|)) $) 55)) (-2734 (($) 23) (($ (-1062 3 |#1|)) 24)) (-2433 (($ $) 35)) (-3547 (((-583 $) $) 34)) (-3793 (($ (-583 $)) 31)) (-2146 (((-583 $) $) 33)) (-2256 (((-787) $) 109)) (-2067 (((-107) $) 64)) (-2243 (($ $ (-583 (-865 |#1|))) 66) (($ $ (-583 (-583 |#1|))) 69) (($ (-583 (-865 |#1|))) 67) (((-583 (-865 |#1|)) $) 65)) (-3823 (($ $) 104)) (-1547 (((-107) $ $) NIL))) +(((-1034 |#1|) (-1035 |#1|) (-961)) (T -1034)) +NIL +(-1035 |#1|) +((-2750 (((-107) $ $) 7)) (-2467 (((-1062 3 |#1|) $) 13)) (-4061 (((-107) $) 29)) (-1347 (($ $ (-583 (-865 |#1|))) 33) (($ $ (-583 (-583 |#1|))) 32) (($ (-583 (-865 |#1|))) 31) (((-583 (-865 |#1|)) $) 30)) (-2178 (((-107) $) 44)) (-2889 (($ $ (-865 |#1|)) 49) (($ $ (-583 |#1|)) 48) (($ $ (-703)) 47) (($ (-865 |#1|)) 46) (((-865 |#1|) $) 45)) (-2364 (((-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 15)) (-1592 (((-703) $) 58)) (-1790 (((-703) $) 59)) (-3347 (($ $ (-703) (-865 |#1|)) 50)) (-1818 (((-107) $) 21)) (-1552 (($ $ (-583 (-583 (-865 |#1|))) (-583 (-155)) (-155)) 28) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 27) (($ $ (-583 (-583 (-865 |#1|))) (-107) (-107)) 26) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 25) (($ (-583 (-583 (-865 |#1|)))) 24) (($ (-583 (-583 (-865 |#1|))) (-107) (-107)) 23) (((-583 (-583 (-865 |#1|))) $) 22)) (-3237 (($ (-583 $)) 57) (($ $ $) 56)) (-3215 (((-583 (-155)) $) 16)) (-2927 (((-583 (-865 |#1|)) $) 20)) (-2830 (((-583 (-583 (-155))) $) 17)) (-2266 (((-583 (-583 (-583 (-865 |#1|)))) $) 18)) (-1767 (((-583 (-583 (-583 (-703)))) $) 19)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2334 (((-703) $ (-583 (-865 |#1|))) 51)) (-2681 (((-107) $) 39)) (-2689 (($ $ (-583 (-865 |#1|))) 43) (($ $ (-583 (-583 |#1|))) 42) (($ (-583 (-865 |#1|))) 41) (((-583 (-865 |#1|)) $) 40)) (-2734 (($) 61) (($ (-1062 3 |#1|)) 60)) (-2433 (($ $) 52)) (-3547 (((-583 $) $) 53)) (-3793 (($ (-583 $)) 55)) (-2146 (((-583 $) $) 54)) (-2256 (((-787) $) 11)) (-2067 (((-107) $) 34)) (-2243 (($ $ (-583 (-865 |#1|))) 38) (($ $ (-583 (-583 |#1|))) 37) (($ (-583 (-865 |#1|))) 36) (((-583 (-865 |#1|)) $) 35)) (-3823 (($ $) 14)) (-1547 (((-107) $ $) 6))) +(((-1035 |#1|) (-1184) (-961)) (T -1035)) +((-2256 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-787)))) (-2734 (*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-2734 (*1 *1 *2) (-12 (-5 *2 (-1062 3 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2146 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))) (-3547 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))) (-2433 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-2334 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-865 *4))) (-4 *1 (-1035 *4)) (-4 *4 (-961)) (-5 *2 (-703)))) (-3347 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *4)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2889 (*1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-865 *3)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2689 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2689 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2689 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2243 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2243 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2243 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-1347 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1347 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-1552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) (-1552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) (-1552 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-1552 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 *3)))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1552 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *4 (-961)) (-4 *1 (-1035 *4)))) (-1552 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-865 *3)))))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-703))))))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-865 *3))))))) (-2830 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-155)))))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-155))))) (-2364 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))) (-3823 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-1062 3 *3))))) +(-13 (-1003) (-10 -8 (-15 -2734 ($)) (-15 -2734 ($ (-1062 3 |t#1|))) (-15 -1790 ((-703) $)) (-15 -1592 ((-703) $)) (-15 -3237 ($ (-583 $))) (-15 -3237 ($ $ $)) (-15 -3793 ($ (-583 $))) (-15 -2146 ((-583 $) $)) (-15 -3547 ((-583 $) $)) (-15 -2433 ($ $)) (-15 -2334 ((-703) $ (-583 (-865 |t#1|)))) (-15 -3347 ($ $ (-703) (-865 |t#1|))) (-15 -2889 ($ $ (-865 |t#1|))) (-15 -2889 ($ $ (-583 |t#1|))) (-15 -2889 ($ $ (-703))) (-15 -2889 ($ (-865 |t#1|))) (-15 -2889 ((-865 |t#1|) $)) (-15 -2178 ((-107) $)) (-15 -2689 ($ $ (-583 (-865 |t#1|)))) (-15 -2689 ($ $ (-583 (-583 |t#1|)))) (-15 -2689 ($ (-583 (-865 |t#1|)))) (-15 -2689 ((-583 (-865 |t#1|)) $)) (-15 -2681 ((-107) $)) (-15 -2243 ($ $ (-583 (-865 |t#1|)))) (-15 -2243 ($ $ (-583 (-583 |t#1|)))) (-15 -2243 ($ (-583 (-865 |t#1|)))) (-15 -2243 ((-583 (-865 |t#1|)) $)) (-15 -2067 ((-107) $)) (-15 -1347 ($ $ (-583 (-865 |t#1|)))) (-15 -1347 ($ $ (-583 (-583 |t#1|)))) (-15 -1347 ($ (-583 (-865 |t#1|)))) (-15 -1347 ((-583 (-865 |t#1|)) $)) (-15 -4061 ((-107) $)) (-15 -1552 ($ $ (-583 (-583 (-865 |t#1|))) (-583 (-155)) (-155))) (-15 -1552 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-155)) (-155))) (-15 -1552 ($ $ (-583 (-583 (-865 |t#1|))) (-107) (-107))) (-15 -1552 ($ $ (-583 (-583 (-583 |t#1|))) (-107) (-107))) (-15 -1552 ($ (-583 (-583 (-865 |t#1|))))) (-15 -1552 ($ (-583 (-583 (-865 |t#1|))) (-107) (-107))) (-15 -1552 ((-583 (-583 (-865 |t#1|))) $)) (-15 -1818 ((-107) $)) (-15 -2927 ((-583 (-865 |t#1|)) $)) (-15 -1767 ((-583 (-583 (-583 (-703)))) $)) (-15 -2266 ((-583 (-583 (-583 (-865 |t#1|)))) $)) (-15 -2830 ((-583 (-583 (-155))) $)) (-15 -3215 ((-583 (-155)) $)) (-15 -2364 ((-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $)) (-15 -3823 ($ $)) (-15 -2467 ((-1062 3 |t#1|) $)) (-15 -2256 ((-787) $)))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-2766 (((-1158) (-583 (-787))) 23) (((-1158) (-787)) 22)) (-3111 (((-1158) (-583 (-787))) 21) (((-1158) (-787)) 20)) (-4155 (((-1158) (-583 (-787))) 19) (((-1158) (-787)) 11) (((-1158) (-1056) (-787)) 17))) +(((-1036) (-10 -7 (-15 -4155 ((-1158) (-1056) (-787))) (-15 -4155 ((-1158) (-787))) (-15 -3111 ((-1158) (-787))) (-15 -2766 ((-1158) (-787))) (-15 -4155 ((-1158) (-583 (-787)))) (-15 -3111 ((-1158) (-583 (-787)))) (-15 -2766 ((-1158) (-583 (-787)))))) (T -1036)) +((-2766 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036))))) +(-10 -7 (-15 -4155 ((-1158) (-1056) (-787))) (-15 -4155 ((-1158) (-787))) (-15 -3111 ((-1158) (-787))) (-15 -2766 ((-1158) (-787))) (-15 -4155 ((-1158) (-583 (-787)))) (-15 -3111 ((-1158) (-583 (-787)))) (-15 -2766 ((-1158) (-583 (-787))))) +((-1264 (($ $ $) 10)) (-2150 (($ $) 9)) (-2570 (($ $ $) 13)) (-2480 (($ $ $) 15)) (-3233 (($ $ $) 12)) (-1324 (($ $ $) 14)) (-3312 (($ $) 17)) (-1730 (($ $) 16)) (-3710 (($ $) 6)) (-1564 (($ $ $) 11) (($ $) 7)) (-2350 (($ $ $) 8))) +(((-1037) (-1184)) (T -1037)) +((-3312 (*1 *1 *1) (-4 *1 (-1037))) (-1730 (*1 *1 *1) (-4 *1 (-1037))) (-2480 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1324 (*1 *1 *1 *1) (-4 *1 (-1037))) (-2570 (*1 *1 *1 *1) (-4 *1 (-1037))) (-3233 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1564 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1264 (*1 *1 *1 *1) (-4 *1 (-1037))) (-2150 (*1 *1 *1) (-4 *1 (-1037))) (-2350 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1564 (*1 *1 *1) (-4 *1 (-1037))) (-3710 (*1 *1 *1) (-4 *1 (-1037)))) +(-13 (-10 -8 (-15 -3710 ($ $)) (-15 -1564 ($ $)) (-15 -2350 ($ $ $)) (-15 -2150 ($ $)) (-15 -1264 ($ $ $)) (-15 -1564 ($ $ $)) (-15 -3233 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -1324 ($ $ $)) (-15 -2480 ($ $ $)) (-15 -1730 ($ $)) (-15 -3312 ($ $)))) +((-2750 (((-107) $ $) 41)) (-3199 ((|#1| $) 15)) (-2670 (((-107) $ $ (-1 (-107) |#2| |#2|)) 36)) (-2324 (((-107) $) 17)) (-3948 (($ $ |#1|) 28)) (-1799 (($ $ (-107)) 30)) (-1617 (($ $) 31)) (-1961 (($ $ |#2|) 29)) (-3985 (((-1056) $) NIL)) (-2130 (((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|)) 35)) (-3206 (((-1021) $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 10)) (-2433 (($ $) 27)) (-2276 (($ |#1| |#2| (-107)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) 21) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|)))) 24) (((-583 $) |#1| (-583 |#2|)) 26)) (-3476 ((|#2| $) 16)) (-2256 (((-787) $) 50)) (-1547 (((-107) $ $) 39))) +(((-1038 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1746 ($)) (-15 -3619 ((-107) $)) (-15 -3199 (|#1| $)) (-15 -3476 (|#2| $)) (-15 -2324 ((-107) $)) (-15 -2276 ($ |#1| |#2| (-107))) (-15 -2276 ($ |#1| |#2|)) (-15 -2276 ($ (-2 (|:| |val| |#1|) (|:| -3726 |#2|)))) (-15 -2276 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))))) (-15 -2276 ((-583 $) |#1| (-583 |#2|))) (-15 -2433 ($ $)) (-15 -3948 ($ $ |#1|)) (-15 -1961 ($ $ |#2|)) (-15 -1799 ($ $ (-107))) (-15 -1617 ($ $)) (-15 -2130 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -2670 ((-107) $ $ (-1 (-107) |#2| |#2|))))) (-13 (-1003) (-33)) (-13 (-1003) (-33))) (T -1038)) +((-1746 (*1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3199 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-13 (-1003) (-33))))) (-3476 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33))))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2 *3) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3726 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *4)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3726 *5)))) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *4 *5))) (-5 *1 (-1038 *4 *5)))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *3 *5))) (-5 *1 (-1038 *3 *5)) (-4 *3 (-13 (-1003) (-33))))) (-2433 (*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-3948 (*1 *1 *1 *2) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-1961 (*1 *1 *1 *2) (-12 (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33))) (-4 *2 (-13 (-1003) (-33))))) (-1799 (*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-1617 (*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2130 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *5 *6)))) (-2670 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33)))))) +(-13 (-1003) (-10 -8 (-15 -1746 ($)) (-15 -3619 ((-107) $)) (-15 -3199 (|#1| $)) (-15 -3476 (|#2| $)) (-15 -2324 ((-107) $)) (-15 -2276 ($ |#1| |#2| (-107))) (-15 -2276 ($ |#1| |#2|)) (-15 -2276 ($ (-2 (|:| |val| |#1|) (|:| -3726 |#2|)))) (-15 -2276 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))))) (-15 -2276 ((-583 $) |#1| (-583 |#2|))) (-15 -2433 ($ $)) (-15 -3948 ($ $ |#1|)) (-15 -1961 ($ $ |#2|)) (-15 -1799 ($ $ (-107))) (-15 -1617 ($ $)) (-15 -2130 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -2670 ((-107) $ $ (-1 (-107) |#2| |#2|))))) +((-2750 (((-107) $ $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-3199 (((-1038 |#1| |#2|) $) 25)) (-3585 (($ $) 75)) (-1958 (((-107) (-1038 |#1| |#2|) $ (-1 (-107) |#2| |#2|)) 84)) (-3294 (($ $ $ (-583 (-1038 |#1| |#2|))) 89) (($ $ $ (-583 (-1038 |#1| |#2|)) (-1 (-107) |#2| |#2|)) 90)) (-2953 (((-107) $ (-703)) NIL)) (-1918 (((-1038 |#1| |#2|) $ (-1038 |#1| |#2|)) 42 (|has| $ (-6 -4181)))) (-2411 (((-1038 |#1| |#2|) $ "value" (-1038 |#1| |#2|)) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 40 (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3569 (((-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) $) 79)) (-3212 (($ (-1038 |#1| |#2|) $) 38)) (-2052 (($ (-1038 |#1| |#2|) $) 30)) (-1536 (((-583 (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1894 (((-107) (-1038 |#1| |#2|) $) 81)) (-1272 (((-107) $ $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 (-1038 |#1| |#2|)) $) 54 (|has| $ (-6 -4180)))) (-2787 (((-107) (-1038 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-1038 |#1| |#2|) (-1003))))) (-1433 (($ (-1 (-1038 |#1| |#2|) (-1038 |#1| |#2|)) $) 46 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-1038 |#1| |#2|) (-1038 |#1| |#2|)) $) 45)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 (-1038 |#1| |#2|)) $) 52)) (-1763 (((-107) $) 41)) (-3985 (((-1056) $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-3206 (((-1021) $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-1290 (((-3 $ "failed") $) 74)) (-2048 (((-107) (-1 (-107) (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-1038 |#1| |#2|)))) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003)))) (($ $ (-265 (-1038 |#1| |#2|))) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003)))) (($ $ (-1038 |#1| |#2|) (-1038 |#1| |#2|)) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003)))) (($ $ (-583 (-1038 |#1| |#2|)) (-583 (-1038 |#1| |#2|))) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003))))) (-3792 (((-107) $ $) 49)) (-3619 (((-107) $) 22)) (-1746 (($) 24)) (-1449 (((-1038 |#1| |#2|) $ "value") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) 43)) (-3217 (((-703) (-1 (-107) (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180))) (((-703) (-1038 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-1038 |#1| |#2|) (-1003))))) (-2433 (($ $) 48)) (-2276 (($ (-1038 |#1| |#2|)) 9) (($ |#1| |#2| (-583 $)) 12) (($ |#1| |#2| (-583 (-1038 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-583 |#2|)) 17)) (-2225 (((-583 |#2|) $) 80)) (-2256 (((-787) $) 72 (|has| (-1038 |#1| |#2|) (-1003)))) (-1479 (((-583 $) $) 28)) (-2732 (((-107) $ $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-3675 (((-107) (-1 (-107) (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 63 (|has| (-1038 |#1| |#2|) (-1003)))) (-2296 (((-703) $) 57 (|has| $ (-6 -4180))))) +(((-1039 |#1| |#2|) (-13 (-926 (-1038 |#1| |#2|)) (-10 -8 (-6 -4181) (-6 -4180) (-15 -1290 ((-3 $ "failed") $)) (-15 -3585 ($ $)) (-15 -2276 ($ (-1038 |#1| |#2|))) (-15 -2276 ($ |#1| |#2| (-583 $))) (-15 -2276 ($ |#1| |#2| (-583 (-1038 |#1| |#2|)))) (-15 -2276 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -2225 ((-583 |#2|) $)) (-15 -3569 ((-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) $)) (-15 -1894 ((-107) (-1038 |#1| |#2|) $)) (-15 -1958 ((-107) (-1038 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -2052 ($ (-1038 |#1| |#2|) $)) (-15 -3212 ($ (-1038 |#1| |#2|) $)) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)))) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) (-13 (-1003) (-33)) (-13 (-1003) (-33))) (T -1039)) +((-1290 (*1 *1 *1) (|partial| -12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-3585 (*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1039 *2 *3))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1038 *2 *3))) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)))) (-2276 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-1894 (*1 *2 *3 *1) (-12 (-5 *3 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *4 *5)))) (-1958 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1038 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *5 *6)))) (-2052 (*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-3212 (*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-3294 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1038 *3 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-3294 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1038 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *1 (-1039 *4 *5))))) +(-13 (-926 (-1038 |#1| |#2|)) (-10 -8 (-6 -4181) (-6 -4180) (-15 -1290 ((-3 $ "failed") $)) (-15 -3585 ($ $)) (-15 -2276 ($ (-1038 |#1| |#2|))) (-15 -2276 ($ |#1| |#2| (-583 $))) (-15 -2276 ($ |#1| |#2| (-583 (-1038 |#1| |#2|)))) (-15 -2276 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -2225 ((-583 |#2|) $)) (-15 -3569 ((-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) $)) (-15 -1894 ((-107) (-1038 |#1| |#2|) $)) (-15 -1958 ((-107) (-1038 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -2052 ($ (-1038 |#1| |#2|) $)) (-15 -3212 ($ (-1038 |#1| |#2|) $)) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)))) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2033 (($ $) NIL)) (-1472 ((|#2| $) NIL)) (-2818 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2461 (($ (-623 |#2|)) 45)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3487 (($ |#2|) 9)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 58 (|has| |#2| (-278)))) (-1939 (((-214 |#1| |#2|) $ (-517)) 31)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 72)) (-2261 (((-703) $) 60 (|has| |#2| (-509)))) (-1377 ((|#2| $ (-517) (-517)) NIL)) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL)) (-1948 (((-703) $) 62 (|has| |#2| (-509)))) (-3706 (((-583 (-214 |#1| |#2|)) $) 66 (|has| |#2| (-509)))) (-1477 (((-703) $) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#2| $) 56 (|has| |#2| (-6 (-4182 "*"))))) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#2|))) 26)) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3035 (((-583 (-583 |#2|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2104 (((-3 $ "failed") $) 69 (|has| |#2| (-333)))) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) NIL)) (-3127 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-2671 ((|#2| $) NIL)) (-1879 (($ (-583 |#2|)) 40)) (-1516 (((-107) $) NIL)) (-2803 (((-214 |#1| |#2|) $) NIL)) (-3057 ((|#2| $) 54 (|has| |#2| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 81 (|has| |#2| (-558 (-493))))) (-3728 (((-214 |#1| |#2|) $ (-517)) 33)) (-2256 (((-787) $) 36) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) 42)) (-2961 (((-703)) 17)) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 11 T CONST)) (-2409 (($) 14 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) 52) (($ $ (-517)) 71 (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) 48) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) 50)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-1040 |#1| |#2|) (-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -2033 ($ $)) (-15 -2461 ($ (-623 |#2|))) (-15 -2256 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4182 "*"))) (-6 -4169) |noBranch|) (IF (|has| |#2| (-6 (-4182 "*"))) (IF (|has| |#2| (-6 -4177)) (-6 -4177) |noBranch|) |noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |noBranch|))) (-703) (-961)) (T -1040)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703)) (-4 *4 (-961)))) (-2033 (*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-14 *2 (-703)) (-4 *3 (-961)))) (-2461 (*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703))))) +(-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -2033 ($ $)) (-15 -2461 ($ (-623 |#2|))) (-15 -2256 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4182 "*"))) (-6 -4169) |noBranch|) (IF (|has| |#2| (-6 (-4182 "*"))) (IF (|has| |#2| (-6 -4177)) (-6 -4177) |noBranch|) |noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |noBranch|))) +((-3132 (($ $) 19)) (-3672 (($ $ (-131)) 10) (($ $ (-128)) 14)) (-1459 (((-107) $ $) 24)) (-1285 (($ $) 17)) (-1449 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1121 (-517))) NIL) (($ $ $) 29)) (-2256 (($ (-131)) 27) (((-787) $) NIL))) +(((-1041 |#1|) (-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -3672 (|#1| |#1| (-128))) (-15 -3672 (|#1| |#1| (-131))) (-15 -2256 (|#1| (-131))) (-15 -1459 ((-107) |#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1449 ((-131) |#1| (-517))) (-15 -1449 ((-131) |#1| (-517) (-131)))) (-1042)) (T -1041)) +NIL +(-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -3672 (|#1| |#1| (-128))) (-15 -3672 (|#1| |#1| (-131))) (-15 -2256 (|#1| (-131))) (-15 -1459 ((-107) |#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1449 ((-131) |#1| (-517))) (-15 -1449 ((-131) |#1| (-517) (-131)))) +((-2750 (((-107) $ $) 18 (|has| (-131) (-1003)))) (-3880 (($ $) 120)) (-3132 (($ $) 121)) (-3672 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) 118)) (-1414 (((-107) $ $ (-517)) 117)) (-1313 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3346 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-3610 (($ $ (-1121 (-517)) $) 114)) (-1679 (($ $) 78 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-131) $) 77 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) 51)) (-1459 (((-107) $ $) 119)) (-2607 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1536 (((-583 (-131)) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) 115)) (-2237 (((-703) $ $ (-131)) 116)) (-1433 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3006 (($ $) 122)) (-1285 (($ $) 123)) (-3847 (((-107) $ (-703)) 10)) (-3359 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3985 (((-1056) $) 22 (|has| (-131) (-1003)))) (-2620 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| (-131) (-1003)))) (-1647 (((-131) $) 42 (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2565 (($ $ (-131)) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1121 (-517))) 63) (($ $ $) 102)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4180))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) 70)) (-2452 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (($ (-131)) 111) (((-787) $) 20 (|has| (-131) (-1003)))) (-3675 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1583 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1547 (((-107) $ $) 19 (|has| (-131) (-1003)))) (-1595 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1572 (((-107) $ $) 82 (|has| (-131) (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-1042) (-1184)) (T -1042)) +((-1285 (*1 *1 *1) (-4 *1 (-1042))) (-3006 (*1 *1 *1) (-4 *1 (-1042))) (-3132 (*1 *1 *1) (-4 *1 (-1042))) (-3880 (*1 *1 *1) (-4 *1 (-1042))) (-1459 (*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107)))) (-1437 (*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107)))) (-1414 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-517)) (-5 *2 (-107)))) (-2237 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-703)))) (-1309 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-107)))) (-3610 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1121 (-517))))) (-2607 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517)))) (-2607 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517)) (-5 *3 (-128)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1042)))) (-1313 (*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1042)))) (-1313 (*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1042)))) (-3672 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))) (-3672 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) (-3359 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))) (-3359 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) (-3346 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))) (-3346 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) (-1449 (*1 *1 *1 *1) (-4 *1 (-1042)))) +(-13 (-19 (-131)) (-10 -8 (-15 -1285 ($ $)) (-15 -3006 ($ $)) (-15 -3132 ($ $)) (-15 -3880 ($ $)) (-15 -1459 ((-107) $ $)) (-15 -1437 ((-107) $ $)) (-15 -1414 ((-107) $ $ (-517))) (-15 -2237 ((-703) $ $ (-131))) (-15 -1309 ((-107) $ $ (-131))) (-15 -3610 ($ $ (-1121 (-517)) $)) (-15 -2607 ((-517) $ $ (-517))) (-15 -2607 ((-517) (-128) $ (-517))) (-15 -2256 ($ (-131))) (-15 -1313 ((-583 $) $ (-131))) (-15 -1313 ((-583 $) $ (-128))) (-15 -3672 ($ $ (-131))) (-15 -3672 ($ $ (-128))) (-15 -3359 ($ $ (-131))) (-15 -3359 ($ $ (-128))) (-15 -3346 ($ $ (-131))) (-15 -3346 ($ $ (-128))) (-15 -1449 ($ $ $)))) +(((-33) . T) ((-97) -3807 (|has| (-131) (-1003)) (|has| (-131) (-779))) ((-557 (-787)) -3807 (|has| (-131) (-1003)) (|has| (-131) (-779)) (|has| (-131) (-557 (-787)))) ((-138 (-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 (-517) (-131)) . T) ((-260 (-517) (-131)) . T) ((-280 (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-343 (-131)) . T) ((-456 (-131)) . T) ((-550 (-517) (-131)) . T) ((-478 (-131) (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-588 (-131)) . T) ((-19 (-131)) . T) ((-779) |has| (-131) (-779)) ((-1003) -3807 (|has| (-131) (-1003)) (|has| (-131) (-779))) ((-1108) . T)) +((-3047 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703)) 93)) (-1770 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 53)) (-3830 (((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)) 85)) (-2016 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2567 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 55) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107)) 57)) (-2132 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 76) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 77)) (-3645 (((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 80)) (-3282 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 52)) (-3800 (((-703) (-583 |#4|) (-583 |#5|)) 19))) +(((-1043 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -1043)) +((-3830 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-1043 *4 *5 *6 *7 *8)))) (-3047 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1043 *7 *8 *9 *10 *11)))) (-2132 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-2132 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-2567 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-2567 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-2567 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-3282 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)))) +((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) 109) (((-583 $) (-583 |#4|) (-107)) 110) (((-583 $) (-583 |#4|) (-107) (-107)) 108) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 111)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 83)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 61)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) 26 (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 39)) (-3659 ((|#4| |#4| $) 64)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 77 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-4063 (((-107) |#4| $) NIL)) (-1829 (((-107) |#4| $) NIL)) (-1538 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2865 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 123)) (-1536 (((-583 |#4|) $) 16 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 17 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 102)) (-2068 (((-3 |#4| "failed") $) 37)) (-2117 (((-583 $) |#4| $) 87)) (-2834 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 97) (((-107) |#4| $) 52)) (-1812 (((-583 $) |#4| $) 106) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 107) (((-583 $) |#4| (-583 $)) NIL)) (-3160 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 118)) (-2474 (($ |#4| $) 74) (($ (-583 |#4|) $) 75) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 73)) (-2774 (((-583 |#4|) $) NIL)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) 47)) (-1672 (($ $ |#4|) NIL) (((-583 $) |#4| $) 89) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 85)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 13)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 12)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 20)) (-2442 (($ $ |#3|) 42)) (-3759 (($ $ |#3|) 43)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3596 (((-583 $) |#4| $) 53) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-2119 (((-107) |#4| $) NIL)) (-1871 (((-107) |#3| $) 60)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-1044 |#1| |#2| |#3| |#4|) (-13 (-1012 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -1044)) +((-2474 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *3))) (-5 *1 (-1044 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) (-4029 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-4029 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-3160 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-2865 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1044 *5 *6 *7 *8))))) (-5 *1 (-1044 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) +(-13 (-1012 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4139 ((|#1| $) 28)) (-2335 (($ (-583 |#1|)) 33)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-2886 ((|#1| |#1| $) 30)) (-1200 ((|#1| $) 26)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 29)) (-1710 (($ |#1| $) 31)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4006 ((|#1| $) 27)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 24)) (-1746 (($) 32)) (-1694 (((-703) $) 22)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 20)) (-2256 (((-787) $) 17 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 12 (|has| |#1| (-1003)))) (-2296 (((-703) $) 23 (|has| $ (-6 -4180))))) +(((-1045 |#1|) (-13 (-1022 |#1|) (-10 -8 (-15 -2335 ($ (-583 |#1|))))) (-1003)) (T -1045)) +((-2335 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1045 *3))))) +(-13 (-1022 |#1|) (-10 -8 (-15 -2335 ($ (-583 |#1|))))) +((-2411 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1121 (-517)) |#2|) 43) ((|#2| $ (-517) |#2|) 40)) (-3811 (((-107) $) 11)) (-1433 (($ (-1 |#2| |#2|) $) 38)) (-1647 ((|#2| $) NIL) (($ $ (-703)) 16)) (-2565 (($ $ |#2|) 39)) (-2348 (((-107) $) 10)) (-1449 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1121 (-517))) 30) ((|#2| $ (-517)) 22) ((|#2| $ (-517) |#2|) NIL)) (-2568 (($ $ $) 46) (($ $ |#2|) NIL)) (-2452 (($ $ $) 32) (($ |#2| $) NIL) (($ (-583 $)) 35) (($ $ |#2|) NIL))) +(((-1046 |#1| |#2|) (-10 -8 (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| "last")) (-15 -1449 (|#1| |#1| "rest")) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|))) (-1047 |#2|) (-1108)) (T -1046)) +NIL +(-10 -8 (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| "last")) (-15 -1449 (|#1| |#1| "rest")) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|))) +((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1668 (((-1158) $ (-517) (-517)) 97 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 117 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4180)))) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-1679 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4180))) (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1445 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 87)) (-3811 (((-107) $) 83)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) 108)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 95 (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 94 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-2620 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1857 (((-583 (-517)) $) 92)) (-4088 (((-107) (-517) $) 91)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2565 (($ $ |#1|) 96 (|has| $ (-6 -4181)))) (-2348 (((-107) $) 84)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 90)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1121 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2459 (((-517) $ $) 44)) (-3750 (($ $ (-1121 (-517))) 114) (($ $ (-517)) 113)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 107)) (-2568 (($ $ $) 61 (|has| $ (-6 -4181))) (($ $ |#1|) 60 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-1047 |#1|) (-1184) (-1108)) (T -1047)) +((-2348 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107))))) +(-13 (-1142 |t#1|) (-588 |t#1|) (-10 -8 (-15 -2348 ((-107) $)) (-15 -3811 ((-107) $)))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T) ((-1142 |#1|) . T)) +((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-1048 |#1| |#2| |#3|) (-1085 |#1| |#2|) (-1003) (-1003) |#2|) (T -1048)) +NIL +(-1085 |#1| |#2|) +((-2750 (((-107) $ $) 7)) (-1319 (((-3 $ "failed") $) 13)) (-3985 (((-1056) $) 9)) (-2836 (($) 14 T CONST)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6))) +(((-1049) (-1184)) (T -1049)) +((-2836 (*1 *1) (-4 *1 (-1049))) (-1319 (*1 *1 *1) (|partial| -4 *1 (-1049)))) +(-13 (-1003) (-10 -8 (-15 -2836 ($) -1619) (-15 -1319 ((-3 $ "failed") $)))) +(((-97) . T) ((-557 (-787)) . T) ((-1003) . T)) +((-4076 (((-1054 |#1|) (-1054 |#1|)) 17)) (-3599 (((-1054 |#1|) (-1054 |#1|)) 13)) (-2667 (((-1054 |#1|) (-1054 |#1|) (-517) (-517)) 20)) (-2825 (((-1054 |#1|) (-1054 |#1|)) 15))) +(((-1050 |#1|) (-10 -7 (-15 -3599 ((-1054 |#1|) (-1054 |#1|))) (-15 -2825 ((-1054 |#1|) (-1054 |#1|))) (-15 -4076 ((-1054 |#1|) (-1054 |#1|))) (-15 -2667 ((-1054 |#1|) (-1054 |#1|) (-517) (-517)))) (-13 (-509) (-134))) (T -1050)) +((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1050 *4)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))) (-2825 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3))))) +(-10 -7 (-15 -3599 ((-1054 |#1|) (-1054 |#1|))) (-15 -2825 ((-1054 |#1|) (-1054 |#1|))) (-15 -4076 ((-1054 |#1|) (-1054 |#1|))) (-15 -2667 ((-1054 |#1|) (-1054 |#1|) (-517) (-517)))) +((-2452 (((-1054 |#1|) (-1054 (-1054 |#1|))) 15))) +(((-1051 |#1|) (-10 -7 (-15 -2452 ((-1054 |#1|) (-1054 (-1054 |#1|))))) (-1108)) (T -1051)) +((-2452 (*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1051 *4)) (-4 *4 (-1108))))) +(-10 -7 (-15 -2452 ((-1054 |#1|) (-1054 (-1054 |#1|))))) +((-3905 (((-1054 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|)) 25)) (-3225 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|)) 26)) (-1893 (((-1054 |#2|) (-1 |#2| |#1|) (-1054 |#1|)) 16))) +(((-1052 |#1| |#2|) (-10 -7 (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1054 |#1|))) (-15 -3905 ((-1054 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|))) (-15 -3225 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|)))) (-1108) (-1108)) (T -1052)) +((-3225 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1052 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1054 *6)) (-4 *6 (-1108)) (-4 *3 (-1108)) (-5 *2 (-1054 *3)) (-5 *1 (-1052 *6 *3)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1052 *5 *6))))) +(-10 -7 (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1054 |#1|))) (-15 -3905 ((-1054 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|))) (-15 -3225 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|)))) +((-1893 (((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-1054 |#2|)) 21))) +(((-1053 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-1054 |#2|)))) (-1108) (-1108) (-1108)) (T -1053)) +((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-1053 *6 *7 *8))))) +(-10 -7 (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-1054 |#2|)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) 50)) (-1668 (((-1158) $ (-517) (-517)) 75 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 109 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-1268 (((-787) $) 40 (|has| |#1| (-1003)))) (-2253 (((-107)) 39 (|has| |#1| (-1003)))) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) 97 (|has| $ (-6 -4181))) (($ $ (-517) $) 120)) (-3781 ((|#1| $ |#1|) 106 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 101 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 103 (|has| $ (-6 -4181))) (($ $ "rest" $) 105 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 108 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 88 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 54 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 57)) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-3861 (($ $) 14)) (-1660 (($ $) 28) (($ $ (-703)) 87)) (-2192 (((-107) (-583 |#1|) $) 114 (|has| |#1| (-1003)))) (-2566 (($ (-583 |#1|)) 111)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) 56)) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2088 (((-1158) (-517) $) 119 (|has| |#1| (-1003)))) (-4097 (((-703) $) 116)) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 72 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 62) (($ (-1 |#1| |#1| |#1|) $ $) 66)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3258 (($ $) 89)) (-2202 (((-107) $) 13)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) 73)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3464 (($ (-1 |#1|)) 122) (($ (-1 |#1| |#1|) |#1|) 123)) (-2279 ((|#1| $) 10)) (-1647 ((|#1| $) 27) (($ $ (-703)) 48)) (-4130 (((-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703))) (-703) $) 24)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3513 (($ (-1 (-107) |#1|) $) 124)) (-3525 (($ (-1 (-107) |#1|) $) 125)) (-2565 (($ $ |#1|) 67 (|has| $ (-6 -4181)))) (-1672 (($ $ (-517)) 31)) (-2348 (((-107) $) 71)) (-3980 (((-107) $) 12)) (-3660 (((-107) $) 115)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 20)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 42)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) 53) ((|#1| $ (-517) |#1|) NIL)) (-2459 (((-517) $ $) 47)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-2640 (($ (-1 $)) 46)) (-2655 (((-107) $) 68)) (-2552 (($ $) 69)) (-3406 (($ $) 98 (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 43)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 52)) (-1540 (($ |#1| $) 96)) (-2568 (($ $ $) 99 (|has| $ (-6 -4181))) (($ $ |#1|) 100 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 77) (($ |#1| $) 44) (($ (-583 $)) 82) (($ $ |#1|) 76)) (-1545 (($ $) 49)) (-2256 (((-787) $) 41 (|has| |#1| (-1003))) (($ (-583 |#1|)) 110)) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 113 (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-1054 |#1|) (-13 (-610 |#1|) (-10 -8 (-6 -4181) (-15 -2256 ($ (-583 |#1|))) (-15 -2566 ($ (-583 |#1|))) (IF (|has| |#1| (-1003)) (-15 -2192 ((-107) (-583 |#1|) $)) |noBranch|) (-15 -4130 ((-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -2640 ($ (-1 $))) (-15 -1540 ($ |#1| $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -2088 ((-1158) (-517) $)) (-15 -1268 ((-787) $)) (-15 -2253 ((-107)))) |noBranch|) (-15 -3096 ($ $ (-517) $)) (-15 -3464 ($ (-1 |#1|))) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $)))) (-1108)) (T -1054)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-2192 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107)) (-5 *1 (-1054 *4)))) (-4130 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703)))) (-5 *1 (-1054 *4)) (-4 *4 (-1108)) (-5 *3 (-703)))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-1 (-1054 *3))) (-5 *1 (-1054 *3)) (-4 *3 (-1108)))) (-1540 (*1 *1 *2 *1) (-12 (-5 *1 (-1054 *2)) (-4 *2 (-1108)))) (-2088 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1054 *4)) (-4 *4 (-1003)) (-4 *4 (-1108)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)))) (-2253 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)))) (-3096 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1054 *3)) (-4 *3 (-1108)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-3464 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-3525 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3))))) +(-13 (-610 |#1|) (-10 -8 (-6 -4181) (-15 -2256 ($ (-583 |#1|))) (-15 -2566 ($ (-583 |#1|))) (IF (|has| |#1| (-1003)) (-15 -2192 ((-107) (-583 |#1|) $)) |noBranch|) (-15 -4130 ((-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -2640 ($ (-1 $))) (-15 -1540 ($ |#1| $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -2088 ((-1158) (-517) $)) (-15 -1268 ((-787) $)) (-15 -2253 ((-107)))) |noBranch|) (-15 -3096 ($ $ (-517) $)) (-15 -3464 ($ (-1 |#1|))) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $)))) +((-2750 (((-107) $ $) 18)) (-3880 (($ $) 120)) (-3132 (($ $) 121)) (-3672 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) 118)) (-1414 (((-107) $ $ (-517)) 117)) (-3890 (($ (-517)) 127)) (-1313 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3346 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-3610 (($ $ (-1121 (-517)) $) 114)) (-1679 (($ $) 78 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-131) $) 77 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) 51)) (-1459 (((-107) $ $) 119)) (-2607 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1536 (((-583 (-131)) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) 115)) (-2237 (((-703) $ $ (-131)) 116)) (-1433 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3006 (($ $) 122)) (-1285 (($ $) 123)) (-3847 (((-107) $ (-703)) 10)) (-3359 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3985 (((-1056) $) 22)) (-2620 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21)) (-1647 (((-131) $) 42 (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2565 (($ $ (-131)) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1121 (-517))) 63) (($ $ $) 102)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4180))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) 70)) (-2452 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (($ (-131)) 111) (((-787) $) 20)) (-3675 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4180)))) (-2482 (((-1056) $) 131) (((-1056) $ (-107)) 130) (((-1158) (-754) $) 129) (((-1158) (-754) $ (-107)) 128)) (-1606 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1583 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1547 (((-107) $ $) 19)) (-1595 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1572 (((-107) $ $) 82 (|has| (-131) (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-1055) (-1184)) (T -1055)) +((-3890 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1055))))) +(-13 (-1042) (-1003) (-760) (-10 -8 (-15 -3890 ($ (-517))))) +(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 (-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 (-517) (-131)) . T) ((-260 (-517) (-131)) . T) ((-280 (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-343 (-131)) . T) ((-456 (-131)) . T) ((-550 (-517) (-131)) . T) ((-478 (-131) (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-588 (-131)) . T) ((-19 (-131)) . T) ((-760) . T) ((-779) |has| (-131) (-779)) ((-1003) . T) ((-1042) . T) ((-1108) . T)) +((-2750 (((-107) $ $) NIL)) (-3880 (($ $) NIL)) (-3132 (($ $) NIL)) (-3672 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) NIL)) (-1414 (((-107) $ $ (-517)) NIL)) (-3890 (($ (-517)) 7)) (-1313 (((-583 $) $ (-131)) NIL) (((-583 $) $ (-128)) NIL)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-131) (-779))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3346 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3610 (($ $ (-1121 (-517)) $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-2052 (($ (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) NIL)) (-1459 (((-107) $ $) NIL)) (-2607 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) NIL (|has| (-131) (-1003))) (((-517) $ $ (-517)) NIL) (((-517) (-128) $ (-517)) NIL)) (-1536 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) NIL)) (-2237 (((-703) $ $ (-131)) NIL)) (-1433 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3006 (($ $) NIL)) (-1285 (($ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3359 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3985 (((-1056) $) NIL)) (-2620 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-131) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2565 (($ $ (-131)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1121 (-517))) NIL) (($ $ $) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) NIL)) (-2452 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (($ (-131)) NIL) (((-787) $) NIL)) (-3675 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2482 (((-1056) $) 18) (((-1056) $ (-107)) 20) (((-1158) (-754) $) 21) (((-1158) (-754) $ (-107)) 22)) (-1606 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-131) (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-1056) (-1055)) (T -1056)) +NIL +(-1055) +((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-1668 (((-1158) $ (-1056) (-1056)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-1056) |#1|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#1| "failed") (-1056) $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#1| "failed") (-1056) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-1056) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-1056)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1056) $) NIL (|has| (-1056) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-1056) $) NIL (|has| (-1056) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-2274 (((-583 (-1056)) $) NIL)) (-2793 (((-107) (-1056) $) NIL)) (-3309 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1857 (((-583 (-1056)) $) NIL)) (-4088 (((-107) (-1056) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-1647 ((|#1| $) NIL (|has| (-1056) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) "failed") (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-1056)) NIL) ((|#1| $ (-1056) |#1|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-1057 |#1|) (-13 (-1085 (-1056) |#1|) (-10 -7 (-6 -4180))) (-1003)) (T -1057)) +NIL +(-13 (-1085 (-1056) |#1|) (-10 -7 (-6 -4180))) +((-2600 (((-1054 |#1|) (-1054 |#1|)) 77)) (-3621 (((-3 (-1054 |#1|) "failed") (-1054 |#1|)) 37)) (-1831 (((-1054 |#1|) (-377 (-517)) (-1054 |#1|)) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1349 (((-1054 |#1|) |#1| (-1054 |#1|)) 123 (|has| |#1| (-333)))) (-3821 (((-1054 |#1|) (-1054 |#1|)) 90)) (-1277 (((-1054 (-517)) (-517)) 57)) (-1937 (((-1054 |#1|) (-1054 (-1054 |#1|))) 109 (|has| |#1| (-37 (-377 (-517)))))) (-2161 (((-1054 |#1|) (-517) (-517) (-1054 |#1|)) 95)) (-3419 (((-1054 |#1|) |#1| (-517)) 45)) (-3325 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 60)) (-4105 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 121 (|has| |#1| (-333)))) (-3459 (((-1054 |#1|) |#1| (-1 (-1054 |#1|))) 108 (|has| |#1| (-37 (-377 (-517)))))) (-1473 (((-1054 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1054 |#1|))) 122 (|has| |#1| (-333)))) (-1641 (((-1054 |#1|) (-1054 |#1|)) 89)) (-2533 (((-1054 |#1|) (-1054 |#1|)) 76)) (-3804 (((-1054 |#1|) (-517) (-517) (-1054 |#1|)) 96)) (-4151 (((-1054 |#1|) |#1| (-1054 |#1|)) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1666 (((-1054 (-517)) (-517)) 56)) (-2612 (((-1054 |#1|) |#1|) 59)) (-3926 (((-1054 |#1|) (-1054 |#1|) (-517) (-517)) 92)) (-2912 (((-1054 |#1|) (-1 |#1| (-517)) (-1054 |#1|)) 66)) (-2476 (((-3 (-1054 |#1|) "failed") (-1054 |#1|) (-1054 |#1|)) 35)) (-3515 (((-1054 |#1|) (-1054 |#1|)) 91)) (-2051 (((-1054 |#1|) (-1054 |#1|) |#1|) 71)) (-2643 (((-1054 |#1|) (-1054 |#1|)) 62)) (-1775 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 72)) (-2256 (((-1054 |#1|) |#1|) 67)) (-1501 (((-1054 |#1|) (-1054 (-1054 |#1|))) 82)) (-1667 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 36)) (-1654 (((-1054 |#1|) (-1054 |#1|)) 21) (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 23)) (-1642 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 17)) (* (((-1054 |#1|) (-1054 |#1|) |#1|) 29) (((-1054 |#1|) |#1| (-1054 |#1|)) 26) (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 27))) +(((-1058 |#1|) (-10 -7 (-15 -1642 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -2476 ((-3 (-1054 |#1|) "failed") (-1054 |#1|) (-1054 |#1|))) (-15 -1667 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3621 ((-3 (-1054 |#1|) "failed") (-1054 |#1|))) (-15 -3419 ((-1054 |#1|) |#1| (-517))) (-15 -1666 ((-1054 (-517)) (-517))) (-15 -1277 ((-1054 (-517)) (-517))) (-15 -2612 ((-1054 |#1|) |#1|)) (-15 -3325 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2643 ((-1054 |#1|) (-1054 |#1|))) (-15 -2912 ((-1054 |#1|) (-1 |#1| (-517)) (-1054 |#1|))) (-15 -2256 ((-1054 |#1|) |#1|)) (-15 -2051 ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -1775 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2533 ((-1054 |#1|) (-1054 |#1|))) (-15 -2600 ((-1054 |#1|) (-1054 |#1|))) (-15 -1501 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1641 ((-1054 |#1|) (-1054 |#1|))) (-15 -3821 ((-1054 |#1|) (-1054 |#1|))) (-15 -3515 ((-1054 |#1|) (-1054 |#1|))) (-15 -3926 ((-1054 |#1|) (-1054 |#1|) (-517) (-517))) (-15 -2161 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (-15 -3804 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 -3459 ((-1054 |#1|) |#1| (-1 (-1054 |#1|)))) (-15 -1937 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1831 ((-1054 |#1|) (-377 (-517)) (-1054 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -4105 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1473 ((-1054 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1054 |#1|)))) (-15 -1349 ((-1054 |#1|) |#1| (-1054 |#1|)))) |noBranch|)) (-961)) (T -1058)) +((-1349 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1473 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1054 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)))) (-4105 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1831 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-4 *4 (-37 *3)) (-4 *4 (-961)) (-5 *3 (-377 (-517))) (-5 *1 (-1058 *4)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1054 *3))) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) (-4151 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-3804 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-2161 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-3926 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-961)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2533 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1775 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2051 (*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) (-2912 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-2643 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-3325 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2612 (*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) (-1277 (*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517)))) (-1666 (*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) (-3621 (*1 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1667 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2476 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1654 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1642 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3))))) +(-10 -7 (-15 -1642 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -2476 ((-3 (-1054 |#1|) "failed") (-1054 |#1|) (-1054 |#1|))) (-15 -1667 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3621 ((-3 (-1054 |#1|) "failed") (-1054 |#1|))) (-15 -3419 ((-1054 |#1|) |#1| (-517))) (-15 -1666 ((-1054 (-517)) (-517))) (-15 -1277 ((-1054 (-517)) (-517))) (-15 -2612 ((-1054 |#1|) |#1|)) (-15 -3325 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2643 ((-1054 |#1|) (-1054 |#1|))) (-15 -2912 ((-1054 |#1|) (-1 |#1| (-517)) (-1054 |#1|))) (-15 -2256 ((-1054 |#1|) |#1|)) (-15 -2051 ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -1775 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2533 ((-1054 |#1|) (-1054 |#1|))) (-15 -2600 ((-1054 |#1|) (-1054 |#1|))) (-15 -1501 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1641 ((-1054 |#1|) (-1054 |#1|))) (-15 -3821 ((-1054 |#1|) (-1054 |#1|))) (-15 -3515 ((-1054 |#1|) (-1054 |#1|))) (-15 -3926 ((-1054 |#1|) (-1054 |#1|) (-517) (-517))) (-15 -2161 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (-15 -3804 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 -3459 ((-1054 |#1|) |#1| (-1 (-1054 |#1|)))) (-15 -1937 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1831 ((-1054 |#1|) (-377 (-517)) (-1054 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -4105 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1473 ((-1054 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1054 |#1|)))) (-15 -1349 ((-1054 |#1|) |#1| (-1054 |#1|)))) |noBranch|)) +((-1865 (((-1054 |#1|) (-1054 |#1|)) 57)) (-1721 (((-1054 |#1|) (-1054 |#1|)) 39)) (-1839 (((-1054 |#1|) (-1054 |#1|)) 53)) (-1701 (((-1054 |#1|) (-1054 |#1|)) 35)) (-1887 (((-1054 |#1|) (-1054 |#1|)) 60)) (-1743 (((-1054 |#1|) (-1054 |#1|)) 42)) (-1867 (((-1054 |#1|) (-1054 |#1|)) 31)) (-2624 (((-1054 |#1|) (-1054 |#1|)) 27)) (-1898 (((-1054 |#1|) (-1054 |#1|)) 61)) (-1754 (((-1054 |#1|) (-1054 |#1|)) 43)) (-1876 (((-1054 |#1|) (-1054 |#1|)) 58)) (-1732 (((-1054 |#1|) (-1054 |#1|)) 40)) (-1853 (((-1054 |#1|) (-1054 |#1|)) 55)) (-1711 (((-1054 |#1|) (-1054 |#1|)) 37)) (-3707 (((-1054 |#1|) (-1054 |#1|)) 65)) (-1788 (((-1054 |#1|) (-1054 |#1|)) 47)) (-3683 (((-1054 |#1|) (-1054 |#1|)) 63)) (-1765 (((-1054 |#1|) (-1054 |#1|)) 45)) (-3731 (((-1054 |#1|) (-1054 |#1|)) 68)) (-1814 (((-1054 |#1|) (-1054 |#1|)) 50)) (-1492 (((-1054 |#1|) (-1054 |#1|)) 69)) (-1827 (((-1054 |#1|) (-1054 |#1|)) 51)) (-3719 (((-1054 |#1|) (-1054 |#1|)) 67)) (-1802 (((-1054 |#1|) (-1054 |#1|)) 49)) (-3695 (((-1054 |#1|) (-1054 |#1|)) 66)) (-1777 (((-1054 |#1|) (-1054 |#1|)) 48)) (** (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 33))) +(((-1059 |#1|) (-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|)))) (-37 (-377 (-517)))) (T -1059)) +((-1492 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3731 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3719 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3683 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1898 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1887 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1827 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1788 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1743 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3))))) +(-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|)))) +((-1865 (((-1054 |#1|) (-1054 |#1|)) 100)) (-1721 (((-1054 |#1|) (-1054 |#1|)) 64)) (-3460 (((-2 (|:| -1839 (-1054 |#1|)) (|:| -1853 (-1054 |#1|))) (-1054 |#1|)) 96)) (-1839 (((-1054 |#1|) (-1054 |#1|)) 97)) (-3423 (((-2 (|:| -1701 (-1054 |#1|)) (|:| -1711 (-1054 |#1|))) (-1054 |#1|)) 53)) (-1701 (((-1054 |#1|) (-1054 |#1|)) 54)) (-1887 (((-1054 |#1|) (-1054 |#1|)) 102)) (-1743 (((-1054 |#1|) (-1054 |#1|)) 71)) (-1867 (((-1054 |#1|) (-1054 |#1|)) 39)) (-2624 (((-1054 |#1|) (-1054 |#1|)) 36)) (-1898 (((-1054 |#1|) (-1054 |#1|)) 103)) (-1754 (((-1054 |#1|) (-1054 |#1|)) 72)) (-1876 (((-1054 |#1|) (-1054 |#1|)) 101)) (-1732 (((-1054 |#1|) (-1054 |#1|)) 67)) (-1853 (((-1054 |#1|) (-1054 |#1|)) 98)) (-1711 (((-1054 |#1|) (-1054 |#1|)) 55)) (-3707 (((-1054 |#1|) (-1054 |#1|)) 111)) (-1788 (((-1054 |#1|) (-1054 |#1|)) 86)) (-3683 (((-1054 |#1|) (-1054 |#1|)) 105)) (-1765 (((-1054 |#1|) (-1054 |#1|)) 82)) (-3731 (((-1054 |#1|) (-1054 |#1|)) 115)) (-1814 (((-1054 |#1|) (-1054 |#1|)) 90)) (-1492 (((-1054 |#1|) (-1054 |#1|)) 117)) (-1827 (((-1054 |#1|) (-1054 |#1|)) 92)) (-3719 (((-1054 |#1|) (-1054 |#1|)) 113)) (-1802 (((-1054 |#1|) (-1054 |#1|)) 88)) (-3695 (((-1054 |#1|) (-1054 |#1|)) 107)) (-1777 (((-1054 |#1|) (-1054 |#1|)) 84)) (** (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 40))) +(((-1060 |#1|) (-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3423 ((-2 (|:| -1701 (-1054 |#1|)) (|:| -1711 (-1054 |#1|))) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -3460 ((-2 (|:| -1839 (-1054 |#1|)) (|:| -1853 (-1054 |#1|))) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|)))) (-37 (-377 (-517)))) (T -1060)) +((-1492 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3731 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3719 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3683 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1898 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1887 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1839 (-1054 *4)) (|:| -1853 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4)))) (-1827 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1788 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1743 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3423 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1701 (-1054 *4)) (|:| -1711 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3423 ((-2 (|:| -1701 (-1054 |#1|)) (|:| -1711 (-1054 |#1|))) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -3460 ((-2 (|:| -1839 (-1054 |#1|)) (|:| -1853 (-1054 |#1|))) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|)))) +((-2310 (((-879 |#2|) |#2| |#2|) 35)) (-3534 ((|#2| |#2| |#1|) 19 (|has| |#1| (-278))))) +(((-1061 |#1| |#2|) (-10 -7 (-15 -2310 ((-879 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -3534 (|#2| |#2| |#1|)) |noBranch|)) (-509) (-1130 |#1|)) (T -1061)) +((-3534 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1061 *3 *2)) (-4 *2 (-1130 *3)))) (-2310 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-879 *3)) (-5 *1 (-1061 *4 *3)) (-4 *3 (-1130 *4))))) +(-10 -7 (-15 -2310 ((-879 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -3534 (|#2| |#2| |#1|)) |noBranch|)) +((-2750 (((-107) $ $) NIL)) (-2144 (($ $ (-583 (-703))) 66)) (-2467 (($) 25)) (-3500 (($ $) 41)) (-2316 (((-583 $) $) 50)) (-2950 (((-107) $) 16)) (-3014 (((-583 (-865 |#2|)) $) 73)) (-2248 (($ $) 67)) (-4160 (((-703) $) 36)) (-3462 (($) 24)) (-3061 (($ $ (-583 (-703)) (-865 |#2|)) 59) (($ $ (-583 (-703)) (-703)) 60) (($ $ (-703) (-865 |#2|)) 62)) (-3237 (($ $ $) 47) (($ (-583 $)) 49)) (-2926 (((-703) $) 74)) (-1763 (((-107) $) 15)) (-3985 (((-1056) $) NIL)) (-3842 (((-107) $) 17)) (-3206 (((-1021) $) NIL)) (-2264 (((-155) $) 72)) (-3287 (((-865 |#2|) $) 68)) (-1900 (((-703) $) 69)) (-2682 (((-107) $) 71)) (-2294 (($ $ (-583 (-703)) (-155)) 65)) (-3557 (($ $) 42)) (-2256 (((-787) $) 84)) (-1733 (($ $ (-583 (-703)) (-107)) 64)) (-1479 (((-583 $) $) 11)) (-2571 (($ $ (-703)) 35)) (-2353 (($ $) 31)) (-1508 (($ $ $ (-865 |#2|) (-703)) 55)) (-2741 (($ $ (-865 |#2|)) 54)) (-2393 (($ $ (-583 (-703)) (-865 |#2|)) 53) (($ $ (-583 (-703)) (-703)) 57) (((-703) $ (-865 |#2|)) 58)) (-1547 (((-107) $ $) 78))) +(((-1062 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1763 ((-107) $)) (-15 -2950 ((-107) $)) (-15 -3842 ((-107) $)) (-15 -3462 ($)) (-15 -2467 ($)) (-15 -2353 ($ $)) (-15 -2571 ($ $ (-703))) (-15 -1479 ((-583 $) $)) (-15 -4160 ((-703) $)) (-15 -3500 ($ $)) (-15 -3557 ($ $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ (-583 $))) (-15 -2316 ((-583 $) $)) (-15 -2393 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2741 ($ $ (-865 |#2|))) (-15 -1508 ($ $ $ (-865 |#2|) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2393 ($ $ (-583 (-703)) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-703))) (-15 -2393 ((-703) $ (-865 |#2|))) (-15 -3061 ($ $ (-703) (-865 |#2|))) (-15 -1733 ($ $ (-583 (-703)) (-107))) (-15 -2294 ($ $ (-583 (-703)) (-155))) (-15 -2144 ($ $ (-583 (-703)))) (-15 -3287 ((-865 |#2|) $)) (-15 -1900 ((-703) $)) (-15 -2682 ((-107) $)) (-15 -2264 ((-155) $)) (-15 -2926 ((-703) $)) (-15 -2248 ($ $)) (-15 -3014 ((-583 (-865 |#2|)) $)))) (-843) (-961)) (T -1062)) +((-1763 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3462 (*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2467 (*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2353 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2571 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3500 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3557 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3237 (*1 *1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2393 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-2741 (*1 *1 *1 *2) (-12 (-5 *2 (-865 *4)) (-4 *4 (-961)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)))) (-1508 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-865 *5)) (-5 *3 (-703)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-2393 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-2393 (*1 *2 *1 *3) (-12 (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *2 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-1733 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-2294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-2144 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-865 *4)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-583 (-865 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(-13 (-1003) (-10 -8 (-15 -1763 ((-107) $)) (-15 -2950 ((-107) $)) (-15 -3842 ((-107) $)) (-15 -3462 ($)) (-15 -2467 ($)) (-15 -2353 ($ $)) (-15 -2571 ($ $ (-703))) (-15 -1479 ((-583 $) $)) (-15 -4160 ((-703) $)) (-15 -3500 ($ $)) (-15 -3557 ($ $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ (-583 $))) (-15 -2316 ((-583 $) $)) (-15 -2393 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2741 ($ $ (-865 |#2|))) (-15 -1508 ($ $ $ (-865 |#2|) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2393 ($ $ (-583 (-703)) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-703))) (-15 -2393 ((-703) $ (-865 |#2|))) (-15 -3061 ($ $ (-703) (-865 |#2|))) (-15 -1733 ($ $ (-583 (-703)) (-107))) (-15 -2294 ($ $ (-583 (-703)) (-155))) (-15 -2144 ($ $ (-583 (-703)))) (-15 -3287 ((-865 |#2|) $)) (-15 -1900 ((-703) $)) (-15 -2682 ((-107) $)) (-15 -2264 ((-155) $)) (-15 -2926 ((-703) $)) (-15 -2248 ($ $)) (-15 -3014 ((-583 (-865 |#2|)) $)))) +((-2750 (((-107) $ $) NIL)) (-3616 ((|#2| $) 11)) (-3603 ((|#1| $) 10)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2276 (($ |#1| |#2|) 9)) (-2256 (((-787) $) 16)) (-1547 (((-107) $ $) NIL))) +(((-1063 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -2276 ($ |#1| |#2|)) (-15 -3603 (|#1| $)) (-15 -3616 (|#2| $)))) (-1003) (-1003)) (T -1063)) +((-2276 (*1 *1 *2 *3) (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3603 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1003)))) (-3616 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *3 *2)) (-4 *3 (-1003))))) +(-13 (-1003) (-10 -8 (-15 -2276 ($ |#1| |#2|)) (-15 -3603 (|#1| $)) (-15 -3616 (|#2| $)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-1071 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1213 (($ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2454 (((-107) $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1974 (($ $ (-517)) NIL) (($ $ (-517) (-517)) 66)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-1880 (((-1071 |#1| |#2| |#3|) $) 36)) (-2477 (((-3 (-1071 |#1| |#2| |#3|) "failed") $) 29)) (-1590 (((-1071 |#1| |#2| |#3|) $) 30)) (-1865 (($ $) 107 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) 103 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1071 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1073) "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-3189 (((-1071 |#1| |#2| |#3|) $) 131) (((-1073) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-2869 (($ $) 34) (($ (-517) $) 35)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-1071 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-1071 |#1| |#2| |#3|))) (|:| |vec| (-1153 (-1071 |#1| |#2| |#3|)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) 48)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 65 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 67 (|has| |#1| (-509)))) (-3209 (($) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3556 (((-107) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) 25)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-808 (-517))) (|has| |#1| (-333)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-808 (-349))) (|has| |#1| (-333))))) (-3972 (((-517) $) NIL) (((-517) $ (-517)) 24)) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL (|has| |#1| (-333)))) (-1787 (((-1071 |#1| |#2| |#3|) $) 38 (|has| |#1| (-333)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) NIL)) (-3103 (($ (-1 |#1| (-517)) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-517)) 18) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-2967 (($ $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3099 (($ $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1867 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1601 (($ (-517) (-1071 |#1| |#2| |#3|)) 33)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 70 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 71 (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1927 (($ $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2597 (((-1071 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 145)) (-2476 (((-3 $ "failed") $ $) 49 (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) (-1071 |#1| |#2| |#3|)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-478 (-1073) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-1071 |#1| |#2| |#3|))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-478 (-1073) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1071 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1071 |#1| |#2| |#3|))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1071 |#1| |#2| |#3|)) (-583 (-1071 |#1| |#2| |#3|))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) NIL) (($ $ $) 54 (|has| (-517) (-1015))) (($ $ (-1071 |#1| |#2| |#3|)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-258 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1149 |#2|)) 51) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 50 (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-2971 (($ $) NIL (|has| |#1| (-333)))) (-1800 (((-1071 |#1| |#2| |#3|) $) 41 (|has| |#1| (-333)))) (-3688 (((-517) $) 37)) (-1898 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-493) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 149) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1071 |#1| |#2| |#3|)) 27) (($ (-1149 |#2|)) 23) (($ (-1073)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (($ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-2720 ((|#1| $ (-517)) 68)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 12)) (-1949 (((-1071 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3707 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 95 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3683 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 99 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 101 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 97 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 20 T CONST)) (-2409 (($) 16 T CONST)) (-2731 (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-1606 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1583 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1572 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 44 (|has| |#1| (-333))) (($ (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) 45 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 21)) (** (($ $ (-843)) NIL) (($ $ (-703)) 53) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) 74 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1071 |#1| |#2| |#3|)) 43 (|has| |#1| (-333))) (($ (-1071 |#1| |#2| |#3|) $) 42 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-1064 |#1| |#2| |#3|) (-13 (-1116 |#1| (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1064)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3)))) +(-13 (-1116 |#1| (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) +((-2541 ((|#2| |#2| (-996 |#2|)) 26) ((|#2| |#2| (-1073)) 28))) +(((-1065 |#1| |#2|) (-10 -7 (-15 -2541 (|#2| |#2| (-1073))) (-15 -2541 (|#2| |#2| (-996 |#2|)))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-400 |#1|) (-145) (-27) (-1094))) (T -1065)) +((-2541 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)))) (-2541 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094)))))) +(-10 -7 (-15 -2541 (|#2| |#2| (-1073))) (-15 -2541 (|#2| |#2| (-996 |#2|)))) +((-2541 (((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|)))) 30) (((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|))) 44) (((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1073)) 32) (((-377 (-874 |#1|)) (-874 |#1|) (-1073)) 36))) +(((-1066 |#1|) (-10 -7 (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-1073))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|)))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|)))))) (-13 (-509) (-779) (-952 (-517)))) (T -1066)) +((-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1066 *5)))) (-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-874 *5))) (-5 *3 (-874 *5)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1066 *5)))) (-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 (-377 (-874 *5)) (-286 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-377 (-874 *5))))) (-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 (-874 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-874 *5))))) +(-10 -7 (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-1073))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|)))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|)))))) +((-1893 (((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|)) 13))) +(((-1067 |#1| |#2|) (-10 -7 (-15 -1893 ((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|)))) (-961) (-961)) (T -1067)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-1067 *5 *6))))) +(-10 -7 (-15 -1893 ((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|)))) +((-2759 (((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|))) 50)) (-3755 (((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|))) 51))) +(((-1068 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|)))) (-15 -2759 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|))))) (-725) (-779) (-421) (-871 |#3| |#1| |#2|)) (T -1068)) +((-2759 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7)))))) +(-10 -7 (-15 -3755 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|)))) (-15 -2759 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|))))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 30)) (-2490 (((-1153 |#1|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#1|)) NIL)) (-2352 (((-1069 $) $ (-989)) 59) (((-1069 |#1|) $) 48)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) 132 (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) 126 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) 72 (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 92 (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2241 (($ $ (-703)) 42)) (-2882 (($ $ (-703)) 43)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) 128 (|has| |#1| (-156)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 57)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-2704 (($ $ $) 104)) (-4080 (($ $ $) NIL (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3534 (($ $) 133 (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-703) $) 46)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3078 (((-787) $ (-787)) 117)) (-3972 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3848 (((-107) $) 32)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) 50) (($ (-1069 $) (-989)) 66)) (-3430 (($ $ (-703)) 34)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 64) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 121)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1548 (((-1069 |#1|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) 53)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) 41)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 33)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 80 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 135 (|has| |#1| (-421)))) (-1953 (($ $ (-703) |#1| $) 99)) (-2561 (((-388 (-1069 $)) (-1069 $)) 78 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 77 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 85 (|has| |#1| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) 37)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 137 (|has| |#1| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) 124 (|has| |#1| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3688 (((-703) $) 55) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 130 (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2256 (((-787) $) 118) (($ (-517)) NIL) (($ |#1|) 54) (($ (-989)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) 28 (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 15) (($ $ (-703)) 16)) (-2396 (($) 17 T CONST)) (-2409 (($) 18 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 97)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 138 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 67)) (** (($ $ (-843)) 14) (($ $ (-703)) 12)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 27) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1069 |#1|) (-13 (-1130 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787))) (-15 -1953 ($ $ (-703) |#1| $)))) (-961)) (T -1069)) +((-3078 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1069 *3)) (-4 *3 (-961)))) (-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1069 *3)) (-4 *3 (-961))))) +(-13 (-1130 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787))) (-15 -1953 ($ $ (-703) |#1| $)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1064 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1071 |#1| |#2| |#3|) "failed") $) 35)) (-3189 (((-1064 |#1| |#2| |#3|) $) NIL) (((-1071 |#1| |#2| |#3|) $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3598 (((-377 (-517)) $) 55)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) (-1064 |#1| |#2| |#3|)) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) 19) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3721 (((-1064 |#1| |#2| |#3|) $) 40)) (-2354 (((-3 (-1064 |#1| |#2| |#3|) "failed") $) NIL)) (-1601 (((-1064 |#1| |#2| |#3|) $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1149 |#2|)) 37)) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 58) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1064 |#1| |#2| |#3|)) 29) (($ (-1071 |#1| |#2| |#3|)) 30) (($ (-1149 |#2|)) 25) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 12)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 21 T CONST)) (-2409 (($) 16 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 23)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-1070 |#1| |#2| |#3|) (-13 (-1137 |#1| (-1064 |#1| |#2| |#3|)) (-952 (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1070)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3)))) +(-13 (-1137 |#1| (-1064 |#1| |#2| |#3|)) (-952 (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 124)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 115)) (-2784 (((-1127 |#2| |#1|) $ (-703)) 62)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-703)) 78) (($ $ (-703) (-703)) 75)) (-2223 (((-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 101)) (-1865 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 144 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 114) (($ (-1054 |#1|)) 109)) (-1887 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) 23)) (-2328 (($ $) 26)) (-3520 (((-874 |#1|) $ (-703)) 74) (((-874 |#1|) $ (-703) (-703)) 76)) (-3201 (((-107) $) 119)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $) 121) (((-703) $ (-703)) 123)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL)) (-3103 (($ (-1 |#1| (-517)) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 13) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1672 (($ $ (-703)) 15)) (-2476 (((-3 $ "failed") $ $) 24 (|has| |#1| (-509)))) (-2624 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1449 ((|#1| $ (-703)) 118) (($ $ $) 127 (|has| (-703) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1149 |#2|)) 29)) (-3688 (((-703) $) NIL)) (-1898 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 146 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 200) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 125 (|has| |#1| (-156))) (($ (-1127 |#2| |#1|)) 50) (($ (-1149 |#2|)) 32)) (-1311 (((-1054 |#1|) $) 97)) (-2720 ((|#1| $ (-703)) 117)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 53)) (-3707 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 152 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-703)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 17 T CONST)) (-2409 (($) 19 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 193)) (-1642 (($ $ $) 31)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 197 (|has| |#1| (-333))) (($ $ $) 133 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 136 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-1071 |#1| |#2| |#3|) (-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1071)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1071 *3 *4 *5)))) (-2784 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1071 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3)))) +(-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) +((-2256 (((-787) $) 22) (($ (-1073)) 24)) (-3807 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 35)) (-3797 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 28) (($ $) 29)) (-4111 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 30)) (-4100 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 32)) (-4089 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 31)) (-4079 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 33)) (-3128 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 34))) +(((-1072) (-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -4111 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4089 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4100 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4079 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3807 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3128 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ $))))) (T -1072)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1072)))) (-4111 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-4089 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-4100 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-4079 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3807 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3128 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3797 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3797 (*1 *1 *1) (-5 *1 (-1072)))) +(-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -4111 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4089 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4100 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4079 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3807 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3128 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ $)))) +((-2750 (((-107) $ $) NIL)) (-3718 (($ $ (-583 (-787))) 58)) (-3975 (($ $ (-583 (-787))) 56)) (-3890 (((-1056) $) 82)) (-2206 (((-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))) $) 85)) (-2213 (((-107) $) 21)) (-3736 (($ $ (-583 (-583 (-787)))) 54) (($ $ (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) 80)) (-3092 (($) 122 T CONST)) (-1302 (((-1158)) 103)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 65) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 71)) (-3462 (($) 92) (($ $) 98)) (-1207 (($ $) 81)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1529 (((-583 $) $) 104)) (-3985 (((-1056) $) 87)) (-3206 (((-1021) $) NIL)) (-1449 (($ $ (-583 (-787))) 57)) (-3645 (((-493) $) 45) (((-1073) $) 46) (((-814 (-517)) $) 75) (((-814 (-349)) $) 73)) (-2256 (((-787) $) 52) (($ (-1056)) 47)) (-2712 (($ $ (-583 (-787))) 59)) (-2482 (((-1056) $) 33) (((-1056) $ (-107)) 34) (((-1158) (-754) $) 35) (((-1158) (-754) $ (-107)) 36)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 48)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 49))) +(((-1073) (-13 (-779) (-558 (-493)) (-760) (-558 (-1073)) (-558 (-814 (-517))) (-558 (-814 (-349))) (-808 (-517)) (-808 (-349)) (-10 -8 (-15 -3462 ($)) (-15 -3462 ($ $)) (-15 -1302 ((-1158))) (-15 -2256 ($ (-1056))) (-15 -1207 ($ $)) (-15 -2213 ((-107) $)) (-15 -2206 ((-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -3736 ($ $ (-583 (-583 (-787))))) (-15 -3736 ($ $ (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -3975 ($ $ (-583 (-787)))) (-15 -3718 ($ $ (-583 (-787)))) (-15 -2712 ($ $ (-583 (-787)))) (-15 -1449 ($ $ (-583 (-787)))) (-15 -3890 ((-1056) $)) (-15 -1529 ((-583 $) $)) (-15 -3092 ($) -1619)))) (T -1073)) +((-3462 (*1 *1) (-5 *1 (-1073))) (-3462 (*1 *1 *1) (-5 *1 (-1073))) (-1302 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1073)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1073)))) (-1207 (*1 *1 *1) (-5 *1 (-1073))) (-2213 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1073)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073)))) (-3736 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1073)))) (-3736 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1073)))) (-1529 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1073)))) (-3092 (*1 *1) (-5 *1 (-1073)))) +(-13 (-779) (-558 (-493)) (-760) (-558 (-1073)) (-558 (-814 (-517))) (-558 (-814 (-349))) (-808 (-517)) (-808 (-349)) (-10 -8 (-15 -3462 ($)) (-15 -3462 ($ $)) (-15 -1302 ((-1158))) (-15 -2256 ($ (-1056))) (-15 -1207 ($ $)) (-15 -2213 ((-107) $)) (-15 -2206 ((-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -3736 ($ $ (-583 (-583 (-787))))) (-15 -3736 ($ $ (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -3975 ($ $ (-583 (-787)))) (-15 -3718 ($ $ (-583 (-787)))) (-15 -2712 ($ $ (-583 (-787)))) (-15 -1449 ($ $ (-583 (-787)))) (-15 -3890 ((-1056) $)) (-15 -1529 ((-583 $) $)) (-15 -3092 ($) -1619))) +((-1463 (((-1153 |#1|) |#1| (-843)) 16) (((-1153 |#1|) (-583 |#1|)) 20))) +(((-1074 |#1|) (-10 -7 (-15 -1463 ((-1153 |#1|) (-583 |#1|))) (-15 -1463 ((-1153 |#1|) |#1| (-843)))) (-961)) (T -1074)) +((-1463 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1153 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4)) (-5 *1 (-1074 *4))))) +(-10 -7 (-15 -1463 ((-1153 |#1|) (-583 |#1|))) (-15 -1463 ((-1153 |#1|) |#1| (-843)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-1436 (($ $ |#1| (-888) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-888)) NIL)) (-2349 (((-888) $) NIL)) (-3328 (($ (-1 (-888) (-888)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1953 (($ $ (-888) |#1| $) NIL (-12 (|has| (-888) (-123)) (|has| |#1| (-509))))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3688 (((-888) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-888)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 9 T CONST)) (-2409 (($) 14 T CONST)) (-1547 (((-107) $ $) 16)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 19)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-1075 |#1|) (-13 (-296 |#1| (-888)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-888) (-123)) (-15 -1953 ($ $ (-888) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) (-961)) (T -1075)) +((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-888)) (-4 *2 (-123)) (-5 *1 (-1075 *3)) (-4 *3 (-509)) (-4 *3 (-961))))) +(-13 (-296 |#1| (-888)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-888) (-123)) (-15 -1953 ($ $ (-888) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) +((-3542 (((-1077) (-1073) $) 24)) (-1676 (($) 28)) (-1999 (((-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-1073) $) 21)) (-2588 (((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) $) 40) (((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) 41) (((-1158) (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) 42)) (-3410 (((-1158) (-1073)) 57)) (-4022 (((-1158) (-1073) $) 54) (((-1158) (-1073)) 55) (((-1158)) 56)) (-2929 (((-1158) (-1073)) 36)) (-1629 (((-1073)) 35)) (-1746 (($) 33)) (-2373 (((-407) (-1073) (-407) (-1073) $) 44) (((-407) (-583 (-1073)) (-407) (-1073) $) 48) (((-407) (-1073) (-407)) 45) (((-407) (-1073) (-407) (-1073)) 49)) (-1233 (((-1073)) 34)) (-2256 (((-787) $) 27)) (-3108 (((-1158)) 29) (((-1158) (-1073)) 32)) (-3558 (((-583 (-1073)) (-1073) $) 23)) (-2940 (((-1158) (-1073) (-583 (-1073)) $) 37) (((-1158) (-1073) (-583 (-1073))) 38) (((-1158) (-583 (-1073))) 39))) +(((-1076) (-13 (-557 (-787)) (-10 -8 (-15 -1676 ($)) (-15 -3108 ((-1158))) (-15 -3108 ((-1158) (-1073))) (-15 -2373 ((-407) (-1073) (-407) (-1073) $)) (-15 -2373 ((-407) (-583 (-1073)) (-407) (-1073) $)) (-15 -2373 ((-407) (-1073) (-407))) (-15 -2373 ((-407) (-1073) (-407) (-1073))) (-15 -2929 ((-1158) (-1073))) (-15 -1233 ((-1073))) (-15 -1629 ((-1073))) (-15 -2940 ((-1158) (-1073) (-583 (-1073)) $)) (-15 -2940 ((-1158) (-1073) (-583 (-1073)))) (-15 -2940 ((-1158) (-583 (-1073)))) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -2588 ((-1158) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -4022 ((-1158) (-1073) $)) (-15 -4022 ((-1158) (-1073))) (-15 -4022 ((-1158))) (-15 -3410 ((-1158) (-1073))) (-15 -1746 ($)) (-15 -1999 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-1073) $)) (-15 -3558 ((-583 (-1073)) (-1073) $)) (-15 -3542 ((-1077) (-1073) $))))) (T -1076)) +((-1676 (*1 *1) (-5 *1 (-1076))) (-3108 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *4 (-1073)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-1233 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076)))) (-1629 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076)))) (-2940 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2588 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-4022 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-4022 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-1746 (*1 *1) (-5 *1 (-1076))) (-1999 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-1076)))) (-3558 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1076)) (-5 *3 (-1073)))) (-3542 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1077)) (-5 *1 (-1076))))) +(-13 (-557 (-787)) (-10 -8 (-15 -1676 ($)) (-15 -3108 ((-1158))) (-15 -3108 ((-1158) (-1073))) (-15 -2373 ((-407) (-1073) (-407) (-1073) $)) (-15 -2373 ((-407) (-583 (-1073)) (-407) (-1073) $)) (-15 -2373 ((-407) (-1073) (-407))) (-15 -2373 ((-407) (-1073) (-407) (-1073))) (-15 -2929 ((-1158) (-1073))) (-15 -1233 ((-1073))) (-15 -1629 ((-1073))) (-15 -2940 ((-1158) (-1073) (-583 (-1073)) $)) (-15 -2940 ((-1158) (-1073) (-583 (-1073)))) (-15 -2940 ((-1158) (-583 (-1073)))) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -2588 ((-1158) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -4022 ((-1158) (-1073) $)) (-15 -4022 ((-1158) (-1073))) (-15 -4022 ((-1158))) (-15 -3410 ((-1158) (-1073))) (-15 -1746 ($)) (-15 -1999 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-1073) $)) (-15 -3558 ((-583 (-1073)) (-1073) $)) (-15 -3542 ((-1077) (-1073) $)))) +((-4000 (((-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) $) 57)) (-2832 (((-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))) (-404) $) 40)) (-4107 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))) 15)) (-3410 (((-1158) $) 65)) (-3067 (((-583 (-1073)) $) 20)) (-1274 (((-1007) $) 53)) (-2815 (((-407) (-1073) $) 27)) (-2500 (((-583 (-1073)) $) 30)) (-1746 (($) 17)) (-2373 (((-407) (-583 (-1073)) (-407) $) 25) (((-407) (-1073) (-407) $) 24)) (-2256 (((-787) $) 9) (((-1082 (-1073) (-407)) $) 11))) +(((-1077) (-13 (-557 (-787)) (-10 -8 (-15 -2256 ((-1082 (-1073) (-407)) $)) (-15 -1746 ($)) (-15 -2373 ((-407) (-583 (-1073)) (-407) $)) (-15 -2373 ((-407) (-1073) (-407) $)) (-15 -2815 ((-407) (-1073) $)) (-15 -3067 ((-583 (-1073)) $)) (-15 -2832 ((-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))) (-404) $)) (-15 -2500 ((-583 (-1073)) $)) (-15 -4000 ((-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) $)) (-15 -1274 ((-1007) $)) (-15 -3410 ((-1158) $)) (-15 -4107 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))))))) (T -1077)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-1082 (-1073) (-407))) (-5 *1 (-1077)))) (-1746 (*1 *1) (-5 *1 (-1077))) (-2373 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *1 (-1077)))) (-2373 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1077)))) (-2815 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-407)) (-5 *1 (-1077)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077)))) (-2832 (*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) (-5 *1 (-1077)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))))) (-5 *1 (-1077)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1077)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1077)))) (-4107 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))) (-5 *1 (-1077))))) +(-13 (-557 (-787)) (-10 -8 (-15 -2256 ((-1082 (-1073) (-407)) $)) (-15 -1746 ($)) (-15 -2373 ((-407) (-583 (-1073)) (-407) $)) (-15 -2373 ((-407) (-1073) (-407) $)) (-15 -2815 ((-407) (-1073) $)) (-15 -3067 ((-583 (-1073)) $)) (-15 -2832 ((-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))) (-404) $)) (-15 -2500 ((-583 (-1073)) $)) (-15 -4000 ((-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) $)) (-15 -1274 ((-1007) $)) (-15 -3410 ((-1158) $)) (-15 -4107 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407)))))))) +((-3341 (((-3 (-517) (-199) (-1073) (-1056) (-583 $)) $) 36)) (-3354 (((-583 $) $) 39)) (-3645 (((-1007) $) 6) (($ (-1007)) 7) (($ (-517)) 10) (($ (-199)) 13) (($ (-1073)) 16) (($ (-1056)) 19)) (-2256 (((-787) $) NIL)) (-3365 (($ (-1073) (-583 $)) 23))) +(((-1078) (-13 (-557 (-787)) (-10 -8 (-15 -3645 ((-1007) $)) (-15 -3645 ($ (-1007))) (-15 -3645 ($ (-517))) (-15 -3645 ($ (-199))) (-15 -3645 ($ (-1073))) (-15 -3645 ($ (-1056))) (-15 -3365 ($ (-1073) (-583 $))) (-15 -3341 ((-3 (-517) (-199) (-1073) (-1056) (-583 $)) $)) (-15 -3354 ((-583 $) $))))) (T -1078)) +((-3645 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1078)))) (-3365 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-1078))) (-5 *1 (-1078)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1073) (-1056) (-583 (-1078)))) (-5 *1 (-1078)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-583 (-1078))) (-5 *1 (-1078))))) +(-13 (-557 (-787)) (-10 -8 (-15 -3645 ((-1007) $)) (-15 -3645 ($ (-1007))) (-15 -3645 ($ (-517))) (-15 -3645 ($ (-199))) (-15 -3645 ($ (-1073))) (-15 -3645 ($ (-1056))) (-15 -3365 ($ (-1073) (-583 $))) (-15 -3341 ((-3 (-517) (-199) (-1073) (-1056) (-583 $)) $)) (-15 -3354 ((-583 $) $)))) +((-1663 (((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 55)) (-1674 (((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|)))) 66) (((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|))) 62) (((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073)) 67) (((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073)) 61) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|))))) 91) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|)))) 90) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073))) 92) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 89))) +(((-1079 |#1|) (-10 -7 (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))))) (-15 -1663 ((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073))))) (-509)) (T -1079)) +((-1663 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-874 *5)))) (-5 *1 (-1079 *5)))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-265 (-377 (-874 *4)))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-377 (-874 *4))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-265 (-377 (-874 *5)))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-377 (-874 *5))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)) (-5 *3 (-583 (-265 (-377 (-874 *4))))))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5)) (-5 *3 (-583 (-265 (-377 (-874 *5))))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5))))) +(-10 -7 (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))))) (-15 -1663 ((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073))))) +((-1197 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 38)) (-2090 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 24)) (-2910 (((-1081 (-583 |#1|)) (-583 |#1|)) 34)) (-3360 (((-583 (-583 |#1|)) (-583 |#1|)) 30)) (-2589 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 37)) (-4016 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 36)) (-2103 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 28)) (-2104 (((-583 |#1|) (-583 |#1|)) 31)) (-3873 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 18)) (-2244 (((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 15)) (-1856 (((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 13)) (-3964 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 39)) (-2469 (((-583 (-583 |#1|)) (-1081 (-583 |#1|))) 41))) +(((-1080 |#1|) (-10 -7 (-15 -1856 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2244 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3873 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1197 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3964 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -2469 ((-583 (-583 |#1|)) (-1081 (-583 |#1|)))) (-15 -2090 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -2910 ((-1081 (-583 |#1|)) (-583 |#1|))) (-15 -2103 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3360 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2104 ((-583 |#1|) (-583 |#1|))) (-15 -4016 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -2589 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-779)) (T -1080)) +((-2589 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-4016 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1080 *6)) (-5 *4 (-583 *5)))) (-2104 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1080 *3)))) (-3360 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4)))) (-2103 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1080 *3)))) (-2910 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1081 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4)))) (-2090 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 *4))))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-1081 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-4 *4 (-779)))) (-1197 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1080 *4)))) (-3873 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1080 *4)))) (-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1080 *5)))) (-1856 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1080 *6)) (-5 *5 (-583 *4))))) +(-10 -7 (-15 -1856 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2244 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3873 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1197 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3964 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -2469 ((-583 (-583 |#1|)) (-1081 (-583 |#1|)))) (-15 -2090 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -2910 ((-1081 (-583 |#1|)) (-583 |#1|))) (-15 -2103 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3360 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2104 ((-583 |#1|) (-583 |#1|))) (-15 -4016 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -2589 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) +((-1241 (($ (-583 (-583 |#1|))) 9)) (-3035 (((-583 (-583 |#1|)) $) 10)) (-2256 (((-787) $) 25))) +(((-1081 |#1|) (-10 -8 (-15 -1241 ($ (-583 (-583 |#1|)))) (-15 -3035 ((-583 (-583 |#1|)) $)) (-15 -2256 ((-787) $))) (-1003)) (T -1081)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1081 *3)) (-4 *3 (-1003)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1081 *3)) (-4 *3 (-1003)))) (-1241 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-1081 *3))))) +(-10 -8 (-15 -1241 ($ (-583 (-583 |#1|)))) (-15 -3035 ((-583 (-583 |#1|)) $)) (-15 -2256 ((-787) $))) +((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-1082 |#1| |#2|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003)) (T -1082)) +NIL +(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) +((-2333 ((|#1| (-583 |#1|)) 32)) (-1994 ((|#1| |#1| (-517)) 18)) (-1940 (((-1069 |#1|) |#1| (-843)) 15))) +(((-1083 |#1|) (-10 -7 (-15 -2333 (|#1| (-583 |#1|))) (-15 -1940 ((-1069 |#1|) |#1| (-843))) (-15 -1994 (|#1| |#1| (-517)))) (-333)) (T -1083)) +((-1994 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1083 *2)) (-4 *2 (-333)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1069 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-333)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1083 *2)) (-4 *2 (-333))))) +(-10 -7 (-15 -2333 (|#1| (-583 |#1|))) (-15 -1940 ((-1069 |#1|) |#1| (-843))) (-15 -1994 (|#1| |#1| (-517)))) +((-3422 (($) 10) (($ (-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)))) 14)) (-3212 (($ (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 60) (($ (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 39) (((-583 |#3|) $) 41)) (-1433 (($ (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1893 (($ (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3309 (((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 53)) (-1710 (($ (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 16)) (-1857 (((-583 |#2|) $) 19)) (-4088 (((-107) |#2| $) 58)) (-2887 (((-3 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) "failed") (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 57)) (-4006 (((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 62)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 65)) (-1941 (((-583 |#3|) $) 43)) (-1449 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-703) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) NIL) (((-703) |#3| $) NIL) (((-703) (-1 (-107) |#3|) $) 66)) (-2256 (((-787) $) 27)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 64)) (-1547 (((-107) $ $) 48))) +(((-1084 |#1| |#2| |#3|) (-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3422 (|#1| (-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))))) (-15 -3422 (|#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1536 ((-583 |#3|) |#1|)) (-15 -3217 ((-703) |#3| |#1|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -4088 ((-107) |#2| |#1|)) (-15 -1857 ((-583 |#2|) |#1|)) (-15 -3212 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3212 (|#1| (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3212 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -2887 ((-3 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) "failed") (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3309 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1710 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -4006 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -3217 ((-703) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1536 ((-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3217 ((-703) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -2048 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3675 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1433 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1893 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|))) (-1085 |#2| |#3|) (-1003) (-1003)) (T -1084)) +NIL +(-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3422 (|#1| (-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))))) (-15 -3422 (|#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1536 ((-583 |#3|) |#1|)) (-15 -3217 ((-703) |#3| |#1|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -4088 ((-107) |#2| |#1|)) (-15 -1857 ((-583 |#2|) |#1|)) (-15 -3212 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3212 (|#1| (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3212 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -2887 ((-3 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) "failed") (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3309 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1710 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -4006 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -3217 ((-703) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1536 ((-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3217 ((-703) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -2048 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3675 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1433 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1893 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|))) +((-2750 (((-107) $ $) 18 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3422 (($) 72) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 71)) (-1668 (((-1158) $ |#1| |#1|) 99 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#2| $ |#1| |#2|) 73)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 55 (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 61)) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 46 (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 62)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 54 (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 56 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 53 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 52 (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 88)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 30 (|has| $ (-6 -4180))) (((-583 |#2|) $) 79 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-3243 ((|#1| $) 96 (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 29 (|has| $ (-6 -4180))) (((-583 |#2|) $) 80 (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-3482 ((|#1| $) 95 (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 34 (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-2274 (((-583 |#1|) $) 63)) (-2793 (((-107) |#1| $) 64)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 39)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 40)) (-1857 (((-583 |#1|) $) 93)) (-4088 (((-107) |#1| $) 92)) (-3206 (((-1021) $) 21 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1647 ((|#2| $) 97 (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 51)) (-2565 (($ $ |#2|) 98 (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 41)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 32 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 26 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 25 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 24 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 23 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) 91)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3089 (($) 49) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 48)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 31 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4180)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 50)) (-2256 (((-787) $) 20 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 42)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 33 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-1085 |#1| |#2|) (-1184) (-1003) (-1003)) (T -1085)) +((-2411 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3422 (*1 *1) (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 *3) (|:| -1257 *4)))) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *1 (-1085 *3 *4)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1085 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) +(-13 (-554 |t#1| |t#2|) (-550 |t#1| |t#2|) (-10 -8 (-15 -2411 (|t#2| $ |t#1| |t#2|)) (-15 -3422 ($)) (-15 -3422 ($ (-583 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|))))) (-15 -1893 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-33) . T) ((-102 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-97) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-209 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-456 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-456 |#2|) . T) ((-550 |#1| |#2|) . T) ((-478 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-554 |#1| |#2|) . T) ((-1003) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-1108) . T)) +((-2272 (((-107)) 24)) (-3304 (((-1158) (-1056)) 26)) (-2181 (((-107)) 36)) (-3967 (((-1158)) 34)) (-4086 (((-1158) (-1056) (-1056)) 25)) (-3367 (((-107)) 37)) (-1710 (((-1158) |#1| |#2|) 44)) (-2770 (((-1158)) 20)) (-2495 (((-3 |#2| "failed") |#1|) 42)) (-2036 (((-1158)) 35))) +(((-1086 |#1| |#2|) (-10 -7 (-15 -2770 ((-1158))) (-15 -4086 ((-1158) (-1056) (-1056))) (-15 -3304 ((-1158) (-1056))) (-15 -3967 ((-1158))) (-15 -2036 ((-1158))) (-15 -2272 ((-107))) (-15 -2181 ((-107))) (-15 -3367 ((-107))) (-15 -2495 ((-3 |#2| "failed") |#1|)) (-15 -1710 ((-1158) |#1| |#2|))) (-1003) (-1003)) (T -1086)) +((-1710 (*1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2495 (*1 *2 *3) (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1086 *3 *2)) (-4 *3 (-1003)))) (-3367 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2181 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2272 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2036 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3967 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-4086 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-2770 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) +(-10 -7 (-15 -2770 ((-1158))) (-15 -4086 ((-1158) (-1056) (-1056))) (-15 -3304 ((-1158) (-1056))) (-15 -3967 ((-1158))) (-15 -2036 ((-1158))) (-15 -2272 ((-107))) (-15 -2181 ((-107))) (-15 -3367 ((-107))) (-15 -2495 ((-3 |#2| "failed") |#1|)) (-15 -1710 ((-1158) |#1| |#2|))) +((-1604 (((-1056) (-1056)) 18)) (-2644 (((-51) (-1056)) 21))) +(((-1087) (-10 -7 (-15 -2644 ((-51) (-1056))) (-15 -1604 ((-1056) (-1056))))) (T -1087)) +((-1604 (*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1087)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-1087))))) +(-10 -7 (-15 -2644 ((-51) (-1056))) (-15 -1604 ((-1056) (-1056)))) +((-2256 (((-1089) |#1|) 11))) +(((-1088 |#1|) (-10 -7 (-15 -2256 ((-1089) |#1|))) (-1003)) (T -1088)) +((-2256 (*1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *1 (-1088 *3)) (-4 *3 (-1003))))) +(-10 -7 (-15 -2256 ((-1089) |#1|))) +((-2750 (((-107) $ $) NIL)) (-3765 (((-583 (-1056)) $) 33)) (-1963 (((-583 (-1056)) $ (-583 (-1056))) 36)) (-1594 (((-583 (-1056)) $ (-583 (-1056))) 35)) (-3385 (((-583 (-1056)) $ (-583 (-1056))) 37)) (-3157 (((-583 (-1056)) $) 32)) (-3462 (($) 22)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2054 (((-583 (-1056)) $) 34)) (-1242 (((-1158) $ (-517)) 29) (((-1158) $) 30)) (-3645 (($ (-787) (-517)) 26) (($ (-787) (-517) (-787)) NIL)) (-2256 (((-787) $) 39) (($ (-787)) 24)) (-1547 (((-107) $ $) NIL))) +(((-1089) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -3645 ($ (-787) (-517) (-787))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -3765 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1963 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056))))))) (T -1089)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1089)))) (-3645 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) (-3645 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) (-1242 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1089)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1089)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-3462 (*1 *1) (-5 *1 (-1089))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-3385 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-1963 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-1594 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089))))) +(-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -3645 ($ (-787) (-517) (-787))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -3765 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1963 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056)))))) +((-2750 (((-107) $ $) NIL)) (-1801 (((-1056) $ (-1056)) 15) (((-1056) $) 14)) (-3733 (((-1056) $ (-1056)) 13)) (-1723 (($ $ (-1056)) NIL)) (-2863 (((-3 (-1056) "failed") $) 11)) (-3446 (((-1056) $) 8)) (-2595 (((-3 (-1056) "failed") $) 12)) (-1457 (((-1056) $) 9)) (-1513 (($ (-358)) NIL) (($ (-358) (-1056)) NIL)) (-1207 (((-358) $) NIL)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3900 (((-107) $) 17)) (-2256 (((-787) $) NIL)) (-2463 (($ $) NIL)) (-1547 (((-107) $ $) NIL))) +(((-1090) (-13 (-334 (-358) (-1056)) (-10 -8 (-15 -1801 ((-1056) $ (-1056))) (-15 -1801 ((-1056) $)) (-15 -3446 ((-1056) $)) (-15 -2863 ((-3 (-1056) "failed") $)) (-15 -2595 ((-3 (-1056) "failed") $)) (-15 -3900 ((-107) $))))) (T -1090)) +((-1801 (*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-2863 (*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-2595 (*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1090))))) +(-13 (-334 (-358) (-1056)) (-10 -8 (-15 -1801 ((-1056) $ (-1056))) (-15 -1801 ((-1056) $)) (-15 -3446 ((-1056) $)) (-15 -2863 ((-3 (-1056) "failed") $)) (-15 -2595 ((-3 (-1056) "failed") $)) (-15 -3900 ((-107) $)))) +((-3709 (((-3 (-517) "failed") |#1|) 19)) (-2092 (((-3 (-517) "failed") |#1|) 13)) (-2448 (((-517) (-1056)) 28))) +(((-1091 |#1|) (-10 -7 (-15 -3709 ((-3 (-517) "failed") |#1|)) (-15 -2092 ((-3 (-517) "failed") |#1|)) (-15 -2448 ((-517) (-1056)))) (-961)) (T -1091)) +((-2448 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-1091 *4)) (-4 *4 (-961)))) (-2092 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))) (-3709 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961))))) +(-10 -7 (-15 -3709 ((-3 (-517) "failed") |#1|)) (-15 -2092 ((-3 (-517) "failed") |#1|)) (-15 -2448 ((-517) (-1056)))) +((-2502 (((-1034 (-199))) 8))) +(((-1092) (-10 -7 (-15 -2502 ((-1034 (-199)))))) (T -1092)) +((-2502 (*1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1092))))) +(-10 -7 (-15 -2502 ((-1034 (-199))))) +((-2645 (($) 11)) (-3707 (($ $) 35)) (-3683 (($ $) 33)) (-1765 (($ $) 25)) (-3731 (($ $) 17)) (-1492 (($ $) 15)) (-3719 (($ $) 19)) (-1802 (($ $) 30)) (-3695 (($ $) 34)) (-1777 (($ $) 29))) +(((-1093 |#1|) (-10 -8 (-15 -2645 (|#1|)) (-15 -3707 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1777 (|#1| |#1|))) (-1094)) (T -1093)) +NIL +(-10 -8 (-15 -2645 (|#1|)) (-15 -3707 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1777 (|#1| |#1|))) +((-1865 (($ $) 26)) (-1721 (($ $) 11)) (-1839 (($ $) 27)) (-1701 (($ $) 10)) (-1887 (($ $) 28)) (-1743 (($ $) 9)) (-2645 (($) 16)) (-1867 (($ $) 19)) (-2624 (($ $) 18)) (-1898 (($ $) 29)) (-1754 (($ $) 8)) (-1876 (($ $) 30)) (-1732 (($ $) 7)) (-1853 (($ $) 31)) (-1711 (($ $) 6)) (-3707 (($ $) 20)) (-1788 (($ $) 32)) (-3683 (($ $) 21)) (-1765 (($ $) 33)) (-3731 (($ $) 22)) (-1814 (($ $) 34)) (-1492 (($ $) 23)) (-1827 (($ $) 35)) (-3719 (($ $) 24)) (-1802 (($ $) 36)) (-3695 (($ $) 25)) (-1777 (($ $) 37)) (** (($ $ $) 17))) +(((-1094) (-1184)) (T -1094)) +((-2645 (*1 *1) (-4 *1 (-1094)))) +(-13 (-1097) (-91) (-458) (-34) (-256) (-10 -8 (-15 -2645 ($)))) +(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-1097) . T)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 17)) (-3433 (($ |#1| (-583 $)) 23) (($ (-583 |#1|)) 27) (($ |#1|) 25)) (-2953 (((-107) $ (-703)) 46)) (-1918 ((|#1| $ |#1|) 14 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 13 (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1536 (((-583 |#1|) $) 50 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 41)) (-1272 (((-107) $ $) 32 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 39)) (-2560 (((-583 |#1|) $) 51 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 49 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 22)) (-3847 (((-107) $ (-703)) 38)) (-3992 (((-583 |#1|) $) 36)) (-1763 (((-107) $) 35)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 48 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 73)) (-3619 (((-107) $) 9)) (-1746 (($) 10)) (-1449 ((|#1| $ "value") NIL)) (-2459 (((-517) $ $) 31)) (-2050 (((-583 $) $) 57)) (-3491 (((-107) $ $) 75)) (-1476 (((-583 $) $) 70)) (-3272 (($ $) 71)) (-2655 (((-107) $) 54)) (-3217 (((-703) (-1 (-107) |#1|) $) 20 (|has| $ (-6 -4180))) (((-703) |#1| $) 16 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 56)) (-2256 (((-787) $) 59 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 12)) (-2732 (((-107) $ $) 29 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 47 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 28 (|has| |#1| (-1003)))) (-2296 (((-703) $) 37 (|has| $ (-6 -4180))))) +(((-1095 |#1|) (-13 (-926 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -3433 ($ |#1| (-583 $))) (-15 -3433 ($ (-583 |#1|))) (-15 -3433 ($ |#1|)) (-15 -2655 ((-107) $)) (-15 -3272 ($ $)) (-15 -1476 ((-583 $) $)) (-15 -3491 ((-107) $ $)) (-15 -2050 ((-583 $) $)))) (-1003)) (T -1095)) +((-2655 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))) (-3433 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1095 *2))) (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1095 *3)))) (-3433 (*1 *1 *2) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) (-3272 (*1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))) (-3491 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003))))) +(-13 (-926 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -3433 ($ |#1| (-583 $))) (-15 -3433 ($ (-583 |#1|))) (-15 -3433 ($ |#1|)) (-15 -2655 ((-107) $)) (-15 -3272 ($ $)) (-15 -1476 ((-583 $) $)) (-15 -3491 ((-107) $ $)) (-15 -2050 ((-583 $) $)))) +((-1721 (($ $) 15)) (-1743 (($ $) 12)) (-1754 (($ $) 10)) (-1732 (($ $) 17))) +(((-1096 |#1|) (-10 -8 (-15 -1732 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1721 (|#1| |#1|))) (-1097)) (T -1096)) +NIL +(-10 -8 (-15 -1732 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1721 (|#1| |#1|))) +((-1721 (($ $) 11)) (-1701 (($ $) 10)) (-1743 (($ $) 9)) (-1754 (($ $) 8)) (-1732 (($ $) 7)) (-1711 (($ $) 6))) +(((-1097) (-1184)) (T -1097)) +((-1721 (*1 *1 *1) (-4 *1 (-1097))) (-1701 (*1 *1 *1) (-4 *1 (-1097))) (-1743 (*1 *1 *1) (-4 *1 (-1097))) (-1754 (*1 *1 *1) (-4 *1 (-1097))) (-1732 (*1 *1 *1) (-4 *1 (-1097))) (-1711 (*1 *1 *1) (-4 *1 (-1097)))) +(-13 (-10 -8 (-15 -1711 ($ $)) (-15 -1732 ($ $)) (-15 -1754 ($ $)) (-15 -1743 ($ $)) (-15 -1701 ($ $)) (-15 -1721 ($ $)))) +((-4090 ((|#2| |#2|) 85)) (-1908 (((-107) |#2|) 25)) (-3775 ((|#2| |#2|) 29)) (-3785 ((|#2| |#2|) 31)) (-2769 ((|#2| |#2| (-1073)) 79) ((|#2| |#2|) 80)) (-2858 (((-153 |#2|) |#2|) 27)) (-2637 ((|#2| |#2| (-1073)) 81) ((|#2| |#2|) 82))) +(((-1098 |#1| |#2|) (-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -4090 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -2858 ((-153 |#2|) |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -1098)) +((-2858 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-2637 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2637 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-2769 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3)))))) +(-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -4090 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -2858 ((-153 |#2|) |#2|))) +((-2948 ((|#4| |#4| |#1|) 27)) (-2904 ((|#4| |#4| |#1|) 28))) +(((-1099 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2948 (|#4| |#4| |#1|)) (-15 -2904 (|#4| |#4| |#1|))) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1099)) +((-2904 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2948 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) +(-10 -7 (-15 -2948 (|#4| |#4| |#1|)) (-15 -2904 (|#4| |#4| |#1|))) +((-3404 ((|#2| |#2|) 132)) (-3969 ((|#2| |#2|) 129)) (-3922 ((|#2| |#2|) 120)) (-3306 ((|#2| |#2|) 117)) (-3173 ((|#2| |#2|) 125)) (-1671 ((|#2| |#2|) 113)) (-4047 ((|#2| |#2|) 42)) (-2590 ((|#2| |#2|) 93)) (-3670 ((|#2| |#2|) 73)) (-1407 ((|#2| |#2|) 127)) (-3712 ((|#2| |#2|) 115)) (-3677 ((|#2| |#2|) 137)) (-1368 ((|#2| |#2|) 135)) (-3165 ((|#2| |#2|) 136)) (-3535 ((|#2| |#2|) 134)) (-2609 ((|#2| |#2|) 146)) (-2647 ((|#2| |#2|) 30 (-12 (|has| |#2| (-558 (-814 |#1|))) (|has| |#2| (-808 |#1|)) (|has| |#1| (-558 (-814 |#1|))) (|has| |#1| (-808 |#1|))))) (-3604 ((|#2| |#2|) 74)) (-1482 ((|#2| |#2|) 138)) (-3502 ((|#2| |#2|) 139)) (-2405 ((|#2| |#2|) 126)) (-4073 ((|#2| |#2|) 114)) (-1519 ((|#2| |#2|) 133)) (-2522 ((|#2| |#2|) 131)) (-1739 ((|#2| |#2|) 121)) (-1527 ((|#2| |#2|) 119)) (-1427 ((|#2| |#2|) 123)) (-3524 ((|#2| |#2|) 111))) +(((-1100 |#1| |#2|) (-10 -7 (-15 -3502 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (-15 -1427 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -2522 (|#2| |#2|)) (-15 -3535 (|#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (IF (|has| |#1| (-808 |#1|)) (IF (|has| |#1| (-558 (-814 |#1|))) (IF (|has| |#2| (-558 (-814 |#1|))) (IF (|has| |#2| (-808 |#1|)) (-15 -2647 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-13 (-779) (-421)) (-13 (-400 |#1|) (-1094))) (T -1100)) +((-2647 (*1 *2 *2) (-12 (-4 *3 (-558 (-814 *3))) (-4 *3 (-808 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-558 (-814 *3))) (-4 *2 (-808 *3)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3677 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3535 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2522 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3969 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3306 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3404 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1407 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3712 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2405 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1739 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1427 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3524 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-4047 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(-10 -7 (-15 -3502 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (-15 -1427 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -2522 (|#2| |#2|)) (-15 -3535 (|#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (IF (|has| |#1| (-808 |#1|)) (IF (|has| |#1| (-558 (-814 |#1|))) (IF (|has| |#2| (-558 (-814 |#1|))) (IF (|has| |#2| (-808 |#1|)) (-15 -2647 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) +((-3939 (((-107) |#5| $) 59) (((-107) $) 101)) (-2437 ((|#5| |#5| $) 74)) (-3536 (($ (-1 (-107) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-1700 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 72)) (-1772 (((-3 $ "failed") (-583 |#5|)) 125)) (-1660 (((-3 $ "failed") $) 111)) (-3659 ((|#5| |#5| $) 93)) (-3283 (((-107) |#5| $ (-1 (-107) |#5| |#5|)) 30)) (-4049 ((|#5| |#5| $) 97)) (-3225 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 68)) (-2901 (((-2 (|:| -1210 (-583 |#5|)) (|:| -1513 (-583 |#5|))) $) 54)) (-1497 (((-107) |#5| $) 57) (((-107) $) 102)) (-1976 ((|#4| $) 107)) (-2068 (((-3 |#5| "failed") $) 109)) (-2774 (((-583 |#5|) $) 48)) (-3852 (((-107) |#5| $) 66) (((-107) $) 106)) (-3522 ((|#5| |#5| $) 80)) (-3411 (((-107) $ $) 26)) (-1959 (((-107) |#5| $) 62) (((-107) $) 104)) (-3183 ((|#5| |#5| $) 77)) (-1647 (((-3 |#5| "failed") $) 108)) (-1672 (($ $ |#5|) 126)) (-3688 (((-703) $) 51)) (-2276 (($ (-583 |#5|)) 123)) (-2442 (($ $ |#4|) 121)) (-3759 (($ $ |#4|) 120)) (-2303 (($ $) 119)) (-2256 (((-787) $) NIL) (((-583 |#5|) $) 112)) (-1605 (((-703) $) 129)) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|)) 44)) (-2114 (((-107) $ (-1 (-107) |#5| (-583 |#5|))) 99)) (-2614 (((-583 |#4|) $) 114)) (-1871 (((-107) |#4| $) 117)) (-1547 (((-107) $ $) 19))) +(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1605 ((-703) |#1|)) (-15 -1672 (|#1| |#1| |#5|)) (-15 -3536 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1871 ((-107) |#4| |#1|)) (-15 -2614 ((-583 |#4|) |#1|)) (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2068 ((-3 |#5| "failed") |#1|)) (-15 -1647 ((-3 |#5| "failed") |#1|)) (-15 -4049 (|#5| |#5| |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -3659 (|#5| |#5| |#1|)) (-15 -3522 (|#5| |#5| |#1|)) (-15 -3183 (|#5| |#5| |#1|)) (-15 -2437 (|#5| |#5| |#1|)) (-15 -1700 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3225 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3852 ((-107) |#1|)) (-15 -1959 ((-107) |#1|)) (-15 -3939 ((-107) |#1|)) (-15 -2114 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -3852 ((-107) |#5| |#1|)) (-15 -1959 ((-107) |#5| |#1|)) (-15 -3939 ((-107) |#5| |#1|)) (-15 -3283 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1497 ((-107) |#1|)) (-15 -1497 ((-107) |#5| |#1|)) (-15 -2901 ((-2 (|:| -1210 (-583 |#5|)) (|:| -1513 (-583 |#5|))) |#1|)) (-15 -3688 ((-703) |#1|)) (-15 -2774 ((-583 |#5|) |#1|)) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1976 (|#4| |#1|)) (-15 -1772 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2256 ((-583 |#5|) |#1|)) (-15 -2276 (|#1| (-583 |#5|))) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3536 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-1102 |#2| |#3| |#4| |#5|) (-509) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -1101)) +NIL +(-10 -8 (-15 -1605 ((-703) |#1|)) (-15 -1672 (|#1| |#1| |#5|)) (-15 -3536 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1871 ((-107) |#4| |#1|)) (-15 -2614 ((-583 |#4|) |#1|)) (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2068 ((-3 |#5| "failed") |#1|)) (-15 -1647 ((-3 |#5| "failed") |#1|)) (-15 -4049 (|#5| |#5| |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -3659 (|#5| |#5| |#1|)) (-15 -3522 (|#5| |#5| |#1|)) (-15 -3183 (|#5| |#5| |#1|)) (-15 -2437 (|#5| |#5| |#1|)) (-15 -1700 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3225 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3852 ((-107) |#1|)) (-15 -1959 ((-107) |#1|)) (-15 -3939 ((-107) |#1|)) (-15 -2114 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -3852 ((-107) |#5| |#1|)) (-15 -1959 ((-107) |#5| |#1|)) (-15 -3939 ((-107) |#5| |#1|)) (-15 -3283 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1497 ((-107) |#1|)) (-15 -1497 ((-107) |#5| |#1|)) (-15 -2901 ((-2 (|:| -1210 (-583 |#5|)) (|:| -1513 (-583 |#5|))) |#1|)) (-15 -3688 ((-703) |#1|)) (-15 -2774 ((-583 |#5|) |#1|)) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1976 (|#4| |#1|)) (-15 -1772 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2256 ((-583 |#5|) |#1|)) (-15 -2276 (|#1| (-583 |#5|))) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3536 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) +((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-2068 (((-3 |#4| "failed") $) 83)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180))))) +(((-1102 |#1| |#2| |#3| |#4|) (-1184) (-509) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1102)) +((-3411 (*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1942 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1102 *5 *6 *7 *8)))) (-1942 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1102 *6 *7 *8 *9)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *6)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-703)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-2 (|:| -1210 (-583 *6)) (|:| -1513 (-583 *6)))))) (-1497 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3283 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1102 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)))) (-3939 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1959 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-3852 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2114 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3225 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1102 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-975 *5 *6 *7)))) (-1700 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1102 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)))) (-2437 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3183 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3522 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3659 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2303 (*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) (-4049 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-3120 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1210 *1) (|:| -1513 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-1647 (*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2068 (*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1660 (*1 *1 *1) (|partial| -12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1871 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) (-3536 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1102 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-975 *4 *5 *3)))) (-1195 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1672 (*1 *1 *1 *2) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703))))) +(-13 (-893 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -3411 ((-107) $ $)) (-15 -1942 ((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -1942 ((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2774 ((-583 |t#4|) $)) (-15 -3688 ((-703) $)) (-15 -2901 ((-2 (|:| -1210 (-583 |t#4|)) (|:| -1513 (-583 |t#4|))) $)) (-15 -1497 ((-107) |t#4| $)) (-15 -1497 ((-107) $)) (-15 -3283 ((-107) |t#4| $ (-1 (-107) |t#4| |t#4|))) (-15 -3939 ((-107) |t#4| $)) (-15 -1959 ((-107) |t#4| $)) (-15 -3852 ((-107) |t#4| $)) (-15 -2114 ((-107) $ (-1 (-107) |t#4| (-583 |t#4|)))) (-15 -3939 ((-107) $)) (-15 -1959 ((-107) $)) (-15 -3852 ((-107) $)) (-15 -3225 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -1700 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2437 (|t#4| |t#4| $)) (-15 -3183 (|t#4| |t#4| $)) (-15 -3522 (|t#4| |t#4| $)) (-15 -3659 (|t#4| |t#4| $)) (-15 -2303 ($ $)) (-15 -4049 (|t#4| |t#4| $)) (-15 -4029 ((-583 $) (-583 |t#4|))) (-15 -3120 ((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |t#4|)))) (-583 |t#4|))) (-15 -1647 ((-3 |t#4| "failed") $)) (-15 -2068 ((-3 |t#4| "failed") $)) (-15 -1660 ((-3 $ "failed") $)) (-15 -2614 ((-583 |t#3|) $)) (-15 -1871 ((-107) |t#3| $)) (-15 -3536 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1195 ((-3 $ "failed") $ |t#4|)) (-15 -1672 ($ $ |t#4|)) (IF (|has| |t#3| (-338)) (-15 -1605 ((-703) $)) |noBranch|))) +(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1108) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-1073)) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3520 (((-874 |#1|) $ (-703)) 16) (((-874 |#1|) $ (-703) (-703)) NIL)) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $ (-1073)) NIL) (((-703) $ (-1073) (-703)) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4031 (((-107) $) NIL)) (-1339 (($ $ (-583 (-1073)) (-583 (-489 (-1073)))) NIL) (($ $ (-1073) (-489 (-1073))) NIL) (($ |#1| (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $ (-1073)) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-3352 (($ (-1 $) (-1073) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1672 (($ $ (-703)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (($ $ (-1073) $) NIL) (($ $ (-583 (-1073)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-3127 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-3688 (((-489 (-1073)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-1073)) NIL) (($ (-874 |#1|)) NIL)) (-2720 ((|#1| $ (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (((-874 |#1|) $ (-703)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1103 |#1|) (-13 (-673 |#1| (-1073)) (-10 -8 (-15 -2720 ((-874 |#1|) $ (-703))) (-15 -2256 ($ (-1073))) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ (-1073) |#1|)) (-15 -3352 ($ (-1 $) (-1073) |#1|))) |noBranch|))) (-961)) (T -1103)) +((-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-874 *4)) (-5 *1 (-1103 *4)) (-4 *4 (-961)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-961)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-1103 *3)))) (-4151 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) (-3352 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1103 *4))) (-5 *3 (-1073)) (-5 *1 (-1103 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961))))) +(-13 (-673 |#1| (-1073)) (-10 -8 (-15 -2720 ((-874 |#1|) $ (-703))) (-15 -2256 ($ (-1073))) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ (-1073) |#1|)) (-15 -3352 ($ (-1 $) (-1073) |#1|))) |noBranch|))) +((-2018 (($ |#1| (-583 (-583 (-865 (-199)))) (-107)) 15)) (-4091 (((-107) $ (-107)) 14)) (-3738 (((-107) $) 13)) (-1750 (((-583 (-583 (-865 (-199)))) $) 10)) (-2586 ((|#1| $) 8)) (-2145 (((-107) $) 12))) +(((-1104 |#1|) (-10 -8 (-15 -2586 (|#1| $)) (-15 -1750 ((-583 (-583 (-865 (-199)))) $)) (-15 -2145 ((-107) $)) (-15 -3738 ((-107) $)) (-15 -4091 ((-107) $ (-107))) (-15 -2018 ($ |#1| (-583 (-583 (-865 (-199)))) (-107)))) (-891)) (T -1104)) +((-2018 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-107)) (-5 *1 (-1104 *2)) (-4 *2 (-891)))) (-4091 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-2586 (*1 *2 *1) (-12 (-5 *1 (-1104 *2)) (-4 *2 (-891))))) +(-10 -8 (-15 -2586 (|#1| $)) (-15 -1750 ((-583 (-583 (-865 (-199)))) $)) (-15 -2145 ((-107) $)) (-15 -3738 ((-107) $)) (-15 -4091 ((-107) $ (-107))) (-15 -2018 ($ |#1| (-583 (-583 (-865 (-199)))) (-107)))) +((-2847 (((-865 (-199)) (-865 (-199))) 25)) (-2889 (((-865 (-199)) (-199) (-199) (-199) (-199)) 10)) (-4138 (((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199)))) 35)) (-3501 (((-199) (-865 (-199)) (-865 (-199))) 21)) (-2862 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 22)) (-1381 (((-583 (-583 (-199))) (-517)) 31)) (-1654 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 20)) (-1642 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 19)) (* (((-865 (-199)) (-199) (-865 (-199))) 18))) +(((-1105) (-10 -7 (-15 -2889 ((-865 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-865 (-199)) (-199) (-865 (-199)))) (-15 -1642 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1654 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -3501 ((-199) (-865 (-199)) (-865 (-199)))) (-15 -2862 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -2847 ((-865 (-199)) (-865 (-199)))) (-15 -1381 ((-583 (-583 (-199))) (-517))) (-15 -4138 ((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199))))))) (T -1105)) +((-4138 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-865 *4))) (-5 *1 (-1105)) (-5 *3 (-865 *4)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1105)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (-2862 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (-3501 (*1 *2 *3 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-199)) (-5 *1 (-1105)))) (-1654 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (-1642 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-865 (-199))) (-5 *3 (-199)) (-5 *1 (-1105)))) (-2889 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)) (-5 *3 (-199))))) +(-10 -7 (-15 -2889 ((-865 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-865 (-199)) (-199) (-865 (-199)))) (-15 -1642 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1654 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -3501 ((-199) (-865 (-199)) (-865 (-199)))) (-15 -2862 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -2847 ((-865 (-199)) (-865 (-199)))) (-15 -1381 ((-583 (-583 (-199))) (-517))) (-15 -4138 ((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199)))))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3536 ((|#1| $ (-703)) 13)) (-2195 (((-703) $) 12)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2256 (((-879 |#1|) $) 10) (($ (-879 |#1|)) 9) (((-787) $) 23 (|has| |#1| (-557 (-787))))) (-1547 (((-107) $ $) 16 (|has| |#1| (-1003))))) +(((-1106 |#1|) (-13 (-557 (-879 |#1|)) (-10 -8 (-15 -2256 ($ (-879 |#1|))) (-15 -3536 (|#1| $ (-703))) (-15 -2195 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1108)) (T -1106)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1108)) (-5 *1 (-1106 *3)))) (-3536 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1106 *2)) (-4 *2 (-1108)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1106 *3)) (-4 *3 (-1108))))) +(-13 (-557 (-879 |#1|)) (-10 -8 (-15 -2256 ($ (-879 |#1|))) (-15 -3536 (|#1| $ (-703))) (-15 -2195 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) +((-1886 (((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)) (-517)) 79)) (-3018 (((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|))) 73)) (-2545 (((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|))) 58))) +(((-1107 |#1|) (-10 -7 (-15 -3018 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -2545 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -1886 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)) (-517)))) (-319)) (T -1107)) +((-1886 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1069 (-1069 *5)))) (-5 *1 (-1107 *5)) (-5 *3 (-1069 (-1069 *5))))) (-2545 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4)))))) +(-10 -7 (-15 -3018 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -2545 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -1886 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)) (-517)))) +NIL +(((-1108) (-1184)) (T -1108)) +NIL +(-13 (-10 -7 (-6 -3353))) +((-2758 (((-107)) 14)) (-1523 (((-1158) (-583 |#1|) (-583 |#1|)) 18) (((-1158) (-583 |#1|)) 19)) (-2550 (((-107) |#1| |#1|) 30 (|has| |#1| (-779)))) (-3847 (((-107) |#1| |#1| (-1 (-107) |#1| |#1|)) 26) (((-3 (-107) "failed") |#1| |#1|) 24)) (-1996 ((|#1| (-583 |#1|)) 31 (|has| |#1| (-779))) ((|#1| (-583 |#1|) (-1 (-107) |#1| |#1|)) 27)) (-3602 (((-2 (|:| -3100 (-583 |#1|)) (|:| -3521 (-583 |#1|)))) 16))) +(((-1109 |#1|) (-10 -7 (-15 -1523 ((-1158) (-583 |#1|))) (-15 -1523 ((-1158) (-583 |#1|) (-583 |#1|))) (-15 -3602 ((-2 (|:| -3100 (-583 |#1|)) (|:| -3521 (-583 |#1|))))) (-15 -3847 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3847 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -1996 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -2758 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -1996 (|#1| (-583 |#1|))) (-15 -2550 ((-107) |#1| |#1|))) |noBranch|)) (-1003)) (T -1109)) +((-2550 (*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-1109 *2)))) (-2758 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1109 *2)) (-4 *2 (-1003)))) (-3847 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-107)) (-5 *1 (-1109 *3)))) (-3847 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) (-3602 (*1 *2) (-12 (-5 *2 (-2 (|:| -3100 (-583 *3)) (|:| -3521 (-583 *3)))) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) (-1523 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4))))) +(-10 -7 (-15 -1523 ((-1158) (-583 |#1|))) (-15 -1523 ((-1158) (-583 |#1|) (-583 |#1|))) (-15 -3602 ((-2 (|:| -3100 (-583 |#1|)) (|:| -3521 (-583 |#1|))))) (-15 -3847 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3847 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -1996 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -2758 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -1996 (|#1| (-583 |#1|))) (-15 -2550 ((-107) |#1| |#1|))) |noBranch|)) +((-3957 (((-1158) (-583 (-1073)) (-583 (-1073))) 12) (((-1158) (-583 (-1073))) 10)) (-3510 (((-1158)) 13)) (-2946 (((-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073))))) 17))) +(((-1110) (-10 -7 (-15 -3957 ((-1158) (-583 (-1073)))) (-15 -3957 ((-1158) (-583 (-1073)) (-583 (-1073)))) (-15 -2946 ((-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073)))))) (-15 -3510 ((-1158))))) (T -1110)) +((-3510 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1110)))) (-2946 (*1 *2) (-12 (-5 *2 (-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073))))) (-5 *1 (-1110)))) (-3957 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110))))) +(-10 -7 (-15 -3957 ((-1158) (-583 (-1073)))) (-15 -3957 ((-1158) (-583 (-1073)) (-583 (-1073)))) (-15 -2946 ((-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073)))))) (-15 -3510 ((-1158)))) +((-2535 (($ $) 16)) (-3849 (((-107) $) 23))) +(((-1111 |#1|) (-10 -8 (-15 -2535 (|#1| |#1|)) (-15 -3849 ((-107) |#1|))) (-1112)) (T -1111)) +NIL +(-10 -8 (-15 -2535 (|#1| |#1|)) (-15 -3849 ((-107) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 51)) (-2759 (((-388 $) $) 52)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3849 (((-107) $) 53)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 50)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) +(((-1112) (-1184)) (T -1112)) +((-3849 (*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-107)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112)))) (-2535 (*1 *1 *1) (-4 *1 (-1112))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112))))) +(-13 (-421) (-10 -8 (-15 -3849 ((-107) $)) (-15 -2759 ((-388 $) $)) (-15 -2535 ($ $)) (-15 -3755 ((-388 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-1893 (((-1118 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1118 |#1| |#3| |#5|)) 23))) +(((-1113 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1893 ((-1118 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1118 |#1| |#3| |#5|)))) (-961) (-961) (-1073) (-1073) |#1| |#2|) (T -1113)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1118 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1118 *6 *8 *10)) (-5 *1 (-1113 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073))))) +(-10 -7 (-15 -1893 ((-1118 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1118 |#1| |#3| |#5|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-517) $) 100) (((-517) $ (-517)) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101)) (-3103 (($ (-1 |#1| (-517)) $) 173)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-517)) 61) (($ $ (-989) (-517)) 76) (($ $ (-583 (-989)) (-583 (-517))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-3688 (((-517) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-517)) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) +(((-1114 |#1|) (-1184) (-961)) (T -1114)) +((-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1114 *3)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1114 *3)) (-4 *3 (-961)))) (-2112 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) (-2112 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-4151 (*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))) +(-13 (-1132 |t#1| (-517)) (-10 -8 (-15 -2925 ($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |t#1|))))) (-15 -3103 ($ (-1 |t#1| (-517)) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -2112 ((-377 (-874 |t#1|)) $ (-517))) (-15 -2112 ((-377 (-874 |t#1|)) $ (-517) (-517)))) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (IF (|has| |t#1| (-15 -4151 (|t#1| |t#1| (-1073)))) (IF (|has| |t#1| (-15 -1364 ((-583 (-1073)) |t#1|))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1094))) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| (-517)) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-517) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-517) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-517) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1112) |has| |#1| (-333)) ((-1132 |#1| (-517)) . T)) +((-2814 (((-107) $) 12)) (-1772 (((-3 |#3| "failed") $) 17) (((-3 (-1073) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL)) (-3189 ((|#3| $) 14) (((-1073) $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL))) +(((-1115 |#1| |#2| |#3|) (-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|))) (-1116 |#2| |#3|) (-961) (-1145 |#2|)) (T -1115)) +NIL +(-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 ((|#2| $) 231 (-4035 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1880 ((|#2| $) 267)) (-2477 (((-3 |#2| "failed") $) 263)) (-1590 ((|#2| $) 264)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 240 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 237 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) 249 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#2| "failed") $) 270) (((-3 (-517) "failed") $) 259 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) 257 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-1073) "failed") $) 242 (-4035 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-3189 ((|#2| $) 269) (((-517) $) 260 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) 258 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-1073) $) 243 (-4035 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-2869 (($ $) 266) (($ (-517) $) 265)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3355 (((-623 |#2|) (-623 $)) 221 (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 220 (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 219 (-4035 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) 218 (-4035 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) 34)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-3209 (($) 233 (-4035 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3556 (((-107) $) 247 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 225 (-4035 (|has| |#2| (-808 (-349))) (|has| |#1| (-333)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 224 (-4035 (|has| |#2| (-808 (-517))) (|has| |#1| (-333))))) (-3972 (((-517) $) 100) (((-517) $ (-517)) 99)) (-3848 (((-107) $) 31)) (-1405 (($ $) 229 (|has| |#1| (-333)))) (-1787 ((|#2| $) 227 (|has| |#1| (-333)))) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) 261 (-4035 (|has| |#2| (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) 248 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) 101)) (-3103 (($ (-1 |#1| (-517)) $) 173)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-517)) 61) (($ $ (-989) (-517)) 76) (($ $ (-583 (-989)) (-583 (-517))) 75)) (-2967 (($ $ $) 251 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3099 (($ $ $) 252 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1893 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-333)))) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1601 (($ (-517) |#2|) 268)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-2836 (($) 262 (-4035 (|has| |#2| (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-1927 (($ $) 232 (-4035 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2597 ((|#2| $) 235 (-4035 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) 238 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) 239 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) |#2|) 212 (-4035 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 |#2|)) 211 (-4035 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) 210 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) 209 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) 208 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) 207 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1015))) (($ $ |#2|) 206 (-4035 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 216 (|has| |#1| (-333))) (($ $ (-703)) 84 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 82 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) 89 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073) (-703)) 88 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1073))) 87 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073)) 86 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-2971 (($ $) 230 (|has| |#1| (-333)))) (-1800 ((|#2| $) 228 (|has| |#1| (-333)))) (-3688 (((-517) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-199) $) 246 (-4035 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-349) $) 245 (-4035 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-493) $) 244 (-4035 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-814 (-349)) $) 223 (-4035 (|has| |#2| (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) 222 (-4035 (|has| |#2| (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 236 (-4035 (-4035 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#1| (-333))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 271) (($ (-1073)) 241 (-4035 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333)))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-517)) 59)) (-1328 (((-3 $ "failed") $) 48 (-3807 (-4035 (-3807 (|has| |#2| (-132)) (-4035 (|has| $ (-132)) (|has| |#2| (-831)))) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-1949 ((|#2| $) 234 (-4035 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) 250 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 214 (|has| |#1| (-333))) (($ $ (-703)) 85 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 83 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) 93 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073) (-703)) 92 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1073))) 91 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073)) 90 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1606 (((-107) $ $) 254 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1583 (((-107) $ $) 255 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 253 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1572 (((-107) $ $) 256 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333))) (($ |#2| |#2|) 226 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-333))) (($ |#2| $) 204 (|has| |#1| (-333))) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) +(((-1116 |#1| |#2|) (-1184) (-961) (-1145 |t#1|)) (T -1116)) +((-3688 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)) (-5 *2 (-517)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1116 *3 *2)) (-4 *2 (-1145 *3)))) (-1601 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-961)) (-4 *1 (-1116 *4 *3)) (-4 *3 (-1145 *4)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))) (-2869 (*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1145 *2)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3))))) +(-13 (-1114 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1601 ($ (-517) |t#2|)) (-15 -3688 ((-517) $)) (-15 -1880 (|t#2| $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)) (-15 -2256 ($ |t#2|)) (-15 -1590 (|t#2| $)) (-15 -2477 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-333)) (-6 (-909 |t#2|)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| (-517)) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 |#2|) |has| |#1| (-333)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 |#2| |#2|) |has| |#1| (-333)) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-132))) (|has| |#1| (-132))) ((-134) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-558 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-558 (-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-517))))) ((-205 |#2|) |has| |#1| (-333)) ((-207) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-207))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 |#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) ((-258 $ $) |has| (-517) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-333) |has| |#1| (-333)) ((-308 |#2|) |has| |#1| (-333)) ((-347 |#2|) |has| |#1| (-333)) ((-370 |#2|) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 (-1073) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1073) |#2|))) ((-478 |#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-333)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((-579 |#2|) |has| |#1| (-333)) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 |#2|) |has| |#1| (-333)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-723) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-724) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-726) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-727) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-752) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-777) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-779) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-779))) (-12 (|has| |#1| (-333)) (|has| |#2| (-752)))) ((-822 (-1073)) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-822 (-1073)))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) ((-808 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-517)))) ((-806 |#2|) |has| |#1| (-333)) ((-831) -12 (|has| |#1| (-333)) (|has| |#2| (-831))) ((-890 |#1| (-517) (-989)) . T) ((-842) |has| |#1| (-333)) ((-909 |#2|) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-937) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-952 (-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) ((-952 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) ((-952 (-1073)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-1073)))) ((-952 |#2|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 |#2|) |has| |#1| (-333)) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) -12 (|has| |#1| (-333)) (|has| |#2| (-1049))) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1108) |has| |#1| (-333)) ((-1112) |has| |#1| (-333)) ((-1114 |#1|) . T) ((-1132 |#1| (-517)) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 70)) (-2668 ((|#2| $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 88)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 97) (($ $ (-517) (-517)) 99)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 47)) (-1880 ((|#2| $) 11)) (-2477 (((-3 |#2| "failed") $) 30)) (-1590 ((|#2| $) 31)) (-1865 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 57)) (-1887 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 144) (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-1073) "failed") $) NIL (-12 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-3189 ((|#2| $) 143) (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-1073) $) NIL (-12 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-2869 (($ $) 61) (($ (-517) $) 24)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 |#2|) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) 77)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 112 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 114 (|has| |#1| (-509)))) (-3209 (($) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3556 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) 64)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#2| (-808 (-349))) (|has| |#1| (-333)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#2| (-808 (-517))) (|has| |#1| (-333))))) (-3972 (((-517) $) 93) (((-517) $ (-517)) 95)) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL (|has| |#1| (-333)))) (-1787 ((|#2| $) 151 (|has| |#1| (-333)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) 136)) (-3103 (($ (-1 |#1| (-517)) $) 132)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-517)) 19) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-2967 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3099 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1893 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-333)))) (-1867 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1601 (($ (-517) |#2|) 10)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 145 (|has| |#1| (-333)))) (-4151 (($ $) 214 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 219 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094)))))) (-2836 (($) NIL (-12 (|has| |#2| (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1927 (($ $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2597 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 126)) (-2476 (((-3 $ "failed") $ $) 116 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) |#2|) NIL (-12 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 |#2|)) NIL (-12 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) 91) (($ $ $) 79 (|has| (-517) (-1015))) (($ $ |#2|) NIL (-12 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 137 (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) 140 (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-2971 (($ $) NIL (|has| |#1| (-333)))) (-1800 ((|#2| $) 152 (|has| |#1| (-333)))) (-3688 (((-517) $) 12)) (-1898 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-199) $) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-493) $) NIL (-12 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| |#2| (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| |#2| (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1545 (($ $) 124)) (-2256 (((-787) $) 242) (($ (-517)) 23) (($ |#1|) 21 (|has| |#1| (-156))) (($ |#2|) 20) (($ (-1073)) NIL (-12 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333)))) (($ (-377 (-517))) 155 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-517)) 74)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831)) (|has| |#1| (-333))) (-12 (|has| |#2| (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) 142)) (-2986 ((|#1| $) 90)) (-1949 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3707 (($ $) 204 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 208 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 210 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 206 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 13 T CONST)) (-2409 (($) 17 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-1606 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1583 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1547 (((-107) $ $) 63)) (-1595 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1572 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 149 (|has| |#1| (-333))) (($ |#2| |#2|) 150 (|has| |#1| (-333)))) (-1654 (($ $) 213) (($ $ $) 68)) (-1642 (($ $ $) 66)) (** (($ $ (-843)) NIL) (($ $ (-703)) 73) (($ $ (-517)) 146 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-333))) (($ |#2| $) 147 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-1117 |#1| |#2|) (-1116 |#1| |#2|) (-961) (-1145 |#1|)) (T -1117)) +NIL +(-1116 |#1| |#2|) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-1146 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 10)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1213 (($ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2454 (((-107) $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1974 (($ $ (-517)) NIL) (($ $ (-517) (-517)) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-1880 (((-1146 |#1| |#2| |#3|) $) NIL)) (-2477 (((-3 (-1146 |#1| |#2| |#3|) "failed") $) NIL)) (-1590 (((-1146 |#1| |#2| |#3|) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1146 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-3189 (((-1146 |#1| |#2| |#3|) $) NIL) (((-1073) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-2869 (($ $) NIL) (($ (-517) $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-1146 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-1146 |#1| |#2| |#3|))) (|:| |vec| (-1153 (-1146 |#1| |#2| |#3|)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) NIL)) (-2112 (((-377 (-874 |#1|)) $ (-517)) NIL (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) NIL (|has| |#1| (-509)))) (-3209 (($) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3556 (((-107) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-808 (-517))) (|has| |#1| (-333)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-808 (-349))) (|has| |#1| (-333))))) (-3972 (((-517) $) NIL) (((-517) $ (-517)) NIL)) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL (|has| |#1| (-333)))) (-1787 (((-1146 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) NIL)) (-3103 (($ (-1 |#1| (-517)) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-517)) 17) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-2967 (($ $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3099 (($ $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1601 (($ (-517) (-1146 |#1| |#2| |#3|)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 25 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 26 (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1927 (($ $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2597 (((-1146 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-517)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) (-1146 |#1| |#2| |#3|)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-478 (-1073) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-1146 |#1| |#2| |#3|))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-478 (-1073) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1146 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1146 |#1| |#2| |#3|))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1146 |#1| |#2| |#3|)) (-583 (-1146 |#1| |#2| |#3|))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) NIL) (($ $ $) NIL (|has| (-517) (-1015))) (($ $ (-1146 |#1| |#2| |#3|)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-258 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1149 |#2|)) 24) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 23 (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-2971 (($ $) NIL (|has| |#1| (-333)))) (-1800 (((-1146 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-3688 (((-517) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-493) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1146 |#1| |#2| |#3|)) NIL) (($ (-1149 |#2|)) 22) (($ (-1073)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (($ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-2720 ((|#1| $ (-517)) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 11)) (-1949 (((-1146 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 19 T CONST)) (-2409 (($) 15 T CONST)) (-2731 (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-1606 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1583 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1572 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333))) (($ (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1146 |#1| |#2| |#3|)) NIL (|has| |#1| (-333))) (($ (-1146 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-1118 |#1| |#2| |#3|) (-13 (-1116 |#1| (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1118)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3)))) +(-13 (-1116 |#1| (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) +((-1724 (((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107)) 10)) (-3432 (((-388 |#1|) |#1|) 21)) (-3755 (((-388 |#1|) |#1|) 20))) +(((-1119 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107)))) (-1130 (-517))) (T -1119)) +((-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517)))))) +(-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107)))) +((-1893 (((-1054 |#2|) (-1 |#2| |#1|) (-1121 |#1|)) 23 (|has| |#1| (-777))) (((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|)) 17))) +(((-1120 |#1| |#2|) (-10 -7 (-15 -1893 ((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) |noBranch|)) (-1108) (-1108)) (T -1120)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1120 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1121 *6)) (-5 *1 (-1120 *5 *6))))) +(-10 -7 (-15 -1893 ((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) |noBranch|)) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2515 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1893 (((-1054 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-777)))) (-3100 ((|#1| $) 14)) (-3310 ((|#1| $) 10)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3320 (((-517) $) 18)) (-3521 ((|#1| $) 17)) (-3330 ((|#1| $) 11)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1838 (((-107) $) 16)) (-3502 (((-1054 |#1|) $) 38 (|has| |#1| (-777))) (((-1054 |#1|) (-583 $)) 37 (|has| |#1| (-777)))) (-3645 (($ |#1|) 25)) (-2256 (($ (-998 |#1|)) 24) (((-787) $) 34 (|has| |#1| (-1003)))) (-2881 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1321 (($ $ (-517)) 13)) (-1547 (((-107) $ $) 27 (|has| |#1| (-1003))))) +(((-1121 |#1|) (-13 (-997 |#1|) (-10 -8 (-15 -2881 ($ |#1|)) (-15 -2515 ($ |#1|)) (-15 -2256 ($ (-998 |#1|))) (-15 -1838 ((-107) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-1054 |#1|))) |noBranch|))) (-1108)) (T -1121)) +((-2881 (*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108)))) (-2515 (*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-998 *3)) (-4 *3 (-1108)) (-5 *1 (-1121 *3)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1121 *3)) (-4 *3 (-1108))))) +(-13 (-997 |#1|) (-10 -8 (-15 -2881 ($ |#1|)) (-15 -2515 ($ |#1|)) (-15 -2256 ($ (-998 |#1|))) (-15 -1838 ((-107) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-1054 |#1|))) |noBranch|))) +((-1893 (((-1127 |#3| |#4|) (-1 |#4| |#2|) (-1127 |#1| |#2|)) 15))) +(((-1122 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 ((-1127 |#3| |#4|) (-1 |#4| |#2|) (-1127 |#1| |#2|)))) (-1073) (-961) (-1073) (-961)) (T -1122)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1127 *5 *6)) (-14 *5 (-1073)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1127 *7 *8)) (-5 *1 (-1122 *5 *6 *7 *8)) (-14 *7 (-1073))))) +(-10 -7 (-15 -1893 ((-1127 |#3| |#4|) (-1 |#4| |#2|) (-1127 |#1| |#2|)))) +((-4112 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3484 ((|#1| |#3|) 13)) (-1897 ((|#3| |#3|) 19))) +(((-1123 |#1| |#2| |#3|) (-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-909 |#1|) (-1130 |#2|)) (T -1123)) +((-4112 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1123 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-1897 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-1123 *3 *4 *2)) (-4 *2 (-1130 *4)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-1123 *2 *4 *3)) (-4 *3 (-1130 *4))))) +(-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3722 (((-3 |#2| "failed") |#2| (-703) |#1|) 29)) (-1912 (((-3 |#2| "failed") |#2| (-703)) 30)) (-1748 (((-3 (-2 (|:| -3639 |#2|) (|:| -3652 |#2|)) "failed") |#2|) 42)) (-1699 (((-583 |#2|) |#2|) 44)) (-2708 (((-3 |#2| "failed") |#2| |#2|) 39))) +(((-1124 |#1| |#2|) (-10 -7 (-15 -1912 ((-3 |#2| "failed") |#2| (-703))) (-15 -3722 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -2708 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1748 ((-3 (-2 (|:| -3639 |#2|) (|:| -3652 |#2|)) "failed") |#2|)) (-15 -1699 ((-583 |#2|) |#2|))) (-13 (-509) (-134)) (-1130 |#1|)) (T -1124)) +((-1699 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4)))) (-1748 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4)))) (-2708 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1124 *3 *2)) (-4 *2 (-1130 *3)))) (-3722 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4)))) (-1912 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4))))) +(-10 -7 (-15 -1912 ((-3 |#2| "failed") |#2| (-703))) (-15 -3722 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -2708 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1748 ((-3 (-2 (|:| -3639 |#2|) (|:| -3652 |#2|)) "failed") |#2|)) (-15 -1699 ((-583 |#2|) |#2|))) +((-3298 (((-3 (-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) "failed") |#2| |#2|) 31))) +(((-1125 |#1| |#2|) (-10 -7 (-15 -3298 ((-3 (-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) "failed") |#2| |#2|))) (-509) (-1130 |#1|)) (T -1125)) +((-3298 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1130 *4))))) +(-10 -7 (-15 -3298 ((-3 (-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) "failed") |#2| |#2|))) +((-3757 ((|#2| |#2| |#2|) 19)) (-3976 ((|#2| |#2| |#2|) 30)) (-1329 ((|#2| |#2| |#2| (-703) (-703)) 36))) +(((-1126 |#1| |#2|) (-10 -7 (-15 -3757 (|#2| |#2| |#2|)) (-15 -3976 (|#2| |#2| |#2|)) (-15 -1329 (|#2| |#2| |#2| (-703) (-703)))) (-961) (-1130 |#1|)) (T -1126)) +((-1329 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-1130 *4)))) (-3976 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3)))) (-3757 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3))))) +(-10 -7 (-15 -3757 (|#2| |#2| |#2|)) (-15 -3976 (|#2| |#2| |#2|)) (-15 -1329 (|#2| |#2| |#2| (-703) (-703)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2490 (((-1153 |#2|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#2|)) NIL)) (-2352 (((-1069 $) $ (-989)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) NIL (|has| |#2| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2241 (($ $ (-703)) NIL)) (-2882 (($ $ (-703)) NIL)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-989) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#2| (-156))) ((|#2| $ $) NIL (|has| |#2| (-156)))) (-2518 (($ $ $) NIL (|has| |#2| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#2| (-333)))) (-2704 (($ $ $) NIL)) (-4080 (($ $ $) NIL (|has| |#2| (-509)))) (-1874 (((-2 (|:| -1931 |#2|) (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-989)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-703) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3972 (((-703) $ $) NIL (|has| |#2| (-509)))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#2| (-1049)))) (-1350 (($ (-1069 |#2|) (-989)) NIL) (($ (-1069 $) (-989)) NIL)) (-3430 (($ $ (-703)) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-703)) 17) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1548 (((-1069 |#2|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#2| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#2| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1953 (($ $ (-703) |#2| $) NIL)) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#2|) NIL) (($ $ (-583 (-989)) (-583 |#2|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#2| (-333)))) (-1449 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#2| (-509))) ((|#2| (-377 $) |#2|) NIL (|has| |#2| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#2| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#2| (-156))) ((|#2| $) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3688 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-989)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#2| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#2| (-509)))) (-2256 (((-787) $) 13) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-989)) NIL) (($ (-1149 |#1|)) 19) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) 14 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1127 |#1| |#2|) (-13 (-1130 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|))) (-15 -1953 ($ $ (-703) |#2| $)))) (-1073) (-961)) (T -1127)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-1127 *3 *4)) (-4 *4 (-961)))) (-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1127 *4 *3)) (-14 *4 (-1073)) (-4 *3 (-961))))) +(-13 (-1130 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|))) (-15 -1953 ($ $ (-703) |#2| $)))) +((-1893 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1128 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-1130 |#1|) (-961) (-1130 |#3|)) (T -1128)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1130 *6)) (-5 *1 (-1128 *5 *4 *6 *2)) (-4 *4 (-1130 *5))))) +(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|))) +((-2490 (((-1153 |#2|) $ (-703)) 113)) (-1364 (((-583 (-989)) $) 15)) (-2532 (($ (-1069 |#2|)) 66)) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) 18)) (-3143 (((-388 (-1069 $)) (-1069 $)) 183)) (-2535 (($ $) 173)) (-2759 (((-388 $) $) 171)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 81)) (-2241 (($ $ (-703)) 70)) (-2882 (($ $ (-703)) 72)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1772 (((-3 |#2| "failed") $) 116) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#2| $) 114) (((-377 (-517)) $) NIL) (((-517) $) NIL) (((-989) $) NIL)) (-4080 (($ $ $) 150)) (-1874 (((-2 (|:| -1931 |#2|) (|:| -3425 $) (|:| -3060 $)) $ $) 152)) (-3972 (((-703) $ $) 168)) (-1319 (((-3 $ "failed") $) 122)) (-1339 (($ |#2| (-703)) NIL) (($ $ (-989) (-703)) 46) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) 41) (((-583 (-703)) $ (-583 (-989))) 42)) (-1548 (((-1069 |#2|) $) 58)) (-1409 (((-3 (-989) "failed") $) 39)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) 69)) (-4151 (($ $) 194)) (-2836 (($) 118)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 180)) (-2561 (((-388 (-1069 $)) (-1069 $)) 87)) (-2209 (((-388 (-1069 $)) (-1069 $)) 85)) (-3755 (((-388 $) $) 105)) (-2051 (($ $ (-583 (-265 $))) 38) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#2|) 31) (($ $ (-583 (-989)) (-583 |#2|)) 28) (($ $ (-989) $) 25) (($ $ (-583 (-989)) (-583 $)) 23)) (-3146 (((-703) $) 186)) (-1449 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) 146) ((|#2| (-377 $) |#2|) 185) (((-377 $) $ (-377 $)) 167)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 189)) (-3127 (($ $ (-989)) 139) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) 137) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-3688 (((-703) $) NIL) (((-703) $ (-989)) 16) (((-583 (-703)) $ (-583 (-989))) 20)) (-3266 ((|#2| $) NIL) (($ $ (-989)) 124)) (-3793 (((-3 $ "failed") $ $) 160) (((-3 (-377 $) "failed") (-377 $) $) 156)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-989)) 50) (($ (-377 (-517))) NIL) (($ $) NIL))) +(((-1129 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1449 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -1449 (|#2| (-377 |#1|) |#2|)) (-15 -2316 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1874 ((-2 (|:| -1931 |#2|) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -3793 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3972 ((-703) |#1| |#1|)) (-15 -1449 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2882 (|#1| |#1| (-703))) (-15 -2241 (|#1| |#1| (-703))) (-15 -4055 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| (-703))) (-15 -2532 (|#1| (-1069 |#2|))) (-15 -1548 ((-1069 |#2|) |#1|)) (-15 -2490 ((-1153 |#2|) |#1| (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| |#2|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3143 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3266 (|#1| |#1| (-989))) (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1369 ((-703) |#1| (-583 (-989)))) (-15 -1369 ((-703) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1339 (|#1| |#1| (-989) (-703))) (-15 -2349 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -2349 ((-703) |#1| (-989))) (-15 -1409 ((-3 (-989) "failed") |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -3688 ((-703) |#1| (-989))) (-15 -3189 ((-989) |#1|)) (-15 -1772 ((-3 (-989) "failed") |#1|)) (-15 -2256 (|#1| (-989))) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-989) |#1|)) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-989) |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 ((-703) |#1|)) (-15 -1339 (|#1| |#2| (-703))) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2349 ((-703) |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3127 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-989) (-703))) (-15 -3127 (|#1| |#1| (-583 (-989)))) (-15 -3127 (|#1| |#1| (-989))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-1130 |#2|) (-961)) (T -1129)) +NIL +(-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1449 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -1449 (|#2| (-377 |#1|) |#2|)) (-15 -2316 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1874 ((-2 (|:| -1931 |#2|) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -3793 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3972 ((-703) |#1| |#1|)) (-15 -1449 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2882 (|#1| |#1| (-703))) (-15 -2241 (|#1| |#1| (-703))) (-15 -4055 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| (-703))) (-15 -2532 (|#1| (-1069 |#2|))) (-15 -1548 ((-1069 |#2|) |#1|)) (-15 -2490 ((-1153 |#2|) |#1| (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| |#2|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3143 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3266 (|#1| |#1| (-989))) (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1369 ((-703) |#1| (-583 (-989)))) (-15 -1369 ((-703) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1339 (|#1| |#1| (-989) (-703))) (-15 -2349 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -2349 ((-703) |#1| (-989))) (-15 -1409 ((-3 (-989) "failed") |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -3688 ((-703) |#1| (-989))) (-15 -3189 ((-989) |#1|)) (-15 -1772 ((-3 (-989) "failed") |#1|)) (-15 -2256 (|#1| (-989))) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-989) |#1|)) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-989) |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 ((-703) |#1|)) (-15 -1339 (|#1| |#2| (-703))) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2349 ((-703) |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3127 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-989) (-703))) (-15 -3127 (|#1| |#1| (-583 (-989)))) (-15 -3127 (|#1| |#1| (-989))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2490 (((-1153 |#1|) $ (-703)) 238)) (-1364 (((-583 (-989)) $) 110)) (-2532 (($ (-1069 |#1|)) 236)) (-2352 (((-1069 $) $ (-989)) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 (-989))) 111)) (-4038 (((-3 $ "failed") $ $) 19)) (-3081 (($ $ $) 223 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-1707 (((-107) $ $) 208 (|has| |#1| (-333)))) (-2241 (($ $ (-703)) 231)) (-2882 (($ $ (-703)) 230)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-421)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) 136)) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) (((-989) $) 135)) (-3388 (($ $ $ (-989)) 108 (|has| |#1| (-156))) ((|#1| $ $) 226 (|has| |#1| (-156)))) (-2518 (($ $ $) 212 (|has| |#1| (-333)))) (-1212 (($ $) 154)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 211 (|has| |#1| (-333)))) (-2704 (($ $ $) 229)) (-4080 (($ $ $) 220 (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) 219 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 206 (|has| |#1| (-333)))) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ (-989)) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-703) $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ $) 224 (|has| |#1| (-509)))) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1319 (((-3 $ "failed") $) 204 (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) 117) (($ (-1069 $) (-989)) 116)) (-3430 (($ $ (-703)) 235)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 215 (|has| |#1| (-333)))) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| (-703)) 153) (($ $ (-989) (-703)) 119) (($ $ (-583 (-989)) (-583 (-703))) 118)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) 120) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 233)) (-2349 (((-703) $) 170) (((-703) $ (-989)) 122) (((-583 (-703)) $ (-583 (-989))) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-1548 (((-1069 |#1|) $) 237)) (-1409 (((-3 (-989) "failed") $) 123)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3985 (((-1056) $) 9)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) 232)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) 113)) (-4151 (($ $) 216 (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) 203 (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 213 (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 207 (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ (-989) |#1|) 141) (($ $ (-583 (-989)) (-583 |#1|)) 140) (($ $ (-989) $) 139) (($ $ (-583 (-989)) (-583 $)) 138)) (-3146 (((-703) $) 209 (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-377 $) (-377 $) (-377 $)) 225 (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) 217 (|has| |#1| (-333))) (((-377 $) $ (-377 $)) 205 (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) 234)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 210 (|has| |#1| (-333)))) (-3010 (($ $ (-989)) 107 (|has| |#1| (-156))) ((|#1| $) 227 (|has| |#1| (-156)))) (-3127 (($ $ (-989)) 42) (($ $ (-583 (-989))) 41) (($ $ (-989) (-703)) 40) (($ $ (-583 (-989)) (-583 (-703))) 39) (($ $ (-703)) 253) (($ $) 251) (($ $ (-1073)) 250 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 249 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 248 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 247 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3688 (((-703) $) 150) (((-703) $ (-989)) 130) (((-583 (-703)) $ (-583 (-989))) 129)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ (-989)) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-3793 (((-3 $ "failed") $ $) 222 (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) 221 (|has| |#1| (-509)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ (-989)) 137) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ (-703)) 155) (($ $ (-989) (-703)) 128) (($ $ (-583 (-989)) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-989)) 38) (($ $ (-583 (-989))) 37) (($ $ (-989) (-703)) 36) (($ $ (-583 (-989)) (-583 (-703))) 35) (($ $ (-703)) 254) (($ $) 252) (($ $ (-1073)) 246 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 245 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 244 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 243 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1130 |#1|) (-1184) (-961)) (T -1130)) +((-2490 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-5 *2 (-1069 *3)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-4 *1 (-1130 *3)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-3504 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-2711 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3)))) (-4055 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *4)))) (-2241 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-2882 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-2704 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)))) (-3127 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156)))) (-3388 (*1 *2 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156)))) (-1449 (*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) (-3972 (*1 *2 *1 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3081 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-3793 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-3793 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) (-4080 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-1874 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1931 *3) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3)))) (-2316 (*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1130 *3)))) (-1449 (*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517))))))) +(-13 (-871 |t#1| (-703) (-989)) (-258 |t#1| |t#1|) (-258 $ $) (-207) (-205 |t#1|) (-10 -8 (-15 -2490 ((-1153 |t#1|) $ (-703))) (-15 -1548 ((-1069 |t#1|) $)) (-15 -2532 ($ (-1069 |t#1|))) (-15 -3430 ($ $ (-703))) (-15 -3504 ((-3 $ "failed") $ (-703))) (-15 -2711 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -4055 ((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703))) (-15 -2241 ($ $ (-703))) (-15 -2882 ($ $ (-703))) (-15 -2704 ($ $ $)) (-15 -3127 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1049)) (-6 (-1049)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -3010 (|t#1| $)) (-15 -3388 (|t#1| $ $))) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-258 (-377 $) (-377 $))) (-15 -1449 ((-377 $) (-377 $) (-377 $))) (-15 -3972 ((-703) $ $)) (-15 -3081 ($ $ $)) (-15 -3793 ((-3 $ "failed") $ $)) (-15 -3793 ((-3 (-377 $) "failed") (-377 $) $)) (-15 -4080 ($ $ $)) (-15 -1874 ((-2 (|:| -1931 |t#1|) (|:| -3425 $) (|:| -3060 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (-15 -2316 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-278)) (-6 -4176) (-15 -1449 (|t#1| (-377 $) |t#1|))) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-15 -4151 ($ $)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| (-703)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517))))) ((-205 |#1|) . T) ((-207) . T) ((-258 (-377 $) (-377 $)) |has| |#1| (-509)) ((-258 |#1| |#1|) . T) ((-258 $ $) . T) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 $) . T) ((-296 |#1| (-703)) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-478 (-989) |#1|) . T) ((-478 (-989) $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-989)) . T) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-808 (-349)) -12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349)))) ((-808 (-517)) -12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))) ((-871 |#1| (-703) (-989)) . T) ((-831) |has| |#1| (-831)) ((-842) |has| |#1| (-333)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-989)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-1049)) ((-1112) |has| |#1| (-831))) +((-1364 (((-583 (-989)) $) 28)) (-1212 (($ $) 25)) (-1339 (($ |#2| |#3|) NIL) (($ $ (-989) |#3|) 22) (($ $ (-583 (-989)) (-583 |#3|)) 20)) (-4152 (($ $) 14)) (-1191 ((|#2| $) 12)) (-3688 ((|#3| $) 10))) +(((-1131 |#1| |#2| |#3|) (-10 -8 (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 |#3|))) (-15 -1339 (|#1| |#1| (-989) |#3|)) (-15 -1212 (|#1| |#1|)) (-15 -1339 (|#1| |#2| |#3|)) (-15 -3688 (|#3| |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -1191 (|#2| |#1|))) (-1132 |#2| |#3|) (-961) (-724)) (T -1131)) +NIL +(-10 -8 (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 |#3|))) (-15 -1339 (|#1| |#1| (-989) |#3|)) (-15 -1212 (|#1| |#1|)) (-15 -1339 (|#1| |#2| |#3|)) (-15 -3688 (|#3| |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -1191 (|#2| |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-2223 (((-1054 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3201 (((-107) $) 73)) (-3972 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-3848 (((-107) $) 31)) (-3430 (($ $ (-843)) 101)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61) (($ $ (-989) |#2|) 76) (($ $ (-583 (-989)) (-583 |#2|)) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1672 (($ $ |#2|) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1449 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3688 ((|#2| $) 64)) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3383 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) +(((-1132 |#1| |#2|) (-1184) (-961) (-724)) (T -1132)) +((-2223 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1054 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1449 (*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1073)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3972 (*1 *2 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1974 (*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1974 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3383 (*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2256 (*2 (-1073)))) (-4 *2 (-961)))) (-1672 (*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-2051 (*1 *2 *1 *3) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1054 *3))))) +(-13 (-890 |t#1| |t#2| (-989)) (-10 -8 (-15 -2223 ((-1054 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1449 (|t#1| $ |t#2|)) (-15 -1638 ((-1073) $)) (-15 -2986 (|t#1| $)) (-15 -3430 ($ $ (-843))) (-15 -3972 (|t#2| $)) (-15 -3972 (|t#2| $ |t#2|)) (-15 -1974 ($ $ |t#2|)) (-15 -1974 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2256 (|t#1| (-1073)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3383 (|t#1| $ |t#2|)) |noBranch|) |noBranch|) (-15 -1672 ($ $ |t#2|)) (IF (|has| |t#2| (-1015)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-207)) (IF (|has| |t#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2051 ((-1054 |t#1|) $ |t#1|)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-258 $ $) |has| |#2| (-1015)) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| |#2| (-989)) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2535 ((|#2| |#2|) 12)) (-2759 (((-388 |#2|) |#2|) 14)) (-3971 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))) 30))) +(((-1133 |#1| |#2|) (-10 -7 (-15 -2759 ((-388 |#2|) |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -3971 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))))) (-509) (-13 (-1130 |#1|) (-509) (-10 -8 (-15 -1401 ($ $ $))))) (T -1133)) +((-3971 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1133 *3 *4)))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1133 *3 *2)) (-4 *2 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $))))))) (-2759 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1133 *4 *3)) (-4 *3 (-13 (-1130 *4) (-509) (-10 -8 (-15 -1401 ($ $ $)))))))) +(-10 -7 (-15 -2759 ((-388 |#2|) |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -3971 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))))) +((-1893 (((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)) 23))) +(((-1134 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1893 ((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)))) (-961) (-961) (-1073) (-1073) |#1| |#2|) (T -1134)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1134 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073))))) +(-10 -7 (-15 -1893 ((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101) (($ $ (-377 (-517))) 171)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-377 (-517))) 61) (($ $ (-989) (-377 (-517))) 76) (($ $ (-583 (-989)) (-583 (-377 (-517)))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) +(((-1135 |#1|) (-1184) (-961)) (T -1135)) +((-2925 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1135 *4)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1135 *3)) (-4 *3 (-961)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-4151 (*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))) +(-13 (-1132 |t#1| (-377 (-517))) (-10 -8 (-15 -2925 ($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |t#1|))))) (-15 -3430 ($ $ (-377 (-517)))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (IF (|has| |t#1| (-15 -4151 (|t#1| |t#1| (-1073)))) (IF (|has| |t#1| (-15 -1364 ((-583 (-1073)) |t#1|))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1094))) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| (-377 (-517))) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-377 (-517)) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1112) |has| |#1| (-333)) ((-1132 |#1| (-377 (-517))) . T)) +((-2814 (((-107) $) 12)) (-1772 (((-3 |#3| "failed") $) 17)) (-3189 ((|#3| $) 14))) +(((-1136 |#1| |#2| |#3|) (-10 -8 (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|))) (-1137 |#2| |#3|) (-961) (-1114 |#2|)) (T -1136)) +NIL +(-10 -8 (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#2| "failed") $) 183)) (-3189 ((|#2| $) 182)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3598 (((-377 (-517)) $) 180)) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) |#2|) 181)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101) (($ $ (-377 (-517))) 171)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-377 (-517))) 61) (($ $ (-989) (-377 (-517))) 76) (($ $ (-583 (-989)) (-583 (-377 (-517)))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3721 ((|#2| $) 179)) (-2354 (((-3 |#2| "failed") $) 177)) (-1601 ((|#2| $) 178)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 184) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) +(((-1137 |#1| |#2|) (-1184) (-961) (-1114 |t#1|)) (T -1137)) +((-3688 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517))))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1137 *3 *2)) (-4 *2 (-1114 *3)))) (-1613 (*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-961)) (-4 *1 (-1137 *4 *3)) (-4 *3 (-1114 *4)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517))))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))) (-2354 (*1 *2 *1) (|partial| -12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3))))) +(-13 (-1135 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1613 ($ (-377 (-517)) |t#2|)) (-15 -3598 ((-377 (-517)) $)) (-15 -3721 (|t#2| $)) (-15 -3688 ((-377 (-517)) $)) (-15 -2256 ($ |t#2|)) (-15 -1601 (|t#2| $)) (-15 -2354 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| (-377 (-517))) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-377 (-517)) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-952 |#2|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1112) |has| |#1| (-333)) ((-1132 |#1| (-377 (-517))) . T) ((-1135 |#1|) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 96)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) 106) (($ $ (-377 (-517)) (-377 (-517))) 108)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 51)) (-1865 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 61)) (-1887 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL)) (-3189 ((|#2| $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) 79)) (-3598 (((-377 (-517)) $) 12)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) |#2|) 10)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) 68)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) 103) (((-377 (-517)) $ (-377 (-517))) 104)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 120) (($ $ (-377 (-517))) 118)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) 31) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 115)) (-1867 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3721 ((|#2| $) 11)) (-2354 (((-3 |#2| "failed") $) 41)) (-1601 ((|#2| $) 42)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 93 (|has| |#1| (-333)))) (-4151 (($ $) 135 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 140 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) 112)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) 100) (($ $ $) 86 (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) 127 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) 16)) (-1898 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 110)) (-2256 (((-787) $) NIL) (($ (-517)) 35) (($ |#1|) 27 (|has| |#1| (-156))) (($ |#2|) 32) (($ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 99)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 117)) (-2986 ((|#1| $) 98)) (-3707 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 197 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 21 T CONST)) (-2409 (($) 17 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) 66)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 92 (|has| |#1| (-333)))) (-1654 (($ $) 131) (($ $ $) 72)) (-1642 (($ $ $) 70)) (** (($ $ (-843)) NIL) (($ $ (-703)) 76) (($ $ (-517)) 144 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 145 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-1138 |#1| |#2|) (-1137 |#1| |#2|) (-961) (-1114 |#1|)) (T -1138)) +NIL +(-1137 |#1| |#2|) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1118 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1146 |#1| |#2| |#3|) "failed") $) 22)) (-3189 (((-1118 |#1| |#2| |#3|) $) NIL) (((-1146 |#1| |#2| |#3|) $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3598 (((-377 (-517)) $) 57)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) (-1118 |#1| |#2| |#3|)) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) 29) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3721 (((-1118 |#1| |#2| |#3|) $) 60)) (-2354 (((-3 (-1118 |#1| |#2| |#3|) "failed") $) NIL)) (-1601 (((-1118 |#1| |#2| |#3|) $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1149 |#2|)) 37)) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 87) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1118 |#1| |#2| |#3|)) 16) (($ (-1146 |#1| |#2| |#3|)) 17) (($ (-1149 |#2|)) 35) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 12)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 31 T CONST)) (-2409 (($) 26 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 33)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-1139 |#1| |#2| |#3|) (-13 (-1137 |#1| (-1118 |#1| |#2| |#3|)) (-952 (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1139)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3)))) +(-13 (-1137 |#1| (-1118 |#1| |#2| |#3|)) (-952 (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 32)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-377 (-517))))) (((-3 (-1139 |#2| |#3| |#4|) "failed") $) 20)) (-3189 (((-517) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-377 (-517))))) (((-1139 |#2| |#3| |#4|) $) NIL)) (-1212 (($ $) 33)) (-3621 (((-3 $ "failed") $) 25)) (-3534 (($ $) NIL (|has| (-1139 |#2| |#3| |#4|) (-421)))) (-1436 (($ $ (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 11)) (-4031 (((-107) $) NIL)) (-1339 (($ (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) 23)) (-2349 (((-289 |#2| |#3| |#4|) $) NIL)) (-3328 (($ (-1 (-289 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) $) NIL)) (-1893 (($ (-1 (-1139 |#2| |#3| |#4|) (-1139 |#2| |#3| |#4|)) $) NIL)) (-3020 (((-3 (-772 |#2|) "failed") $) 72)) (-4152 (($ $) NIL)) (-1191 (((-1139 |#2| |#3| |#4|) $) 18)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 (((-1139 |#2| |#3| |#4|) $) NIL)) (-2476 (((-3 $ "failed") $ (-1139 |#2| |#3| |#4|)) NIL (|has| (-1139 |#2| |#3| |#4|) (-509))) (((-3 $ "failed") $ $) NIL)) (-1389 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1056))) "failed") $) 55)) (-3688 (((-289 |#2| |#3| |#4|) $) 14)) (-3266 (((-1139 |#2| |#3| |#4|) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-1139 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL (-3807 (|has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))) (|has| (-1139 |#2| |#3| |#4|) (-952 (-377 (-517))))))) (-1311 (((-583 (-1139 |#2| |#3| |#4|)) $) NIL)) (-2720 (((-1139 |#2| |#3| |#4|) $ (-289 |#2| |#3| |#4|)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| (-1139 |#2| |#3| |#4|) (-132)))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| (-1139 |#2| |#3| |#4|) (-156)))) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 60 T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ (-1139 |#2| |#3| |#4|)) NIL (|has| (-1139 |#2| |#3| |#4|) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-1139 |#2| |#3| |#4|)) NIL) (($ (-1139 |#2| |#3| |#4|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517))))))) +(((-1140 |#1| |#2| |#3| |#4|) (-13 (-296 (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -1389 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1056))) "failed") $)))) (-13 (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1094) (-400 |#1|)) (-1073) |#2|) (T -1140)) +((-3020 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))) (-1389 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1056)))) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4)))) +(-13 (-296 (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -1389 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1056))) "failed") $)))) +((-3199 ((|#2| $) 28)) (-3005 ((|#2| $) 18)) (-2779 (($ $) 35)) (-1345 (($ $ (-517)) 63)) (-2953 (((-107) $ (-703)) 32)) (-1918 ((|#2| $ |#2|) 60)) (-3781 ((|#2| $ |#2|) 58)) (-2411 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-4040 (($ $ (-583 $)) 59)) (-2993 ((|#2| $) 17)) (-1660 (($ $) NIL) (($ $ (-703)) 41)) (-3063 (((-583 $) $) 25)) (-1272 (((-107) $ $) 49)) (-2550 (((-107) $ (-703)) 31)) (-3847 (((-107) $ (-703)) 30)) (-1763 (((-107) $) 27)) (-2068 ((|#2| $) 23) (($ $ (-703)) 45)) (-1449 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2655 (((-107) $) 21)) (-2552 (($ $) 38)) (-3406 (($ $) 64)) (-2691 (((-703) $) 40)) (-1761 (($ $) 39)) (-2452 (($ $ $) 57) (($ |#2| $) NIL)) (-1479 (((-583 $) $) 26)) (-1547 (((-107) $ $) 47)) (-2296 (((-703) $) 34))) +(((-1141 |#1| |#2|) (-10 -8 (-15 -1345 (|#1| |#1| (-517))) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -3781 (|#2| |#1| |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -3406 (|#1| |#1|)) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -3005 (|#2| |#1|)) (-15 -2993 (|#2| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1449 (|#2| |#1| "first")) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -1918 (|#2| |#1| |#2|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -4040 (|#1| |#1| (-583 |#1|))) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703)))) (-1142 |#2|) (-1108)) (T -1141)) +NIL +(-10 -8 (-15 -1345 (|#1| |#1| (-517))) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -3781 (|#2| |#1| |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -3406 (|#1| |#1|)) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -3005 (|#2| |#1|)) (-15 -2993 (|#2| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1449 (|#2| |#1| "first")) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -1918 (|#2| |#1| |#2|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -4040 (|#1| |#1| (-583 |#1|))) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703)))) +((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2568 (($ $ $) 61 (|has| $ (-6 -4181))) (($ $ |#1|) 60 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 78) (($ |#1| $) 77)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-1142 |#1|) (-1184) (-1108)) (T -1142)) +((-2452 (*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1647 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-1660 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-1660 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2068 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1761 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-2552 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3406 (*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3042 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3096 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2411 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-3781 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1345 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108))))) +(-13 (-926 |t#1|) (-10 -8 (-15 -2452 ($ $ $)) (-15 -2452 ($ |t#1| $)) (-15 -1647 (|t#1| $)) (-15 -1449 (|t#1| $ "first")) (-15 -1647 ($ $ (-703))) (-15 -1660 ($ $)) (-15 -1449 ($ $ "rest")) (-15 -1660 ($ $ (-703))) (-15 -2068 (|t#1| $)) (-15 -1449 (|t#1| $ "last")) (-15 -2068 ($ $ (-703))) (-15 -2779 ($ $)) (-15 -2993 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -1761 ($ $)) (-15 -2691 ((-703) $)) (-15 -2552 ($ $)) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2568 ($ $ $)) (-15 -2568 ($ $ |t#1|)) (-15 -3406 ($ $)) (-15 -3042 (|t#1| $ |t#1|)) (-15 -2411 (|t#1| $ "first" |t#1|)) (-15 -3096 ($ $ $)) (-15 -2411 ($ $ "rest" $)) (-15 -3781 (|t#1| $ |t#1|)) (-15 -2411 (|t#1| $ "last" |t#1|)) (-15 -1345 ($ $ (-517)))) |noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T)) +((-1893 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1143 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|))) (-961) (-961) (-1145 |#1|) (-1145 |#2|)) (T -1143)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1145 *6)) (-5 *1 (-1143 *5 *6 *4 *2)) (-4 *4 (-1145 *5))))) +(-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|))) +((-2814 (((-107) $) 15)) (-1865 (($ $) 90)) (-1721 (($ $) 66)) (-1839 (($ $) 86)) (-1701 (($ $) 62)) (-1887 (($ $) 94)) (-1743 (($ $) 70)) (-1867 (($ $) 60)) (-2624 (($ $) 58)) (-1898 (($ $) 96)) (-1754 (($ $) 72)) (-1876 (($ $) 92)) (-1732 (($ $) 68)) (-1853 (($ $) 88)) (-1711 (($ $) 64)) (-2256 (((-787) $) 46) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3707 (($ $) 102)) (-1788 (($ $) 78)) (-3683 (($ $) 98)) (-1765 (($ $) 74)) (-3731 (($ $) 106)) (-1814 (($ $) 82)) (-1492 (($ $) 108)) (-1827 (($ $) 84)) (-3719 (($ $) 104)) (-1802 (($ $) 80)) (-3695 (($ $) 100)) (-1777 (($ $) 76)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#2|) 50) (($ $ $) 53) (($ $ (-377 (-517))) 56))) +(((-1144 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2814 ((-107) |#1|)) (-15 -2256 ((-787) |#1|))) (-1145 |#2|) (-961)) (T -1144)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2814 ((-107) |#1|)) (-15 -2256 ((-787) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-703)) 98) (($ $ (-703) (-703)) 97)) (-2223 (((-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 155) (($ (-1054 |#1|)) 153)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-2328 (($ $) 152)) (-3520 (((-874 |#1|) $ (-703)) 150) (((-874 |#1|) $ (-703) (-703)) 149)) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $) 100) (((-703) $ (-703)) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101)) (-3103 (($ (-1 |#1| (-517)) $) 151)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-703)) 61) (($ $ (-989) (-703)) 76) (($ $ (-583 (-989)) (-583 (-703))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-4151 (($ $) 147 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 146 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1672 (($ $ (-703)) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1449 ((|#1| $ (-703)) 104) (($ $ $) 81 (|has| (-703) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-3688 (((-703) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1311 (((-1054 |#1|) $) 154)) (-2720 ((|#1| $ (-703)) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-703)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ |#1|) 148 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) +(((-1145 |#1|) (-1184) (-961)) (T -1145)) +((-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1145 *3)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-5 *2 (-1054 *3)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-4 *1 (-1145 *3)))) (-2328 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1145 *3)) (-4 *3 (-961)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) (-3520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-4151 (*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))) +(-13 (-1132 |t#1| (-703)) (-10 -8 (-15 -2925 ($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |t#1|))))) (-15 -1311 ((-1054 |t#1|) $)) (-15 -2925 ($ (-1054 |t#1|))) (-15 -2328 ($ $)) (-15 -3103 ($ (-1 |t#1| (-517)) $)) (-15 -3520 ((-874 |t#1|) $ (-703))) (-15 -3520 ((-874 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-333)) (-15 ** ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (IF (|has| |t#1| (-15 -4151 (|t#1| |t#1| (-1073)))) (IF (|has| |t#1| (-15 -1364 ((-583 (-1073)) |t#1|))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1094))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| (-703)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-703) |#1|))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-703) (-1015)) ((-262) |has| |#1| (-509)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-703) (-989)) . T) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1132 |#1| (-703)) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 86)) (-2784 (((-1127 |#2| |#1|) $ (-703)) 73)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) 135 (|has| |#1| (-509)))) (-1974 (($ $ (-703)) 120) (($ $ (-703) (-703)) 122)) (-2223 (((-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 42)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 53) (($ (-1054 |#1|)) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-2600 (($ $) 126)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2328 (($ $) 133)) (-3520 (((-874 |#1|) $ (-703)) 63) (((-874 |#1|) $ (-703) (-703)) 65)) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $) NIL) (((-703) $ (-703)) NIL)) (-3848 (((-107) $) NIL)) (-3821 (($ $) 110)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2161 (($ (-517) (-517) $) 128)) (-3430 (($ $ (-843)) 132)) (-3103 (($ (-1 |#1| (-517)) $) 104)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 15) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 92)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-1641 (($ $) 108)) (-2533 (($ $) 106)) (-3804 (($ (-517) (-517) $) 130)) (-4151 (($ $) 143 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 149 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 144 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-3926 (($ $ (-517) (-517)) 114)) (-1672 (($ $ (-703)) 116)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3515 (($ $) 112)) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1449 ((|#1| $ (-703)) 89) (($ $ $) 124 (|has| (-703) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) 101 (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1149 |#2|)) 97)) (-3688 (((-703) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 118)) (-2256 (((-787) $) NIL) (($ (-517)) 24) (($ (-377 (-517))) 141 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 23 (|has| |#1| (-156))) (($ (-1127 |#2| |#1|)) 79) (($ (-1149 |#2|)) 20)) (-1311 (((-1054 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) 88)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 87)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-703)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 17 T CONST)) (-2409 (($) 13 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 100)) (-1642 (($ $ $) 18)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 138 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 99) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) +(((-1146 |#1| |#2| |#3|) (-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (-15 -2533 ($ $)) (-15 -1641 ($ $)) (-15 -3821 ($ $)) (-15 -3515 ($ $)) (-15 -3926 ($ $ (-517) (-517))) (-15 -2600 ($ $)) (-15 -2161 ($ (-517) (-517) $)) (-15 -3804 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1146)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1146 *3 *4 *5)))) (-2784 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1146 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2533 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-1641 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-3821 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-3515 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-3926 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))) (-2600 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-2161 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))) (-3804 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3)))) +(-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (-15 -2533 ($ $)) (-15 -1641 ($ $)) (-15 -3821 ($ $)) (-15 -3515 ($ $)) (-15 -3926 ($ $ (-517) (-517))) (-15 -2600 ($ $)) (-15 -2161 ($ (-517) (-517) $)) (-15 -3804 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) +((-1495 (((-1 (-1054 |#1|) (-583 (-1054 |#1|))) (-1 |#2| (-583 |#2|))) 24)) (-4067 (((-1 (-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3981 (((-1 (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2|)) 13)) (-2079 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3070 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2275 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 54)) (-2285 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 61)) (-1553 ((|#2| |#2| |#2|) 43))) +(((-1147 |#1| |#2|) (-10 -7 (-15 -3981 ((-1 (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2|))) (-15 -4067 ((-1 (-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1495 ((-1 (-1054 |#1|) (-583 (-1054 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -1553 (|#2| |#2| |#2|)) (-15 -3070 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2079 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2275 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -2285 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-37 (-377 (-517))) (-1145 |#1|)) (T -1147)) +((-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1145 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1147 *5 *6)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1145 *5)) (-5 *1 (-1147 *5 *2)))) (-2079 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-1553 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-1145 *3)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-583 (-1054 *4)))) (-5 *1 (-1147 *4 *5)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5))))) +(-10 -7 (-15 -3981 ((-1 (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2|))) (-15 -4067 ((-1 (-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1495 ((-1 (-1054 |#1|) (-583 (-1054 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -1553 (|#2| |#2| |#2|)) (-15 -3070 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2079 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2275 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -2285 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) +((-2873 ((|#2| |#4| (-703)) 30)) (-1930 ((|#4| |#2|) 25)) (-3665 ((|#4| (-377 |#2|)) 51 (|has| |#1| (-509)))) (-2424 (((-1 |#4| (-583 |#4|)) |#3|) 45))) +(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1930 (|#4| |#2|)) (-15 -2873 (|#2| |#4| (-703))) (-15 -2424 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3665 (|#4| (-377 |#2|))) |noBranch|)) (-961) (-1130 |#1|) (-593 |#2|) (-1145 |#1|)) (T -1148)) +((-3665 (*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-509)) (-4 *4 (-961)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *5 *6 *2)) (-4 *6 (-593 *5)))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1130 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1148 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1145 *4)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-1148 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1145 *5)))) (-1930 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1130 *4)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *3 *5 *2)) (-4 *5 (-593 *3))))) +(-10 -7 (-15 -1930 (|#4| |#2|)) (-15 -2873 (|#2| |#4| (-703))) (-15 -2424 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3665 (|#4| (-377 |#2|))) |noBranch|)) +((-2750 (((-107) $ $) NIL)) (-1638 (((-1073)) 12)) (-3985 (((-1056) $) 17)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11) (((-1073) $) 8)) (-1547 (((-107) $ $) 14))) +(((-1149 |#1|) (-13 (-1003) (-557 (-1073)) (-10 -8 (-15 -2256 ((-1073) $)) (-15 -1638 ((-1073))))) (-1073)) (T -1149)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2))) (-1638 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2)))) +(-13 (-1003) (-557 (-1073)) (-10 -8 (-15 -2256 ((-1073) $)) (-15 -1638 ((-1073))))) +((-3526 (($ (-703)) 16)) (-2723 (((-623 |#2|) $ $) 37)) (-1292 ((|#2| $) 46)) (-2195 ((|#2| $) 45)) (-3501 ((|#2| $ $) 33)) (-2862 (($ $ $) 42)) (-1654 (($ $) 20) (($ $ $) 26)) (-1642 (($ $ $) 13)) (* (($ (-517) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28))) +(((-1150 |#1| |#2|) (-10 -8 (-15 -1292 (|#2| |#1|)) (-15 -2195 (|#2| |#1|)) (-15 -2862 (|#1| |#1| |#1|)) (-15 -2723 ((-623 |#2|) |#1| |#1|)) (-15 -3501 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -3526 (|#1| (-703))) (-15 -1642 (|#1| |#1| |#1|))) (-1151 |#2|) (-1108)) (T -1150)) +NIL +(-10 -8 (-15 -1292 (|#2| |#1|)) (-15 -2195 (|#2| |#1|)) (-15 -2862 (|#1| |#1| |#1|)) (-15 -2723 ((-623 |#2|) |#1| |#1|)) (-15 -3501 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -3526 (|#1| (-703))) (-15 -1642 (|#1| |#1| |#1|))) +((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3526 (($ (-703)) 112 (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) 105 (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1292 ((|#1| $) 102 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3847 (((-107) $ (-703)) 10)) (-2195 ((|#1| $) 103 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3501 ((|#1| $ $) 106 (|has| |#1| (-961)))) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-2862 (($ $ $) 104 (|has| |#1| (-961)))) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1654 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1642 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180))))) +(((-1151 |#1|) (-1184) (-1108)) (T -1151)) +((-1642 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-25)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1151 *3)) (-4 *3 (-23)) (-4 *3 (-1108)))) (-1654 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21)))) (-1654 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) (-3501 (*1 *2 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) (-2723 (*1 *2 *1 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-961)) (-5 *2 (-623 *3)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1642 ($ $ $)) |noBranch|) (IF (|has| |t#1| (-23)) (-15 -3526 ($ (-703))) |noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1654 ($ $)) (-15 -1654 ($ $ $)) (-15 * ($ (-517) $))) |noBranch|) (IF (|has| |t#1| (-659)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-15 -3501 (|t#1| $ $)) (-15 -2723 ((-623 |t#1|) $ $)) (-15 -2862 ($ $ $))) |noBranch|) (IF (|has| |t#1| (-918)) (IF (|has| |t#1| (-961)) (PROGN (-15 -2195 (|t#1| $)) (-15 -1292 (|t#1| $))) |noBranch|) |noBranch|))) +(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T)) +((-3905 (((-1153 |#2|) (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|) 13)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|) 15)) (-1893 (((-3 (-1153 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1153 |#1|)) 28) (((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|)) 18))) +(((-1152 |#1| |#2|) (-10 -7 (-15 -3905 ((-1153 |#2|) (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -1893 ((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|))) (-15 -1893 ((-3 (-1153 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1153 |#1|)))) (-1108) (-1108)) (T -1152)) +((-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1152 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1153 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-1153 *5)) (-5 *1 (-1152 *6 *5))))) +(-10 -7 (-15 -3905 ((-1153 |#2|) (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -1893 ((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|))) (-15 -1893 ((-3 (-1153 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1153 |#1|)))) +((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703)) NIL (|has| |#1| (-23)))) (-3118 (($ (-583 |#1|)) 9)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 15 (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1292 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3847 (((-107) $ (-703)) NIL)) (-2195 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3501 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-961)))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 19 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 8)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1642 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-1153 |#1|) (-13 (-1151 |#1|) (-10 -8 (-15 -3118 ($ (-583 |#1|))))) (-1108)) (T -1153)) +((-3118 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1153 *3))))) +(-13 (-1151 |#1|) (-10 -8 (-15 -3118 ($ (-583 |#1|))))) +((-2750 (((-107) $ $) NIL)) (-2795 (((-1056) $ (-1056)) 87) (((-1056) $ (-1056) (-1056)) 85) (((-1056) $ (-1056) (-583 (-1056))) 84)) (-2361 (($) 56)) (-2529 (((-1158) $ (-437) (-843)) 42)) (-3029 (((-1158) $ (-843) (-1056)) 70) (((-1158) $ (-843) (-797)) 71)) (-2444 (((-1158) $ (-843) (-349) (-349)) 45)) (-4150 (((-1158) $ (-1056)) 66)) (-1455 (((-1158) $ (-843) (-1056)) 75)) (-1278 (((-1158) $ (-843) (-349) (-349)) 46)) (-3779 (((-1158) $ (-843) (-843)) 43)) (-2785 (((-1158) $) 67)) (-3801 (((-1158) $ (-843) (-1056)) 74)) (-2877 (((-1158) $ (-437) (-843)) 30)) (-3038 (((-1158) $ (-843) (-1056)) 73)) (-1525 (((-583 (-236)) $) 22) (($ $ (-583 (-236))) 23)) (-2009 (((-1158) $ (-703) (-703)) 40)) (-3409 (($ $) 57) (($ (-437) (-583 (-236))) 58)) (-3985 (((-1056) $) NIL)) (-3435 (((-517) $) 37)) (-3206 (((-1021) $) NIL)) (-2003 (((-1153 (-3 (-437) "undefined")) $) 36)) (-2162 (((-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $) 35)) (-3227 (((-1158) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517)) 65)) (-3895 (((-583 (-865 (-199))) $) NIL)) (-2042 (((-437) $ (-843)) 32)) (-1570 (((-1158) $ (-703) (-703) (-843) (-843)) 39)) (-2867 (((-1158) $ (-1056)) 76)) (-3661 (((-1158) $ (-843) (-1056)) 72)) (-2256 (((-787) $) 82)) (-1210 (((-1158) $) 77)) (-2547 (((-1158) $ (-843) (-1056)) 68) (((-1158) $ (-843) (-797)) 69)) (-1547 (((-107) $ $) NIL))) +(((-1154) (-13 (-1003) (-10 -8 (-15 -3895 ((-583 (-865 (-199))) $)) (-15 -2361 ($)) (-15 -3409 ($ $)) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -3409 ($ (-437) (-583 (-236)))) (-15 -3227 ((-1158) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -2162 ((-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -2003 ((-1153 (-3 (-437) "undefined")) $)) (-15 -4150 ((-1158) $ (-1056))) (-15 -2877 ((-1158) $ (-437) (-843))) (-15 -2042 ((-437) $ (-843))) (-15 -2547 ((-1158) $ (-843) (-1056))) (-15 -2547 ((-1158) $ (-843) (-797))) (-15 -3029 ((-1158) $ (-843) (-1056))) (-15 -3029 ((-1158) $ (-843) (-797))) (-15 -3038 ((-1158) $ (-843) (-1056))) (-15 -3801 ((-1158) $ (-843) (-1056))) (-15 -3661 ((-1158) $ (-843) (-1056))) (-15 -2867 ((-1158) $ (-1056))) (-15 -1210 ((-1158) $)) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -1278 ((-1158) $ (-843) (-349) (-349))) (-15 -2444 ((-1158) $ (-843) (-349) (-349))) (-15 -1455 ((-1158) $ (-843) (-1056))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -2529 ((-1158) $ (-437) (-843))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -2785 ((-1158) $)) (-15 -3435 ((-517) $)) (-15 -2256 ((-787) $))))) (T -1154)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1154)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-583 (-865 (-199)))) (-5 *1 (-1154)))) (-2361 (*1 *1) (-5 *1 (-1154))) (-3409 (*1 *1 *1) (-5 *1 (-1154))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) (-3409 (*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1154)))) (-3227 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-843)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1154)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-1153 (-3 (-437) "undefined"))) (-5 *1 (-1154)))) (-4150 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2877 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2042 (*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-5 *2 (-437)) (-5 *1 (-1154)))) (-2547 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2547 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3038 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3801 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3661 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2867 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1210 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1570 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1278 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2444 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1455 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2009 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2529 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3779 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2795 (*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) (-2795 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) (-2795 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1154)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1154))))) +(-13 (-1003) (-10 -8 (-15 -3895 ((-583 (-865 (-199))) $)) (-15 -2361 ($)) (-15 -3409 ($ $)) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -3409 ($ (-437) (-583 (-236)))) (-15 -3227 ((-1158) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -2162 ((-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -2003 ((-1153 (-3 (-437) "undefined")) $)) (-15 -4150 ((-1158) $ (-1056))) (-15 -2877 ((-1158) $ (-437) (-843))) (-15 -2042 ((-437) $ (-843))) (-15 -2547 ((-1158) $ (-843) (-1056))) (-15 -2547 ((-1158) $ (-843) (-797))) (-15 -3029 ((-1158) $ (-843) (-1056))) (-15 -3029 ((-1158) $ (-843) (-797))) (-15 -3038 ((-1158) $ (-843) (-1056))) (-15 -3801 ((-1158) $ (-843) (-1056))) (-15 -3661 ((-1158) $ (-843) (-1056))) (-15 -2867 ((-1158) $ (-1056))) (-15 -1210 ((-1158) $)) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -1278 ((-1158) $ (-843) (-349) (-349))) (-15 -2444 ((-1158) $ (-843) (-349) (-349))) (-15 -1455 ((-1158) $ (-843) (-1056))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -2529 ((-1158) $ (-437) (-843))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -2785 ((-1158) $)) (-15 -3435 ((-517) $)) (-15 -2256 ((-787) $)))) +((-2750 (((-107) $ $) NIL)) (-4132 (((-1158) $ (-349)) 138) (((-1158) $ (-349) (-349) (-349)) 139)) (-2795 (((-1056) $ (-1056)) 146) (((-1056) $ (-1056) (-1056)) 144) (((-1056) $ (-1056) (-583 (-1056))) 143)) (-1929 (($) 49)) (-3222 (((-1158) $ (-349) (-349) (-349) (-349) (-349)) 114) (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $) 112) (((-1158) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 113) (((-1158) $ (-517) (-517) (-349) (-349) (-349)) 115) (((-1158) $ (-349) (-349)) 116) (((-1158) $ (-349) (-349) (-349)) 123)) (-2268 (((-349)) 96) (((-349) (-349)) 97)) (-2488 (((-349)) 91) (((-349) (-349)) 93)) (-3732 (((-349)) 94) (((-349) (-349)) 95)) (-1444 (((-349)) 100) (((-349) (-349)) 101)) (-2974 (((-349)) 98) (((-349) (-349)) 99)) (-2444 (((-1158) $ (-349) (-349)) 140)) (-4150 (((-1158) $ (-1056)) 124)) (-2467 (((-1034 (-199)) $) 50) (($ $ (-1034 (-199))) 51)) (-2505 (((-1158) $ (-1056)) 152)) (-1892 (((-1158) $ (-1056)) 153)) (-1225 (((-1158) $ (-349) (-349)) 122) (((-1158) $ (-517) (-517)) 137)) (-3779 (((-1158) $ (-843) (-843)) 130)) (-2785 (((-1158) $) 110)) (-2749 (((-1158) $ (-1056)) 151)) (-1203 (((-1158) $ (-1056)) 107)) (-1525 (((-583 (-236)) $) 52) (($ $ (-583 (-236))) 53)) (-2009 (((-1158) $ (-703) (-703)) 129)) (-3347 (((-1158) $ (-703) (-865 (-199))) 158)) (-3977 (($ $) 56) (($ (-1034 (-199)) (-1056)) 57) (($ (-1034 (-199)) (-583 (-236))) 58)) (-3916 (((-1158) $ (-349) (-349) (-349)) 104)) (-3985 (((-1056) $) NIL)) (-3435 (((-517) $) 102)) (-1211 (((-1158) $ (-349)) 141)) (-2812 (((-1158) $ (-349)) 156)) (-3206 (((-1021) $) NIL)) (-1551 (((-1158) $ (-349)) 155)) (-2960 (((-1158) $ (-1056)) 109)) (-1570 (((-1158) $ (-703) (-703) (-843) (-843)) 128)) (-2767 (((-1158) $ (-1056)) 106)) (-2867 (((-1158) $ (-1056)) 108)) (-2715 (((-1158) $ (-142) (-142)) 127)) (-2256 (((-787) $) 135)) (-1210 (((-1158) $) 111)) (-2351 (((-1158) $ (-1056)) 154)) (-2547 (((-1158) $ (-1056)) 105)) (-1547 (((-107) $ $) NIL))) +(((-1155) (-13 (-1003) (-10 -8 (-15 -2488 ((-349))) (-15 -2488 ((-349) (-349))) (-15 -3732 ((-349))) (-15 -3732 ((-349) (-349))) (-15 -2268 ((-349))) (-15 -2268 ((-349) (-349))) (-15 -2974 ((-349))) (-15 -2974 ((-349) (-349))) (-15 -1444 ((-349))) (-15 -1444 ((-349) (-349))) (-15 -1929 ($)) (-15 -3977 ($ $)) (-15 -3977 ($ (-1034 (-199)) (-1056))) (-15 -3977 ($ (-1034 (-199)) (-583 (-236)))) (-15 -2467 ((-1034 (-199)) $)) (-15 -2467 ($ $ (-1034 (-199)))) (-15 -3347 ((-1158) $ (-703) (-865 (-199)))) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -4150 ((-1158) $ (-1056))) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -3222 ((-1158) $ (-349) (-349) (-349) (-349) (-349))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -3222 ((-1158) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3222 ((-1158) $ (-517) (-517) (-349) (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349) (-349))) (-15 -2867 ((-1158) $ (-1056))) (-15 -2547 ((-1158) $ (-1056))) (-15 -2767 ((-1158) $ (-1056))) (-15 -1203 ((-1158) $ (-1056))) (-15 -2960 ((-1158) $ (-1056))) (-15 -1225 ((-1158) $ (-349) (-349))) (-15 -1225 ((-1158) $ (-517) (-517))) (-15 -4132 ((-1158) $ (-349))) (-15 -4132 ((-1158) $ (-349) (-349) (-349))) (-15 -2444 ((-1158) $ (-349) (-349))) (-15 -2749 ((-1158) $ (-1056))) (-15 -1551 ((-1158) $ (-349))) (-15 -2812 ((-1158) $ (-349))) (-15 -2505 ((-1158) $ (-1056))) (-15 -1892 ((-1158) $ (-1056))) (-15 -2351 ((-1158) $ (-1056))) (-15 -3916 ((-1158) $ (-349) (-349) (-349))) (-15 -1211 ((-1158) $ (-349))) (-15 -2785 ((-1158) $)) (-15 -2715 ((-1158) $ (-142) (-142))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -1210 ((-1158) $)) (-15 -3435 ((-517) $))))) (T -1155)) +((-2488 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2488 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-3732 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-3732 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2268 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2974 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2974 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-1444 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-1444 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-1929 (*1 *1) (-5 *1 (-1155))) (-3977 (*1 *1 *1) (-5 *1 (-1155))) (-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1056)) (-5 *1 (-1155)))) (-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1155)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155)))) (-2467 (*1 *1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155)))) (-3347 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) (-2009 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3779 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-4150 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1570 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2867 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2547 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2767 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1203 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2960 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1225 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1225 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-4132 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-4132 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2444 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2749 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1551 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2812 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2505 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1892 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3916 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1211 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2715 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2795 (*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155)))) (-2795 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155)))) (-2795 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1155)))) (-1210 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1155))))) +(-13 (-1003) (-10 -8 (-15 -2488 ((-349))) (-15 -2488 ((-349) (-349))) (-15 -3732 ((-349))) (-15 -3732 ((-349) (-349))) (-15 -2268 ((-349))) (-15 -2268 ((-349) (-349))) (-15 -2974 ((-349))) (-15 -2974 ((-349) (-349))) (-15 -1444 ((-349))) (-15 -1444 ((-349) (-349))) (-15 -1929 ($)) (-15 -3977 ($ $)) (-15 -3977 ($ (-1034 (-199)) (-1056))) (-15 -3977 ($ (-1034 (-199)) (-583 (-236)))) (-15 -2467 ((-1034 (-199)) $)) (-15 -2467 ($ $ (-1034 (-199)))) (-15 -3347 ((-1158) $ (-703) (-865 (-199)))) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -4150 ((-1158) $ (-1056))) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -3222 ((-1158) $ (-349) (-349) (-349) (-349) (-349))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -3222 ((-1158) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3222 ((-1158) $ (-517) (-517) (-349) (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349) (-349))) (-15 -2867 ((-1158) $ (-1056))) (-15 -2547 ((-1158) $ (-1056))) (-15 -2767 ((-1158) $ (-1056))) (-15 -1203 ((-1158) $ (-1056))) (-15 -2960 ((-1158) $ (-1056))) (-15 -1225 ((-1158) $ (-349) (-349))) (-15 -1225 ((-1158) $ (-517) (-517))) (-15 -4132 ((-1158) $ (-349))) (-15 -4132 ((-1158) $ (-349) (-349) (-349))) (-15 -2444 ((-1158) $ (-349) (-349))) (-15 -2749 ((-1158) $ (-1056))) (-15 -1551 ((-1158) $ (-349))) (-15 -2812 ((-1158) $ (-349))) (-15 -2505 ((-1158) $ (-1056))) (-15 -1892 ((-1158) $ (-1056))) (-15 -2351 ((-1158) $ (-1056))) (-15 -3916 ((-1158) $ (-349) (-349) (-349))) (-15 -1211 ((-1158) $ (-349))) (-15 -2785 ((-1158) $)) (-15 -2715 ((-1158) $ (-142) (-142))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -1210 ((-1158) $)) (-15 -3435 ((-517) $)))) +((-3904 (((-583 (-1056)) (-583 (-1056))) 94) (((-583 (-1056))) 89)) (-1565 (((-583 (-1056))) 87)) (-3996 (((-583 (-843)) (-583 (-843))) 62) (((-583 (-843))) 59)) (-2810 (((-583 (-703)) (-583 (-703))) 56) (((-583 (-703))) 52)) (-3473 (((-1158)) 64)) (-3744 (((-843) (-843)) 80) (((-843)) 79)) (-2649 (((-843) (-843)) 78) (((-843)) 77)) (-3190 (((-797) (-797)) 74) (((-797)) 73)) (-3714 (((-199)) 84) (((-199) (-349)) 86)) (-1230 (((-843)) 81) (((-843) (-843)) 82)) (-3175 (((-843) (-843)) 76) (((-843)) 75)) (-2528 (((-797) (-797)) 68) (((-797)) 66)) (-3667 (((-797) (-797)) 70) (((-797)) 69)) (-3317 (((-797) (-797)) 72) (((-797)) 71))) +(((-1156) (-10 -7 (-15 -2528 ((-797))) (-15 -2528 ((-797) (-797))) (-15 -3667 ((-797))) (-15 -3667 ((-797) (-797))) (-15 -3317 ((-797))) (-15 -3317 ((-797) (-797))) (-15 -3190 ((-797))) (-15 -3190 ((-797) (-797))) (-15 -3175 ((-843))) (-15 -3175 ((-843) (-843))) (-15 -2810 ((-583 (-703)))) (-15 -2810 ((-583 (-703)) (-583 (-703)))) (-15 -3996 ((-583 (-843)))) (-15 -3996 ((-583 (-843)) (-583 (-843)))) (-15 -3473 ((-1158))) (-15 -3904 ((-583 (-1056)))) (-15 -3904 ((-583 (-1056)) (-583 (-1056)))) (-15 -1565 ((-583 (-1056)))) (-15 -2649 ((-843))) (-15 -3744 ((-843))) (-15 -2649 ((-843) (-843))) (-15 -3744 ((-843) (-843))) (-15 -1230 ((-843) (-843))) (-15 -1230 ((-843))) (-15 -3714 ((-199) (-349))) (-15 -3714 ((-199))))) (T -1156)) +((-3714 (*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1156)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1156)))) (-1230 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-1230 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-2649 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3744 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-2649 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-1565 (*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) (-3904 (*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) (-3473 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1156)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156)))) (-3996 (*1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156)))) (-2810 (*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156)))) (-2810 (*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3175 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3190 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3317 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3317 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3667 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3667 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-2528 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-2528 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156))))) +(-10 -7 (-15 -2528 ((-797))) (-15 -2528 ((-797) (-797))) (-15 -3667 ((-797))) (-15 -3667 ((-797) (-797))) (-15 -3317 ((-797))) (-15 -3317 ((-797) (-797))) (-15 -3190 ((-797))) (-15 -3190 ((-797) (-797))) (-15 -3175 ((-843))) (-15 -3175 ((-843) (-843))) (-15 -2810 ((-583 (-703)))) (-15 -2810 ((-583 (-703)) (-583 (-703)))) (-15 -3996 ((-583 (-843)))) (-15 -3996 ((-583 (-843)) (-583 (-843)))) (-15 -3473 ((-1158))) (-15 -3904 ((-583 (-1056)))) (-15 -3904 ((-583 (-1056)) (-583 (-1056)))) (-15 -1565 ((-583 (-1056)))) (-15 -2649 ((-843))) (-15 -3744 ((-843))) (-15 -2649 ((-843) (-843))) (-15 -3744 ((-843) (-843))) (-15 -1230 ((-843) (-843))) (-15 -1230 ((-843))) (-15 -3714 ((-199) (-349))) (-15 -3714 ((-199)))) +((-2747 (((-437) (-583 (-583 (-865 (-199)))) (-583 (-236))) 17) (((-437) (-583 (-583 (-865 (-199))))) 16) (((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236))) 15)) (-1768 (((-1154) (-583 (-583 (-865 (-199)))) (-583 (-236))) 23) (((-1154) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236))) 22)) (-2256 (((-1154) (-437)) 34))) +(((-1157) (-10 -7 (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -2256 ((-1154) (-437))))) (T -1157)) +((-2256 (*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1154)) (-5 *1 (-1157)))) (-1768 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157)))) (-1768 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-437)) (-5 *1 (-1157)))) (-2747 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157))))) +(-10 -7 (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -2256 ((-1154) (-437)))) +((-2677 (($) 7)) (-2256 (((-787) $) 10))) +(((-1158) (-10 -8 (-15 -2677 ($)) (-15 -2256 ((-787) $)))) (T -1158)) +((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1158)))) (-2677 (*1 *1) (-5 *1 (-1158)))) +(-10 -8 (-15 -2677 ($)) (-15 -2256 ((-787) $))) +((-1667 (($ $ |#2|) 10))) +(((-1159 |#1| |#2|) (-10 -8 (-15 -1667 (|#1| |#1| |#2|))) (-1160 |#2|) (-333)) (T -1159)) +NIL +(-10 -8 (-15 -1667 (|#1| |#1| |#2|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3141 (((-125)) 28)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 29)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1160 |#1|) (-1184) (-333)) (T -1160)) +((-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-333)))) (-3141 (*1 *2) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-333)) (-5 *2 (-125))))) +(-13 (-650 |t#1|) (-10 -8 (-15 -1667 ($ $ |t#1|)) (-15 -3141 ((-125))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T)) +((-1593 (((-583 (-1103 |#1|)) (-1073) (-1103 |#1|)) 78)) (-4039 (((-1054 (-1054 (-874 |#1|))) (-1073) (-1054 (-874 |#1|))) 57)) (-3680 (((-1 (-1054 (-1103 |#1|)) (-1054 (-1103 |#1|))) (-703) (-1103 |#1|) (-1054 (-1103 |#1|))) 68)) (-1858 (((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703)) 59)) (-3641 (((-1 (-1069 (-874 |#1|)) (-874 |#1|)) (-1073)) 27)) (-2128 (((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703)) 58))) +(((-1161 |#1|) (-10 -7 (-15 -1858 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -2128 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -4039 ((-1054 (-1054 (-874 |#1|))) (-1073) (-1054 (-874 |#1|)))) (-15 -3641 ((-1 (-1069 (-874 |#1|)) (-874 |#1|)) (-1073))) (-15 -1593 ((-583 (-1103 |#1|)) (-1073) (-1103 |#1|))) (-15 -3680 ((-1 (-1054 (-1103 |#1|)) (-1054 (-1103 |#1|))) (-703) (-1103 |#1|) (-1054 (-1103 |#1|))))) (-333)) (T -1161)) +((-3680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1103 *6)) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1161 *6)) (-5 *5 (-1054 *4)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-583 (-1103 *5))) (-5 *1 (-1161 *5)) (-5 *4 (-1103 *5)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 (-1069 (-874 *4)) (-874 *4))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-1054 (-1054 (-874 *5)))) (-5 *1 (-1161 *5)) (-5 *4 (-1054 (-874 *5))))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333))))) +(-10 -7 (-15 -1858 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -2128 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -4039 ((-1054 (-1054 (-874 |#1|))) (-1073) (-1054 (-874 |#1|)))) (-15 -3641 ((-1 (-1069 (-874 |#1|)) (-874 |#1|)) (-1073))) (-15 -1593 ((-583 (-1103 |#1|)) (-1073) (-1103 |#1|))) (-15 -3680 ((-1 (-1054 (-1103 |#1|)) (-1054 (-1103 |#1|))) (-703) (-1103 |#1|) (-1054 (-1103 |#1|))))) +((-4140 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 74)) (-2216 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 73))) +(((-1162 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|))) (-319) (-1130 |#1|) (-1130 |#2|) (-379 |#2| |#3|)) (T -1162)) +((-4140 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1162 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))) (-2216 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1162 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5))))) +(-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 41)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 62) (($ (-517)) NIL) ((|#4| $) 52) (($ |#4|) 47) (($ |#1|) NIL (|has| |#1| (-156)))) (-2961 (((-703)) NIL)) (-2273 (((-1158) (-703)) 16)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 26 T CONST)) (-2409 (($) 65 T CONST)) (-1547 (((-107) $ $) 67)) (-1667 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) 69) (($ $ $) NIL)) (-1642 (($ $ $) 45)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 71) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) +(((-1163 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2256 ($ |#4|)) (-15 -2273 ((-1158) (-703))))) (-961) (-779) (-725) (-871 |#1| |#3| |#2|) (-583 |#2|) (-583 (-703)) (-703)) (T -1163)) +((-2256 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-1667 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1163 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-871 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1158)) (-5 *1 (-1163 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-871 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3)))) +(-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2256 ($ |#4|)) (-15 -2273 ((-1158) (-703))))) +((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) 87)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) NIL (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 27)) (-1677 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 69)) (-3659 ((|#4| |#4| $) 74)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-1536 (((-583 |#4|) $) NIL (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 75)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 28 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-3825 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 31) (((-3 $ "failed") (-583 |#4|)) 34)) (-1433 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) NIL)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2068 (((-3 |#4| "failed") $) NIL)) (-2774 (((-583 |#4|) $) 49)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) 73)) (-3411 (((-107) $ $) 84)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 68)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) NIL)) (-1672 (($ $ |#4|) NIL)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 66)) (-1746 (($) 41)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) NIL)) (-2442 (($ $ |#3|) NIL)) (-3759 (($ $ |#3|) NIL)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) NIL) (((-583 |#4|) $) 56)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-4021 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 39) (((-3 $ "failed") (-583 |#4|)) 40)) (-2418 (((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 64) (((-583 $) (-583 |#4|)) 65)) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 23) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-1871 (((-107) |#3| $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180))))) +(((-1164 |#1| |#2| |#3| |#4|) (-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3825 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3825 ((-3 $ "failed") (-583 |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|))) (-15 -2418 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2418 ((-583 $) (-583 |#4|))))) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -1164)) +((-3825 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8)))) (-3825 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) (-4021 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8)))) (-4021 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) (-2418 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1164 *6 *7 *8 *9))) (-5 *1 (-1164 *6 *7 *8 *9)))) (-2418 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1164 *4 *5 *6 *7))) (-5 *1 (-1164 *4 *5 *6 *7))))) +(-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3825 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3825 ((-3 $ "failed") (-583 |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|))) (-15 -2418 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2418 ((-583 $) (-583 |#4|))))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-1165 |#1|) (-1184) (-961)) (T -1165)) +((-2256 (*1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-961))))) +(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (-15 -2256 ($ |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 45)) (-3883 (($ $ (-703)) 39)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ (-703)) 17 (|has| |#2| (-156))) (($ $ $) 18 (|has| |#2| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ $) 61) (($ $ (-751 |#1|)) 48) (($ $ |#1|) 52)) (-1772 (((-3 (-751 |#1|) "failed") $) NIL)) (-3189 (((-751 |#1|) $) NIL)) (-1212 (($ $) 32)) (-3621 (((-3 $ "failed") $) NIL)) (-4092 (((-107) $) NIL)) (-3768 (($ $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 |#1|) |#2|) 31)) (-2402 (($ $) 33)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 11)) (-1785 (((-751 |#1|) $) NIL)) (-2844 (((-751 |#1|) $) 34)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-2208 (($ $ $) 60) (($ $ (-751 |#1|)) 50) (($ $ |#1|) 54)) (-2854 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4152 (((-751 |#1|) $) 28)) (-1191 ((|#2| $) 30)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3688 (((-703) $) 36)) (-3819 (((-107) $) 40)) (-1619 ((|#2| $) NIL)) (-2256 (((-787) $) NIL) (($ (-751 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-517)) NIL)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-751 |#1|)) NIL)) (-1931 ((|#2| $ $) 63) ((|#2| $ (-751 |#1|)) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 12 T CONST)) (-2409 (($) 14 T CONST)) (-2332 (((-583 (-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1547 (((-107) $ $) 38)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 21)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 59) (($ |#2| (-751 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1166 |#1| |#2|) (-13 (-352 |#2| (-751 |#1|)) (-1172 |#1| |#2|)) (-779) (-961)) (T -1166)) +NIL +(-13 (-352 |#2| (-751 |#1|)) (-1172 |#1| |#2|)) +((-1867 ((|#3| |#3| (-703)) 23)) (-2624 ((|#3| |#3| (-703)) 28)) (-3650 ((|#3| |#3| |#3| (-703)) 29))) +(((-1167 |#1| |#2| |#3|) (-10 -7 (-15 -2624 (|#3| |#3| (-703))) (-15 -1867 (|#3| |#3| (-703))) (-15 -3650 (|#3| |#3| |#3| (-703)))) (-13 (-961) (-650 (-377 (-517)))) (-779) (-1172 |#2| |#1|)) (T -1167)) +((-3650 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) (-2624 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4))))) +(-10 -7 (-15 -2624 (|#3| |#3| (-703))) (-15 -1867 (|#3| |#3| (-703))) (-15 -3650 (|#3| |#3| |#3| (-703)))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3463 (((-583 |#1|) $) 40)) (-4038 (((-3 $ "failed") $ $) 19)) (-3116 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3092 (($) 17 T CONST)) (-3791 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-1772 (((-3 (-751 |#1|) "failed") $) 64)) (-3189 (((-751 |#1|) $) 63)) (-3621 (((-3 $ "failed") $) 34)) (-4092 (((-107) $) 45)) (-3768 (($ $) 44)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 50)) (-3419 (($ (-751 |#1|) |#2|) 51)) (-2402 (($ $) 49)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-1785 (((-751 |#1|) $) 61)) (-1893 (($ (-1 |#2| |#2|) $) 41)) (-2208 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3819 (((-107) $) 47)) (-1619 ((|#2| $) 46)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1931 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) +(((-1168 |#1| |#2|) (-1184) (-779) (-961)) (T -1168)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))) (-1931 (*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1168 *4 *2)) (-4 *4 (-779)) (-4 *2 (-961)))) (-1931 (*1 *2 *1 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (-2208 (*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-2208 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3791 (*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-3791 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3419 (*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1168 *4 *3)) (-4 *3 (-961)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-2402 (*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2256 (*1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3116 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)) (-4 *3 (-156)))) (-3116 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-4 *4 (-156)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-583 *3))))) +(-13 (-961) (-1165 |t#2|) (-952 (-751 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1785 ((-751 |t#1|) $)) (-15 -3208 ((-2 (|:| |k| (-751 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1931 (|t#2| $ (-751 |t#1|))) (-15 -1931 (|t#2| $ $)) (-15 -2208 ($ $ |t#1|)) (-15 -2208 ($ $ (-751 |t#1|))) (-15 -2208 ($ $ $)) (-15 -3791 ($ $ |t#1|)) (-15 -3791 ($ $ (-751 |t#1|))) (-15 -3791 ($ $ $)) (-15 -3419 ($ (-751 |t#1|) |t#2|)) (-15 -4031 ((-107) $)) (-15 -2402 ($ $)) (-15 -2256 ($ |t#1|)) (-15 -3819 ((-107) $)) (-15 -1619 (|t#2| $)) (-15 -4092 ((-107) $)) (-15 -3768 ($ $)) (IF (|has| |t#2| (-156)) (PROGN (-15 -3116 ($ $ $)) (-15 -3116 ($ $ (-703)))) |noBranch|) (-15 -1893 ($ (-1 |t#2| |t#2|) $)) (-15 -3463 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -4173)) (-6 -4173) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-952 (-751 |#1|)) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1165 |#2|) . T)) +((-2909 (((-107) $) 13)) (-1871 (((-107) $) 12)) (-4103 (($ $) 17) (($ $ (-703)) 18))) +(((-1169 |#1| |#2|) (-10 -8 (-15 -4103 (|#1| |#1| (-703))) (-15 -4103 (|#1| |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|))) (-1170 |#2|) (-333)) (T -1169)) +NIL +(-10 -8 (-15 -4103 (|#1| |#1| (-703))) (-15 -4103 (|#1| |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-2909 (((-107) $) 94)) (-3250 (((-703)) 90)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 101)) (-3189 ((|#1| $) 100)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-2378 (($ $ (-703)) 87 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) 71)) (-3972 (((-765 (-843)) $) 84 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3202 (((-107) $) 93)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-3327 (((-765 (-843))) 91)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-3 (-703) "failed") $ $) 85 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) 99)) (-3688 (((-765 (-843)) $) 92)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-1328 (((-3 $ "failed") $) 83 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-1871 (((-107) $) 95)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-4103 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64) (($ $ |#1|) 98)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) +(((-1170 |#1|) (-1184) (-333)) (T -1170)) +((-1871 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) (-3327 (*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) (-3250 (*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-703)))) (-4103 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-333)) (-4 *2 (-338)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-4 *3 (-338))))) +(-13 (-333) (-952 |t#1|) (-1160 |t#1|) (-10 -8 (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-372)) |noBranch|) (-15 -1871 ((-107) $)) (-15 -2909 ((-107) $)) (-15 -3202 ((-107) $)) (-15 -3688 ((-765 (-843)) $)) (-15 -3327 ((-765 (-843)))) (-15 -3250 ((-703))) (IF (|has| |t#1| (-338)) (PROGN (-6 (-372)) (-15 -4103 ($ $)) (-15 -4103 ($ $ (-703)))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T) ((-1160 |#1|) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 84)) (-3883 (($ $ (-703)) 87)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ $) NIL (|has| |#2| (-156))) (($ $ (-703)) NIL (|has| |#2| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1772 (((-3 (-751 |#1|) "failed") $) NIL) (((-3 (-815 |#1|) "failed") $) NIL)) (-3189 (((-751 |#1|) $) NIL) (((-815 |#1|) $) NIL)) (-1212 (($ $) 86)) (-3621 (((-3 $ "failed") $) NIL)) (-4092 (((-107) $) 75)) (-3768 (($ $) 79)) (-3485 (($ $ $ (-703)) 88)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 |#1|) |#2|) NIL) (($ (-815 |#1|) |#2|) 25)) (-2402 (($ $) 101)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1785 (((-751 |#1|) $) NIL)) (-2844 (((-751 |#1|) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-2208 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1867 (($ $ (-703)) 95 (|has| |#2| (-650 (-377 (-517)))))) (-2854 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4152 (((-815 |#1|) $) 69)) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2624 (($ $ (-703)) 92 (|has| |#2| (-650 (-377 (-517)))))) (-3688 (((-703) $) 85)) (-3819 (((-107) $) 70)) (-1619 ((|#2| $) 74)) (-2256 (((-787) $) 56) (($ (-517)) NIL) (($ |#2|) 50) (($ (-751 |#1|)) NIL) (($ |#1|) 58) (($ (-815 |#1|)) NIL) (($ (-601 |#1| |#2|)) 42) (((-1166 |#1| |#2|) $) 63) (((-1175 |#1| |#2|) $) 68)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-815 |#1|)) NIL)) (-1931 ((|#2| $ (-751 |#1|)) NIL) ((|#2| $ $) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 24 T CONST)) (-2332 (((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2908 (((-3 (-601 |#1| |#2|) "failed") $) 100)) (-1547 (((-107) $ $) 64)) (-1654 (($ $) 94) (($ $ $) 93)) (-1642 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-815 |#1|)) NIL))) +(((-1171 |#1| |#2|) (-13 (-1172 |#1| |#2|) (-352 |#2| (-815 |#1|)) (-10 -8 (-15 -2256 ($ (-601 |#1| |#2|))) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1175 |#1| |#2|) $)) (-15 -2908 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3485 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -2624 ($ $ (-703))) (-15 -1867 ($ $ (-703)))) |noBranch|))) (-779) (-156)) (T -1171)) +((-2256 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1171 *3 *4)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2908 (*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3485 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2624 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))) (-1867 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156))))) +(-13 (-1172 |#1| |#2|) (-352 |#2| (-815 |#1|)) (-10 -8 (-15 -2256 ($ (-601 |#1| |#2|))) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1175 |#1| |#2|) $)) (-15 -2908 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3485 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -2624 ($ $ (-703))) (-15 -1867 ($ $ (-703)))) |noBranch|))) +((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3463 (((-583 |#1|) $) 40)) (-3883 (($ $ (-703)) 73)) (-4038 (((-3 $ "failed") $ $) 19)) (-3116 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3092 (($) 17 T CONST)) (-3791 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-1772 (((-3 (-751 |#1|) "failed") $) 64)) (-3189 (((-751 |#1|) $) 63)) (-3621 (((-3 $ "failed") $) 34)) (-4092 (((-107) $) 45)) (-3768 (($ $) 44)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 50)) (-3419 (($ (-751 |#1|) |#2|) 51)) (-2402 (($ $) 49)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-1785 (((-751 |#1|) $) 61)) (-2844 (((-751 |#1|) $) 75)) (-1893 (($ (-1 |#2| |#2|) $) 41)) (-2208 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 (((-703) $) 74)) (-3819 (((-107) $) 47)) (-1619 ((|#2| $) 46)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1931 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) +(((-1172 |#1| |#2|) (-1184) (-779) (-961)) (T -1172)) +((-2844 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-703)))) (-3883 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961))))) +(-13 (-1168 |t#1| |t#2|) (-10 -8 (-15 -2844 ((-751 |t#1|) $)) (-15 -3688 ((-703) $)) (-15 -3883 ($ $ (-703))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-952 (-751 |#1|)) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1165 |#2|) . T) ((-1168 |#1| |#2|) . T)) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 (-1073)) $) NIL)) (-2657 (($ (-1166 (-1073) |#1|)) NIL)) (-3883 (($ $ (-703)) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ $) NIL (|has| |#1| (-156))) (($ $ (-703)) NIL (|has| |#1| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ (-1073)) NIL) (($ $ (-751 (-1073))) NIL) (($ $ $) NIL)) (-1772 (((-3 (-751 (-1073)) "failed") $) NIL)) (-3189 (((-751 (-1073)) $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-4092 (((-107) $) NIL)) (-3768 (($ $) NIL)) (-3848 (((-107) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 (-1073)) |#1|) NIL)) (-2402 (($ $) NIL)) (-3208 (((-2 (|:| |k| (-751 (-1073))) (|:| |c| |#1|)) $) NIL)) (-1785 (((-751 (-1073)) $) NIL)) (-2844 (((-751 (-1073)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2208 (($ $ (-1073)) NIL) (($ $ (-751 (-1073))) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3502 (((-1166 (-1073) |#1|) $) NIL)) (-3688 (((-703) $) NIL)) (-3819 (((-107) $) NIL)) (-1619 ((|#1| $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-751 (-1073))) NIL) (($ (-1073)) NIL)) (-1931 ((|#1| $ (-751 (-1073))) NIL) ((|#1| $ $) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-3389 (((-583 (-2 (|:| |k| (-1073)) (|:| |c| $))) $) NIL)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1073) $) NIL))) +(((-1173 |#1|) (-13 (-1172 (-1073) |#1|) (-10 -8 (-15 -3502 ((-1166 (-1073) |#1|) $)) (-15 -2657 ($ (-1166 (-1073) |#1|))) (-15 -3389 ((-583 (-2 (|:| |k| (-1073)) (|:| |c| $))) $)))) (-961)) (T -1173)) +((-3502 (*1 *2 *1) (-12 (-5 *2 (-1166 (-1073) *3)) (-5 *1 (-1173 *3)) (-4 *3 (-961)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-1166 (-1073) *3)) (-4 *3 (-961)) (-5 *1 (-1173 *3)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1073)) (|:| |c| (-1173 *3))))) (-5 *1 (-1173 *3)) (-4 *3 (-961))))) +(-13 (-1172 (-1073) |#1|) (-10 -8 (-15 -3502 ((-1166 (-1073) |#1|) $)) (-15 -2657 ($ (-1166 (-1073) |#1|))) (-15 -3389 ((-583 (-2 (|:| |k| (-1073)) (|:| |c| $))) $)))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL)) (-3189 ((|#2| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) 34)) (-4092 (((-107) $) 29)) (-3768 (($ $) 30)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ |#2| |#1|) NIL)) (-1785 ((|#2| $) 19)) (-2844 ((|#2| $) 16)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2854 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4152 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3819 (((-107) $) 27)) (-1619 ((|#1| $) 28)) (-2256 (((-787) $) 53) (($ (-517)) 38) (($ |#1|) 33) (($ |#2|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ |#2|) NIL)) (-1931 ((|#1| $ |#2|) 24)) (-2961 (((-703)) 14)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 25 T CONST)) (-2409 (($) 11 T CONST)) (-2332 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1547 (((-107) $ $) 26)) (-1667 (($ $ |#1|) 55 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 42)) (** (($ $ (-843)) NIL) (($ $ (-703)) 44)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 43) (($ |#1| $) 39) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2296 (((-703) $) 15))) +(((-1174 |#1| |#2|) (-13 (-961) (-1165 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2296 ((-703) $)) (-15 -2256 ($ |#2|)) (-15 -2844 (|#2| $)) (-15 -1785 (|#2| $)) (-15 -1212 ($ $)) (-15 -1931 (|#1| $ |#2|)) (-15 -3819 ((-107) $)) (-15 -1619 (|#1| $)) (-15 -4092 ((-107) $)) (-15 -3768 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1667 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4173)) (-6 -4173) |noBranch|) (IF (|has| |#1| (-6 -4177)) (-6 -4177) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) (-961) (-775)) (T -1174)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1174 *3 *4)) (-4 *4 (-775)))) (-2256 (*1 *1 *2) (-12 (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)) (-4 *2 (-775)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-2844 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)))) (-1785 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)))) (-1931 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-1619 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1667 (*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-775))))) +(-13 (-961) (-1165 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2296 ((-703) $)) (-15 -2256 ($ |#2|)) (-15 -2844 (|#2| $)) (-15 -1785 (|#2| $)) (-15 -1212 ($ $)) (-15 -1931 (|#1| $ |#2|)) (-15 -3819 ((-107) $)) (-15 -1619 (|#1| $)) (-15 -4092 ((-107) $)) (-15 -3768 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1667 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4173)) (-6 -4173) |noBranch|) (IF (|has| |#1| (-6 -4177)) (-6 -4177) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 119)) (-2657 (($ (-1166 |#1| |#2|)) 43)) (-3883 (($ $ (-703)) 31)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ $) 47 (|has| |#2| (-156))) (($ $ (-703)) 45 (|has| |#2| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ |#1|) 101) (($ $ (-751 |#1|)) 102) (($ $ $) 25)) (-1772 (((-3 (-751 |#1|) "failed") $) NIL)) (-3189 (((-751 |#1|) $) NIL)) (-3621 (((-3 $ "failed") $) 109)) (-4092 (((-107) $) 104)) (-3768 (($ $) 105)) (-3848 (((-107) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 |#1|) |#2|) 19)) (-2402 (($ $) NIL)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1785 (((-751 |#1|) $) 110)) (-2844 (((-751 |#1|) $) 113)) (-1893 (($ (-1 |#2| |#2|) $) 118)) (-2208 (($ $ |#1|) 99) (($ $ (-751 |#1|)) 100) (($ $ $) 55)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3502 (((-1166 |#1| |#2|) $) 83)) (-3688 (((-703) $) 116)) (-3819 (((-107) $) 69)) (-1619 ((|#2| $) 27)) (-2256 (((-787) $) 62) (($ (-517)) 76) (($ |#2|) 73) (($ (-751 |#1|)) 17) (($ |#1|) 72)) (-1931 ((|#2| $ (-751 |#1|)) 103) ((|#2| $ $) 26)) (-2961 (((-703)) 107)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 14 T CONST)) (-3389 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 52)) (-2409 (($) 28 T CONST)) (-1547 (((-107) $ $) 13)) (-1654 (($ $) 87) (($ $ $) 90)) (-1642 (($ $ $) 54)) (** (($ $ (-843)) NIL) (($ $ (-703)) 48)) (* (($ (-843) $) NIL) (($ (-703) $) 46) (($ (-517) $) 93) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 81))) +(((-1175 |#1| |#2|) (-13 (-1172 |#1| |#2|) (-10 -8 (-15 -3502 ((-1166 |#1| |#2|) $)) (-15 -2657 ($ (-1166 |#1| |#2|))) (-15 -3389 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-779) (-961)) (T -1175)) +((-3502 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *1 (-1175 *3 *4)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1175 *3 *4))))) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961))))) +(-13 (-1172 |#1| |#2|) (-10 -8 (-15 -3502 ((-1166 |#1| |#2|) $)) (-15 -2657 ($ (-1166 |#1| |#2|))) (-15 -3389 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-1972 (((-583 (-1054 |#1|)) (-1 (-583 (-1054 |#1|)) (-583 (-1054 |#1|))) (-517)) 15) (((-1054 |#1|) (-1 (-1054 |#1|) (-1054 |#1|))) 11))) +(((-1176 |#1|) (-10 -7 (-15 -1972 ((-1054 |#1|) (-1 (-1054 |#1|) (-1054 |#1|)))) (-15 -1972 ((-583 (-1054 |#1|)) (-1 (-583 (-1054 |#1|)) (-583 (-1054 |#1|))) (-517)))) (-1108)) (T -1176)) +((-1972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1054 *5)) (-583 (-1054 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1054 *5))) (-5 *1 (-1176 *5)) (-4 *5 (-1108)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-1 (-1054 *4) (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1108))))) +(-10 -7 (-15 -1972 ((-1054 |#1|) (-1 (-1054 |#1|) (-1054 |#1|)))) (-15 -1972 ((-583 (-1054 |#1|)) (-1 (-583 (-1054 |#1|)) (-583 (-1054 |#1|))) (-517)))) +((-2110 (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|))) 145) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107)) 144) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)) 143) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107)) 142) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-958 |#1| |#2|)) 127)) (-3048 (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|))) 70) (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107)) 69) (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107)) 68)) (-2759 (((-583 (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|)) 59)) (-2047 (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|))) 112) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107)) 111) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107)) 110) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107)) 109) (((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|)) 104)) (-2420 (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|))) 117) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107)) 116) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107)) 115) (((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|)) 114)) (-3645 (((-583 (-712 |#1| (-789 |#3|))) (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) 96) (((-1069 (-939 (-377 |#1|))) (-1069 |#1|)) 87) (((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|))) 94) (((-874 (-939 (-377 |#1|))) (-874 |#1|)) 92) (((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|))) 32))) +(((-1177 |#1| |#2| |#3|) (-10 -7 (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-958 |#1| |#2|))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2759 ((-583 (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|))) (-15 -3645 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-874 |#1|))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3645 ((-1069 (-939 (-377 |#1|))) (-1069 |#1|))) (-15 -3645 ((-583 (-712 |#1| (-789 |#3|))) (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))))) (-13 (-777) (-278) (-134) (-937)) (-583 (-1073)) (-583 (-1073))) (T -1177)) +((-3645 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-1069 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-2047 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2047 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2047 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2110 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-2110 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2110 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2110 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-3048 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-3048 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073)))))) +(-10 -7 (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-958 |#1| |#2|))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2759 ((-583 (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|))) (-15 -3645 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-874 |#1|))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3645 ((-1069 (-939 (-377 |#1|))) (-1069 |#1|))) (-15 -3645 ((-583 (-712 |#1| (-789 |#3|))) (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))))) +((-1915 (((-3 (-1153 (-377 (-517))) "failed") (-1153 |#1|) |#1|) 17)) (-1387 (((-107) (-1153 |#1|)) 11)) (-2978 (((-3 (-1153 (-517)) "failed") (-1153 |#1|)) 14))) +(((-1178 |#1|) (-10 -7 (-15 -1387 ((-107) (-1153 |#1|))) (-15 -2978 ((-3 (-1153 (-517)) "failed") (-1153 |#1|))) (-15 -1915 ((-3 (-1153 (-377 (-517))) "failed") (-1153 |#1|) |#1|))) (-579 (-517))) (T -1178)) +((-1915 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-377 (-517)))) (-5 *1 (-1178 *4)))) (-2978 (*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-517))) (-5 *1 (-1178 *4)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1178 *4))))) +(-10 -7 (-15 -1387 ((-107) (-1153 |#1|))) (-15 -2978 ((-3 (-1153 (-517)) "failed") (-1153 |#1|))) (-15 -1915 ((-3 (-1153 (-377 (-517))) "failed") (-1153 |#1|) |#1|))) +((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 11)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703)) 8)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) 43)) (-3209 (($) 36)) (-3848 (((-107) $) NIL)) (-1319 (((-3 $ "failed") $) 29)) (-1549 (((-843) $) 15)) (-3985 (((-1056) $) NIL)) (-2836 (($) 25 T CONST)) (-3448 (($ (-843)) 37)) (-3206 (((-1021) $) NIL)) (-3645 (((-517) $) 13)) (-2256 (((-787) $) 22) (($ (-517)) 19)) (-2961 (((-703)) 9)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 23 T CONST)) (-2409 (($) 24 T CONST)) (-1547 (((-107) $ $) 27)) (-1654 (($ $) 38) (($ $ $) 35)) (-1642 (($ $ $) 26)) (** (($ $ (-843)) NIL) (($ $ (-703)) 40)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 32) (($ $ $) 31))) +(((-1179 |#1|) (-13 (-156) (-338) (-558 (-517)) (-1049)) (-843)) (T -1179)) +NIL +(-13 (-156) (-338) (-558 (-517)) (-1049)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-1184 3124859 3124864 3124869 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3124844 3124849 3124854 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3124829 3124834 3124839 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3124814 3124819 3124824 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3124799 3124804 3124809 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1179 3123929 3124674 3124751 "ZMOD" 3124756 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1178 3123039 3123203 3123412 "ZLINDEP" 3123761 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1177 3112443 3114188 3116140 "ZDSOLVE" 3121188 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1176 3111689 3111830 3112019 "YSTREAM" 3112289 NIL YSTREAM (NIL T) -7 NIL NIL) (-1175 3109458 3110994 3111197 "XRPOLY" 3111532 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1174 3105928 3107257 3107835 "XPR" 3108926 NIL XPR (NIL T T) -8 NIL NIL) (-1173 3103642 3105263 3105466 "XPOLY" 3105759 NIL XPOLY (NIL T) -8 NIL NIL) (-1172 3101455 3102833 3102888 "XPOLYC" 3103173 NIL XPOLYC (NIL T T) -9 NIL 3103286) (-1171 3097829 3099974 3100361 "XPBWPOLY" 3101114 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1170 3093712 3096025 3096068 "XF" 3096689 NIL XF (NIL T) -9 NIL 3097085) (-1169 3093333 3093421 3093590 "XF-" 3093595 NIL XF- (NIL T T) -8 NIL NIL) (-1168 3088714 3090013 3090068 "XFALG" 3092216 NIL XFALG (NIL T T) -9 NIL 3093001) (-1167 3087851 3087955 3088159 "XEXPPKG" 3088606 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1166 3085949 3087702 3087797 "XDPOLY" 3087802 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1165 3084828 3085438 3085481 "XALG" 3085543 NIL XALG (NIL T) -9 NIL 3085661) (-1164 3078304 3082812 3083305 "WUTSET" 3084420 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1163 3076120 3076927 3077276 "WP" 3078088 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1162 3075006 3075204 3075499 "WFFINTBS" 3075917 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1161 3072910 3073337 3073799 "WEIER" 3074578 NIL WEIER (NIL T) -7 NIL NIL) (-1160 3072058 3072482 3072525 "VSPACE" 3072661 NIL VSPACE (NIL T) -9 NIL 3072735) (-1159 3071896 3071923 3072014 "VSPACE-" 3072019 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1158 3071642 3071685 3071756 "VOID" 3071847 T VOID (NIL) -8 NIL NIL) (-1157 3069778 3070137 3070543 "VIEW" 3071258 T VIEW (NIL) -7 NIL NIL) (-1156 3066203 3066841 3067578 "VIEWDEF" 3069063 T VIEWDEF (NIL) -7 NIL NIL) (-1155 3055542 3057751 3059924 "VIEW3D" 3064052 T VIEW3D (NIL) -8 NIL NIL) (-1154 3047824 3049453 3051032 "VIEW2D" 3053985 T VIEW2D (NIL) -8 NIL NIL) (-1153 3043233 3047594 3047686 "VECTOR" 3047767 NIL VECTOR (NIL T) -8 NIL NIL) (-1152 3041810 3042069 3042387 "VECTOR2" 3042963 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1151 3035359 3039605 3039649 "VECTCAT" 3040637 NIL VECTCAT (NIL T) -9 NIL 3041214) (-1150 3034373 3034627 3035017 "VECTCAT-" 3035022 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1149 3033854 3034024 3034144 "VARIABLE" 3034288 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1148 3032691 3032845 3033105 "UTSODETL" 3033681 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1147 3030131 3030591 3031115 "UTSODE" 3032232 NIL UTSODE (NIL T T) -7 NIL NIL) (-1146 3021981 3027773 3028260 "UTS" 3029701 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1145 3013286 3018648 3018691 "UTSCAT" 3019792 NIL UTSCAT (NIL T) -9 NIL 3020542) (-1144 3010642 3011357 3012345 "UTSCAT-" 3012350 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1143 3010273 3010316 3010447 "UTS2" 3010593 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1142 3004549 3007114 3007158 "URAGG" 3009228 NIL URAGG (NIL T) -9 NIL 3009949) (-1141 3001488 3002351 3003474 "URAGG-" 3003479 NIL URAGG- (NIL T T) -8 NIL NIL) (-1140 2997174 3000105 3000576 "UPXSSING" 3001152 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1139 2989070 2996297 2996576 "UPXS" 2996952 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1138 2982102 2988975 2989046 "UPXSCONS" 2989051 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1137 2972330 2979157 2979219 "UPXSCCA" 2979868 NIL UPXSCCA (NIL T T) -9 NIL 2980109) (-1136 2971969 2972054 2972227 "UPXSCCA-" 2972232 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1135 2962126 2968726 2968769 "UPXSCAT" 2969412 NIL UPXSCAT (NIL T) -9 NIL 2970013) (-1134 2961560 2961639 2961816 "UPXS2" 2962041 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1133 2960214 2960467 2960818 "UPSQFREE" 2961303 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1132 2954068 2957120 2957175 "UPSCAT" 2958324 NIL UPSCAT (NIL T T) -9 NIL 2959091) (-1131 2953282 2953486 2953809 "UPSCAT-" 2953814 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1130 2939361 2947358 2947401 "UPOLYC" 2949479 NIL UPOLYC (NIL T) -9 NIL 2950693) (-1129 2930754 2933158 2936283 "UPOLYC-" 2936288 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1128 2930385 2930428 2930559 "UPOLYC2" 2930705 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1127 2921844 2929954 2930091 "UP" 2930295 NIL UP (NIL NIL T) -8 NIL NIL) (-1126 2921187 2921294 2921457 "UPMP" 2921733 NIL UPMP (NIL T T) -7 NIL NIL) (-1125 2920740 2920821 2920960 "UPDIVP" 2921100 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1124 2919308 2919557 2919873 "UPDECOMP" 2920489 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1123 2918543 2918655 2918840 "UPCDEN" 2919192 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1122 2918066 2918135 2918282 "UP2" 2918468 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1121 2916595 2917281 2917553 "UNISEG" 2917829 NIL UNISEG (NIL T) -8 NIL NIL) (-1120 2915812 2915939 2916143 "UNISEG2" 2916439 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1119 2914872 2915052 2915278 "UNIFACT" 2915628 NIL UNIFACT (NIL T) -7 NIL NIL) (-1118 2898773 2914055 2914304 "ULS" 2914680 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1117 2886741 2898678 2898749 "ULSCONS" 2898754 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1116 2869445 2881455 2881517 "ULSCCAT" 2882229 NIL ULSCCAT (NIL T T) -9 NIL 2882524) (-1115 2868496 2868741 2869128 "ULSCCAT-" 2869133 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1114 2858447 2864961 2865004 "ULSCAT" 2865860 NIL ULSCAT (NIL T) -9 NIL 2866582) (-1113 2857881 2857960 2858137 "ULS2" 2858362 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1112 2856278 2857245 2857276 "UFD" 2857488 T UFD (NIL) -9 NIL 2857602) (-1111 2856072 2856118 2856213 "UFD-" 2856218 NIL UFD- (NIL T) -8 NIL NIL) (-1110 2855154 2855337 2855553 "UDVO" 2855878 T UDVO (NIL) -7 NIL NIL) (-1109 2852972 2853381 2853851 "UDPO" 2854719 NIL UDPO (NIL T) -7 NIL NIL) (-1108 2852904 2852909 2852940 "TYPE" 2852945 T TYPE (NIL) -9 NIL NIL) (-1107 2851875 2852077 2852317 "TWOFACT" 2852698 NIL TWOFACT (NIL T) -7 NIL NIL) (-1106 2850817 2851154 2851415 "TUPLE" 2851649 NIL TUPLE (NIL T) -8 NIL NIL) (-1105 2848508 2849027 2849566 "TUBETOOL" 2850300 T TUBETOOL (NIL) -7 NIL NIL) (-1104 2847357 2847562 2847803 "TUBE" 2848301 NIL TUBE (NIL T) -8 NIL NIL) (-1103 2842083 2846337 2846618 "TS" 2847110 NIL TS (NIL T) -8 NIL NIL) (-1102 2830787 2834879 2834976 "TSETCAT" 2840210 NIL TSETCAT (NIL T T T T) -9 NIL 2841740) (-1101 2825523 2827120 2829010 "TSETCAT-" 2829015 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1100 2819794 2820640 2821578 "TRMANIP" 2824663 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1099 2819235 2819298 2819461 "TRIMAT" 2819726 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1098 2817041 2817278 2817641 "TRIGMNIP" 2818984 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1097 2816560 2816673 2816704 "TRIGCAT" 2816917 T TRIGCAT (NIL) -9 NIL NIL) (-1096 2816229 2816308 2816449 "TRIGCAT-" 2816454 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1095 2813134 2815089 2815369 "TREE" 2815984 NIL TREE (NIL T) -8 NIL NIL) (-1094 2812407 2812935 2812966 "TRANFUN" 2813001 T TRANFUN (NIL) -9 NIL 2813067) (-1093 2811686 2811877 2812157 "TRANFUN-" 2812162 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1092 2811490 2811522 2811583 "TOPSP" 2811647 T TOPSP (NIL) -7 NIL NIL) (-1091 2810842 2810957 2811110 "TOOLSIGN" 2811371 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1090 2809503 2810019 2810258 "TEXTFILE" 2810625 T TEXTFILE (NIL) -8 NIL NIL) (-1089 2807368 2807882 2808320 "TEX" 2809087 T TEX (NIL) -8 NIL NIL) (-1088 2807149 2807180 2807252 "TEX1" 2807331 NIL TEX1 (NIL T) -7 NIL NIL) (-1087 2806797 2806860 2806950 "TEMUTL" 2807081 T TEMUTL (NIL) -7 NIL NIL) (-1086 2804951 2805231 2805556 "TBCMPPK" 2806520 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1085 2796609 2802869 2802926 "TBAGG" 2803326 NIL TBAGG (NIL T T) -9 NIL 2803537) (-1084 2791679 2793167 2794921 "TBAGG-" 2794926 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1083 2791063 2791170 2791315 "TANEXP" 2791568 NIL TANEXP (NIL T) -7 NIL NIL) (-1082 2784576 2790920 2791013 "TABLE" 2791018 NIL TABLE (NIL T T) -8 NIL NIL) (-1081 2783989 2784087 2784225 "TABLEAU" 2784473 NIL TABLEAU (NIL T) -8 NIL NIL) (-1080 2778597 2779817 2781065 "TABLBUMP" 2782775 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1079 2775060 2775755 2776538 "SYSSOLP" 2777848 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1078 2773614 2773869 2774181 "SYNTAX" 2774770 T SYNTAX (NIL) -8 NIL NIL) (-1077 2770748 2771356 2771994 "SYMTAB" 2772998 T SYMTAB (NIL) -8 NIL NIL) (-1076 2765997 2766899 2767882 "SYMS" 2769787 T SYMS (NIL) -8 NIL NIL) (-1075 2763236 2765463 2765689 "SYMPOLY" 2765805 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1074 2762756 2762831 2762953 "SYMFUNC" 2763148 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1073 2758734 2759993 2760815 "SYMBOL" 2761956 T SYMBOL (NIL) -8 NIL NIL) (-1072 2752273 2753962 2755682 "SWITCH" 2757036 T SWITCH (NIL) -8 NIL NIL) (-1071 2745508 2751102 2751403 "SUTS" 2752029 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1070 2737403 2744631 2744910 "SUPXS" 2745286 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1069 2728936 2737024 2737149 "SUP" 2737312 NIL SUP (NIL T) -8 NIL NIL) (-1068 2728095 2728222 2728439 "SUPFRACF" 2728804 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1067 2727720 2727779 2727890 "SUP2" 2728030 NIL SUP2 (NIL T T) -7 NIL NIL) (-1066 2726146 2726418 2726778 "SUMRF" 2727421 NIL SUMRF (NIL T) -7 NIL NIL) (-1065 2725467 2725532 2725729 "SUMFS" 2726068 NIL SUMFS (NIL T T) -7 NIL NIL) (-1064 2709408 2724650 2724899 "SULS" 2725275 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1063 2708730 2708933 2709073 "SUCH" 2709316 NIL SUCH (NIL T T) -8 NIL NIL) (-1062 2702657 2703669 2704627 "SUBSPACE" 2707818 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1061 2702089 2702179 2702342 "SUBRESP" 2702546 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1060 2695458 2696754 2698065 "STTF" 2700825 NIL STTF (NIL T) -7 NIL NIL) (-1059 2689631 2690751 2691898 "STTFNC" 2694358 NIL STTFNC (NIL T) -7 NIL NIL) (-1058 2680986 2682853 2684644 "STTAYLOR" 2687874 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1057 2674242 2680850 2680933 "STRTBL" 2680938 NIL STRTBL (NIL T) -8 NIL NIL) (-1056 2669633 2674197 2674228 "STRING" 2674233 T STRING (NIL) -8 NIL NIL) (-1055 2664491 2668976 2669007 "STRICAT" 2669066 T STRICAT (NIL) -9 NIL 2669128) (-1054 2657216 2662018 2662636 "STREAM" 2663908 NIL STREAM (NIL T) -8 NIL NIL) (-1053 2656726 2656803 2656947 "STREAM3" 2657133 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1052 2655708 2655891 2656126 "STREAM2" 2656539 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1051 2655396 2655448 2655541 "STREAM1" 2655650 NIL STREAM1 (NIL T) -7 NIL NIL) (-1050 2654412 2654593 2654824 "STINPROD" 2655212 NIL STINPROD (NIL T) -7 NIL NIL) (-1049 2653990 2654174 2654205 "STEP" 2654285 T STEP (NIL) -9 NIL 2654363) (-1048 2647545 2653889 2653966 "STBL" 2653971 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1047 2642717 2646764 2646808 "STAGG" 2646961 NIL STAGG (NIL T) -9 NIL 2647050) (-1046 2640419 2641021 2641893 "STAGG-" 2641898 NIL STAGG- (NIL T T) -8 NIL NIL) (-1045 2638617 2640189 2640281 "STACK" 2640362 NIL STACK (NIL T) -8 NIL NIL) (-1044 2631348 2636764 2637219 "SREGSET" 2638247 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1043 2623788 2625156 2626668 "SRDCMPK" 2629954 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1042 2616731 2621198 2621229 "SRAGG" 2622532 T SRAGG (NIL) -9 NIL 2623140) (-1041 2615748 2616003 2616382 "SRAGG-" 2616387 NIL SRAGG- (NIL T) -8 NIL NIL) (-1040 2610205 2614675 2615098 "SQMATRIX" 2615371 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1039 2603963 2606925 2607651 "SPLTREE" 2609551 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1038 2599953 2600619 2601265 "SPLNODE" 2603389 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1037 2598999 2599232 2599263 "SPFCAT" 2599707 T SPFCAT (NIL) -9 NIL NIL) (-1036 2597736 2597946 2598210 "SPECOUT" 2598757 T SPECOUT (NIL) -7 NIL NIL) (-1035 2589758 2591505 2591548 "SPACEC" 2595871 NIL SPACEC (NIL T) -9 NIL 2597687) (-1034 2587930 2589691 2589739 "SPACE3" 2589744 NIL SPACE3 (NIL T) -8 NIL NIL) (-1033 2586684 2586855 2587145 "SORTPAK" 2587736 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1032 2584740 2585043 2585461 "SOLVETRA" 2586348 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1031 2583751 2583973 2584247 "SOLVESER" 2584513 NIL SOLVESER (NIL T) -7 NIL NIL) (-1030 2578971 2579852 2580854 "SOLVERAD" 2582803 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1029 2574786 2575395 2576124 "SOLVEFOR" 2578338 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1028 2569085 2574137 2574234 "SNTSCAT" 2574239 NIL SNTSCAT (NIL T T T T) -9 NIL 2574309) (-1027 2563192 2567418 2567807 "SMTS" 2568776 NIL SMTS (NIL T T T) -8 NIL NIL) (-1026 2557602 2563081 2563157 "SMP" 2563162 NIL SMP (NIL T T) -8 NIL NIL) (-1025 2555761 2556062 2556460 "SMITH" 2557299 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1024 2548728 2552924 2553027 "SMATCAT" 2554367 NIL SMATCAT (NIL NIL T T T) -9 NIL 2554913) (-1023 2545669 2546492 2547669 "SMATCAT-" 2547674 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1022 2543388 2544905 2544949 "SKAGG" 2545210 NIL SKAGG (NIL T) -9 NIL 2545345) (-1021 2539446 2542492 2542770 "SINT" 2543132 T SINT (NIL) -8 NIL NIL) (-1020 2539218 2539256 2539322 "SIMPAN" 2539402 T SIMPAN (NIL) -7 NIL NIL) (-1019 2538056 2538277 2538552 "SIGNRF" 2538977 NIL SIGNRF (NIL T) -7 NIL NIL) (-1018 2536865 2537016 2537306 "SIGNEF" 2537885 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1017 2534557 2535011 2535516 "SHP" 2536407 NIL SHP (NIL T NIL) -7 NIL NIL) (-1016 2528416 2534458 2534534 "SHDP" 2534539 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1015 2527905 2528097 2528128 "SGROUP" 2528280 T SGROUP (NIL) -9 NIL 2528367) (-1014 2527675 2527727 2527831 "SGROUP-" 2527836 NIL SGROUP- (NIL T) -8 NIL NIL) (-1013 2524511 2525208 2525931 "SGCF" 2526974 T SGCF (NIL) -7 NIL NIL) (-1012 2518909 2523961 2524058 "SFRTCAT" 2524063 NIL SFRTCAT (NIL T T T T) -9 NIL 2524101) (-1011 2512369 2513384 2514518 "SFRGCD" 2517892 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1010 2505535 2506606 2507790 "SFQCMPK" 2511302 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1009 2505157 2505246 2505356 "SFORT" 2505476 NIL SFORT (NIL T T) -8 NIL NIL) (-1008 2504302 2504997 2505118 "SEXOF" 2505123 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1007 2503436 2504183 2504251 "SEX" 2504256 T SEX (NIL) -8 NIL NIL) (-1006 2498212 2498901 2498997 "SEXCAT" 2502768 NIL SEXCAT (NIL T T T T T) -9 NIL 2503387) (-1005 2495392 2498146 2498194 "SET" 2498199 NIL SET (NIL T) -8 NIL NIL) (-1004 2493643 2494105 2494410 "SETMN" 2495133 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1003 2493250 2493376 2493407 "SETCAT" 2493524 T SETCAT (NIL) -9 NIL 2493608) (-1002 2493030 2493082 2493181 "SETCAT-" 2493186 NIL SETCAT- (NIL T) -8 NIL NIL) (-1001 2489417 2491491 2491535 "SETAGG" 2492405 NIL SETAGG (NIL T) -9 NIL 2492745) (-1000 2488875 2488991 2489228 "SETAGG-" 2489233 NIL SETAGG- (NIL T T) -8 NIL NIL) (-999 2488085 2488378 2488438 "SEGXCAT" 2488721 NIL SEGXCAT (NIL T T) -9 NIL 2488840) (-998 2487151 2487761 2487937 "SEG" 2487942 NIL SEG (NIL T) -8 NIL NIL) (-997 2486068 2486281 2486323 "SEGCAT" 2486896 NIL SEGCAT (NIL T) -9 NIL 2487134) (-996 2485132 2485460 2485655 "SEGBIND" 2485906 NIL SEGBIND (NIL T) -8 NIL NIL) (-995 2484764 2484821 2484930 "SEGBIND2" 2485069 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-994 2484001 2484124 2484322 "SEG2" 2484612 NIL SEG2 (NIL T T) -7 NIL NIL) (-993 2483440 2483938 2483983 "SDVAR" 2483988 NIL SDVAR (NIL T) -8 NIL NIL) (-992 2475746 2483219 2483343 "SDPOL" 2483348 NIL SDPOL (NIL T) -8 NIL NIL) (-991 2474345 2474611 2474928 "SCPKG" 2475461 NIL SCPKG (NIL T) -7 NIL NIL) (-990 2473572 2473705 2473882 "SCACHE" 2474200 NIL SCACHE (NIL T) -7 NIL NIL) (-989 2473015 2473336 2473419 "SAOS" 2473509 T SAOS (NIL) -8 NIL NIL) (-988 2472583 2472618 2472789 "SAERFFC" 2472974 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-987 2466479 2472482 2472560 "SAE" 2472565 NIL SAE (NIL T T NIL) -8 NIL NIL) (-986 2466075 2466110 2466267 "SAEFACT" 2466438 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-985 2464401 2464715 2465114 "RURPK" 2465741 NIL RURPK (NIL T NIL) -7 NIL NIL) (-984 2463054 2463331 2463638 "RULESET" 2464237 NIL RULESET (NIL T T T) -8 NIL NIL) (-983 2460262 2460765 2461226 "RULE" 2462736 NIL RULE (NIL T T T) -8 NIL NIL) (-982 2459904 2460059 2460140 "RULECOLD" 2460214 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-981 2454796 2455590 2456506 "RSETGCD" 2459103 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-980 2444110 2449162 2449257 "RSETCAT" 2453322 NIL RSETCAT (NIL T T T T) -9 NIL 2454419) (-979 2442041 2442580 2443400 "RSETCAT-" 2443405 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-978 2434471 2435846 2437362 "RSDCMPK" 2440640 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-977 2432488 2432929 2433002 "RRCC" 2434078 NIL RRCC (NIL T T) -9 NIL 2434422) (-976 2431842 2432016 2432292 "RRCC-" 2432297 NIL RRCC- (NIL T T T) -8 NIL NIL) (-975 2406172 2415797 2415862 "RPOLCAT" 2426364 NIL RPOLCAT (NIL T T T) -9 NIL 2429511) (-974 2397676 2400014 2403132 "RPOLCAT-" 2403137 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-973 2388754 2395906 2396386 "ROUTINE" 2397216 T ROUTINE (NIL) -8 NIL NIL) (-972 2385459 2388310 2388457 "ROMAN" 2388627 T ROMAN (NIL) -8 NIL NIL) (-971 2383745 2384330 2384587 "ROIRC" 2385265 NIL ROIRC (NIL T T) -8 NIL NIL) (-970 2380102 2382406 2382435 "RNS" 2382731 T RNS (NIL) -9 NIL 2383001) (-969 2378616 2378999 2379530 "RNS-" 2379603 NIL RNS- (NIL T) -8 NIL NIL) (-968 2378041 2378449 2378478 "RNG" 2378483 T RNG (NIL) -9 NIL 2378504) (-967 2377438 2377800 2377841 "RMODULE" 2377901 NIL RMODULE (NIL T) -9 NIL 2377943) (-966 2376290 2376384 2376714 "RMCAT2" 2377339 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-965 2373008 2375477 2375796 "RMATRIX" 2376027 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-964 2366009 2368243 2368356 "RMATCAT" 2371665 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2372642) (-963 2365388 2365535 2365838 "RMATCAT-" 2365843 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-962 2364958 2365033 2365159 "RINTERP" 2365307 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-961 2364008 2364572 2364601 "RING" 2364711 T RING (NIL) -9 NIL 2364805) (-960 2363803 2363847 2363941 "RING-" 2363946 NIL RING- (NIL T) -8 NIL NIL) (-959 2362655 2362891 2363146 "RIDIST" 2363568 T RIDIST (NIL) -7 NIL NIL) (-958 2353977 2362129 2362332 "RGCHAIN" 2362504 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-957 2350982 2351596 2352264 "RF" 2353341 NIL RF (NIL T) -7 NIL NIL) (-956 2350631 2350694 2350795 "RFFACTOR" 2350913 NIL RFFACTOR (NIL T) -7 NIL NIL) (-955 2350359 2350394 2350489 "RFFACT" 2350590 NIL RFFACT (NIL T) -7 NIL NIL) (-954 2348489 2348853 2349233 "RFDIST" 2349999 T RFDIST (NIL) -7 NIL NIL) (-953 2347947 2348039 2348199 "RETSOL" 2348391 NIL RETSOL (NIL T T) -7 NIL NIL) (-952 2347539 2347619 2347661 "RETRACT" 2347851 NIL RETRACT (NIL T) -9 NIL NIL) (-951 2347391 2347416 2347500 "RETRACT-" 2347505 NIL RETRACT- (NIL T T) -8 NIL NIL) (-950 2340261 2347048 2347173 "RESULT" 2347286 T RESULT (NIL) -8 NIL NIL) (-949 2338846 2339535 2339732 "RESRING" 2340164 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-948 2338486 2338535 2338631 "RESLATC" 2338783 NIL RESLATC (NIL T) -7 NIL NIL) (-947 2338195 2338229 2338334 "REPSQ" 2338445 NIL REPSQ (NIL T) -7 NIL NIL) (-946 2335626 2336206 2336806 "REP" 2337615 T REP (NIL) -7 NIL NIL) (-945 2335327 2335361 2335470 "REPDB" 2335585 NIL REPDB (NIL T) -7 NIL NIL) (-944 2329280 2330659 2331875 "REP2" 2334143 NIL REP2 (NIL T) -7 NIL NIL) (-943 2325690 2326371 2327174 "REP1" 2328509 NIL REP1 (NIL T) -7 NIL NIL) (-942 2318436 2323851 2324303 "REGSET" 2325321 NIL REGSET (NIL T T T T) -8 NIL NIL) (-941 2317259 2317594 2317841 "REF" 2318222 NIL REF (NIL T) -8 NIL NIL) (-940 2316640 2316743 2316908 "REDORDER" 2317143 NIL REDORDER (NIL T T) -7 NIL NIL) (-939 2312609 2315874 2316095 "RECLOS" 2316471 NIL RECLOS (NIL T) -8 NIL NIL) (-938 2311666 2311847 2312060 "REALSOLV" 2312416 T REALSOLV (NIL) -7 NIL NIL) (-937 2311513 2311554 2311583 "REAL" 2311588 T REAL (NIL) -9 NIL 2311623) (-936 2308004 2308806 2309688 "REAL0Q" 2310678 NIL REAL0Q (NIL T) -7 NIL NIL) (-935 2303615 2304603 2305662 "REAL0" 2306985 NIL REAL0 (NIL T) -7 NIL NIL) (-934 2303023 2303095 2303300 "RDIV" 2303537 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-933 2302096 2302270 2302481 "RDIST" 2302845 NIL RDIST (NIL T) -7 NIL NIL) (-932 2300700 2300987 2301356 "RDETRS" 2301804 NIL RDETRS (NIL T T) -7 NIL NIL) (-931 2298521 2298975 2299510 "RDETR" 2300242 NIL RDETR (NIL T T) -7 NIL NIL) (-930 2297137 2297415 2297816 "RDEEFS" 2298237 NIL RDEEFS (NIL T T) -7 NIL NIL) (-929 2295637 2295943 2296372 "RDEEF" 2296825 NIL RDEEF (NIL T T) -7 NIL NIL) (-928 2289862 2292794 2292823 "RCFIELD" 2294100 T RCFIELD (NIL) -9 NIL 2294830) (-927 2287931 2288435 2289128 "RCFIELD-" 2289201 NIL RCFIELD- (NIL T) -8 NIL NIL) (-926 2284264 2286049 2286091 "RCAGG" 2287162 NIL RCAGG (NIL T) -9 NIL 2287625) (-925 2283895 2283989 2284149 "RCAGG-" 2284154 NIL RCAGG- (NIL T T) -8 NIL NIL) (-924 2283240 2283351 2283513 "RATRET" 2283779 NIL RATRET (NIL T) -7 NIL NIL) (-923 2282797 2282864 2282983 "RATFACT" 2283168 NIL RATFACT (NIL T) -7 NIL NIL) (-922 2282112 2282232 2282382 "RANDSRC" 2282667 T RANDSRC (NIL) -7 NIL NIL) (-921 2281849 2281893 2281964 "RADUTIL" 2282061 T RADUTIL (NIL) -7 NIL NIL) (-920 2274856 2280592 2280909 "RADIX" 2281564 NIL RADIX (NIL NIL) -8 NIL NIL) (-919 2266426 2274700 2274828 "RADFF" 2274833 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-918 2266077 2266152 2266181 "RADCAT" 2266338 T RADCAT (NIL) -9 NIL NIL) (-917 2265862 2265910 2266007 "RADCAT-" 2266012 NIL RADCAT- (NIL T) -8 NIL NIL) (-916 2264019 2265637 2265726 "QUEUE" 2265806 NIL QUEUE (NIL T) -8 NIL NIL) (-915 2260516 2263956 2264001 "QUAT" 2264006 NIL QUAT (NIL T) -8 NIL NIL) (-914 2260154 2260197 2260324 "QUATCT2" 2260467 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-913 2253908 2257288 2257329 "QUATCAT" 2258108 NIL QUATCAT (NIL T) -9 NIL 2258865) (-912 2250052 2251089 2252476 "QUATCAT-" 2252570 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-911 2247578 2249136 2249178 "QUAGG" 2249553 NIL QUAGG (NIL T) -9 NIL 2249728) (-910 2246503 2246976 2247148 "QFORM" 2247450 NIL QFORM (NIL NIL T) -8 NIL NIL) (-909 2237764 2243022 2243063 "QFCAT" 2243721 NIL QFCAT (NIL T) -9 NIL 2244702) (-908 2233336 2234537 2236128 "QFCAT-" 2236222 NIL QFCAT- (NIL T T) -8 NIL NIL) (-907 2232974 2233017 2233144 "QFCAT2" 2233287 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-906 2232434 2232544 2232674 "QEQUAT" 2232864 T QEQUAT (NIL) -8 NIL NIL) (-905 2225620 2226691 2227873 "QCMPACK" 2231367 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-904 2223200 2223621 2224047 "QALGSET" 2225277 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-903 2222445 2222619 2222851 "QALGSET2" 2223020 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-902 2221136 2221359 2221676 "PWFFINTB" 2222218 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-901 2219324 2219492 2219845 "PUSHVAR" 2220950 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-900 2215241 2216295 2216337 "PTRANFN" 2218221 NIL PTRANFN (NIL T) -9 NIL NIL) (-899 2213653 2213944 2214265 "PTPACK" 2214952 NIL PTPACK (NIL T) -7 NIL NIL) (-898 2213289 2213346 2213453 "PTFUNC2" 2213590 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-897 2207768 2212103 2212144 "PTCAT" 2212512 NIL PTCAT (NIL T) -9 NIL 2212674) (-896 2207426 2207461 2207585 "PSQFR" 2207727 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-895 2206021 2206319 2206653 "PSEUDLIN" 2207124 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-894 2192835 2195199 2197519 "PSETPK" 2203784 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-893 2185922 2188636 2188731 "PSETCAT" 2191712 NIL PSETCAT (NIL T T T T) -9 NIL 2192525) (-892 2183760 2184394 2185213 "PSETCAT-" 2185218 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-891 2183117 2183279 2183308 "PSCURVE" 2183573 T PSCURVE (NIL) -9 NIL 2183737) (-890 2179521 2181047 2181112 "PSCAT" 2181948 NIL PSCAT (NIL T T T) -9 NIL 2182188) (-889 2178585 2178801 2179200 "PSCAT-" 2179205 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-888 2177238 2177870 2178084 "PRTITION" 2178391 T PRTITION (NIL) -8 NIL NIL) (-887 2166338 2168544 2170731 "PRS" 2175101 NIL PRS (NIL T T) -7 NIL NIL) (-886 2164202 2165688 2165729 "PRQAGG" 2165912 NIL PRQAGG (NIL T) -9 NIL 2166014) (-885 2158008 2162400 2163204 "PRODUCT" 2163444 NIL PRODUCT (NIL T T) -8 NIL NIL) (-884 2155290 2157474 2157704 "PR" 2157822 NIL PR (NIL T T) -8 NIL NIL) (-883 2155086 2155118 2155177 "PRINT" 2155251 T PRINT (NIL) -7 NIL NIL) (-882 2154426 2154543 2154695 "PRIMES" 2154966 NIL PRIMES (NIL T) -7 NIL NIL) (-881 2152491 2152892 2153358 "PRIMELT" 2154005 NIL PRIMELT (NIL T) -7 NIL NIL) (-880 2152222 2152270 2152299 "PRIMCAT" 2152422 T PRIMCAT (NIL) -9 NIL NIL) (-879 2148383 2152160 2152205 "PRIMARR" 2152210 NIL PRIMARR (NIL T) -8 NIL NIL) (-878 2147390 2147568 2147796 "PRIMARR2" 2148201 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-877 2147033 2147089 2147200 "PREASSOC" 2147328 NIL PREASSOC (NIL T T) -7 NIL NIL) (-876 2146513 2146644 2146673 "PPCURVE" 2146876 T PPCURVE (NIL) -9 NIL 2147010) (-875 2143874 2144273 2144864 "POLYROOT" 2146095 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-874 2137782 2143482 2143640 "POLY" 2143748 NIL POLY (NIL T) -8 NIL NIL) (-873 2137167 2137225 2137458 "POLYLIFT" 2137718 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-872 2133452 2133901 2134529 "POLYCATQ" 2136712 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-871 2120460 2125857 2125922 "POLYCAT" 2129407 NIL POLYCAT (NIL T T T) -9 NIL 2131319) (-870 2113911 2115772 2118155 "POLYCAT-" 2118160 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-869 2113500 2113568 2113687 "POLY2UP" 2113837 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-868 2113136 2113193 2113300 "POLY2" 2113437 NIL POLY2 (NIL T T) -7 NIL NIL) (-867 2111823 2112062 2112337 "POLUTIL" 2112911 NIL POLUTIL (NIL T T) -7 NIL NIL) (-866 2110185 2110462 2110792 "POLTOPOL" 2111545 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-865 2105714 2110122 2110167 "POINT" 2110172 NIL POINT (NIL T) -8 NIL NIL) (-864 2103901 2104258 2104633 "PNTHEORY" 2105359 T PNTHEORY (NIL) -7 NIL NIL) (-863 2102329 2102626 2103035 "PMTOOLS" 2103599 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-862 2101922 2102000 2102117 "PMSYM" 2102245 NIL PMSYM (NIL T) -7 NIL NIL) (-861 2101432 2101501 2101675 "PMQFCAT" 2101847 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-860 2100787 2100897 2101053 "PMPRED" 2101309 NIL PMPRED (NIL T) -7 NIL NIL) (-859 2100183 2100269 2100430 "PMPREDFS" 2100688 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-858 2098831 2099039 2099422 "PMPLCAT" 2099946 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-857 2098363 2098442 2098594 "PMLSAGG" 2098746 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-856 2097840 2097916 2098096 "PMKERNEL" 2098281 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-855 2097457 2097532 2097645 "PMINS" 2097759 NIL PMINS (NIL T) -7 NIL NIL) (-854 2096887 2096956 2097171 "PMFS" 2097382 NIL PMFS (NIL T T T) -7 NIL NIL) (-853 2096118 2096236 2096440 "PMDOWN" 2096764 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-852 2095281 2095440 2095622 "PMASS" 2095956 T PMASS (NIL) -7 NIL NIL) (-851 2094555 2094666 2094829 "PMASSFS" 2095167 NIL PMASSFS (NIL T T) -7 NIL NIL) (-850 2094214 2094281 2094374 "PLOTTOOL" 2094482 T PLOTTOOL (NIL) -7 NIL NIL) (-849 2088915 2090081 2091208 "PLOT" 2093107 T PLOT (NIL) -8 NIL NIL) (-848 2084788 2085803 2086708 "PLOT3D" 2088030 T PLOT3D (NIL) -8 NIL NIL) (-847 2083712 2083886 2084118 "PLOT1" 2084595 NIL PLOT1 (NIL T) -7 NIL NIL) (-846 2059107 2063778 2068629 "PLEQN" 2078978 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-845 2058425 2058547 2058727 "PINTERP" 2058972 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-844 2058118 2058165 2058268 "PINTERPA" 2058372 NIL PINTERPA (NIL T T) -7 NIL NIL) (-843 2057345 2057912 2058005 "PI" 2058045 T PI (NIL) -8 NIL NIL) (-842 2055736 2056721 2056750 "PID" 2056932 T PID (NIL) -9 NIL 2057066) (-841 2055461 2055498 2055586 "PICOERCE" 2055693 NIL PICOERCE (NIL T) -7 NIL NIL) (-840 2054782 2054920 2055096 "PGROEB" 2055317 NIL PGROEB (NIL T) -7 NIL NIL) (-839 2050369 2051183 2052088 "PGE" 2053897 T PGE (NIL) -7 NIL NIL) (-838 2048493 2048739 2049105 "PGCD" 2050086 NIL PGCD (NIL T T T T) -7 NIL NIL) (-837 2047831 2047934 2048095 "PFRPAC" 2048377 NIL PFRPAC (NIL T) -7 NIL NIL) (-836 2044446 2046379 2046732 "PFR" 2047510 NIL PFR (NIL T) -8 NIL NIL) (-835 2042835 2043079 2043404 "PFOTOOLS" 2044193 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-834 2041368 2041607 2041958 "PFOQ" 2042592 NIL PFOQ (NIL T T T) -7 NIL NIL) (-833 2039845 2040057 2040419 "PFO" 2041152 NIL PFO (NIL T T T T T) -7 NIL NIL) (-832 2036368 2039734 2039803 "PF" 2039808 NIL PF (NIL NIL) -8 NIL NIL) (-831 2033797 2035078 2035107 "PFECAT" 2035692 T PFECAT (NIL) -9 NIL 2036075) (-830 2033242 2033396 2033610 "PFECAT-" 2033615 NIL PFECAT- (NIL T) -8 NIL NIL) (-829 2031846 2032097 2032398 "PFBRU" 2032991 NIL PFBRU (NIL T T) -7 NIL NIL) (-828 2029713 2030064 2030496 "PFBR" 2031497 NIL PFBR (NIL T T T T) -7 NIL NIL) (-827 2025569 2027093 2027767 "PERM" 2029072 NIL PERM (NIL T) -8 NIL NIL) (-826 2020836 2021776 2022646 "PERMGRP" 2024732 NIL PERMGRP (NIL T) -8 NIL NIL) (-825 2018908 2019901 2019943 "PERMCAT" 2020389 NIL PERMCAT (NIL T) -9 NIL 2020692) (-824 2018563 2018604 2018727 "PERMAN" 2018861 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-823 2016009 2018132 2018263 "PENDTREE" 2018465 NIL PENDTREE (NIL T) -8 NIL NIL) (-822 2014081 2014859 2014901 "PDRING" 2015558 NIL PDRING (NIL T) -9 NIL 2015843) (-821 2013184 2013402 2013764 "PDRING-" 2013769 NIL PDRING- (NIL T T) -8 NIL NIL) (-820 2010326 2011076 2011767 "PDEPROB" 2012513 T PDEPROB (NIL) -8 NIL NIL) (-819 2007897 2008393 2008942 "PDEPACK" 2009797 T PDEPACK (NIL) -7 NIL NIL) (-818 2006809 2006999 2007250 "PDECOMP" 2007696 NIL PDECOMP (NIL T T) -7 NIL NIL) (-817 2004420 2005235 2005264 "PDECAT" 2006049 T PDECAT (NIL) -9 NIL 2006760) (-816 2004173 2004206 2004295 "PCOMP" 2004381 NIL PCOMP (NIL T T) -7 NIL NIL) (-815 2002380 2002976 2003272 "PBWLB" 2003903 NIL PBWLB (NIL T) -8 NIL NIL) (-814 1994889 1996457 1997793 "PATTERN" 2001065 NIL PATTERN (NIL T) -8 NIL NIL) (-813 1994521 1994578 1994687 "PATTERN2" 1994826 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-812 1992278 1992666 1993123 "PATTERN1" 1994110 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-811 1989673 1990227 1990708 "PATRES" 1991843 NIL PATRES (NIL T T) -8 NIL NIL) (-810 1989237 1989304 1989436 "PATRES2" 1989600 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-809 1987134 1987534 1987939 "PATMATCH" 1988906 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-808 1986670 1986853 1986895 "PATMAB" 1987002 NIL PATMAB (NIL T) -9 NIL 1987085) (-807 1985215 1985524 1985782 "PATLRES" 1986475 NIL PATLRES (NIL T T T) -8 NIL NIL) (-806 1984762 1984885 1984927 "PATAB" 1984932 NIL PATAB (NIL T) -9 NIL 1985102) (-805 1982243 1982775 1983348 "PARTPERM" 1984209 T PARTPERM (NIL) -7 NIL NIL) (-804 1981864 1981927 1982029 "PARSURF" 1982174 NIL PARSURF (NIL T) -8 NIL NIL) (-803 1981496 1981553 1981662 "PARSU2" 1981801 NIL PARSU2 (NIL T T) -7 NIL NIL) (-802 1981117 1981180 1981282 "PARSCURV" 1981427 NIL PARSCURV (NIL T) -8 NIL NIL) (-801 1980749 1980806 1980915 "PARSC2" 1981054 NIL PARSC2 (NIL T T) -7 NIL NIL) (-800 1980388 1980446 1980543 "PARPCURV" 1980685 NIL PARPCURV (NIL T) -8 NIL NIL) (-799 1980020 1980077 1980186 "PARPC2" 1980325 NIL PARPC2 (NIL T T) -7 NIL NIL) (-798 1979540 1979626 1979745 "PAN2EXPR" 1979921 T PAN2EXPR (NIL) -7 NIL NIL) (-797 1978346 1978661 1978889 "PALETTE" 1979332 T PALETTE (NIL) -8 NIL NIL) (-796 1972196 1977605 1977799 "PADICRC" 1978201 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-795 1965404 1971542 1971726 "PADICRAT" 1972044 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-794 1963708 1965341 1965386 "PADIC" 1965391 NIL PADIC (NIL NIL) -8 NIL NIL) (-793 1960912 1962486 1962527 "PADICCT" 1963108 NIL PADICCT (NIL NIL) -9 NIL 1963390) (-792 1959869 1960069 1960337 "PADEPAC" 1960699 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-791 1959081 1959214 1959420 "PADE" 1959731 NIL PADE (NIL T T T) -7 NIL NIL) (-790 1957096 1957928 1958241 "OWP" 1958851 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-789 1956205 1956701 1956873 "OVAR" 1956964 NIL OVAR (NIL NIL) -8 NIL NIL) (-788 1955469 1955590 1955751 "OUT" 1956064 T OUT (NIL) -7 NIL NIL) (-787 1944515 1946694 1948864 "OUTFORM" 1953319 T OUTFORM (NIL) -8 NIL NIL) (-786 1943923 1944244 1944333 "OSI" 1944446 T OSI (NIL) -8 NIL NIL) (-785 1942670 1942897 1943181 "ORTHPOL" 1943671 NIL ORTHPOL (NIL T) -7 NIL NIL) (-784 1940041 1942331 1942469 "OREUP" 1942613 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-783 1937437 1939734 1939860 "ORESUP" 1939983 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-782 1934976 1935476 1936034 "OREPCTO" 1936928 NIL OREPCTO (NIL T T) -7 NIL NIL) (-781 1928889 1931095 1931136 "OREPCAT" 1933457 NIL OREPCAT (NIL T) -9 NIL 1934556) (-780 1926037 1926819 1927876 "OREPCAT-" 1927881 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-779 1925214 1925486 1925515 "ORDSET" 1925824 T ORDSET (NIL) -9 NIL 1925988) (-778 1924733 1924855 1925048 "ORDSET-" 1925053 NIL ORDSET- (NIL T) -8 NIL NIL) (-777 1923346 1924147 1924176 "ORDRING" 1924378 T ORDRING (NIL) -9 NIL 1924502) (-776 1922991 1923085 1923229 "ORDRING-" 1923234 NIL ORDRING- (NIL T) -8 NIL NIL) (-775 1922366 1922847 1922876 "ORDMON" 1922881 T ORDMON (NIL) -9 NIL 1922902) (-774 1921528 1921675 1921870 "ORDFUNS" 1922215 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-773 1921039 1921398 1921427 "ORDFIN" 1921432 T ORDFIN (NIL) -9 NIL 1921453) (-772 1917557 1919631 1920037 "ORDCOMP" 1920666 NIL ORDCOMP (NIL T) -8 NIL NIL) (-771 1916823 1916950 1917136 "ORDCOMP2" 1917417 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-770 1913331 1914213 1915050 "OPTPROB" 1916006 T OPTPROB (NIL) -8 NIL NIL) (-769 1910173 1910802 1911496 "OPTPACK" 1912657 T OPTPACK (NIL) -7 NIL NIL) (-768 1907898 1908634 1908663 "OPTCAT" 1909478 T OPTCAT (NIL) -9 NIL 1910124) (-767 1907666 1907705 1907771 "OPQUERY" 1907852 T OPQUERY (NIL) -7 NIL NIL) (-766 1904808 1905999 1906496 "OP" 1907201 NIL OP (NIL T) -8 NIL NIL) (-765 1901579 1903611 1903977 "ONECOMP" 1904475 NIL ONECOMP (NIL T) -8 NIL NIL) (-764 1900884 1900999 1901173 "ONECOMP2" 1901451 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-763 1900303 1900409 1900539 "OMSERVER" 1900774 T OMSERVER (NIL) -7 NIL NIL) (-762 1897191 1899743 1899784 "OMSAGG" 1899845 NIL OMSAGG (NIL T) -9 NIL 1899909) (-761 1895814 1896077 1896359 "OMPKG" 1896929 T OMPKG (NIL) -7 NIL NIL) (-760 1895243 1895346 1895375 "OM" 1895674 T OM (NIL) -9 NIL NIL) (-759 1893784 1894797 1894964 "OMLO" 1895125 NIL OMLO (NIL T T) -8 NIL NIL) (-758 1892714 1892861 1893087 "OMEXPR" 1893610 NIL OMEXPR (NIL T) -7 NIL NIL) (-757 1892032 1892260 1892396 "OMERR" 1892598 T OMERR (NIL) -8 NIL NIL) (-756 1891210 1891453 1891613 "OMERRK" 1891892 T OMERRK (NIL) -8 NIL NIL) (-755 1890688 1890887 1890995 "OMENC" 1891122 T OMENC (NIL) -8 NIL NIL) (-754 1884583 1885768 1886939 "OMDEV" 1889537 T OMDEV (NIL) -8 NIL NIL) (-753 1883652 1883823 1884017 "OMCONN" 1884409 T OMCONN (NIL) -8 NIL NIL) (-752 1882267 1883253 1883282 "OINTDOM" 1883287 T OINTDOM (NIL) -9 NIL 1883308) (-751 1878029 1879259 1879974 "OFMONOID" 1881584 NIL OFMONOID (NIL T) -8 NIL NIL) (-750 1877467 1877966 1878011 "ODVAR" 1878016 NIL ODVAR (NIL T) -8 NIL NIL) (-749 1874594 1876966 1877150 "ODR" 1877343 NIL ODR (NIL T T NIL) -8 NIL NIL) (-748 1866900 1874373 1874497 "ODPOL" 1874502 NIL ODPOL (NIL T) -8 NIL NIL) (-747 1860729 1866772 1866877 "ODP" 1866882 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-746 1859495 1859710 1859985 "ODETOOLS" 1860503 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-745 1856464 1857120 1857836 "ODESYS" 1858828 NIL ODESYS (NIL T T) -7 NIL NIL) (-744 1851370 1852278 1853300 "ODERTRIC" 1855540 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-743 1850796 1850878 1851072 "ODERED" 1851282 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-742 1847698 1848246 1848921 "ODERAT" 1850219 NIL ODERAT (NIL T T) -7 NIL NIL) (-741 1844666 1845130 1845726 "ODEPRRIC" 1847227 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-740 1842537 1843104 1843613 "ODEPROB" 1844177 T ODEPROB (NIL) -8 NIL NIL) (-739 1839069 1839552 1840198 "ODEPRIM" 1842016 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-738 1838322 1838424 1838682 "ODEPAL" 1838961 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-737 1834524 1835305 1836159 "ODEPACK" 1837488 T ODEPACK (NIL) -7 NIL NIL) (-736 1833561 1833668 1833896 "ODEINT" 1834413 NIL ODEINT (NIL T T) -7 NIL NIL) (-735 1827662 1829087 1830534 "ODEIFTBL" 1832134 T ODEIFTBL (NIL) -8 NIL NIL) (-734 1823006 1823792 1824750 "ODEEF" 1826821 NIL ODEEF (NIL T T) -7 NIL NIL) (-733 1822343 1822432 1822661 "ODECONST" 1822911 NIL ODECONST (NIL T T T) -7 NIL NIL) (-732 1820500 1821133 1821162 "ODECAT" 1821765 T ODECAT (NIL) -9 NIL 1822294) (-731 1817372 1820212 1820331 "OCT" 1820413 NIL OCT (NIL T) -8 NIL NIL) (-730 1817010 1817053 1817180 "OCTCT2" 1817323 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-729 1811851 1814289 1814330 "OC" 1815426 NIL OC (NIL T) -9 NIL 1816275) (-728 1809078 1809826 1810816 "OC-" 1810910 NIL OC- (NIL T T) -8 NIL NIL) (-727 1808456 1808898 1808927 "OCAMON" 1808932 T OCAMON (NIL) -9 NIL 1808953) (-726 1807909 1808316 1808345 "OASGP" 1808350 T OASGP (NIL) -9 NIL 1808370) (-725 1807196 1807659 1807688 "OAMONS" 1807728 T OAMONS (NIL) -9 NIL 1807771) (-724 1806636 1807043 1807072 "OAMON" 1807077 T OAMON (NIL) -9 NIL 1807097) (-723 1805940 1806432 1806461 "OAGROUP" 1806466 T OAGROUP (NIL) -9 NIL 1806486) (-722 1805630 1805680 1805768 "NUMTUBE" 1805884 NIL NUMTUBE (NIL T) -7 NIL NIL) (-721 1799203 1800721 1802257 "NUMQUAD" 1804114 T NUMQUAD (NIL) -7 NIL NIL) (-720 1794959 1795947 1796972 "NUMODE" 1798198 T NUMODE (NIL) -7 NIL NIL) (-719 1792374 1793216 1793245 "NUMINT" 1794158 T NUMINT (NIL) -9 NIL 1794910) (-718 1791322 1791519 1791737 "NUMFMT" 1792176 T NUMFMT (NIL) -7 NIL NIL) (-717 1777717 1780654 1783176 "NUMERIC" 1788839 NIL NUMERIC (NIL T) -7 NIL NIL) (-716 1772117 1777169 1777264 "NTSCAT" 1777269 NIL NTSCAT (NIL T T T T) -9 NIL 1777307) (-715 1771313 1771478 1771670 "NTPOLFN" 1771957 NIL NTPOLFN (NIL T) -7 NIL NIL) (-714 1759171 1768157 1768966 "NSUP" 1770536 NIL NSUP (NIL T) -8 NIL NIL) (-713 1758807 1758864 1758971 "NSUP2" 1759108 NIL NSUP2 (NIL T T) -7 NIL NIL) (-712 1748769 1758586 1758716 "NSMP" 1758721 NIL NSMP (NIL T T) -8 NIL NIL) (-711 1747201 1747502 1747859 "NREP" 1748457 NIL NREP (NIL T) -7 NIL NIL) (-710 1745792 1746044 1746402 "NPCOEF" 1746944 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-709 1744858 1744973 1745189 "NORMRETR" 1745673 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-708 1742911 1743201 1743608 "NORMPK" 1744566 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-707 1742596 1742624 1742748 "NORMMA" 1742877 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-706 1742423 1742553 1742582 "NONE" 1742587 T NONE (NIL) -8 NIL NIL) (-705 1742212 1742241 1742310 "NONE1" 1742387 NIL NONE1 (NIL T) -7 NIL NIL) (-704 1741697 1741759 1741944 "NODE1" 1742144 NIL NODE1 (NIL T T) -7 NIL NIL) (-703 1739991 1740860 1741115 "NNI" 1741462 T NNI (NIL) -8 NIL NIL) (-702 1738411 1738724 1739088 "NLINSOL" 1739659 NIL NLINSOL (NIL T) -7 NIL NIL) (-701 1734603 1735564 1736480 "NIPROB" 1737515 T NIPROB (NIL) -8 NIL NIL) (-700 1733360 1733594 1733896 "NFINTBAS" 1734365 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-699 1732068 1732299 1732580 "NCODIV" 1733128 NIL NCODIV (NIL T T) -7 NIL NIL) (-698 1731830 1731867 1731942 "NCNTFRAC" 1732025 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-697 1730010 1730374 1730794 "NCEP" 1731455 NIL NCEP (NIL T) -7 NIL NIL) (-696 1728921 1729660 1729689 "NASRING" 1729799 T NASRING (NIL) -9 NIL 1729873) (-695 1728716 1728760 1728854 "NASRING-" 1728859 NIL NASRING- (NIL T) -8 NIL NIL) (-694 1727869 1728368 1728397 "NARNG" 1728514 T NARNG (NIL) -9 NIL 1728605) (-693 1727561 1727628 1727762 "NARNG-" 1727767 NIL NARNG- (NIL T) -8 NIL NIL) (-692 1726440 1726647 1726882 "NAGSP" 1727346 T NAGSP (NIL) -7 NIL NIL) (-691 1717864 1719510 1721145 "NAGS" 1724825 T NAGS (NIL) -7 NIL NIL) (-690 1716428 1716732 1717059 "NAGF07" 1717557 T NAGF07 (NIL) -7 NIL NIL) (-689 1711010 1712290 1713586 "NAGF04" 1715152 T NAGF04 (NIL) -7 NIL NIL) (-688 1704042 1705640 1707257 "NAGF02" 1709413 T NAGF02 (NIL) -7 NIL NIL) (-687 1699306 1700396 1701503 "NAGF01" 1702955 T NAGF01 (NIL) -7 NIL NIL) (-686 1692966 1694524 1696101 "NAGE04" 1697749 T NAGE04 (NIL) -7 NIL NIL) (-685 1684207 1686310 1688422 "NAGE02" 1690874 T NAGE02 (NIL) -7 NIL NIL) (-684 1680200 1681137 1682091 "NAGE01" 1683273 T NAGE01 (NIL) -7 NIL NIL) (-683 1678007 1678538 1679093 "NAGD03" 1679665 T NAGD03 (NIL) -7 NIL NIL) (-682 1669793 1671712 1673657 "NAGD02" 1676082 T NAGD02 (NIL) -7 NIL NIL) (-681 1663652 1665065 1666493 "NAGD01" 1668385 T NAGD01 (NIL) -7 NIL NIL) (-680 1659909 1660719 1661544 "NAGC06" 1662847 T NAGC06 (NIL) -7 NIL NIL) (-679 1658386 1658715 1659068 "NAGC05" 1659576 T NAGC05 (NIL) -7 NIL NIL) (-678 1657770 1657887 1658029 "NAGC02" 1658264 T NAGC02 (NIL) -7 NIL NIL) (-677 1656831 1657388 1657429 "NAALG" 1657508 NIL NAALG (NIL T) -9 NIL 1657569) (-676 1656666 1656695 1656785 "NAALG-" 1656790 NIL NAALG- (NIL T T) -8 NIL NIL) (-675 1650616 1651724 1652911 "MULTSQFR" 1655562 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-674 1649935 1650010 1650194 "MULTFACT" 1650528 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-673 1643077 1646988 1647041 "MTSCAT" 1648101 NIL MTSCAT (NIL T T) -9 NIL 1648614) (-672 1642789 1642843 1642935 "MTHING" 1643017 NIL MTHING (NIL T) -7 NIL NIL) (-671 1642581 1642614 1642674 "MSYSCMD" 1642749 T MSYSCMD (NIL) -7 NIL NIL) (-670 1638693 1641336 1641656 "MSET" 1642294 NIL MSET (NIL T) -8 NIL NIL) (-669 1635788 1638254 1638296 "MSETAGG" 1638301 NIL MSETAGG (NIL T) -9 NIL 1638335) (-668 1631656 1633198 1633933 "MRING" 1635097 NIL MRING (NIL T T) -8 NIL NIL) (-667 1631226 1631293 1631422 "MRF2" 1631583 NIL MRF2 (NIL T T T) -7 NIL NIL) (-666 1630844 1630879 1631023 "MRATFAC" 1631185 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-665 1628456 1628751 1629182 "MPRFF" 1630549 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-664 1622476 1628311 1628407 "MPOLY" 1628412 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-663 1621966 1622001 1622209 "MPCPF" 1622435 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-662 1621482 1621525 1621708 "MPC3" 1621917 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-661 1620683 1620764 1620983 "MPC2" 1621397 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-660 1618984 1619321 1619711 "MONOTOOL" 1620343 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-659 1618108 1618443 1618472 "MONOID" 1618749 T MONOID (NIL) -9 NIL 1618921) (-658 1617486 1617649 1617892 "MONOID-" 1617897 NIL MONOID- (NIL T) -8 NIL NIL) (-657 1608422 1614408 1614468 "MONOGEN" 1615142 NIL MONOGEN (NIL T T) -9 NIL 1615595) (-656 1605640 1606375 1607375 "MONOGEN-" 1607494 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-655 1604499 1604919 1604948 "MONADWU" 1605340 T MONADWU (NIL) -9 NIL 1605578) (-654 1603871 1604030 1604278 "MONADWU-" 1604283 NIL MONADWU- (NIL T) -8 NIL NIL) (-653 1603256 1603474 1603503 "MONAD" 1603710 T MONAD (NIL) -9 NIL 1603822) (-652 1602941 1603019 1603151 "MONAD-" 1603156 NIL MONAD- (NIL T) -8 NIL NIL) (-651 1601192 1601854 1602133 "MOEBIUS" 1602694 NIL MOEBIUS (NIL T) -8 NIL NIL) (-650 1600585 1600963 1601004 "MODULE" 1601009 NIL MODULE (NIL T) -9 NIL 1601035) (-649 1600153 1600249 1600439 "MODULE-" 1600444 NIL MODULE- (NIL T T) -8 NIL NIL) (-648 1597824 1598519 1598845 "MODRING" 1599978 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-647 1594786 1595951 1596465 "MODOP" 1597359 NIL MODOP (NIL T T) -8 NIL NIL) (-646 1592973 1593425 1593766 "MODMONOM" 1594585 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-645 1582695 1591181 1591601 "MODMON" 1592603 NIL MODMON (NIL T T) -8 NIL NIL) (-644 1579821 1581539 1581815 "MODFIELD" 1582570 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-643 1579347 1579390 1579569 "MMAP" 1579772 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-642 1577584 1578361 1578402 "MLO" 1578819 NIL MLO (NIL T) -9 NIL 1579059) (-641 1574951 1575466 1576068 "MLIFT" 1577065 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-640 1574342 1574426 1574580 "MKUCFUNC" 1574862 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-639 1573941 1574011 1574134 "MKRECORD" 1574265 NIL MKRECORD (NIL T T) -7 NIL NIL) (-638 1572989 1573150 1573378 "MKFUNC" 1573752 NIL MKFUNC (NIL T) -7 NIL NIL) (-637 1572377 1572481 1572637 "MKFLCFN" 1572872 NIL MKFLCFN (NIL T) -7 NIL NIL) (-636 1571803 1572170 1572259 "MKCHSET" 1572321 NIL MKCHSET (NIL T) -8 NIL NIL) (-635 1571080 1571182 1571367 "MKBCFUNC" 1571696 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-634 1567764 1570634 1570770 "MINT" 1570964 T MINT (NIL) -8 NIL NIL) (-633 1566576 1566819 1567096 "MHROWRED" 1567519 NIL MHROWRED (NIL T) -7 NIL NIL) (-632 1561847 1565021 1565445 "MFLOAT" 1566172 T MFLOAT (NIL) -8 NIL NIL) (-631 1561204 1561280 1561451 "MFINFACT" 1561759 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-630 1557551 1558390 1559265 "MESH" 1560349 T MESH (NIL) -7 NIL NIL) (-629 1555941 1556253 1556606 "MDDFACT" 1557238 NIL MDDFACT (NIL T) -7 NIL NIL) (-628 1552789 1555100 1555142 "MDAGG" 1555397 NIL MDAGG (NIL T) -9 NIL 1555540) (-627 1542487 1552082 1552289 "MCMPLX" 1552602 T MCMPLX (NIL) -8 NIL NIL) (-626 1541628 1541774 1541974 "MCDEN" 1542336 NIL MCDEN (NIL T T) -7 NIL NIL) (-625 1539518 1539788 1540168 "MCALCFN" 1541358 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-624 1537140 1537663 1538224 "MATSTOR" 1538989 NIL MATSTOR (NIL T) -7 NIL NIL) (-623 1533158 1536519 1536764 "MATRIX" 1536927 NIL MATRIX (NIL T) -8 NIL NIL) (-622 1528933 1529637 1530370 "MATLIN" 1532518 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-621 1519142 1522274 1522351 "MATCAT" 1527189 NIL MATCAT (NIL T T T) -9 NIL 1528600) (-620 1515507 1516520 1517875 "MATCAT-" 1517880 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-619 1514109 1514262 1514593 "MATCAT2" 1515342 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-618 1512221 1512545 1512929 "MAPPKG3" 1513784 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-617 1511202 1511375 1511597 "MAPPKG2" 1512045 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-616 1509701 1509985 1510312 "MAPPKG1" 1510908 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-615 1509312 1509370 1509493 "MAPHACK3" 1509637 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-614 1508904 1508965 1509079 "MAPHACK2" 1509244 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-613 1508342 1508445 1508587 "MAPHACK1" 1508795 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-612 1506450 1507044 1507347 "MAGMA" 1508071 NIL MAGMA (NIL T) -8 NIL NIL) (-611 1502933 1504696 1505155 "M3D" 1506024 NIL M3D (NIL T) -8 NIL NIL) (-610 1497091 1501300 1501342 "LZSTAGG" 1502124 NIL LZSTAGG (NIL T) -9 NIL 1502419) (-609 1493065 1494222 1495679 "LZSTAGG-" 1495684 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-608 1490181 1490958 1491444 "LWORD" 1492611 NIL LWORD (NIL T) -8 NIL NIL) (-607 1483341 1489952 1490086 "LSQM" 1490091 NIL LSQM (NIL NIL T) -8 NIL NIL) (-606 1482565 1482704 1482932 "LSPP" 1483196 NIL LSPP (NIL T T T T) -7 NIL NIL) (-605 1480377 1480678 1481134 "LSMP" 1482254 NIL LSMP (NIL T T T T) -7 NIL NIL) (-604 1477156 1477830 1478560 "LSMP1" 1479679 NIL LSMP1 (NIL T) -7 NIL NIL) (-603 1471079 1476321 1476363 "LSAGG" 1476425 NIL LSAGG (NIL T) -9 NIL 1476503) (-602 1467774 1468698 1469911 "LSAGG-" 1469916 NIL LSAGG- (NIL T T) -8 NIL NIL) (-601 1465400 1466918 1467167 "LPOLY" 1467569 NIL LPOLY (NIL T T) -8 NIL NIL) (-600 1464982 1465067 1465190 "LPEFRAC" 1465309 NIL LPEFRAC (NIL T) -7 NIL NIL) (-599 1463331 1464078 1464330 "LO" 1464815 NIL LO (NIL T T T) -8 NIL NIL) (-598 1462984 1463096 1463125 "LOGIC" 1463236 T LOGIC (NIL) -9 NIL 1463316) (-597 1462846 1462869 1462940 "LOGIC-" 1462945 NIL LOGIC- (NIL T) -8 NIL NIL) (-596 1462039 1462179 1462372 "LODOOPS" 1462702 NIL LODOOPS (NIL T T) -7 NIL NIL) (-595 1459457 1461956 1462021 "LODO" 1462026 NIL LODO (NIL T NIL) -8 NIL NIL) (-594 1458005 1458240 1458590 "LODOF" 1459205 NIL LODOF (NIL T T) -7 NIL NIL) (-593 1454425 1456861 1456902 "LODOCAT" 1457334 NIL LODOCAT (NIL T) -9 NIL 1457544) (-592 1454159 1454217 1454343 "LODOCAT-" 1454348 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-591 1451473 1454000 1454118 "LODO2" 1454123 NIL LODO2 (NIL T T) -8 NIL NIL) (-590 1448902 1451410 1451455 "LODO1" 1451460 NIL LODO1 (NIL T) -8 NIL NIL) (-589 1447765 1447930 1448241 "LODEEF" 1448725 NIL LODEEF (NIL T T T) -7 NIL NIL) (-588 1443049 1445893 1445935 "LNAGG" 1446882 NIL LNAGG (NIL T) -9 NIL 1447325) (-587 1442196 1442410 1442752 "LNAGG-" 1442757 NIL LNAGG- (NIL T T) -8 NIL NIL) (-586 1438361 1439123 1439761 "LMOPS" 1441612 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-585 1437758 1438120 1438161 "LMODULE" 1438221 NIL LMODULE (NIL T) -9 NIL 1438263) (-584 1435010 1437403 1437526 "LMDICT" 1437668 NIL LMDICT (NIL T) -8 NIL NIL) (-583 1428241 1433960 1434256 "LIST" 1434747 NIL LIST (NIL T) -8 NIL NIL) (-582 1427766 1427840 1427979 "LIST3" 1428161 NIL LIST3 (NIL T T T) -7 NIL NIL) (-581 1426773 1426951 1427179 "LIST2" 1427584 NIL LIST2 (NIL T T) -7 NIL NIL) (-580 1424907 1425219 1425618 "LIST2MAP" 1426420 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-579 1423619 1424299 1424340 "LINEXP" 1424593 NIL LINEXP (NIL T) -9 NIL 1424741) (-578 1422266 1422526 1422823 "LINDEP" 1423371 NIL LINDEP (NIL T T) -7 NIL NIL) (-577 1419033 1419752 1420529 "LIMITRF" 1421521 NIL LIMITRF (NIL T) -7 NIL NIL) (-576 1417314 1417608 1418023 "LIMITPS" 1418728 NIL LIMITPS (NIL T T) -7 NIL NIL) (-575 1411773 1416829 1417055 "LIE" 1417137 NIL LIE (NIL T T) -8 NIL NIL) (-574 1410824 1411267 1411308 "LIECAT" 1411448 NIL LIECAT (NIL T) -9 NIL 1411598) (-573 1410665 1410692 1410780 "LIECAT-" 1410785 NIL LIECAT- (NIL T T) -8 NIL NIL) (-572 1403289 1410114 1410279 "LIB" 1410520 T LIB (NIL) -8 NIL NIL) (-571 1398926 1399807 1400742 "LGROBP" 1402406 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-570 1396796 1397069 1397430 "LF" 1398648 NIL LF (NIL T T) -7 NIL NIL) (-569 1395636 1396327 1396356 "LFCAT" 1396563 T LFCAT (NIL) -9 NIL 1396702) (-568 1392548 1393174 1393860 "LEXTRIPK" 1395002 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-567 1389254 1390118 1390621 "LEXP" 1392128 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-566 1387652 1387965 1388366 "LEADCDET" 1388936 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-565 1386848 1386922 1387149 "LAZM3PK" 1387573 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-564 1381771 1384933 1385467 "LAUPOL" 1386364 NIL LAUPOL (NIL T T) -8 NIL NIL) (-563 1381338 1381382 1381549 "LAPLACE" 1381721 NIL LAPLACE (NIL T T) -7 NIL NIL) (-562 1379268 1380441 1380691 "LA" 1381172 NIL LA (NIL T T T) -8 NIL NIL) (-561 1378330 1378924 1378965 "LALG" 1379026 NIL LALG (NIL T) -9 NIL 1379084) (-560 1378045 1378104 1378239 "LALG-" 1378244 NIL LALG- (NIL T T) -8 NIL NIL) (-559 1376955 1377142 1377439 "KOVACIC" 1377845 NIL KOVACIC (NIL T T) -7 NIL NIL) (-558 1376789 1376813 1376855 "KONVERT" 1376917 NIL KONVERT (NIL T) -9 NIL NIL) (-557 1376623 1376647 1376689 "KOERCE" 1376751 NIL KOERCE (NIL T) -9 NIL NIL) (-556 1374359 1375119 1375511 "KERNEL" 1376263 NIL KERNEL (NIL T) -8 NIL NIL) (-555 1373861 1373942 1374072 "KERNEL2" 1374273 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-554 1367476 1372158 1372213 "KDAGG" 1372590 NIL KDAGG (NIL T T) -9 NIL 1372796) (-553 1367005 1367129 1367334 "KDAGG-" 1367339 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-552 1360180 1366666 1366821 "KAFILE" 1366883 NIL KAFILE (NIL T) -8 NIL NIL) (-551 1354639 1359695 1359921 "JORDAN" 1360003 NIL JORDAN (NIL T T) -8 NIL NIL) (-550 1350948 1352848 1352903 "IXAGG" 1353832 NIL IXAGG (NIL T T) -9 NIL 1354287) (-549 1349867 1350173 1350592 "IXAGG-" 1350597 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-548 1345458 1349789 1349848 "IVECTOR" 1349853 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-547 1344224 1344461 1344727 "ITUPLE" 1345225 NIL ITUPLE (NIL T) -8 NIL NIL) (-546 1342660 1342837 1343143 "ITRIGMNP" 1344046 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-545 1341405 1341609 1341892 "ITFUN3" 1342436 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-544 1341037 1341094 1341203 "ITFUN2" 1341342 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-543 1338841 1339912 1340208 "ITAYLOR" 1340773 NIL ITAYLOR (NIL T) -8 NIL NIL) (-542 1327835 1333029 1334187 "ISUPS" 1337715 NIL ISUPS (NIL T) -8 NIL NIL) (-541 1326943 1327082 1327317 "ISUMP" 1327683 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-540 1322207 1326744 1326823 "ISTRING" 1326896 NIL ISTRING (NIL NIL) -8 NIL NIL) (-539 1321420 1321501 1321716 "IRURPK" 1322121 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-538 1320356 1320557 1320797 "IRSN" 1321200 T IRSN (NIL) -7 NIL NIL) (-537 1318393 1318748 1319182 "IRRF2F" 1319995 NIL IRRF2F (NIL T) -7 NIL NIL) (-536 1318140 1318178 1318254 "IRREDFFX" 1318349 NIL IRREDFFX (NIL T) -7 NIL NIL) (-535 1316755 1317014 1317313 "IROOT" 1317873 NIL IROOT (NIL T) -7 NIL NIL) (-534 1313397 1314448 1315136 "IR" 1316099 NIL IR (NIL T) -8 NIL NIL) (-533 1311010 1311505 1312071 "IR2" 1312875 NIL IR2 (NIL T T) -7 NIL NIL) (-532 1310086 1310199 1310419 "IR2F" 1310893 NIL IR2F (NIL T T) -7 NIL NIL) (-531 1309877 1309911 1309971 "IPRNTPK" 1310046 T IPRNTPK (NIL) -7 NIL NIL) (-530 1306431 1309766 1309835 "IPF" 1309840 NIL IPF (NIL NIL) -8 NIL NIL) (-529 1304748 1306356 1306413 "IPADIC" 1306418 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-528 1304247 1304305 1304494 "INVLAPLA" 1304684 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-527 1293896 1296249 1298635 "INTTR" 1301911 NIL INTTR (NIL T T) -7 NIL NIL) (-526 1290258 1290999 1291855 "INTTOOLS" 1293089 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-525 1289844 1289935 1290052 "INTSLPE" 1290161 T INTSLPE (NIL) -7 NIL NIL) (-524 1287794 1289767 1289826 "INTRVL" 1289831 NIL INTRVL (NIL T) -8 NIL NIL) (-523 1285401 1285913 1286487 "INTRF" 1287279 NIL INTRF (NIL T) -7 NIL NIL) (-522 1284816 1284913 1285054 "INTRET" 1285299 NIL INTRET (NIL T) -7 NIL NIL) (-521 1282818 1283207 1283676 "INTRAT" 1284424 NIL INTRAT (NIL T T) -7 NIL NIL) (-520 1280059 1280642 1281263 "INTPM" 1282307 NIL INTPM (NIL T T) -7 NIL NIL) (-519 1276770 1277369 1278112 "INTPAF" 1279446 NIL INTPAF (NIL T T T) -7 NIL NIL) (-518 1272053 1272989 1274014 "INTPACK" 1275765 T INTPACK (NIL) -7 NIL NIL) (-517 1268907 1271782 1271909 "INT" 1271946 T INT (NIL) -8 NIL NIL) (-516 1268159 1268311 1268519 "INTHERTR" 1268749 NIL INTHERTR (NIL T T) -7 NIL NIL) (-515 1267598 1267678 1267866 "INTHERAL" 1268073 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-514 1265444 1265887 1266344 "INTHEORY" 1267161 T INTHEORY (NIL) -7 NIL NIL) (-513 1256769 1258389 1260166 "INTG0" 1263797 NIL INTG0 (NIL T T T) -7 NIL NIL) (-512 1237366 1242150 1246954 "INTFTBL" 1251985 T INTFTBL (NIL) -8 NIL NIL) (-511 1236615 1236753 1236926 "INTFACT" 1237225 NIL INTFACT (NIL T) -7 NIL NIL) (-510 1234006 1234452 1235015 "INTEF" 1236169 NIL INTEF (NIL T T) -7 NIL NIL) (-509 1232467 1233216 1233245 "INTDOM" 1233546 T INTDOM (NIL) -9 NIL 1233753) (-508 1231836 1232010 1232252 "INTDOM-" 1232257 NIL INTDOM- (NIL T) -8 NIL NIL) (-507 1228328 1230260 1230315 "INTCAT" 1231114 NIL INTCAT (NIL T) -9 NIL 1231433) (-506 1227801 1227903 1228031 "INTBIT" 1228220 T INTBIT (NIL) -7 NIL NIL) (-505 1226476 1226630 1226943 "INTALG" 1227646 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-504 1225933 1226023 1226193 "INTAF" 1226380 NIL INTAF (NIL T T) -7 NIL NIL) (-503 1219399 1225743 1225883 "INTABL" 1225888 NIL INTABL (NIL T T T) -8 NIL NIL) (-502 1214349 1217078 1217107 "INS" 1218075 T INS (NIL) -9 NIL 1218756) (-501 1211589 1212360 1213334 "INS-" 1213407 NIL INS- (NIL T) -8 NIL NIL) (-500 1210368 1210595 1210892 "INPSIGN" 1211342 NIL INPSIGN (NIL T T) -7 NIL NIL) (-499 1209486 1209603 1209800 "INPRODPF" 1210248 NIL INPRODPF (NIL T T) -7 NIL NIL) (-498 1208380 1208497 1208734 "INPRODFF" 1209366 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-497 1207380 1207532 1207792 "INNMFACT" 1208216 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-496 1206577 1206674 1206862 "INMODGCD" 1207279 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-495 1205086 1205330 1205654 "INFSP" 1206322 NIL INFSP (NIL T T T) -7 NIL NIL) (-494 1204270 1204387 1204570 "INFPROD0" 1204966 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-493 1201280 1202439 1202930 "INFORM" 1203787 T INFORM (NIL) -8 NIL NIL) (-492 1200890 1200950 1201048 "INFORM1" 1201215 NIL INFORM1 (NIL T) -7 NIL NIL) (-491 1200413 1200502 1200616 "INFINITY" 1200796 T INFINITY (NIL) -7 NIL NIL) (-490 1199031 1199279 1199600 "INEP" 1200161 NIL INEP (NIL T T T) -7 NIL NIL) (-489 1198307 1198928 1198993 "INDE" 1198998 NIL INDE (NIL T) -8 NIL NIL) (-488 1197871 1197939 1198056 "INCRMAPS" 1198234 NIL INCRMAPS (NIL T) -7 NIL NIL) (-487 1193182 1194107 1195051 "INBFF" 1196959 NIL INBFF (NIL T) -7 NIL NIL) (-486 1189683 1193027 1193130 "IMATRIX" 1193135 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-485 1188397 1188520 1188834 "IMATQF" 1189540 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-484 1186619 1186846 1187182 "IMATLIN" 1188154 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-483 1181245 1186543 1186601 "ILIST" 1186606 NIL ILIST (NIL T NIL) -8 NIL NIL) (-482 1179204 1181105 1181218 "IIARRAY2" 1181223 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-481 1174572 1179115 1179179 "IFF" 1179184 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-480 1169621 1173864 1174052 "IFARRAY" 1174429 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-479 1168828 1169525 1169598 "IFAMON" 1169603 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-478 1168411 1168476 1168531 "IEVALAB" 1168738 NIL IEVALAB (NIL T T) -9 NIL NIL) (-477 1168086 1168154 1168314 "IEVALAB-" 1168319 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-476 1167744 1168000 1168063 "IDPO" 1168068 NIL IDPO (NIL T T) -8 NIL NIL) (-475 1167021 1167633 1167708 "IDPOAMS" 1167713 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-474 1166355 1166910 1166985 "IDPOAM" 1166990 NIL IDPOAM (NIL T T) -8 NIL NIL) (-473 1165440 1165690 1165744 "IDPC" 1166157 NIL IDPC (NIL T T) -9 NIL 1166306) (-472 1164936 1165332 1165405 "IDPAM" 1165410 NIL IDPAM (NIL T T) -8 NIL NIL) (-471 1164339 1164828 1164901 "IDPAG" 1164906 NIL IDPAG (NIL T T) -8 NIL NIL) (-470 1160594 1161442 1162337 "IDECOMP" 1163496 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-469 1153470 1154519 1155565 "IDEAL" 1159631 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-468 1152634 1152746 1152945 "ICDEN" 1153354 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-467 1151733 1152114 1152261 "ICARD" 1152507 T ICARD (NIL) -8 NIL NIL) (-466 1149805 1150118 1150521 "IBPTOOLS" 1151410 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-465 1145419 1149425 1149538 "IBITS" 1149724 NIL IBITS (NIL NIL) -8 NIL NIL) (-464 1142142 1142718 1143413 "IBATOOL" 1144836 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-463 1139922 1140383 1140916 "IBACHIN" 1141677 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-462 1137805 1139768 1139871 "IARRAY2" 1139876 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-461 1133964 1137731 1137788 "IARRAY1" 1137793 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-460 1127904 1132382 1132860 "IAN" 1133506 T IAN (NIL) -8 NIL NIL) (-459 1127415 1127472 1127645 "IALGFACT" 1127841 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-458 1126942 1127055 1127084 "HYPCAT" 1127291 T HYPCAT (NIL) -9 NIL NIL) (-457 1126480 1126597 1126783 "HYPCAT-" 1126788 NIL HYPCAT- (NIL T) -8 NIL NIL) (-456 1123166 1124497 1124539 "HOAGG" 1125520 NIL HOAGG (NIL T) -9 NIL 1126192) (-455 1121760 1122159 1122685 "HOAGG-" 1122690 NIL HOAGG- (NIL T T) -8 NIL NIL) (-454 1115591 1121201 1121367 "HEXADEC" 1121614 T HEXADEC (NIL) -8 NIL NIL) (-453 1114339 1114561 1114824 "HEUGCD" 1115368 NIL HEUGCD (NIL T) -7 NIL NIL) (-452 1113442 1114176 1114306 "HELLFDIV" 1114311 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-451 1111676 1113219 1113307 "HEAP" 1113386 NIL HEAP (NIL T) -8 NIL NIL) (-450 1105549 1111591 1111653 "HDP" 1111658 NIL HDP (NIL NIL T) -8 NIL NIL) (-449 1099261 1105186 1105337 "HDMP" 1105450 NIL HDMP (NIL NIL T) -8 NIL NIL) (-448 1098586 1098725 1098889 "HB" 1099117 T HB (NIL) -7 NIL NIL) (-447 1092095 1098432 1098536 "HASHTBL" 1098541 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-446 1089848 1091723 1091902 "HACKPI" 1091936 T HACKPI (NIL) -8 NIL NIL) (-445 1085544 1089702 1089814 "GTSET" 1089819 NIL GTSET (NIL T T T T) -8 NIL NIL) (-444 1079082 1085422 1085520 "GSTBL" 1085525 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-443 1071320 1078120 1078383 "GSERIES" 1078874 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-442 1070342 1070795 1070824 "GROUP" 1071085 T GROUP (NIL) -9 NIL 1071244) (-441 1069458 1069681 1070025 "GROUP-" 1070030 NIL GROUP- (NIL T) -8 NIL NIL) (-440 1067827 1068146 1068533 "GROEBSOL" 1069135 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-439 1066767 1067029 1067081 "GRMOD" 1067610 NIL GRMOD (NIL T T) -9 NIL 1067778) (-438 1066535 1066571 1066699 "GRMOD-" 1066704 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-437 1061875 1062897 1063894 "GRIMAGE" 1065558 T GRIMAGE (NIL) -8 NIL NIL) (-436 1060342 1060602 1060926 "GRDEF" 1061571 T GRDEF (NIL) -7 NIL NIL) (-435 1059786 1059902 1060043 "GRAY" 1060221 T GRAY (NIL) -7 NIL NIL) (-434 1059019 1059399 1059451 "GRALG" 1059604 NIL GRALG (NIL T T) -9 NIL 1059696) (-433 1058680 1058753 1058916 "GRALG-" 1058921 NIL GRALG- (NIL T T T) -8 NIL NIL) (-432 1055488 1058269 1058445 "GPOLSET" 1058587 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-431 1054844 1054901 1055158 "GOSPER" 1055425 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-430 1050603 1051282 1051808 "GMODPOL" 1054543 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-429 1049608 1049792 1050030 "GHENSEL" 1050415 NIL GHENSEL (NIL T T) -7 NIL NIL) (-428 1043674 1044517 1045543 "GENUPS" 1048692 NIL GENUPS (NIL T T) -7 NIL NIL) (-427 1043371 1043422 1043511 "GENUFACT" 1043617 NIL GENUFACT (NIL T) -7 NIL NIL) (-426 1042783 1042860 1043025 "GENPGCD" 1043289 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-425 1042257 1042292 1042505 "GENMFACT" 1042742 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-424 1040825 1041080 1041387 "GENEEZ" 1042000 NIL GENEEZ (NIL T T) -7 NIL NIL) (-423 1034699 1040438 1040599 "GDMP" 1040748 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-422 1024080 1028472 1029577 "GCNAALG" 1033683 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-421 1022501 1023373 1023402 "GCDDOM" 1023657 T GCDDOM (NIL) -9 NIL 1023814) (-420 1021971 1022098 1022313 "GCDDOM-" 1022318 NIL GCDDOM- (NIL T) -8 NIL NIL) (-419 1020645 1020830 1021133 "GB" 1021751 NIL GB (NIL T T T T) -7 NIL NIL) (-418 1009265 1011591 1013983 "GBINTERN" 1018336 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-417 1007102 1007394 1007815 "GBF" 1008940 NIL GBF (NIL T T T T) -7 NIL NIL) (-416 1005883 1006048 1006315 "GBEUCLID" 1006918 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-415 1005232 1005357 1005506 "GAUSSFAC" 1005754 T GAUSSFAC (NIL) -7 NIL NIL) (-414 1003611 1003913 1004225 "GALUTIL" 1004952 NIL GALUTIL (NIL T) -7 NIL NIL) (-413 1001928 1002202 1002525 "GALPOLYU" 1003338 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-412 999317 999607 1000012 "GALFACTU" 1001625 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-411 991123 992622 994230 "GALFACT" 997749 NIL GALFACT (NIL T) -7 NIL NIL) (-410 988510 989168 989197 "FVFUN" 990353 T FVFUN (NIL) -9 NIL 991073) (-409 987775 987957 987986 "FVC" 988277 T FVC (NIL) -9 NIL 988460) (-408 987417 987572 987653 "FUNCTION" 987727 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-407 985087 985638 986127 "FT" 986948 T FT (NIL) -8 NIL NIL) (-406 983905 984388 984591 "FTEM" 984904 T FTEM (NIL) -8 NIL NIL) (-405 982172 982460 982861 "FSUPFACT" 983598 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-404 980569 980858 981190 "FST" 981860 T FST (NIL) -8 NIL NIL) (-403 979744 979850 980044 "FSRED" 980451 NIL FSRED (NIL T T) -7 NIL NIL) (-402 978425 978680 979033 "FSPRMELT" 979460 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-401 975510 975948 976447 "FSPECF" 977988 NIL FSPECF (NIL T T) -7 NIL NIL) (-400 957847 966404 966445 "FS" 970283 NIL FS (NIL T) -9 NIL 972554) (-399 946497 949487 953543 "FS-" 953840 NIL FS- (NIL T T) -8 NIL NIL) (-398 946013 946067 946243 "FSINT" 946438 NIL FSINT (NIL T T) -7 NIL NIL) (-397 944298 945010 945311 "FSERIES" 945794 NIL FSERIES (NIL T T) -8 NIL NIL) (-396 943316 943432 943662 "FSCINT" 944178 NIL FSCINT (NIL T T) -7 NIL NIL) (-395 939552 942262 942304 "FSAGG" 942674 NIL FSAGG (NIL T) -9 NIL 942931) (-394 937314 937915 938711 "FSAGG-" 938806 NIL FSAGG- (NIL T T) -8 NIL NIL) (-393 936356 936499 936726 "FSAGG2" 937167 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-392 934015 934294 934847 "FS2UPS" 936074 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-391 933601 933644 933797 "FS2" 933966 NIL FS2 (NIL T T T T) -7 NIL NIL) (-390 932461 932632 932940 "FS2EXPXP" 933426 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-389 931887 932002 932154 "FRUTIL" 932341 NIL FRUTIL (NIL T) -7 NIL NIL) (-388 923324 927402 928750 "FR" 930571 NIL FR (NIL T) -8 NIL NIL) (-387 918401 921044 921085 "FRNAALG" 922481 NIL FRNAALG (NIL T) -9 NIL 923087) (-386 914080 915150 916425 "FRNAALG-" 917175 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-385 913718 913761 913888 "FRNAAF2" 914031 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-384 912085 912577 912870 "FRMOD" 913532 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-383 909808 910476 910792 "FRIDEAL" 911876 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-382 909007 909094 909381 "FRIDEAL2" 909715 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-381 908266 908674 908716 "FRETRCT" 908721 NIL FRETRCT (NIL T) -9 NIL 908890) (-380 907378 907609 907960 "FRETRCT-" 907965 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-379 904587 905807 905867 "FRAMALG" 906749 NIL FRAMALG (NIL T T) -9 NIL 907041) (-378 902720 903176 903806 "FRAMALG-" 904029 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-377 896632 902205 902476 "FRAC" 902481 NIL FRAC (NIL T) -8 NIL NIL) (-376 896268 896325 896432 "FRAC2" 896569 NIL FRAC2 (NIL T T) -7 NIL NIL) (-375 895904 895961 896068 "FR2" 896205 NIL FR2 (NIL T T) -7 NIL NIL) (-374 890533 893446 893475 "FPS" 894594 T FPS (NIL) -9 NIL 895147) (-373 889982 890091 890255 "FPS-" 890401 NIL FPS- (NIL T) -8 NIL NIL) (-372 887383 889080 889109 "FPC" 889334 T FPC (NIL) -9 NIL 889476) (-371 887176 887216 887313 "FPC-" 887318 NIL FPC- (NIL T) -8 NIL NIL) (-370 886056 886666 886708 "FPATMAB" 886713 NIL FPATMAB (NIL T) -9 NIL 886863) (-369 883756 884232 884658 "FPARFRAC" 885693 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-368 879151 879648 880330 "FORTRAN" 883188 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-367 876867 877367 877906 "FORT" 878632 T FORT (NIL) -7 NIL NIL) (-366 874542 875104 875133 "FORTFN" 876193 T FORTFN (NIL) -9 NIL 876817) (-365 874305 874355 874384 "FORTCAT" 874443 T FORTCAT (NIL) -9 NIL 874505) (-364 872365 872848 873247 "FORMULA" 873926 T FORMULA (NIL) -8 NIL NIL) (-363 872153 872183 872252 "FORMULA1" 872329 NIL FORMULA1 (NIL T) -7 NIL NIL) (-362 871676 871728 871901 "FORDER" 872095 NIL FORDER (NIL T T T T) -7 NIL NIL) (-361 870772 870936 871129 "FOP" 871503 T FOP (NIL) -7 NIL NIL) (-360 869380 870052 870226 "FNLA" 870654 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-359 868048 868437 868466 "FNCAT" 869038 T FNCAT (NIL) -9 NIL 869331) (-358 867614 868007 868035 "FNAME" 868040 T FNAME (NIL) -8 NIL NIL) (-357 866273 867246 867275 "FMTC" 867280 T FMTC (NIL) -9 NIL 867315) (-356 862593 863800 864427 "FMONOID" 865679 NIL FMONOID (NIL T) -8 NIL NIL) (-355 861815 862338 862485 "FM" 862490 NIL FM (NIL T T) -8 NIL NIL) (-354 859238 859884 859913 "FMFUN" 861057 T FMFUN (NIL) -9 NIL 861765) (-353 858506 858687 858716 "FMC" 859006 T FMC (NIL) -9 NIL 859188) (-352 855736 856570 856624 "FMCAT" 857806 NIL FMCAT (NIL T T) -9 NIL 858299) (-351 854631 855504 855603 "FM1" 855681 NIL FM1 (NIL T T) -8 NIL NIL) (-350 852405 852821 853315 "FLOATRP" 854182 NIL FLOATRP (NIL T) -7 NIL NIL) (-349 845892 850061 850691 "FLOAT" 851795 T FLOAT (NIL) -8 NIL NIL) (-348 843330 843830 844408 "FLOATCP" 845359 NIL FLOATCP (NIL T) -7 NIL NIL) (-347 842119 842967 843008 "FLINEXP" 843013 NIL FLINEXP (NIL T) -9 NIL 843105) (-346 841274 841509 841836 "FLINEXP-" 841841 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-345 840350 840494 840718 "FLASORT" 841126 NIL FLASORT (NIL T T) -7 NIL NIL) (-344 837568 838410 838463 "FLALG" 839690 NIL FLALG (NIL T T) -9 NIL 840157) (-343 831359 835055 835097 "FLAGG" 836359 NIL FLAGG (NIL T) -9 NIL 837007) (-342 830085 830424 830914 "FLAGG-" 830919 NIL FLAGG- (NIL T T) -8 NIL NIL) (-341 829127 829270 829497 "FLAGG2" 829938 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-340 826102 827120 827180 "FINRALG" 828308 NIL FINRALG (NIL T T) -9 NIL 828813) (-339 825262 825491 825830 "FINRALG-" 825835 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-338 824668 824881 824910 "FINITE" 825106 T FINITE (NIL) -9 NIL 825213) (-337 817128 819289 819330 "FINAALG" 822997 NIL FINAALG (NIL T) -9 NIL 824449) (-336 812469 813510 814654 "FINAALG-" 816033 NIL FINAALG- (NIL T T) -8 NIL NIL) (-335 811864 812224 812327 "FILE" 812399 NIL FILE (NIL T) -8 NIL NIL) (-334 810548 810860 810915 "FILECAT" 811599 NIL FILECAT (NIL T T) -9 NIL 811815) (-333 808363 809919 809948 "FIELD" 809988 T FIELD (NIL) -9 NIL 810068) (-332 806983 807368 807879 "FIELD-" 807884 NIL FIELD- (NIL T) -8 NIL NIL) (-331 804798 805620 805966 "FGROUP" 806670 NIL FGROUP (NIL T) -8 NIL NIL) (-330 803888 804052 804272 "FGLMICPK" 804630 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-329 799690 803813 803870 "FFX" 803875 NIL FFX (NIL T NIL) -8 NIL NIL) (-328 799291 799352 799487 "FFSLPE" 799623 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-327 795287 796063 796859 "FFPOLY" 798527 NIL FFPOLY (NIL T) -7 NIL NIL) (-326 794791 794827 795036 "FFPOLY2" 795245 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-325 790613 794710 794773 "FFP" 794778 NIL FFP (NIL T NIL) -8 NIL NIL) (-324 785981 790524 790588 "FF" 790593 NIL FF (NIL NIL NIL) -8 NIL NIL) (-323 781077 785324 785514 "FFNBX" 785835 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-322 775987 780212 780470 "FFNBP" 780931 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-321 770590 775271 775482 "FFNB" 775820 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-320 769422 769620 769935 "FFINTBAS" 770387 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-319 765598 767838 767867 "FFIELDC" 768487 T FFIELDC (NIL) -9 NIL 768863) (-318 764261 764631 765128 "FFIELDC-" 765133 NIL FFIELDC- (NIL T) -8 NIL NIL) (-317 763831 763876 764000 "FFHOM" 764203 NIL FFHOM (NIL T T T) -7 NIL NIL) (-316 761529 762013 762530 "FFF" 763346 NIL FFF (NIL T) -7 NIL NIL) (-315 757117 761271 761372 "FFCGX" 761472 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-314 752719 756849 756956 "FFCGP" 757060 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-313 747872 752446 752554 "FFCG" 752655 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-312 729671 738794 738881 "FFCAT" 744046 NIL FFCAT (NIL T T T) -9 NIL 745531) (-311 724869 725916 727230 "FFCAT-" 728460 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-310 724280 724323 724558 "FFCAT2" 724820 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-309 713484 717274 718489 "FEXPR" 723137 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-308 712486 712921 712963 "FEVALAB" 713047 NIL FEVALAB (NIL T) -9 NIL 713305) (-307 711645 711855 712193 "FEVALAB-" 712198 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-306 710238 711028 711231 "FDIV" 711544 NIL FDIV (NIL T T T T) -8 NIL NIL) (-305 707304 708019 708135 "FDIVCAT" 709703 NIL FDIVCAT (NIL T T T T) -9 NIL 710140) (-304 707066 707093 707263 "FDIVCAT-" 707268 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-303 706286 706373 706650 "FDIV2" 706973 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-302 704979 705236 705523 "FCPAK1" 706019 T FCPAK1 (NIL) -7 NIL NIL) (-301 704107 704479 704620 "FCOMP" 704870 NIL FCOMP (NIL T) -8 NIL NIL) (-300 687747 691159 694719 "FC" 700567 T FC (NIL) -8 NIL NIL) (-299 680296 684342 684383 "FAXF" 686185 NIL FAXF (NIL T) -9 NIL 686875) (-298 677575 678230 679055 "FAXF-" 679520 NIL FAXF- (NIL T T) -8 NIL NIL) (-297 672681 676951 677127 "FARRAY" 677432 NIL FARRAY (NIL T) -8 NIL NIL) (-296 668027 670098 670151 "FAMR" 671163 NIL FAMR (NIL T T) -9 NIL 671620) (-295 666918 667220 667654 "FAMR-" 667659 NIL FAMR- (NIL T T T) -8 NIL NIL) (-294 666114 666840 666893 "FAMONOID" 666898 NIL FAMONOID (NIL T) -8 NIL NIL) (-293 663947 664631 664685 "FAMONC" 665626 NIL FAMONC (NIL T T) -9 NIL 666010) (-292 662641 663703 663839 "FAGROUP" 663844 NIL FAGROUP (NIL T) -8 NIL NIL) (-291 660444 660763 661165 "FACUTIL" 662322 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-290 659543 659728 659950 "FACTFUNC" 660254 NIL FACTFUNC (NIL T) -7 NIL NIL) (-289 651866 658794 659006 "EXPUPXS" 659399 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-288 649365 649901 650483 "EXPRTUBE" 651304 T EXPRTUBE (NIL) -7 NIL NIL) (-287 645559 646151 646888 "EXPRODE" 648704 NIL EXPRODE (NIL T T) -7 NIL NIL) (-286 630727 644224 644647 "EXPR" 645168 NIL EXPR (NIL T) -8 NIL NIL) (-285 625155 625742 626554 "EXPR2UPS" 630025 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-284 624791 624848 624955 "EXPR2" 625092 NIL EXPR2 (NIL T T) -7 NIL NIL) (-283 616145 623928 624223 "EXPEXPAN" 624629 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-282 615972 616102 616131 "EXIT" 616136 T EXIT (NIL) -8 NIL NIL) (-281 615599 615661 615774 "EVALCYC" 615904 NIL EVALCYC (NIL T) -7 NIL NIL) (-280 615139 615257 615299 "EVALAB" 615469 NIL EVALAB (NIL T) -9 NIL 615573) (-279 614620 614742 614963 "EVALAB-" 614968 NIL EVALAB- (NIL T T) -8 NIL NIL) (-278 612082 613394 613423 "EUCDOM" 613978 T EUCDOM (NIL) -9 NIL 614328) (-277 610487 610929 611519 "EUCDOM-" 611524 NIL EUCDOM- (NIL T) -8 NIL NIL) (-276 598100 600839 603570 "ESTOOLS" 607776 T ESTOOLS (NIL) -7 NIL NIL) (-275 597736 597793 597900 "ESTOOLS2" 598037 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-274 597487 597529 597609 "ESTOOLS1" 597688 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-273 591426 593150 593179 "ES" 595943 T ES (NIL) -9 NIL 597347) (-272 586374 587660 589477 "ES-" 589641 NIL ES- (NIL T) -8 NIL NIL) (-271 582781 583533 584305 "ESCONT" 585622 T ESCONT (NIL) -7 NIL NIL) (-270 582526 582558 582640 "ESCONT1" 582743 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-269 582201 582251 582351 "ES2" 582470 NIL ES2 (NIL T T) -7 NIL NIL) (-268 581831 581889 581998 "ES1" 582137 NIL ES1 (NIL T T) -7 NIL NIL) (-267 581047 581176 581352 "ERROR" 581675 T ERROR (NIL) -7 NIL NIL) (-266 574562 580906 580997 "EQTBL" 581002 NIL EQTBL (NIL T T) -8 NIL NIL) (-265 567027 569908 571341 "EQ" 573162 NIL -3128 (NIL T) -8 NIL NIL) (-264 566659 566716 566825 "EQ2" 566964 NIL EQ2 (NIL T T) -7 NIL NIL) (-263 561951 562997 564090 "EP" 565598 NIL EP (NIL T) -7 NIL NIL) (-262 561110 561674 561703 "ENTIRER" 561708 T ENTIRER (NIL) -9 NIL 561753) (-261 557566 559065 559435 "EMR" 560909 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-260 556710 556895 556950 "ELTAGG" 557330 NIL ELTAGG (NIL T T) -9 NIL 557540) (-259 556429 556491 556632 "ELTAGG-" 556637 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-258 556217 556246 556301 "ELTAB" 556385 NIL ELTAB (NIL T T) -9 NIL NIL) (-257 555343 555489 555688 "ELFUTS" 556068 NIL ELFUTS (NIL T T) -7 NIL NIL) (-256 555084 555140 555169 "ELEMFUN" 555274 T ELEMFUN (NIL) -9 NIL NIL) (-255 554954 554975 555043 "ELEMFUN-" 555048 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-254 549850 553053 553095 "ELAGG" 554035 NIL ELAGG (NIL T) -9 NIL 554496) (-253 548135 548569 549232 "ELAGG-" 549237 NIL ELAGG- (NIL T T) -8 NIL NIL) (-252 541005 542804 543630 "EFUPXS" 547412 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-251 534457 536258 537067 "EFULS" 540282 NIL EFULS (NIL T T T) -8 NIL NIL) (-250 531888 532246 532724 "EFSTRUC" 534089 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-249 520960 522525 524085 "EF" 530403 NIL EF (NIL T T) -7 NIL NIL) (-248 520061 520445 520594 "EAB" 520831 T EAB (NIL) -8 NIL NIL) (-247 519274 520020 520048 "E04UCFA" 520053 T E04UCFA (NIL) -8 NIL NIL) (-246 518487 519233 519261 "E04NAFA" 519266 T E04NAFA (NIL) -8 NIL NIL) (-245 517700 518446 518474 "E04MBFA" 518479 T E04MBFA (NIL) -8 NIL NIL) (-244 516913 517659 517687 "E04JAFA" 517692 T E04JAFA (NIL) -8 NIL NIL) (-243 516128 516872 516900 "E04GCFA" 516905 T E04GCFA (NIL) -8 NIL NIL) (-242 515343 516087 516115 "E04FDFA" 516120 T E04FDFA (NIL) -8 NIL NIL) (-241 514556 515302 515330 "E04DGFA" 515335 T E04DGFA (NIL) -8 NIL NIL) (-240 508742 510086 511448 "E04AGNT" 513214 T E04AGNT (NIL) -7 NIL NIL) (-239 507468 507948 507989 "DVARCAT" 508464 NIL DVARCAT (NIL T) -9 NIL 508662) (-238 506672 506884 507198 "DVARCAT-" 507203 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-237 499534 506474 506601 "DSMP" 506606 NIL DSMP (NIL T T T) -8 NIL NIL) (-236 494360 495491 496555 "DROPT" 498490 T DROPT (NIL) -8 NIL NIL) (-235 494025 494084 494182 "DROPT1" 494295 NIL DROPT1 (NIL T) -7 NIL NIL) (-234 489147 490271 491406 "DROPT0" 492910 T DROPT0 (NIL) -7 NIL NIL) (-233 487492 487817 488203 "DRAWPT" 488781 T DRAWPT (NIL) -7 NIL NIL) (-232 482167 483066 484121 "DRAW" 486490 NIL DRAW (NIL T) -7 NIL NIL) (-231 481808 481859 481975 "DRAWHACK" 482110 NIL DRAWHACK (NIL T) -7 NIL NIL) (-230 480553 480818 481105 "DRAWCX" 481541 T DRAWCX (NIL) -7 NIL NIL) (-229 480071 480139 480289 "DRAWCURV" 480479 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-228 470675 472597 474676 "DRAWCFUN" 478012 T DRAWCFUN (NIL) -7 NIL NIL) (-227 467494 469370 469412 "DQAGG" 470041 NIL DQAGG (NIL T) -9 NIL 470314) (-226 455954 462692 462775 "DPOLCAT" 464613 NIL DPOLCAT (NIL T T T T) -9 NIL 465156) (-225 450794 452140 454097 "DPOLCAT-" 454102 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-224 444878 450656 450753 "DPMO" 450758 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-223 438865 444659 444825 "DPMM" 444830 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-222 438784 438810 438845 "DOMAIN" 438850 T DOMAIN (NIL) -8 NIL NIL) (-221 432496 438421 438572 "DMP" 438685 NIL DMP (NIL NIL T) -8 NIL NIL) (-220 432096 432152 432296 "DLP" 432434 NIL DLP (NIL T) -7 NIL NIL) (-219 425746 431197 431424 "DLIST" 431901 NIL DLIST (NIL T) -8 NIL NIL) (-218 422599 424602 424644 "DLAGG" 425194 NIL DLAGG (NIL T) -9 NIL 425422) (-217 421261 421953 421982 "DIVRING" 422132 T DIVRING (NIL) -9 NIL 422240) (-216 420249 420502 420895 "DIVRING-" 420900 NIL DIVRING- (NIL T) -8 NIL NIL) (-215 418351 418708 419114 "DISPLAY" 419863 T DISPLAY (NIL) -7 NIL NIL) (-214 412246 418265 418328 "DIRPROD" 418333 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-213 411094 411297 411562 "DIRPROD2" 412039 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-212 400738 406737 406791 "DIRPCAT" 407199 NIL DIRPCAT (NIL NIL T) -9 NIL 408015) (-211 398064 398706 399587 "DIRPCAT-" 399924 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-210 397351 397511 397697 "DIOSP" 397898 T DIOSP (NIL) -7 NIL NIL) (-209 394060 396264 396306 "DIOPS" 396740 NIL DIOPS (NIL T) -9 NIL 396968) (-208 393609 393723 393914 "DIOPS-" 393919 NIL DIOPS- (NIL T T) -8 NIL NIL) (-207 392480 393118 393147 "DIFRING" 393334 T DIFRING (NIL) -9 NIL 393443) (-206 392126 392203 392355 "DIFRING-" 392360 NIL DIFRING- (NIL T) -8 NIL NIL) (-205 389917 391199 391240 "DIFEXT" 391599 NIL DIFEXT (NIL T) -9 NIL 391890) (-204 388203 388631 389296 "DIFEXT-" 389301 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-203 385531 387735 387777 "DIAGG" 387782 NIL DIAGG (NIL T) -9 NIL 387802) (-202 384915 385072 385324 "DIAGG-" 385329 NIL DIAGG- (NIL T T) -8 NIL NIL) (-201 380386 383874 384151 "DHMATRIX" 384684 NIL DHMATRIX (NIL T) -8 NIL NIL) (-200 375998 376907 377917 "DFSFUN" 379396 T DFSFUN (NIL) -7 NIL NIL) (-199 370784 374712 375077 "DFLOAT" 375653 T DFLOAT (NIL) -8 NIL NIL) (-198 369017 369298 369693 "DFINTTLS" 370492 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-197 366050 367052 367450 "DERHAM" 368684 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-196 363905 365825 365914 "DEQUEUE" 365994 NIL DEQUEUE (NIL T) -8 NIL NIL) (-195 363123 363256 363451 "DEGRED" 363767 NIL DEGRED (NIL T T) -7 NIL NIL) (-194 359539 360280 361128 "DEFINTRF" 362355 NIL DEFINTRF (NIL T) -7 NIL NIL) (-193 357078 357545 358141 "DEFINTEF" 359060 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-192 350909 356519 356685 "DECIMAL" 356932 T DECIMAL (NIL) -8 NIL NIL) (-191 348421 348879 349385 "DDFACT" 350453 NIL DDFACT (NIL T T) -7 NIL NIL) (-190 348017 348060 348211 "DBLRESP" 348372 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-189 345727 346061 346430 "DBASE" 347775 NIL DBASE (NIL T) -8 NIL NIL) (-188 344862 345686 345714 "D03FAFA" 345719 T D03FAFA (NIL) -8 NIL NIL) (-187 343998 344821 344849 "D03EEFA" 344854 T D03EEFA (NIL) -8 NIL NIL) (-186 341948 342414 342903 "D03AGNT" 343529 T D03AGNT (NIL) -7 NIL NIL) (-185 341266 341907 341935 "D02EJFA" 341940 T D02EJFA (NIL) -8 NIL NIL) (-184 340584 341225 341253 "D02CJFA" 341258 T D02CJFA (NIL) -8 NIL NIL) (-183 339902 340543 340571 "D02BHFA" 340576 T D02BHFA (NIL) -8 NIL NIL) (-182 339220 339861 339889 "D02BBFA" 339894 T D02BBFA (NIL) -8 NIL NIL) (-181 332419 334006 335612 "D02AGNT" 337634 T D02AGNT (NIL) -7 NIL NIL) (-180 330200 330719 331262 "D01WGTS" 331896 T D01WGTS (NIL) -7 NIL NIL) (-179 329307 330159 330187 "D01TRNS" 330192 T D01TRNS (NIL) -8 NIL NIL) (-178 328414 329266 329294 "D01GBFA" 329299 T D01GBFA (NIL) -8 NIL NIL) (-177 327521 328373 328401 "D01FCFA" 328406 T D01FCFA (NIL) -8 NIL NIL) (-176 326628 327480 327508 "D01ASFA" 327513 T D01ASFA (NIL) -8 NIL NIL) (-175 325735 326587 326615 "D01AQFA" 326620 T D01AQFA (NIL) -8 NIL NIL) (-174 324842 325694 325722 "D01APFA" 325727 T D01APFA (NIL) -8 NIL NIL) (-173 323949 324801 324829 "D01ANFA" 324834 T D01ANFA (NIL) -8 NIL NIL) (-172 323056 323908 323936 "D01AMFA" 323941 T D01AMFA (NIL) -8 NIL NIL) (-171 322163 323015 323043 "D01ALFA" 323048 T D01ALFA (NIL) -8 NIL NIL) (-170 321270 322122 322150 "D01AKFA" 322155 T D01AKFA (NIL) -8 NIL NIL) (-169 320377 321229 321257 "D01AJFA" 321262 T D01AJFA (NIL) -8 NIL NIL) (-168 313709 315251 316803 "D01AGNT" 318845 T D01AGNT (NIL) -7 NIL NIL) (-167 313046 313174 313326 "CYCLOTOM" 313577 T CYCLOTOM (NIL) -7 NIL NIL) (-166 309781 310494 311221 "CYCLES" 312339 T CYCLES (NIL) -7 NIL NIL) (-165 309093 309227 309398 "CVMP" 309642 NIL CVMP (NIL T) -7 NIL NIL) (-164 306875 307132 307507 "CTRIGMNP" 308821 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-163 306249 306348 306501 "CSTTOOLS" 306772 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-162 302048 302705 303463 "CRFP" 305561 NIL CRFP (NIL T T) -7 NIL NIL) (-161 301095 301280 301508 "CRAPACK" 301852 NIL CRAPACK (NIL T) -7 NIL NIL) (-160 300481 300582 300785 "CPMATCH" 300972 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-159 300206 300234 300340 "CPIMA" 300447 NIL CPIMA (NIL T T T) -7 NIL NIL) (-158 296570 297242 297960 "COORDSYS" 299541 NIL COORDSYS (NIL T) -7 NIL NIL) (-157 292431 294573 295065 "CONTFRAC" 296110 NIL CONTFRAC (NIL T) -8 NIL NIL) (-156 291584 292148 292177 "COMRING" 292182 T COMRING (NIL) -9 NIL 292233) (-155 290665 290942 291126 "COMPPROP" 291420 T COMPPROP (NIL) -8 NIL NIL) (-154 290326 290361 290489 "COMPLPAT" 290624 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-153 280309 290137 290245 "COMPLEX" 290250 NIL COMPLEX (NIL T) -8 NIL NIL) (-152 279945 280002 280109 "COMPLEX2" 280246 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-151 279663 279698 279796 "COMPFACT" 279904 NIL COMPFACT (NIL T T) -7 NIL NIL) (-150 263943 274237 274278 "COMPCAT" 275280 NIL COMPCAT (NIL T) -9 NIL 276656) (-149 253459 256382 260009 "COMPCAT-" 260365 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-148 253190 253218 253320 "COMMUPC" 253425 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-147 252985 253018 253077 "COMMONOP" 253151 T COMMONOP (NIL) -7 NIL NIL) (-146 252568 252736 252823 "COMM" 252918 T COMM (NIL) -8 NIL NIL) (-145 251822 252014 252043 "COMBOPC" 252379 T COMBOPC (NIL) -9 NIL 252552) (-144 250718 250928 251170 "COMBINAT" 251612 NIL COMBINAT (NIL T) -7 NIL NIL) (-143 246924 247495 248133 "COMBF" 250142 NIL COMBF (NIL T T) -7 NIL NIL) (-142 245710 246040 246275 "COLOR" 246709 T COLOR (NIL) -8 NIL NIL) (-141 245350 245397 245522 "CMPLXRT" 245657 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-140 240908 241922 242988 "CLIP" 244304 T CLIP (NIL) -7 NIL NIL) (-139 239246 240016 240254 "CLIF" 240736 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-138 235477 237395 237437 "CLAGG" 238366 NIL CLAGG (NIL T) -9 NIL 238899) (-137 233899 234356 234939 "CLAGG-" 234944 NIL CLAGG- (NIL T T) -8 NIL NIL) (-136 233443 233528 233668 "CINTSLPE" 233808 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-135 230944 231415 231963 "CHVAR" 232971 NIL CHVAR (NIL T T T) -7 NIL NIL) (-134 230166 230730 230759 "CHARZ" 230764 T CHARZ (NIL) -9 NIL 230778) (-133 229920 229960 230038 "CHARPOL" 230120 NIL CHARPOL (NIL T) -7 NIL NIL) (-132 229026 229623 229652 "CHARNZ" 229699 T CHARNZ (NIL) -9 NIL 229754) (-131 227049 227716 228051 "CHAR" 228711 T CHAR (NIL) -8 NIL NIL) (-130 226774 226835 226864 "CFCAT" 226975 T CFCAT (NIL) -9 NIL NIL) (-129 226019 226130 226312 "CDEN" 226658 NIL CDEN (NIL T T T) -7 NIL NIL) (-128 222011 225172 225452 "CCLASS" 225759 T CCLASS (NIL) -8 NIL NIL) (-127 217064 218040 218793 "CARTEN" 221314 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-126 216172 216320 216541 "CARTEN2" 216911 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-125 214469 215324 215580 "CARD" 215936 T CARD (NIL) -8 NIL NIL) (-124 213841 214169 214198 "CACHSET" 214330 T CACHSET (NIL) -9 NIL 214407) (-123 213337 213633 213662 "CABMON" 213712 T CABMON (NIL) -9 NIL 213768) (-122 210900 213029 213136 "BTREE" 213263 NIL BTREE (NIL T) -8 NIL NIL) (-121 208404 210548 210670 "BTOURN" 210810 NIL BTOURN (NIL T) -8 NIL NIL) (-120 205828 207875 207917 "BTCAT" 207985 NIL BTCAT (NIL T) -9 NIL 208062) (-119 205495 205575 205724 "BTCAT-" 205729 NIL BTCAT- (NIL T T) -8 NIL NIL) (-118 200685 204556 204585 "BTAGG" 204841 T BTAGG (NIL) -9 NIL 205020) (-117 200108 200252 200482 "BTAGG-" 200487 NIL BTAGG- (NIL T) -8 NIL NIL) (-116 197158 199386 199601 "BSTREE" 199925 NIL BSTREE (NIL T) -8 NIL NIL) (-115 196296 196422 196606 "BRILL" 197014 NIL BRILL (NIL T) -7 NIL NIL) (-114 193004 195025 195067 "BRAGG" 195716 NIL BRAGG (NIL T) -9 NIL 195972) (-113 191533 191939 192494 "BRAGG-" 192499 NIL BRAGG- (NIL T T) -8 NIL NIL) (-112 184741 190879 191063 "BPADICRT" 191381 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-111 183045 184678 184723 "BPADIC" 184728 NIL BPADIC (NIL NIL) -8 NIL NIL) (-110 182745 182775 182888 "BOUNDZRO" 183009 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-109 178260 179351 180218 "BOP" 181898 T BOP (NIL) -8 NIL NIL) (-108 175883 176327 176846 "BOP1" 177774 NIL BOP1 (NIL T) -7 NIL NIL) (-107 174236 174926 175220 "BOOLEAN" 175609 T BOOLEAN (NIL) -8 NIL NIL) (-106 173602 173980 174033 "BMODULE" 174038 NIL BMODULE (NIL T T) -9 NIL 174102) (-105 169412 173400 173473 "BITS" 173549 T BITS (NIL) -8 NIL NIL) (-104 168509 168944 169096 "BINFILE" 169280 T BINFILE (NIL) -8 NIL NIL) (-103 162344 167953 168118 "BINARY" 168364 T BINARY (NIL) -8 NIL NIL) (-102 160177 161599 161641 "BGAGG" 161901 NIL BGAGG (NIL T) -9 NIL 162038) (-101 160008 160040 160131 "BGAGG-" 160136 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 159106 159392 159597 "BFUNCT" 159823 T BFUNCT (NIL) -8 NIL NIL) (-99 157809 157987 158271 "BEZOUT" 158931 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154340 156669 156997 "BBTREE" 157512 NIL BBTREE (NIL T) -8 NIL NIL) (-97 154077 154130 154157 "BASTYPE" 154274 T BASTYPE (NIL) -9 NIL NIL) (-96 153933 153961 154031 "BASTYPE-" 154036 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153371 153447 153597 "BALFACT" 153844 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 152193 152790 152975 "AUTOMOR" 153216 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151918 151923 151950 "ATTREG" 151955 T ATTREG (NIL) -9 NIL NIL) (-92 150197 150615 150967 "ATTRBUT" 151584 T ATTRBUT (NIL) -8 NIL NIL) (-91 149732 149845 149872 "ATRIG" 150073 T ATRIG (NIL) -9 NIL NIL) (-90 149541 149582 149669 "ATRIG-" 149674 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147744 149317 149405 "ASTACK" 149484 NIL ASTACK (NIL T) -8 NIL NIL) (-88 146251 146548 146912 "ASSOCEQ" 147427 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 145283 145910 146034 "ASP9" 146158 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 145047 145231 145270 "ASP8" 145275 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143917 144652 144794 "ASP80" 144936 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142816 143552 143684 "ASP7" 143816 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141772 142493 142611 "ASP78" 142729 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140743 141452 141569 "ASP77" 141686 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139658 140381 140512 "ASP74" 140643 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138559 139293 139425 "ASP73" 139557 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137514 138236 138354 "ASP6" 138472 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136463 137191 137309 "ASP55" 137427 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135413 136137 136256 "ASP50" 136375 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134501 135114 135224 "ASP4" 135334 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133589 134202 134312 "ASP49" 134422 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132374 133128 133296 "ASP42" 133478 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 131152 131907 132077 "ASP41" 132261 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 130104 130829 130947 "ASP35" 131065 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129869 130052 130091 "ASP34" 130096 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129606 129673 129749 "ASP33" 129824 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128502 129241 129373 "ASP31" 129505 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 128267 128450 128489 "ASP30" 128494 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 128002 128071 128147 "ASP29" 128222 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127767 127950 127989 "ASP28" 127994 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127532 127715 127754 "ASP27" 127759 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126616 127230 127341 "ASP24" 127452 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125533 126257 126387 "ASP20" 126517 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124621 125234 125344 "ASP1" 125454 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123565 124295 124414 "ASP19" 124533 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 123302 123369 123445 "ASP12" 123520 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 122155 122901 123045 "ASP10" 123189 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 120060 121999 122090 "ARRAY2" 122095 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115882 119708 119822 "ARRAY1" 119977 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114914 115087 115308 "ARRAY12" 115705 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 109279 111144 111220 "ARR2CAT" 113850 NIL ARR2CAT (NIL T T T) -9 NIL 114608) (-54 106713 107457 108411 "ARR2CAT-" 108416 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105473 105623 105926 "APPRULE" 106551 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 105126 105174 105292 "APPLYORE" 105419 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 104100 104391 104586 "ANY" 104949 T ANY (NIL) -8 NIL NIL) (-50 103378 103501 103658 "ANY1" 103974 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100910 101828 102153 "ANTISYM" 103103 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100737 100869 100896 "ANON" 100901 T ANON (NIL) -8 NIL NIL) (-47 94814 99282 99733 "AN" 100304 T AN (NIL) -8 NIL NIL) (-46 91126 92524 92575 "AMR" 93314 NIL AMR (NIL T T) -9 NIL 93907) (-45 90239 90460 90822 "AMR-" 90827 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74801 90156 90217 "ALIST" 90222 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71638 74395 74564 "ALGSC" 74719 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 68196 68750 69356 "ALGPKG" 71079 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 67473 67574 67758 "ALGMFACT" 68082 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 63230 63911 64561 "ALGMANIP" 67001 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 54549 62856 63006 "ALGFF" 63163 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53745 53876 54055 "ALGFACT" 54407 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52735 53345 53384 "ALGEBRA" 53444 NIL ALGEBRA (NIL T) -9 NIL 53502) (-36 52453 52512 52644 "ALGEBRA-" 52649 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34174 49899 49952 "ALAGG" 50088 NIL ALAGG (NIL T T) -9 NIL 50249) (-34 33709 33822 33849 "AHYP" 34050 T AHYP (NIL) -9 NIL NIL) (-33 32640 32888 32915 "AGG" 33414 T AGG (NIL) -9 NIL 33692) (-32 32074 32236 32450 "AGG-" 32455 NIL AGG- (NIL T) -8 NIL NIL) (-31 29763 30181 30597 "AF" 31718 NIL AF (NIL T T) -7 NIL NIL) (-30 29041 29295 29449 "ACPLOT" 29627 T ACPLOT (NIL) -8 NIL NIL) (-29 18460 26406 26458 "ACFS" 27169 NIL ACFS (NIL T) -9 NIL 27408) (-28 16474 16964 17739 "ACFS-" 17744 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12694 14650 14677 "ACF" 15556 T ACF (NIL) -9 NIL 15968) (-26 11398 11732 12225 "ACF-" 12230 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11192 "ABELSG" 11284 T ABELSG (NIL) -9 NIL 11349) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10232 10493 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9896 9980 10118 "ABELMON-" 10123 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9230 9576 9603 "ABELGRP" 9728 T ABELGRP (NIL) -9 NIL 9810) (-20 8693 8822 9038 "ABELGRP-" 9043 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8029 8069 "A1AGG" 8074 NIL A1AGG (NIL T) -9 NIL 8114) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 97506929..f5470b67 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,2970 +1,2979 @@ -(680518 . 3269429137) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786))))) (-5 *1 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-621 *4)) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-970)) (-5 *3 (-1053))))) -(((*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-997 (-997 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001))))) -(((*1 *1) (-12 (-4 *3 (-1001)) (-5 *1 (-805 *2 *3 *4)) (-4 *2 (-1001)) (-4 *4 (-601 *3)))) ((*1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-2 (|:| |f1| (-578 *4)) (|:| |f2| (-578 (-578 (-578 *4)))) (|:| |f3| (-578 (-578 *4))) (|:| |f4| (-578 (-578 (-578 *4)))))) (-5 *1 (-1076 *4)) (-5 *3 (-578 (-578 (-578 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) -(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) ((*1 *1 *1) (-4 *1 (-500))) ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1102 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-916)) (-4 *2 (-959))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-711 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-875 *3 *2)) (-4 *2 (-123)) (-4 *3 (-508)) (-4 *3 (-959)) (-4 *2 (-722)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1064 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-886)) (-4 *2 (-123)) (-5 *1 (-1072 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1118 *4 *3)) (-14 *4 (-1070)) (-4 *3 (-959))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-511)))) ((*1 *2 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-578 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *3 (-1125 *4)) (-4 *2 (-1142 *4)) (-5 *1 (-1144 *4 *3 *5 *2)) (-4 *5 (-593 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-107)) (-5 *1 (-1094 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4)))))) -(((*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *4 (-906 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-340 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-4 *2 (-340 *4)) (-5 *1 (-466 *4 *5 *2 *3)) (-4 *3 (-340 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-906 *4)) (-4 *4 (-508)) (-5 *2 (-621 *4)) (-5 *1 (-624 *4 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *4 (-906 *3)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-1125 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *5 (-318)) (-5 *2 (-373 (-1064 (-1064 *5)))) (-5 *1 (-1103 *5)) (-5 *3 (-1064 (-1064 *5)))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1070)) (-5 *4 (-769 *2)) (-4 *2 (-1034)) (-4 *2 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *1 (-518 *5 *2))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-511))))) -(((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-1 (-1064 *3) (-1064 *3))) (-4 *3 (-13 (-27) (-389 *6))) (-4 *6 (-13 (-777) (-508))) (-5 *2 (-530 *3)) (-5 *1 (-503 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-578 (-262 *4))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1116 *3)) (-4 *3 (-1104))))) -(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-877 (-1064 *4))) (-5 *1 (-324 *4)) (-5 *3 (-1064 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-500)))) -(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1086)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1086))))) -(((*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-701)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-701))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-2 (|:| A (-621 *5)) (|:| |eqs| (-578 (-2 (|:| C (-621 *5)) (|:| |g| (-1148 *5)) (|:| -2499 *6) (|:| |rh| *5)))))) (-5 *1 (-743 *5 *6)) (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *6 (-593 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2978 (-621 *6)) (|:| |vec| (-1148 *5)))) (-5 *1 (-743 *5 *6)) (-5 *3 (-621 *6)) (-5 *4 (-1148 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053))))) -(((*1 *2 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-386 *3)) (-4 *3 (-276)) (-4 *3 (-508)) (-5 *1 (-42 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-331)) (-5 *2 (-1148 *1)) (-4 *1 (-297 *4)))) ((*1 *2) (-12 (-4 *3 (-331)) (-5 *2 (-1148 *1)) (-4 *1 (-297 *3)))) ((*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *1)) (-4 *1 (-378 *3 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-381 *3 *4 *5 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-383 *3 *4 *5 *6 *7)) (-4 *6 (-378 *4 *5)) (-14 *7 *2))) ((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1148 *1)) (-4 *1 (-386 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 (-1148 *4))) (-5 *1 (-485 *4)) (-4 *4 (-318))))) -(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-331) (-775))) (-5 *2 (-578 (-2 (|:| -1575 (-578 *3)) (|:| -2390 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1125 (-152 *5))))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-2 (|:| -1575 (-578 *3)) (|:| -2390 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4)))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-218 *3))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-777)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-252 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-511)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-626 *2)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))))) (-5 *1 (-733)))) ((*1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001))))) -(((*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1099 *5 *6 *7 *8)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7))))) -(((*1 *1 *1) (-5 *1 (-970)))) -(((*1 *1) (-12 (-4 *1 (-372)) (-3031 (|has| *1 (-6 -4158))) (-3031 (|has| *1 (-6 -4150))))) ((*1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-4 *1 (-777))) ((*1 *1) (-5 *1 (-1018)))) -(((*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508))))) -(((*1 *2 *3) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-1055 *4)) (-4 *4 (-959)) (-5 *3 (-501))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-621 *4)) (-4 *5 (-593 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2)))) -(((*1 *1 *1 *1) (-4 *1 (-267))) ((*1 *1 *1) (-4 *1 (-267)))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |ans| (-375 *5)) (|:| |nosol| (-107)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-375 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *5 (-336)) (-5 *2 (-701))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-578 (-1148 *4))) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-578 (-1148 *3)))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *6 (-806 *5)) (-5 *2 (-805 *5 *6 (-578 *6))) (-5 *1 (-807 *5 *6 *4)) (-5 *3 (-578 *6)) (-4 *4 (-556 (-810 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-578 (-262 *3))) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-950 (-1070))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-578 (-262 (-866 *3)))) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-959)) (-3031 (-4 *3 (-950 (-1070)))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-808 *5 *3)) (-5 *1 (-807 *5 *3 *4)) (-3031 (-4 *3 (-950 (-1070)))) (-3031 (-4 *3 (-959))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5)))))) -(((*1 *1 *1) (-4 *1 (-500)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-3 (|:| |overq| (-1064 (-375 (-501)))) (|:| |overan| (-1064 (-47))) (|:| -4142 (-107)))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5))))) -(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-553 *2))) (-5 *4 (-578 (-1070))) (-4 *2 (-13 (-389 (-152 *5)) (-916) (-1090))) (-4 *5 (-13 (-508) (-777))) (-5 *1 (-544 *5 *6 *2)) (-4 *6 (-13 (-389 *5) (-916) (-1090)))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-786))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1035 *4 *5)) (-4 *4 (-13 (-1001) (-33)))))) -(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-967)) (-4 *3 (-1090)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131))))) -(((*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-991 *3)) (-5 *1 (-993 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1048 *3))) (-5 *1 (-1048 *3)) (-4 *3 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef1| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1001)) (-4 *5 (-1104)) (-5 *1 (-811 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-5 *3 (-578 (-1 (-107) *5))) (-4 *4 (-1001)) (-4 *5 (-1104)) (-5 *1 (-811 *4 *5)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-810 *5)) (-5 *3 (-578 (-1070))) (-5 *4 (-1 (-107) (-578 *6))) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *1 (-811 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1104)) (-5 *2 (-282 (-501))) (-5 *1 (-857 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-578 (-1 (-107) *5))) (-4 *5 (-1104)) (-5 *2 (-282 (-501))) (-5 *1 (-857 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1104)) (-4 *4 (-777)) (-5 *1 (-858 *4 *2 *5)) (-4 *2 (-389 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1 (-107) *5))) (-4 *5 (-1104)) (-4 *4 (-777)) (-5 *1 (-858 *4 *2 *5)) (-4 *2 (-389 *4)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-1 (-107) (-578 *6))) (-4 *6 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *6))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-131))) (-5 *1 (-128)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-128))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1003)) (-5 *3 (-703)) (-5 *1 (-50))))) -(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718))))) -(((*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *2 (-1009 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) -(((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-616 *4 *5 *6)) (-4 *4 (-1001))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-4 *2 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1001))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-950 (-375 *2)))) (-5 *2 (-501)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-578 (-501)))) (-5 *1 (-844 *4 *5 *6 *7)) (-5 *3 (-501)) (-4 *7 (-870 *4 *6 *5))))) -(((*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331)))) ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318))))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-508)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-991 *3)) (-4 *3 (-870 *7 *6 *4)) (-4 *6 (-723)) (-4 *4 (-777)) (-4 *7 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-501)))) (-5 *1 (-539 *6 *4 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-501)))) (-5 *1 (-539 *5 *4 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) ((*1 *1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1062 *4 *2)) (-4 *2 (-13 (-389 *4) (-145) (-27) (-1090))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-13 (-389 *4) (-145) (-27) (-1090))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1062 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-375 (-866 *5))) (-5 *1 (-1063 *5)) (-5 *3 (-866 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-3 (-375 (-866 *5)) (-282 *5))) (-5 *1 (-1063 *5)) (-5 *3 (-375 (-866 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-993 (-866 *5))) (-5 *3 (-866 *5)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-375 *3)) (-5 *1 (-1063 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-993 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-3 *3 (-282 *5))) (-5 *1 (-1063 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-979 *3 *4 *5))) (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-981 *3 *4 *5))))) -(((*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-375 *6)) (|:| |c| (-375 *6)) (|:| -1348 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-375 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104))))) -(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-229))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *2)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-50))) (-5 *2 (-1154)) (-5 *1 (-785))))) -(((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1104)) (-5 *2 (-501))))) -(((*1 *1) (-5 *1 (-754)))) -(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 *3)))) (-5 *4 (-701)) (-4 *3 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-156))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-262 *3))) (-5 *1 (-262 *3)) (-4 *3 (-508)) (-4 *3 (-1104))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-27) (-389 *4))) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-4 *7 (-1125 (-375 *6))) (-5 *1 (-504 *4 *5 *6 *7 *2)) (-4 *2 (-310 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-701))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-578 *1)) (-4 *1 (-389 *4)) (-4 *4 (-777)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-107))))) -(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-578 (-1064 *7))) (-5 *3 (-1064 *7)) (-4 *7 (-870 *5 *6 *4)) (-4 *5 (-830)) (-4 *6 (-723)) (-4 *4 (-777)) (-5 *1 (-827 *5 *6 *4 *7))))) -(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-2 (|:| -3071 (-375 (-866 *5))) (|:| |coeff| (-375 (-866 *5))))) (-5 *1 (-521 *5)) (-5 *3 (-375 (-866 *5)))))) -(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-142))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 (-1 *6 (-578 *6)))) (-4 *5 (-37 (-375 (-501)))) (-4 *6 (-1142 *5)) (-5 *2 (-578 *6)) (-5 *1 (-1143 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-578 *2))) (-5 *4 (-578 *5)) (-4 *5 (-37 (-375 (-501)))) (-4 *2 (-1142 *5)) (-5 *1 (-1143 *5 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-578 (-863 *3)))))))) -(((*1 *2 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2))))) -(((*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-501)) (-5 *2 (-107))))) -(((*1 *2 *3 *1) (-12 (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-373 *3)) (-4 *3 (-508)) (-5 *1 (-387 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) ((*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3))))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-621 *2)) (-5 *4 (-501)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *5 (-1125 *2)) (-5 *1 (-462 *2 *5 *6)) (-4 *6 (-378 *2 *5))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1053)) (-5 *1 (-904)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-991 *4)) (-4 *4 (-1104)) (-5 *1 (-993 *4))))) -(((*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-578 *1)) (-4 *1 (-1032 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) ((*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3))))) -(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-552 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786))))) -(((*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-866 *5)) (-5 *1 (-864 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-131))))) -(((*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069))))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) ((*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-404)) (-5 *3 (-578 (-1070))) (-5 *4 (-1070)) (-5 *1 (-1073)))) ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1074)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-404)) (-5 *3 (-578 (-1070))) (-5 *1 (-1074))))) -(((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-501)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1152)))) ((*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508)))))) -(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-578 (-1070))) (|:| |pred| (-50)))) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *5))) (-5 *3 (-1064 *5)) (-4 *5 (-150 *4)) (-4 *4 (-500)) (-5 *1 (-136 *4 *5)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-318)) (-5 *1 (-326 *4 *5 *3)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 (-501)))) (-5 *3 (-1064 (-501))) (-5 *1 (-523)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *1))) (-5 *3 (-1064 *1)) (-4 *1 (-830))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048 (-375 *3))) (-5 *1 (-157 *3)) (-4 *3 (-276))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-866 *4))) (-5 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-838 *4))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *2 (-107)) (-5 *1 (-51 *4)) (-4 *4 (-1104)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-813 *3)) (-4 *3 (-777))))) -(((*1 *2 *3) (-12 (-4 *4 (-276)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1022 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-758 *2 *3)) (-4 *2 (-640 *3))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-578 (-1070))) (-5 *1 (-755))))) -(((*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))) (-4 *2 (-13 (-777) (-21)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-131)) (-5 *2 (-107))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-749 *3)) (-4 *3 (-777))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513))))) -(((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) ((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) ((*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-304 *3 *4 *5 *2)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *2 (-310 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-655 *2 *3)) (-4 *3 (-1125 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) ((*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-406 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-980 *3)) (-14 *3 *2))) ((*1 *1 *1) (-5 *1 (-1070)))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1048 *2)) (-4 *2 (-276)) (-5 *1 (-157 *2))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *6)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-152 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-331) (-775))) (-4 *3 (-1125 *2))))) -(((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -3709 *11)))))) (-5 *6 (-701)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -3709 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-972 *7 *8 *9)) (-4 *11 (-977 *7 *8 *9 *10)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-5 *1 (-975 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -3709 *11)))))) (-5 *6 (-701)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -3709 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-972 *7 *8 *9)) (-4 *11 (-1009 *7 *8 *9 *10)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-5 *1 (-1040 *7 *8 *9 *10 *11))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-100))))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-839)) (-5 *1 (-944 *2)) (-4 *2 (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 *4) (|:| -1201 (-501))))) (-4 *4 (-1125 (-501))) (-5 *2 (-667 (-701))) (-5 *1 (-409 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-373 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-959)) (-5 *2 (-667 (-701))) (-5 *1 (-411 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-759))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1104)) (-5 *2 (-701)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-777)) (-5 *2 (-701)) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-499 *3)) (-4 *3 (-500)))) ((*1 *2) (-12 (-4 *1 (-694)) (-5 *2 (-701)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-725 *3 *4)) (-4 *3 (-726 *4)))) ((*1 *2) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) ((*1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-701)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-966 *3)) (-4 *3 (-967))))) -(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064 *6)) (-4 *6 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-1064 *7)) (-5 *1 (-289 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-530 *3)) (-4 *3 (-331))))) -(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-371 *3)) (-4 *3 (-372)))) ((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-371 *3)) (-4 *3 (-372)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) ((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) ((*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-1048 (-501)))))) -(((*1 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-830)) (-5 *1 (-424 *3 *4 *2 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-830)) (-5 *1 (-827 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *2) (-12 (-4 *2 (-830)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1125 *2))))) -(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1 *1) (-5 *1 (-346))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-508)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-152 *5)) (-4 *5 (-13 (-389 *4) (-916) (-1090))) (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 (-152 *4)) (-916) (-1090))) (-5 *1 (-544 *4 *5 *2))))) -(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))) (-5 *1 (-733))))) -(((*1 *1) (-5 *1 (-970)))) -(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1053)) (-5 *1 (-1086))))) -(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093)))) -(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-501)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-440)) (-5 *2 (-501)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-701)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-839))))) -(((*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-1053))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093)))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-270))))) -(((*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) ((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) ((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630))))) -(((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-131)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-131))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *3 (-578 (-501))) (-5 *1 (-803))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093)))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-272)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-948))) (-5 *2 (-948)) (-5 *1 (-272)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *1) (-5 *1 (-970))) ((*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1049 *4)) (-4 *4 (-1104)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093)))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-405))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093)))) -(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 *6)) (-5 *4 (-1148 (-501))) (-5 *5 (-501)) (-4 *6 (-1001)) (-5 *2 (-1 *6)) (-5 *1 (-931 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-50))))) -(((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *2 (-578 (-199))) (-5 *1 (-272))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 *5)) (-4 *6 (-1001)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) ((*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-131)) (-5 *2 (-701))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-584 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-5 *2 (-1 *5 *4)) (-5 *1 (-615 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 *4)) (-5 *1 (-1036 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33)))))) -(((*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-375 (-501))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *5) (|:| -1320 *5)))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-2 (|:| -1313 *5) (|:| -1320 *5))))) ((*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501)))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501)))) (-5 *4 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *4) (|:| -1320 *4)))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *5) (|:| -1320 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *5)) (-5 *4 (-2 (|:| -1313 *5) (|:| -1320 *5)))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-375 *1)) (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-5 *1 (-786)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-999 *3)))) ((*1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001))))) -(((*1 *1) (-5 *1 (-986)))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2 *3) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3189 (-375 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-808 *3 *4)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795))))) -(((*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-199)) (-5 *1 (-1153)))) ((*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1153))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916)))))) -(((*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-827 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-779 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *2) (-12 (-5 *2 (-1042 (-1053))) (-5 *1 (-359))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1001)) (-5 *2 (-1 *5 *4)) (-5 *1 (-615 *4 *5)) (-4 *4 (-1001)))) ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) ((*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-1170 *2 *3)) (-4 *3 (-773))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-199)))) (-5 *1 (-847))))) -(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419))))) -(((*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-447 *4 *5)) (-5 *1 (-569 *4 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))) ((*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-839)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1001) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1073)) (-5 *3 (-1070))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-500)))) -(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1070)) (|:| |arrayIndex| (-578 (-866 (-501)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1070)) (|:| |rand| (-786)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1069)) (|:| |thenClause| (-298)) (|:| |elseClause| (-298)))) (|:| |returnBranch| (-2 (|:| -1407 (-107)) (|:| -2150 (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |blockBranch| (-578 (-298))) (|:| |commentBranch| (-578 (-1053))) (|:| |callBranch| (-1053)) (|:| |forBranch| (-2 (|:| -1505 (-993 (-866 (-501)))) (|:| |span| (-866 (-501))) (|:| |body| (-298)))) (|:| |labelBranch| (-1018)) (|:| |loopBranch| (-2 (|:| |switch| (-1069)) (|:| |body| (-298)))) (|:| |commonBranch| (-2 (|:| -3986 (-1070)) (|:| |contents| (-578 (-1070))))) (|:| |printBranch| (-578 (-786))))) (-5 *1 (-298))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-948)) (-5 *1 (-272))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-168)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3))))) -(((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-970))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-578 (-346))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-435)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-435)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151))))) -(((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-156))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-621 (-866 *4))) (-5 *1 (-942 *4)) (-4 *4 (-959))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-621 *1)) (-5 *4 (-1148 *1)) (-4 *1 (-577 *5)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -2978 (-621 *5)) (|:| |vec| (-1148 *5)))))) ((*1 *2 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-577 *4)) (-4 *4 (-959)) (-5 *2 (-621 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3))))) -(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1053)) (-5 *2 (-703)) (-5 *1 (-108))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1001))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-485 *4))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1035 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *1 (-1036 *4 *5)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-578 (-1035 *3 *4))) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168))))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) ((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070))))) ((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1001)))) ((*1 *1 *1) (-12 (-14 *2 (-578 (-1070))) (-4 *3 (-156)) (-4 *5 (-211 (-3581 *2) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *4) (|:| -3027 *5)) (-2 (|:| -3506 *4) (|:| -3027 *5)))) (-5 *1 (-428 *2 *3 *4 *5 *6 *7)) (-4 *4 (-777)) (-4 *7 (-870 *3 *5 (-787 *2))))) ((*1 *1 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-777)))) ((*1 *1 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-959)))) ((*1 *1 *1) (-12 (-5 *1 (-666 *2 *3)) (-4 *3 (-777)) (-4 *2 (-959)) (-4 *3 (-657)))) ((*1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-501))) (-5 *5 (-1 (-1048 *4))) (-4 *4 (-331)) (-4 *4 (-959)) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4))))) -(((*1 *2 *3 *2 *2) (-12 (-5 *2 (-578 (-447 *4 *5))) (-5 *3 (-787 *4)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-569 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508))))) -(((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) ((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152))))) -(((*1 *2 *2) (-12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-49 *2 *3)) (-14 *3 (-578 (-1070))))) ((*1 *2 *1) (-12 (-5 *2 (-282 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) ((*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *4) (|:| -3027 *5)) (-2 (|:| -3506 *4) (|:| -3027 *5)))) (-4 *2 (-156)) (-5 *1 (-428 *3 *2 *4 *5 *6 *7)) (-4 *4 (-777)) (-4 *7 (-870 *2 *5 (-787 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1001)))) ((*1 *2 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-666 *2 *3)) (-4 *3 (-777)) (-4 *3 (-657)))) ((*1 *2 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *3 (-722)) (-4 *4 (-777)) (-4 *2 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777))))) -(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053))))) -(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-533 *3)) (-4 *3 (-500))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-578 (-701))) (-5 *1 (-825 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-214))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1001)))) ((*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *6 (-211 (-3581 *3) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-5 *2 (-644 *5 *6 *7)) (-5 *1 (-428 *3 *4 *5 *6 *7 *8)) (-4 *5 (-777)) (-4 *8 (-870 *4 *6 (-787 *3))))) ((*1 *2 *1) (-12 (-4 *2 (-657)) (-4 *2 (-777)) (-5 *1 (-666 *3 *2)) (-4 *3 (-959)))) ((*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *4 (-777))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-701)) (-5 *1 (-844 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-4 *4 (-419)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4)))) (|:| |geneigvec| (-578 (-621 (-375 (-866 *4)))))))) (-5 *1 (-261 *4)) (-5 *3 (-621 (-375 (-866 *4))))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-354 *3)) (|:| |mm| (-354 *3)) (|:| |rm| (-354 *3)))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-749 *3)) (|:| |mm| (-749 *3)) (|:| |rm| (-749 *3)))) (-5 *1 (-749 *3)) (-4 *3 (-777))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-501)) (-5 *1 (-346))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501))))) -(((*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-777)) (-5 *2 (-107))))) -(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-331)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1125 *3))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-1116 (-501)))))) -(((*1 *1 *1) (-4 *1 (-216))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (-1405 (-12 (-5 *1 (-262 *2)) (-4 *2 (-331)) (-4 *2 (-1104))) (-12 (-5 *1 (-262 *2)) (-4 *2 (-440)) (-4 *2 (-1104))))) ((*1 *1 *1) (-4 *1 (-440))) ((*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)) (-4 *2 (-331))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))))) (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1125 (-375 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-1074))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-1053)) (-5 *1 (-92)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-1053)) (-5 *1 (-92))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-723)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-1078 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-375 (-501)))) (-5 *4 (-262 *8)) (-5 *5 (-1116 (-375 (-501)))) (-5 *6 (-375 (-501))) (-4 *8 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-375 (-501)))) (-5 *7 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *8))) (-4 *8 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *8 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-4 *4 (-959)) (-4 *1 (-1134 *4 *3)) (-4 *3 (-1111 *4))))) -(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-824 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *5 (-13 (-419) (-777) (-950 *4) (-577 *4))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 *5) (-577 *5))) (-5 *5 (-501)) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-501))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *4 (-959)) (-4 *1 (-1113 *4 *3)) (-4 *3 (-1142 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775)))))) -(((*1 *2 *3) (-12 (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-698 *4 *5)) (-4 *5 (-378 *3 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *6 (-655 *3 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-1158 *4 *3 *5 *6)) (-4 *6 (-378 *3 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-701)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-501))) (-5 *4 (-262 *6)) (-4 *6 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-701))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-701))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4))))) -(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-632))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)) (-5 *1 (-613 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-447 *4 *5)) (-5 *1 (-864 *4 *5))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *8))))) (-5 *1 (-844 *5 *6 *7 *8)) (-5 *4 (-701))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-389 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-389 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-247 *4 *5)) (-4 *5 (-13 (-389 *4) (-916))))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-107)) (-5 *1 (-266 *4)) (-4 *4 (-267)))) ((*1 *2 *3) (-12 (-4 *1 (-267)) (-5 *3 (-108)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-388 *4 *5)) (-4 *4 (-389 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *5 (-389 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-567 *4 *5)) (-4 *5 (-13 (-389 *4) (-916) (-1090)))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-578 (-375 *7))) (-4 *7 (-1125 *6)) (-5 *3 (-375 *7)) (-4 *6 (-331)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *6 *7))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *3 (-150 *6)) (-4 (-866 *6) (-806 *5)) (-4 *6 (-13 (-806 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-808 *4 *1)) (-5 *3 (-810 *4)) (-4 *1 (-806 *4)) (-4 *4 (-1001)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *6)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-13 (-1001) (-950 *3))) (-4 *3 (-806 *5)) (-5 *1 (-851 *5 *3 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-13 (-389 *6) (-556 *4) (-806 *5) (-950 (-553 $)))) (-5 *4 (-810 *5)) (-4 *6 (-13 (-508) (-777) (-806 *5))) (-5 *1 (-852 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 (-501) *3)) (-5 *4 (-810 (-501))) (-4 *3 (-500)) (-5 *1 (-853 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *6)) (-5 *3 (-553 *6)) (-4 *5 (-1001)) (-4 *6 (-13 (-777) (-950 (-553 $)) (-556 *4) (-806 *5))) (-5 *4 (-810 *5)) (-5 *1 (-854 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-805 *5 *6 *3)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-806 *5)) (-4 *3 (-601 *6)) (-5 *1 (-855 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-808 *6 *3) *8 (-810 *6) (-808 *6 *3))) (-4 *8 (-777)) (-5 *2 (-808 *6 *3)) (-5 *4 (-810 *6)) (-4 *6 (-1001)) (-4 *3 (-13 (-870 *9 *7 *8) (-556 *4))) (-4 *7 (-723)) (-4 *9 (-13 (-959) (-777) (-806 *6))) (-5 *1 (-856 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-13 (-870 *8 *6 *7) (-556 *4))) (-5 *4 (-810 *5)) (-4 *7 (-806 *5)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-13 (-959) (-777) (-806 *5))) (-5 *1 (-856 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-906 *6)) (-4 *6 (-13 (-508) (-806 *5) (-556 *4))) (-5 *4 (-810 *5)) (-5 *1 (-859 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 (-1070))) (-5 *3 (-1070)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-5 *1 (-860 *5)))) ((*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-578 (-810 *7))) (-5 *5 (-1 *9 (-578 *9))) (-5 *6 (-1 (-808 *7 *9) *9 (-810 *7) (-808 *7 *9))) (-4 *7 (-1001)) (-4 *9 (-13 (-959) (-556 (-810 *7)) (-950 *8))) (-5 *2 (-808 *7 *9)) (-5 *3 (-578 *9)) (-4 *8 (-13 (-959) (-777))) (-5 *1 (-861 *7 *8 *9))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (|has| *2 (-6 (-4169 "*"))) (-4 *5 (-340 *2)) (-4 *6 (-340 *2)) (-4 *2 (-959)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1125 *2)) (-4 *4 (-618 *2 *5 *6))))) -(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-839)) (-5 *1 (-1002 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1160 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1160 *5 *6 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-969)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-969))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-331)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-199)))) ((*1 *1 *1 *1) (-1405 (-12 (-5 *1 (-262 *2)) (-4 *2 (-331)) (-4 *2 (-1104))) (-12 (-5 *1 (-262 *2)) (-4 *2 (-440)) (-4 *2 (-1104))))) ((*1 *1 *1 *1) (-4 *1 (-331))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-346)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1023 *3 (-553 *1))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-440))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) ((*1 *1 *1 *1) (-5 *1 (-490))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-657) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-657) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-156)) (-4 *2 (-331)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-587 *2 *4 *3)) (-4 *2 (-648 *4)) (-4 *3 (|SubsetCategory| (-657) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-587 *3 *4 *2)) (-4 *3 (-648 *4)) (-4 *2 (|SubsetCategory| (-657) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-331)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-788 *2 *3 *4 *5)) (-4 *2 (-331)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-701))) (-14 *5 (-701)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-961 *3 *4 *2 *5 *6)) (-4 *2 (-959)) (-4 *5 (-211 *4 *2)) (-4 *6 (-211 *3 *2)) (-4 *2 (-331)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-331)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-331)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-723)) (-14 *6 (-578 *3)) (-5 *1 (-1159 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-870 *2 *4 *3)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-331)) (-4 *2 (-959)) (-4 *3 (-773))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-786)))) ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-882))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501)))))))))) (-5 *1 (-1074))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-578 (-1070))) (-5 *1 (-238)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *7)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *2 (-578 *5)) (-5 *1 (-289 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-307 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-355)))) ((*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-777)) (-5 *2 (-578 (-1070))))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *5)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) ((*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *5 (-777)) (-5 *2 (-578 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-1070))) (-5 *1 (-952 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-578 (-375 *6))) (-5 *3 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-125))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-21)))) ((*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-21))))) -(((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1104)) (-5 *2 (-701)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)) (-5 *2 (-701)))) ((*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) ((*1 *2) (-12 (-4 *1 (-336)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) ((*1 *2) (-12 (-4 *4 (-1001)) (-5 *2 (-701)) (-5 *1 (-393 *3 *4)) (-4 *3 (-394 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-701)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-655 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2))))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1064 (-375 (-1064 *2)))) (-5 *4 (-553 *2)) (-4 *2 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *5 *2 *6)) (-4 *6 (-1001)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1064 *4)) (-4 *4 (-959)) (-4 *1 (-870 *4 *5 *3)) (-4 *5 (-723)) (-4 *3 (-777)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-1064 *2))) (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-4 *2 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))) (-5 *1 (-871 *5 *4 *6 *7 *2)) (-4 *7 (-870 *6 *5 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-1064 (-375 (-866 *5))))) (-5 *4 (-1070)) (-5 *2 (-375 (-866 *5))) (-5 *1 (-952 *5)) (-4 *5 (-508))))) -(((*1 *1) (-5 *1 (-199))) ((*1 *1) (-5 *1 (-346)))) +(682155 . 3403927926) +(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754))))) +(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-60 *3)) (-14 *3 (-1073)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-67 *3)) (-14 *3 (-1073)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-70 *3)) (-14 *3 (-1073)))) ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1158)))) ((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-367)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777)))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-871 *4 *6 (-789 *3))))) ((*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-961)))) ((*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 *3))) (-4 *3 (-13 (-1094) (-880) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 *3))) (-5 *5 (-1056)) (-4 *3 (-13 (-1094) (-880) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-996 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-996 (-772 (-286 *6)))) (-5 *5 (-1056)) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 (-377 (-874 *5))))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 (-377 (-874 *6))))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1094) (-880) (-29 *5))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1056)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1073)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) ((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-874 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-5 *1 (-787)))) +(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300))))) +(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-871 *4 *5 *6)))) ((*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787))))) +(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))) +(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779))))) +(((*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1162 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-865 *4))) (-5 *1 (-1105)) (-5 *3 (-865 *4))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-361))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166))))) +(((*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703)))) (-5 *1 (-1054 *4)) (-4 *4 (-1108)) (-5 *3 (-703))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973))))) +(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692))))) +(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843))))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-361)))) ((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-361))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761)) (-5 *3 (-1056))))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3))))) +(((*1 *1 *1) (-4 *1 (-217))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108))))) ((*1 *1 *1) (-4 *1 (-442))) ((*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1153 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1153 *5)) (-5 *1 (-991 *5))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-502)))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2131 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1123 *4 *5 *3)) (-4 *3 (-1130 *5))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-754))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))) (-5 *1 (-1077))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1130 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1130 *5)) (-14 *6 (-843)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-333)) (-4 *2 (-338))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1003))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072))))) +(((*1 *2 *2) (-12 (-5 *2 (-904 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-903 *3 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-703))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-703))))) +(((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3)))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1069 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777)))))) +(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1130 *4)) (-5 *1 (-844 *4 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-918))))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))) ((*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094)))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-51))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1130 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7))))) +(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1012 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-985 *4 *5)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073)))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107))))) +(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1127 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1073)) (-4 *5 (-333)) (-5 *1 (-845 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1069 *5)) (-5 *1 (-845 *4 *5)) (-14 *4 (-1073)))) ((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-874 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1073))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *3 (-150 *6)) (-4 (-874 *6) (-808 *5)) (-4 *6 (-13 (-808 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-811 *4 *1)) (-5 *3 (-814 *4)) (-4 *1 (-808 *4)) (-4 *4 (-1003)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-952 *3))) (-4 *3 (-808 *5)) (-5 *1 (-853 *5 *3 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-400 *6) (-558 *4) (-808 *5) (-952 (-556 $)))) (-5 *4 (-814 *5)) (-4 *6 (-13 (-509) (-779) (-808 *5))) (-5 *1 (-854 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 (-517) *3)) (-5 *4 (-814 (-517))) (-4 *3 (-502)) (-5 *1 (-855 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1003)) (-4 *6 (-13 (-779) (-952 (-556 $)) (-558 *4) (-808 *5))) (-5 *4 (-814 *5)) (-5 *1 (-856 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *5 *6 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-4 *3 (-603 *6)) (-5 *1 (-857 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-811 *6 *3) *8 (-814 *6) (-811 *6 *3))) (-4 *8 (-779)) (-5 *2 (-811 *6 *3)) (-5 *4 (-814 *6)) (-4 *6 (-1003)) (-4 *3 (-13 (-871 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-961) (-779) (-808 *6))) (-5 *1 (-858 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-871 *8 *6 *7) (-558 *4))) (-5 *4 (-814 *5)) (-4 *7 (-808 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-961) (-779) (-808 *5))) (-5 *1 (-858 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-909 *6)) (-4 *6 (-13 (-509) (-808 *5) (-558 *4))) (-5 *4 (-814 *5)) (-5 *1 (-861 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 (-1073))) (-5 *3 (-1073)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *1 (-862 *5)))) ((*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-814 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-811 *7 *9) *9 (-814 *7) (-811 *7 *9))) (-4 *7 (-1003)) (-4 *9 (-13 (-961) (-558 (-814 *7)) (-952 *8))) (-5 *2 (-811 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-961) (-779))) (-5 *1 (-863 *7 *8 *9))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-961)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703))))) +(((*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-1158)) (-5 *1 (-487 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) ((*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) ((*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *5 (-1076)) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502))))) +(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *3 *4 *5) (-12 (-4 *6 (-1130 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-871 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1069 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1069 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4181)) (-4 *1 (-926 *3)) (-4 *3 (-1108))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-1054 (-1054 (-874 *5)))) (-5 *1 (-1161 *5)) (-5 *4 (-1054 (-874 *5)))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-123)))) +(((*1 *2 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-89 *3))))) +(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1056)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-975 *6 *7 *8)) (-5 *2 (-1158)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-980 *6 *7 *8 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107))))) +(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *10 (-1012 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1102 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073)))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076))))) +(((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8))))) +(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517))))) +(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108))))) (((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1106)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1106))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-142))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-25)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-25)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-291 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-123)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-490))) ((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-25))))) -(((*1 *1 *1 *2) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33)))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-553 *4)) (-4 *4 (-777)) (-4 *2 (-777)) (-5 *1 (-554 *2 *4))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-578 (-839))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-839)) (-4 *2 (-331)) (-14 *5 (-908 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-644 *5 *6 *7)) (-4 *5 (-777)) (-4 *6 (-211 (-3581 *4) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-14 *4 (-578 (-1070))) (-4 *2 (-156)) (-5 *1 (-428 *4 *2 *5 *6 *7 *8)) (-4 *8 (-870 *2 *6 (-787 *4))))) ((*1 *1 *2 *3) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-777)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-4 *2 (-508)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1125 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-640 *2)) (-4 *2 (-959)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-666 *2 *3)) (-4 *2 (-959)) (-4 *3 (-657)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-701))) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *2)) (-4 *4 (-959)) (-4 *2 (-777)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-779 *2)) (-4 *2 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-701))) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-870 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *2 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 *5)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-722)) (-4 *6 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-888 *4 *3 *2)) (-4 *4 (-959)) (-4 *3 (-722)) (-4 *2 (-777))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1064 *1)) (-4 *1 (-926))))) -(((*1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)))) ((*1 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156))))) -(((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-701)) (-5 *2 (-1154))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-501)) (-5 *6 (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346)))) (-5 *7 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-501)) (-5 *6 (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346)))) (-5 *7 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-839)) (-5 *1 (-716))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-276)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-276))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959)))) ((*1 *1 *1) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-825 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *3 (-156))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 *4)))) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) ((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-578 *1)) (-4 *1 (-1004 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *1) (-12 (-4 *4 (-13 (-775) (-331))) (-5 *2 (-107)) (-5 *1 (-968 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-2 (|:| |num| (-1148 *4)) (|:| |den| *4)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-700 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-700 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4119 (-578 *6))) *7 *6)) (-4 *6 (-331)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *6) "failed")) (|:| -4119 (-578 (-1148 *6))))) (-5 *1 (-743 *6 *7)) (-5 *4 (-1148 *6))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-346)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-501)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 *2)) (-14 *4 (-578 *2)) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-282 *5)) (-4 *5 (-355)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-375 (-866 (-501))))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-375 (-866 (-346))))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-866 (-501)))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-866 (-346)))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-282 (-501)))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-282 (-346)))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-501)))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-346)))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-501))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-346))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-501))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-346))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-375 (-866 (-501))))) (-4 *1 (-408)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-375 (-866 (-346))))) (-4 *1 (-408)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-866 (-501)))) (-4 *1 (-408)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-866 (-346)))) (-4 *1 (-408)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-282 (-501)))) (-4 *1 (-408)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-282 (-346)))) (-4 *1 (-408)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-318)) (-4 *5 (-297 *4)) (-4 *6 (-1125 *5)) (-5 *2 (-1064 (-1064 *4))) (-5 *1 (-707 *4 *5 *6 *3 *7)) (-4 *3 (-1125 *6)) (-14 *7 (-839)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *1 (-891 *3 *4 *5 *6)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (|partial| -1405 (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-3031 (-4 *3 (-37 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-500))) (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-906 (-501)))) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))))) ((*1 *1 *2) (|partial| -1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) -(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-5 *1 (-155))) ((*1 *1 *1) (-4 *1 (-500))) ((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) ((*1 *1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33)))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-501)) (-4 *5 (-775)) (-4 *5 (-331)) (-5 *2 (-701)) (-5 *1 (-865 *5 *6)) (-4 *6 (-1125 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *1 *1) (-12 (-4 *1 (-824 *3)) (-4 *3 (-1001)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1104)) (-4 *1 (-211 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166))))) -(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3)))))) -(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4168)) (-4 *1 (-114 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4168)) (-4 *1 (-114 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-50)) (-5 *3 (-1070)) (-5 *1 (-570)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 (-1116 (-501))) (|has| *1 (-6 -4168)) (-4 *1 (-586 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4168)) (-4 *1 (-924 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-701)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-701))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-939 *3)) (-4 *3 (-1104))))) -(((*1 *1 *1) (-5 *1 (-970)))) -(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3)))))) -(((*1 *1 *1) (-5 *1 (-107)))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) ((*1 *1) (-4 *1 (-1046)))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-590 (-375 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-375 *5)))))) -(((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) ((*1 *1 *1) (-4 *1 (-916))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-926)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-926)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-701)))) ((*1 *1 *1) (-4 *1 (-926)))) -(((*1 *1 *1) (-12 (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-276)) (-4 *6 (-1125 *4)) (-5 *2 (-1148 (-578 *6))) (-5 *1 (-422 *4 *6)) (-5 *5 (-578 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4)))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *2 (-373 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-870 (-47) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *7 (-870 (-47) *6 *5)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-701))) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3) (-12 (-5 *2 (-373 (-152 (-501)))) (-5 *1 (-413)) (-5 *3 (-152 (-501))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *5 (-723)) (-4 *7 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-423 *4 *5 *6 *7 *3)) (-4 *6 (-508)) (-4 *3 (-870 *7 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-276)) (-5 *2 (-373 (-1064 *4))) (-5 *1 (-425 *4)) (-5 *3 (-1064 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-4 *7 (-13 (-331) (-134) (-655 *5 *6))) (-5 *2 (-373 *3)) (-5 *1 (-457 *5 *6 *7 *3)) (-4 *3 (-1125 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 (-1064 *7)) (-1064 *7))) (-4 *7 (-13 (-276) (-134))) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *2 (-373 *3)) (-5 *1 (-495 *5 *6 *7 *3)) (-4 *3 (-870 *7 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 (-1064 *7)) (-1064 *7))) (-4 *7 (-13 (-276) (-134))) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *8 (-870 *7 *6 *5)) (-5 *2 (-373 (-1064 *8))) (-5 *1 (-495 *5 *6 *7 *8)) (-5 *3 (-1064 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-590 (-375 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-375 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-590 (-375 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-375 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-749 *4)) (-4 *4 (-777)) (-5 *2 (-578 (-606 *4))) (-5 *1 (-606 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-578 *3)) (-5 *1 (-627 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-318)) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-629 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-661 *4 *5 *6 *3)) (-4 *3 (-870 (-866 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-870 (-375 (-866 *6)) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-870 (-375 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-672 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1125 (-375 (-501)))))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-954 *3)) (-4 *3 (-1125 (-375 (-866 (-501))))))) ((*1 *2 *3) (-12 (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-13 (-331) (-134) (-655 (-375 (-501)) *4))) (-5 *2 (-373 *3)) (-5 *1 (-984 *4 *5 *3)) (-4 *3 (-1125 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-1125 (-375 (-866 (-501))))) (-4 *5 (-13 (-331) (-134) (-655 (-375 (-866 (-501))) *4))) (-5 *2 (-373 *3)) (-5 *1 (-985 *4 *5 *3)) (-4 *3 (-1125 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-419)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 (-375 *7)))) (-5 *1 (-1066 *4 *5 *6 *7)) (-5 *3 (-1064 (-375 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-373 *1)) (-4 *1 (-1108)))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-1048 (-866 *4)) (-1048 (-866 *4)))) (-5 *1 (-1157 *4)) (-4 *4 (-331))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-866 *6)) (-5 *4 (-1070)) (-5 *5 (-769 *7)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *7 (-13 (-1090) (-29 *6))) (-5 *1 (-198 *6 *7)))) ((*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1064 *6)) (-5 *4 (-769 *6)) (-4 *6 (-13 (-1090) (-29 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-198 *5 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *2))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *4 (-701)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-1154)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *4 (-701)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-1154)) (-5 *1 (-1040 *5 *6 *7 *8 *9))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-500)) (-5 *1 (-144 *2))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 (-152 *4)) (-916) (-1090))) (-5 *1 (-544 *4 *3 *2)) (-4 *3 (-13 (-389 *4) (-916) (-1090)))))) -(((*1 *2 *3) (-12 (-4 *1 (-841)) (-5 *2 (-2 (|:| -3189 (-578 *1)) (|:| -3987 *1))) (-5 *3 (-578 *1))))) -(((*1 *2 *1) (-12 (-4 *1 (-950 (-501))) (-4 *1 (-267)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-822 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-553 *1)) (-4 *1 (-389 *4)) (-4 *4 (-777)) (-4 *4 (-508)) (-5 *2 (-375 (-1064 *1))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-1064 (-375 (-1064 *3)))) (-5 *1 (-512 *6 *3 *7)) (-5 *5 (-1064 *3)) (-4 *7 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1145 *5)) (-14 *5 (-1070)) (-4 *6 (-959)) (-5 *2 (-1118 *5 (-866 *6))) (-5 *1 (-868 *5 *6)) (-5 *3 (-866 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-1064 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-1064 *1)) (-4 *1 (-870 *4 *5 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-375 (-1064 *3))) (-5 *1 (-871 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))) (-4 *7 (-870 *6 *5 *4)) (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-5 *1 (-871 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-375 (-1064 (-375 (-866 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-375 (-866 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-866 *3))) (-4 *3 (-419)) (-5 *1 (-328 *3 *4)) (-14 *4 (-578 (-1070))))) ((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-414 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *7)))) ((*1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-710 *3 (-787 *4)))) (-4 *3 (-419)) (-14 *4 (-578 (-1070))) (-5 *1 (-566 *3 *4))))) -(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-134))) (-5 *2 (-2 (|:| -1313 *3) (|:| -1320 *3))) (-5 *1 (-1121 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-701)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-723)) (-4 *4 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-553 *1))) (-4 *1 (-267))))) -(((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 (-1118 *5 *4))) (-5 *1 (-1014 *4 *5)) (-5 *3 (-1118 *5 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-671 *3 *4)) (-4 *3 (-959)) (-4 *4 (-777)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-895 *3)) (-4 *3 (-959)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722))))) -(((*1 *2 *3) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-715 *3)) (-4 *3 (-556 (-346))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-152 (-346))) (-5 *1 (-715 *3)) (-4 *3 (-556 (-346))))) ((*1 *2 *3) (-12 (-5 *3 (-152 *4)) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-152 *5)) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-866 (-152 *4))) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 (-152 *4)))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 *5)))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-282 (-152 *4))) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-161 *2)) (-4 *2 (-276)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-578 (-578 *4))) (-5 *2 (-578 *4)) (-4 *4 (-276)) (-5 *1 (-161 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-2 (|:| -4119 (-621 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-621 *7))))) (-5 *5 (-701)) (-4 *8 (-1125 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-318)) (-5 *2 (-2 (|:| -4119 (-621 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-621 *7)))) (-5 *1 (-461 *6 *7 *8)))) ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513))))) -(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-501)) (-4 *6 (-331)) (-4 *6 (-336)) (-4 *6 (-959)) (-5 *2 (-578 (-578 (-621 *6)))) (-5 *1 (-943 *6)) (-5 *3 (-578 (-621 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *4 (-336)) (-4 *4 (-959)) (-5 *2 (-578 (-578 (-621 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-578 (-621 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125))))) -(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-701)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-701))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-578 (-1064 *13))) (-5 *3 (-1064 *13)) (-5 *4 (-578 *12)) (-5 *5 (-578 *10)) (-5 *6 (-578 *13)) (-5 *7 (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| *13))))) (-5 *8 (-578 (-701))) (-5 *9 (-1148 (-578 (-1064 *10)))) (-4 *12 (-777)) (-4 *10 (-276)) (-4 *13 (-870 *10 *11 *12)) (-4 *11 (-723)) (-5 *1 (-639 *11 *12 *10 *13))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-987 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-501) *2 *2)) (-4 *2 (-124)) (-5 *1 (-987 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-553 *1))) (-4 *1 (-267))))) -(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-199)))) ((*1 *1 *1) (-4 *1 (-500))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-538 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-4 *1 (-1001)) (-5 *2 (-1018))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-509 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657))))) -(((*1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1) (-4 *1 (-1034))) ((*1 *1 *1 *1) (-4 *1 (-1034)))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-863 *3)))))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-863 *4)))) (-5 *3 (-107)) (-4 *4 (-959)) (-4 *1 (-1032 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 *3)))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-107)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-863 *4)))) (-5 *3 (-107)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-578 (-155))) (-5 *4 (-155)) (-4 *1 (-1032 *5)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-863 *5)))) (-5 *3 (-578 (-155))) (-5 *4 (-155)) (-4 *1 (-1032 *5)) (-4 *5 (-959))))) -(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-298))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-490))) (-5 *1 (-490))))) -(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-50))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-138 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3027 (-701)) (|:| -2896 *4) (|:| |num| *4)))) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-107)) (-5 *1 (-404)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *3 (-578 (-1070))) (-5 *4 (-107)) (-5 *1 (-404)))) ((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-545 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-573 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-578 *3)))) (-4 *3 (-1001)) (-5 *1 (-609 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-777)) (-4 *3 (-1001)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *3)) (-2 (|:| -3506 *2) (|:| -3027 *3)))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 *4)))) (-4 *4 (-1001)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-578 (-1035 *3 *5))) (-5 *1 (-1035 *3 *5)) (-4 *3 (-13 (-1001) (-33))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |val| *4) (|:| -3709 *5)))) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-578 (-1035 *4 *5))) (-5 *1 (-1035 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3709 *4))) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1035 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) ((*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-1001) (-33))) (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1035 *2 *3))) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))) (-5 *1 (-1036 *2 *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1036 *2 *3))) (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) ((*1 *1 *2) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-798 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-800 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-802 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508)))))) -(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-508)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-508))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-508)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-701))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-508)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-508)) (-5 *1 (-885 *3 *4)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-961 *3 *4 *2 *5 *6)) (-4 *2 (-959)) (-4 *5 (-211 *4 *2)) (-4 *6 (-211 *3 *2)) (-4 *2 (-508)))) ((*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845))))) -(((*1 *1) (-5 *1 (-970)))) -(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-331)) (-14 *6 (-1148 (-621 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))))) ((*1 *1 *2) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) ((*1 *2 *3) (-12 (-5 *2 (-50)) (-5 *1 (-51 *3)) (-4 *3 (-1104)))) ((*1 *1 *2) (-12 (-5 *2 (-307 (-3699 (QUOTE X)) (-3699) (-630))) (-5 *1 (-59 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3699) (-630)))) (-5 *1 (-60 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) (-5 *1 (-62 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699) (-3699 (QUOTE X) (QUOTE HESS)) (-630)))) (-5 *1 (-63 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE XC)) (-630))) (-5 *1 (-64 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-69 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-72 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE X)) (-630))) (-5 *1 (-73 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X) (QUOTE EPS)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1070)) (-14 *4 (-1070)) (-14 *5 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE EPS)) (-3699 (QUOTE YA) (QUOTE YB)) (-630)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1070)) (-14 *4 (-1070)) (-14 *5 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE X)) (-630))) (-5 *1 (-76 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) (-5 *1 (-77 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-78 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-79 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-80 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) (-5 *1 (-81 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) (-5 *1 (-82 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) (-5 *1 (-83 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) (-5 *1 (-84 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3699) (-630)))) (-5 *1 (-86 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))) (-5 *1 (-87 *3)) (-14 *3 (-1070)))) ((*1 *2 *1) (-12 (-5 *2 (-918 2)) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-126 *3 *4 *5))) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *5)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-1037 *4 *5)) (-14 *4 (-701)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)))) ((*1 *1 *2) (-12 (-5 *2 (-212 *4 *5)) (-14 *4 (-701)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 (-621 *4))) (-4 *4 (-156)) (-5 *2 (-1148 (-621 (-375 (-866 *4))))) (-5 *1 (-165 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))) (-5 *1 (-189 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-918 10)) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-218 *3)) (-4 *3 (-777)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-218 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-993 (-282 *4))) (-4 *4 (-13 (-777) (-508) (-556 (-346)))) (-5 *2 (-993 (-346))) (-5 *1 (-230 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-246)))) ((*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-259 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1130 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4) (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *1 (-281 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-298)))) ((*1 *2 *1) (-12 (-5 *2 (-282 *5)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *2 (-297 *4)) (-5 *1 (-316 *3 *4 *2)) (-4 *3 (-297 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *2 (-297 *4)) (-5 *1 (-316 *2 *4 *3)) (-4 *3 (-297 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-1171 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-1162 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-351)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-351)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-351)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-630))) (-4 *1 (-351)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-353)))) ((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-361)))) ((*1 *2 *3) (-12 (-5 *2 (-361)) (-5 *1 (-362 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-152 (-346))))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-346)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-501)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-152 (-346)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-625)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-630)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-632)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-625))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-630))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-632))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-375 *3)))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-375 *3))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-375 *3)) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1023 *3 (-553 *1))) (-4 *3 (-959)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-299 *4)) (-4 *4 (-13 (-777) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))))) ((*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-375 (-501))))) (-4 *3 (-13 (-777) (-21))))) ((*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-402)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-402)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-402)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-402)))) ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-404)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-630))) (-4 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 *3)))) (-4 *3 (-156)) (-14 *6 (-1148 (-621 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-435)))) ((*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-441 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-5 *2 (-918 16)) (-5 *1 (-452)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452)))) ((*1 *1 *2) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-465)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-549 *3 *2)) (-4 *2 (-675 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) ((*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-571 *3 *2)) (-4 *2 (-675 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-610 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-877 (-877 (-877 *3)))) (-5 *1 (-609 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-877 (-877 (-877 *3)))) (-4 *3 (-1001)) (-5 *1 (-609 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *2)) (-4 *4 (-340 *3)) (-4 *2 (-340 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-625)))) ((*1 *1 *2) (-12 (-5 *2 (-152 (-632))) (-5 *1 (-625)))) ((*1 *1 *2) (-12 (-5 *2 (-152 (-630))) (-5 *1 (-625)))) ((*1 *1 *2) (-12 (-5 *2 (-152 (-501))) (-5 *1 (-625)))) ((*1 *1 *2) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-625)))) ((*1 *1 *2) (-12 (-5 *2 (-632)) (-5 *1 (-630)))) ((*1 *2 *1) (-12 (-5 *2 (-346)) (-5 *1 (-630)))) ((*1 *2 *3) (-12 (-5 *3 (-282 (-501))) (-5 *2 (-282 (-632))) (-5 *1 (-632)))) ((*1 *1 *2) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1001)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3506 *3) (|:| -3027 *4))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-1001)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3506 *3) (|:| -3027 *4))) (-4 *3 (-777)) (-4 *4 (-1001)) (-5 *1 (-644 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3189 *3) (|:| -2607 *4)))) (-4 *3 (-959)) (-4 *4 (-657)) (-5 *1 (-666 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-694)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-699)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-699)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-699)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-699)))) ((*1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-704 *3)) (-4 *3 (-1104)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-738)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-738)))) ((*1 *2 *1) (-12 (-4 *2 (-820 *3)) (-5 *1 (-747 *3 *2 *4)) (-4 *3 (-1001)) (-14 *4 *3))) ((*1 *1 *2) (-12 (-4 *3 (-1001)) (-14 *4 *3) (-5 *1 (-747 *3 *2 *4)) (-4 *2 (-820 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-756)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *1 (-768)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *1 (-768)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *1 (-768)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-768)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-14 *3 (-1070)) (-5 *1 (-782 *3 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-784)))) ((*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-5 *1 (-788 *3 *4 *5 *6)) (-14 *4 (-578 (-1070))) (-14 *5 (-578 (-701))) (-14 *6 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-866 *3)) (-5 *1 (-788 *3 *4 *5 *6)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))) (-14 *5 (-578 (-701))) (-14 *6 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) ((*1 *2 *3) (-12 (-5 *3 (-866 (-47))) (-5 *2 (-282 (-501))) (-5 *1 (-796)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 (-47)))) (-5 *2 (-282 (-501))) (-5 *1 (-796)))) ((*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *1 (-818)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-818)))) ((*1 *2 *1) (-12 (-5 *2 (-1091 *3)) (-5 *1 (-821 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-822 *3))) (-4 *3 (-1001)) (-5 *1 (-825 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-373 *3))) (-4 *3 (-276)) (-5 *1 (-834 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-375 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-282 *4)) (-5 *1 (-840 *4)) (-4 *4 (-13 (-777) (-508))))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-886)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) ((*1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *1 (-946 *3)) (-4 *3 (-1104)))) ((*1 *2 *3) (-12 (-5 *3 (-280)) (-5 *1 (-946 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-870 *3 *4 *5)) (-14 *6 (-578 *2)))) ((*1 *1 *2) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1104)))) ((*1 *2 *3) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-952 *3)) (-4 *3 (-508)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-621 *5)) (-5 *1 (-962 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-959)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-5 *1 (-1024 *3 *4 *2)) (-4 *2 (-870 *3 (-487 *4) *4)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *2 (-777)) (-5 *1 (-1024 *3 *2 *4)) (-4 *4 (-870 *3 (-487 *2) *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-621 *4)) (-5 *1 (-1037 *3 *4)) (-14 *3 (-701)) (-4 *4 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1039)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1118 *4 *3)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-1068 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1069)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1070)))) ((*1 *2 *1) (-12 (-5 *2 (-1077 (-1070) (-404))) (-5 *1 (-1074)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1078 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-1084)))) ((*1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *1 (-1085 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-5 *1 (-1097 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1097 *3)) (-4 *3 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1104)) (-5 *1 (-1102 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-1113 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-991 *3)) (-4 *3 (-1104)) (-5 *1 (-1116 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-14 *3 (-1070)) (-5 *1 (-1118 *3 *4)) (-4 *4 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-1134 *3 *2)) (-4 *2 (-1111 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1118 *4 *3)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-1139 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1145 *3)) (-14 *3 *2))) ((*1 *2 *3) (-12 (-5 *3 (-435)) (-5 *2 (-1151)) (-5 *1 (-1150)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1151)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1154)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-14 *6 (-578 *4)) (-5 *1 (-1159 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-870 *3 *5 *4)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) ((*1 *2 *1) (-12 (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-1159 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-14 *6 (-578 *4)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) ((*1 *1 *2) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-959)))) ((*1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) ((*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-599 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *1 (-1167 *3 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-1170 *3 *2)) (-4 *3 (-959)) (-4 *2 (-773))))) -(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1053)) (|:| -3986 (-1053)))) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-839)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-839)))) ((*1 *2) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-839)))) ((*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-701)) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-5 *2 (-701)) (-5 *1 (-603 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-701)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-701))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-1083))))) -(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501))))) -(((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 *2))) (-5 *2 (-810 *3)) (-5 *1 (-979 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 *2)))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-511))))) -(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718))))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-701)) (-5 *6 (-107)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-4 *3 (-972 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *7 *8 *9 *3 *4)) (-4 *4 (-977 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-701)) (-5 *6 (-107)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-4 *3 (-972 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *7 *8 *9 *3 *4)) (-4 *4 (-1009 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *6 *7 *8 *3 *4)) (-4 *4 (-1009 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276))))) -(((*1 *2 *1) (-12 (-4 *3 (-13 (-331) (-134))) (-5 *2 (-578 (-2 (|:| -3027 (-701)) (|:| -2896 *4) (|:| |num| *4)))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-870 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))) ((*1 *1 *1) (-4 *1 (-1108))) ((*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-13 (-1125 *3) (-508) (-10 -8 (-15 -3664 ($ $ $)))))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1088))))) -(((*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *1 (-751)) (-5 *2 (-1053)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-751)) (-5 *3 (-107)) (-5 *2 (-1053)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-751)) (-5 *3 (-753)) (-5 *2 (-1154)))) ((*1 *2 *3 *1 *4) (-12 (-4 *1 (-751)) (-5 *3 (-753)) (-5 *4 (-107)) (-5 *2 (-1154)))) ((*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-13 (-751) (-777) (-959))) (-5 *2 (-1053)) (-5 *1 (-757 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-751) (-777) (-959))) (-5 *2 (-1053)) (-5 *1 (-757 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-282 *5)) (-4 *5 (-13 (-751) (-777) (-959))) (-5 *2 (-1154)) (-5 *1 (-757 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-753)) (-5 *4 (-282 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-751) (-777) (-959))) (-5 *2 (-1154)) (-5 *1 (-757 *6))))) -(((*1 *2 *3) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-375 *2)))))) -(((*1 *1 *2) (-12 (-5 *2 (-621 *4)) (-4 *4 (-959)) (-5 *1 (-1037 *3 *4)) (-14 *3 (-701))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *1) (-5 *1 (-107)))) -(((*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1104))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-4 *3 (-331)) (-5 *2 (-1064 (-866 *3))))) ((*1 *2) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-419)))) ((*1 *1 *1 *1) (-4 *1 (-419))) ((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-451 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *1 *1) (-5 *1 (-701))) ((*1 *2 *2 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-870 *5 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *6 *4 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-1064 *7))) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-1064 *7)) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) ((*1 *1 *1 *1) (-5 *1 (-839))) ((*1 *2 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *6)) (-5 *1 (-301 *3 *4 *5 *6)) (-4 *6 (-310 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1104)) (-5 *2 (-701))))) -(((*1 *1 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-565 *2 *3 *4)) (-4 *2 (-777)) (-4 *3 (-13 (-156) (-648 (-375 (-501))))) (-14 *4 (-839)))) ((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959))))) -(((*1 *1) (-5 *1 (-128)))) -(((*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-970))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-578 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *1 (-892 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-1104)) (-5 *2 (-107))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-578 (-863 *4))) (-4 *1 (-1032 *4)) (-4 *4 (-959)) (-5 *2 (-701))))) -(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-959)) (-4 *2 (-13 (-372) (-950 *5) (-331) (-1090) (-254))) (-5 *1 (-410 *5 *3 *2)) (-4 *3 (-1125 *5))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-5 *6 (-1064 *3)) (-4 *3 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-512 *7 *3 *8)) (-4 *8 (-1001)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-5 *6 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-512 *7 *3 *8)) (-4 *8 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001))))) -(((*1 *2) (-12 (-5 *2 (-1148 (-1002 *3 *4))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839))))) -(((*1 *1 *2) (-12 (-5 *1 (-1091 *2)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-1091 *3)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-578 (-1091 *2))) (-5 *1 (-1091 *2)) (-4 *2 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959))))) -(((*1 *2 *3) (|partial| -12 (-4 *5 (-950 (-47))) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 (-1064 (-47)))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -2499 *3)))) (-5 *1 (-739 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-375 *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -2499 (-591 *6 (-375 *6)))))) (-5 *1 (-742 *5 *6)) (-5 *3 (-591 *6 (-375 *6)))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-501)) (-5 *1 (-451 *4)) (-4 *4 (-1125 *2))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-553 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-701)) (-4 *3 (-1104)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1) (-5 *1 (-155))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357)))) ((*1 *1) (-5 *1 (-361))) ((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *1) (-12 (-4 *3 (-1001)) (-5 *1 (-805 *2 *3 *4)) (-4 *2 (-1001)) (-4 *4 (-601 *3)))) ((*1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) ((*1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) ((*1 *1 *1) (-5 *1 (-1070))) ((*1 *1) (-5 *1 (-1070))) ((*1 *1) (-5 *1 (-1084)))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847))))) -(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-267)) (-4 *2 (-1104)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-553 *1))) (-5 *3 (-578 *1)) (-4 *1 (-267)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *1))) (-4 *1 (-267)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-262 *1)) (-4 *1 (-267))))) -(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-270)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-272))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-373 *2)) (-4 *2 (-276)) (-5 *1 (-834 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-50)) (-5 *1 (-835 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-373 (-866 *6))) (-5 *5 (-1070)) (-5 *3 (-866 *6)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-50)) (-5 *1 (-835 *6))))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845))))) -(((*1 *2 *1) (-12 (-4 *1 (-548 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1001)) (-4 *2 (-777))))) -(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-435)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1151)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1152))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1148 (-501))) (-5 *3 (-501)) (-5 *1 (-1010)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-1148 (-501))) (-5 *3 (-578 (-501))) (-5 *4 (-501)) (-5 *1 (-1010))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-839)) (-5 *4 (-199)) (-5 *5 (-501)) (-5 *6 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-2 (|:| |k| (-749 *3)) (|:| |c| *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 *3) (|:| -2922 *4)))) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *1 (-1081 *3 *4)))) ((*1 *1) (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001))))) -(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-1148 (-282 (-346)))) (-5 *1 (-272))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *4 (-1053)) (-4 *5 (-13 (-276) (-134))) (-4 *8 (-870 *5 *7 *6)) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *5 *6 *7 *8))))) -(((*1 *2) (-12 (-14 *4 (-701)) (-4 *5 (-1104)) (-5 *2 (-125)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-125)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-501)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-501)) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-4 *3 (-959)) (-5 *2 (-839)))) ((*1 *2) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-331)) (-5 *2 (-125))))) -(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1039)))) -(((*1 *2 *2) (-12 (-5 *1 (-614 *2)) (-4 *2 (-1001))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-501)) (-4 *4 (-318)) (-5 *1 (-485 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *3 (-959)) (-5 *1 (-540 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *1 (-1111 *3)) (-4 *3 (-959)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *1 (-1142 *3)) (-4 *3 (-959))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-593 *3)) (-4 *3 (-959)) (-4 *3 (-331)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-5 *1 (-595 *5 *2)) (-4 *2 (-593 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *1) (-12 (-4 *3 (-1104)) (-5 *2 (-578 *1)) (-4 *1 (-924 *3))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-578 *11)) (-5 *5 (-578 (-1064 *9))) (-5 *6 (-578 *9)) (-5 *7 (-578 *12)) (-5 *8 (-578 (-701))) (-4 *11 (-777)) (-4 *9 (-276)) (-4 *12 (-870 *9 *10 *11)) (-4 *10 (-723)) (-5 *2 (-578 (-1064 *12))) (-5 *1 (-639 *10 *11 *9 *12)) (-5 *3 (-1064 *12))))) -(((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-1010))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-839)) (|has| *4 (-6 (-4169 "*"))) (-4 *4 (-959)) (-5 *1 (-942 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-621 *4))) (-5 *3 (-839)) (|has| *4 (-6 (-4169 "*"))) (-4 *4 (-959)) (-5 *1 (-942 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508))))) -(((*1 *2) (-12 (-5 *2 (-2 (|:| -1647 (-578 (-1070))) (|:| -3014 (-578 (-1070))))) (-5 *1 (-1106))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *3 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| (-578 *3)))) (-5 *1 (-873 *5 *6 *7 *3 *8)) (-5 *4 (-701)) (-4 *8 (-13 (-331) (-10 -8 (-15 -2946 (*3 $)) (-15 -2949 (*3 $)) (-15 -3691 ($ *3)))))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-5 *3 (-578 (-787 *4))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *1 (-468 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *1)) (-5 *4 (-1070)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270))))) -(((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *2 (-578 (-1070))) (-5 *1 (-979 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-152 (-282 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-152 *3)) (-5 *1 (-1094 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4)))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *1 (-204 *4)) (-4 *4 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-204 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-206)) (-5 *2 (-701)))) ((*1 *1 *1) (-4 *1 (-206))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-331) (-134))) (-5 *1 (-367 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-701))) (-4 *1 (-820 *4)) (-4 *4 (-1001)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-820 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-820 *3)) (-4 *3 (-1001)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-820 *2)) (-4 *2 (-1001))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4)))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-33)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-181)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-346))) (-5 *2 (-346)) (-5 *1 (-181))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-1001)) (-4 *3 (-820 *6)) (-5 *2 (-621 *3)) (-5 *1 (-623 *6 *3 *7 *4)) (-4 *7 (-340 *3)) (-4 *4 (-13 (-340 *6) (-10 -7 (-6 -4167))))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3))))) -(((*1 *2 *2) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2)))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-108)) (-5 *4 (-701)) (-4 *5 (-419)) (-4 *5 (-777)) (-4 *5 (-950 (-501))) (-4 *5 (-508)) (-5 *1 (-40 *5 *2)) (-4 *2 (-389 *5)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *5 (-553 $)) $)) (-15 -2949 ((-1023 *5 (-553 $)) $)) (-15 -3691 ($ (-1023 *5 (-553 $)))))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-167)) (-5 *3 (-501)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) ((*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-156)) (-5 *1 (-620 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501))))) -(((*1 *1 *2) (-12 (-5 *2 (-1059 3 *3)) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959))))) -(((*1 *1 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508))))) -(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501))))) -(((*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1053)) (-5 *1 (-716))))) -(((*1 *2 *3 *4) (-12 (-4 *7 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *8 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| *3))) (-5 *1 (-873 *5 *6 *7 *8 *3)) (-5 *4 (-701)) (-4 *3 (-13 (-331) (-10 -8 (-15 -2946 (*8 $)) (-15 -2949 (*8 $)) (-15 -3691 ($ *8)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-189 (-465))) (-5 *1 (-765))))) -(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-4 *7 (-870 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-578 *7)) (|:| |n0| (-578 *7)))) (-5 *1 (-844 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4))))))) (-5 *3 (-578 *7)) (-4 *4 (-13 (-276) (-134))) (-4 *7 (-870 *4 *6 *5)) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *1 (-844 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-578 *6))) (-4 *6 (-870 *3 *5 *4)) (-4 *3 (-13 (-276) (-134))) (-4 *4 (-13 (-777) (-556 (-1070)))) (-4 *5 (-723)) (-5 *1 (-844 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-675 *3)) (-4 *3 (-156))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-451 *2)) (-4 *2 (-1125 (-501)))))) -(((*1 *2 *3) (-12 (|has| *6 (-6 -4168)) (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-578 *6)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *3) (-12 (|has| *9 (-6 -4168)) (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7)) (-5 *2 (-578 *6)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-618 *4 *5 *6)) (-4 *10 (-618 *7 *8 *9)))) ((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-578 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-578 *6)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-578 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 (-152 (-501)))))) (-5 *2 (-578 (-578 (-262 (-866 (-152 *4)))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 (-152 (-501))))))) (-5 *2 (-578 (-578 (-262 (-866 (-152 *4)))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 (-501))))) (-5 *2 (-578 (-262 (-866 (-152 *4))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 (-152 (-501)))))) (-5 *2 (-578 (-262 (-866 (-152 *4))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775)))))) -(((*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3))))) -(((*1 *1 *1) (-5 *1 (-47))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-56 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-57 *5 *2)))) ((*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1001)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) ((*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) ((*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-2 (|:| -2663 (-1064 *4)) (|:| |deg| (-839)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1064 *4)) (-4 *5 (-13 (-508) (-777))))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-212 *5 *6)) (-14 *5 (-701)) (-4 *6 (-1104)) (-4 *2 (-1104)) (-5 *1 (-213 *5 *6 *2)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-259 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1125 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-282 *2)) (-4 *2 (-508)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-4 *1 (-304 *2 *3 *4 *5)) (-4 *2 (-331)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))) (-4 *5 (-310 *2 *3 *4)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-340 *5)) (-4 *6 (-340 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1001)) (-4 *2 (-1001)) (-5 *1 (-395 *5 *4 *2 *6)) (-4 *4 (-394 *5)) (-4 *6 (-394 *2)))) ((*1 *1 *1) (-5 *1 (-458))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-578 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-579 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-959)) (-4 *2 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *8 (-340 *2)) (-4 *9 (-340 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-618 *5 *6 *7)) (-4 *10 (-618 *2 *8 *9)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-331)) (-4 *3 (-156)) (-4 *1 (-655 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-655 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-877 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-878 *5 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-870 *3 *4 *5)) (-14 *6 (-578 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-959)) (-4 *2 (-959)) (-14 *5 (-701)) (-14 *6 (-701)) (-4 *8 (-211 *6 *7)) (-4 *9 (-211 *5 *7)) (-4 *10 (-211 *6 *2)) (-4 *11 (-211 *5 *2)) (-5 *1 (-963 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-961 *5 *6 *7 *8 *9)) (-4 *12 (-961 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1048 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-1050 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1099 *5 *6 *7 *2)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *2 (-972 *5 *6 *7)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-1149 *5 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-404)))) -(((*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-401 *4 *3)) (-4 *3 (-389 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-553 *3)) (-4 *3 (-389 *5)) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-401 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 *3)) (|:| |logand| (-1064 *3))))) (-5 *1 (-530 *3)) (-4 *3 (-331))))) -(((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508)) (-5 *2 (-2 (|:| -3405 (-866 *6)) (|:| -1277 (-866 *6)))) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-870 (-375 (-866 *6)) *4 *5))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -2091 (-373 *3)) (|:| |special| (-373 *3)))) (-5 *1 (-658 *5 *3))))) -(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3071 (-375 *5)) (|:| |coeff| (-375 *5)))) (-5 *1 (-519 *4 *5)) (-5 *3 (-375 *5))))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845))))) -(((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-786))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-419)))) ((*1 *1 *1) (-12 (-4 *1 (-310 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))))) ((*1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-419)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-419)))) ((*1 *1 *1) (-12 (-4 *1 (-870 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-4 *3 (-508)) (-5 *1 (-1058 *3 *2)) (-4 *2 (-1125 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-142)))) ((*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) ((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959))))) -(((*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959))))) -(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501))))) -(((*1 *2 *3 *4) (-12 (-4 *6 (-508)) (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-5 *3 (-375 (-866 *6))) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)))))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1048 *3))) (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959))))) -(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1086))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-621 (-501))) (-5 *3 (-578 (-501))) (-5 *1 (-1010))))) -(((*1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-336)) (-4 *2 (-1001))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-324 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *6 (-556 (-1070))) (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1060 (-578 (-866 *4)) (-578 (-262 (-866 *4))))) (-5 *1 (-467 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-775))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1125 (-152 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508)))) ((*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-922 *3)) (-4 *3 (-950 *2))))) -(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1024 *4 *3 *5))) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959)) (-4 *3 (-777)) (-5 *1 (-1024 *4 *3 *5)) (-4 *5 (-870 *4 (-487 *3) *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1097 *4))) (-5 *3 (-1070)) (-5 *1 (-1097 *4)) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-270)))) ((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-272))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-578 (-1070))) (-5 *1 (-186)) (-5 *3 (-1070)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-701)) (-5 *2 (-578 (-1070))) (-5 *1 (-238)))) ((*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-578 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-465))))) -(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-1122 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-116 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-419)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-578 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1001)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 (-578 *4))) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-1 *4 (-578 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-583 *3)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-764 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148 (-701))) (-5 *1 (-609 *3)) (-4 *3 (-1001))))) -(((*1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-336)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) ((*1 *2 *1) (-12 (-4 *2 (-777)) (-5 *1 (-644 *2 *3 *4)) (-4 *3 (-1001)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *3)) (-2 (|:| -3506 *2) (|:| -3027 *3))))))) -(((*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 *5)) (-4 *5 (-331)) (-4 *5 (-508)) (-5 *2 (-1148 *5)) (-5 *1 (-576 *5 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 *5)) (-3031 (-4 *5 (-331))) (-4 *5 (-508)) (-5 *2 (-1148 (-375 *5))) (-5 *1 (-576 *5 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-621 (-282 (-501)))) (-5 *1 (-941))))) -(((*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-367 *3 *2)) (-4 *3 (-13 (-331) (-134)))))) -(((*1 *1) (-5 *1 (-131))) ((*1 *1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-232)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-233))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3 *3) (-12 (-4 *3 (-276)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-620 *3 *4 *5 *6)) (-4 *6 (-618 *3 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-631 *3)) (-4 *3 (-276))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7))))) -(((*1 *1 *1) (|partial| -4 *1 (-1046)))) -(((*1 *2 *3) (-12 (-5 *3 (-699)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *1 (-516)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-699)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *1 (-516)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-717)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-717)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-730)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) ((*1 *2 *3) (-12 (-5 *3 (-738)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-735)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-738)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-735)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-766)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-766)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) ((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-767)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-767)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-815)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-817)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501))))) -(((*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-346)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-501)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 *2)) (-14 *4 (-578 *2)) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-282 *5)) (-4 *5 (-355)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-375 (-866 (-501))))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-375 (-866 (-346))))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-866 (-501)))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-866 (-346)))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-282 (-501)))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-282 (-346)))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-501)))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-346)))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-346))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 (-501))))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 (-346))))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-866 (-501)))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-866 (-346)))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-282 (-501)))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-282 (-346)))) (-4 *1 (-408)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-699)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-738)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *1 (-768)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *1 (-818)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *1 (-891 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-1405 (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-3031 (-4 *3 (-37 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-500))) (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-906 (-501)))) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))))) ((*1 *1 *2) (-1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) -(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156))))) -(((*1 *1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-839)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1151))))) -(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1048 *3)) (-4 *3 (-1001)) (-4 *3 (-1104))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-787 *3)) (-14 *3 (-578 *2)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-904)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-993 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-1070)))) ((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1145 *3)) (-14 *3 *2)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-578 (-1070))) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-866 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4)))))))))) (-5 *1 (-844 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *5 (-839)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-866 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *6)))) (|:| -4119 (-578 (-1148 (-375 (-866 *6)))))))))) (-5 *1 (-844 *6 *7 *8 *9)) (-5 *4 (-578 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 (-1070))) (-5 *5 (-839)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-866 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *6)))) (|:| -4119 (-578 (-1148 (-375 (-866 *6)))))))))) (-5 *1 (-844 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-839)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 *9)) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 (-1070))) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-1053)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *10)) (-5 *4 (-578 *10)) (-5 *5 (-839)) (-5 *6 (-1053)) (-4 *10 (-870 *7 *9 *8)) (-4 *7 (-13 (-276) (-134))) (-4 *8 (-13 (-777) (-556 (-1070)))) (-4 *9 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *10)) (-5 *4 (-578 (-1070))) (-5 *5 (-839)) (-5 *6 (-1053)) (-4 *10 (-870 *7 *9 *8)) (-4 *7 (-13 (-276) (-134))) (-4 *8 (-13 (-777) (-556 (-1070)))) (-4 *9 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-839)) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107))))) -(((*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331))))) -(((*1 *1) (-5 *1 (-404)))) -(((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-142)))) ((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959))))) -(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *1 (-467 *4 *5 *6 *2)) (-4 *2 (-870 *4 *5 *6)))) ((*1 *1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 (-501)) (|:| |var| (-553 *1)))) (-4 *1 (-389 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-1064 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-340 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-466 *4 *5 *6 *3)) (-4 *6 (-340 *4)) (-4 *3 (-340 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-906 *4)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |num| (-621 *4)) (|:| |den| *4))) (-5 *1 (-624 *4 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-2 (|:| -2499 *7) (|:| |rh| (-578 (-375 *6))))) (-5 *1 (-737 *5 *6 *7 *3)) (-5 *4 (-578 (-375 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-375 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1120 *4 *5 *3)) (-4 *3 (-1125 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-270))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-89 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-866 *5)) (-4 *5 (-959)) (-5 *2 (-220 *4 *5)) (-5 *1 (-864 *4 *5)) (-14 *4 (-578 (-1070)))))) -(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-381 *4 (-375 *4) *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *3 (-276)) (-5 *1 (-381 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-877 (-1018))) (-5 *1 (-315 *4))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *7))) (-5 *3 (-1064 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-827 *4 *5 *6 *7)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *5))) (-5 *3 (-1064 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-830)) (-5 *1 (-828 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1001)) (-5 *2 (-1053))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-1125 *3))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1) (-12 (-4 *1 (-224 *2 *3 *4 *5)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-237 *3)) (-4 *5 (-723))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1148 (-630))) (-5 *1 (-272))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1090) (-879) (-29 *4)))))) -(((*1 *2 *3) (-12 (-4 *4 (-1104)) (-5 *2 (-701)) (-5 *1 (-163 *4 *3)) (-4 *3 (-608 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5))))) -(((*1 *2 *3 *2) (|partial| -12 (-5 *3 (-839)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-701)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *6 (-107)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-373 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-411 *5 *2)) (-4 *5 (-959))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1086))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-92))))) -(((*1 *1 *1) (-4 *1 (-1039)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-5 *3 (-1070)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-866 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-777) (-508))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-777) (-508)))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-690))))) -(((*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3))))) -(((*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-701)) (-4 *3 (-13 (-657) (-336) (-10 -7 (-15 ** (*3 *3 (-501)))))) (-5 *1 (-219 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-375 (-501))) (-5 *1 (-272))))) -(((*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-5 *2 (-435)) (-5 *1 (-1151))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4168)) (-4 *1 (-340 *3)) (-4 *3 (-1104))))) -(((*1 *2 *3) (-12 (-5 *2 (-578 (-578 (-501)))) (-5 *1 (-886)) (-5 *3 (-578 (-501)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276))))) -(((*1 *1 *1 *1) (-4 *1 (-500)))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346))))) -(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3) (-12 (-4 *3 (-1125 (-375 (-501)))) (-5 *2 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501)))) (-5 *1 (-833 *3 *4)) (-4 *4 (-1125 (-375 *3))))) ((*1 *2 *3) (-12 (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *3)) (-4 *3 (-1125 (-375 *4)))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *4))) (-5 *3 (-1064 *4)) (-4 *4 (-830)) (-5 *1 (-598 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-1064 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-331))))) -(((*1 *2 *3) (-12 (-4 *1 (-318)) (-5 *3 (-501)) (-5 *2 (-1077 (-839) (-701)))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)) (-5 *2 (-866 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)) (-5 *2 (-866 *4)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1142 *4)) (-4 *4 (-959)) (-5 *2 (-866 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1142 *4)) (-4 *4 (-959)) (-5 *2 (-866 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-500)))) -(((*1 *1 *2) (-12 (-5 *2 (-282 *3)) (-4 *3 (-13 (-959) (-777))) (-5 *1 (-197 *3 *4)) (-14 *4 (-578 (-1070)))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-1108)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1125 (-375 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-959)) (-4 *2 (-618 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1125 *4)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-419)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-830)) (-5 *1 (-424 *3 *4 *5 *6)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-830))))) -(((*1 *2 *3) (-12 (-4 *4 (-419)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 *4)))))))) (-5 *1 (-261 *4)) (-5 *3 (-621 (-375 (-866 *4))))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-467 *3 *4 *5 *6))) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-2 (|:| |num| (-1148 *4)) (|:| |den| *4)))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-814 *2 *3)) (-4 *2 (-1125 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501)))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916)))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1064 *7)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-464 *5 *2 *6 *7)) (-4 *6 (-1125 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *4 (-1125 *5)) (-5 *2 (-1064 *7)) (-5 *1 (-464 *5 *4 *6 *7)) (-4 *6 (-1125 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-331)) (-5 *1 (-595 *4 *2)) (-4 *2 (-593 *4))))) -(((*1 *1) (-5 *1 (-1073)))) -(((*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *2 (-959)) (-5 *1 (-643 *2 *3)) (-4 *3 (-1125 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-375 (-501))) (-5 *2 (-199)) (-5 *1 (-272))))) -(((*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) ((*1 *1 *1 *1) (-4 *1 (-723)))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33)))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-701))))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920))))) -(((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-701)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-701)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-892 *5 *6 *7 *8))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-752)) (-5 *2 (-50)) (-5 *1 (-761))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-529))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5 (-578 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-578 (-1048 *4)))) (-5 *1 (-1143 *4 *5))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 *4) (-916) (-1090))) (-5 *1 (-544 *4 *2 *3)) (-4 *3 (-13 (-389 (-152 *4)) (-916) (-1090)))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1091 *3))) (-5 *1 (-1091 *3)) (-4 *3 (-1001))))) -(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153))))) -(((*1 *2 *2) (|partial| -12 (-4 *3 (-1104)) (-5 *1 (-163 *3 *2)) (-4 *2 (-608 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-553 *5))) (-5 *3 (-1070)) (-4 *5 (-389 *4)) (-4 *4 (-777)) (-5 *1 (-524 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3))))) -(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-500)))) ((*1 *1 *1) (-4 *1 (-967)))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| C (-621 *5)) (|:| |g| (-1148 *5))))) (-5 *1 (-893 *5)) (-5 *3 (-621 *5)) (-5 *4 (-1148 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-667 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-777)) (-4 *3 (-1001))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513))))) -(((*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1575 (-578 (-2 (|:| |irr| *10) (|:| -3257 (-501))))))) (-5 *6 (-578 *3)) (-5 *7 (-578 *8)) (-4 *8 (-777)) (-4 *3 (-276)) (-4 *10 (-870 *3 *9 *8)) (-4 *9 (-723)) (-5 *2 (-2 (|:| |polfac| (-578 *10)) (|:| |correct| *3) (|:| |corrfact| (-578 (-1064 *3))))) (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-578 (-1064 *3)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) ((*1 *1 *1) (-5 *1 (-346))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *2)) (-2 (|:| -3506 *5) (|:| -3027 *2)))) (-4 *2 (-211 (-3581 *3) (-701))) (-5 *1 (-428 *3 *4 *5 *2 *6 *7)) (-4 *5 (-777)) (-4 *7 (-870 *4 *2 (-787 *3)))))) -(((*1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1064 *7)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-464 *5 *2 *6 *7)) (-4 *6 (-1125 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1072 (-375 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-166))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-1160 *4 *5 *6 *7))) (-5 *1 (-1160 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-578 (-1160 *6 *7 *8 *9))) (-5 *1 (-1160 *6 *7 *8 *9))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-373 *3)) (-4 *3 (-508)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 *4) (|:| -1201 (-501))))) (-4 *4 (-1125 (-501))) (-5 *2 (-701)) (-5 *1 (-409 *4))))) -(((*1 *1 *1) (-5 *1 (-970)))) -(((*1 *1) (-5 *1 (-404)))) -(((*1 *2 *3) (-12 (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-2 (|:| |glbase| (-578 (-220 *4 *5))) (|:| |glval| (-578 (-501))))) (-5 *1 (-569 *4 *5)) (-5 *3 (-578 (-220 *4 *5)))))) -(((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))) ((*1 *1 *1 *1) (-4 *1 (-1034)))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *2 (-948)) (-5 *1 (-272)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *2 (-948)) (-5 *1 (-272))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-578 *4)) (-4 *4 (-331)) (-5 *2 (-1148 *4)) (-5 *1 (-744 *4 *3)) (-4 *3 (-593 *4))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-155)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-510 *2)) (-4 *2 (-500))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1048 *3)) (-4 *3 (-1001)) (-4 *3 (-1104))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-276)) (-5 *2 (-701)) (-5 *1 (-422 *5 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1001))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-447 *4 *5))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-578 (-220 *4 *5))) (-5 *1 (-569 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-4 *4 (-1104)) (-5 *2 (-107)) (-5 *1 (-1048 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -3897 *5) (|:| -2499 *3)))) (-5 *1 (-739 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-375 *6)))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889))))) -(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-501) "failed") *5)) (-4 *5 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *5 *3)) (-4 *3 (-1125 *5)))) ((*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-501) "failed") *4)) (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-501) "failed") *4)) (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-146))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-146))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-1125 *4)) (-5 *1 (-739 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-375 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-375 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *1 (-739 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-92))))) -(((*1 *2 *2) (-12 (-5 *2 (-282 (-199))) (-5 *1 (-186))))) -(((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-1064 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070)))) ((*1 *1 *1) (-4 *1 (-145)))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *5 (-777)) (-5 *2 (-107))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-824 *3)) (-4 *3 (-1001)) (-5 *2 (-997 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1001)) (-5 *2 (-997 (-578 *4))) (-5 *1 (-825 *4)) (-5 *3 (-578 *4)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1001)) (-5 *2 (-997 (-997 *4))) (-5 *1 (-825 *4)) (-5 *3 (-997 *4)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-997 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-501))))) (-5 *1 (-373 *3)) (-4 *3 (-508)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-701)) (-4 *3 (-318)) (-4 *5 (-1125 *3)) (-5 *2 (-578 (-1064 *3))) (-5 *1 (-461 *3 *5 *6)) (-4 *6 (-1125 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001))))) -(((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-108))))) -(((*1 *2 *3) (-12 (-5 *2 (-373 (-1064 *1))) (-5 *1 (-282 *4)) (-5 *3 (-1064 *1)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *4 (-777)))) ((*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-346)) (-5 *1 (-953))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)) (-4 *3 (-156))))) -(((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070)))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1048 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959))))) -(((*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-786) (-786) (-786))) (-5 *4 (-501)) (-5 *2 (-786)) (-5 *1 (-584 *5 *6 *7)) (-4 *5 (-1001)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-781 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-1064 *3)) (-4 *3 (-959))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-723)) (-4 *6 (-870 *4 *3 *5)) (-4 *4 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *4 *3 *5 *6))))) -(((*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-331)) (-5 *1 (-482 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) ((*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-156)) (-5 *1 (-620 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-2 (|:| -3169 (-701)) (|:| -1684 *8))) (-5 *1 (-831 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-2 (|:| -3169 (-701)) (|:| -1684 *6))) (-5 *1 (-832 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501))))) -(((*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-1125 (-375 *3))) (-5 *2 (-839)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1125 (-375 *4)))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-754)) (-5 *1 (-753))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331))))) -(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-630)) (-5 *1 (-272))))) -(((*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-508)))) ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3 *4 *1) (-12 (-5 *4 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073))))) -(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-959)) (-4 *2 (-618 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1125 *4)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-291 *4 *2)) (-4 *4 (-1001)) (-4 *2 (-123))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-1010))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| -1711 *3) (|:| |nconst| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5)))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-419) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-13 (-419) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-95 *5 *3))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-375 *5)) (|:| |c2| (-375 *5)) (|:| |deg| (-701)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 (-621 *4))) (-4 *4 (-156)) (-5 *2 (-1148 (-621 (-866 *4)))) (-5 *1 (-165 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-749 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-773)) (-5 *1 (-1170 *3 *2)) (-4 *3 (-959))))) -(((*1 *1 *2) (|partial| -12 (-5 *2 (-749 *3)) (-4 *3 (-777)) (-5 *1 (-606 *3))))) -(((*1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-447 *4 *5))) (-5 *3 (-578 (-787 *4))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-438 *4 *5 *6)) (-4 *6 (-419))))) -(((*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-297 *4)) (-4 *6 (-1125 *5)) (-5 *2 (-578 *3)) (-5 *1 (-707 *4 *5 *6 *3 *7)) (-4 *3 (-1125 *6)) (-14 *7 (-839))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *1 (-98 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501))))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845))))) -(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-346)))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199)))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-363))))) -(((*1 *2 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *3 (-777)) (-5 *1 (-606 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1090) (-29 *4))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-134)) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-282 *5)) (-5 *1 (-535 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1104)) (-5 *2 (-701))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3189 *3) (|:| |gap| (-701)) (|:| -3236 (-711 *3)) (|:| -1852 (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-959)))) ((*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-1104)) (-5 *2 (-107))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151))))) -(((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-886))))) -(((*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-701)) (-4 *6 (-1001)) (-4 *7 (-820 *6)) (-5 *2 (-621 *7)) (-5 *1 (-623 *6 *7 *3 *4)) (-4 *3 (-340 *7)) (-4 *4 (-13 (-340 *6) (-10 -7 (-6 -4167))))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-180))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-508)) (-5 *1 (-885 *4 *2)) (-4 *2 (-1125 *4))))) -(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153))))) -(((*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1) (-5 *1 (-346))) ((*1 *1) (-5 *1 (-346)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-501))) (-5 *4 (-501)) (-5 *2 (-50)) (-5 *1 (-919))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-501)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *9 (-870 *8 *6 *7)) (-5 *2 (-2 (|:| -2663 (-1064 *9)) (|:| |polval| (-1064 *8)))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *3 (-1064 *9)) (-5 *4 (-1064 *8))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-950 (-501))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-31 *4 *2)) (-4 *2 (-389 *4)))) ((*1 *1 *1 *1) (-5 *1 (-125))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-501)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-331)) (-4 *4 (-37 *3)) (-4 *5 (-1142 *4)) (-5 *1 (-249 *4 *5 *2)) (-4 *2 (-1113 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-331)) (-4 *4 (-37 *3)) (-4 *5 (-1111 *4)) (-5 *1 (-250 *4 *5 *2 *6)) (-4 *2 (-1134 *4 *5)) (-4 *6 (-898 *5)))) ((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-329 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *1) (-5 *1 (-346))) ((*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-1012)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-440)) (-5 *2 (-501)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-501)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-490)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-490)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *4 (-1001)) (-5 *1 (-614 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-331)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-622 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)) (-4 *4 (-583 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-645 *4 *5)) (-4 *5 (-583 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-701)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-764 *3)) (-4 *3 (-959)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-501)) (-5 *1 (-764 *4)) (-4 *4 (-959)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-375 (-501))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-839)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1021 *3 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *3 *4)) (-4 *4 (-331)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501))))) -(((*1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2) (-12 (-4 *3 (-959)) (-5 *2 (-877 (-643 *3 *4))) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-939 (-769 (-501)))) (-5 *1 (-540 *3)) (-4 *3 (-959))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33)))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-229))))) -(((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959))))) -(((*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-578 *1)) (-4 *1 (-1032 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-701))))) -(((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-870 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-298)))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-5 *2 (-346)) (-5 *1 (-715 *3)) (-4 *3 (-556 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-346)) (-5 *1 (-715 *3)) (-4 *3 (-556 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1148 (-578 *3))) (-4 *4 (-276)) (-5 *2 (-578 *3)) (-5 *1 (-422 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 *8)) (-4 *7 (-777)) (-4 *8 (-959)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-5 *2 (-1064 *8)) (-5 *1 (-289 *6 *7 *8 *9))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-959)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-373 *4) *4)) (-4 *4 (-508)) (-5 *2 (-373 *4)) (-5 *1 (-387 *4)))) ((*1 *1 *1) (-5 *1 (-845))) ((*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *1) (-5 *1 (-847))) ((*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *4 (-375 (-501))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *4 (-375 (-501))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501)))))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2))))) -(((*1 *1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084))))) -(((*1 *2) (-12 (-4 *3 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-1154)) (-5 *1 (-401 *3 *4)) (-4 *4 (-389 *3))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1080 *6)) (-5 *4 (-583 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))))) ((*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) ((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094)))))) +(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4)))))) +(((*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361))))) +(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-972)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1153 *5)) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2))))) +(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278))))) +(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-4 *1 (-374)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-879 (-1021))) (-5 *1 (-316 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-843)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)))))))) +(((*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109)))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))))) (-5 *1 (-1077))))) +(((*1 *1) (-5 *1 (-755)))) +(((*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-915 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3))))) +(((*1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-583 *1)) (-4 *1 (-977 *4 *3))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-828 *4 *5 *6 *7)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-831)) (-5 *1 (-829 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107)))) (-5 *1 (-929 *8 *4))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *5)))) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3755 *5) (|:| -3688 (-517))))) (-5 *4 (-517)) (-4 *5 (-1130 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-3 (-1069 *4) (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021))))))) (-5 *1 (-316 *4)) (-4 *4 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-300))))) +(((*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1056))))) +(((*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-313 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1069 *3)))) ((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1056)) (-5 *1 (-1155)))) ((*1 *1 *1) (-5 *1 (-1155)))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848))))) +(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-843))))) ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-703)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-4 *4 (-1130 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-934 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724))))) +(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1133 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-493))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) +(((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278))))) +(((*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-843)) (-4 *3 (-1130 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-4 *4 (-779))))) +(((*1 *1) (-5 *1 (-199))) ((*1 *1) (-5 *1 (-349)))) +(((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-407)))) +(((*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725))))) +(((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1073))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-874 *4)))) (-5 *1 (-956 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1153 (-632))) (-5 *1 (-276))))) +(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1073)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506))))) +(((*1 *1 *1 *2) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-349)) (-5 *1 (-973))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *6)) (-4 *7 (-871 *6 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180))))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-29 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-1108)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *1 (-527 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1153 *4)) (-5 *1 (-578 *4 *5))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3)))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-975 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-980 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1073))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-212 (-2296 *3) (-703))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-694)))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156))))) +(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003))))) +(((*1 *2 *3 *2) (|partial| -12 (-5 *3 (-843)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51))))) +(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954))))) +(((*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-814 *6))) (-5 *5 (-1 (-811 *6 *8) *8 (-814 *6) (-811 *6 *8))) (-4 *6 (-1003)) (-4 *8 (-13 (-961) (-558 (-814 *6)) (-952 *7))) (-5 *2 (-811 *6 *8)) (-4 *7 (-13 (-961) (-779))) (-5 *1 (-863 *6 *7 *8))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1108)) (-4 *5 (-1108)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-879 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-879 *5)) (-5 *1 (-878 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1054 *6)) (-4 *6 (-1108)) (-4 *3 (-1108)) (-5 *2 (-1054 *3)) (-5 *1 (-1052 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1153 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-1153 *5)) (-5 *1 (-1152 *6 *5))))) +(((*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703)))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-843)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094))) (-5 *1 (-201 *3)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-871 *4 *6 (-789 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-968)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-4 *1 (-653))) ((*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-968)))) ((*1 *1 *1 *1) (-4 *1 (-1015))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-865 (-199))) (-5 *3 (-199)) (-5 *1 (-1105)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-21)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1090))))) +(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-871 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $)))))))) +(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256)))))) +(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-865 (-199)))) (-5 *1 (-1154))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-772 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1158))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3))))) +(((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1055)))) ((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1073))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5)))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-92))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-4 *1 (-825 *3))))) (((*1 *1 *1 *1) (-5 *1 (-107)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1070))) (-4 *6 (-331)) (-5 *2 (-578 (-262 (-866 *6)))) (-5 *1 (-493 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-13 (-331) (-775)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *1) (-5 *1 (-754)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-247 *4 *3)) (-4 *3 (-13 (-389 *4) (-916)))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-5 *1 (-422 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-701))) (-5 *1 (-494 *3 *2 *4 *5)) (-4 *2 (-1125 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-405))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1) (-5 *1 (-786)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-578 *2) *2 *2 *2)) (-4 *2 (-1001)) (-5 *1 (-98 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1001)) (-5 *1 (-98 *2))))) -(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1070)) (-5 *6 (-107)) (-4 *7 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-1090) (-879) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-769 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-287 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959))))) -(((*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $)))))))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *6 (-723)) (-4 *9 (-870 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-578 (-2 (|:| -3739 (-1064 *9)) (|:| -3027 (-501))))))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *3 (-1064 *9))))) -(((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-777)))) ((*1 *2 *2) (-12 (-5 *2 (-530 *4)) (-4 *4 (-13 (-29 *3) (-1090))) (-4 *3 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *1 (-532 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-530 (-375 (-866 *3)))) (-4 *3 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *1 (-535 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -2091 *3) (|:| |special| *3))) (-5 *1 (-658 *5 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1148 (-1148 *5))) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-578 *1)) (-4 *1 (-1039)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-578 *1)) (-4 *1 (-1039))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-916)) (-4 *2 (-959))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 *4)) (-5 *1 (-1014 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-104))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-375 *5)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1072 (-375 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-166)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-621 (-282 (-199)))) (-5 *3 (-578 (-1070))) (-5 *4 (-1148 (-282 (-199)))) (-5 *1 (-181)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *3))) (-4 *3 (-278 *3)) (-4 *3 (-1001)) (-4 *3 (-1104)) (-5 *1 (-262 *3)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-278 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)) (-5 *1 (-262 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *1 *1)) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1 *1 *1)) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-267)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *3))) (-4 *1 (-278 *3)) (-4 *3 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-262 *3)) (-4 *1 (-278 *3)) (-4 *3 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-501))) (-5 *4 (-1072 (-375 (-501)))) (-5 *1 (-279 *2)) (-4 *2 (-37 (-375 (-501)))))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-777)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *4 (-1 *1 *1)) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *4 (-1 *1 (-578 *1))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-701))) (-5 *4 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-701))) (-5 *4 (-578 (-1 *1 *1))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 *1)) (-5 *4 (-1070)) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-556 (-490))))) ((*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1070)) (-4 *1 (-389 *4)) (-4 *4 (-777)) (-4 *4 (-556 (-490))))) ((*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-556 (-490))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1070))) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-556 (-490))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-556 (-490))))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1104)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *5)) (-4 *1 (-476 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1104)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *3 (-331)) (-5 *1 (-649 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1001)))) ((*1 *2 *2 *3 *2) (-12 (-5 *2 (-375 (-866 *4))) (-5 *3 (-1070)) (-4 *4 (-508)) (-5 *1 (-952 *4)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-5 *4 (-578 (-375 (-866 *5)))) (-5 *2 (-375 (-866 *5))) (-4 *5 (-508)) (-5 *1 (-952 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-262 (-375 (-866 *4)))) (-5 *2 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *1 (-952 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-262 (-375 (-866 *4))))) (-5 *2 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *1 (-952 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1048 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-578 (-621 *4))) (-5 *2 (-621 *4)) (-4 *4 (-959)) (-5 *1 (-943 *4))))) -(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-402)) (-4 *5 (-777)) (-5 *1 (-1006 *5 *4)) (-4 *4 (-389 *5))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1171 *4 *2)) (-4 *1 (-342 *4 *2)) (-4 *4 (-777)) (-4 *2 (-156)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-749 *4)) (-4 *1 (-1166 *4 *2)) (-4 *4 (-777)) (-4 *2 (-959)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-959)) (-5 *1 (-1170 *2 *3)) (-4 *3 (-773))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-993 (-769 *3))) (-4 *3 (-13 (-1090) (-879) (-29 *5))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-769 *3))) (-5 *5 (-1053)) (-4 *3 (-13 (-1090) (-879) (-29 *6))) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-993 (-769 (-282 *5)))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *5))) (|:| |f2| (-578 (-769 (-282 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-375 (-866 *6))) (-5 *4 (-993 (-769 (-282 *6)))) (-5 *5 (-1053)) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *6))) (|:| |f2| (-578 (-769 (-282 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-993 (-769 (-375 (-866 *5))))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *5))) (|:| |f2| (-578 (-769 (-282 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-769 (-375 (-866 *6))))) (-5 *5 (-1053)) (-5 *3 (-375 (-866 *6))) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *6))) (|:| |f2| (-578 (-769 (-282 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 *3 (-578 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1090) (-879) (-29 *5))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *6 (-970)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3) (-12 (-5 *3 (-699)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *6 (-970)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-282 (-346))) (-5 *4 (-993 (-769 (-346)))) (-5 *5 (-1053)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-282 (-346))) (-5 *4 (-993 (-769 (-346)))) (-5 *5 (-1070)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-530 (-375 *5))) (-5 *1 (-519 *4 *5)) (-5 *3 (-375 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-134)) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-3 (-282 *5) (-578 (-282 *5)))) (-5 *1 (-535 *5)))) ((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-671 *3 *2)) (-4 *3 (-959)) (-4 *2 (-777)) (-4 *3 (-37 (-375 (-501)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-866 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-4 *2 (-777)) (-5 *1 (-1024 *3 *2 *4)) (-4 *4 (-870 *3 (-487 *2) *2)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *1 (-1097 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1111 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1111 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) ((*1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1132 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1132 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501))))))) -(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-578 (-578 (-199)))) (-5 *4 (-199)) (-5 *2 (-578 (-863 *4))) (-5 *1 (-1101)) (-5 *3 (-863 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-500)))) -(((*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-297 *3)) (-4 *5 (-1125 *4)) (-5 *1 (-707 *3 *4 *5 *2 *6)) (-4 *2 (-1125 *5)) (-14 *6 (-839)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-4 *3 (-336)))) ((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-331)) (-4 *2 (-336))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889))))) -(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *4))))) -(((*1 *2) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-123)))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) (-14 *5 *2))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003))))) +(((*1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-240))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 *6)) (-5 *4 (-1153 (-517))) (-5 *5 (-517)) (-4 *6 (-1003)) (-5 *2 (-1 *6)) (-5 *1 (-933 *6))))) +(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1080 *4))))) +(((*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1153 *1)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-831)) (-5 *2 (-1153 *1))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509)))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1130 *5)) (-4 *6 (-13 (-374) (-952 *5) (-333) (-1094) (-256))))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256)))))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460))))) +(((*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-291 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1069 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1130 *6))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108))))) +(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-827 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-943 *5)) (-4 *5 (-961)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-827 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-943 *5)) (-4 *5 (-961)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-943 *4)) (-4 *4 (-961))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-692))))) (((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) -(((*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-950 (-501))) (-4 *1 (-267)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-822 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-298))))) -(((*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-701)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-237 *3)) (-4 *3 (-777)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-301 *4 *5 *6 *7)) (-4 *4 (-13 (-336) (-331))) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-4 *7 (-310 *4 *5 *6)) (-5 *2 (-701)) (-5 *1 (-360 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-762 (-839))))) ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-501)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-701)) (-4 *1 (-671 *4 *3)) (-4 *4 (-959)) (-4 *3 (-777)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-671 *4 *3)) (-4 *4 (-959)) (-4 *3 (-777)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-701)) (-5 *1 (-831 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-701)) (-5 *1 (-832 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-301 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-4 *4 (-1125 (-375 *7))) (-4 *8 (-310 *6 *7 *4)) (-4 *9 (-13 (-336) (-331))) (-5 *2 (-701)) (-5 *1 (-932 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)) (-5 *2 (-701)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) ((*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722))))) -(((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-276)) (-5 *2 (-375 (-373 (-866 *4)))) (-5 *1 (-955 *4))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *3 (-820 *5)) (-5 *2 (-621 *3)) (-5 *1 (-623 *5 *3 *6 *4)) (-4 *6 (-340 *3)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167))))))) -(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107))))) -(((*1 *2 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *2 (-972 *4 *5 *6)) (-5 *1 (-706 *4 *5 *6 *2 *3)) (-4 *3 (-977 *4 *5 *6 *2))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-56 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-56 *5)) (-5 *1 (-57 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-212 *6 *7)) (-14 *6 (-701)) (-4 *7 (-1104)) (-4 *5 (-1104)) (-5 *2 (-212 *6 *5)) (-5 *1 (-213 *6 *7 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-4 *2 (-340 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-340 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1001)) (-4 *5 (-1001)) (-4 *2 (-394 *5)) (-5 *1 (-395 *6 *4 *5 *2)) (-4 *4 (-394 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-578 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-578 *5)) (-5 *1 (-579 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-877 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-877 *5)) (-5 *1 (-878 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1048 *6)) (-4 *6 (-1104)) (-4 *3 (-1104)) (-5 *2 (-1048 *3)) (-5 *1 (-1050 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1148 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1148 *5)) (-5 *1 (-1149 *6 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-214)) (-5 *3 (-1053)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-214)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-834 *3)) (-4 *3 (-276))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701)) (-5 *1 (-354 *4)) (-4 *4 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-23)) (-5 *1 (-584 *4 *2 *5)) (-4 *4 (-1001)) (-14 *5 *2))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701)) (-5 *1 (-749 *4)) (-4 *4 (-777))))) -(((*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *3 (-508))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-262 *2)) (-4 *2 (-657)) (-4 *2 (-1104))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-98 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-1001)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1001)) (-5 *2 (-107)) (-5 *1 (-1105 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) +(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276))))) +(((*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2)))) +(((*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-755)))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) ((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-882 *3)) (-4 *3 (-502)))) ((*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-107))))) +(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-107)) (-5 *1 (-1109 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703)))))) +(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-1153 *5)) (-5 *3 (-703)) (-5 *4 (-1021)) (-4 *5 (-319)) (-5 *1 (-487 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108))))) +(((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718))))) +(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509)))))) +(((*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *3))) (-5 *1 (-875 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-950)))) ((*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-950))))) +(((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-517))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) ((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2)))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-814 *5)) (-5 *3 (-583 (-1073))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-812 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-189 (-467))) (-5 *1 (-767))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072))))) +(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950))))) +(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-377 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5))))) ((*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *4) (|:| -3652 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *5)) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5)))))) +(((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 *2)))) +(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3)))) +(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) +(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-1072))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240))))) +(((*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1108)) (-4 *1 (-212 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107))))) +(((*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961))))) +(((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-983 *3 *4 *5))) (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-984 *3 *4 *5))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-4 *7 (-871 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) +(((*1 *2) (-12 (-5 *2 (-623 (-832 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021))))))))) ((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843))))) +(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3652 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *7 (-822 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180))))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1069 *1)) (-4 *1 (-299 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1130 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3)))))) +(((*1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-5 *1 (-787)))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5)))))) +(((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *1 *1) (-4 *1 (-918))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-928)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-928)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-928)))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089))))) +(((*1 *1) (-5 *1 (-989)))) +(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-871 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3))))) +(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509)))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-871 (-47) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-871 (-47) *6 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-871 *7 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1069 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1069 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1130 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-871 *7 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-871 *7 *6 *5)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1069 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-871 (-874 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-871 (-377 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1130 (-377 (-874 (-517))))))) ((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-874 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-874 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1931 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5)))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517))))) +(((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156))))) +(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-871 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *6))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891))))) (((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1151)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-798 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1151)) (-5 *1 (-226 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-798 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1151)) (-5 *1 (-226 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1152)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1151)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-798 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-798 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1151)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-1070)) (-5 *5 (-578 (-232))) (-4 *7 (-389 *6)) (-4 *6 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-1151)) (-5 *1 (-228 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1151)) (-5 *1 (-231)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-231)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *2 (-1151)) (-5 *1 (-231)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-231)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1152)) (-5 *1 (-231)))) ((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-231))))) -(((*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-752))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-270)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-272))))) -(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-50))))) -(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) ((*1 *2 *1) (-12 (-5 *2 (-1148 (-3 (-435) "undefined"))) (-5 *1 (-1151))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| |deg| (-701)) (|:| -2499 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-375 *5)))))) -(((*1 *1 *2) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1070))))) -(((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-331)) (-4 *1 (-297 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1125 *4)) (-4 *4 (-1108)) (-4 *1 (-310 *4 *3 *5)) (-4 *5 (-1125 (-375 *3))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-156)) (-4 *1 (-335 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-156)) (-4 *1 (-338 *4 *5)) (-4 *5 (-1125 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-378 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-386 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-107)) (-5 *1 (-844 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048 (-375 *3))) (-5 *1 (-157 *3)) (-4 *3 (-276))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3))))) -(((*1 *2) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-5 *1 (-533 *2)) (-4 *2 (-500)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1965 *3) (|:| -3027 (-701)))) (-5 *1 (-533 *3)) (-4 *3 (-500))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 *1)) (-4 *1 (-267)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-108)) (-5 *3 (-578 *5)) (-5 *4 (-701)) (-4 *5 (-777)) (-5 *1 (-553 *5))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *7)) (-4 *7 (-777)) (-4 *5 (-830)) (-4 *6 (-723)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-373 (-1064 *8))) (-5 *1 (-827 *5 *6 *7 *8)) (-5 *4 (-1064 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-959)) (-5 *1 (-621 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *4)) (-4 *4 (-959)) (-4 *1 (-1021 *3 *4 *5 *6)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-163 *3 *2)) (-4 *2 (-608 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1048 *4)) (-4 *4 (-37 *3)) (-4 *4 (-959)) (-5 *3 (-375 (-501))) (-5 *1 (-1055 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *2 (-578 (-1053))) (-5 *1 (-238))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-1148 *2)) (-4 *5 (-276)) (-4 *6 (-906 *5)) (-4 *2 (-13 (-378 *6 *7) (-950 *6))) (-5 *1 (-381 *5 *6 *7 *2)) (-4 *7 (-1125 *6))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-27) (-1090) (-389 *6) (-10 -8 (-15 -3691 ($ *7))))) (-4 *7 (-775)) (-4 *8 (-13 (-1128 *3 *7) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1053)) (-4 *9 (-898 *8)) (-14 *10 (-1070))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-578 (-701)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-577 *4)) (-4 *4 (-508)) (-5 *2 (-107)) (-5 *1 (-576 *4 *5))))) -(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-786))) ((*1 *1) (-12 (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3)))) ((*1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) ((*1 *1) (-5 *1 (-1073))) ((*1 *1) (-5 *1 (-1074)))) -(((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-259 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1125 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-642 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-643 *3 *2)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-646 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-331)) (-14 *5 (-908 *3 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1073))))) +(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *4)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4))))) +(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) +(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-677 *3)) (-4 *3 (-156))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273))))) +(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797))))) +(((*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3))))) +(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349)))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509))))) +(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300))))) +(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1156))))) +(((*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) ((*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-921))))) +(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-4 *1 (-777))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-517)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2256 (*2 *4)) (-15 -1549 ((-843) *2)) (-15 -1753 ((-1153 *2) (-843))) (-15 -4103 (*2 *2))))) (-5 *1 (-326 *2 *4))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *3) (-12 (|has| *6 (-6 -4181)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *3) (-12 (|has| *9 (-6 -4181)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918)))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *2))))) +(((*1 *1 *1) (-5 *1 (-973)))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| -1913 (-1069 *9)) (|:| |polval| (-1069 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9)) (-5 *4 (-1069 *8))))) +(((*1 *1) (-5 *1 (-407)))) +(((*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4)))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4))))) +(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779))))) +(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))) +(((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-871 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-961)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) ((*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-703))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-843)) (-4 *5 (-278)) (-4 *3 (-1130 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) ((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777)))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1103 *6)) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1161 *6)) (-5 *5 (-1054 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199))))) (-5 *1 (-100))))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777)))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131))))) +(((*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))) +(((*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1020)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))) ((*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1130 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-874 *5)))) (-5 *4 (-1073)) (-5 *2 (-874 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-5 *2 (-874 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1073)) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1073)) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777)))))) +(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-509)) (-4 *4 (-961)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *5 *6 *2)) (-4 *6 (-593 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181))))) +(((*1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154))))) +(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1094) (-400 *3))) (-14 *4 (-1073)) (-14 *5 *2))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1094) (-400 *3) (-10 -8 (-15 -2256 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1132 *2 *4) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1073))))) +(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240))))) +(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))) +(((*1 *1) (-5 *1 (-300)))) +(((*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-814 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1003)) (-4 *3 (-150 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-998 (-772 (-349))))) (-5 *2 (-583 (-998 (-772 (-199))))) (-5 *1 (-276)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-493)))) ((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *5 (-558 (-1073))) (-4 *4 (-725)) (-4 *5 (-779)))) ((*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-989)))) ((*1 *1 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *2 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-1043 *4 *5 *6 *7 *8)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) ((*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-1069 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073)))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 (-1069 (-874 *4)) (-874 *4))) (-5 *1 (-1161 *4)) (-4 *4 (-333))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *1) (-5 *1 (-407)))) +(((*1 *2 *3) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5)))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1349 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1349 (-703)))) (-4 *1 (-975 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-848))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517)))))) +(((*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107))))) +(((*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-1037) (-29 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-493))) (-5 *1 (-493))))) +(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1003))))) +(((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720))))) +(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-843)) (-4 *3 (-333)) (-14 *4 (-910 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *1) (|partial| -4 *1 (-655))) ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3)))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33)))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918)))))) +(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *3 *2)) (-4 *3 (-1003))))) +(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-407))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-403 *5 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228))))) +(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1121 (-517)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-983 *4 *5 *2))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-983 *5 *6 *2))) (-5 *4 (-843)) (-4 *5 (-1003)) (-4 *6 (-13 (-961) (-808 *5) (-779) (-558 (-814 *5)))) (-4 *2 (-13 (-400 *6) (-808 *5) (-558 (-814 *5)))) (-5 *1 (-53 *5 *6 *2))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1003))))) +(((*1 *2) (-12 (-5 *2 (-2 (|:| -3100 (-583 *3)) (|:| -3521 (-583 *3)))) (-5 *1 (-1109 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3199 *4) (|:| -2932 (-517))))) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2))))) +(((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073)))))) +(((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) ((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *3)) (|:| |logand| (-1069 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236))))) +(((*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-4 *3 (-212 (-2296 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *3)) (-2 (|:| -3448 *5) (|:| -2077 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *2 *3 (-789 *4)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517))))) +(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107))))) +(((*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33)))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4)) (-4 *4 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-57 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -1640 (-874 *6)) (|:| -1933 (-874 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5))))) +(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4)))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-300))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-843)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33)))))) +(((*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-818 *2 *4)) (-4 *2 (-1130 *4))))) +(((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240))))) +(((*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1) (-5 *1 (-1021)))) +(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -2422 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1076)) (-5 *3 (-1073))))) +(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1 *1) (-5 *1 (-1021)))) +(((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5))))) +(((*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-502)))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1 *1) (-5 *1 (-1021)))) +(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4))))) (((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) -(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-4 *1 (-342 *3 *4)) (-4 *4 (-156))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-1001)))) ((*1 *1 *1) (-5 *1 (-570)))) -(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-920))))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-331)) (-4 *5 (-1125 *4)) (-5 *2 (-1154)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1125 (-375 *5))) (-14 *7 *6)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-107)) (-5 *1 (-108)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-1070)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-108)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-107)) (-5 *1 (-553 *4)) (-4 *4 (-777)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-108)) (-5 *2 (-107)) (-5 *1 (-553 *4)) (-4 *4 (-777)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-4 *6 (-806 *5)) (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-807 *5 *6 *4)) (-4 *4 (-556 (-810 *5)))))) -(((*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959))))) -(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-839)) (-5 *1 (-485 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-331)) (-5 *2 (-621 *4)) (-5 *1 (-744 *4 *5)) (-4 *5 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-701)) (-4 *5 (-331)) (-5 *2 (-621 *5)) (-5 *1 (-744 *5 *6)) (-4 *6 (-593 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-1001))))) -(((*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-597))) ((*1 *1 *1 *1) (-5 *1 (-1018)))) -(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-109 *3)) (-4 *3 (-777)) (-4 *3 (-1001))))) -(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *1) (-4 *1 (-440))) ((*1 *1 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-803)))) ((*1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156))))) -(((*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-991 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef1| (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-972 *3 *4 *5))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-993 (-866 (-501)))) (-5 *3 (-866 (-501))) (-5 *1 (-298)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-993 (-866 (-501)))) (-5 *1 (-298))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-375 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-373 *7) *7)) (-4 *6 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *7 (-1125 *6)) (-5 *2 (-578 (-375 *7))) (-5 *1 (-742 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-375 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-373 *7) *7)) (-4 *6 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *7 (-1125 *6)) (-5 *2 (-578 (-375 *7))) (-5 *1 (-742 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-590 (-375 *5))) (-4 *5 (-1125 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *5))) (-5 *1 (-742 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-591 *5 (-375 *5))) (-4 *5 (-1125 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *5))) (-5 *1 (-742 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-597))) ((*1 *1 *1 *1) (-5 *1 (-1018)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-734 *4 *2)) (-4 *2 (-13 (-29 *4) (-1090) (-879))))) ((*1 *1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *2 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959))))) -(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2)))) -(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3 *4 *1) (-12 (-5 *3 (-1070)) (-5 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073))))) -(((*1 *2 *1) (-12 (-4 *2 (-13 (-1001) (-33))) (-5 *1 (-1035 *3 *2)) (-4 *3 (-13 (-1001) (-33)))))) -(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-548 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 (-1064 (-1064 *4)))) (-5 *1 (-1103 *4)) (-5 *3 (-1064 (-1064 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-959)) (-4 *1 (-1125 *3))))) -(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-375 *7)) (|:| |a0| *6)) (-2 (|:| -3071 (-375 *7)) (|:| |coeff| (-375 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-755))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1074))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1125 *4)) (-4 *4 (-959)) (-5 *2 (-1148 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1034)))) -(((*1 *2 *3) (-12 (-5 *3 (-1078 (-578 *4))) (-4 *4 (-777)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-775))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1125 (-152 *3)))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-701) *2)) (-5 *4 (-701)) (-4 *2 (-1001)) (-5 *1 (-611 *2)))) ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-701) *3)) (-4 *3 (-1001)) (-5 *1 (-614 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-331))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-621 *3))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-578 *6) "failed") (-501) *6 *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7))))) -(((*1 *1) (-5 *1 (-404)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-701)))) ((*1 *1 *1) (-4 *1 (-370)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4))))) -(((*1 *1) (-5 *1 (-1151)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3))))) -(((*1 *2) (-12 (-5 *2 (-578 *3)) (-5 *1 (-987 *3)) (-4 *3 (-124))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *6)))) (-5 *4 (-939 (-769 (-501)))) (-5 *5 (-1070)) (-5 *7 (-375 (-501))) (-4 *6 (-959)) (-5 *2 (-786)) (-5 *1 (-540 *6))))) -(((*1 *1) (-5 *1 (-511)))) -(((*1 *2 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-282 (-346))) (-5 *1 (-272))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1077)) (-5 *1 (-1076))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1056)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1108))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1102 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-975 *4 *5 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1106 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-421)))) ((*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) ((*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1061 *3 *2)) (-4 *2 (-1130 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 (-623 *3))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-377 (-874 *5))))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-874 *5)))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-874 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-991 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4))))) +(((*1 *1 *1) (-4 *1 (-793 *2)))) +(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-950)) (-5 *1 (-276))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1151 *3)) (-4 *3 (-23)) (-4 *3 (-1108))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-168)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) +(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2)))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) ((*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1110))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754))))) +(((*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-874 (-517))) (-5 *3 (-1073)) (-5 *4 (-998 (-377 (-517)))) (-5 *1 (-30))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-961)))) ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) ((*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1094))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1047 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) ((*1 *2 *1) (-12 (-5 *2 (-1166 (-1073) *3)) (-5 *1 (-1173 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-199)) (-5 *1 (-1105)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-905 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1010 *5 *6 *7 *8 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848))))) +(((*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5))))) +(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-996 (-874 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))))) +(((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-1123 *2 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) ((*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1003))))) +(((*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779))))) +(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-846 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1153 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33)))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-874 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)))))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1156))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) ((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-973))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1069 *8)) (-5 *1 (-291 *6 *7 *8 *9))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1153 (-583 (-517)))) (-5 *1 (-448)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-186)) (-5 *3 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-583 *3))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1108)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1) (-5 *1 (-155))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) ((*1 *1) (-5 *1 (-364))) ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) ((*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) ((*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) ((*1 *1 *1) (-5 *1 (-1073))) ((*1 *1) (-5 *1 (-1073))) ((*1 *1) (-5 *1 (-1089)))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5))))) +(((*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1839 (-1054 *4)) (|:| -1853 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1054 *3))) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961))))) +(((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) ((*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2)))))) +(((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-337 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-983 *3 *4 *5))) (-5 *1 (-984 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3))))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108))))) +(((*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-338)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3))))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-961)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090))))) +(((*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9))))) +(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779))))) +(((*1 *1) (-4 *1 (-319))) ((*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-402 *4 *5)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1069 *3)) (|:| |pol2| (-1069 *3)) (|:| |prim| (-1069 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) ((*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1073)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-5 *5 (-1073)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *6))) (|:| |prim| (-1069 *6)))) (-5 *1 (-881 *6))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-811 *4 *5)) (-5 *3 (-811 *4 *6)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-807 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))) ((*1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1) (-5 *1 (-849))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1155))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1073))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1073))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-952 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1073)) (-4 *7 (-558 (-814 (-517)))) (-4 *7 (-421)) (-4 *7 (-808 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1095 *3)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1095 *2))) (-5 *1 (-1095 *2)) (-4 *2 (-1003))))) +(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1013))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1135 *3)) (-4 *3 (-961))))) +(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) +(((*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349))))) +(((*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1701 (-1054 *4)) (|:| -1711 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 *3) (|:| -1257 *4)))) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *1 (-1085 *3 *4)))) ((*1 *1) (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) +(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-944 *6)) (-4 *6 (-333)) (-4 *6 (-961)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)) (-4 *4 (-333)) (-4 *4 (-961)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-961))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-331 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-356 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1168 *4 *3)) (-4 *3 (-961))))) +(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502))))) +(((*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1003))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-108 *2))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1077))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1154)))) ((*1 *1 *1) (-5 *1 (-1154)))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-826 *3)) (-4 *3 (-1003))))) +(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3)))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961))))) +(((*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1003))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $)))))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-611 *3)) (-4 *3 (-1003))))) +(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156))))) +(((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1 *1) (-4 *1 (-694)))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))) +(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4))))) +(((*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1073)) (|:| |c| (-1173 *3))))) (-5 *1 (-1173 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1175 *3 *4))))) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961))))) +(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089))))) +(((*1 *2 *3 *3) (-12 (-4 *3 (-1112)) (-4 *5 (-1130 *3)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) ((*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-928)) (-5 *2 (-377 (-517))))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2256 (*2 (-1073)))) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *6 (-558 (-1073))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1063 (-583 (-874 *4)) (-583 (-265 (-874 *4))))) (-5 *1 (-469 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703))))) +(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1158)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3)))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108))))) +(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-843))) (|:| -2131 *3) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-874 *4))) (-5 *1 (-943 *4)) (-4 *4 (-961))))) +(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-1078))) (-5 *1 (-1078))))) +(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094)))))) +(((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1) (-5 *1 (-300)))) +(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1153 *1)) (-4 *1 (-579 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 *5)))))) ((*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-961)) (-5 *2 (-623 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1078))) (-5 *1 (-1078))))) +(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1027 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *1 (-1027 *4 *3 *5)) (-4 *5 (-871 *4 (-489 *3) *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1103 *4))) (-5 *3 (-1073)) (-5 *1 (-1103 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1003)) (-5 *2 (-583 (-2 (|:| -1257 *3) (|:| -3217 (-703)))))))) +(((*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *4))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *4)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1073))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-874 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-265 (-874 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703)))))) (-5 *1 (-210))))) +(((*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1073) (-1056) (-583 (-1078)))) (-5 *1 (-1078))))) +(((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517))))) +(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003))))) +(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724))))) +(((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-843)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-843))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843)))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-928)) (-5 *2 (-787))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1003))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1) (-5 *1 (-755)))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718))))) +(((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1108)) (-5 *2 (-517))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) +(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156))))) +(((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-918)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)) (-4 *3 (-724))))) +(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509)))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) ((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509))))) +(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1038 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *1 (-1039 *4 *5)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1038 *3 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-1005 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-959))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-865 *4)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421))))) +(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1102 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-827 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-690))))) +(((*1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1130 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3))))) +(((*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1094) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-5 *4 (-1073)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))) ((*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-4 *1 (-928)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-5 *4 (-787)) (-4 *1 (-928)))) ((*1 *1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-977 *4 *2)) (-4 *2 (-1130 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1130 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) +(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-107)) (-5 *1 (-753))))) +(((*1 *2 *1) (-12 (-5 *2 (-1153 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) ((*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689))))) +(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5))))) +(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3))))) +(((*1 *1 *1) (-4 *1 (-502)))) +(((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-703))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1069 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1031 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-1003)) (-4 *2 (-822 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4180))))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-998 (-199)))) (-5 *1 (-850))))) +(((*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248))))) +(((*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-377 (-874 *4))) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7))))) +(((*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-950)) (-5 *1 (-689))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1056)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-874 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-874 *6)))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-517)) (-5 *1 (-1013)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1013))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-950))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-843)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155))))) +(((*1 *1 *1) (-5 *1 (-47))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-56 *5 *2)))) ((*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) ((*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -1913 (-1069 *4)) (|:| |deg| (-843)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1069 *4)) (-4 *5 (-13 (-509) (-779))))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *2 (-1108)) (-5 *1 (-213 *5 *6 *2)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1130 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) ((*1 *1 *1) (-5 *1 (-460))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-581 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-878 *5 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1052 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1102 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-975 *5 *6 *7)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1152 *5 *2))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1))) (-4 *1 (-975 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689))))) +(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-703)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-703))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1069 *6)) (-4 *7 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1069 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-871 *11 *9 *10)) (-5 *2 (-583 (-1069 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1069 *5)))) ((*1 *2 *1) (-12 (-4 *2 (-871 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-155)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *2)) (-4 *2 (-871 *3 *5 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-209 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) ((*1 *1 *1) (-4 *1 (-145)))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) ((*1 *1) (-4 *1 (-338))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1) (-4 *1 (-502))) ((*1 *1 *1) (-5 *1 (-517))) ((*1 *1 *1) (-5 *1 (-703))) ((*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-502)) (-4 *2 (-509))))) +(((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1021))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *4) (|:| -3631 (-517))))))) (-4 *4 (-1130 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517))))) +(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-906)))) ((*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-13 (-1003) (-33)))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-843)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-877 *5 *3)) (-4 *3 (-593 *5))))) +(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-871 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-904 *4 *5 *6 *3))))) +(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1073))) (-5 *1 (-571 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-689))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276))))) +(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-1153 (-286 (-349)))) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51)))) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-1005 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-583 *4))) (-5 *1 (-826 *4)) (-5 *3 (-583 *4)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-1005 *4))) (-5 *1 (-826 *4)) (-5 *3 (-1005 *4)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *2 (-822 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180))))))) +(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))) +(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 (-517)))) (-5 *3 (-1069 (-517))) (-5 *1 (-525)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *1))) (-5 *3 (-1069 *1)) (-4 *1 (-831))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1158)) (-5 *1 (-763))))) +(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1130 *3)) (-5 *2 (-583 (-1069 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1130 *5))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156))))) +(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-703)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-703)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $)))))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *1 *1) (-5 *1 (-973)))) +(((*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-689))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) +(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2597 *1) (|:| |upper| *1))) (-4 *1 (-893 *4 *5 *3 *6))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4))))) +(((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1130 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089))))) +(((*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1153 (-1073))) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 *2)) (-14 *7 (-1153 (-623 *4))))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-1073))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 *2)) (-14 *6 (-1153 (-623 *3))))) ((*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-843)) (-14 *4 (-583 (-1073))) (-14 *5 (-1153 (-623 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-779))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *4 (-1056)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-871 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-1112)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703))))) +(((*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) ((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1108)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-961)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-333)) (-5 *2 (-125))))) +(((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4))))) +(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1130 *6))))) +(((*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1130 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1130 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1073))) (-5 *1 (-757))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5)))))) +(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-207))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-822 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1073)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-954))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4))))) (((*1 *1) (-5 *1 (-128)))) -(((*1 *2 *3) (-12 (-5 *3 (-769 (-346))) (-5 *2 (-769 (-199))) (-5 *1 (-272))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-578 (-866 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-578 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-578 (-866 *3))))) ((*1 *2) (-12 (-5 *2 (-578 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) ((*1 *2 *3) (-12 (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *2 (-578 (-866 *4))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-508)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 (-1070))) (-14 *7 (-1148 (-621 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-578 (-199))) (-5 *1 (-435))))) -(((*1 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4119 (-578 *1)))) (-4 *1 (-335 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-420 *3 *4 *5 *6)) (|:| -4119 (-578 (-420 *3 *4 *5 *6))))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959))))) -(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-795)))) ((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-50)) (-5 *1 (-759))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847))))) -(((*1 *2 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-373 *4)) (-4 *4 (-508))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-412 *3)) (-4 *3 (-959))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-298))))) -(((*1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501)))) ((*1 *1 *1) (-5 *1 (-1018)))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941)) (-5 *3 (-282 (-501)))))) -(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1) (-4 *1 (-1034)))) -(((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-749 *3)) (|:| |rm| (-749 *3)))) (-5 *1 (-749 *3)) (-4 *3 (-777)))) ((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3) (-12 (-5 *3 (-501)) (|has| *1 (-6 -4158)) (-4 *1 (-372)) (-5 *2 (-839))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501)))) ((*1 *1 *1 *1) (-5 *1 (-1018)))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-822 *3)) (-4 *3 (-336)) (-4 *3 (-1001))))) -(((*1 *1 *1 *1) (-4 *1 (-276))) ((*1 *1 *1 *1) (-5 *1 (-701))) ((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-752))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501)))) ((*1 *1 *1 *1) (-5 *1 (-1018)))) -(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1) (-5 *1 (-1018)))) -(((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786))))) -(((*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-578 (-578 (-578 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-578 (-578 *4)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *1 (-530 *2)) (-4 *2 (-950 *3)) (-4 *2 (-331)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-530 *2)) (-4 *2 (-331)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-389 *4) (-916) (-1090))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-13 (-389 *4) (-916) (-1090))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-567 *4 *2)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-879)) (-5 *2 (-1070)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-879))))) -(((*1 *2 *1) (-12 (-5 *2 (-1130 *3 *4 *5)) (-5 *1 (-287 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-373 *3)) (-4 *3 (-508)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) ((*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-644 *3 *2 *4)) (-4 *3 (-777)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *3) (|:| -3027 *2)) (-2 (|:| -3506 *3) (|:| -3027 *2))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107))))) -(((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-621 *3)) (|:| |invmval| (-621 *3)) (|:| |genIdeal| (-467 *3 *4 *5 *6)))) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1053)) (-5 *1 (-272))))) -(((*1 *1 *1 *1) (-4 *1 (-276))) ((*1 *1 *1 *1) (-5 *1 (-701))) ((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-282 (-199)))) (-5 *1 (-238))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1148 (-1070))) (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 (-1070))) (-14 *7 (-1148 (-621 *4))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 *2)) (-14 *7 (-1148 (-621 *4))))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-420 *3 *4 *5 *6))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-1070))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 *2)) (-14 *6 (-1148 (-621 *3))))) ((*1 *1) (-12 (-5 *1 (-420 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-839)) (-14 *4 (-578 (-1070))) (-14 *5 (-1148 (-621 *2)))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *2) (-12 (-4 *3 (-959)) (-4 *4 (-1125 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1125 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-942 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-578 (-621 *3))) (-4 *3 (-959)) (-5 *1 (-942 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-942 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-621 *3))) (-4 *3 (-959)) (-5 *1 (-942 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| -2109 *1) (|:| -2342 (-578 *7))))) (-5 *3 (-578 *7)) (-4 *1 (-1099 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-501))) (-5 *4 (-822 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-536)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-536)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-501))) (-5 *4 (-578 (-822 (-501)))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-536))))) -(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-208 *3)))) ((*1 *1) (-12 (-4 *1 (-208 *2)) (-4 *2 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-723)) (-4 *2 (-870 *4 *5 *6)) (-5 *1 (-417 *4 *5 *6 *2)) (-4 *4 (-419)) (-4 *6 (-777))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1090) (-29 *4)))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1090) (-29 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-530 (-375 (-866 *5)))) (-5 *1 (-521 *5)) (-5 *3 (-375 (-866 *5)))))) -(((*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-1148 *3)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1070)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1090) (-27) (-389 *8))) (-4 *8 (-13 (-419) (-777) (-134) (-950 *3) (-577 *3))) (-5 *3 (-501)) (-5 *2 (-578 *4)) (-5 *1 (-928 *8 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-995 *3)) (-4 *3 (-1104))))) -(((*1 *2 *3) (-12 (-5 *2 (-373 (-1064 (-501)))) (-5 *1 (-167)) (-5 *3 (-501))))) -(((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-282 (-375 (-501)))) (-5 *1 (-272))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-501)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-501)) (-5 *7 (-1053)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-199)) (-5 *7 (-501)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-199)) (-5 *7 (-501)) (-5 *8 (-1053)) (-5 *2 (-1100 (-847))) (-5 *1 (-286))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-777)) (-5 *2 (-578 (-599 *4 *5))) (-5 *1 (-565 *4 *5 *6)) (-4 *5 (-13 (-156) (-648 (-375 (-501))))) (-14 *6 (-839))))) -(((*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-1151)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1151)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1151)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-1152)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1152)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1152))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-107)) (-5 *1 (-446))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1633 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628))))) -(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-553 *3)) (-4 *3 (-777))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-795)) (-5 *3 (-578 (-232))) (-5 *1 (-233))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786))))) (-5 *1 (-1070)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 (-786)))) (-5 *1 (-1070))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92))))) -(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -3071 (-375 *6)) (|:| |coeff| (-375 *6)))) (-5 *1 (-525 *5 *6)) (-5 *3 (-375 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-508)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-578 *7) *7 (-1064 *7))) (-5 *5 (-1 (-373 *7) *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-331) (-134) (-950 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |frac| (-375 *7)) (|:| -2499 *3)))) (-5 *1 (-739 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-375 *7))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |frac| (-375 *6)) (|:| -2499 (-591 *6 (-375 *6)))))) (-5 *1 (-742 *5 *6)) (-5 *3 (-591 *6 (-375 *6)))))) -(((*1 *2 *1) (-12 (-4 *2 (-640 *3)) (-5 *1 (-758 *2 *3)) (-4 *3 (-959))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-508)) (-5 *1 (-885 *4 *2)) (-4 *2 (-1125 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-991 (-769 (-199)))) (-5 *1 (-272))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-701)) (-5 *2 (-621 (-199))) (-5 *1 (-272))))) -(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-375 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-375 *5))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *3 (-107)) (-5 *1 (-1010))))) -(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-4 *2 (-1001)) (-5 *1 (-808 *4 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-501))) (-5 *4 (-262 *6)) (-4 *6 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-501))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-375 (-501)))) (-5 *4 (-262 *8)) (-5 *5 (-1116 (-375 (-501)))) (-5 *6 (-375 (-501))) (-4 *8 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-375 (-501)))) (-5 *7 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *8))) (-4 *8 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *8 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-4 *3 (-959)) (-5 *1 (-540 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-541 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-4 *3 (-959)) (-4 *1 (-1111 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| *4)))) (-4 *4 (-959)) (-4 *1 (-1132 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-4 *1 (-1142 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-701)) (|:| |c| *3)))) (-4 *3 (-959)) (-4 *1 (-1142 *3))))) -(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *6 (-578 (-232))) (-5 *2 (-435)) (-5 *1 (-1150)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-435)) (-5 *1 (-1150)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-578 (-232))) (-5 *2 (-435)) (-5 *1 (-1150))))) -(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-621 *11)) (-5 *4 (-578 (-375 (-866 *8)))) (-5 *5 (-701)) (-5 *6 (-1053)) (-4 *8 (-13 (-276) (-134))) (-4 *11 (-870 *8 *10 *9)) (-4 *9 (-13 (-777) (-556 (-1070)))) (-4 *10 (-723)) (-5 *2 (-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 *11)) (|:| |neqzro| (-578 *11)) (|:| |wcond| (-578 (-866 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *8)))) (|:| -4119 (-578 (-1148 (-375 (-866 *8)))))))))) (|:| |rgsz| (-501)))) (-5 *1 (-844 *8 *9 *10 *11)) (-5 *7 (-501))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33)))))) -(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-1125 *3))))) -(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-501)) (-4 *3 (-156)) (-4 *5 (-340 *3)) (-4 *6 (-340 *3)) (-5 *1 (-620 *3 *5 *6 *2)) (-4 *2 (-618 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *5)) (-2 (|:| -3506 *2) (|:| -3027 *5)))) (-4 *2 (-777)) (-5 *1 (-428 *3 *4 *2 *5 *6 *7)) (-4 *7 (-870 *4 *5 (-787 *3)))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-777))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1210 *1) (|:| -1513 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1102 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1153 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)) (-4 *3 (-156))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-971 (-939 *3) (-1069 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406))))) +(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-827 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-827 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *1 *1 *1) (-5 *1 (-125))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1145 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1116 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1114 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1137 *4 *5)) (-4 *6 (-900 *5)))) ((*1 *1 *1 *1) (-4 *1 (-256))) ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-5 *1 (-349))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1015)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1003)) (-5 *1 (-616 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-377 (-517))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073)))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1114 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1145 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013))))) +(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108))))) +(((*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163))))) ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *2 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) ((*1 *1) (-5 *1 (-1021)))) +(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1054 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)))) ((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) ((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-5 *1 (-1073)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-961)) (-4 *3 (-333)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5))))) +(((*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-209 *3)))) ((*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1003))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1069 *11))) (-5 *3 (-1069 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1153 (-583 (-1069 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-871 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-871 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779))))) +(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1069 *3)) (-4 *3 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421))))) +(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *1 (-109)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-109)) (-5 *1 (-147)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) ((*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-918) (-1094)))))) +(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517))))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1094) (-29 *4)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077))))) +(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-871 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3))))) +(((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779))))) +(((*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1130 *2))))) +(((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) ((*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1069 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-871 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1069 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1069 *12))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-534 (-377 (-874 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1153 (-1153 (-517)))) (-5 *3 (-843)) (-5 *1 (-435))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073)))))) +(((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-980 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-978 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1043 *7 *8 *9 *10 *11))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *8))) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *6))) (-5 *1 (-834 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3))))) +(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1073)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073))))) +(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1081 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1013))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-930 *8 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 (-377 *3))) (-5 *2 (-843)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4)))))) +(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4)))))) +(((*1 *2 *3) (-12 (-5 *2 (-388 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300))))) +(((*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-100))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-865 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))) ((*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *3 (-1130 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630))))) +(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276))))) +(((*1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *7 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *2 (-1155)) (-5 *1 (-230))))) +(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-706)) (-5 *1 (-109))))) +(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107))))) +(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021))))))))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1056))) (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *1 (-215)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-843))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922))))) +(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-517))) (-5 *1 (-1178 *4))))) +(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156))))) +(((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761))))) +(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1153 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156))))) +(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163))))) ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *1) (-5 *1 (-1021)))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-814 *3)) (|:| |den| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4))))) (-5 *1 (-263 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))) ((*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))) ((*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-908 *3 *4)) (-4 *3 (-909 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-927 *3)) (-4 *3 (-928)))) ((*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-703)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-969 *3)) (-4 *3 (-970))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *1) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5)))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509))))) +(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276))))) +(((*1 *2 *3) (-12 (-5 *3 (-1069 *6)) (-4 *6 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *2) (-12 (-5 *2 (-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073))))) (-5 *1 (-1110))))) +(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186))))) +(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3295 *1) (|:| -4167 *1) (|:| |associate| *1))) (-4 *1 (-509))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-875 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*3 $)) (-15 -1800 (*3 $)) (-15 -2256 ($ *3)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-583 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1029 *3 *5)) (-4 *3 (-1130 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703))))) +(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1054 (-517)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076))))) +(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-543 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1114 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1135 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-4 *1 (-1145 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1145 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1094)))) ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-377 (-517))))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236))))) +(((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1130 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4)))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 (-583 (-843)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5))))) +(((*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-828 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2) (-12 (-4 *2 (-831)) (-5 *1 (-829 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-961)) (-5 *1 (-1058 *4))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1081 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107))))) +(((*1 *1 *2) (|partial| -12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-887 *2 *4)) (-4 *4 (-1130 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-123))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-2 (|:| -1210 (-583 *6)) (|:| -1513 (-583 *6))))))) +(((*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *5 *6 *7 *8))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *5 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1013))))) +(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181)))))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181))))))) +(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-865 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)) (-5 *3 (-199))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271))))) +(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961))))) +(((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -3618 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -2077 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779))))) +(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154))))) +(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-1073))) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-961))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-1148 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1145 *5))))) +(((*1 *1) (-5 *1 (-973)))) +(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) ((*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1145 *2))))) +(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1044 *5 *6 *7 *8))))) (-5 *1 (-1044 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) +(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2422 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-961)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5)))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-950)) (-5 *1 (-679))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-94 *3)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4)))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-918))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-874 *4)))) (-5 *1 (-165 *4))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-950)) (-5 *1 (-679))))) +(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181))))) +(((*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-212 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1108)))) ((*1 *1 *2) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-871 *4 *5 (-789 *3))))) ((*1 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1069 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -2131 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6)))))) +(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1056))))) +(((*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961))))) +(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-812 *5 *3)) (-4 *3 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-107)) (-5 *1 (-812 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-826 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-679))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918)))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-5 *1 (-632)))) ((*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-895 *5))))) +(((*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-961))))) +(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *1) (-4 *1 (-1049)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703))))) +(((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3))))) +(((*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) (-5 *1 (-1077))))) +(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-155))))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3))))) +(((*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946))))) +(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *3 (-822 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180))))))) +(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-1069 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-1069 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-805))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-407)) (-5 *1 (-1077))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107))))) +(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3))))) +(((*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-787)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-883))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319))))) +(((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156))))) +(((*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 (-814 *3))))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003))))) +(((*1 *2 *2) (-12 (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421))))) +(((*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1154)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1155)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240))))) +(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276))))) +(((*1 *1 *1) (-4 *1 (-502)))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5))))) +(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-826 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-843)) (-5 *2 (-107)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1071 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1146 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7))))) +(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-952 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *5 (-556 $)) $)) (-15 -1800 ((-1026 *5 (-556 $)) $)) (-15 -2256 ($ (-1026 *5 (-556 $)))))))))) +(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961))))) +(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1003))))) +(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-1021)))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181))))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1013))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4)))))) +(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036))))) +(((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517))))) +(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-811 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517))))) +(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1133 *4 *3)) (-4 *3 (-13 (-1130 *4) (-509) (-10 -8 (-15 -1401 ($ $ $))))))) ((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073)))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961))))) +(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073)))))) +(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166))))) +(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-437)) (-5 *1 (-1157)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107))))) +(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-168))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-865 *4)) (-4 *4 (-961)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517))))) +(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-874 *8)))) (-5 *5 (-703)) (-5 *6 (-1056)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-871 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1073)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-874 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *8)))) (|:| -1753 (-583 (-1153 (-377 (-874 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-846 *8 *9 *10 *11)) (-5 *7 (-517))))) +(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-367))))) +(((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-874 *6)) (-1063 (-1073) (-874 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-874 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5))))))) +(((*1 *1 *2) (-12 (-5 *2 (-1062 3 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-207))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777)))))) +(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21)))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-961)) (-5 *2 (-623 *3))))) +(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-199)) (-5 *1 (-276))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-843))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-14 *5 (-910 *4 *2)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-871 *4 (-489 *5) *5)) (-5 *1 (-1027 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-874 *4)) (-5 *1 (-1103 *4)) (-4 *4 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509))))) +(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538))))) +(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1073))) (-4 *2 (-13 (-400 (-153 *5)) (-918) (-1094))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-918) (-1094)))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-871 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) +(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1124 *3 *2)) (-4 *2 (-1130 *3))))) +(((*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-940 *3 *2)) (-4 *2 (-593 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3837 (-583 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1094) (-29 *4))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349))))) +(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168))))) +(((*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168))))) +(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1108)) (-5 *2 (-703))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509)))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-959))))) +(((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-871 *4 *5 (-789 *3)))))) +(((*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107))))) +(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107))))) +(((*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1153 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) ((*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349))))) +(((*1 *1) (-5 *1 (-1158)))) +(((*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1003))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961))))) +(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779))))) +(((*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1130 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961))))) +(((*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1931 *3) (|:| |gap| (-703)) (|:| -3425 (-714 *3)) (|:| -3060 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-517))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1145 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1130 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1145 *6)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1145 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1050 *4))))) +(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-973)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) (((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) -(((*1 *2 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-501)) (-5 *1 (-214)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-501)) (-5 *1 (-214))))) -(((*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953))))) -(((*1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) ((*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-1125 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889))))) -(((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-839)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *2 (-340 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *6 *7 *2)) (-4 *6 (-959)) (-4 *7 (-211 *5 *6)) (-4 *2 (-211 *4 *6))))) -(((*1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298))))) -(((*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-906 *2)) (-4 *4 (-1125 *3)) (-4 *2 (-276)) (-5 *1 (-381 *2 *3 *4 *5)) (-4 *5 (-13 (-378 *3 *4) (-950 *3))))) ((*1 *2 *1) (-12 (-4 *3 (-508)) (-4 *3 (-777)) (-5 *2 (-1023 *3 (-553 *1))) (-4 *1 (-389 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-657) *4)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-37 *4)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-657) *4)) (-5 *1 (-587 *3 *4 *2)) (-4 *3 (-648 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-1012)) (-4 *3 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-389 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-1042 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-381 *3 *4 *5 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *3 (-777)) (-5 *2 (-1023 *3 (-553 *1))) (-4 *1 (-389 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-558 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-657) *3)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-648 *3)) (-5 *1 (-587 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-657) *3)))) ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508))))) -(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-44 (-1053) (-703))) (-5 *1 (-108))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-2 (|:| |zeros| (-1048 (-199))) (|:| |ones| (-1048 (-199))) (|:| |singularities| (-1048 (-199))))) (-5 *1 (-100))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-621 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))) ((*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1125 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-655 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-866 *5)))) (-5 *4 (-1070)) (-5 *2 (-866 *5)) (-5 *1 (-261 *5)) (-4 *5 (-419)))) ((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 *4)))) (-5 *2 (-866 *4)) (-5 *1 (-261 *4)) (-4 *4 (-419)))) ((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-866 (-152 (-375 (-501))))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *4 (-1070)) (-5 *2 (-866 (-152 (-375 (-501))))) (-5 *1 (-695 *5)) (-4 *5 (-13 (-331) (-775))))) ((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-866 (-375 (-501)))) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *4 (-1070)) (-5 *2 (-866 (-375 (-501)))) (-5 *1 (-709 *5)) (-4 *5 (-13 (-331) (-775)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-711 *3)) (|:| |polden| *3) (|:| -2735 (-701)))) (-5 *1 (-711 *3)) (-4 *3 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2735 (-701)))) (-4 *1 (-972 *3 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-612 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718))))) -(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *1 (-404))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-612 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -2150 *4) (|:| -1506 (-501))))) (-4 *4 (-1001)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-578 (-232))) (-5 *1 (-233))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233))))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-1074)) (-5 *1 (-1073))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-310 *5 *6 *7)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-736 *5 *6 *7 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-282 *3)) (-4 *3 (-508)) (-4 *3 (-777))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2532 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-669))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-511))))) -(((*1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) ((*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1001))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1153))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-114 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-903 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-977 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-977 *6 *7 *8 *9))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-1132 *3)) (-4 *3 (-959))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-107)) (-5 *1 (-533 *3)) (-4 *3 (-500))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-435)) (-5 *3 (-578 (-232))) (-5 *1 (-1151)))) ((*1 *1 *1) (-5 *1 (-1151)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-609 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-1070)) (|:| |c| (-1168 *3))))) (-5 *1 (-1168 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| *3) (|:| |c| (-1171 *3 *4))))) (-5 *1 (-1171 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |minor| (-578 (-839))) (|:| -2499 *3) (|:| |minors| (-578 (-578 (-839)))) (|:| |ops| (-578 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-839)) (-4 *3 (-593 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1001)) (-5 *2 (-578 (-2 (|:| -2922 *3) (|:| -3713 (-701)))))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-961)) (-4 *2 (-1003))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-950)) (-5 *1 (-276))))) +(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493))))) +(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-970)) (-4 *3 (-1094)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1166 (-1073) *3)) (-4 *3 (-961)) (-5 *1 (-1173 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *1 (-1175 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779))))) +(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1056)) (|:| -1207 (-1056)))) (-5 *1 (-754))))) +(((*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300))))) +(((*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1108))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156))))) +(((*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276))))) +(((*1 *2 *2) (-12 (-4 *3 (-558 (-814 *3))) (-4 *3 (-808 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-558 (-814 *3))) (-4 *2 (-808 *3)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843))))) +(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1) (-5 *1 (-446))) ((*1 *1) (-4 *1 (-1094)))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-1087))))) +(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1054 *3))) (-5 *1 (-1054 *3)) (-4 *3 (-1108))))) +(((*1 *2 *2) (|partial| -12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3))))) (((*1 *1) (-5 *1 (-142)))) -(((*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-839)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) ((*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-762 (-839))) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) ((*1 *2) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-839)))) ((*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-762 (-839)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -1654 (-701)) (|:| |curves| (-701)) (|:| |polygons| (-701)) (|:| |constructs| (-701))))))) -(((*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153))))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-220 *4 *5))) (-5 *2 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-569 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-5 *3 (-1070)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-866 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-777) (-508))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-777) (-508))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *2)) (-5 *4 (-1070)) (-4 *2 (-389 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-777) (-508))))) ((*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1064 *1)) (-5 *3 (-839)) (-4 *1 (-926)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1064 *1)) (-5 *3 (-839)) (-5 *4 (-786)) (-4 *1 (-926)))) ((*1 *1 *2 *3) (|partial| -12 (-5 *3 (-839)) (-4 *4 (-13 (-775) (-331))) (-4 *1 (-974 *4 *2)) (-4 *2 (-1125 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-375 (-1064 (-282 *3)))) (-4 *3 (-13 (-508) (-777))) (-5 *1 (-1028 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-214)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 (-1053))) (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *1 (-214)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-447 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-220 *4 *5)) (-5 *1 (-864 *4 *5))))) -(((*1 *2 *3) (-12 (-4 *1 (-730)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-948))))) -(((*1 *2 *2) (-12 (-5 *2 (-467 (-375 (-501)) (-212 *4 (-701)) (-787 *3) (-220 *3 (-375 (-501))))) (-14 *3 (-578 (-1070))) (-14 *4 (-701)) (-5 *1 (-468 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *2 *4 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) ((*1 *1) (-4 *1 (-336))) ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) ((*1 *1 *1) (-4 *1 (-500))) ((*1 *1) (-4 *1 (-500))) ((*1 *1 *1) (-5 *1 (-501))) ((*1 *1 *1) (-5 *1 (-701))) ((*1 *2 *1) (-12 (-5 *2 (-822 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-822 *4)) (-5 *1 (-825 *4)) (-4 *4 (-1001)))) ((*1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-500)) (-4 *2 (-508))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-276) (-134))) (-4 *4 (-13 (-777) (-556 (-1070)))) (-4 *5 (-723)) (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-870 *3 *5 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3))))) -(((*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-220 *5 *6))) (-4 *6 (-419)) (-5 *2 (-220 *5 *6)) (-14 *5 (-578 (-1070))) (-5 *1 (-569 *5 *6))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-701)) (|:| -2663 *4))) (-5 *5 (-701)) (-4 *4 (-870 *6 *7 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-417 *6 *7 *8 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-614 *2)) (-4 *2 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 *5) (-578 *5))) (-5 *4 (-501)) (-5 *2 (-578 *5)) (-5 *1 (-614 *5)) (-4 *5 (-1001))))) -(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1053) (-703))) (-5 *1 (-108))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402))))) -(((*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-1123 *4 *2)) (-4 *2 (-1125 *4))))) -(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1039)))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-922 *3)) (-4 *3 (-950 *2))))) -(((*1 *1) (-5 *1 (-733)))) -(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1073))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-102 *3))))) -(((*1 *1 *1) (-4 *1 (-508)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-822 *3))) (-4 *3 (-1001)) (-5 *1 (-825 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3383 *1) (|:| |upper| *1))) (-4 *1 (-891 *4 *5 *3 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-754)) (-5 *1 (-753))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-786))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-753))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-701))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-107))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-1048 *4) (-1048 *4))) (-5 *1 (-1143 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *5)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847))))) -(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-548 *4 *3)) (-4 *4 (-1001)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1053)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *4 (-972 *6 *7 *8)) (-5 *2 (-1154)) (-5 *1 (-706 *6 *7 *8 *4 *5)) (-4 *5 (-977 *6 *7 *8 *4))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| -2896 *5) (|:| -4022 *5)))) (-5 *1 (-737 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-375 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *4 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -2896 *4) (|:| -4022 *4)))) (-5 *1 (-737 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-375 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| -2896 *5) (|:| -4022 *5)))) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-375 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *4 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -2896 *4) (|:| -4022 *4)))) (-5 *1 (-737 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-375 *4)))))) -(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1070)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1090) (-27) (-389 *8))) (-4 *8 (-13 (-419) (-777) (-134) (-950 *3) (-577 *3))) (-5 *3 (-501)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1320 *4) (|:| |sol?| (-107)))) (-5 *1 (-927 *8 *4))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *2 (-50)) (-5 *1 (-232)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *1 (-234 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001))))) -(((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *3 (-501)) (-4 *1 (-792 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 *3)) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-373 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-959)) (-5 *2 (-578 *6)) (-5 *1 (-411 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-621 *4)) (-5 *1 (-315 *4))))) -(((*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-808 *3 *5)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-777)) (-4 *5 (-723)) (-4 *6 (-508)) (-4 *7 (-870 *6 *5 *3)) (-5 *1 (-429 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-950 (-375 (-501))) (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-4 *1 (-824 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-1070)) (-5 *1 (-238))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107))))) +(((*1 *1 *1 *1) (-4 *1 (-502)))) +(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) +(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-946))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-215)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-517)) (-5 *1 (-215))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *1 *2 *2) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3))))))) +(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-1021)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-874 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-871 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1073)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-874 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *9)))) (|:| -1753 (-583 (-1153 (-377 (-874 *9))))))))) (-5 *1 (-846 *9 *10 *11 *12))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1073)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-670 *3)))) ((*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-256))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300))))) +(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3))))) +(((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880))))) ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))) ((*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) ((*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-517)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-517)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517)) (-5 *3 (-128)))) ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1030 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1030 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1003))))) +(((*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918)))))) +(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-583 (-583 (-865 (-199))))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-583 (-583 (-865 (-199)))))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-512))))) +(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2)))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517))))) +(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) ((*1 *1 *1) (-4 *1 (-970)))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1021)) (-5 *1 (-104)))) ((*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1003)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-406))))) +(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *1 (-630))))) +(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 (-583 *4))))))) +(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4 *1) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *1 (-1104 *2)) (-4 *2 (-891))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-128))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5))))) (-5 *1 (-895 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1021)) (-4 *4 (-319)) (-5 *1 (-487 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720))))) +(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108))))) +(((*1 *2 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880)))))) +(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *7 *8 *9 *3 *4)) (-4 *4 (-980 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *2 (-1012 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-946))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))) +(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517)))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278))))) +(((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) (((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) -(((*1 *1) (-5 *1 (-754)))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-1070)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-501)) (-5 *5 (-152 (-199))) (-5 *6 (-1053)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1160 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1160 *5 *6 *7 *8))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-948))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-769 (-199)))) (-5 *4 (-199)) (-5 *2 (-578 *4)) (-5 *1 (-238))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-501)) (-5 *2 (-1100 *3)) (-5 *1 (-720 *3)) (-4 *3 (-889)))) ((*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-107)) (-5 *1 (-1100 *2)) (-4 *2 (-889))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-108) (-108))) (-5 *1 (-108))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-701)) (-5 *1 (-1002 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1105 *2)) (-4 *2 (-1001)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-777)) (-5 *1 (-1105 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435))))) -(((*1 *1 *1) (-4 *1 (-967))) ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722))))) -(((*1 *1 *1 *2) (-12 (-5 *1 (-1035 *3 *2)) (-4 *3 (-13 (-1001) (-33))) (-4 *2 (-13 (-1001) (-33)))))) -(((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-500)))) ((*1 *1 *1) (-4 *1 (-967)))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501))))) ((*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501)))))) -(((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452)))) ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-276)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) ((*1 *1 *1) (-4 *1 (-967)))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-1148 (-375 (-501)))) (-5 *1 (-1174 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1035 *4 *5)) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1036 *4 *5))))) -(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-4 *5 (-331)) (-5 *2 (-375 *6)) (-5 *1 (-789 *5 *4 *6)) (-4 *4 (-1142 *5)) (-4 *6 (-1125 *5)))) ((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-5 *4 (-1139 *5 *6 *7)) (-4 *5 (-331)) (-14 *6 (-1070)) (-14 *7 *5) (-5 *2 (-375 (-1118 *6 *5))) (-5 *1 (-790 *5 *6 *7)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-701)) (-5 *4 (-1139 *5 *6 *7)) (-4 *5 (-331)) (-14 *6 (-1070)) (-14 *7 *5) (-5 *2 (-375 (-1118 *6 *5))) (-5 *1 (-790 *5 *6 *7))))) -(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4)))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1104))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *1 *1) (-5 *1 (-970)))) -(((*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-752))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-375 (-501))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)) (-5 *3 (-578 (-863 (-199)))))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)) (-5 *3 (-578 (-578 (-863 (-199))))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-959))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-553 *1)) (-4 *1 (-267))))) -(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1125 *6)) (-4 *6 (-13 (-331) (-134) (-950 *4))) (-5 *4 (-501)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2499 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-929 *6 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-1100 *3)) (-4 *3 (-889))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-525 *5 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-107))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 (-501))))) (-5 *2 (-578 (-578 (-262 (-866 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 (-501)))))) (-5 *2 (-578 (-578 (-262 (-866 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-501)))) (-5 *2 (-578 (-262 (-866 *4)))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 (-501))))) (-5 *2 (-578 (-262 (-866 *4)))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-4 *4 (-13 (-29 *6) (-1090) (-879))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4119 (-578 *4)))) (-5 *1 (-588 *6 *4 *3)) (-4 *3 (-593 *4)))) ((*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-588 *6 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *7 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-578 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4119 (-578 *7))))) (-5 *1 (-602 *5 *6 *7 *3)) (-5 *4 (-578 *7)) (-4 *3 (-618 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5))))) (-5 *1 (-603 *5)) (-5 *4 (-1148 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-331)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5))))) (-5 *1 (-603 *5)) (-5 *4 (-1148 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5)))))) (-5 *1 (-603 *5)) (-5 *4 (-578 (-1148 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5)))))) (-5 *1 (-603 *5)) (-5 *4 (-578 (-1148 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-700 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-700 *4)))) ((*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-702 *5 *2)) (-4 *2 (-13 (-29 *5) (-1090) (-879))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-621 *7)) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)) (-5 *4 (-1148 *7)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-621 *6)) (-5 *4 (-1070)) (-4 *6 (-13 (-29 *5) (-1090) (-879))) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-1148 *6))) (-5 *1 (-732 *5 *6)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 (-262 *7))) (-5 *4 (-578 (-108))) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-108))) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-108)) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4119 (-578 *7))) *7 "failed")) (-5 *1 (-732 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4119 (-578 *3))) *3 "failed")) (-5 *1 (-732 *6 *3)) (-4 *3 (-13 (-29 *6) (-1090) (-879))))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-262 *2)) (-5 *4 (-108)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-5 *1 (-732 *6 *2)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))))) ((*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-262 *2)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-732 *6 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-738)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-738)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4119 (-578 *6))) "failed") *7 *6)) (-4 *6 (-331)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1148 *6)) (|:| -4119 (-621 *6)))) (-5 *1 (-743 *6 *7)) (-5 *3 (-621 *6)) (-5 *4 (-1148 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-948)) (-5 *1 (-817)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-817)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-701)) (-5 *6 (-578 (-578 (-282 *3)))) (-5 *7 (-1053)) (-5 *8 (-199)) (-5 *5 (-578 (-282 (-346)))) (-5 *3 (-346)) (-5 *2 (-948)) (-5 *1 (-817)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-701)) (-5 *6 (-578 (-578 (-282 *3)))) (-5 *7 (-1053)) (-5 *5 (-578 (-282 (-346)))) (-5 *3 (-346)) (-5 *2 (-948)) (-5 *1 (-817)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *2 (-578 (-346))) (-5 *1 (-936)) (-5 *4 (-346)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 (-501))) (-5 *2 (-578 (-346))) (-5 *1 (-936)) (-5 *4 (-346)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-282 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-262 (-282 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-262 (-282 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-282 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1029 *5)) (-5 *3 (-578 (-262 (-282 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-1075 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-1075 *5)) (-5 *3 (-578 (-262 (-375 (-866 *5))))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-375 (-866 *4)))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-1075 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-1075 *4)) (-5 *3 (-578 (-262 (-375 (-866 *4))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *5))))) (-5 *1 (-1075 *5)) (-5 *3 (-375 (-866 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *5))))) (-5 *1 (-1075 *5)) (-5 *3 (-262 (-375 (-866 *5)))))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *4))))) (-5 *1 (-1075 *4)) (-5 *3 (-375 (-866 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *4))))) (-5 *1 (-1075 *4)) (-5 *3 (-262 (-375 (-866 *4))))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-866 *5)))) (-5 *1 (-1075 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1036 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33)))))) -(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-578 (-375 *8))) (-4 *7 (-331)) (-4 *8 (-1125 *7)) (-5 *3 (-375 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8))))) -(((*1 *1 *2 *3 *4) (-12 (-14 *5 (-578 (-1070))) (-4 *2 (-156)) (-4 *4 (-211 (-3581 *5) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *3) (|:| -3027 *4)) (-2 (|:| -3506 *3) (|:| -3027 *4)))) (-5 *1 (-428 *5 *2 *3 *4 *6 *7)) (-4 *3 (-777)) (-4 *7 (-870 *2 *4 (-787 *5)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 (-1 *4 (-578 *4)))) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-578 (-1 *4 (-578 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-331)) (-4 *6 (-1125 (-375 *2))) (-4 *2 (-1125 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-310 *5 *2 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1148 *5))) (-5 *4 (-501)) (-5 *2 (-1148 *5)) (-5 *1 (-943 *5)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-262 *2)) (-4 *2 (-657)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-5 *3 (-1037 *4 *2)) (-14 *4 (-839)) (-4 *2 (-13 (-959) (-10 -7 (-6 (-4169 "*"))))) (-5 *1 (-823 *4 *2))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-863 *5)) (-5 *3 (-701)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-785)))) ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-785)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-786)) (-5 *2 (-1154)) (-5 *1 (-785)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1048 *4)) (-4 *4 (-1001)) (-4 *4 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-447 *5 *6))) (-5 *3 (-447 *5 *6)) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-1148 *6)) (-5 *1 (-569 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 *5)))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-1060 (-578 (-282 *5)) (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-1060 (-578 (-282 *5)) (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-299 *3)) (-4 *3 (-777))))) -(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156))))) -(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-373 *2)) (-4 *2 (-508))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-508)) (-4 *7 (-870 *3 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *8) (|:| |radicand| *8))) (-5 *1 (-873 *5 *6 *3 *7 *8)) (-5 *4 (-701)) (-4 *8 (-13 (-331) (-10 -8 (-15 -2946 (*7 $)) (-15 -2949 (*7 $)) (-15 -3691 ($ *7)))))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-959)) (-4 *6 (-870 *5 *4 *2)) (-4 *2 (-777)) (-5 *1 (-871 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *6)) (-15 -2946 (*6 $)) (-15 -2949 (*6 $))))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-1070)) (-5 *1 (-952 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-107)) (-5 *1 (-105)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) ((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839))))) -(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107))))) -(((*1 *1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232))))) -(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276))))) -(((*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *4 (-578 (-839))) (-5 *5 (-578 (-232))) (-5 *1 (-435)))) ((*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *4 (-578 (-839))) (-5 *1 (-435)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435)))) ((*1 *1 *1) (-5 *1 (-435)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4))))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1001))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-566 *5 *6))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-107)) (-5 *1 (-1174 *4))))) -(((*1 *2 *3 *4) (-12 (-4 *4 (-331)) (-5 *2 (-578 (-1048 *4))) (-5 *1 (-255 *4 *5)) (-5 *3 (-1048 *4)) (-4 *5 (-1142 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-331)) (-4 *3 (-959)) (-5 *1 (-1055 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501))))) -(((*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1064 *1)) (-4 *1 (-926))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-578 (-2 (|:| -3739 *3) (|:| -1201 *4)))) (-5 *1 (-627 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-1041 *5 (-487 (-787 *6)) (-787 *6) (-710 *5 (-787 *6))))) (-5 *1 (-566 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-775)) (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-865 *4 *5)) (-4 *5 (-1125 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-701)) (-5 *1 (-200)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-152 (-199))) (-5 *3 (-701)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1034)))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *6)) (-5 *5 (-1 (-373 (-1064 *6)) (-1064 *6))) (-4 *6 (-331)) (-5 *2 (-578 (-2 (|:| |outval| *7) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 *7)))))) (-5 *1 (-488 *6 *7 *4)) (-4 *7 (-331)) (-4 *4 (-13 (-331) (-775)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-373 *3)) (-4 *3 (-508))))) -(((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) ((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3540 *3))) (-5 *1 (-514 *5 *6 *7 *3)) (-4 *3 (-310 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |answer| (-375 *6)) (|:| -3540 (-375 *6)) (|:| |specpart| (-375 *6)) (|:| |polypart| *6))) (-5 *1 (-515 *5 *6)) (-5 *3 (-375 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-449 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166))))) -(((*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-866 (-152 *4))) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 (-152 *4)))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 (-152 *5)))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-152 *4))) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-331)) (-4 *3 (-959)) (-5 *1 (-1055 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 *1)) (-4 *1 (-352 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-666 *3 *4))) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) ((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-331)) (-5 *2 (-1064 *4)) (-5 *1 (-488 *4 *5 *6)) (-4 *5 (-331)) (-4 *6 (-13 (-331) (-775)))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-5 *2 (-152 *5)) (-5 *1 (-544 *4 *5 *3)) (-4 *5 (-13 (-389 *4) (-916) (-1090))) (-4 *3 (-13 (-389 (-152 *4)) (-916) (-1090)))))) -(((*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107))))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845))))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-578 (-578 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-578 (-3 (|:| |array| (-578 *3)) (|:| |scalar| (-1070))))) (-5 *6 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363)))) ((*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-578 (-578 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-578 (-3 (|:| |array| (-578 *3)) (|:| |scalar| (-1070))))) (-5 *6 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363)))) ((*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *5 (-1073)) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363))))) -(((*1 *2 *3 *4 *5) (-12 (-4 *6 (-1125 *9)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-276)) (-4 *10 (-870 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-578 (-1064 *10))) (|:| |dterm| (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| *10))))) (|:| |nfacts| (-578 *6)) (|:| |nlead| (-578 *10)))) (-5 *1 (-708 *6 *7 *8 *9 *10)) (-5 *3 (-1064 *10)) (-5 *4 (-578 *6)) (-5 *5 (-578 *10))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-540 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-107)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) ((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-295 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 (-501))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-1148 *5)) (-4 *5 (-276)) (-4 *5 (-959)) (-5 *2 (-621 *5)) (-5 *1 (-943 *5))))) -(((*1 *1) (-5 *1 (-754)))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-1 (-199) (-199)))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1 (-199) (-199)))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) ((*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847))))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847))))) -(((*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-578 *3)) (-5 *5 (-839)) (-4 *3 (-1125 *4)) (-4 *4 (-276)) (-5 *1 (-427 *4 *3))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-701)))) ((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-346)) (-5 *1 (-970))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-199)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-199)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-346)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-346))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8))))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-810 *6))) (-5 *5 (-1 (-808 *6 *8) *8 (-810 *6) (-808 *6 *8))) (-4 *6 (-1001)) (-4 *8 (-13 (-959) (-556 (-810 *6)) (-950 *7))) (-5 *2 (-808 *6 *8)) (-4 *7 (-13 (-959) (-777))) (-5 *1 (-861 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-578 *3)) (|:| |image| (-578 *3)))) (-5 *1 (-822 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-107) *8))) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-1087 *3)) (-4 *3 (-959))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134) (-950 (-501)))) (-5 *1 (-519 *3 *4))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-1143 *4 *2)) (-4 *4 (-37 (-375 (-501))))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104))))) -(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3996 (-108)) (|:| |w| (-199)))) (-5 *1 (-180))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 (-346)))) (-5 *1 (-936)) (-5 *5 (-346)))) ((*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-447 *5 *6))) (-5 *4 (-787 *5)) (-14 *5 (-578 (-1070))) (-5 *2 (-447 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-419)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-447 *5 *6))) (-5 *4 (-787 *5)) (-14 *5 (-578 (-1070))) (-5 *2 (-447 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-419))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) ((*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-618 *3 *2 *4)) (-4 *2 (-340 *3)) (-4 *4 (-340 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1037 *2 *3)) (-14 *2 (-701)) (-4 *3 (-959))))) -(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-1040 *5 *6 *7 *8 *9))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)) (-4 *2 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-112 *3)) (-14 *3 (-501)))) ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1048 *2)) (-4 *2 (-276)) (-5 *1 (-157 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-375 *3)) (-4 *3 (-276)) (-5 *1 (-157 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-157 (-501))) (-5 *1 (-696 *3)) (-4 *3 (-372)))) ((*1 *2 *1) (-12 (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-793 *3)) (-14 *3 (-501)))) ((*1 *2 *1) (-12 (-14 *3 (-501)) (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-794 *3 *4)) (-4 *4 (-792 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-282 (-199))) (-5 *1 (-272)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-810 *3)) (|:| |den| (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-1079 *2)) (-4 *2 (-331))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-740 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| -4119 (-578 (-375 *6))) (|:| -2978 (-621 *5)))) (-5 *1 (-740 *5 *6)) (-5 *4 (-578 (-375 *6))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-740 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| -4119 (-578 (-375 *6))) (|:| -2978 (-621 *5)))) (-5 *1 (-740 *5 *6)) (-5 *4 (-578 (-375 *6)))))) -(((*1 *2 *1) (-12 (-4 *1 (-471 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-777))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4)) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959))))) -(((*1 *2) (-12 (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-786))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *3 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-578 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *1) (-12 (-5 *2 (-373 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276))))) -(((*1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-336))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-759))))) -(((*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156))))) -(((*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-513)) (-5 *3 (-501)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *6 *7 *8 *3 *4)) (-4 *4 (-1009 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-5 *5 (-1064 *2)) (-4 *2 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *6 *2 *7)) (-4 *7 (-1001)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-5 *5 (-375 (-1064 *2))) (-4 *2 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *6 *2 *7)) (-4 *7 (-1001))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-1064 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $)))))))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-841))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *2)) (-4 *2 (-870 (-375 (-866 *6)) *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1633 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-779)) (-4 *3 (-1003))))) +(((*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4)))))) +(((*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1069 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 *8)) (|:| -2077 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-998 *3)) (-4 *3 (-871 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 (-874 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-874 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 (-377 (-874 *5)) (-286 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-874 *5))) (-5 *3 (-874 *5)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1066 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1066 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-300))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777)))))) +(((*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1) (-4 *1 (-1112))) ((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1133 *3 *2)) (-4 *2 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2)))) +(((*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-4 *1 (-1130 *3))))) +(((*1 *1 *1) (-4 *1 (-970)))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1003))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154))))) +(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349))))) +(((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2508 (-517)) (|:| -2879 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *5 (-107)) (-5 *2 (-1155)) (-5 *1 (-230))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *1) (-12 (-5 *2 (-998 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-4 *4 (-961)) (-5 *2 (-623 *4)) (-5 *1 (-944 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-757))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1003))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-671))))) +(((*1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1092))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 *5))))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-952 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3) (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1086 *3 *2)) (-4 *3 (-1003))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2879 (-583 (-2 (|:| |irr| *10) (|:| -3631 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-871 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1069 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1069 *3)))))) +(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4))))) +(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779))))) +(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517))))) +(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1056)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1056)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1158)))) ((*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1158))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5))))) +(((*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3))))) +(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-509))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-703))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) ((*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *3))) (-5 *1 (-1044 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-961)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5))))) +(((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *2)) (-2 (|:| -3448 *5) (|:| -2077 *2)))) (-4 *2 (-212 (-2296 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *4 *2 (-789 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849))))) +(((*1 *2 *3) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1081 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) ((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-1062 3 *3)))) ((*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155))))) +(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *6 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-961)) (-4 *2 (-1130 *4)) (-5 *1 (-413 *4 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1069 (-286 *5)))) (-5 *3 (-1153 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1031 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156))))) +(((*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-517))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094)))))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107))))) +(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-950))) (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-5 *1 (-973))) ((*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1051 *4)) (-4 *4 (-1108)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779))))) +(((*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-1091 *4)) (-4 *4 (-961))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3)))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))) ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1003)) (-5 *1 (-616 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4))))) +(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-109))) ((*1 *1 *1) (-5 *1 (-155))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33)))))) +(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))) +(((*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-377 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) ((*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1130 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1148 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1145 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6))))) +(((*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073)))))) +(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1164 *4 *5 *6 *7))) (-5 *1 (-1164 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1164 *6 *7 *8 *9))) (-5 *1 (-1164 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-542 *4))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1005 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1073)) (-5 *1 (-572)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 (-1121 (-517))) (|has| *1 (-6 -4181)) (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3))))) +(((*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-493))) ((*1 *1) (-4 *1 (-655))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181))))) +(((*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-843)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-882 *3)) (-4 *3 (-502))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-493))) ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003))))) +(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-1011 *6 *7 *4 *8 *9))))) +(((*1 *1) (-5 *1 (-755)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *2 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1021)))) +(((*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5))))) +(((*1 *1) (-5 *1 (-128)))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *1) (-5 *1 (-407)))) +(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 *3)))) (-5 *4 (-703)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1021)))) +(((*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-973))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-888))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-372)))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156))))) +(((*1 *1 *1) (-5 *1 (-973)))) +(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276))))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *4 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1077)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *1 (-1077))))) +(((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *1) (-4 *1 (-502))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1108))))) +(((*1 *1) (-5 *1 (-407)))) +(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349)))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) (((*1 *1) (-5 *1 (-1154)))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-786)) (-5 *1 (-31 *4 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *5)) (-4 *5 (-331)) (-5 *2 (-578 *6)) (-5 *1 (-488 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775)))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-786))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001))))) -(((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916)))))) -(((*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1142 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-786)))) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-1037 *3 *4)) (-5 *1 (-908 *3 *4)) (-14 *3 (-839)) (-4 *4 (-331)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *5))) (-4 *5 (-959)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-553 (-47)))) (-5 *1 (-47)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-553 (-47))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-47))) (-5 *3 (-578 (-553 (-47)))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-47))) (-5 *3 (-553 (-47))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-331)))) ((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-906 *3)) (-5 *1 (-381 *3 *2 *4 *5)) (-4 *3 (-276)) (-4 *5 (-13 (-378 *2 *4) (-950 *2))))) ((*1 *2 *1) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-906 *3)) (-5 *1 (-383 *3 *2 *4 *5 *6)) (-4 *3 (-276)) (-4 *5 (-378 *2 *4)) (-14 *6 (-1148 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-959)) (-4 *2 (-13 (-372) (-950 *5) (-331) (-1090) (-254))) (-5 *1 (-410 *5 *3 *2)) (-4 *3 (-1125 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-553 (-458)))) (-5 *1 (-458)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-553 (-458))) (-5 *1 (-458)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-458))) (-5 *3 (-578 (-553 (-458)))) (-5 *1 (-458)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-458))) (-5 *3 (-553 (-458))) (-5 *1 (-458)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-839)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-655 *4 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-705 *4 *2 *5 *3)) (-4 *3 (-1125 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) ((*1 *1 *1) (-4 *1 (-967)))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-578 (-711 *3))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091 *3)) (-4 *3 (-1001))))) -(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1070)) (-5 *1 (-298))))) -(((*1 *1 *1 *1) (-4 *1 (-500)))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-578 (-578 (-863 (-199))))))) ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-578 (-578 (-863 (-199)))))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-723)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1148 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-1064 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-31 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-670 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-701)) (-5 *1 (-844 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-152 (-199)) (-152 (-199)))) (-5 *4 (-991 (-199))) (-5 *5 (-107)) (-5 *2 (-1152)) (-5 *1 (-229))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-749 *4)) (-4 *4 (-777)) (-4 *1 (-1166 *4 *3)) (-4 *3 (-959))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1027 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1027 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 *5)))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1027 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-262 (-375 (-866 *4)))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1027 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-375 (-866 *4)))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *4))))) (-5 *1 (-1027 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 *5))))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-262 (-375 (-866 *4))))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *4))))) (-5 *1 (-1027 *4))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-415 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-501)) (-5 *1 (-1087 *4)) (-4 *4 (-959))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-199))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))) ((*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-199))) (-5 *5 (-578 (-232))) (-5 *1 (-628))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *1 (-204 *4)) (-4 *4 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-204 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-206)) (-5 *2 (-701)))) ((*1 *1 *1) (-4 *1 (-206))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-237 *3)) (-4 *3 (-777)))) ((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-331) (-134))) (-5 *1 (-367 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *2 *1 *3) (-12 (-4 *2 (-331)) (-4 *2 (-820 *3)) (-5 *1 (-530 *2)) (-5 *3 (-1070)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-530 *2)) (-4 *2 (-331)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-701))) (-4 *1 (-820 *4)) (-4 *4 (-1001)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-820 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-820 *3)) (-4 *3 (-1001)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-820 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-701))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-419)) (-4 *3 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *3 *5 *6)) (-4 *6 (-870 *4 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-886))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-490)))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-839)) (-4 *4 (-959)) (-5 *1 (-942 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-621 *4))) (-5 *3 (-839)) (-4 *4 (-959)) (-5 *1 (-942 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-959)) (-5 *1 (-780 *5 *2)) (-4 *2 (-779 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-4 *3 (-331)) (-5 *2 (-1064 (-866 *3))))) ((*1 *2) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795))))) -(((*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-723)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-224 *2 *3 *4 *5)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-237 *3)) (-4 *5 (-723))))) -(((*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-759))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3))))) +(((*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5)))))) +(((*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) ((*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-894 *6 *7 *8 *9))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1069 *1))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1069 *3)) (-4 *7 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1149 *5)) (-14 *5 (-1073)) (-4 *6 (-961)) (-5 *2 (-1127 *5 (-874 *6))) (-5 *1 (-869 *5 *6)) (-5 *3 (-874 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-377 (-1069 *3))) (-5 *1 (-872 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-4 *7 (-871 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-5 *1 (-872 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-377 (-1069 (-377 (-874 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-377 (-874 *5)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) ((*1 *1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703))))) +(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107))))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-4 *7 (-1130 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961))))) +(((*1 *1) (-5 *1 (-300)))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108))))) +(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *5)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1045 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-865 *4))) (-4 *1 (-1035 *4)) (-4 *4 (-961)) (-5 *2 (-703))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1083 *2)) (-4 *2 (-333))))) +(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-815 *3)) (-4 *3 (-779))))) +(((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3))))) +(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-941 (-772 (-517)))) (-5 *5 (-1073)) (-5 *7 (-377 (-517))) (-4 *6 (-961)) (-5 *2 (-787)) (-5 *1 (-542 *6))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961))))) +(((*1 *2 *2) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *1 (-835 *3 *2)) (-4 *2 (-1130 (-377 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *2 (-950)) (-5 *1 (-276))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-971 (-939 *4) (-1069 (-939 *4)))) (-5 *3 (-787)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-777) (-333) (-937)))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33)))))) +(((*1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843))))) +(((*1 *1) (-5 *1 (-512)))) +(((*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) ((*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *5 *6 *4)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-828 *5 *6 *4 *7))))) +(((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1388 (-564 *4 *5)) (|:| -2544 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1130 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *9) (|:| |radicand| *9))) (-5 *1 (-875 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8)))))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517))))) +(((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-879 *3)) (-5 *1 (-1061 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276))))) +(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| -2422 (-377 (-874 *5))) (|:| |coeff| (-377 (-874 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5)))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1153 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-107)) (-5 *1 (-236))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181))))) +(((*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1108)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *7)) (-5 *3 (-517)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *1 (-291 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-128)))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-33)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-142))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1069 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276))))) +(((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1145 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1147 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502))))) +(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797))))) +(((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-583 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) ((*1 *2 *3) (-12 (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-874 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-196 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-227 *3)))) ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-138 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-1073))) (-5 *4 (-107)) (-5 *1 (-407)))) ((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3)))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-4 *4 (-1003)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *3 *5))) (-5 *1 (-1038 *3 *5)) (-4 *3 (-13 (-1003) (-33))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3726 *5)))) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *4 *5))) (-5 *1 (-1038 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3726 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1038 *2 *3))) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1039 *2 *3))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1145 *5)) (-5 *1 (-1147 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) ((*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 *3)) (-14 *7 *3))) ((*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1158)) (-5 *1 (-1163 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-871 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3)))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) +(((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437)))) ((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437))))) +(((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003))))) +(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-865 *3)))))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1054 *7))) (-4 *6 (-779)) (-4 *7 (-871 *5 (-489 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1054 *7) *7)) (-5 *1 (-1027 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *1 *1) (-5 *1 (-973)))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333)))))) +(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-843)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703))))) +(((*1 *2) (-12 (-5 *2 (-1153 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-735))))) +(((*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1073)))) ((*1 *2 *1) (-12 (-5 *2 (-920 2)) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) ((*1 *1 *2) (-12 (-5 *2 (-1040 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) ((*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-377 (-874 *4))))) (-5 *1 (-165 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))) (-5 *1 (-189 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-920 10)) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-996 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-996 (-349))) (-5 *1 (-231 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) ((*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1139 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4) (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) ((*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1175 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1166 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) ((*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) ((*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-961)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-404)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-632))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 *3)))) (-4 *3 (-156)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-5 *2 (-920 16)) (-5 *1 (-454)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) ((*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-467)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))) ((*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1003)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-4 *3 (-779)) (-4 *4 (-1003)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-4 *3 (-961)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) ((*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-4 *2 (-822 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1003)) (-14 *4 *3))) ((*1 *1 *2) (-12 (-4 *3 (-1003)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-822 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-756)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) ((*1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-820)))) ((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-823 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-836 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) ((*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-841 *4)) (-4 *4 (-13 (-779) (-509))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-948 *3)) (-4 *3 (-1108)))) ((*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-948 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *1 *2) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) ((*1 *2 *3) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-957 *3)) (-4 *3 (-509)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-961)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703)) (-4 *4 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1042)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1071 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1072)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1073)))) ((*1 *2 *1) (-12 (-5 *2 (-1082 (-1073) (-407))) (-5 *1 (-1077)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1081 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *1 (-1088 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1089)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-1103 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1108)) (-5 *1 (-1106 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1116 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-998 *3)) (-4 *3 (-1108)) (-5 *1 (-1121 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-1127 *3 *4)) (-4 *4 (-961)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1137 *3 *2)) (-4 *2 (-1114 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1146 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1154)))) ((*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1154)) (-5 *1 (-1157)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1158)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-871 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-961)))) ((*1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1171 *3 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)) (-4 *2 (-775))))) +(((*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1094) (-880)))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) +(((*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509)))))) +(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4))))) +(((*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1080 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-4 *1 (-817)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-950))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1003)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) ((*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-703))))) +(((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1003))))) +(((*1 *1 *1) (-5 *1 (-107)))) +(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $)))))))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1009 *5 *4)) (-4 *4 (-400 *5))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-1021)) (-5 *2 (-107)) (-5 *1 (-753))))) +(((*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-47))) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5))))) (((*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))) -(((*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-540 *3)) (-4 *3 (-959))))) -(((*1 *2 *3) (-12 (-5 *2 (-373 (-1064 *1))) (-5 *1 (-282 *4)) (-5 *3 (-1064 *1)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *4 (-777)))) ((*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-98 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1001))))) -(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-590 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-740 *4 *2)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))))) ((*1 *2 *3) (-12 (-5 *3 (-591 *2 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-740 *4 *2)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501)))))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156))))) -(((*1 *1 *1) (-4 *1 (-500)))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-701)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1147 *3)) (-4 *3 (-23)) (-4 *3 (-1104))))) -(((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1001) (-33))) (-4 *6 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1035 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-505))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-578 *7))) (-4 *1 (-1099 *4 *5 *6 *7)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-246))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-701)) (-5 *1 (-513))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-346)) (-5 *1 (-970))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-419)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-839)) (-4 *5 (-508)) (-5 *2 (-621 *5)) (-5 *1 (-876 *5 *3)) (-4 *3 (-593 *5))))) -(((*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *2 (-820 *5)) (-5 *1 (-623 *5 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167))))))) -(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-959)) (-4 *4 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *4)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-108)) (-4 *4 (-959)) (-4 *4 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *4)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1012)) (-4 *3 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-810 *3)) (|:| -3027 (-701)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| |var| *5) (|:| -3027 (-701)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3027 (-501)))) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-447 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-866 *5)) (-5 *1 (-864 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-1108)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-310 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-578 *6)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278))))) +(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33)))))) +(((*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1054 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300))))) +(((*1 *1 *1) (-5 *1 (-493)))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961))))) +(((*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-1130 (-517))) (-5 *2 (-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) ((*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1162 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848))))) +(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1073))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1069 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1069 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517))))) +(((*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) ((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1))))) +(((*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961))))) +(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107))))) +(((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1003)) (-5 *2 (-703))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-706)) (-5 *1 (-109))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6)))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1010 *3 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509))))) +(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1106 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107)) (-5 *1 (-1054 *4))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1130 *2))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1003))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1130 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-414 *3)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 *2))) (-5 *2 (-814 *3)) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 *2)))))) +(((*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1040 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)) (-5 *1 (-910 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302))))) +(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843))))) +(((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056))))) +(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240))))) +(((*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) ((*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852))))) +(((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754))))) +(((*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109))))) +(((*1 *2 *1) (-12 (-5 *2 (-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1154))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3)))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)) (-5 *3 (-286 (-517)))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -4 *1 (-655)))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1619 *5) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-961))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156))))) +(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037)))) +(((*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -4139 (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109))))) +(((*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954))))) +(((*1 *2 *2) (-12 (-4 *3 (-952 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-273)))) ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) ((*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3))))) +(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3402 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2527 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-818 *3 *5)) (-4 *3 (-1130 *5)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-276))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-906)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-998 *4)) (-4 *4 (-1108)) (-5 *1 (-996 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003))))) +(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-215))))) +(((*1 *1 *1 *1) (-5 *1 (-146))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146))))) +(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-910 *3 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-836 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-874 *6))) (-5 *5 (-1073)) (-5 *3 (-874 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107))))) +(((*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) ((*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) +(((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-338)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073)))))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-1130 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-874 (-517)))) (-5 *1 (-407)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-199))) (-5 *2 (-1007)) (-5 *1 (-692)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-517))) (-5 *2 (-1007)) (-5 *1 (-692))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-779)) (-5 *1 (-851 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1056)) (-5 *2 (-286 (-517))) (-5 *1 (-852))))) +(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950))))) +(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-753))))) +(((*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-961)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1024 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1080 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1080 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1056))) (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720))))) +(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) +(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-349)))) (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-849))))) +(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517))))) +(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 *4)))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-788)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1054 *4)) (-4 *4 (-1003)) (-4 *4 (-1108))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134) (-952 (-517)))) (-5 *1 (-521 *3 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *1 (-534 *2)) (-4 *2 (-952 *3)) (-4 *2 (-333)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-880)) (-5 *2 (-1073)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-880))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517))))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *2)) (-2 (|:| -3448 *3) (|:| -2077 *2))))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *1 (-235 *2)) (-4 *2 (-1108)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-51)) (-5 *1 (-236))))) +(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| -3435 *3) (|:| -1257 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181))))) +(((*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512))))) +(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779))))) +(((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-278))))) +(((*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3))))) +(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-990 *3)) (-4 *3 (-124))))) +(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3837 (-109)) (|:| |w| (-199)))) (-5 *1 (-180))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849))))) +(((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *3 (-156))))) +(((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1073))) (-5 *4 (-1153 (-286 (-199)))) (-5 *1 (-181)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)) (-5 *1 (-265 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1075 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1073)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) ((*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1073)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) ((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1108)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1108)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-5 *4 (-583 (-377 (-874 *5)))) (-5 *2 (-377 (-874 *5))) (-4 *5 (-509)) (-5 *1 (-957 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1054 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003))))) +(((*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-938)) (-5 *5 (-349)))) ((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073)))))) +(((*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407))))) +(((*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-583 (-874 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-874 *4)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-5 *2 (-437)) (-5 *1 (-1154))))) +(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4)))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421))))) +(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761))))) +(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094)))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-14 *2 (-703)) (-4 *3 (-961))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1753 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *6) "failed")) (|:| -1753 (-583 (-1153 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1153 *6))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753))))) +(((*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1094))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))))) ((*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-888)) (-5 *3 (-583 (-517)))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *5 *6)) (-4 *6 (-1130 *5))))) +(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-13 (-779) (-509)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-706)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-753))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1104 *3)) (-5 *1 (-722 *3)) (-4 *3 (-891)))) ((*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-107)) (-5 *1 (-1104 *2)) (-4 *2 (-891))))) +(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5))))) +(((*1 *1 *1) (-5 *1 (-973)))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51))))) +(((*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)) (-5 *3 (-1056)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2790 (-623 (-377 (-874 *4)))) (|:| |vec| (-583 (-377 (-874 *4)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))) ((*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) ((*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1013))))) +(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-1153 (-3 (-437) "undefined"))) (-5 *1 (-1154))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))) ((*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-973)) (-5 *3 (-1056))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-1076))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2)))))) +(((*1 *1 *1 *1) (-4 *1 (-502)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1109 *2)) (-4 *2 (-1003)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-1109 *2))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1083 *2)) (-4 *2 (-333))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156))))) +(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-517)) (-5 *1 (-864))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2131 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166))))) +(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140))))) +(((*1 *2 *1) (-12 (-5 *2 (-1005 (-1005 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-297 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517))))) +(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-975 *3 *4 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779))))) +(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4))))) +(((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-952 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 (-1054 *4) (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1054 *5)) (-583 (-1054 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1054 *5))) (-5 *1 (-1176 *5)) (-4 *5 (-1108))))) +(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1073)) (-5 *1 (-493))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-779))))) +(((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1130 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3))))) +(((*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))) ((*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1130 *2)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) ((*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089))))) +(((*1 *2 *3) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-835 *3 *4)) (-4 *4 (-1130 (-377 *3))))) ((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33))) (-4 *2 (-13 (-1003) (-33)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107))))) +(((*1 *2 *3 *1 *4) (-12 (-5 *3 (-1038 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *5 *6))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *5 *6 *7 *8))))) +(((*1 *1 *1 *1) (-4 *1 (-694)))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)) (-5 *1 (-615 *5 *6 *2))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-884 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1069 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-888)) (-4 *2 (-123)) (-5 *1 (-1075 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1127 *4 *3)) (-14 *4 (-1073)) (-4 *3 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *4))) (-5 *3 (-1069 *4)) (-4 *4 (-831)) (-5 *1 (-600 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) ((*1 *1 *1) (-4 *1 (-970)))) +(((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-153 (-349))))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-517)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-627)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-632)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-634)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-300)))) ((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502))))) +(((*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1102 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1102 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) ((*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1069 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-333))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961))))) +(((*1 *1 *1) (-5 *1 (-973)))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-952 (-517)) (-134))) (-5 *1 (-523 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094)))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1175 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1168 *4 *2)) (-4 *4 (-779)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775))))) +(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1130 *4)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *3 *5 *2)) (-4 *5 (-593 *3))))) +(((*1 *1) (-5 *1 (-1155)))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-871 *3 *7 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) ((*1 *1 *1) (-4 *1 (-970)))) +(((*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1082 (-843) (-703)))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421))))) +(((*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5)))))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-502)))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-14 *6 (-1073)) (-14 *7 *3)))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-377 (-517)))) (-5 *1 (-1178 *4))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2372 *3) (|:| -2077 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502))))) +(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4)))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4)))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108))))) +(((*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-787))))) +(((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-1069 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-1123 *3 *4 *2)) (-4 *2 (-1130 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-1112)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1130 (-377 *4)))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *4 *5))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1056)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1108)) (-5 *1 (-268 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1130 *9)) (-4 *11 (-1130 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1112)) (-4 *8 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *9 (-1130 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1130 (-377 *9))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *7 (-1130 *6)) (-4 *8 (-13 (-379 *6 *7) (-952 *6))) (-4 *9 (-278)) (-4 *10 (-909 *9)) (-4 *11 (-1130 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-952 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-961) (-779))) (-4 *6 (-13 (-961) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2422 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2422 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1130 *5)) (-4 *2 (-1130 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1130 (-377 *6))) (-4 *8 (-1130 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-961)) (-4 *2 (-871 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-871 *9 *7 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-764 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-811 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-811 *5 *7)) (-5 *1 (-810 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-874 *6)) (-5 *1 (-868 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *6 (-725)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-873 *6 *7 *8 *5 *2)) (-4 *5 (-871 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-865 *6)) (-5 *1 (-898 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-874 *4))) (-4 *4 (-961)) (-4 *2 (-871 (-874 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-909 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-909 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-964 *5 *6 *10 *11 *12)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-998 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-996 *6)) (-5 *1 (-995 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1052 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-1053 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-1067 *5 *6)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1085 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1118 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1118 *6 *8 *10)) (-5 *1 (-1113 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1121 *6)) (-5 *1 (-1120 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1120 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1127 *5 *6)) (-14 *5 (-1073)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1127 *7 *8)) (-5 *1 (-1122 *5 *6 *7 *8)) (-14 *7 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1130 *6)) (-5 *1 (-1128 *5 *4 *6 *2)) (-4 *4 (-1130 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1134 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1145 *6)) (-5 *1 (-1143 *5 *6 *4 *2)) (-4 *4 (-1145 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1174 *3 *4)) (-4 *4 (-775))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1130 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118)))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1069 (-1069 *5)))) (-5 *1 (-1107 *5)) (-5 *3 (-1069 (-1069 *5)))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92))))) +(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5)))) ((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-623 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1130 *4)) (-5 *2 (-1153 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1073)) (-5 *4 (-772 *2)) (-4 *2 (-1037)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1931 *4) (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1931 *3) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))))) +(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4)))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107))))) +(((*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-256))) ((*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1931 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156))))) +(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-361))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1069 *3) (-1069 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1073)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-1154)) (-5 *1 (-229 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1155)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-421)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-831)) (-5 *1 (-426 *3 *4 *5 *6)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-831))))) +(((*1 *1) (-5 *1 (-407)))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333))))) +(((*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *3))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1080 *6)) (-5 *5 (-583 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-961)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5))))) +(((*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4))))))) +(((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $)))))))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256)))))) +(((*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-1040 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1121 *3)) (-4 *3 (-1108))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276))))) +(((*1 *1 *1) (-5 *1 (-973)))) +(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687))))) +(((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278))))) +(((*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-874 *6)) (-5 *4 (-1073)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1094) (-29 *6))) (-5 *1 (-198 *6 *7)))) ((*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1069 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1094) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-4 *4 (-37 *3)) (-4 *4 (-961)) (-5 *3 (-377 (-517))) (-5 *1 (-1058 *4))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276))))) +(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-199))))) +(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-879 (-1069 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1069 *4))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300))))) +(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-338))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5))))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *2 (-583 (-1056))) (-5 *1 (-240))))) +(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-502)))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) +(((*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-865 (-199)))))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 (-199))))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1153 *2)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *2 (-13 (-379 *6 *7) (-952 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1130 *6))))) +(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33)))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-687))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-918) (-1094)))))) +(((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073))))) +(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703))))) (((*1 *1) (-5 *1 (-128)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-959)) (-4 *2 (-1001))))) -(((*1 *2 *2) (-12 (-5 *2 (-356)) (-5 *1 (-405)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-356)) (-5 *1 (-405))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) ((*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) ((*1 *1) (-4 *1 (-657))) ((*1 *1) (-5 *1 (-1070)))) -(((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233))))) -(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419))))) -(((*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-723)) (-4 *3 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *3))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-769 *4)) (-5 *1 (-281 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-769 *4)) (-5 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4)))) -(((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *2 *4)) (-4 *4 (-1125 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-156)) (-5 *1 (-377 *3 *2 *4)) (-4 *3 (-378 *2 *4)))) ((*1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *3 (-1125 *2)) (-5 *2 (-501)) (-5 *1 (-698 *3 *4)) (-4 *4 (-378 *2 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-156))))) -(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 *4)))) (-4 *4 (-419)) (-5 *2 (-578 (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4))))) (-5 *1 (-261 *4))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1090) (-389 *5)))))) -(((*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-578 *5)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1104))))) -(((*1 *2 *1) (-12 (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723))))) -(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-50))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-61 *3)) (-14 *3 (-1070)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-67 *3)) (-14 *3 (-1070)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-70 *3)) (-14 *3 (-1070)))) ((*1 *2 *3) (-12 (-5 *3 (-356)) (-5 *2 (-1154)) (-5 *1 (-363)))) ((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1154)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) -(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1104))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4168)) (-4 *1 (-454 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-435)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-701)) (-4 *2 (-1001)) (-5 *1 (-611 *2))))) -(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-578 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-389 *4) (-916))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-247 *4 *2))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-359))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-155))))))) -(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-1064 (-375 *5))) (-5 *1 (-557 *4 *5)) (-5 *3 (-375 *5)))) ((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-134) (-27) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-1064 (-375 *6))) (-5 *1 (-557 *5 *6)) (-5 *3 (-375 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156))))) -(((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-107)) (-5 *1 (-238))))) -(((*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-5 *3 (-356)) (-5 *2 (-1154)) (-5 *1 (-359)))) ((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-359))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-107)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168))))))) -(((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-863 *4)) (-4 *4 (-959)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-214)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1154)) (-5 *1 (-214))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *2 (-959)) (-5 *1 (-49 *2 *3)) (-14 *3 (-578 (-1070))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 (-839))) (-4 *2 (-331)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-839)) (-14 *5 (-908 *4 *2)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-282 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) ((*1 *2 *3 *1) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-123)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-959)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-508)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1125 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-640 *2)) (-4 *2 (-959)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-959)) (-5 *1 (-666 *2 *3)) (-4 *3 (-657)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-701))) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *2)) (-4 *4 (-959)) (-4 *2 (-777)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-779 *2)) (-4 *2 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-701))) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-870 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *2 (-777)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *2 (-870 *4 (-487 *5) *5)) (-5 *1 (-1024 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-777)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-866 *4)) (-5 *1 (-1097 *4)) (-4 *4 (-959))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-1148 *5)) (-5 *3 (-701)) (-5 *4 (-1018)) (-4 *5 (-318)) (-5 *1 (-485 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *2 *3) (-12 (-4 *1 (-766)) (-5 *3 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *2 (-948)))) ((*1 *2 *3) (-12 (-4 *1 (-766)) (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-948))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-295 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 *2)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-404))))) (-5 *1 (-1074))))) -(((*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-4 *2 (-237 *4))))) -(((*1 *2) (-12 (-5 *2 (-621 (-826 *3))) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) ((*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018))))))))) ((*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *3 (-340 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *1 (-435))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) ((*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1022 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4))))) -(((*1 *2 *3) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |radicand| (-375 *5)) (|:| |deg| (-701)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-616 *4 *5 *6)) (-4 *5 (-1001))))) -(((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-336)) (-4 *1 (-297 *3)) (-4 *3 (-331))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-232))))) -(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-723)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4))))) +(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1 *1) (-5 *1 (-349))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509))))) +(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703))))) +(((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-687))))) +(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517))))) +(((*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-2 (|:| -1931 (-583 *1)) (|:| -3220 *1))) (-5 *3 (-583 *1))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5)) (|:| -2131 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *6 (-593 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718))))) +(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-931 *6 *3))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-703)))))))) +(((*1 *1) (-4 *1 (-319)))) +(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056))))) +(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517))))) +(((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-686))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) ((*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-1069 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-377 (-1069 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-502)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097)))) +(((*1 *2 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *4)))) ((*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *3)))) ((*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *1)) (-4 *1 (-379 *3 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) ((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-387 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-51)) (-5 *1 (-814 *4)) (-4 *4 (-1003))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517)))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-1104 *3)) (-4 *3 (-891))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686))))) +(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1069 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $)))))))))) +(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-787))) ((*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) ((*1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1) (-5 *1 (-1076))) ((*1 *1) (-5 *1 (-1077)))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097)))) +(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107))))) +(((*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-686))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-842))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $)))))))) +(((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1130 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097)))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1130 (-153 *5))))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-950)) (-5 *1 (-686))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097)))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4)))))) +(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-981 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1130 *5)) (-5 *2 (-1069 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1130 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-950)) (-5 *1 (-686))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097)))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) ((*1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-950)) (-5 *1 (-686))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236))))) (((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-578 (-282 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186))))) -(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 (-1064 (-375 (-501))))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-993 (-866 (-501)))) (-5 *2 (-298)) (-5 *1 (-300)))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-609 *3)) (-4 *3 (-959)) (-4 *3 (-1001))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-578 (-701))))) ((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-578 (-701)))))) -(((*1 *2 *3) (-12 (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-2 (|:| -3970 (-1048 *4)) (|:| -3975 (-1048 *4)))) (-5 *1 (-1056 *4)) (-5 *3 (-1048 *4))))) -(((*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) ((*1 *2 *2) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) ((*1 *1 *2 *2) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3))))))) -(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-701))) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1125 (-375 (-501)))))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-329 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-354 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-584 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1074))))) -(((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318))))) -(((*1 *2 *3 *2) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2)))))) -(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47)))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-267)))) ((*1 *1 *1) (-4 *1 (-267))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-501)) (-5 *1 (-412 *2)) (-4 *2 (-959))))) -(((*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-508)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508)))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-822 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-769 *4)) (-5 *3 (-553 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1090) (-29 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-198 *6 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) ((*1 *2) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-309 *3 *4 *2 *5)) (-4 *3 (-310 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-310 *3 *2 *4)) (-4 *3 (-1108)) (-4 *4 (-1125 (-375 *2))) (-4 *2 (-1125 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4)))) ((*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3))))) -(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1070)) (-5 *6 (-578 (-553 *3))) (-5 *5 (-553 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-509 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298))))) -(((*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-959)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *6 (-870 *2 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-125))))) -(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3))))) -(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 *2)) (|:| |logand| (-1064 *2))))) (-5 *4 (-578 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-331)) (-5 *1 (-530 *2))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1130 *4 *5 *6)) (|:| |%expon| (-287 *4 *5 *6)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-375 (-501))) (|:| |c| *4)))))) (|:| |%type| (-1053)))) (-5 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4)))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *4 (-578 (-1070))) (-5 *2 (-621 (-282 (-199)))) (-5 *1 (-181)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *6 (-820 *5)) (-5 *2 (-621 *6)) (-5 *1 (-623 *5 *6 *3 *4)) (-4 *3 (-340 *6)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167))))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-1125 *3)) (-4 *3 (-276)) (-5 *2 (-107)) (-5 *1 (-422 *3 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-1030 *4 *2)) (-4 *2 (-13 (-548 (-501) *4) (-10 -7 (-6 -4167) (-6 -4168)))))) ((*1 *2 *2) (-12 (-4 *3 (-777)) (-4 *3 (-1104)) (-5 *1 (-1030 *3 *2)) (-4 *2 (-13 (-548 (-501) *3) (-10 -7 (-6 -4167) (-6 -4168))))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-276)))) ((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-354 *3)) (|:| |rm| (-354 *3)))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3236 (-701)) (|:| -1852 (-701)))) (-5 *1 (-701)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-1055 *4)) (-4 *4 (-959)) (-5 *3 (-501))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-530 *3)) (-4 *3 (-331))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1001) (-950 *5))) (-4 *5 (-806 *4)) (-4 *4 (-1001)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-851 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-271 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) (-12 (-5 *4 (-991 (-769 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-272)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-276)) (-4 *6 (-340 *5)) (-4 *4 (-340 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-1022 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-501)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-490))) (-5 *1 (-490))))) -(((*1 *2 *3) (-12 (-5 *2 (-553 *4)) (-5 *1 (-554 *3 *4)) (-4 *3 (-777)) (-4 *4 (-777))))) -(((*1 *2 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-759)) (-5 *3 (-1053))))) -(((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-282 (-346))) (-5 *1 (-272))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-108)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-1053)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-777)) (-5 *1 (-850 *4 *2)) (-4 *2 (-389 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-901 (-375 (-501)) (-787 *3) (-212 *4 (-701)) (-220 *3 (-375 (-501))))) (-14 *3 (-578 (-1070))) (-14 *4 (-701)) (-5 *1 (-902 *3 *4))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1104)) (-4 *3 (-340 *4)) (-4 *5 (-340 *4))))) -(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-385 *3 *2)) (-4 *3 (-386 *2)))) ((*1 *2) (-12 (-4 *1 (-386 *2)) (-4 *2 (-156))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-1154)) (-5 *1 (-485 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-533 *2)) (-4 *2 (-500))))) -(((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-903 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786))))) -(((*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))))) ((*1 *1 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) ((*1 *1 *2 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090)))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-501)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-793 *4)) (-14 *4 *3) (-5 *3 (-501)))) ((*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-375 (-501))) (-5 *1 (-794 *4 *5)) (-5 *3 (-501)) (-4 *5 (-792 *4)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-375 (-501))))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-775) (-331))) (-4 *3 (-1125 *2)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3691 (*2 (-1070)))) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-280)) (-5 *1 (-265)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1053))) (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265))))) -(((*1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-578 (-108)))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-121 *3))))) -(((*1 *2 *3) (-12 (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-578 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501)))))) (-5 *1 (-468 *4 *5)) (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501)))))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-578 (-232))) (-5 *1 (-1152)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-1053)) (-5 *1 (-1152)))) ((*1 *1 *1) (-5 *1 (-1152)))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *1) (-5 *1 (-404)))) -(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-578 (-553 *2))) (-5 *4 (-1070)) (-4 *2 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *5 *2))))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-282 (-346))) (-5 *1 (-272))))) -(((*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254)))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1090) (-29 *5)))))) -(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-621 *1)) (-4 *1 (-318)) (-5 *2 (-1148 *1)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-621 *1)) (-4 *1 (-132)) (-4 *1 (-830)) (-5 *2 (-1148 *1))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-822 (-501))) (-5 *4 (-501)) (-5 *2 (-621 *4)) (-5 *1 (-942 *5)) (-4 *5 (-959)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-942 *4)) (-4 *4 (-959)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-822 (-501)))) (-5 *4 (-501)) (-5 *2 (-578 (-621 *4))) (-5 *1 (-942 *5)) (-4 *5 (-959)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-501)))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-942 *4)) (-4 *4 (-959))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-511))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-107))))) -(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *2 (-107)) (-5 *1 (-238)))) ((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-107)) (-5 *1 (-238)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-375 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-737 *5 *2 *3 *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-375 *2))) (-4 *2 (-1125 *5)) (-5 *1 (-737 *5 *2 *3 *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-375 *2)))))) -(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959))))) -(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-972 *3 *4 *2)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-375 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-658 *5 *2)) (-4 *5 (-331))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *2 (-340 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *6 *2 *7)) (-4 *6 (-959)) (-4 *7 (-211 *4 *6)) (-4 *2 (-211 *5 *6))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-701)) (-5 *5 (-578 *3)) (-4 *3 (-276)) (-4 *6 (-777)) (-4 *7 (-723)) (-5 *2 (-107)) (-5 *1 (-564 *6 *7 *3 *8)) (-4 *8 (-870 *3 *7 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |%expansion| (-281 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-391 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-14 *6 (-1070)) (-14 *7 *3)))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (|has| *1 (-6 -4168)) (-4 *1 (-340 *3)) (-4 *3 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-716))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3189 *4) (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3189 *3) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-490))) (-5 *2 (-1070)) (-5 *1 (-490))))) -(((*1 *1) (-5 *1 (-404)))) -(((*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $)))))))))) -(((*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-199)) (-5 *1 (-272))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298))))) -(((*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-622 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-749 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-773)) (-5 *1 (-1170 *3 *2)) (-4 *3 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1053)) (-5 *1 (-716))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *1 (-333 *2 *4)) (-4 *2 (-1001)) (-4 *4 (-1001)))) ((*1 *1 *2) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-50)) (-5 *1 (-810 *4)) (-4 *4 (-1001))))) -(((*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508))))) -(((*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1) (-4 *1 (-1034)))) -(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *5 (-107)) (-4 *8 (-972 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *4 (-777)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -3709 *9)))) (-5 *1 (-978 *6 *7 *4 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-134))) (-5 *2 (-578 *3)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 (-866 *6))) (-4 *6 (-508)) (-4 *2 (-870 (-375 (-866 *6)) *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)))))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7))))) -(((*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 (-1148 (-501)))) (-5 *1 (-433))))) -(((*1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1083))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-4 *5 (-331)) (-5 *2 (-578 (-1097 *5))) (-5 *1 (-1157 *5)) (-5 *4 (-1097 *5))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-533 *2)) (-4 *2 (-500))))) -(((*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $)))))))))) -(((*1 *2 *1) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) ((*1 *2 *1) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-447 *4 *5))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-2 (|:| |gblist| (-578 (-220 *4 *5))) (|:| |gvlist| (-578 (-501))))) (-5 *1 (-569 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-4 *5 (-276)) (-4 *5 (-959)) (-5 *2 (-1148 (-1148 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1148 *5))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-701)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-723)) (-4 *4 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4)) (-4 *4 (-959))))) -(((*1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *7)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 (-375 *8)) "failed")) (|:| -4119 (-578 (-1148 (-375 *8)))))) (-5 *1 (-604 *5 *6 *7 *8))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156))))) -(((*1 *2 *3) (-12 (-5 *3 (-282 (-346))) (-5 *2 (-282 (-199))) (-5 *1 (-272))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-5 *4 (-621 *12)) (-5 *5 (-578 (-375 (-866 *9)))) (-5 *6 (-578 (-578 *12))) (-5 *7 (-701)) (-5 *8 (-501)) (-4 *9 (-13 (-276) (-134))) (-4 *12 (-870 *9 *11 *10)) (-4 *10 (-13 (-777) (-556 (-1070)))) (-4 *11 (-723)) (-5 *2 (-2 (|:| |eqzro| (-578 *12)) (|:| |neqzro| (-578 *12)) (|:| |wcond| (-578 (-866 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *9)))) (|:| -4119 (-578 (-1148 (-375 (-866 *9))))))))) (-5 *1 (-844 *9 *10 *11 *12))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-621 *4)) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4)))))) -(((*1 *1 *1) (-4 *1 (-597))) ((*1 *1 *1) (-5 *1 (-1018)))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1018)) (-4 *4 (-318)) (-5 *1 (-485 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3))))) -(((*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1))))) -(((*1 *2 *3 *1) (-12 (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1451 (-501)) (|:| -1575 (-578 *3)))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *3) (|partial| -12 (-4 *2 (-1001)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1001))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-295 *3)) (-4 *3 (-1104)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 (-501))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) (-4 *3 (-972 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *2)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *3))) (-5 *1 (-1041 *5 *6 *7 *3)) (-4 *3 (-972 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-959)) (-4 *2 (-1125 *4)) (-5 *1 (-411 *4 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-375 (-1064 (-282 *5)))) (-5 *3 (-1148 (-282 *5))) (-5 *4 (-501)) (-4 *5 (-13 (-508) (-777))) (-5 *1 (-1028 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 *3)) (-5 *1 (-844 *4 *5 *6 *3)) (-4 *3 (-870 *4 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-1064 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *2 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 (-1118 *5 *4))) (-5 *1 (-1014 *4 *5)) (-5 *3 (-1118 *5 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-199)) (-5 *1 (-272))))) -(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-5 *1 (-346))) ((*1 *1) (-5 *1 (-346)))) -(((*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-1064 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))) ((*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) ((*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-701))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-701))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *2 *2) (-12 (-4 *3 (-1125 (-375 (-501)))) (-5 *1 (-833 *3 *2)) (-4 *2 (-1125 (-375 *3)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-501))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *8 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *9) (|:| |radicand| *9))) (-5 *1 (-873 *5 *6 *7 *8 *9)) (-5 *4 (-701)) (-4 *9 (-13 (-331) (-10 -8 (-15 -2946 (*8 $)) (-15 -2949 (*8 $)) (-15 -3691 ($ *8)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346)))) (-5 *1 (-181))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1125 (-501))) (-5 *1 (-451 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *7))))) -(((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-863 (-199))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *2 (-1154)) (-5 *1 (-435)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-435)))) ((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *2 (-1154)) (-5 *1 (-435))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-375 (-866 (-501))))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 *5))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-775) (-331))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-501)))) (-5 *2 (-578 *4)) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331)))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-578 *5)) (-4 *5 (-777)) (-5 *1 (-1076 *5))))) -(((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-298))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-1064 *4)) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-512 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-375 (-1064 *4))) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-512 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-703)) (-5 *1 (-108))))) -(((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-1064 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1037 *3 *4)) (-14 *3 (-839)) (-4 *4 (-331)) (-5 *1 (-908 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-282 (-199))) (-5 *1 (-238))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-578 (-2 (|:| |outval| *4) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 *4)))))) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *2 *2) (-12 (-4 *3 (-950 (-501))) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-31 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *1 *1) (-12 (-4 *1 (-959)) (-4 *1 (-267)))) ((*1 *2) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1064 *3)))) ((*1 *2) (-12 (-4 *1 (-655 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-775) (-331))) (-4 *2 (-1125 *3))))) -(((*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-214))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-870 *5 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *6 *4 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-866 (-501)))) (-5 *1 (-404)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-621 (-199))) (-5 *2 (-1003)) (-5 *1 (-690)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-621 (-501))) (-5 *2 (-1003)) (-5 *1 (-690))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-777)) (-5 *1 (-1076 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-845))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-490) (-578 (-490)))) (-5 *1 (-108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-490) (-578 (-490)))) (-5 *1 (-108))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-208 *3)) (-4 *3 (-1001)))) ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-208 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) ((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-552 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-501)) (-4 *4 (-1001)) (-5 *1 (-667 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-667 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-270)))) ((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-272))))) -(((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-752)) (-5 *4 (-50)) (-5 *2 (-1154)) (-5 *1 (-761))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1125 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070)))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-578 (-553 *3))) (|:| |vals| (-578 *3)))) (-5 *1 (-248 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5)))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-968 (-937 *3) (-1064 (-937 *3)))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-775) (-331) (-933)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1073))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-578 (-1064 *11))) (-5 *3 (-1064 *11)) (-5 *4 (-578 *10)) (-5 *5 (-578 *8)) (-5 *6 (-578 (-701))) (-5 *7 (-1148 (-578 (-1064 *8)))) (-4 *10 (-777)) (-4 *8 (-276)) (-4 *11 (-870 *8 *9 *10)) (-4 *9 (-723)) (-5 *1 (-639 *9 *10 *8 *11))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1074))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)) (-5 *1 (-377 *3 *4 *5)) (-4 *3 (-378 *4 *5)))) ((*1 *2) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-621 *3))))) -(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-578 (-578 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-578 (-578 *5))))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-578 *3))) (-5 *1 (-1078 *3)) (-4 *3 (-1001))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-863 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-286)) (-5 *3 (-199))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-4 *1 (-655 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1125 *5)) (-5 *2 (-621 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-701)) (-5 *1 (-108))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -1852 *1))) (-4 *1 (-972 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-331)))) ((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-839)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (-4 *2 (-959))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *2 (-508)) (-5 *1 (-885 *2 *4)) (-4 *4 (-1125 *2))))) -(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1320 *6) (|:| |sol?| (-107))) (-501) *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-375 *7)) (|:| |a0| *6)) (-2 (|:| -3071 (-375 *7)) (|:| |coeff| (-375 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959))))) -(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-107)) (-4 *10 (-977 *6 *7 *8 *9)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-903 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-107)) (-4 *10 (-977 *6 *7 *8 *9)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-959)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-959))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-808 *4 *5)) (-4 *5 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-811 *5 *3)) (-4 *3 (-1104)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *2 (-107)) (-5 *1 (-811 *5 *6))))) -(((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-3 (-107) (-578 *1))) (-4 *1 (-977 *4 *5 *6 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-404)) (-5 *1 (-1074))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097)))) +(((*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1102 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686))))) +(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1108)) (-5 *2 (-703))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-916 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094)))))) +(((*1 *1 *1) (-5 *1 (-973)))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -4 *1 (-655)))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-215)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1158)) (-5 *1 (-215))))) +(((*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509))))) +(((*1 *1) (-5 *1 (-1076)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 (-874 *6))) (-4 *6 (-509)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)))))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-517))))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))) ((*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1753 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) ((*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1094) (-880))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1153 *7)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1073)) (-4 *6 (-13 (-29 *5) (-1094) (-880))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1153 *6))) (-5 *1 (-734 *5 *6)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1753 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1753 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1094) (-880))))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))))) ((*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1753 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1153 *6)) (|:| -1753 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-286 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-265 (-286 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-265 (-286 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-286 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5)) (-5 *3 (-583 (-265 (-377 (-874 *5))))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)) (-5 *3 (-583 (-265 (-377 (-874 *4))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-265 (-377 (-874 *5)))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-377 (-874 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-265 (-377 (-874 *4))))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-961)) (-4 *4 (-779)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-897 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1003))))) +(((*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1003)))) ((*1 *1 *1) (-5 *1 (-572)))) +(((*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-1158))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) ((*1 *1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108))))) ((*1 *1 *1 *1) (-4 *1 (-333))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1163 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-775))))) +(((*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-961)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-874 *5)))) (-5 *1 (-1079 *5))))) +(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 *4)))) (|:| |xValues| (-998 *4)) (|:| |yValues| (-998 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 *4))))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1130 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) +(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-922))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3))))) +(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094)))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-125))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21)))) ((*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276))))) +(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-779)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-583 (-623 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-583 (-623 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5)))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168))))) +(((*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *2 (-1158)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1130 (-377 *5))) (-14 *7 *6)))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-142))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-25))))) +(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) ((*1 *1 *1 *1) (-4 *1 (-725)))) +(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107))))) +(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-906)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-996 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1073)))) ((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2)))) +(((*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1073))) (-4 *2 (-156)) (-4 *4 (-212 (-2296 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *4)) (-2 (|:| -3448 *3) (|:| -2077 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-871 *2 *4 (-789 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1130 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-4 *1 (-273)))) +(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1003))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) +(((*1 *2 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) +(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1003)))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-931 *4 *5)) (-5 *3 (-377 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33)))))) +(((*1 *2 *3) (-12 (-4 *3 (-1130 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-902 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 (-517)))) (-5 *1 (-435))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-961)) (-4 *1 (-1137 *4 *3)) (-4 *3 (-1114 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-703)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-808 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *6 *4)) (-4 *4 (-558 (-814 *5)))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1069 *13))) (-5 *3 (-1069 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1153 (-583 (-1069 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-871 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13))))) +(((*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1069 *5)) (-5 *1 (-31 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-961)) (-4 *1 (-273)) (-5 *2 (-1069 *1))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703))))) +(((*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1087))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1130 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-952 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-961)) (-4 *1 (-1116 *4 *3)) (-4 *3 (-1145 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-990 *2))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-583 (-1103 *5))) (-5 *1 (-1161 *5)) (-5 *4 (-1103 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236))))) +(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-703))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-703))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3))))) +(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-961)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-874 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4)))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1153 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1153 *3)))))) +(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-5 *2 (-807 *5 *6 (-583 *6))) (-5 *1 (-809 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-952 (-1073))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 (-874 *3)))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-961)) (-2630 (-4 *3 (-952 (-1073)))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-811 *5 *3)) (-5 *1 (-809 *5 *3 *4)) (-2630 (-4 *3 (-952 (-1073)))) (-2630 (-4 *3 (-961))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5)))))) +(((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155))))) (((*1 *1) (-5 *1 (-107)))) -(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-825 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-839)) (-5 *2 (-107)) (-5 *1 (-1002 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4)))))) -(((*1 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-413)) (-5 *3 (-501))))) -(((*1 *2 *3) (-12 (-5 *3 (-866 *5)) (-4 *5 (-959)) (-5 *2 (-447 *4 *5)) (-5 *1 (-864 *4 *5)) (-14 *4 (-578 (-1070)))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))) (-4 *2 (-13 (-777) (-21)))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-938 *3 *2)) (-4 *2 (-593 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-2 (|:| -2499 *3) (|:| -3996 (-578 *5)))) (-5 *1 (-938 *5 *3)) (-5 *4 (-578 *5)) (-4 *3 (-593 *5))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-999 *3)))) ((*1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001))))) -(((*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276)))) ((*1 *2 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))) ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-276)))) ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-501))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-633 *4 *5 *6 *7)) (-4 *4 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-1040 *5 *6 *7 *8 *9))))) -(((*1 *2 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-1010))))) -(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-578 (-2 (|:| |deg| (-701)) (|:| -3215 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001))))) -(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-4 *2 (-13 (-370) (-10 -7 (-15 -3691 (*2 *4)) (-15 -3104 ((-839) *2)) (-15 -4119 ((-1148 *2) (-839))) (-15 -3184 (*2 *2))))) (-5 *1 (-325 *2 *4))))) -(((*1 *1 *1) (-5 *1 (-970)))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-578 (-346))) (-5 *5 (-578 (-769 (-346)))) (-5 *6 (-578 (-282 (-346)))) (-5 *3 (-282 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-346))) (-5 *5 (-578 (-769 (-346)))) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-346)))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767))))) -(((*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153))))) -(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-4 *4 (-13 (-29 *6) (-1090) (-879))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4119 (-578 *4)))) (-5 *1 (-731 *6 *4 *3)) (-4 *3 (-593 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *2 (-578 (-375 (-501)))) (-5 *1 (-934 *4)) (-4 *4 (-1125 (-501)))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-839)) (-4 *3 (-331)) (-14 *4 (-908 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *1 *1) (|partial| -4 *1 (-653))) ((*1 *1 *1) (|partial| -4 *1 (-657))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) ((*1 *2 *2 *1) (|partial| -12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-775) (-331))) (-4 *2 (-1125 *3)))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3))))) -(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *1) (-4 *1 (-500)))) -(((*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1111 *3)) (-5 *2 (-375 (-501)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *1 (-56 *3)) (-4 *3 (-1104)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-56 *3))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-331)) (-5 *1 (-816 *2 *4)) (-4 *2 (-1125 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *1) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-27) (-389 *5))) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-4 *8 (-1125 (-375 *7))) (-5 *2 (-530 *3)) (-5 *1 (-504 *5 *6 *7 *8 *3)) (-4 *3 (-310 *6 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-356)) (-5 *1 (-570))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-490)) (-5 *1 (-491 *4)) (-4 *4 (-1104))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2)))) -(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-701)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (-5 *1 (-844 *5 *6 *7 *8))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-291 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-329 *2)) (-4 *2 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-1001)) (-5 *1 (-584 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-749 *2)) (-4 *2 (-777))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-784)))) ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-904)))) ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-1001) (-33))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-13 (-1001) (-33)))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-839))) (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-4 *2 (-1001)) (-4 *2 (-777)) (-5 *1 (-109 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959))))) -(((*1 *1 *1 *1) (-4 *1 (-440))) ((*1 *1 *1 *1) (-4 *1 (-692)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3 *3) (-12 (-4 *3 (-1108)) (-4 *5 (-1125 *3)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-107)) (-5 *1 (-309 *4 *3 *5 *6)) (-4 *4 (-310 *3 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107))))) -(((*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-435))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-753))))) -(((*1 *2 *3) (-12 (-5 *3 (-262 (-866 (-501)))) (-5 *2 (-2 (|:| |varOrder| (-578 (-1070))) (|:| |inhom| (-3 (-578 (-1148 (-701))) "failed")) (|:| |hom| (-578 (-1148 (-701)))))) (-5 *1 (-209))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-716))))) -(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1) (-4 *1 (-1034)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1099 *5 *6 *7 *3)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *1) (-12 (-5 *1 (-1091 *2)) (-4 *2 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-753))))) -(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-786) (-786))) (-5 *1 (-108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-786) (-578 (-786)))) (-5 *1 (-108)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-786) (-578 (-786)))) (-5 *1 (-108)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-361)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-361)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-465)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1084)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1084))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-578 (-991 (-199)))) (-5 *1 (-848))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1104)) (-4 *3 (-959)) (-5 *2 (-621 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-262 (-769 *3))) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (-769 *3) (-2 (|:| |leftHandLimit| (-3 (-769 *3) "failed")) (|:| |rightHandLimit| (-3 (-769 *3) "failed"))) "failed")) (-5 *1 (-574 *5 *3)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-262 *3)) (-5 *5 (-1053)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-769 *3)) (-5 *1 (-574 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 (-769 (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-3 (-769 (-375 (-866 *5))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 *5))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 *5))) "failed"))) "failed")) (-5 *1 (-575 *5)) (-5 *3 (-375 (-866 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-419)) (-5 *2 (-3 (-769 *3) (-2 (|:| |leftHandLimit| (-3 (-769 *3) "failed")) (|:| |rightHandLimit| (-3 (-769 *3) "failed"))) "failed")) (-5 *1 (-575 *5)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-262 (-375 (-866 *6)))) (-5 *5 (-1053)) (-5 *3 (-375 (-866 *6))) (-4 *6 (-419)) (-5 *2 (-769 *3)) (-5 *1 (-575 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-578 (-232))) (-5 *1 (-233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-2 (|:| |mval| (-621 *4)) (|:| |invmval| (-621 *4)) (|:| |genIdeal| (-467 *4 *5 *6 *7)))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-959)))) ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508))))) -(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-553 *6))) (-5 *4 (-1070)) (-5 *2 (-553 *6)) (-4 *6 (-389 *5)) (-4 *5 (-777)) (-5 *1 (-524 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-246))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-50)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1104))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-373 *2)) (-4 *2 (-870 *7 *5 *6)) (-5 *1 (-673 *5 *6 *7 *2)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-276))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1018)) (-5 *2 (-1154)) (-5 *1 (-761))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1034)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-13 (-276) (-134))) (-4 *2 (-870 *4 *6 *5)) (-5 *1 (-844 *4 *5 *6 *2)) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-1070)) (-4 *6 (-389 *5)) (-4 *5 (-777)) (-5 *2 (-578 (-553 *6))) (-5 *1 (-524 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1009 *5 *6 *7 *8)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-537 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2532 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-329 (-108))) (-4 *2 (-959)) (-5 *1 (-645 *2 *4)) (-4 *4 (-583 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-329 (-108))) (-5 *1 (-764 *2)) (-4 *2 (-959))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-5 *2 (-1 *5)) (-5 *1 (-615 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-298))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *3 (-820 *5)) (-5 *2 (-1148 *3)) (-5 *1 (-623 *5 *3 *6 *4)) (-4 *6 (-340 *3)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167))))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-270))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-4 *4 (-777)) (-5 *1 (-1076 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |ir| (-530 (-375 *6))) (|:| |specpart| (-375 *6)) (|:| |polypart| *6))) (-5 *1 (-525 *5 *6)) (-5 *3 (-375 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-229))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *1 (-232)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-297 *4)) (-4 *4 (-331)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1148 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-1148 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-386 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-621 *5))) (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-1148 *5)) (-5 *1 (-988 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-152 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-331)) (-4 *2 (-1125 *4)) (-5 *1 (-843 *4 *2))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-578 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3)) (-4 *3 (-1009 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-982 *4 *5)) (-5 *3 (-578 (-866 *4))) (-14 *5 (-578 (-1070))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-270)))) ((*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-272))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-4 *5 (-331)) (-5 *2 (-1048 (-1048 (-866 *5)))) (-5 *1 (-1157 *5)) (-5 *4 (-1048 (-866 *5)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 *10)) (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *10 (-1009 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-566 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-1041 *5 (-487 (-787 *6)) (-787 *6) (-710 *5 (-787 *6))))) (-5 *1 (-566 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-956 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-1099 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1064 *6)) (-5 *3 (-501)) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-688))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-156)) (-5 *1 (-728 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-3 (-1064 *4) (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018))))))) (-5 *1 (-315 *4)) (-4 *4 (-318))))) -(((*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-312 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) ((*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-313 *3 *4)) (-4 *3 (-318)) (-14 *4 (-1064 *3)))) ((*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-314 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839))))) -(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-490))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4)) (-4 *4 (-777))))) -(((*1 *2 *3 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-3 *3 (-578 *1))) (-4 *1 (-977 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501))))) -(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688))))) -(((*1 *2 *3) (-12 (-5 *2 (-578 (-1064 (-501)))) (-5 *1 (-167)) (-5 *3 (-501))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-687))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-621 (-282 (-501)))) (-5 *1 (-941))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-494 *4 *2 *5 *6)) (-4 *4 (-276)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-701)))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-863 (-199)))) (-5 *1 (-1151))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-578 *4)) (-4 *4 (-777)) (-5 *1 (-1076 *4))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-621 (-1064 *8))) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-1125 *5)) (-5 *2 (-621 *6)) (-5 *1 (-464 *5 *6 *7 *8)) (-4 *7 (-1125 *6))))) -(((*1 *2) (-12 (-5 *2 (-769 (-501))) (-5 *1 (-489)))) ((*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1001))))) -(((*1 *2) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-309 *3 *4 *2 *5)) (-4 *3 (-310 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-310 *3 *2 *4)) (-4 *3 (-1108)) (-4 *4 (-1125 (-375 *2))) (-4 *2 (-1125 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-948)) (-5 *1 (-687))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104))))) -(((*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508)))))) -(((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-340 *4)) (-4 *4 (-1104)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *2 (-389 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-950 *4)) (-4 *3 (-13 (-777) (-508)))))) -(((*1 *2) (-12 (-5 *2 (-769 (-501))) (-5 *1 (-489)))) ((*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1001))))) -(((*1 *1 *1) (-5 *1 (-970)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-775) (-331) (-933))))) ((*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-775) (-331))) (-4 *3 (-1125 *2))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-687))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-446))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-375 (-501))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-107) *8))) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) -(((*1 *1 *1 *1) (-4 *1 (-692)))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-107)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687))))) -(((*1 *2) (-12 (-5 *2 (-762 (-501))) (-5 *1 (-489)))) ((*1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1001))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-501)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-834 *3)) (-4 *3 (-276))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687))))) -(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-637 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-375 *6)) (-4 *5 (-1108)) (-4 *6 (-1125 *5)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-701)) (-4 *7 (-1125 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-687))))) -(((*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-359))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-508)) (-4 *2 (-959)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) ((*1 *2 *3 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-775)) (-5 *1 (-273 *3))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-839)) (-4 *1 (-372)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-372)))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *2 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1320 *6) (|:| |sol?| (-107))) (-501) *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7))))) -(((*1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-1060 *3 *2)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-417 *5 *6 *7 *3))))) -(((*1 *1 *1) (-5 *1 (-786))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1052)))) ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1070))))) -(((*1 *1) (-5 *1 (-128)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *6 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-1150)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-1150))))) -(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 (-501))) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 (-501)) (-14 *5 (-701)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-126 *3 *4 *2)) (-14 *3 (-501)) (-14 *4 (-701)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-218 (-1053))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ *3)) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-904)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-701)) (-5 *1 (-218 *4)) (-4 *4 (-777)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-218 *3)) (-4 *3 (-777)))) ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-218 *3)) (-4 *3 (-777)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-256 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) ((*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-259 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1125 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 *1)) (-4 *1 (-267)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-310 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-386 *2)) (-4 *2 (-156)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1053)) (-5 *1 (-465)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-50)) (-5 *1 (-570)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-701)) (-5 *1 (-609 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 (-810 *4))) (-5 *1 (-810 *4)) (-4 *4 (-1001)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-822 *4)) (-5 *1 (-825 *4)) (-4 *4 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-212 *4 *2)) (-14 *4 (-839)) (-4 *2 (-331)) (-5 *1 (-908 *4 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *2 (-959)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)) (-4 *2 (-959)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-981 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)))) ((*1 *1 *1 *1) (-4 *1 (-1039))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-375 *1)) (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-375 *1)) (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687))))) -(((*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-520 *3)) (-4 *3 (-950 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *2 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001))))) -(((*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508))))) ((*1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1) (-5 *1 (-444))) ((*1 *1) (-4 *1 (-1090)))) -(((*1 *1 *1 *1) (-4 *1 (-500)))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *3 (-777)) (-5 *2 (-2 (|:| |val| *1) (|:| -3027 (-501)))) (-4 *1 (-389 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-810 *3)) (|:| -3027 (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3027 (-501)))) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $)))))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-687))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-839)) (-5 *1 (-716))))) -(((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-914 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-107)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) ((*1 *1 *1) (|partial| -4 *1 (-653)))) -(((*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-1154))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-276)) (-5 *1 (-161 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-599 *3 *4)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-5 *1 (-565 *3 *4 *5)) (-14 *5 (-839)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *4 (-648 (-375 (-501)))) (-4 *3 (-777)) (-4 *4 (-156))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1099 *4 *5 *3 *2)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *2 (-972 *4 *5 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-1102 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-107)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-4 *5 (-318)) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -4119 (-621 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-621 *6))))) (-5 *1 (-461 *5 *6 *7)) (-5 *3 (-2 (|:| -4119 (-621 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-621 *6)))) (-4 *7 (-1125 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-701)))) ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-370)) (-5 *2 (-701))))) -(((*1 *2 *3) (-12 (-5 *3 (-553 *5)) (-4 *5 (-389 *4)) (-4 *4 (-950 (-501))) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-1064 *5)) (-5 *1 (-31 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-553 *1)) (-4 *1 (-959)) (-4 *1 (-267)) (-5 *2 (-1064 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-356)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-262 (-762 *3))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-762 *3)) (-5 *1 (-574 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 (-762 (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-762 (-375 (-866 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-375 (-866 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-419)) (-5 *2 (-762 *3)) (-5 *1 (-575 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-501)) (-5 *5 (-107)) (-5 *6 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-578 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $)))))))))) +(((*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156))))) +(((*1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037))) ((*1 *1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-109))))) +(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-894 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1153 *5))) (-5 *4 (-517)) (-5 *2 (-1153 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-1145 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-865 *3)))))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *4 (-961)) (-4 *1 (-1035 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 *3)))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108))))) +(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-843)) (-5 *1 (-487 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-5 *2 (-1069 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-941 *3)) (-4 *3 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) +(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) ((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) ((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-4 *1 (-793 *2))) ((*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1054 *2)) (-4 *2 (-1108))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763))))) +(((*1 *2 *3) (-12 (-5 *3 (-1040 *4 *2)) (-14 *4 (-843)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-4182 "*"))))) (-5 *1 (-824 *4 *2))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1073))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-804 *2)) (-4 *2 (-1108))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155))))) (((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4))))) +(((*1 *1 *1) (-4 *1 (-502)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-1153 (-1153 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1153 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-531))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003))))) (((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118)))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-987 *3)) (-4 *3 (-124))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *6 (-13 (-508) (-777))) (-5 *2 (-578 (-282 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-282 *6)) (-4 *5 (-959)))) ((*1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508)))) ((*1 *2 *3) (-12 (-5 *3 (-530 *5)) (-4 *5 (-13 (-29 *4) (-1090))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-578 *5)) (-5 *1 (-532 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-530 (-375 (-866 *4)))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-578 (-282 *4))) (-5 *1 (-535 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-996 *3 *2)) (-4 *3 (-775)) (-4 *2 (-1044 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-996 *4 *2)) (-4 *4 (-775)) (-4 *2 (-1044 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) ((*1 *2 *1) (-12 (-5 *2 (-1162 (-1070) *3)) (-5 *1 (-1168 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959))))) -(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-755))))) -(((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) ((*1 *1) (-4 *1 (-500))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) ((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-4 *6 (-13 (-508) (-950 *5))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *6)))))) (-5 *1 (-951 *5 *6))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *1) (-12 (-4 *3 (-1104)) (-5 *2 (-578 *1)) (-4 *1 (-924 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-959)) (-5 *2 (-1148 *4)) (-5 *1 (-1071 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-1148 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-959))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-486 *3)) (-4 *3 (-13 (-657) (-25)))))) -(((*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-1018)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1148 (-578 (-501)))) (-5 *1 (-446)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *4 *5 *6)) (-4 *4 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *2 (-375 (-501))) (-5 *1 (-934 *4)) (-4 *4 (-1125 (-501)))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318))))) -(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 (-1148 *4))) (-4 *4 (-959)) (-5 *2 (-621 *4)) (-5 *1 (-943 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) -(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-839)) (-4 *5 (-777)) (-5 *2 (-578 (-606 *5))) (-5 *1 (-606 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-104)))) ((*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-701)))) ((*1 *2 *3 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-501)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-340 *4)) (-4 *4 (-1104)) (-5 *2 (-501)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-501)) (-5 *3 (-128)))) ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-501))))) -(((*1 *2 *2) (-12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *2 (-618 *7 *8 *9)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-618 *4 *5 *6)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7)))) ((*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-276)))) ((*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-961 *2 *3 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *2 *4)) (-4 *4 (-276))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-501))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-324 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-485 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-1125 *4)) (-5 *2 (-1 *6 (-578 *6))) (-5 *1 (-1144 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1142 *4))))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-997 (-701))) (-5 *6 (-701)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *1) (-12 (-4 *1 (-432 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-490))) ((*1 *1) (-4 *1 (-653))) ((*1 *1) (-4 *1 (-657))) ((*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777))))) -(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-578 *3)) (-5 *1 (-881 *3)) (-4 *3 (-500))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-508)) (-4 *4 (-777)) (-5 *1 (-524 *4 *2)) (-4 *2 (-389 *4))))) -(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686))))) -(((*1 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-513)) (-5 *3 (-501))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *5 *4 *6 *3)) (-4 *3 (-870 *6 *5 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-635 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-635 *3)) (-4 *3 (-556 (-490)))))) -(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-813 *3)) (|:| |c| *4)))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-606 *3))) (-5 *1 (-813 *3)) (-4 *3 (-777))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-606 *3)) (|:| |c| *4)))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-877 *3)) (-5 *1 (-1058 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-196 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-225 *3)))) ((*1 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)) (-4 *2 (-959))))) -(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) ((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-733))))) -(((*1 *2 *3) (-12 (-5 *3 (-749 *4)) (-4 *4 (-777)) (-5 *2 (-107)) (-5 *1 (-606 *4))))) -(((*1 *2 *3) (-12 (-4 *1 (-815)) (-5 *3 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-948))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685))))) -(((*1 *2 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276))))) -(((*1 *2) (-12 (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-1125 (-501))) (-5 *2 (-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501))))) (-5 *1 (-698 *3 *4)) (-4 *4 (-378 (-501) *3)))) ((*1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -4119 (-621 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-621 *4)))) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-655 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -4119 (-621 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-621 *4)))) (-5 *1 (-1158 *3 *4 *5 *6)) (-4 *6 (-378 *4 *5))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-114 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -3709 *7)))) (-4 *6 (-972 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -3709 *7)))) (-4 *6 (-972 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1007 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 (-1048 *4) (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1172 *4)) (-4 *4 (-1104)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 (-1048 *5)) (-578 (-1048 *5)))) (-5 *4 (-501)) (-5 *2 (-578 (-1048 *5))) (-5 *1 (-1172 *5)) (-4 *5 (-1104))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *7 (-1125 *5)) (-4 *4 (-655 *5 *7)) (-5 *2 (-2 (|:| -2978 (-621 *6)) (|:| |vec| (-1148 *5)))) (-5 *1 (-741 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-1064 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001))))) -(((*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-685))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-1001))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) ((*1 *1 *1) (|partial| -4 *1 (-653)))) -(((*1 *1 *2) (-12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-578 (-107))) (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *7 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-685))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-1048 (-866 *4)) (-1048 (-866 *4)))) (-5 *1 (-1157 *4)) (-4 *4 (-331))))) -(((*1 *2 *3 *2) (-12 (-4 *1 (-717)) (-5 *2 (-948)) (-5 *3 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) ((*1 *2 *3 *2) (-12 (-4 *1 (-717)) (-5 *2 (-948)) (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-621 (-501))) (-5 *5 (-107)) (-5 *7 (-621 (-199))) (-5 *3 (-501)) (-5 *6 (-199)) (-5 *2 (-948)) (-5 *1 (-685))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-1111 *4)) (-4 *4 (-959)) (-4 *4 (-508)) (-5 *2 (-375 (-866 *4))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-1111 *4)) (-4 *4 (-959)) (-4 *4 (-508)) (-5 *2 (-375 (-866 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-948))))) -(((*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-701)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-578 (-107))) (-5 *7 (-621 (-199))) (-5 *8 (-621 (-501))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-685))))) -(((*1 *1) (-5 *1 (-435)))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-509 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-866 *3))) (-4 *3 (-419)) (-5 *1 (-328 *3 *4)) (-14 *4 (-578 (-1070))))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-710 *3 (-787 *4)))) (-4 *3 (-419)) (-14 *4 (-578 (-1070))) (-5 *1 (-566 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490)))))) -(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-684))))) -(((*1 *1 *1) (-5 *1 (-970)))) -(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-621 (-199))) (-5 *6 (-107)) (-5 *7 (-621 (-501))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684))))) -(((*1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-701))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *6 (-1125 *5)) (-5 *2 (-1064 (-1064 *7))) (-5 *1 (-464 *5 *6 *4 *7)) (-4 *4 (-1125 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-684))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-1010))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-948)) (-5 *1 (-684))))) -(((*1 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-500))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-948)) (-5 *1 (-684))))) -(((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-31 *3 *4)) (-4 *4 (-389 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *1 (-108)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *4)) (-4 *4 (-389 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-147)))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *4)) (-4 *4 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-266 *3)) (-4 *3 (-267)))) ((*1 *2 *2) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *4 (-777)) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *4)) (-4 *4 (-389 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *4)) (-4 *4 (-13 (-389 *3) (-916) (-1090)))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *3 (-508))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-490))) ((*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-948)) (-5 *1 (-684))))) -(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-1070)) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-107)) (-5 *1 (-831 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-832 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 (-1064 (-1064 *4)))) (-5 *1 (-1103 *4)) (-5 *3 (-1064 (-1064 *4)))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-501)) (-5 *5 (-107)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684))))) -(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628))))) -(((*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1001))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) ((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-331)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-697 *3 *4)) (-4 *3 (-640 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5))))) -(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-2 (|:| |solns| (-578 *5)) (|:| |maps| (-578 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1026 *3 *5)) (-4 *3 (-1125 *5))))) -(((*1 *2 *3 *4) (-12 (-5 *2 (-578 (-152 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1125 (-152 (-501)))) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4)))))) -(((*1 *1 *2) (|partial| -12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *1 (-599 *3 *4)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-599 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-267)))) ((*1 *1 *1) (-4 *1 (-267))) ((*1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508))))) -(((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-630))))) -(((*1 *2 *2 *3) (-12 (-4 *4 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *5 (-508)) (-5 *1 (-663 *4 *3 *5 *2)) (-4 *2 (-870 (-375 (-866 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-870 (-866 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *4 (-959)) (-4 *5 (-723)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-870 (-866 *4) *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-5 *1 (-540 *3)) (-4 *3 (-959))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-940 *5 *6 *7 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-1041 *5 *6 *7 *8))))) (-5 *1 (-1041 *5 *6 *7 *8)) (-5 *3 (-578 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-211 *3 *4)) (-4 *4 (-959)) (-4 *4 (-1104)))) ((*1 *1 *2) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *5)) (-2 (|:| -3506 *2) (|:| -3027 *5)))) (-5 *1 (-428 *3 *4 *2 *5 *6 *7)) (-4 *2 (-777)) (-4 *7 (-870 *4 *5 (-787 *3))))) ((*1 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-839)) (-5 *1 (-630)))) ((*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-621 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-5 *1 (-893 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *2 (-948)) (-5 *1 (-683))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) +(((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-107)) (-5 *1 (-814 *4)) (-4 *4 (-1003))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-865 *5)) (-5 *3 (-703)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-952 *2))))) ((*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1153 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) ((*1 *1 *1) (-4 *1 (-970)))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757))))) +(((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359))))) +(((*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-961))))) +(((*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-1153 *6)) (-5 *1 (-571 *5 *6))))) +(((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1003))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-583 (-1054 *4)))) (-5 *1 (-1147 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181))))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-13 (-509) (-952 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *6)))))) (-5 *1 (-953 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-805)))) ((*1 *1 *1) (-5 *1 (-888))) ((*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156))))) +(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 (-377 *8)) "failed")) (|:| -1753 (-583 (-1153 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684))))) +(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236))))) +(((*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1054 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-684))))) +(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *3 (-874 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *1 (-300))))) +(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156))))) +(((*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684))))) +(((*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4)) (-5 *1 (-1074 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1153 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1158)) (-5 *1 (-788))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1) (-5 *1 (-1021)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) ((*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154))))) +(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684))))) +(((*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) ((*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) ((*1 *1 *1) (-5 *1 (-437)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7))))) +(((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156))))) +(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-219 (-1056))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ *3)) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1130 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1056)) (-5 *1 (-467)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-572)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-843)) (-4 *2 (-333)) (-5 *1 (-910 *4 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-926 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *1 *1 *1) (-4 *1 (-1042))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1142 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1073)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108))))) +(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4))))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-895 *6)) (-5 *3 (-623 *6))))) +(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779))))) +(((*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724))))) +(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-961)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-871 *2 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-871 *3 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *8) (|:| |radicand| *8))) (-5 *1 (-875 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*7 $)) (-15 -1800 (*7 $)) (-15 -2256 ($ *7)))))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-456 *3)) (-4 *3 (-1108))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684))))) +(((*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918)))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -2879 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4)))))) +(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125))))) +(((*1 *1) (-5 *1 (-107)))) +(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199)))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-517)) (-5 *2 (-107))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1153 *5)) (-5 *1 (-578 *5 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-2630 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1153 (-377 *5))) (-5 *1 (-578 *5 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-493))))) +(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-961)) (-4 *6 (-871 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-872 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *6)) (-15 -1787 (*6 $)) (-15 -1800 (*6 $))))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-1073)) (-5 *1 (-957 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684))))) +(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509))))) +(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1073)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1094) (-880) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) ((*1 *1 *1 *1) (-4 *1 (-421))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1069 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1069 *7)) (-5 *1 (-838 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) ((*1 *1 *1 *1) (-5 *1 (-843))) ((*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *2)) (|:| |logand| (-1069 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843))))) +(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199)))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-990 *3)) (-4 *3 (-124))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3))))) +(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1073)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509)))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1056)))) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4)))) +(((*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1178 *4))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-683))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248))))) +(((*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215))))) +(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1105))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181))))))) +(((*1 *1) (-5 *1 (-131))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-236))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1913 *4))) (-5 *5 (-703)) (-4 *4 (-871 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-950)) (-5 *1 (-683))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-814 *3)) (-4 *3 (-1003))))) +(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3)))) +(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692))))) +(((*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1054 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1054 *4)) (-4 *5 (-1145 *4))))) +(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-822 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180))))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1003))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) ((*1 *1 *1 *1) (-4 *1 (-421)))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1073))) (-5 *1 (-957 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) ((*1 *1 *1 *1) (-4 *1 (-502))) ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-683))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-871 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278))))) +(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5))))) +(((*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4))))))) +(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094)))))) +(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-924 *3)) (-4 *3 (-952 (-377 (-517))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848))))) +(((*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1069 (-377 (-1069 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1003)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *4)) (-4 *4 (-961)) (-4 *1 (-871 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-5 *1 (-872 *5 *4 *6 *7 *2)) (-4 *7 (-871 *6 *5 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 (-377 (-874 *5))))) (-5 *4 (-1073)) (-5 *2 (-377 (-874 *5))) (-5 *1 (-957 *5)) (-4 *5 (-509))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-682))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-1158)) (-5 *1 (-763))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108))))) +(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1130 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-4 *2 (-333)) (-14 *5 (-910 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-2296 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-871 *2 *6 (-789 *4))))) ((*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-961)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-724)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-724)) (-4 *2 (-779))))) +(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-950)) (-5 *1 (-682)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-950)) (-5 *1 (-682))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333))))) +(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $)))))))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-703)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(((*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-1130 *4))))) +(((*1 *1 *1) (|partial| -4 *1 (-132))) ((*1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-831))))) +(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682))))) +(((*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1003))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 *9)) (|:| -2077 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-997 *3)) (-4 *3 (-1108))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349))))) +(((*1 *1 *1) (|partial| -4 *1 (-1049)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181)))))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181))))))) +(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517)))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517))))) +(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))) ((*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1094))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-874 *3)))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153 (-1153 *5))) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1042)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1042))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-5 *2 (-1054 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-950)) (-5 *1 (-682))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-817)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819))))) +(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-278)))) ((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 (-703)) (|:| -3060 (-703)))) (-5 *1 (-703)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848))))) +(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1130 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682))))) +(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1073))))) +(((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-871 *4 *6 *5)) (-5 *1 (-846 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -3688 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572))))) +(((*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 (-832 *3)) (|:| -3448 (-1021)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) *2)))) ((*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682))))) +(((*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1073)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33)))))) (((*1 *1) (-5 *1 (-142)))) -(((*1 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1153))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3996 (-108)) (|:| |arg| (-578 (-810 *3))))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-578 (-810 *4))) (-5 *1 (-810 *4)) (-4 *4 (-1001))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107))))) -(((*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *6 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-701)) (-5 *1 (-536))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-5 *1 (-315 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-287 *3 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-863 (-199))) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-435)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-895 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-863 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-863 *3)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)) (-5 *3 (-199))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-957))))) -(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-5 *1 (-298))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-2 (|:| |radval| (-282 (-501))) (|:| |radmult| (-501)) (|:| |radvect| (-578 (-621 (-282 (-501)))))))) (-5 *1 (-941))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-4 *4 (-336)) (-4 *4 (-331)) (-5 *2 (-1064 *1)) (-4 *1 (-297 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1064 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-156)) (-4 *3 (-331)) (-4 *2 (-1125 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-509 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5)))))) -(((*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508)))))) -(((*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-827 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5))))) -(((*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402))))) -(((*1 *2 *3) (-12 (-5 *3 (-621 (-282 (-199)))) (-5 *2 (-346)) (-5 *1 (-181))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef2| *1))) (-4 *1 (-972 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786))))) -(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-701)) (-4 *6 (-331)) (-5 *4 (-1097 *6)) (-5 *2 (-1 (-1048 *4) (-1048 *4))) (-5 *1 (-1157 *6)) (-5 *5 (-1048 *4))))) -(((*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-276)) (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-282 (-501))) (-5 *1 (-1017)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *2 (-107)) (-5 *1 (-238))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-227))))) -(((*1 *2) (-12 (-5 *2 (-2 (|:| -3014 (-578 *3)) (|:| -1647 (-578 *3)))) (-5 *1 (-1105 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-50)) (-5 *1 (-490)))) ((*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *1 (-491 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *1 *2 *3 *1) (-12 (-14 *4 (-578 (-1070))) (-4 *2 (-156)) (-4 *3 (-211 (-3581 *4) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *3)) (-2 (|:| -3506 *5) (|:| -3027 *3)))) (-5 *1 (-428 *4 *2 *5 *3 *6 *7)) (-4 *5 (-777)) (-4 *7 (-870 *2 *3 (-787 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-298))))) -(((*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4169 "*"))) (-4 *5 (-340 *2)) (-4 *6 (-340 *2)) (-4 *2 (-959)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1125 *2)) (-4 *4 (-618 *2 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92))))) -(((*1 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4119 (-578 *1)))) (-4 *1 (-335 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-420 *3 *4 *5 *6)) (|:| -4119 (-578 (-420 *3 *4 *5 *6))))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-331)) (-5 *1 (-595 *4 *2)) (-4 *2 (-593 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-1148 (-621 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 (-621 *3))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-4 *5 (-331)) (-5 *2 (-1148 (-621 (-375 (-866 *5))))) (-5 *1 (-988 *5)) (-5 *4 (-621 (-375 (-866 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-4 *5 (-331)) (-5 *2 (-1148 (-621 (-866 *5)))) (-5 *1 (-988 *5)) (-5 *4 (-621 (-866 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-621 *4))) (-4 *4 (-331)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-988 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1106))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *3) (-12 (-4 *2 (-331)) (-4 *2 (-775)) (-5 *1 (-865 *2 *3)) (-4 *3 (-1125 *2))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-432 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1022 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916)))))) -(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-493 *6 *7 *5)) (-4 *7 (-331)) (-4 *5 (-13 (-331) (-775)))))) -(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-4 *5 (-331)) (-5 *2 (-157 *6)) (-5 *1 (-789 *5 *4 *6)) (-4 *4 (-1142 *5)) (-4 *6 (-1125 *5))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-825 *4)) (-4 *4 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-825 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-156)))) ((*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-156))))) -(((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-633 *3 *5 *6 *7)) (-4 *3 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *3 *5 *6)) (-4 *3 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104))))) -(((*1 *1 *2) (-12 (-5 *2 (-282 (-152 (-346)))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-625))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-632))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-630))) (-5 *1 (-298)))) ((*1 *1) (-5 *1 (-298)))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683))))) -(((*1 *1 *1) (-12 (-4 *2 (-276)) (-4 *3 (-906 *2)) (-4 *4 (-1125 *3)) (-5 *1 (-381 *2 *3 *4 *5)) (-4 *5 (-13 (-378 *3 *4) (-950 *3)))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-786))))) -(((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-262 *6)) (-5 *4 (-108)) (-4 *6 (-389 *5)) (-4 *5 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *5 *6)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-108)) (-5 *5 (-578 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 (-262 *7))) (-5 *4 (-578 (-108))) (-5 *5 (-262 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 (-262 *8))) (-5 *4 (-578 (-108))) (-5 *5 (-262 *8)) (-5 *6 (-578 *8)) (-4 *8 (-389 *7)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *8)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-108))) (-5 *5 (-262 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-108))) (-5 *6 (-578 (-262 *8))) (-4 *8 (-389 *7)) (-5 *5 (-262 *8)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-262 *5)) (-5 *4 (-108)) (-4 *5 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-4 *3 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-4 *3 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-5 *6 (-578 *3)) (-4 *3 (-389 *7)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-232)))) ((*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508))))) -(((*1 *2 *1) (-12 (-5 *2 (-863 *4)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *2 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)) (-4 *2 (-419)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1125 (-501))) (-5 *2 (-578 (-501))) (-5 *1 (-451 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-419)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-419))))) -(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-509 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5)))))) -(((*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) ((*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-701))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-375 (-866 *4))) (-5 *1 (-844 *4 *5 *6 *3)) (-4 *3 (-870 *4 *6 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-621 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1034)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef1| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef1| *1))) (-4 *1 (-972 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *6 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-682))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-155)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-501))))) (-4 *2 (-508)) (-5 *1 (-373 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *4) (|:| -3257 (-501))))))) (-4 *4 (-1125 (-501))) (-5 *2 (-373 *4)) (-5 *1 (-409 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-870 *4 *6 *5)) (-4 *4 (-419)) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *1 (-901 *4 *5 *6 *3))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434))))) -(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) ((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152))))) -(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-1125 *4))))) -(((*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682))))) -(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) ((*1 *1 *1) (-4 *1 (-775))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) ((*1 *1 *1) (-4 *1 (-967))) ((*1 *1 *1) (-4 *1 (-1034)))) -(((*1 *1) (-5 *1 (-404)))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-839)) (-4 *5 (-276)) (-4 *3 (-1125 *5)) (-5 *2 (-2 (|:| |plist| (-578 *3)) (|:| |modulo| *5))) (-5 *1 (-427 *5 *3)) (-5 *4 (-578 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 (-501))))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-375 (-866 (-152 (-501)))))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 (-152 *5)))) (-5 *1 (-347 *5)) (-4 *5 (-13 (-331) (-775)))))) -(((*1 *2 *3) (-12 (-5 *3 (-375 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-508)) (-4 *4 (-959)) (-4 *2 (-1142 *4)) (-5 *1 (-1144 *4 *5 *6 *2)) (-4 *6 (-593 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 (-1064 (-866 *4)) (-866 *4))) (-5 *1 (-1157 *4)) (-4 *4 (-331))))) -(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-615 *4 *3)) (-4 *4 (-1001)) (-4 *3 (-1001))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *3 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *3 *5 *6)) (-4 *6 (-870 *4 *3 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *5)) (-4 *5 (-419)) (-5 *2 (-578 *6)) (-5 *1 (-493 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-4 *5 (-419)) (-5 *2 (-578 *6)) (-5 *1 (-493 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775)))))) -(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-5 *2 (-1064 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-5 *2 (-1154)) (-5 *1 (-1105 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-5 *2 (-1154)) (-5 *1 (-1105 *4))))) -(((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-107)) (-5 *1 (-810 *4)) (-4 *4 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-578 (-578 (-199)))) (-5 *1 (-1101))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-701))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-419)))) ((*1 *1 *1 *1) (-4 *1 (-419)))) -(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508)))) ((*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-922 *3)) (-4 *3 (-950 (-375 (-501))))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef1| (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-1018)) (-5 *2 (-107)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1654 (-501)) (|:| -2473 (-501)) (|:| |spline| (-501)) (|:| -1184 (-501)) (|:| |axesColor| (-795)) (|:| -3876 (-501)) (|:| |unitsColor| (-795)) (|:| |showing| (-501))))) (-5 *1 (-1151))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-540 *3)) (-4 *3 (-37 *2)) (-4 *3 (-959))))) -(((*1 *2 *3) (|partial| -12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-443 *4 *5 *6 *7)) (|:| -2425 (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-2 (|:| -3611 (-381 *4 (-375 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2091 (-375 *6)) (|:| |special| (-375 *6)))) (-5 *1 (-658 *5 *6)) (-5 *3 (-375 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-816 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-701)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -1313 *3) (|:| -1320 *3))) (-5 *1 (-816 *3 *5)) (-4 *3 (-1125 *5)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1040 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2978 (-621 (-375 (-866 *4)))) (|:| |vec| (-578 (-375 (-866 *4)))) (|:| -3689 (-701)) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4))))))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5))))) -(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-1070)) (-5 *1 (-490)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *2 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490)))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-490))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-520 *3)) (-4 *3 (-950 (-501))))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1118 *4 *5)) (-5 *3 (-578 *5)) (-14 *4 (-1070)) (-4 *5 (-331)) (-5 *1 (-842 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-331)) (-5 *2 (-1064 *5)) (-5 *1 (-842 *4 *5)) (-14 *4 (-1070))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104))))) -(((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1148 *1)) (-4 *1 (-335 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777))))) -(((*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4)) (-5 *3 (-578 *4))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-863 *4)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-609 (-199))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-681))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-787 *5))) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-2 (|:| |dpolys| (-578 (-220 *5 *6))) (|:| |coords| (-578 (-501))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-578 (-220 *5 *6))) (-4 *7 (-419))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298))))) -(((*1 *1 *1) (-4 *1 (-1039)))) -(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-152 (-199)) (-152 (-199)))) (-5 *4 (-991 (-199))) (-5 *2 (-1152)) (-5 *1 (-229))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-948)) (-5 *1 (-681))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-168))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-1143 *4 *2)) (-4 *4 (-37 (-375 (-501))))))) -(((*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-681))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-1148 (-501)))) (-5 *3 (-839)) (-5 *1 (-433))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168))))) -(((*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *4 (-1125 *2)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-5 *1 (-462 *2 *4 *5)) (-4 *5 (-378 *2 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (-4 *2 (-959))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-680))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))) (-5 *2 (-948)) (-5 *1 (-272))))) -(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-701))))) -(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104))))) -(((*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-866 (-501))) (-5 *3 (-1070)) (-5 *4 (-991 (-375 (-501)))) (-5 *1 (-30))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-903 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1007 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-340 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-466 *2 *4 *5 *3)) (-4 *5 (-340 *2)) (-4 *3 (-340 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-624 *2 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-1120 *2 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-948)) (-5 *1 (-680)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-356)) (-5 *2 (-948)) (-5 *1 (-680))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3))))) -(((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953))))) -(((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-107))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-2 (|:| |additions| (-501)) (|:| |multiplications| (-501)) (|:| |exponentiations| (-501)) (|:| |functionCalls| (-501)))) (-5 *1 (-272))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-254))) ((*1 *2 *3) (-12 (-5 *3 (-373 *4)) (-4 *4 (-508)) (-5 *2 (-578 (-2 (|:| -3189 (-701)) (|:| |logand| *4)))) (-5 *1 (-288 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *1) (-12 (-5 *2 (-599 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *4 (-648 (-375 (-501)))) (-4 *3 (-777)) (-4 *4 (-156))))) -(((*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070)))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-4 *2 (-419)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2))))) -(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *5 (-107)) (-4 *8 (-972 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *4 (-777)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -3709 *9)))) (-5 *1 (-1008 *6 *7 *4 *8 *9))))) -(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-501)) (-4 *3 (-156)) (-4 *5 (-340 *3)) (-4 *6 (-340 *3)) (-5 *1 (-620 *3 *5 *6 *2)) (-4 *2 (-618 *3 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *5 *3 *6)) (-4 *3 (-1125 *5)) (-4 *6 (-13 (-372) (-950 *5) (-331) (-1090) (-254))))) ((*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254)))))) -(((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-609 *3)) (-4 *3 (-959)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-152 (-501))) (-5 *2 (-107)) (-5 *1 (-413)))) ((*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-881 *3)) (-4 *3 (-500)))) ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *2 (-948)) (-5 *1 (-680))))) -(((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *4 *5))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959))))) -(((*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-501)) (-5 *1 (-180))))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-501) (-501))) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-701) (-701))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680))))) -(((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-1173 *4 *5 *6)) (-5 *3 (-578 (-866 *4))) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070)))))) -(((*1 *2 *2) (|partial| -12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *2 (-618 *7 *8 *9)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-618 *4 *5 *6)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-331)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-331)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-621 *2)) (-4 *2 (-331)) (-4 *2 (-959)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1021 *2 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-211 *2 *3)) (-4 *5 (-211 *2 *3)) (-4 *3 (-331)))) ((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-1076 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-346)))) (-5 *2 (-991 (-769 (-199)))) (-5 *1 (-272))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680))))) -(((*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-513)) (-5 *3 (-501))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1091 *3))) (-5 *1 (-1091 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *5 (-1108)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-578 (-866 *5))) (-5 *1 (-309 *4 *5 *6 *7)) (-4 *4 (-310 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *1 (-310 *4 *5 *6)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-4 *4 (-331)) (-5 *2 (-578 (-866 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001))))) -(((*1 *2 *3) (-12 (-5 *3 (-530 *2)) (-4 *2 (-13 (-29 *4) (-1090))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))))) ((*1 *2 *3) (-12 (-5 *3 (-530 (-375 (-866 *4)))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-535 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *1 (-1073))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-385 *3 *2)) (-4 *3 (-386 *2)))) ((*1 *2) (-12 (-4 *1 (-386 *2)) (-4 *2 (-156))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-295 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-478 *3 *4)) (-14 *4 (-501))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2425 (-578 *9)))) (-5 *3 (-578 *9)) (-4 *1 (-1099 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2425 (-578 *8)))) (-5 *3 (-578 *8)) (-4 *1 (-1099 *5 *6 *7 *8))))) -(((*1 *1) (-5 *1 (-1152)))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-924 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-447 *3 *4))) (-14 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-569 *3 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-494 *4 *2 *5 *6)) (-4 *4 (-276)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-701)))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-107)) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-5 *2 (-107)) (-5 *1 (-603 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-701)) (-5 *1 (-315 *4)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018))))))))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-1148 (-501))) (-5 *1 (-1174 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-508)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5))))) -(((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-419)) (-4 *4 (-777)) (-5 *1 (-524 *4 *2)) (-4 *2 (-254)) (-4 *2 (-389 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-1 *4 (-501))) (-4 *4 (-959)) (-5 *1 (-1055 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-2 (|:| -2109 (-578 *6)) (|:| -2342 (-578 *6))))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-1030 *4 *2)) (-4 *2 (-13 (-548 (-501) *4) (-10 -7 (-6 -4167) (-6 -4168)))))) ((*1 *2 *2) (-12 (-4 *3 (-777)) (-4 *3 (-1104)) (-5 *1 (-1030 *3 *2)) (-4 *2 (-13 (-548 (-501) *3) (-10 -7 (-6 -4167) (-6 -4168))))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-501))))) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-701))))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3739 *3) (|:| -3027 (-501))))) (-5 *1 (-373 *3)) (-4 *3 (-508)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-701))))) (-5 *1 (-749 *3)) (-4 *3 (-777))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-112 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-501)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-793 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-14 *2 (-501)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-14 *3 *2) (-5 *1 (-794 *3 *4)) (-4 *4 (-792 *3)))) ((*1 *1 *1) (-12 (-14 *2 (-501)) (-5 *1 (-794 *2 *3)) (-4 *3 (-792 *2)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-1113 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1142 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-1113 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1142 *2))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-501))) (-4 *3 (-959)) (-5 *1 (-94 *3)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-94 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-94 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-701)))) (-5 *1 (-825 *3)) (-4 *3 (-1001))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-402)) (-5 *2 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501))))))))) (-5 *1 (-1074))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941))))) -(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501))))) -(((*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *2 *5)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *2 (-211 *3 *4))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1118 *5 *4)) (-5 *1 (-1068 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-1070)) (-14 *6 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1118 *5 *4)) (-5 *1 (-1139 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-1070)) (-14 *6 *4)))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-870 *6 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-673 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-373 *1)) (-4 *1 (-870 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-419)) (-5 *2 (-373 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-419)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 (-375 *7)))) (-5 *1 (-1066 *4 *5 *6 *7)) (-5 *3 (-1064 (-375 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-373 *1)) (-4 *1 (-1108)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-1129 *4 *3)) (-4 *3 (-13 (-1125 *4) (-508) (-10 -8 (-15 -3664 ($ $ $))))))) ((*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-1041 *4 (-487 (-787 *6)) (-787 *6) (-710 *4 (-787 *6))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070)))))) -(((*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-1070)) (-5 *1 (-168))))) -(((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-375 (-866 *6)) (-1060 (-1070) (-866 *6)))) (-5 *5 (-701)) (-4 *6 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *6))))) (-5 *1 (-261 *6)) (-5 *4 (-621 (-375 (-866 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-375 (-866 *5)) (-1060 (-1070) (-866 *5)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 *4)))) (-4 *5 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *5))))) (-5 *1 (-261 *5)) (-5 *4 (-621 (-375 (-866 *5))))))) -(((*1 *2 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-199)) (-5 *1 (-272))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-870 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-419)) (-5 *2 (-107)) (-5 *1 (-328 *4 *5)) (-14 *5 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-710 *4 (-787 *5)))) (-4 *4 (-419)) (-14 *5 (-578 (-1070))) (-5 *2 (-107)) (-5 *1 (-566 *4 *5))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-107)) (-5 *1 (-505))))) -(((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-562 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1320 *4) (|:| |sol?| (-107))) (-501) *4)) (-4 *4 (-331)) (-4 *5 (-1125 *4)) (-5 *1 (-525 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-282 (-199)))) (-5 *1 (-238))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-27) (-389 *5))) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-4 *8 (-1125 (-375 *7))) (-5 *2 (-530 *3)) (-5 *1 (-504 *5 *6 *7 *8 *3)) (-4 *3 (-310 *6 *7 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1104)))) ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959))))) -(((*1 *2 *3 *2) (|partial| -12 (-4 *4 (-331)) (-4 *5 (-13 (-340 *4) (-10 -7 (-6 -4168)))) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))) (-5 *1 (-602 *4 *5 *2 *3)) (-4 *3 (-618 *4 *5 *2)))) ((*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1148 *4)) (-5 *3 (-621 *4)) (-4 *4 (-331)) (-5 *1 (-603 *4)))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-578 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-331)) (-5 *1 (-744 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-492 *4 *2)) (-4 *2 (-1142 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-331) (-336) (-556 *3))) (-4 *5 (-1125 *4)) (-4 *6 (-655 *4 *5)) (-5 *1 (-496 *4 *5 *6 *2)) (-4 *2 (-1142 *6)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-331) (-336) (-556 *3))) (-5 *1 (-497 *4 *2)) (-4 *2 (-1142 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1047 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *1 *2) (-12 (-5 *2 (-1162 (-1070) *3)) (-4 *3 (-959)) (-5 *1 (-1168 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *1 (-1171 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-501)) (|has| *1 (-6 -4158)) (-4 *1 (-372)) (-5 *2 (-839))))) -(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-282 *5))) (-5 *1 (-1027 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-282 *5)))) (-5 *1 (-1027 *5))))) -(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-1042 (-1053))) (-5 *1 (-359))))) -(((*1 *1 *1) (-4 *1 (-792 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001))))) -(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-753))))) -(((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-501)) (-4 *4 (-1001)) (-5 *1 (-667 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-667 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-346)))) ((*1 *1 *1 *1) (-4 *1 (-500))) ((*1 *1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-701))))) -(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *2 *1) (-12 (-4 *1 (-548 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1001)) (-4 *2 (-777))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-505))))) -(((*1 *2 *3 *4) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-737 *4 *2 *3 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-375 *2))))) ((*1 *2 *3 *4) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-737 *4 *2 *5 *3)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-375 *2)))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-808 *4 *5)) (-5 *3 (-808 *4 *6)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-601 *5)) (-5 *1 (-805 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1053)) (-5 *1 (-272))))) -(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1738 *1) (|:| -4154 *1) (|:| |associate| *1))) (-4 *1 (-508))))) -(((*1 *1) (-5 *1 (-298)))) -(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-508)) (-5 *2 (-2 (|:| -2978 (-621 *5)) (|:| |vec| (-1148 (-578 (-839)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-839)) (-4 *3 (-593 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *4 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *5 (-508)) (-5 *1 (-663 *4 *3 *5 *2)) (-4 *2 (-870 (-375 (-866 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-870 (-866 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *4 (-959)) (-4 *5 (-723)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-870 (-866 *4) *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) ((*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-1144 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1142 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-108)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-108)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-237 *3)) (-4 *3 (-777)) (-5 *2 (-701))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-375 (-501))))) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232))))) -(((*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-1078 (-578 *4))) (-5 *1 (-1076 *4)) (-5 *3 (-578 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-1079 *2)) (-4 *2 (-331))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-511)))) ((*1 *2 *1) (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-733))))) -(((*1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *1) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1064 *7)) (-5 *3 (-501)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *1 (-289 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *2 *2) (-12 (-5 *1 (-533 *2)) (-4 *2 (-500))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-375 (-866 *4))) (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-950 (-501)) (-134))) (-5 *1 (-521 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-1125 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-520 *3)) (-4 *3 (-950 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-578 *4))))) -(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-435)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-435))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-777)) (-5 *4 (-578 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-578 *4)))) (-5 *1 (-1076 *6)) (-5 *5 (-578 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254)))))) -(((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-375 (-501))) (-5 *1 (-272))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-3 (-375 (-866 *5)) (-1060 (-1070) (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *5))))) (-5 *1 (-261 *5)) (-5 *4 (-621 (-375 (-866 *5))))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-501)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-701)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-839)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-142)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1012)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1012)) (-4 *2 (-1104)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-123)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-329 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-329 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-350 *3 *2)) (-4 *3 (-959)) (-4 *2 (-777)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *6 (-211 (-3581 *3) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-5 *1 (-428 *3 *4 *5 *6 *7 *2)) (-4 *5 (-777)) (-4 *2 (-870 *4 *6 (-787 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) ((*1 *1 *1 *1) (-5 *1 (-490))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-541 *2)) (-4 *2 (-959)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-541 *2)) (-4 *2 (-959)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-965)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-1 *7 *5)) (-5 *1 (-616 *5 *6 *7)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-618 *3 *2 *4)) (-4 *3 (-959)) (-4 *2 (-340 *3)) (-4 *4 (-340 *3)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-618 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *2 (-340 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1 *1) (-4 *1 (-651))) ((*1 *1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-508)) (-5 *1 (-885 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-965)))) ((*1 *1 *1 *1) (-4 *1 (-1012))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *2 *5)) (-4 *4 (-959)) (-4 *2 (-211 *3 *4)) (-4 *5 (-211 *3 *4)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1021 *3 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *2 (-211 *3 *4)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-5 *1 (-1024 *3 *4 *2)) (-4 *2 (-870 *3 (-487 *4) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-863 (-199))) (-5 *3 (-199)) (-5 *1 (-1101)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-1147 *3)) (-4 *3 (-1104)) (-4 *3 (-21)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773))))) -(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-2 (|:| -3626 *3) (|:| -2922 *4)))))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *3 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1151)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1151)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1152)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1152))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-220 *3 *4)) (-14 *3 (-578 (-1070))) (-4 *4 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-14 *3 (-578 (-1070))) (-5 *1 (-421 *3 *4 *5)) (-4 *4 (-959)) (-4 *5 (-211 (-3581 *3) (-701))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-447 *3 *4)) (-14 *3 (-578 (-1070))) (-4 *4 (-959))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-586 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3))))) -(((*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153))))) -(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-769 *3)) (-4 *3 (-1001))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-586 *3)) (-4 *3 (-1104))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-4 *7 (-777)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-4 *8 (-276)) (-5 *2 (-578 (-701))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *5 (-701))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064 *7)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *2 (-1064 *6)) (-5 *1 (-289 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-839)) (-5 *2 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-5 *1 (-315 *4)) (-4 *4 (-318))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *4 (-701)) (-5 *2 (-621 (-199))) (-5 *1 (-238))))) -(((*1 *2 *1) (-12 (-5 *1 (-1100 *2)) (-4 *2 (-889))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-734 *4 *2)) (-4 *2 (-13 (-29 *4) (-1090) (-879)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-276)) (-5 *1 (-161 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-5 *2 (-2 (|:| |upol| (-1064 *8)) (|:| |Lval| (-578 *8)) (|:| |Lfact| (-578 (-2 (|:| -3739 (-1064 *8)) (|:| -3027 (-501))))) (|:| |ctpol| *8))) (-5 *1 (-673 *6 *7 *8 *9))))) -(((*1 *1 *1) (-4 *1 (-967)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) ((*1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-616 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) ((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *2) (-12 (-4 *3 (-959)) (-5 *2 (-877 (-643 *3 *4))) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-1059 3 *3)))) ((*1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1152)))) ((*1 *2 *1) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1152))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-346)) (-5 *1 (-238)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-346)) (-5 *1 (-272))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-578 (-553 *4))) (-4 *4 (-389 *3)) (-4 *3 (-777)) (-5 *1 (-524 *3 *4)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346))))) -(((*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *3 (-206)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-1 *1 (-701))) (-4 *1 (-224 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-1 *1 (-701))) (-4 *1 (-224 *4 *3 *5 *6)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-237 *2)) (-4 *2 (-777))))) -(((*1 *2 *2) (-12 (-4 *3 (-556 (-810 *3))) (-4 *3 (-806 *3)) (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-556 (-810 *3))) (-4 *2 (-806 *3)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4)))))) -(((*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-667 *3)))) ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1001)))) ((*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1001))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-787 *5))) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-578 (-578 (-220 *5 *6)))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-578 (-220 *5 *6))) (-4 *7 (-419))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-582 *3)) (-4 *3 (-1001))))) -(((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-282 (-501)))) (-5 *1 (-941))))) -(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |outval| (-152 *4)) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 (-152 *4))))))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300))))) -(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-839)) (-4 *5 (-777)) (-5 *2 (-56 (-578 (-606 *5)))) (-5 *1 (-606 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-501)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-769 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *6 *3)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-1053)) (-4 *6 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *6 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-769 (-375 (-866 *6)))) (-5 *3 (-375 (-866 *6))) (-4 *6 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *6)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-375 (-866 *6))) (-5 *4 (-1070)) (-5 *5 (-1053)) (-4 *6 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *6)))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-1087 *3)) (-4 *3 (-959))))) -(((*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508)))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069))))) -(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678))))) -(((*1 *2 *3) (-12 (-5 *3 (-621 (-282 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346)))) (-5 *1 (-181))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-391 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1090) (-389 *3))) (-14 *4 (-1070)) (-14 *5 *2))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *2 (-13 (-27) (-1090) (-389 *3) (-10 -8 (-15 -3691 ($ *4))))) (-4 *4 (-775)) (-4 *5 (-13 (-1128 *2 *4) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-898 *5)) (-14 *7 (-1070))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-578 (-979 *4 *5 *2))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))) (-5 *1 (-53 *4 *5 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 (-979 *5 *6 *2))) (-5 *4 (-839)) (-4 *5 (-1001)) (-4 *6 (-13 (-959) (-806 *5) (-777) (-556 (-810 *5)))) (-4 *2 (-13 (-389 *6) (-806 *5) (-556 (-810 *5)))) (-5 *1 (-53 *5 *6 *2))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-72 FCN)))) (-5 *2 (-948)) (-5 *1 (-677))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1048 *7))) (-4 *6 (-777)) (-4 *7 (-870 *5 (-487 *6) *6)) (-4 *5 (-959)) (-5 *2 (-1 (-1048 *7) *7)) (-5 *1 (-1024 *5 *6 *7))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))))) (-5 *1 (-733))))) -(((*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $)))))))))) -(((*1 *1 *1) (-5 *1 (-1069))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-79 FCN)))) (-5 *2 (-948)) (-5 *1 (-677))))) -(((*1 *2 *1) (-12 (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)) (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3189 *3) (|:| -2607 *4)))) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) ((*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-1048 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-394 *3)) (-4 *3 (-1001)) (-5 *2 (-701))))) -(((*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-1148 *3)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001))))) -(((*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-690))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-677))))) -(((*1 *2 *3) (-12 (-4 *4 (-276)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1022 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-252 *3)) (-4 *3 (-1104))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-282 *3)) (-4 *3 (-508)) (-4 *3 (-777))))) -(((*1 *2 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001))))) -(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *1 (-238))))) -(((*1 *1 *2) (-12 (-5 *2 (-621 *5)) (-4 *5 (-959)) (-5 *1 (-962 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 *1)) (|has| *1 (-6 -4168)) (-4 *1 (-924 *3)) (-4 *3 (-1104))))) -(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-676))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 (-375 (-866 *6)))) (-5 *3 (-375 (-866 *6))) (-4 *6 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-340 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276))))) -(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-676))))) -(((*1 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1153))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |deg| (-701)) (|:| -3215 *5)))) (-4 *5 (-1125 *4)) (-4 *4 (-318)) (-5 *2 (-578 *5)) (-5 *1 (-191 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| -3739 *5) (|:| -1201 (-501))))) (-5 *4 (-501)) (-4 *5 (-1125 *4)) (-5 *2 (-578 *5)) (-5 *1 (-627 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-1048 *4))) (-5 *1 (-1143 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-501)))) (-4 *4 (-13 (-1125 *3) (-508) (-10 -8 (-15 -3664 ($ $ $))))) (-4 *3 (-508)) (-5 *1 (-1129 *3 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276))))) -(((*1 *1 *1 *2) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-578 (-701))) (-5 *1 (-708 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *6)) (-4 *7 (-870 *6 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *1 (-844 *4 *5 *6 *7))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1148 *5)) (-4 *5 (-577 *4)) (-4 *4 (-508)) (-5 *2 (-1148 *4)) (-5 *1 (-576 *4 *5))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-692)))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402))))) -(((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-375 *6)) (|:| |h| *6) (|:| |c1| (-375 *6)) (|:| |c2| (-375 *6)) (|:| -1348 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-375 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *1 (-620 *4 *5 *6 *2)) (-4 *2 (-618 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-458))))) -(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959))))) -(((*1 *1 *2) (-12 (-5 *2 (-381 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *6 (-378 *4 *5)) (-14 *7 (-1148 *6)) (-5 *1 (-383 *3 *4 *5 *6 *7)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-378 *4 *5)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *3 (-276)) (-5 *1 (-383 *3 *4 *5 *6 *7)) (-14 *7 *2)))) -(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-653)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-657)) (-5 *2 (-107))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346))))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166))))) -(((*1 *1) (-4 *1 (-318)))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-107)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-108) (-108))) (-5 *1 (-108))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-866 *4))) (-5 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-838 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-373 *5)) (-4 *5 (-508)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *5) (|:| |radicand| (-578 *5)))) (-5 *1 (-288 *5)) (-5 *4 (-701)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-501))))) -(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-553 *5))) (-4 *4 (-777)) (-5 *2 (-553 *5)) (-5 *1 (-524 *4 *5)) (-4 *5 (-389 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959))))) -(((*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *4 (-508)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3499 (-562 *4 *5)) (|:| -3677 (-375 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-375 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-419)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1125 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *2 (-107)) (-5 *1 (-232))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513))))) -(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-788 *4 *5 *6 *7)) (-4 *4 (-959)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 *3)) (-14 *7 *3))) ((*1 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-14 *8 (-578 *5)) (-5 *2 (-1154)) (-5 *1 (-1159 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-870 *4 *6 *5)) (-14 *9 (-578 *3)) (-14 *10 *3)))) -(((*1 *1 *1) (-5 *1 (-970)))) -(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-734 *4 *5)) (-4 *5 (-13 (-29 *4) (-1090) (-879)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959))))) -(((*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001))))) -(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-291 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-123)) (-4 *3 (-722))))) -(((*1 *2 *3) (-12 (-5 *3 (-997 *4)) (-4 *4 (-1001)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346)))) ((*1 *2 *3) (-12 (-5 *3 (-991 (-501))) (-5 *2 (-1 (-501))) (-5 *1 (-957))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *1) (-12 (-4 *1 (-372)) (-3031 (|has| *1 (-6 -4158))) (-3031 (|has| *1 (-6 -4150))))) ((*1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-4 *1 (-777))) ((*1 *2 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777)))) ((*1 *1) (-5 *1 (-1018)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1018)) (-5 *2 (-107)) (-5 *1 (-752))))) -(((*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001))))) -(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1125 *4)) (-4 *4 (-1108)) (-4 *1 (-310 *4 *3 *5)) (-4 *5 (-1125 (-375 *3)))))) -(((*1 *1) (-4 *1 (-318))) ((*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-389 *4)) (-4 *4 (-13 (-508) (-777) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-578 (-1064 *5))) (|:| |prim| (-1064 *5)))) (-5 *1 (-400 *4 *5)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-508) (-777) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1064 *3)) (|:| |pol2| (-1064 *3)) (|:| |prim| (-1064 *3)))) (-5 *1 (-400 *4 *3)) (-4 *3 (-27)) (-4 *3 (-389 *4)))) ((*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-1070)) (-4 *5 (-13 (-331) (-134))) (-5 *2 (-2 (|:| |coef1| (-501)) (|:| |coef2| (-501)) (|:| |prim| (-1064 *5)))) (-5 *1 (-880 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-331) (-134))) (-5 *2 (-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 *5))) (|:| |prim| (-1064 *5)))) (-5 *1 (-880 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-5 *5 (-1070)) (-4 *6 (-13 (-331) (-134))) (-5 *2 (-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 *6))) (|:| |prim| (-1064 *6)))) (-5 *1 (-880 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-553 *6)) (-4 *6 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-1064 (-375 (-1064 *6)))) (-5 *1 (-512 *5 *6 *7)) (-5 *3 (-1064 *6)) (-4 *7 (-1001)))) ((*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-643 *3 *2)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-4 *1 (-655 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1064 *11)) (-5 *6 (-578 *10)) (-5 *7 (-578 (-701))) (-5 *8 (-578 *11)) (-4 *10 (-777)) (-4 *11 (-276)) (-4 *9 (-723)) (-4 *5 (-870 *11 *9 *10)) (-5 *2 (-578 (-1064 *5))) (-5 *1 (-673 *9 *10 *11 *5)) (-5 *3 (-1064 *5)))) ((*1 *2 *1) (-12 (-4 *2 (-870 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-14 *6 (-578 *2))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-331)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-331)) (-5 *2 (-2 (|:| R (-621 *6)) (|:| A (-621 *6)) (|:| |Ainv| (-621 *6)))) (-5 *1 (-893 *6)) (-5 *3 (-621 *6))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-2 (|:| |start| *3) (|:| -1575 (-373 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4)))))) -(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-583 *3)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-764 *3))))) -(((*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-486 *3)) (-4 *3 (-13 (-657) (-25)))))) -(((*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690))))) -(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-621 *2)) (-5 *4 (-701)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *5 (-1125 *2)) (-5 *1 (-462 *2 *5 *6)) (-4 *6 (-378 *2 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (|has| *1 (-6 -4168)) (-4 *1 (-1138 *3)) (-4 *3 (-1104))))) -(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501))))) -(((*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-5 *2 (-1048 *3))))) -(((*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 (-826 *3)) (|:| -3506 (-1018)))))) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) ((*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018)))))) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) *2)))) ((*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-759))))) -(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957)) (-5 *3 (-501))))) -(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-331)) (-5 *1 (-525 *4 *2)) (-4 *2 (-1125 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1053)) (-5 *1 (-50))))) -(((*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501)))))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-27) (-1090) (-389 *6) (-10 -8 (-15 -3691 ($ *7))))) (-4 *7 (-775)) (-4 *8 (-13 (-1128 *3 *7) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1053)) (-4 *9 (-898 *8)) (-14 *10 (-1070))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *2 *3 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-199)) (-5 *1 (-1101)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-959))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2) (-12 (-4 *2 (-959)) (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-866 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4)))))))))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-108)) (-4 *4 (-959)) (-5 *1 (-645 *4 *2)) (-4 *2 (-583 *4)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-108)) (-5 *1 (-764 *2)) (-4 *2 (-959))))) -(((*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3))))) -(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-621 *6))) (-5 *4 (-107)) (-5 *5 (-501)) (-5 *2 (-621 *6)) (-5 *1 (-943 *6)) (-4 *6 (-331)) (-4 *6 (-959)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-621 *4))) (-5 *2 (-621 *4)) (-5 *1 (-943 *4)) (-4 *4 (-331)) (-4 *4 (-959)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-501)) (-5 *2 (-621 *5)) (-5 *1 (-943 *5)) (-4 *5 (-331)) (-4 *5 (-959))))) -(((*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *3 (-336)) (-5 *2 (-578 (-578 *3)))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-389 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $)))))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *3 (-621 (-501))) (-5 *1 (-1010))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-759))))) -(((*1 *2 *3) (-12 (-5 *3 (-1064 (-501))) (-5 *2 (-501)) (-5 *1 (-862))))) -(((*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-331)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-4 *1 (-304 *4 *3 *5 *2)) (-4 *2 (-310 *4 *3 *5)))) ((*1 *1 *2 *2 *3) (-12 (-5 *3 (-501)) (-4 *2 (-331)) (-4 *4 (-1125 *2)) (-4 *5 (-1125 (-375 *4))) (-4 *1 (-304 *2 *4 *5 *6)) (-4 *6 (-310 *2 *4 *5)))) ((*1 *1 *2 *2) (-12 (-4 *2 (-331)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))) (-4 *1 (-304 *2 *3 *4 *5)) (-4 *5 (-310 *2 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *1 (-304 *3 *4 *5 *2)) (-4 *2 (-310 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-381 *4 (-375 *4) *5 *6)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-4 *3 (-331)) (-4 *1 (-304 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *3 *1 *4) (-12 (-5 *3 (-1035 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1001) (-33))) (-4 *6 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1036 *5 *6))))) -(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-152 (-346)))) (-5 *1 (-298)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-346))) (-5 *1 (-298)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-501))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-152 (-346))))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-346)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-501)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-152 (-346))))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-346)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-501)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-152 (-346)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-346))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-501))) (-5 *1 (-298)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-625))) (-5 *1 (-298)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-630))) (-5 *1 (-298)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-632))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-625)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-630)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-632)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-625)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-630)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-632)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-625))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-630))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-632))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-625))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-630))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-632))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-625))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-630))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-632))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1053)) (-5 *1 (-298)))) ((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-310 *4 *5 *6)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-2 (|:| |num| (-621 *5)) (|:| |den| *5)))))) -(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4)))))) -(((*1 *1 *1) (|partial| -4 *1 (-132))) ((*1 *1 *1) (-4 *1 (-318))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-830))))) -(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 *4)))) (|:| |xValues| (-991 *4)) (|:| |yValues| (-991 *4)))) (-5 *1 (-140)) (-5 *3 (-578 (-578 (-863 *4))))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *1)) (-5 *4 (-1070)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355))))) -(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1073))))) -(((*1 *2 *3) (-12 (-4 *3 (-1125 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-900 *4 *2 *3 *5)) (-4 *4 (-318)) (-4 *5 (-655 *2 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276)))) ((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) ((*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-4 *1 (-792 *2))) ((*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *4 (-777))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 (-1064 *6)) (|:| -3027 (-501))))) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) ((*1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298))))) -(((*1 *2 *3) (-12 (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *3)) (-4 *3 (-1125 (-375 *4)))))) -(((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1320 *7) (|:| |sol?| (-107))) (-501) *7)) (-5 *6 (-578 (-375 *8))) (-4 *7 (-331)) (-4 *8 (-1125 *7)) (-5 *3 (-375 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *2 (-578 (-979 *3 *4 *5))) (-5 *1 (-981 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3))))))) -(((*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-107)) (-5 *1 (-411 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -2995 (-701)) (|:| |period| (-701)))) (-5 *1 (-1048 *4)) (-4 *4 (-1104)) (-5 *3 (-701))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-578 (-701))) (-5 *1 (-825 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-777)) (-5 *3 (-578 *6)) (-5 *5 (-578 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-578 *5)) (|:| |f3| *5) (|:| |f4| (-578 *5)))) (-5 *1 (-1076 *6)) (-5 *4 (-578 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-5 *3 (-866 (-501))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) ((*1 *2 *3) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) ((*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-926)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 (-501))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 (-375 (-501)))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-926)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-578 *1)) (-4 *1 (-974 *4 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069))))) -(((*1 *2 *3) (-12 (-4 *5 (-13 (-556 *2) (-156))) (-5 *2 (-810 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1001)) (-4 *3 (-150 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-991 (-769 (-346))))) (-5 *2 (-578 (-991 (-769 (-199))))) (-5 *1 (-272)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-346)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-361)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-378 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-386 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-373 *1)) (-4 *1 (-389 *3)) (-4 *3 (-508)) (-4 *3 (-777)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-430 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1003)) (-5 *1 (-490)))) ((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-655 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-895 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-969)))) ((*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *5 (-556 (-1070))) (-4 *4 (-723)) (-4 *5 (-777)))) ((*1 *1 *2) (-1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1053)) (-5 *1 (-975 *4 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-986)))) ((*1 *1 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *2)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *5 *2 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *2 (-1001)) (-4 *6 (-1001)))) ((*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *2 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *2 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) ((*1 *1 *2) (-12 (-4 *1 (-1004 *3 *2 *4 *5 *6)) (-4 *3 (-1001)) (-4 *2 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) ((*1 *1 *2) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-1009 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1053)) (-5 *1 (-1040 *4 *5 *6 *7 *8)))) ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-1084)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-1084)))) ((*1 *2 *3) (-12 (-5 *3 (-710 *4 (-787 *5))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-710 *4 (-787 *6))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-866 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-710 *4 (-787 *6))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *6 (-578 (-1070))) (-5 *2 (-866 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-1064 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-1041 *4 (-487 (-787 *6)) (-787 *6) (-710 *4 (-787 *6)))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-710 *4 (-787 *6)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-500))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-282 (-199))) (-5 *1 (-238))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-435)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151))))) -(((*1 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1001)) (-4 *4 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *4 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-939 (-769 (-501)))) (-5 *3 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *4)))) (-4 *4 (-959)) (-5 *1 (-540 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-991 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199)))))) -(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-276))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837))))) -(((*1 *2 *2 *3) (-12 (-4 *4 (-1001)) (-4 *2 (-820 *4)) (-5 *1 (-623 *4 *2 *5 *3)) (-4 *5 (-340 *2)) (-4 *3 (-13 (-340 *4) (-10 -7 (-6 -4167))))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-346)) (-5 *1 (-970))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-822 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1018)) (-5 *1 (-104)))) ((*1 *2 *1) (|partial| -12 (-5 *1 (-332 *2)) (-4 *2 (-1001)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1053)) (-5 *1 (-1086))))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-779 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1034)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-795)) (-5 *3 (-578 (-232))) (-5 *1 (-233))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-208 *3)) (-4 *3 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-968 (-937 *4) (-1064 (-937 *4)))) (-5 *3 (-786)) (-5 *1 (-937 *4)) (-4 *4 (-13 (-775) (-331) (-933)))))) -(((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501))))) -(((*1 *1 *1) (-12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *2 (-508)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-972 *2 *3 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-501)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-107)) (-5 *1 (-943 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-621 *4))) (-4 *4 (-331)) (-4 *4 (-959)) (-5 *2 (-107)) (-5 *1 (-943 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-534 *4)) (-4 *4 (-318))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1125 (-501))) (-5 *1 (-451 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-49 *3 *4)) (-14 *4 (-578 (-1070))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-56 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-56 *6)) (-5 *1 (-57 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-126 *5 *6 *7)) (-14 *5 (-501)) (-14 *6 (-701)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-126 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-152 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-152 *6)) (-5 *1 (-153 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-282 *3) (-282 *3))) (-4 *3 (-13 (-959) (-777))) (-5 *1 (-197 *3 *4)) (-14 *4 (-578 (-1070))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-212 *5 *6)) (-14 *5 (-701)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-212 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-262 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-262 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-262 *6)) (-5 *1 (-263 *5 *6)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-553 *1)) (-4 *1 (-267)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1053)) (-5 *5 (-553 *6)) (-4 *6 (-267)) (-4 *2 (-1104)) (-5 *1 (-268 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-553 *5)) (-4 *5 (-267)) (-4 *2 (-267)) (-5 *1 (-269 *5 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-621 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-621 *6)) (-5 *1 (-274 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-282 *5)) (-4 *5 (-777)) (-4 *6 (-777)) (-5 *2 (-282 *6)) (-5 *1 (-283 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-301 *5 *6 *7 *8)) (-4 *5 (-331)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *9 (-331)) (-4 *10 (-1125 *9)) (-4 *11 (-1125 (-375 *10))) (-5 *2 (-301 *9 *10 *11 *12)) (-5 *1 (-302 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-310 *9 *10 *11)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-306 *3)) (-4 *3 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1108)) (-4 *8 (-1108)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *9 (-1125 *8)) (-4 *2 (-310 *8 *9 *10)) (-5 *1 (-311 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-310 *5 *6 *7)) (-4 *10 (-1125 (-375 *9))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-340 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-340 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-508)) (-5 *1 (-373 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-373 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-5 *2 (-373 *6)) (-5 *1 (-374 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-375 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-5 *2 (-375 *6)) (-5 *1 (-376 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-381 *5 *6 *7 *8)) (-4 *5 (-276)) (-4 *6 (-906 *5)) (-4 *7 (-1125 *6)) (-4 *8 (-13 (-378 *6 *7) (-950 *6))) (-4 *9 (-276)) (-4 *10 (-906 *9)) (-4 *11 (-1125 *10)) (-5 *2 (-381 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-378 *10 *11) (-950 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-386 *6)) (-5 *1 (-384 *4 *5 *2 *6)) (-4 *4 (-386 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-959) (-777))) (-4 *6 (-13 (-959) (-777))) (-4 *2 (-389 *6)) (-5 *1 (-390 *5 *4 *6 *2)) (-4 *4 (-389 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-394 *6)) (-5 *1 (-395 *5 *4 *6 *2)) (-4 *4 (-394 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-454 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-471 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-777)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-530 *5)) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-530 *6)) (-5 *1 (-531 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3071 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-2 (|:| -3071 *6) (|:| |coeff| *6))) (-5 *1 (-531 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-331)) (-4 *2 (-331)) (-5 *1 (-531 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-531 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-545 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-545 *6)) (-5 *1 (-542 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-545 *6)) (-5 *5 (-545 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-545 *8)) (-5 *1 (-543 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1048 *6)) (-5 *5 (-545 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-543 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-545 *6)) (-5 *5 (-1048 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-543 *6 *7 *8)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-578 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-578 *6)) (-5 *1 (-579 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-578 *6)) (-5 *5 (-578 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-578 *8)) (-5 *1 (-581 *6 *7 *8)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *2 (-618 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-618 *5 *6 *7)) (-4 *9 (-340 *8)) (-4 *10 (-340 *8)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *2 (-618 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-618 *5 *6 *7)) (-4 *9 (-340 *8)) (-4 *10 (-340 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-508)) (-4 *7 (-508)) (-4 *6 (-1125 *5)) (-4 *2 (-1125 (-375 *8))) (-5 *1 (-641 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1125 (-375 *6))) (-4 *8 (-1125 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-959)) (-4 *9 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *2 (-870 *9 *7 *5)) (-5 *1 (-659 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-723)) (-4 *4 (-870 *8 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-777)) (-4 *6 (-777)) (-4 *7 (-723)) (-4 *9 (-959)) (-4 *2 (-870 *9 *8 *6)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-723)) (-4 *4 (-870 *9 *7 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-666 *5 *7)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *7 (-657)) (-5 *2 (-666 *6 *7)) (-5 *1 (-665 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-666 *3 *4)) (-4 *4 (-657)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-711 *6)) (-5 *1 (-712 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-726 *6)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *4 (-726 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-762 *6)) (-5 *1 (-763 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-762 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *1 (-763 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-769 *6)) (-5 *1 (-770 *5 *6)))) ((*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-769 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *1 (-770 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-798 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-798 *6)) (-5 *1 (-797 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-808 *5 *6)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-808 *5 *7)) (-5 *1 (-809 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-810 *6)) (-5 *1 (-812 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-866 *6)) (-5 *1 (-867 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-777)) (-4 *8 (-959)) (-4 *6 (-723)) (-4 *2 (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-701)))))) (-5 *1 (-872 *6 *7 *8 *5 *2)) (-4 *5 (-870 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-877 *6)) (-5 *1 (-878 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-863 *6)) (-5 *1 (-896 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-866 *4))) (-4 *4 (-959)) (-4 *2 (-870 (-866 *4) *5 *6)) (-4 *5 (-723)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-4 *2 (-906 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-906 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-912 *6)) (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-959)) (-4 *10 (-959)) (-14 *5 (-701)) (-14 *6 (-701)) (-4 *8 (-211 *6 *7)) (-4 *9 (-211 *5 *7)) (-4 *2 (-961 *5 *6 *10 *11 *12)) (-5 *1 (-963 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-961 *5 *6 *7 *8 *9)) (-4 *11 (-211 *6 *10)) (-4 *12 (-211 *5 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-991 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-991 *6)) (-5 *1 (-992 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-991 *5)) (-4 *5 (-775)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-578 *6)) (-5 *1 (-992 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-993 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-993 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-996 *4 *2)) (-4 *4 (-775)) (-4 *2 (-1044 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1048 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1048 *6)) (-5 *1 (-1050 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1048 *6)) (-5 *5 (-1048 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-1051 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1064 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-1064 *6)) (-5 *1 (-1065 *5 *6)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1081 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5 *7 *9)) (-4 *5 (-959)) (-4 *6 (-959)) (-14 *7 (-1070)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1109 *6 *8 *10)) (-5 *1 (-1110 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1070)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1116 *6)) (-5 *1 (-1117 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-775)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1048 *6)) (-5 *1 (-1117 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1118 *5 *6)) (-14 *5 (-1070)) (-4 *6 (-959)) (-4 *8 (-959)) (-5 *2 (-1118 *7 *8)) (-5 *1 (-1119 *5 *6 *7 *8)) (-14 *7 (-1070)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *2 (-1125 *6)) (-5 *1 (-1126 *5 *4 *6 *2)) (-4 *4 (-1125 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5 *7 *9)) (-4 *5 (-959)) (-4 *6 (-959)) (-14 *7 (-1070)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1130 *6 *8 *10)) (-5 *1 (-1131 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1070)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *2 (-1142 *6)) (-5 *1 (-1140 *5 *6 *4 *2)) (-4 *4 (-1142 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-1170 *3 *4)) (-4 *4 (-773))))) -(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001))))) -(((*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-839)) (-5 *1 (-1002 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-578 *7) (-578 *7))) (-5 *2 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-5 *1 (-786)))) -(((*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-701)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-701))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-126 *5 *6 *7)) (-14 *5 (-501)) (-14 *6 (-701)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-126 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *9)) (-4 *9 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *8 (-959)) (-4 *2 (-870 *9 *7 *5)) (-5 *1 (-659 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-723)) (-4 *4 (-870 *8 *6 *5))))) -(((*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-609 *2)) (-4 *2 (-1001))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090)))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-246)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *8)) (-5 *4 (-578 *6)) (-4 *6 (-777)) (-4 *8 (-870 *7 *5 *6)) (-4 *5 (-723)) (-4 *7 (-959)) (-5 *2 (-578 (-701))) (-5 *1 (-289 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-839)))) ((*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-437 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) ((*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-501)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-701))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-888 *3 *2 *4)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *2 (-722)))) ((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1142 *3)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1111 *3)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-762 (-839))))) ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-701))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-107))))) -(((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *2 (-508)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-972 *2 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) ((*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *6)) (-5 *1 (-301 *3 *4 *5 *6)) (-4 *6 (-310 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916)))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 *5)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156))))) -(((*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-526 *4 *2)) (-4 *2 (-13 (-1090) (-879) (-1034) (-29 *4)))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-578 *4)) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775)))))) -(((*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) ((*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $))))))) (-4 *4 (-508)) (-5 *1 (-40 *4 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-553 *2))) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $))))))) (-4 *4 (-508)) (-5 *1 (-40 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-548 *3 *2)) (-4 *3 (-1001)) (-4 *3 (-777)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-863 (-199)) (-199) (-199))) (-5 *1 (-628))))) -(((*1 *2 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 (-1064 *6)) (|:| -3027 (-501))))) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-501)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-583 *5)) (-4 *5 (-959)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-779 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-621 *3)) (-4 *1 (-386 *3)) (-4 *3 (-156)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) ((*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-959)) (-5 *1 (-780 *2 *3)) (-4 *3 (-779 *2))))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-530 *3) *3 (-1070))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1070))) (-4 *3 (-254)) (-4 *3 (-568)) (-4 *3 (-950 *4)) (-4 *3 (-389 *7)) (-5 *4 (-1070)) (-4 *7 (-556 (-810 (-501)))) (-4 *7 (-419)) (-4 *7 (-806 (-501))) (-4 *7 (-777)) (-5 *2 (-530 *3)) (-5 *1 (-524 *7 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-2 (|:| -3929 (-1048 *4)) (|:| -3933 (-1048 *4)))) (-5 *1 (-1056 *4)) (-5 *3 (-1048 *4))))) -((-1181 . 680371) (-1182 . 680021) (-1183 . 679648) (-1184 . 679400) (-1185 . 679205) (-1186 . 678854) (-1187 . 678801) (-1188 . 678639) (-1189 . 678491) (-1190 . 677975) (-1191 . 677124) (-1192 . 677006) (-1193 . 676897) (-1194 . 676713) (-1195 . 676602) (-1196 . 676500) (-1197 . 676348) (-1198 . 676230) (-1199 . 675819) (-1200 . 675700) (-1201 . 673691) (-1202 . 673552) (-1203 . 673448) (-1204 . 673365) (-1205 . 672986) (-1206 . 672656) (-1207 . 672622) (-1208 . 671906) (-1209 . 671770) (-1210 . 671671) (-1211 . 671563) (-1212 . 658326) (-1213 . 658245) (-1214 . 658167) (-1215 . 658078) (-1216 . 657843) (-1217 . 657762) (-1218 . 657643) (-1219 . 657568) (-1220 . 657432) (-1221 . 657249) (-1222 . 657172) (-1223 . 656937) (-1224 . 656802) (-1225 . 656615) (-1226 . 656506) (-1227 . 656395) (-1228 . 656293) (-1229 . 656219) (-1230 . 656069) (-1231 . 655995) (-1232 . 655847) (-1233 . 655713) (-1234 . 655645) (-1235 . 655562) (-1236 . 655447) (-1237 . 655388) (-1238 . 655250) (-1239 . 655112) (-1240 . 655059) (-1241 . 654794) (-1242 . 654669) (-1243 . 654579) (-1244 . 654527) (-1245 . 654458) (-1246 . 654403) (-1247 . 654240) (-1248 . 649860) (-1249 . 649705) (-1250 . 649144) (-1251 . 649088) (-1252 . 648880) (-1253 . 648738) (-1254 . 648639) (-1255 . 648488) (-1256 . 648433) (-1257 . 648238) (-1258 . 648039) (-1259 . 647753) (-1260 . 647696) (-1261 . 647326) (-1262 . 647272) (-1263 . 647122) (-1264 . 647012) (-1265 . 646900) (-1266 . 646649) (-1267 . 646343) (-1268 . 646220) (-1269 . 646169) (-1270 . 645927) (-1271 . 645513) (-1272 . 645314) (-1273 . 645162) (-1274 . 645034) (-1275 . 644905) (-1276 . 644729) (-1277 . 644660) (-1278 . 641994) (-1279 . 641825) (-1280 . 641729) (-1281 . 641006) (-1282 . 640931) (-1283 . 640864) (-1284 . 640776) (-1285 . 640242) (-1286 . 639945) (-1287 . 639549) (-1288 . 639475) (-1289 . 639311) (-1290 . 638939) (-1291 . 638797) (-1292 . 638578) (-1293 . 638274) (-1294 . 637824) (-1295 . 637732) (-1296 . 637665) (-1297 . 637501) (-1298 . 637341) (-1299 . 637035) (-1300 . 636964) (-1301 . 636854) (-1302 . 636438) (-1303 . 635957) (-1304 . 635755) (-1305 . 635685) (-1306 . 635588) (-1307 . 635408) (-1308 . 635358) (-1309 . 635275) (-1310 . 635103) (-1311 . 635037) (-1312 . 634984) (-1313 . 634657) (-1314 . 634508) (-1315 . 634170) (-1316 . 633374) (-1317 . 632308) (-1318 . 632179) (-1319 . 631849) (-1320 . 631522) (-1321 . 631389) (-1322 . 631318) (-1323 . 631047) (-1324 . 630994) (-1325 . 630820) (-1326 . 630582) (-1327 . 630490) (-1328 . 630434) (-1329 . 630301) (-1330 . 629980) (-1331 . 629801) (-1332 . 629770) (-1333 . 629412) (-1334 . 629357) (-1335 . 629131) (-1336 . 629038) (-1337 . 628640) (-1338 . 628584) (-1339 . 628465) (-1340 . 628384) (-1341 . 628310) (-1342 . 628093) (-1343 . 627987) (-1344 . 627913) (-1345 . 627795) (-1346 . 627643) (-1347 . 627581) (-1348 . 627509) (-1349 . 627481) (-1350 . 627392) (-1351 . 627302) (-1352 . 627098) (-1353 . 626983) (-1354 . 626675) (-1355 . 626444) (-1356 . 626101) (-1357 . 626011) (-1358 . 625956) (-1359 . 625811) (-1360 . 625745) (-1361 . 625469) (-1362 . 625417) (-1363 . 625380) (-1364 . 625256) (-1365 . 625065) (-1366 . 624903) (-1367 . 624812) (-1368 . 624757) (-1369 . 624542) (-1370 . 624397) (-1371 . 624102) (-1372 . 623988) (-1373 . 623875) (-1374 . 623820) (-1375 . 623604) (-1376 . 623333) (-1377 . 623220) (-1378 . 623121) (-1379 . 622999) (-1380 . 622888) (-1381 . 622691) (-1382 . 622610) (-1383 . 622302) (-1384 . 622214) (-1385 . 622112) (-1386 . 621959) (-1387 . 621761) (-1388 . 621610) (-1389 . 621561) (-1390 . 621475) (-1391 . 621387) (-1392 . 621291) (-1393 . 621220) (-1394 . 621167) (-1395 . 620805) (-1396 . 620634) (-1397 . 620453) (-1398 . 620181) (-1399 . 619758) (-1400 . 619392) (-1401 . 619210) (-1402 . 619158) (-1403 . 619019) (-1404 . 618845) (-1405 . 618690) (-1406 . 618273) (-1407 . 617980) (-1408 . 617829) (-1409 . 617693) (-1410 . 617209) (-1411 . 617068) (-1412 . 616973) (-12 . 616818) (-1414 . 616711) (-1415 . 616602) (-1416 . 616476) (-1417 . 615211) (-1418 . 615133) (-1419 . 615011) (-1420 . 614916) (-1421 . 614823) (-1422 . 614608) (-1423 . 614456) (-1424 . 614358) (-1425 . 614256) (-1426 . 614163) (-1427 . 614110) (-1428 . 613889) (-1429 . 613818) (-1430 . 613627) (-1431 . 613450) (-1432 . 613349) (-1433 . 612784) (-1434 . 612594) (-1435 . 612242) (-1436 . 612001) (-1437 . 611886) (-1438 . 611766) (-1439 . 611564) (-1440 . 611483) (-1441 . 611374) (-1442 . 611027) (-1443 . 610919) (-1444 . 610839) (-1445 . 610636) (-1446 . 610371) (-1447 . 610269) (-1448 . 610149) (-1449 . 610049) (-1450 . 609911) (-1451 . 609828) (-1452 . 609728) (-1453 . 609697) (-1454 . 609366) (-1455 . 609309) (-1456 . 609186) (-1457 . 609110) (-1458 . 608947) (-1459 . 608891) (-1460 . 608785) (-1461 . 608455) (-1462 . 608312) (-1463 . 608186) (-1464 . 607983) (-1465 . 607827) (-1466 . 607629) (-1467 . 607563) (-1468 . 607410) (-1469 . 607338) (-1470 . 607243) (-1471 . 607127) (-1472 . 606962) (-1473 . 606811) (-1474 . 606460) (-1475 . 606377) (-1476 . 606306) (-1477 . 606069) (-1478 . 605974) (-1479 . 605838) (-1480 . 605633) (-1481 . 605503) (* . 601259) (-1483 . 601074) (-1484 . 600993) (-1485 . 600845) (-1486 . 600655) (-1487 . 600372) (-1488 . 600294) (-1489 . 600196) (-1490 . 600066) (-1491 . 599983) (-1492 . 599864) (-1493 . 599758) (-1494 . 599622) (-1495 . 599567) (-1496 . 599469) (-1497 . 599314) (-1498 . 599135) (-1499 . 599104) (-1500 . 598581) (-1501 . 598507) (-1502 . 598401) (-1503 . 598244) (-1504 . 598144) (-1505 . 598008) (-1506 . 597586) (-1507 . 597447) (-1508 . 597290) (-1509 . 597237) (-1510 . 597171) (-1511 . 596973) (-1512 . 596377) (-1513 . 596215) (-1514 . 596121) (-1515 . 596093) (-1516 . 595992) (-1517 . 595924) (-1518 . 595783) (-1519 . 595598) (-1520 . 595275) (-1521 . 595220) (-1522 . 595130) (-1523 . 594973) (-1524 . 594924) (-1525 . 594679) (-1526 . 594109) (-1527 . 594056) (-1528 . 593985) (-1529 . 593951) (-1530 . 593893) (-1531 . 593843) (-1532 . 593535) (-1533 . 593376) (-1534 . 593320) (-1535 . 593247) (-1536 . 593099) (-1537 . 593010) (-1538 . 592834) (-1539 . 592672) (-1540 . 592173) (-1541 . 591634) (-1542 . 591198) (-1543 . 591145) (-1544 . 591082) (-1545 . 590849) (-1546 . 590774) (-1547 . 590708) (-1548 . 590519) (-1549 . 590251) (-1550 . 590181) (-1551 . 589930) (-1552 . 589877) (-1553 . 589721) (-1554 . 589482) (-1555 . 589408) (-1556 . 588952) (-1557 . 588878) (-1558 . 588744) (-1559 . 587533) (-1560 . 587460) (-1561 . 587304) (-1562 . 587045) (-1563 . 586943) (-1564 . 586886) (-1565 . 586789) (-1566 . 586682) (-1567 . 586449) (-1568 . 586376) (-1569 . 586215) (-1570 . 586130) (-1571 . 586036) (-1572 . 585813) (-1573 . 585630) (-1574 . 585057) (-1575 . 584628) (-1576 . 584343) (-1577 . 584167) (-1578 . 584066) (-1579 . 583941) (-1580 . 583843) (-1581 . 583727) (-1582 . 583599) (-1583 . 583528) (-1584 . 583427) (-1585 . 583312) (-1586 . 582865) (-1587 . 582564) (-1588 . 582424) (-1589 . 582238) (-1590 . 581740) (-1591 . 581684) (-1592 . 581574) (-1593 . 581336) (-1594 . 581255) (-1595 . 581226) (-1596 . 580751) (-1597 . 580617) (-1598 . 580415) (-1599 . 580251) (-1600 . 580058) (-1601 . 579950) (-1602 . 579884) (-1603 . 579651) (-1604 . 579598) (-1605 . 579307) (-1606 . 579218) (-1607 . 578883) (-1608 . 578800) (-1609 . 578723) (-1610 . 578649) (-1611 . 578342) (-1612 . 578077) (-1613 . 577996) (-1614 . 577906) (-1615 . 577811) (-1616 . 576914) (-1617 . 575697) (-1618 . 575558) (-1619 . 575188) (-1620 . 574912) (-1621 . 574840) (-1622 . 574653) (-1623 . 574597) (-1624 . 574539) (-1625 . 573936) (-1626 . 573338) (-1627 . 573146) (-1628 . 572780) (-1629 . 572694) (-1630 . 572383) (-1631 . 572235) (-1632 . 571735) (-1633 . 571640) (-1634 . 570810) (-1635 . 569636) (-1636 . 569384) (-1637 . 569188) (-1638 . 569067) (-1639 . 569015) (-1640 . 568966) (-1641 . 568878) (-1642 . 568672) (-1643 . 568154) (-1644 . 567755) (-1645 . 567062) (-1646 . 566947) (-1647 . 566891) (-1648 . 566658) (-1649 . 566461) (-1650 . 566179) (-1651 . 565916) (-1652 . 565830) (-1653 . 565389) (-1654 . 565298) (-1655 . 565212) (-1656 . 565081) (-1657 . 564937) (-1658 . 564824) (-1659 . 564722) (-1660 . 564535) (-1661 . 564301) (-1662 . 564153) (-1663 . 564078) (-1664 . 564025) (-1665 . 563903) (-1666 . 563871) (-1667 . 563815) (-1668 . 563582) (-1669 . 563387) (-1670 . 563305) (-1671 . 563116) (-1672 . 563017) (-1673 . 562926) (-1674 . 562855) (-1675 . 562796) (-1676 . 562563) (-1677 . 562140) (-1678 . 562087) (-1679 . 561983) (-1680 . 561712) (-1681 . 561507) (-1682 . 561444) (-1683 . 561365) (-1684 . 560936) (-1685 . 560838) (-1686 . 560430) (-1687 . 560357) (-1688 . 558875) (-1689 . 558663) (-1690 . 558566) (-1691 . 558247) (-1692 . 558140) (-1693 . 558050) (-1694 . 557901) (-1695 . 557765) (-1696 . 557138) (-1697 . 557052) (-1698 . 556945) (-1699 . 556715) (-1700 . 556633) (-1701 . 556537) (-1702 . 556355) (-1703 . 556321) (-1704 . 556246) (-1705 . 556156) (-1706 . 555872) (-1707 . 555706) (-1708 . 555584) (-1709 . 555001) (-1710 . 554865) (-1711 . 554771) (-1712 . 554677) (-1713 . 554564) (-1714 . 554460) (-1715 . 554387) (-1716 . 554233) (-1717 . 553932) (-1718 . 553758) (-1719 . 553730) (-1720 . 553249) (-1721 . 553148) (-1722 . 553026) (-1723 . 552926) (-1724 . 552828) (-1725 . 552689) (-1726 . 552359) (-1727 . 552281) (-1728 . 552131) (-1729 . 551848) (-1730 . 551613) (-1731 . 551038) (-1732 . 550885) (-1733 . 550664) (-1734 . 550303) (-1735 . 550169) (-1736 . 550041) (-1737 . 549948) (-1738 . 549763) (-1739 . 549659) (-1740 . 547903) (-1741 . 547841) (-1742 . 547713) (-1743 . 547575) (-1744 . 547468) (-1745 . 547097) (-1746 . 546799) (-1747 . 546725) (-1748 . 546612) (-1749 . 546246) (-1750 . 546112) (-1751 . 545950) (-1752 . 545799) (-1753 . 545613) (-1754 . 545504) (-1755 . 545379) (-1756 . 545208) (-1757 . 545149) (-1758 . 544569) (-1759 . 544477) (-1760 . 544349) (-1761 . 544298) (-1762 . 544085) (-1763 . 543425) (-1764 . 543254) (-1765 . 542896) (-1766 . 542762) (-1767 . 542586) (-1768 . 542533) (-1769 . 542263) (-1770 . 542132) (-1771 . 542013) (-1772 . 541902) (-1773 . 541780) (-1774 . 541638) (-1775 . 541513) (-1776 . 541382) (-1777 . 541301) (-1778 . 541179) (-1779 . 541072) (-1780 . 540752) (-1781 . 540602) (-1782 . 540414) (-1783 . 540250) (-1784 . 539967) (-1785 . 539752) (-1786 . 539671) (-1787 . 539619) (-1788 . 539503) (-1789 . 539221) (-1790 . 539122) (-1791 . 538941) (-1792 . 538584) (-1793 . 538465) (-1794 . 538276) (-1795 . 538223) (-1796 . 538164) (-1797 . 538081) (-1798 . 537987) (-1799 . 537889) (-1800 . 537828) (-1801 . 537220) (-1802 . 537023) (-1803 . 536886) (-1804 . 536812) (-1805 . 536634) (-1806 . 536446) (-1807 . 536390) (-1808 . 536335) (-1809 . 536282) (-1810 . 536114) (-1811 . 536062) (-1812 . 536009) (-1813 . 535875) (-1814 . 535756) (-1815 . 535563) (-1816 . 535330) (-1817 . 535216) (-1818 . 535188) (-1819 . 535020) (-1820 . 534954) (-1821 . 534766) (-1822 . 534359) (-1823 . 534246) (-1824 . 534193) (-1825 . 533728) (-1826 . 533622) (-1827 . 533026) (-1828 . 532925) (-1829 . 532852) (-1830 . 532730) (-1831 . 532619) (-1832 . 532412) (-1833 . 532042) (-1834 . 531806) (-1835 . 531450) (-1836 . 531328) (-1837 . 530978) (-1838 . 530589) (-1839 . 530537) (-1840 . 530421) (-1841 . 530321) (-1842 . 530219) (-1843 . 529974) (-1844 . 529766) (-1845 . 529550) (-1846 . 529433) (-1847 . 529023) (-1848 . 528725) (-1849 . 528563) (-1850 . 528395) (-1851 . 528268) (-1852 . 528070) (-1853 . 527075) (-1854 . 526913) (-1855 . 526656) (-1856 . 526601) (-1857 . 526433) (-1858 . 526348) (-1859 . 526206) (-1860 . 526153) (-1861 . 526007) (-1862 . 525951) (-1863 . 525785) (-1864 . 525733) (-1865 . 525468) (-1866 . 525357) (-1867 . 525305) (-1868 . 525274) (-1869 . 524897) (-1870 . 524842) (-1871 . 524481) (-1872 . 524240) (-1873 . 524115) (-1874 . 523941) (-1875 . 523647) (-1876 . 523619) (-1877 . 523423) (-1878 . 523290) (-1879 . 523238) (-1880 . 523010) (-1881 . 522833) (-1882 . 522469) (-1883 . 522349) (-1884 . 522247) (-1885 . 522069) (-1886 . 521961) (-1887 . 521843) (-1888 . 521688) (-1889 . 521549) (-1890 . 521426) (-1891 . 520879) (-1892 . 520675) (-1893 . 520417) (-1894 . 520009) (-1895 . 519908) (-1896 . 519827) (-1897 . 518909) (-1898 . 518854) (-1899 . 518719) (-1900 . 518363) (-1901 . 518275) (-1902 . 518225) (-1903 . 518099) (-1904 . 517999) (-1905 . 517679) (-1906 . 517484) (-1907 . 517376) (-1908 . 517285) (-1909 . 517230) (-1910 . 517131) (-1911 . 516989) (-1912 . 516817) (-1913 . 516758) (-1914 . 516392) (-1915 . 516169) (-1916 . 516036) (-1917 . 515961) (-1918 . 515822) (-1919 . 515748) (-1920 . 515650) (-1921 . 515540) (-1922 . 515439) (-1923 . 515363) (-1924 . 515262) (-1925 . 515019) (-1926 . 514803) (-1927 . 514656) (-1928 . 514399) (-1929 . 514295) (-1930 . 514156) (-1931 . 514049) (-1932 . 513975) (-1933 . 513201) (-1934 . 512701) (-1935 . 512585) (-1936 . 512397) (-1937 . 512169) (-1938 . 512071) (-1939 . 511967) (-1940 . 511867) (-1941 . 511763) (-1942 . 511600) (-1943 . 511511) (-1944 . 511407) (-1945 . 511257) (-1946 . 511182) (-1947 . 511047) (-1948 . 510937) (-1949 . 510631) (-1950 . 510534) (-1951 . 510430) (-1952 . 510326) (-1953 . 510248) (-1954 . 510134) (-1955 . 509985) (-1956 . 509908) (-1957 . 509822) (-1958 . 509712) (-1959 . 509529) (-1960 . 509449) (-1961 . 509274) (-1962 . 509149) (-1963 . 508963) (-1964 . 508465) (-1965 . 508225) (-1966 . 508173) (-1967 . 507221) (-1968 . 507153) (-1969 . 507088) (-1970 . 507036) (-1971 . 506965) (-1972 . 506699) (-1973 . 506556) (-1974 . 506394) (-1975 . 506322) (-1976 . 506264) (-1977 . 506112) (-1978 . 506060) (-1979 . 505593) (-1980 . 505080) (-1981 . 504918) (-1982 . 504740) (-1983 . 504507) (-1984 . 504393) (-1985 . 504102) (-1986 . 503965) (-1987 . 503502) (-1988 . 503429) (-1989 . 502282) (-1990 . 502206) (-1991 . 502087) (-1992 . 501969) (-1993 . 501825) (-1994 . 501751) (-1995 . 501671) (-1996 . 501545) (-1997 . 501477) (-1998 . 501383) (-1999 . 501266) (-2000 . 500757) (-2001 . 500655) (-2002 . 500621) (-2003 . 500368) (-2004 . 500165) (-2005 . 500064) (-2006 . 499770) (-2007 . 494916) (-2008 . 494650) (-2009 . 494584) (-2010 . 494556) (-2011 . 494294) (-2012 . 494110) (-2013 . 494009) (-2014 . 493938) (-2015 . 493644) (-2016 . 493387) (-2017 . 493132) (-2018 . 493059) (-2019 . 492632) (-2020 . 492582) (-2021 . 492478) (-2022 . 492412) (-2023 . 492209) (-2024 . 492084) (-2025 . 491994) (-2026 . 491862) (-2027 . 491792) (-2028 . 491635) (-2029 . 491529) (-2030 . 491425) (-2031 . 491108) (-2032 . 491010) (-2033 . 490976) (-2034 . 490741) (-2035 . 490382) (-2036 . 490327) (-2037 . 490202) (-2038 . 489916) (-2039 . 489885) (-2040 . 489779) (-2041 . 489655) (-2042 . 489444) (-2043 . 489306) (-2044 . 489156) (-2045 . 488973) (-2046 . 488874) (-2047 . 488815) (-2048 . 488554) (-2049 . 488502) (-2050 . 488250) (-2051 . 488144) (-2052 . 487937) (-2053 . 487828) (-2054 . 487687) (-2055 . 487507) (-2056 . 487440) (-2057 . 487300) (-2058 . 487234) (-2059 . 487029) (-2060 . 486835) (-2061 . 486753) (-2062 . 486655) (-2063 . 486450) (-2064 . 486300) (-2065 . 486187) (-2066 . 486134) (-2067 . 485853) (-2068 . 485704) (-2069 . 485555) (-2070 . 485407) (-2071 . 485252) (-2072 . 485196) (-2073 . 483343) (-2074 . 483208) (-2075 . 483094) (-2076 . 482990) (-2077 . 482747) (-2078 . 481943) (-2079 . 481820) (-2080 . 481716) (-2081 . 481618) (-2082 . 481526) (-2083 . 481351) (-2084 . 481202) (-2085 . 480069) (-2086 . 480035) (-2087 . 479983) (-2088 . 479778) (-2089 . 479695) (-2090 . 479610) (-2091 . 479535) (-2092 . 479419) (-2093 . 479391) (-2094 . 479130) (-2095 . 478963) (-2096 . 478910) (-2097 . 478825) (-2098 . 478759) (-2099 . 478646) (-2100 . 478468) (-2101 . 478383) (-2102 . 478244) (-2103 . 478046) (-2104 . 477908) (-2105 . 477738) (-2106 . 477653) (-2107 . 477587) (-2108 . 477352) (-2109 . 477195) (-2110 . 477115) (-2111 . 477043) (-2112 . 476889) (-2113 . 476804) (-2114 . 476638) (-2115 . 476586) (-2116 . 476445) (-2117 . 476323) (-2118 . 476232) (-2119 . 475995) (-2120 . 475867) (-2121 . 474685) (-2122 . 474600) (-2123 . 474507) (-2124 . 474405) (-2125 . 473748) (-2126 . 473658) (-2127 . 473605) (-2128 . 473548) (-2129 . 473463) (-2130 . 473067) (-2131 . 472701) (-2132 . 472667) (-2133 . 472582) (-2134 . 472359) (-2135 . 472291) (-2136 . 472176) (-2137 . 471981) (-2138 . 471929) (-2139 . 471844) (-2140 . 471766) (-2141 . 471696) (-2142 . 471422) (-2143 . 471337) (-2144 . 471272) (-2145 . 471187) (-2146 . 471091) (-2147 . 470976) (-2148 . 470891) (-2149 . 470810) (-2150 . 470558) (-2151 . 470404) (-2152 . 470319) (-2153 . 469842) (-2154 . 469565) (-2155 . 469510) (-2156 . 469289) (-2157 . 469204) (-2158 . 469120) (-2159 . 468957) (-2160 . 468884) (-2161 . 468797) (-2162 . 468745) (-2163 . 468512) (-2164 . 468274) (-2165 . 468189) (-2166 . 468094) (-2167 . 467924) (-2168 . 467781) (-2169 . 467681) (-2170 . 467650) (-2171 . 467565) (-2172 . 467413) (-2173 . 467281) (-2174 . 466147) (-2175 . 465983) (-2176 . 465912) (-2177 . 465668) (-2178 . 465536) (-2179 . 465436) (-2180 . 464794) (-2181 . 464690) (-2182 . 464637) (-2183 . 464606) (-2184 . 464403) (-2185 . 464253) (-2186 . 464175) (-2187 . 464061) (-2188 . 463930) (-2189 . 463836) (-2190 . 463748) (-2191 . 463634) (-2192 . 463600) (-2193 . 463518) (-2194 . 462984) (-2195 . 462581) (-2196 . 462424) (-2197 . 462201) (-2198 . 462077) (-2199 . 462025) (-2200 . 461846) (-2201 . 461623) (-2202 . 461548) (-2203 . 461457) (-2204 . 461343) (-2205 . 461177) (-2206 . 460700) (-2207 . 460579) (-2208 . 460505) (-2209 . 459940) (-2210 . 459844) (-2211 . 459545) (-2212 . 459517) (-2213 . 459303) (-2214 . 459220) (-2215 . 459148) (-2216 . 458725) (-2217 . 458574) (-2218 . 458219) (-2219 . 458117) (-2220 . 457927) (-2221 . 457345) (-2222 . 457271) (-2223 . 456953) (-2224 . 456855) (-2225 . 456448) (-2226 . 456136) (-2227 . 456066) (-2228 . 456011) (-2229 . 455949) (-2230 . 455876) (-2231 . 455725) (-2232 . 455676) (-2233 . 455574) (-2234 . 455495) (-2235 . 455395) (-2236 . 455312) (-2237 . 454980) (-2238 . 454883) (-2239 . 454567) (-2240 . 454506) (-2241 . 454354) (-2242 . 454063) (-2243 . 453992) (-2244 . 453874) (-2245 . 453746) (-2246 . 453656) (-2247 . 453418) (-2248 . 453282) (-2249 . 453187) (-2250 . 453005) (-2251 . 452880) (-2252 . 452795) (-2253 . 452739) (-2254 . 452502) (-2255 . 452431) (-2256 . 451720) (-2257 . 450991) (-2258 . 450839) (-2259 . 450787) (-2260 . 450706) (-2261 . 450458) (-2262 . 450067) (-2263 . 450017) (-2264 . 449543) (-2265 . 449443) (-2266 . 449249) (-2267 . 449190) (-2268 . 449131) (-2269 . 449035) (-2270 . 448961) (-2271 . 448887) (-2272 . 448272) (-2273 . 448213) (-2274 . 448104) (-2275 . 447966) (-2276 . 447914) (-2277 . 447641) (-2278 . 447328) (-2279 . 447177) (-2280 . 447096) (-2281 . 446771) (-2282 . 446456) (-2283 . 446357) (-2284 . 446205) (-2285 . 445761) (-2286 . 445294) (-2287 . 445210) (-2288 . 445136) (-2289 . 445006) (-2290 . 444662) (-2291 . 444599) (-2292 . 444510) (-2293 . 444457) (-2294 . 444287) (-2295 . 444196) (-2296 . 443954) (-2297 . 443331) (-2298 . 443173) (-2299 . 443087) (-2300 . 443014) (-2301 . 442941) (-2302 . 442824) (-2303 . 442740) (-2304 . 442604) (-2305 . 442522) (-2306 . 442233) (-2307 . 442137) (-2308 . 442077) (-2309 . 441915) (-2310 . 441811) (-2311 . 441564) (-2312 . 440997) (-2313 . 440969) (-2314 . 440888) (-2315 . 440815) (-2316 . 440557) (-2317 . 440504) (-2318 . 440402) (-2319 . 440169) (-2320 . 440025) (-2321 . 439877) (-2322 . 439690) (-2323 . 439575) (-2324 . 439303) (-2325 . 439238) (-2326 . 439118) (-2327 . 439064) (-2328 . 438981) (-2329 . 438872) (-2330 . 438631) (-2331 . 438385) (-2332 . 438252) (-2333 . 438052) (-2334 . 438000) (-2335 . 437891) (-2336 . 437806) (-2337 . 437308) (-2338 . 437085) (-2339 . 436931) (-2340 . 436832) (-2341 . 436674) (-2342 . 436508) (-2343 . 436440) (-2344 . 436277) (-2345 . 436159) (-2346 . 436059) (-2347 . 436003) (-2348 . 435936) (-2349 . 435734) (-2350 . 435706) (-2351 . 435631) (-2352 . 435230) (-2353 . 435152) (-2354 . 435099) (-2355 . 435000) (-2356 . 434695) (-2357 . 434523) (-2358 . 434284) (-2359 . 434167) (-2360 . 434103) (-2361 . 433897) (-2362 . 433824) (-2363 . 433455) (-2364 . 433308) (-2365 . 433219) (-2366 . 433163) (-2367 . 432881) (-2368 . 432752) (-2369 . 432633) (-2370 . 432485) (-2371 . 432419) (-2372 . 431459) (-2373 . 431304) (-2374 . 430861) (-2375 . 430681) (-2376 . 430525) (-2377 . 430351) (-2378 . 430203) (-2379 . 430129) (-2380 . 430025) (-2381 . 429824) (-2382 . 429726) (-2383 . 429532) (-2384 . 429504) (-2385 . 429400) (-2386 . 429208) (-2387 . 428958) (-2388 . 428885) (-2389 . 428826) (-2390 . 428527) (-2391 . 427888) (-2392 . 427662) (-2393 . 427603) (-2394 . 427283) (-2395 . 427210) (-2396 . 427073) (-2397 . 426937) (-2398 . 426744) (-2399 . 426654) (-2400 . 426536) (-2401 . 426373) (-2402 . 426134) (-2403 . 426053) (-2404 . 425977) (-2405 . 425886) (-2406 . 425768) (-2407 . 425635) (-2408 . 425436) (-2409 . 425110) (-2410 . 424952) (-2411 . 424805) (-2412 . 424705) (-2413 . 424639) (-2414 . 424558) (-2415 . 424444) (-2416 . 424350) (-2417 . 424198) (-2418 . 424132) (-2419 . 423720) (-2420 . 423435) (-2421 . 423357) (-2422 . 423244) (-2423 . 423192) (-2424 . 422907) (-2425 . 422850) (-2426 . 422718) (-2427 . 422352) (-2428 . 422132) (-2429 . 422035) (-2430 . 421983) (-2431 . 421850) (-2432 . 421797) (-2433 . 421530) (-2434 . 421352) (-2435 . 420994) (-2436 . 420791) (-2437 . 420720) (-2438 . 420622) (-2439 . 420515) (-2440 . 420432) (-2441 . 420294) (-2442 . 420239) (-2443 . 420184) (-2444 . 420096) (-2445 . 420030) (-2446 . 419863) (-2447 . 419787) (-2448 . 419593) (-2449 . 419523) (-2450 . 419402) (-2451 . 419049) (-2452 . 418293) (-2453 . 417928) (-2454 . 417770) (-2455 . 417623) (-2456 . 417355) (-2457 . 417070) (-2458 . 416898) (-2459 . 416796) (-2460 . 416692) (-2461 . 416588) (-2462 . 416536) (-2463 . 416443) (-2464 . 416387) (-2465 . 416169) (-2466 . 416040) (-2467 . 415833) (-2468 . 415741) (-2469 . 415421) (-2470 . 415286) (-2471 . 415110) (-2472 . 414963) (-2473 . 414872) (-2474 . 414763) (-2475 . 414566) (-2476 . 414433) (-2477 . 414360) (-2478 . 414297) (-2479 . 414199) (-2480 . 414081) (-2481 . 414000) (-2482 . 413879) (-2483 . 413761) (-2484 . 413708) (-2485 . 413375) (-2486 . 413263) (-2487 . 413145) (-2488 . 413048) (-2489 . 412888) (-2490 . 412645) (-2491 . 412312) (-2492 . 412141) (-2493 . 412030) (-2494 . 411814) (-2495 . 410309) (-2496 . 410167) (-2497 . 410096) (-2498 . 410000) (-2499 . 409849) (-2500 . 409776) (-2501 . 409707) (-2502 . 409565) (-2503 . 409433) (-2504 . 409140) (-2505 . 409006) (-2506 . 408950) (-2507 . 408876) (-2508 . 408812) (-2509 . 408740) (-2510 . 408346) (-2511 . 408261) (-2512 . 408152) (-2513 . 407887) (-2514 . 407837) (-2515 . 407666) (-2516 . 407547) (-2517 . 407451) (-2518 . 407361) (-2519 . 407145) (-2520 . 407053) (-2521 . 406851) (-2522 . 406311) (-2523 . 406260) (-2524 . 406142) (-2525 . 406031) (-2526 . 405833) (-2527 . 405548) (-2528 . 405398) (-2529 . 405315) (-2530 . 405166) (-2531 . 405059) (-2532 . 404387) (-2533 . 403989) (-2534 . 403931) (-2535 . 403849) (-2536 . 403636) (-2537 . 403546) (-2538 . 403440) (-2539 . 403314) (-2540 . 403125) (-2541 . 403072) (-2542 . 402968) (-2543 . 402715) (-2544 . 402687) (-2545 . 402562) (-2546 . 402426) (-2547 . 402370) (-2548 . 402164) (-2549 . 402043) (-2550 . 401865) (-2551 . 400907) (-2552 . 400759) (-2553 . 400659) (-2554 . 400537) (-2555 . 400406) (-2556 . 400332) (-2557 . 400280) (-2558 . 400210) (-2559 . 400151) (-2560 . 399981) (-2561 . 399929) (-2562 . 399753) (-2563 . 399555) (-2564 . 399503) (-2565 . 399472) (-2566 . 399371) (-2567 . 399290) (-2568 . 398990) (-2569 . 398900) (-2570 . 398734) (-2571 . 398651) (-2572 . 398442) (-2573 . 398356) (-2574 . 398304) (-2575 . 398145) (-2576 . 398088) (-2577 . 397976) (-2578 . 397766) (-2579 . 397676) (-2580 . 397624) (-2581 . 397454) (-2582 . 397092) (-2583 . 396943) (-2584 . 396822) (-2585 . 396720) (-2586 . 396582) (-2587 . 396509) (-2588 . 396361) (-2589 . 396302) (-2590 . 396116) (-2591 . 396085) (-2592 . 395931) (-2593 . 395879) (-2594 . 395737) (-2595 . 395631) (-2596 . 393577) (-2597 . 393506) (-2598 . 392987) (-2599 . 392865) (-2600 . 392778) (-2601 . 392712) (-2602 . 392660) (-2603 . 392217) (-2604 . 392133) (-2605 . 390916) (-2606 . 390765) (-2607 . 390506) (-2608 . 390366) (-2609 . 390044) (-2610 . 389968) (-2611 . 389862) (-2612 . 389752) (-2613 . 389677) (-2614 . 389606) (-2615 . 389385) (-2616 . 389242) (-2617 . 389105) (-2618 . 389003) (-2619 . 388969) (-2620 . 388890) (-2621 . 388815) (-2622 . 388675) (-2623 . 388595) (-2624 . 388497) (-2625 . 388345) (-2626 . 386637) (-2627 . 386267) (-2628 . 386065) (-2629 . 385982) (-2630 . 385573) (-2631 . 385479) (-2632 . 385421) (-2633 . 385312) (-2634 . 384992) (-2635 . 384893) (-2636 . 384838) (-2637 . 384747) (-2638 . 384417) (-2639 . 383914) (-2640 . 383770) (-2641 . 383666) (-2642 . 383564) (-2643 . 383443) (-2644 . 383364) (-2645 . 383335) (-2646 . 383195) (-2647 . 383002) (-2648 . 382934) (-2649 . 382713) (-2650 . 382162) (-2651 . 381135) (-2652 . 380982) (-2653 . 380905) (-2654 . 380838) (-2655 . 380767) (-2656 . 380694) (-2657 . 380616) (-2658 . 380523) (-2659 . 380318) (-2660 . 379948) (-2661 . 379875) (-2662 . 379806) (-2663 . 379713) (-2664 . 379590) (-2665 . 379460) (-2666 . 379407) (-2667 . 378909) (-2668 . 378835) (-2669 . 377870) (-2670 . 377796) (-2671 . 377607) (-2672 . 377116) (-2673 . 377022) (-2674 . 376619) (-2675 . 376500) (-2676 . 376040) (-2677 . 375736) (-2678 . 375661) (-2679 . 374473) (-2680 . 374355) (-2681 . 374124) (-2682 . 374033) (-2683 . 373958) (-2684 . 373839) (-2685 . 373707) (-2686 . 373626) (-2687 . 373391) (-2688 . 373271) (-2689 . 373008) (-2690 . 372803) (-2691 . 372440) (-2692 . 372365) (-2693 . 372060) (-2694 . 371780) (-2695 . 371709) (-2696 . 371297) (-2697 . 371244) (-2698 . 371182) (-2699 . 371063) (-2700 . 371014) (-2701 . 369907) (-2702 . 369705) (-2703 . 369677) (-2704 . 369542) (-2705 . 369384) (-2706 . 368884) (-2707 . 368513) (-2708 . 367939) (-2709 . 367795) (-2710 . 367533) (-2711 . 367356) (-2712 . 367215) (-2713 . 366919) (-2714 . 366826) (-2715 . 365097) (-2716 . 365047) (-2717 . 364955) (-2718 . 364844) (-2719 . 364771) (-2720 . 364688) (-2721 . 364266) (-2722 . 364152) (-2723 . 364052) (-2724 . 363979) (-2725 . 363715) (-2726 . 363450) (-2727 . 363325) (-2728 . 363117) (-2729 . 362938) (-2730 . 362811) (-2731 . 362745) (-2732 . 362537) (-2733 . 362219) (-2734 . 361986) (-2735 . 361893) (-2736 . 361859) (-2737 . 361734) (-2738 . 361637) (-2739 . 361530) (-2740 . 361426) (-2741 . 361263) (-2742 . 361211) (-2743 . 361109) (-2744 . 360997) (-2745 . 360804) (-2746 . 360432) (-2747 . 360358) (-2748 . 360210) (-2749 . 360109) (-2750 . 359961) (-2751 . 359774) (-2752 . 359355) (-2753 . 359206) (-2754 . 358913) (-2755 . 358762) (-2756 . 358644) (-2757 . 358537) (-2758 . 358467) (-2759 . 358109) (-2760 . 358037) (-2761 . 357709) (-2762 . 357387) (-2763 . 357270) (-2764 . 357166) (-2765 . 357038) (-2766 . 356957) (-2767 . 356809) (-2768 . 356718) (-2769 . 356635) (-2770 . 356509) (-2771 . 356354) (-2772 . 356206) (-2773 . 355898) (-2774 . 355628) (-2775 . 355269) (-2776 . 355119) (-2777 . 354973) (-2778 . 346112) (-2779 . 346041) (-2780 . 345889) (-2781 . 345834) (-2782 . 345684) (-2783 . 345583) (-2784 . 345479) (-2785 . 345387) (-2786 . 345330) (-2787 . 345273) (-2788 . 344972) (-2789 . 344907) (-2790 . 344849) (-2791 . 344015) (-2792 . 343963) (-2793 . 343932) (-2794 . 343780) (-2795 . 343718) (-2796 . 343589) (-2797 . 343091) (-2798 . 342951) (-2799 . 342749) (-2800 . 342624) (-2801 . 342283) (-2802 . 342105) (-2803 . 342007) (-2804 . 341904) (-2805 . 341722) (-2806 . 341649) (-2807 . 341458) (-2808 . 341354) (-2809 . 341280) (-2810 . 341060) (-2811 . 340958) (-2812 . 340179) (-2813 . 340127) (-2814 . 339782) (-2815 . 339647) (-2816 . 339524) (-2817 . 339434) (-2818 . 339406) (-2819 . 339354) (-2820 . 339269) (-2821 . 339180) (-2822 . 339109) (-2823 . 339028) (-2824 . 338767) (-2825 . 338682) (-2826 . 338565) (-2827 . 338429) (-2828 . 338298) (-2829 . 338232) (-2830 . 338147) (-2831 . 338057) (-2832 . 337914) (-2833 . 337774) (-2834 . 337685) (-2835 . 337600) (-2836 . 337537) (-2837 . 337331) (-2838 . 337179) (-2839 . 336732) (-2840 . 336637) (-2841 . 336505) (-2842 . 335668) (-2843 . 335480) (-2844 . 335291) (-2845 . 335160) (-2846 . 335028) (-2847 . 334976) (-2848 . 334865) (-2849 . 334706) (-2850 . 334621) (-2851 . 334555) (-2852 . 334462) (-2853 . 334391) (-2854 . 334306) (-2855 . 334253) (-2856 . 334177) (-2857 . 333844) (-2858 . 333759) (-2859 . 333704) (-2860 . 333633) (-2861 . 333222) (-2862 . 333141) (-2863 . 333056) (-2864 . 332983) (-2865 . 332952) (-2866 . 332878) (-2867 . 332793) (-2868 . 332742) (-2869 . 332714) (-2870 . 331962) (-2871 . 331877) (-2872 . 331811) (-2873 . 331759) (-2874 . 331674) (-2875 . 331586) (-2876 . 331528) (-2877 . 331476) (-2878 . 331326) (-2879 . 331235) (-2880 . 331133) (-2881 . 331081) (-2882 . 331012) (-2883 . 330921) (-2884 . 330724) (-2885 . 330454) (-2886 . 330299) (-2887 . 330205) (-2888 . 330126) (-2889 . 329974) (-2890 . 329352) (-2891 . 329300) (-2892 . 329167) (-2893 . 329004) (-2894 . 328739) (-2895 . 328615) (-2896 . 328296) (-2897 . 328188) (-2898 . 328132) (-2899 . 327390) (-2900 . 327288) (-2901 . 327236) (-2902 . 327102) (-2903 . 326890) (-2904 . 326790) (-2905 . 326630) (-2906 . 326314) (-2907 . 326286) (-2908 . 326176) (-2909 . 326038) (-2910 . 325816) (-2911 . 325709) (-2912 . 325466) (-2913 . 325388) (-2914 . 325281) (-2915 . 325247) (-2916 . 325159) (-2917 . 324918) (-2918 . 324350) (-2919 . 324269) (-2920 . 324218) (-2921 . 324093) (-2922 . 323161) (-2923 . 323092) (-2924 . 322970) (-2925 . 322885) (-2926 . 322819) (-2927 . 322546) (-2928 . 322473) (-2929 . 322203) (-2930 . 322077) (-2931 . 322024) (-2932 . 321926) (-2933 . 321800) (-2934 . 321674) (-2935 . 321596) (-2936 . 321508) (-2937 . 321331) (-2938 . 321253) (-2939 . 320961) (-2940 . 320783) (-2941 . 320730) (-2942 . 319701) (-2943 . 319541) (-2944 . 319475) (-2945 . 319381) (-2946 . 318711) (-2947 . 318636) (-2948 . 318100) (-2949 . 317449) (-2950 . 317396) (-2951 . 317343) (-2952 . 317104) (-2953 . 316939) (-2954 . 316868) (-2955 . 316737) (-2956 . 316656) (-2957 . 316511) (-2958 . 316436) (-2959 . 316265) (-2960 . 316125) (-2961 . 316067) (-2962 . 315954) (-2963 . 315902) (-2964 . 315844) (-2965 . 315580) (-2966 . 315432) (-2967 . 315328) (-2968 . 315073) (-2969 . 314840) (-2970 . 314750) (-2971 . 314241) (-2972 . 313891) (-2973 . 311142) (-2974 . 311090) (-2975 . 310984) (-2976 . 310903) (-2977 . 310740) (-2978 . 310641) (-2979 . 310575) (-2980 . 310477) (-2981 . 310244) (-2982 . 310167) (-2983 . 310091) (-2984 . 309550) (-2985 . 309280) (-2986 . 309091) (-2987 . 309021) (-2988 . 308961) (-2989 . 308706) (-2990 . 308629) (-2991 . 308546) (-2992 . 308353) (-2993 . 308185) (-2994 . 308119) (-2995 . 308057) (-2996 . 307952) (-2997 . 307883) (-2998 . 307726) (-2999 . 307650) (-3000 . 307265) (-3001 . 307100) (-3002 . 306385) (-3003 . 306297) (-3004 . 306215) (-3005 . 306141) (-3006 . 306080) (-3007 . 305665) (-3008 . 305569) (-3009 . 305240) (-3010 . 304893) (-3011 . 304732) (-3012 . 304529) (-3013 . 304405) (-3014 . 304349) (-3015 . 304041) (-3016 . 303847) (-3017 . 303544) (-3018 . 303392) (-3019 . 303309) (-3020 . 302360) (-3021 . 302294) (-3022 . 302190) (-3023 . 302094) (-3024 . 302026) (-3025 . 301810) (-3026 . 301739) (-3027 . 301281) (-3028 . 300772) (-3029 . 300659) (-3030 . 300607) (-3031 . 300491) (-3032 . 300400) (-3033 . 300347) (-3034 . 300251) (-3035 . 300162) (-3036 . 300026) (-3037 . 299943) (-3038 . 299852) (-3039 . 299763) (-3040 . 299609) (-3041 . 299386) (-3042 . 299252) (-3043 . 299150) (-3044 . 299079) (-3045 . 298994) (-3046 . 298884) (-3047 . 298816) (-3048 . 298701) (-3049 . 298167) (-3050 . 298118) (-3051 . 298052) (-3052 . 297930) (-3053 . 297855) (-3054 . 297497) (-3055 . 297402) (-3056 . 296766) (-3057 . 296685) (-3058 . 296657) (-3059 . 296576) (-3060 . 296548) (-3061 . 296348) (-3062 . 296314) (-3063 . 296244) (-3064 . 296156) (-3065 . 296127) (-3066 . 295803) (-3067 . 295720) (-3068 . 295692) (-3069 . 295463) (-3070 . 295254) (-3071 . 295199) (-3072 . 295017) (-3073 . 294920) (-3074 . 294848) (-3075 . 294741) (-3076 . 294506) (-3077 . 294413) (-3078 . 294352) (-3079 . 294292) (-3080 . 293985) (-3081 . 293910) (-3082 . 293793) (-3083 . 293722) (-3084 . 293525) (-3085 . 293469) (-3086 . 293369) (-3087 . 293019) (-3088 . 292856) (-3089 . 292528) (-3090 . 292340) (-3091 . 291974) (-3092 . 291908) (-3093 . 290229) (-3094 . 290069) (-3095 . 289745) (-3096 . 289630) (-3097 . 289356) (-3098 . 289270) (-3099 . 289204) (-3100 . 289065) (-3101 . 288877) (-3102 . 288773) (-3103 . 288534) (-3104 . 288396) (-3105 . 288323) (-3106 . 288240) (-3107 . 288191) (-3108 . 288121) (-3109 . 287486) (-3110 . 287419) (-3111 . 287265) (-3112 . 287114) (-3113 . 287046) (-3114 . 286962) (-3115 . 286823) (-3116 . 286732) (-3117 . 286680) (-3118 . 286570) (-3119 . 286418) (-3120 . 286074) (-3121 . 285395) (-3122 . 285085) (-3123 . 284975) (-3124 . 284883) (-3125 . 284817) (-3126 . 284367) (-3127 . 284192) (-3128 . 283879) (-3129 . 283762) (-3130 . 283679) (-3131 . 283599) (-3132 . 283493) (-3133 . 283073) (-3134 . 283008) (-3135 . 282705) (-3136 . 282406) (-3137 . 282224) (-3138 . 282056) (-3139 . 281976) (-3140 . 281895) (-3141 . 281682) (-3142 . 281110) (-3143 . 280996) (-3144 . 280782) (-3145 . 280680) (-3146 . 280523) (-3147 . 280472) (-3148 . 280232) (-3149 . 280180) (-3150 . 276339) (-3151 . 276271) (-3152 . 276219) (-3153 . 276153) (-3154 . 276062) (-3155 . 275810) (-3156 . 275734) (-3157 . 275653) (-3158 . 275523) (-3159 . 275175) (-3160 . 275102) (-3161 . 274920) (-3162 . 273789) (-3163 . 273711) (-3164 . 273560) (-3165 . 273508) (-3166 . 273342) (-3167 . 273230) (-3168 . 273163) (-3169 . 271024) (-3170 . 270953) (-3171 . 270900) (-3172 . 270709) (-3173 . 270612) (-3174 . 270560) (-3175 . 270480) (-3176 . 268261) (-3177 . 268217) (-3178 . 268049) (-3179 . 267932) (-3180 . 267796) (-3181 . 267713) (-3182 . 267607) (-3183 . 267533) (-3184 . 267240) (-3185 . 267203) (-3186 . 267105) (-3187 . 266968) (-3188 . 260426) (-3189 . 260088) (-3190 . 260018) (-3191 . 259941) (-3192 . 259827) (-3193 . 259726) (-3194 . 259640) (-3195 . 255836) (-3196 . 255745) (-3197 . 255689) (-3198 . 255573) (-3199 . 255491) (-3200 . 255372) (-3201 . 255282) (-3202 . 255216) (-3203 . 255129) (-3204 . 255078) (-3205 . 254027) (-3206 . 253739) (-3207 . 253467) (-3208 . 253146) (-3209 . 253028) (-3210 . 252903) (-3211 . 252769) (-3212 . 252623) (-3213 . 252305) (-3214 . 252132) (-3215 . 252036) (-3216 . 251519) (-3217 . 251460) (-3218 . 251308) (-3219 . 251239) (-3220 . 250960) (-3221 . 250445) (-3222 . 250347) (-3223 . 250230) (-3224 . 250157) (-3225 . 250129) (-3226 . 250027) (-3227 . 249847) (-3228 . 249713) (-3229 . 249679) (-3230 . 249591) (-3231 . 249475) (-3232 . 249351) (-3233 . 249249) (-3234 . 249145) (-3235 . 249079) (-3236 . 248840) (-3237 . 247835) (-3238 . 247739) (-3239 . 247541) (-3240 . 247404) (-3241 . 246527) (-3242 . 246452) (-3243 . 246283) (-3244 . 246193) (-3245 . 246165) (-3246 . 246011) (-3247 . 245875) (-3248 . 245642) (-3249 . 245568) (-3250 . 245493) (-3251 . 245372) (-3252 . 245320) (-3253 . 245220) (-3254 . 245131) (-3255 . 245065) (-3256 . 244981) (-3257 . 244879) (-3258 . 244727) (-3259 . 244674) (-3260 . 244505) (-3261 . 244427) (** . 241469) (-3263 . 241376) (-3264 . 241137) (-3265 . 241046) (-3266 . 240856) (-3267 . 240705) (-3268 . 240605) (-3269 . 240507) (-3270 . 240303) (-3271 . 240201) (-3272 . 240014) (-3273 . 239903) (-3274 . 239812) (-3275 . 239740) (-3276 . 239252) (-3277 . 239181) (-3278 . 239109) (-3279 . 238783) (-3280 . 238710) (-3281 . 238561) (-3282 . 238501) (-3283 . 238442) (-3284 . 238272) (-3285 . 238153) (-3286 . 238009) (-3287 . 237927) (-3288 . 237854) (-3289 . 237697) (-3290 . 237531) (-3291 . 237442) (-3292 . 237156) (-3293 . 237071) (-3294 . 236988) (-3295 . 236825) (-3296 . 236711) (-3297 . 236495) (-3298 . 236260) (-3299 . 236058) (-3300 . 235969) (-3301 . 235877) (-3302 . 235729) (-3303 . 235541) (-3304 . 235275) (-3305 . 235185) (-3306 . 235106) (-3307 . 234984) (-3308 . 234917) (-3309 . 234853) (-3310 . 234798) (-3311 . 234724) (-3312 . 234599) (-3313 . 234517) (-3314 . 234023) (-3315 . 233524) (-3316 . 233311) (-3317 . 232767) (-3318 . 232642) (-3319 . 232485) (-3320 . 232312) (-3321 . 232116) (-3322 . 232049) (-3323 . 231880) (-3324 . 231671) (-3325 . 231615) (-3326 . 231228) (-3327 . 231113) (-3328 . 230810) (-3329 . 230461) (-3330 . 230378) (-3331 . 230205) (-3332 . 229930) (-3333 . 229856) (-3334 . 229797) (-3335 . 229746) (-3336 . 229412) (-3337 . 229322) (-3338 . 229239) (-3339 . 228807) (-3340 . 228687) (-3341 . 228448) (-3342 . 228396) (-3343 . 228298) (-3344 . 227928) (-3345 . 227819) (-3346 . 227748) (-3347 . 227610) (-3348 . 227523) (-3349 . 227448) (-3350 . 227335) (-3351 . 227250) (-3352 . 227160) (-3353 . 227072) (-3354 . 227007) (-3355 . 226889) (-3356 . 226760) (-3357 . 226558) (-3358 . 226260) (-3359 . 226205) (-3360 . 225867) (-3361 . 225681) (-3362 . 225653) (-3363 . 225622) (-3364 . 225423) (-3365 . 225340) (-3366 . 225236) (-3367 . 224841) (-3368 . 224749) (-3369 . 224676) (-3370 . 224494) (-3371 . 224419) (-3372 . 224155) (-3373 . 223639) (-3374 . 223250) (-3375 . 223158) (-3376 . 223056) (-3377 . 222956) (-3378 . 222904) (-3379 . 222748) (-3380 . 222581) (-3381 . 222474) (-3382 . 222320) (-3383 . 222222) (-3384 . 222151) (-3385 . 222054) (-3386 . 221980) (-3387 . 221860) (-3388 . 221773) (-3389 . 221673) (-3390 . 221590) (-3391 . 221431) (-3392 . 221272) (-3393 . 221190) (-3394 . 221088) (-3395 . 221019) (-3396 . 220953) (-3397 . 220870) (-3398 . 220680) (-3399 . 220491) (-3400 . 220393) (-3401 . 220322) (-3402 . 220120) (-3403 . 220020) (-3404 . 219937) (-3405 . 219837) (-3406 . 219763) (-3407 . 219671) (-3408 . 219642) (-3409 . 219471) (-3410 . 219338) (-3411 . 219304) (-3412 . 218991) (-3413 . 218912) (-3414 . 218803) (-3415 . 218711) (-3416 . 218630) (-3417 . 218475) (-3418 . 218317) (-3419 . 218110) (-3420 . 217204) (-3421 . 217034) (-3422 . 216604) (-3423 . 216365) (-3424 . 216113) (-3425 . 215965) (-3426 . 215831) (-3427 . 215721) (-3428 . 215608) (-3429 . 215571) (-3430 . 215172) (-3431 . 215090) (-3432 . 214997) (-3433 . 214884) (-3434 . 214624) (-3435 . 214491) (-3436 . 214423) (-3437 . 214389) (-3438 . 214334) (-3439 . 214232) (-3440 . 214144) (-3441 . 213947) (-3442 . 213876) (-3443 . 213748) (-3444 . 213674) (-3445 . 213542) (-3446 . 213441) (-3447 . 213391) (-3448 . 213067) (-3449 . 213035) (-3450 . 212986) (-3451 . 212933) (-3452 . 212233) (-3453 . 212097) (-3454 . 212005) (-3455 . 211839) (-3456 . 211757) (-3457 . 211645) (-3458 . 211586) (-3459 . 211505) (-3460 . 211451) (-3461 . 211143) (-3462 . 211046) (-3463 . 210592) (-3464 . 210471) (-3465 . 210398) (-3466 . 210321) (-3467 . 210150) (-3468 . 210079) (-3469 . 209995) (-3470 . 209921) (-3471 . 209656) (-3472 . 209469) (-3473 . 208650) (-3474 . 208561) (-3475 . 208428) (-3476 . 208168) (-3477 . 208078) (-3478 . 207946) (-3479 . 207824) (-3480 . 207796) (-3481 . 207729) (-3482 . 207596) (-3483 . 203858) (-3484 . 203452) (-3485 . 203246) (-3486 . 203158) (-3487 . 202958) (-3488 . 202903) (-3489 . 202813) (-3490 . 197966) (-3491 . 197733) (-3492 . 194794) (-3493 . 194752) (-3494 . 194422) (-3495 . 194277) (-3496 . 193994) (-3497 . 193890) (-3498 . 193726) (-3499 . 193636) (-3500 . 193524) (-3501 . 193228) (-3502 . 193124) (-3503 . 193042) (-3504 . 192672) (-3505 . 192597) (-3506 . 192291) (-3507 . 192212) (-3508 . 191650) (-3509 . 191522) (-3510 . 191449) (-3511 . 191315) (-3512 . 190935) (-3513 . 190851) (-3514 . 190069) (-3515 . 189974) (-3516 . 189737) (-3517 . 189438) (-3518 . 188766) (-3519 . 188669) (-3520 . 188453) (-3521 . 188315) (-3522 . 188110) (-3523 . 187504) (-3524 . 187436) (-3525 . 187348) (-3526 . 187294) (-3527 . 187164) (-3528 . 186979) (-3529 . 186897) (-3530 . 186822) (-3531 . 186651) (-3532 . 186549) (-3533 . 185988) (-3534 . 185890) (-3535 . 185837) (-3536 . 185693) (-3537 . 185499) (-3538 . 185339) (-3539 . 185111) (-3540 . 184956) (-3541 . 184852) (-3542 . 184576) (-3543 . 184486) (-3544 . 184458) (-3545 . 184306) (-3546 . 184235) (-3547 . 180798) (-3548 . 180674) (-3549 . 180057) (-3550 . 179513) (-3551 . 179183) (-3552 . 178346) (-3553 . 178265) (-3554 . 178192) (-3555 . 178015) (-3556 . 177932) (-3557 . 177661) (-3558 . 177293) (-3559 . 177146) (-3560 . 176897) (-3561 . 176845) (-3562 . 176767) (-3563 . 176692) (-3564 . 176384) (-3565 . 176316) (-3566 . 176190) (-3567 . 176108) (-3568 . 176053) (-3569 . 175926) (-3570 . 175724) (-3571 . 175654) (-3572 . 175276) (-3573 . 175059) (-3574 . 174922) (-3575 . 174614) (-3576 . 174521) (-3577 . 174424) (-3578 . 174348) (-3579 . 174164) (-3580 . 174035) (-3581 . 173731) (-3582 . 173562) (-3583 . 173272) (-3584 . 172479) (-3585 . 172171) (-3586 . 172028) (-3587 . 171837) (-3588 . 171286) (-3589 . 171107) (-3590 . 171036) (-3591 . 170628) (-3592 . 170328) (-3593 . 170226) (-3594 . 170153) (-3595 . 169911) (-3596 . 169804) (-3597 . 169677) (-3598 . 169624) (-3599 . 169550) (-3600 . 169497) (-3601 . 169441) (-3602 . 169392) (-3603 . 169087) (-3604 . 169013) (-3605 . 168935) (-3606 . 168901) (-3607 . 168700) (-3608 . 168461) (-3609 . 168395) (-3610 . 168303) (-3611 . 168247) (-3612 . 168162) (-3613 . 167459) (-3614 . 167069) (-3615 . 166951) (-3616 . 166847) (-3617 . 166747) (-3618 . 166534) (-3619 . 166437) (-3620 . 166347) (-3621 . 166151) (-3622 . 166031) (-3623 . 165954) (-3624 . 165801) (-3625 . 165618) (-3626 . 165466) (-3627 . 165376) (-3628 . 165327) (-3629 . 164984) (-3630 . 164786) (-3631 . 164512) (-3632 . 164460) (-3633 . 164411) (-3634 . 163807) (-3635 . 163602) (-3636 . 163444) (-3637 . 163351) (-3638 . 163255) (-3639 . 162768) (-3640 . 162690) (-3641 . 162541) (-3642 . 162356) (-3643 . 162282) (-3644 . 162175) (-3645 . 161963) (-3646 . 161860) (-3647 . 161804) (-3648 . 161748) (-3649 . 161055) (-3650 . 160941) (-3651 . 160816) (-3652 . 160535) (-3653 . 160436) (-3654 . 160364) (-3655 . 160148) (-3656 . 159996) (-3657 . 159894) (-3658 . 159810) (-3659 . 159782) (-3660 . 159418) (-3661 . 159278) (-3662 . 159126) (-3663 . 159043) (-3664 . 157994) (-3665 . 157632) (-3666 . 157516) (-3667 . 157488) (-3668 . 157405) (-3669 . 157312) (-3670 . 157152) (-3671 . 156381) (-3672 . 156259) (-3673 . 156201) (-3674 . 156099) (-3675 . 155947) (-3676 . 155527) (-3677 . 155368) (-3678 . 155294) (-3679 . 153701) (-3680 . 153530) (-3681 . 153246) (-3682 . 153196) (-3683 . 153024) (-3684 . 152937) (-3685 . 152854) (-3686 . 152682) (-3687 . 152600) (-3688 . 152532) (-3689 . 151348) (-3690 . 151259) (-3691 . 129924) (-3692 . 129896) (-3693 . 129844) (-3694 . 129033) (-3695 . 128926) (-3696 . 128790) (-3697 . 128557) (-3698 . 128341) (-3699 . 125803) (-3700 . 125752) (-3701 . 125674) (-3702 . 125594) (-3703 . 125126) (-3704 . 124367) (-3705 . 123995) (-3706 . 123736) (-3707 . 123563) (-3708 . 123368) (-3709 . 123306) (-3710 . 123144) (-3711 . 122755) (-3712 . 122659) (-3713 . 122431) (-3714 . 122379) (-3715 . 121745) (-3716 . 121207) (-3717 . 119172) (-3718 . 118039) (-3719 . 117806) (-3720 . 117729) (-3721 . 117640) (-3722 . 117510) (-3723 . 117401) (-3724 . 117339) (-3725 . 117103) (-3726 . 116959) (-3727 . 116183) (-3728 . 114868) (-3729 . 114677) (-3730 . 114572) (-3731 . 114413) (-3732 . 114337) (-3733 . 113860) (-3734 . 113721) (-3735 . 113304) (-3736 . 113250) (-3737 . 113129) (-3738 . 113009) (-3739 . 107819) (-3740 . 107693) (-3741 . 107541) (-3742 . 107423) (-3743 . 107046) (-3744 . 106850) (-3745 . 106751) (-3746 . 106634) (-3747 . 106500) (-3748 . 106469) (-3749 . 106030) (-3750 . 105999) (-3751 . 105735) (-3752 . 105185) (-3753 . 105023) (-3754 . 103786) (-3755 . 103451) (-3756 . 103282) (-3757 . 103212) (-3758 . 103123) (-3759 . 103045) (-3760 . 102780) (-3761 . 102611) (-3762 . 102312) (-3763 . 102166) (-3764 . 101849) (-3765 . 97695) (-3766 . 97135) (-3767 . 96977) (-3768 . 96891) (-3769 . 96783) (-3770 . 96505) (-3771 . 96396) (-3772 . 96336) (-3773 . 96179) (-3774 . 95623) (-3775 . 95589) (-3776 . 95390) (-3777 . 95307) (-3778 . 95221) (-3779 . 95153) (-3780 . 94951) (-3781 . 94445) (-3782 . 94374) (-3783 . 94325) (-3784 . 94270) (-3785 . 94055) (-3786 . 93989) (-3787 . 92452) (-3788 . 92351) (-3789 . 92248) (-3790 . 91119) (-3791 . 90965) (-3792 . 90913) (-3793 . 90860) (-3794 . 90049) (-3795 . 90000) (-3796 . 89044) (-3797 . 87916) (-3798 . 87656) (-3799 . 87597) (-3800 . 86387) (-3801 . 86237) (-3802 . 86119) (-3803 . 84032) (-3804 . 83930) (-3805 . 83585) (-3806 . 83489) (-3807 . 83316) (-3808 . 83164) (-3809 . 81025) (-3810 . 80770) (-3811 . 79905) (-3812 . 79826) (-3813 . 79483) (-3814 . 79359) (-3815 . 79221) (-3816 . 79123) (-3817 . 79030) (-3818 . 77306) (-3819 . 76501) (-3820 . 76369) (-3821 . 76314) (-3822 . 74893) (-3823 . 74819) (-3824 . 74747) (-3825 . 74657) (-3826 . 73203) (-3827 . 73144) (-3828 . 73062) (-3829 . 72849) (-3830 . 72709) (-3831 . 72655) (-3832 . 72484) (-3833 . 71778) (-3834 . 71711) (-3835 . 71683) (-3836 . 71593) (-3837 . 71438) (-3838 . 71360) (-3839 . 71305) (-3840 . 71039) (-3841 . 70914) (-3842 . 70839) (-3843 . 70620) (-3844 . 70298) (-3845 . 69697) (-3846 . 69626) (-3847 . 69527) (-3848 . 69457) (-3849 . 69404) (-3850 . 68299) (-3851 . 68215) (-3852 . 68091) (-3853 . 67991) (-3854 . 67882) (-3855 . 67776) (-3856 . 67642) (-3857 . 67499) (-3858 . 66429) (-3859 . 66325) (-3860 . 66193) (-3861 . 65897) (-3862 . 65822) (-3863 . 65730) (-3864 . 65655) (-3865 . 65372) (-3866 . 65291) (-3867 . 65126) (-3868 . 64885) (-3869 . 64790) (-3870 . 64737) (-3871 . 64648) (-3872 . 64540) (-3873 . 64461) (-3874 . 64309) (-3875 . 63919) (-3876 . 63545) (-3877 . 63467) (-3878 . 63329) (-3879 . 63273) (-3880 . 63206) (-3881 . 63054) (-3882 . 62688) (-3883 . 62556) (-3884 . 61744) (-3885 . 61606) (-3886 . 60649) (-3887 . 60612) (-3888 . 60532) (-3889 . 60384) (-3890 . 60279) (-3891 . 60030) (-3892 . 59607) (-3893 . 59483) (-3894 . 59377) (-3895 . 59311) (-3896 . 59239) (-3897 . 58842) (-3898 . 58784) (-3899 . 58613) (-3900 . 58478) (-3901 . 58196) (-3902 . 58084) (-3903 . 57969) (-3904 . 57917) (-3905 . 57800) (-3906 . 57666) (-3907 . 57508) (-3908 . 57370) (-3909 . 57342) (-3910 . 57134) (-3911 . 57078) (-3912 . 57005) (-3913 . 56751) (-3914 . 56546) (-3915 . 55219) (-3916 . 55101) (-3917 . 54985) (-3918 . 54904) (-3919 . 54814) (-3920 . 54676) (-3921 . 53839) (-3922 . 53714) (-3923 . 53583) (-3924 . 53445) (-3925 . 53390) (-3926 . 53338) (-3927 . 53203) (-3928 . 53070) (-3929 . 52366) (-3930 . 52214) (-3931 . 52145) (-3932 . 52056) (-3933 . 51352) (-3934 . 50742) (-3935 . 50624) (-3936 . 50497) (-3937 . 49845) (-3938 . 49796) (-3939 . 49715) (-3940 . 49169) (-3941 . 49077) (-3942 . 48975) (-3943 . 48760) (-3944 . 48621) (-3945 . 48075) (-3946 . 47964) (-3947 . 47873) (-3948 . 47605) (-3949 . 47059) (-3950 . 46946) (-3951 . 46882) (-3952 . 46232) (-3953 . 46204) (-3954 . 45799) (-3955 . 45149) (-3956 . 44972) (-3957 . 44844) (-3958 . 44132) (-3959 . 43834) (-3960 . 43523) (-3961 . 42979) (-3962 . 42909) (-3963 . 42753) (-3964 . 42209) (-3965 . 41393) (-3966 . 41322) (-3967 . 40778) (-3968 . 40525) (-3969 . 40284) (-3970 . 39633) (-3971 . 39365) (-3972 . 39256) (-3973 . 39158) (-3974 . 39101) (-3975 . 38450) (-3976 . 38397) (-3977 . 38074) (-3978 . 37423) (-3979 . 36684) (-3980 . 36576) (-3981 . 36031) (-3982 . 35816) (-3983 . 35602) (-3984 . 35057) (-3985 . 34980) (-3986 . 34578) (-3987 . 34003) (-3988 . 33951) (-3989 . 33738) (-3990 . 33664) (-3991 . 33119) (-3992 . 33005) (-3993 . 32949) (-3994 . 32871) (-3995 . 32327) (-3996 . 32251) (-3997 . 32077) (-3998 . 31592) (-3999 . 31048) (-4000 . 30942) (-4001 . 30861) (-4002 . 30408) (-4003 . 29864) (-4004 . 29749) (-4005 . 29642) (-4006 . 29437) (-4007 . 29204) (-4008 . 28660) (-4009 . 27423) (-4010 . 26955) (-4011 . 26800) (-4012 . 26728) (-4013 . 26184) (-4014 . 26069) (-4015 . 26017) (-4016 . 25896) (-4017 . 25844) (-4018 . 25755) (-4019 . 25667) (-4020 . 25519) (-4021 . 25445) (-4022 . 25227) (-4023 . 25174) (-4024 . 25122) (-4025 . 25038) (-4026 . 24855) (-4027 . 24651) (-4028 . 24503) (-4029 . 24427) (-4030 . 24353) (-4031 . 24217) (-4032 . 24143) (-4033 . 23998) (-4034 . 23896) (-4035 . 23819) (-4036 . 23724) (-4037 . 23586) (-4038 . 23423) (-4039 . 23374) (-4040 . 23162) (-4041 . 22983) (-4042 . 22927) (-4043 . 22533) (-4044 . 22431) (-4045 . 22375) (-4046 . 22150) (-4047 . 22077) (-4048 . 21988) (-4049 . 21892) (-4050 . 21784) (-4051 . 21588) (-4052 . 21560) (-4053 . 21489) (-4054 . 21415) (-4055 . 21282) (-4056 . 21226) (-4057 . 21130) (-4058 . 21005) (-4059 . 20953) (-4060 . 20897) (-4061 . 20659) (-4062 . 20460) (-4063 . 19073) (-4064 . 18803) (-4065 . 18650) (-4066 . 18451) (-4067 . 18213) (-4068 . 18119) (-4069 . 18004) (-4070 . 17754) (-4071 . 17602) (-4072 . 17540) (-4073 . 17405) (-4074 . 17335) (-4075 . 17283) (-4076 . 17104) (-4077 . 16759) (-4078 . 16689) (-4079 . 16580) (-4080 . 16435) (-4081 . 15336) (-4082 . 15227) (-4083 . 15102) (-4084 . 14897) (-4085 . 14819) (-4086 . 14738) (-4087 . 14554) (-4088 . 14498) (-4089 . 14389) (-4090 . 14262) (-4091 . 14115) (-4092 . 14025) (-4093 . 13952) (-4094 . 13893) (-4095 . 13841) (-4096 . 13628) (-4097 . 13406) (-4098 . 13354) (-4099 . 13283) (-4100 . 13252) (-4101 . 12579) (-4102 . 12390) (-4103 . 12266) (-4104 . 12117) (-4105 . 11936) (-4106 . 11874) (-4107 . 11711) (-4108 . 11592) (-4109 . 11498) (-4110 . 11344) (-4111 . 11073) (-4112 . 11042) (-4113 . 10848) (-4114 . 9002) (-4115 . 8929) (-4116 . 8678) (-4117 . 8349) (-4118 . 8297) (-4119 . 7475) (-4120 . 7422) (-4121 . 7012) (-4122 . 6750) (-4123 . 6642) (-4124 . 6605) (-4125 . 6505) (-4126 . 6433) (-4127 . 6286) (-4128 . 6105) (-4129 . 5163) (-4130 . 4624) (-4131 . 4489) (-4132 . 4072) (-4133 . 3728) (-4134 . 3694) (-4135 . 3539) (-4136 . 3418) (-4137 . 2368) (-4138 . 1899) (-4139 . 1249) (-4140 . 1197) (-4141 . 977) (-4142 . 815) (-4143 . 734) (-4144 . 600) (-4145 . 521) (-4146 . 274) (-4147 . 30)) \ No newline at end of file +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109))))) +(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))) +(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1042)))) +(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4)))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-761))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154))))) +(((*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517))))) +(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848))))) +(((*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1077))))) +(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1130 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107))))) +(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)) (-5 *3 (-517))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108))))) +(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 *4)) (-5 *1 (-1017 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-961)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-961))))) +(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1130 *4))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2))))) +(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108))))) +(((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1069 *6)) (-1069 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777)))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1073))) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-843)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1056)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-843)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-735)))) +(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1 *1 *1) (-5 *1 (-787)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-364)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1089)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1089))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-1081 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-104))))) +(((*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1056)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1073)) (-5 *1 (-493)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))) +(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156))))) +(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-1153 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180))))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517)))))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-102 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))) +(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1003) (-952 *5))) (-4 *5 (-808 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-853 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-407)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *1 *1) (-4 *1 (-509)))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))) ((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) ((*1 *1 *1) (-12 (-14 *2 (-583 (-1073))) (-4 *3 (-156)) (-4 *5 (-212 (-2296 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *3 *5 (-789 *2))))) ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) ((*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-961)) (-4 *3 (-659)))) ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-944 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3591 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -3591 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-408 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-982 *3)) (-14 *3 *2))) ((*1 *1 *1) (-5 *1 (-1073)))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961))))) +(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-825 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1080 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3))))) +(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-1025 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *2 *5 (-789 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156))))) +(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961))))) +(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319))))) +(((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-131)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131))))) +((-1185 . 682053) (-1186 . 681983) (-1187 . 681900) (-1188 . 681845) (-1189 . 681772) (-1190 . 681486) (-1191 . 680381) (-1192 . 680296) (-1193 . 680215) (-1194 . 680016) (-1195 . 679884) (-1196 . 679807) (-1197 . 679691) (-1198 . 679608) (-1199 . 679534) (-1200 . 679477) (-1201 . 679368) (-1202 . 679283) (-1203 . 679210) (-1204 . 678884) (-1205 . 678762) (-1206 . 678734) (-1207 . 678332) (-1208 . 677910) (-1209 . 677809) (-1210 . 677652) (-1211 . 677580) (-1212 . 676510) (-1213 . 676479) (-1214 . 676394) (-1215 . 676366) (-1216 . 676208) (-1217 . 675758) (-1218 . 675497) (-1219 . 675411) (-1220 . 675321) (-1221 . 675207) (-1222 . 675133) (-1223 . 675048) (-1224 . 674981) (-1225 . 674834) (-1226 . 674742) (-1227 . 674651) (-1228 . 674484) (-1229 . 674425) (-1230 . 674325) (-1231 . 674225) (-1232 . 674140) (-1233 . 674089) (-1234 . 673660) (-1235 . 673527) (-1236 . 673460) (-1237 . 673404) (-1238 . 673331) (-1239 . 673148) (-1240 . 673082) (-1241 . 673000) (-1242 . 672343) (-1243 . 672309) (-1244 . 672221) (-1245 . 672193) (-1246 . 668455) (-1247 . 668389) (-1248 . 668225) (-1249 . 668012) (-1250 . 667899) (-1251 . 667817) (-1252 . 667553) (-1253 . 667455) (-1254 . 667374) (-1255 . 667283) (-1256 . 666531) (-1257 . 665599) (-1258 . 665393) (-1259 . 665253) (-1260 . 665093) (-1261 . 664915) (-1262 . 664796) (-1263 . 664610) (-1264 . 664345) (-1265 . 664254) (-1266 . 664188) (-1267 . 664074) (-1268 . 663986) (-1269 . 663748) (-1270 . 663442) (-1271 . 663303) (-1272 . 663213) (-1273 . 663088) (-1274 . 663034) (-1275 . 662940) (-1276 . 662888) (-1277 . 662794) (-1278 . 662522) (-1279 . 662324) (-1280 . 662253) (-1281 . 662045) (-1282 . 661979) (-1283 . 661746) (-1284 . 661575) (-1285 . 661490) (-1286 . 661338) (-1287 . 661283) (-1288 . 661131) (-1289 . 661103) (-1290 . 660993) (-1291 . 660855) (-1292 . 660768) (-1293 . 660589) (-1294 . 660282) (-1295 . 660224) (-1296 . 660134) (-1297 . 660068) (-1298 . 659652) (-1299 . 659600) (-1300 . 659473) (-1301 . 659303) (-1302 . 659252) (-1303 . 658882) (-1304 . 658792) (-1305 . 658740) (-1306 . 658328) (-1307 . 658095) (-1308 . 655156) (-1309 . 655082) (-1310 . 654890) (-1311 . 654409) (-1312 . 654343) (-1313 . 653292) (-1314 . 653214) (-1315 . 653148) (-1316 . 652996) (-1317 . 652846) (-1318 . 652561) (-1319 . 652519) (-1320 . 652464) (-1321 . 652390) (-1322 . 652188) (-1323 . 651900) (-1324 . 651665) (-1325 . 651347) (-1326 . 651095) (-1327 . 651017) (-1328 . 650889) (-1329 . 650787) (-1330 . 650683) (-1331 . 650353) (-1332 . 650204) (-1333 . 649932) (-1334 . 649862) (-1335 . 649782) (-1336 . 649264) (-1337 . 648998) (-1338 . 648765) (-1339 . 647228) (-1340 . 647176) (-1341 . 647063) (-1342 . 646918) (-1343 . 646782) (-1344 . 646707) (-1345 . 646610) (-1346 . 646538) (-1347 . 646217) (-1348 . 645935) (-1349 . 645842) (-1350 . 645031) (-1351 . 644962) (-1352 . 644679) (-1353 . 644627) (-1354 . 644509) (-1355 . 643882) (-1356 . 643813) (-1357 . 643594) (-1358 . 643414) (-1359 . 643260) (-1360 . 643129) (-1361 . 643095) (-1362 . 642969) (-1363 . 642724) (-1364 . 641514) (-1365 . 641428) (-1366 . 641231) (-1367 . 640946) (-1368 . 640842) (-1369 . 640612) (-1370 . 640543) (-1371 . 640418) (-1372 . 640368) (-1373 . 640243) (-1374 . 640077) (-1375 . 639843) (-1376 . 639521) (-1377 . 639201) (-1378 . 638931) (-1379 . 638767) (-1380 . 638635) (-1381 . 638553) (-1382 . 638482) (-1383 . 638399) (-1384 . 638347) (-1385 . 638213) (-1386 . 638018) (-1387 . 637921) (-1388 . 637831) (-1389 . 637465) (-1390 . 637358) (-1391 . 637217) (-1392 . 637045) (-1393 . 636941) (-1394 . 636795) (-1395 . 636696) (-1396 . 636628) (-1397 . 636513) (-1398 . 636326) (-1399 . 636106) (-1400 . 635994) (-1401 . 634945) (-1402 . 634627) (-1403 . 634561) (-1404 . 634491) (-1405 . 634369) (-1406 . 634271) (-1407 . 634167) (-1408 . 634052) (-1409 . 633633) (-1410 . 633536) (-1411 . 633473) (-1412 . 633177) (-1413 . 632827) (-1414 . 632753) (-1415 . 632693) (-1416 . 632520) (-1417 . 632467) (-1418 . 632383) (-1419 . 632146) (-1420 . 631983) (-1421 . 631876) (-1422 . 631817) (-1423 . 631668) (-1424 . 631616) (-1425 . 631588) (-1426 . 631536) (-1427 . 631432) (-1428 . 631363) (-1429 . 631214) (-1430 . 631112) (-1431 . 630988) (-1432 . 630881) (-1433 . 630665) (-1434 . 630372) (-1435 . 630239) (-1436 . 630157) (-1437 . 630101) (-1438 . 630035) (-1439 . 629886) (-1440 . 629698) (-1441 . 629360) (-1442 . 629167) (-1443 . 629045) (-1444 . 628945) (-1445 . 628724) (-1446 . 628573) (-1447 . 628306) (-1448 . 627936) (-1449 . 623082) (-1450 . 623005) (-1451 . 622639) (-1452 . 622267) (-1453 . 622163) (-1454 . 622057) (-1455 . 621966) (-1456 . 621848) (-1457 . 621773) (-1458 . 621595) (-1459 . 621539) (-1460 . 621479) (-1461 . 619800) (-1462 . 619726) (-1463 . 619543) (-1464 . 619469) (-1465 . 619335) (-1466 . 619234) (-1467 . 619127) (-1468 . 618967) (-1469 . 618887) (-1470 . 618739) (-1471 . 618589) (-1472 . 618182) (-1473 . 618039) (-1474 . 617969) (-1475 . 617896) (-1476 . 617813) (-1477 . 617580) (-1478 . 617256) (-1479 . 617081) (-1480 . 616980) (-1481 . 616852) (-1482 . 616748) (-1483 . 616390) (-1484 . 616231) (-1485 . 615973) (-1486 . 615740) (-1487 . 615466) (-1488 . 615280) (-1489 . 615148) (-1490 . 615041) (-1491 . 614893) (-1492 . 614349) (-1493 . 614277) (-1494 . 614224) (-1495 . 614065) (-1496 . 613979) (-1497 . 613481) (-1498 . 613368) (-1499 . 613040) (-1500 . 612958) (-1501 . 612856) (-1502 . 612797) (-1503 . 612658) (-1504 . 612606) (-1505 . 612470) (-1506 . 610762) (-1507 . 610591) (-1508 . 610474) (-1509 . 610372) (-1510 . 610139) (-1511 . 610087) (-1512 . 609991) (-1513 . 609825) (-1514 . 609760) (-1515 . 609572) (-1516 . 609339) (-1517 . 608969) (-1518 . 608841) (-1519 . 608737) (-1520 . 608668) (-1521 . 608524) (-1522 . 608493) (-1523 . 608311) (-1524 . 608259) (-1525 . 608022) (-1526 . 607806) (-1527 . 607702) (-1528 . 607500) (-1529 . 607386) (-1530 . 607255) (-1531 . 607127) (-1532 . 607061) (-1533 . 606913) (-1534 . 606879) (-1535 . 606799) (-1536 . 606591) (-1537 . 606352) (-1538 . 606086) (-1539 . 606003) (-1540 . 605887) (-1541 . 605762) (-1542 . 605681) (-1543 . 605598) (-1544 . 605411) (-1545 . 605105) (-1546 . 605053) (-1547 . 604789) (-1548 . 604714) (-1549 . 604576) (-1550 . 604501) (-1551 . 604429) (-1552 . 603670) (-1553 . 603576) (-1554 . 603469) (-1555 . 603321) (-1556 . 603188) (-1557 . 603073) (-1558 . 602883) (-1559 . 602812) (-1560 . 602722) (-1561 . 602570) (-1562 . 602495) (-1563 . 602422) (-1564 . 602050) (-1565 . 601992) (-1566 . 601876) (-1567 . 601604) (-1568 . 601513) (-1569 . 601485) (-1570 . 601296) (-1571 . 600623) (-1572 . 600323) (-1573 . 600214) (-1574 . 600162) (-1575 . 600079) (-1576 . 600004) (-1577 . 599745) (-1578 . 599626) (-1579 . 599543) (-1580 . 599478) (-1581 . 599380) (-1582 . 599191) (-1583 . 599105) (-1584 . 599056) (-1585 . 598883) (-1586 . 598416) (-1587 . 598043) (-1588 . 597723) (-1589 . 597625) (-1590 . 595901) (-1591 . 595775) (-1592 . 595704) (-1593 . 595584) (-1594 . 595460) (-1595 . 595303) (-1596 . 595233) (-1597 . 595055) (-1598 . 594956) (-1599 . 594794) (-1600 . 594616) (-1601 . 593195) (-1602 . 593040) (-1603 . 592838) (-1604 . 592784) (-1605 . 592635) (-1606 . 592549) (-1607 . 592316) (-1608 . 591927) (-1609 . 591292) (-1610 . 591237) (-1611 . 590281) (-1612 . 590113) (-1613 . 588659) (-1614 . 588576) (-1615 . 588428) (-1616 . 588305) (-1617 . 588205) (-1618 . 588024) (-1619 . 587627) (-1620 . 587513) (-1621 . 587417) (-1622 . 587350) (-1623 . 587288) (-1624 . 587197) (-1625 . 587004) (-1626 . 586696) (-1627 . 586613) (-1628 . 586504) (-1629 . 586453) (-1630 . 586391) (-1631 . 586100) (-1632 . 585946) (-1633 . 585894) (-1634 . 585564) (-1635 . 585396) (-1636 . 585154) (-1637 . 584884) (-1638 . 584478) (-1639 . 584237) (-1640 . 584137) (-1641 . 583974) (-1642 . 582845) (-1643 . 582694) (-1644 . 582191) (-1645 . 582118) (-1646 . 581484) (-1647 . 580968) (-1648 . 580855) (-1649 . 580441) (-1650 . 580082) (-1651 . 580008) (-1652 . 579762) (-1653 . 579643) (-1654 . 578515) (-1655 . 578377) (-1656 . 578301) (-1657 . 578157) (-1658 . 578089) (-1659 . 577551) (-1660 . 577140) (-1661 . 577018) (-1662 . 576819) (-1663 . 576673) (-1664 . 576581) (-1665 . 576448) (-1666 . 576354) (-1667 . 574267) (-1668 . 574148) (-1669 . 574064) (-1670 . 574002) (-1671 . 573898) (-1672 . 572765) (-1673 . 572643) (-1674 . 563782) (-1675 . 563582) (-1676 . 563553) (-1677 . 563399) (-1678 . 563257) (-1679 . 563163) (-1680 . 563045) (-1681 . 562906) (-1682 . 562804) (-1683 . 562571) (-1684 . 562455) (-1685 . 562384) (-1686 . 562213) (-1687 . 562161) (-1688 . 562130) (-1689 . 561992) (-1690 . 561871) (-1691 . 561780) (-1692 . 561706) (-1693 . 561629) (-1694 . 561489) (-1695 . 561273) (-1696 . 561198) (-1697 . 561046) (-1698 . 560913) (-1699 . 560804) (-1700 . 560610) (-1701 . 559906) (-1702 . 559854) (-1703 . 559728) (-1704 . 559639) (-1705 . 559560) (-1706 . 559398) (-1707 . 559343) (-1708 . 559258) (-1709 . 559224) (-1710 . 557378) (-1711 . 556674) (-1712 . 556606) (-1713 . 556454) (-1714 . 556314) (-1715 . 556184) (-1716 . 556022) (-1717 . 555872) (-1718 . 555559) (-1719 . 555061) (-1720 . 554810) (-1721 . 554158) (-1722 . 554084) (-1723 . 553990) (-1724 . 553646) (-1725 . 553453) (-1726 . 553344) (-1727 . 553176) (-1728 . 553075) (-1729 . 552996) (-1730 . 552773) (-1731 . 552444) (-1732 . 551898) (-1733 . 551780) (-1734 . 551101) (-1735 . 550592) (-1736 . 550356) (-1737 . 550288) (-1738 . 550142) (-1739 . 550038) (-1740 . 549929) (-1741 . 549775) (-1742 . 549723) (-1743 . 549177) (-1744 . 549025) (-1745 . 548923) (-1746 . 548613) (-1747 . 548392) (-1748 . 548248) (-1749 . 547983) (-1750 . 547891) (-1751 . 547799) (-1752 . 547700) (-1753 . 546878) (-1754 . 546332) (-1755 . 546270) (-1756 . 546236) (-1757 . 546126) (-1758 . 545575) (-1759 . 544799) (-1760 . 544422) (-1761 . 544365) (-1762 . 544284) (-1763 . 544126) (-1764 . 544073) (-1765 . 543423) (-1766 . 543395) (-1767 . 543303) (-1768 . 543037) (-1769 . 542846) (-1770 . 541819) (-1771 . 541694) (-1772 . 537540) (-1773 . 537239) (-1774 . 537171) (-1775 . 537016) (-1776 . 536606) (-1777 . 535956) (-1778 . 535890) (-1779 . 535824) (-1780 . 535719) (-1781 . 535566) (-1782 . 535370) (-1783 . 535305) (-1784 . 535147) (-1785 . 534984) (-1786 . 534722) (-1787 . 534052) (-1788 . 533340) (-1789 . 533312) (-1790 . 532982) (-1791 . 532532) (-1792 . 532396) (-1793 . 532319) (-1794 . 532160) (-1795 . 531983) (-1796 . 531515) (-1797 . 531457) (-1798 . 531250) (-1799 . 531132) (-1800 . 530481) (-1801 . 530373) (-1802 . 529829) (-1803 . 529654) (-1804 . 529620) (-1805 . 529436) (-1806 . 529231) (-1807 . 529155) (-1808 . 529088) (-1809 . 528910) (-1810 . 528076) (-1811 . 527976) (-1812 . 527069) (-1813 . 527032) (-1814 . 526488) (-1815 . 526175) (-1816 . 525459) (-1817 . 525274) (-1818 . 525203) (-1819 . 525132) (-1820 . 524993) (-1821 . 524870) (-1822 . 524818) (-1823 . 524762) (-1824 . 524592) (-1825 . 524492) (-1826 . 524439) (-1827 . 523895) (-1828 . 523814) (-1829 . 523678) (-1830 . 523421) (-1831 . 523304) (-1832 . 522887) (-1833 . 522814) (-1834 . 522713) (-1835 . 522682) (-1836 . 522615) (-1837 . 522185) (-1838 . 522113) (-1839 . 521462) (-1840 . 521053) (-1841 . 520980) (-1842 . 520881) (-1843 . 520733) (-1844 . 520650) (-1845 . 520572) (-1846 . 520451) (-1847 . 520316) (-1848 . 520164) (-1849 . 519962) (-1850 . 519723) (-1851 . 519424) (-1852 . 519277) (-1853 . 518626) (-1854 . 518546) (-1855 . 518119) (-1856 . 517929) (-1857 . 517836) (-1858 . 517716) (-1859 . 517590) (-1860 . 517528) (-1861 . 517500) (-1862 . 517248) (-1863 . 513407) (-1864 . 513226) (-1865 . 512575) (-1866 . 512525) (-1867 . 511351) (-1868 . 511068) (-1869 . 510962) (-1870 . 510836) (-1871 . 510631) (-1872 . 510502) (-1873 . 510354) (-1874 . 509953) (-1875 . 509414) (-1876 . 508869) (-1877 . 508717) (-1878 . 508651) (-1879 . 508231) (-1880 . 508153) (-1881 . 507741) (-1882 . 507371) (-1883 . 506873) (-1884 . 506739) (-1885 . 506661) (-1886 . 506526) (-1887 . 505981) (-1888 . 505916) (-1889 . 505713) (-1890 . 505583) (-1891 . 505465) (-1892 . 505392) (-1893 . 492155) (-1894 . 492015) (-1895 . 491905) (-1896 . 491852) (-1897 . 491435) (-1898 . 490890) (-1899 . 490807) (-1900 . 490717) (-1901 . 490414) (-1902 . 490218) (-1903 . 490149) (-1904 . 489947) (-1905 . 489834) (-1906 . 489735) (-1907 . 487516) (-1908 . 487172) (-1909 . 487043) (-1910 . 486861) (-1911 . 486791) (-1912 . 486672) (-1913 . 486579) (-1914 . 486480) (-1915 . 486355) (-1916 . 486050) (-1917 . 486013) (-1918 . 485932) (-1919 . 485898) (-1920 . 485722) (-1921 . 485565) (-1922 . 485397) (-1923 . 485291) (-1924 . 485168) (-1925 . 485034) (-1926 . 484952) (-1927 . 484611) (-1928 . 484439) (-1929 . 484410) (-1930 . 484289) (-1931 . 483951) (-1932 . 483871) (-1933 . 483802) (-1934 . 483666) (-1935 . 483349) (-1936 . 483318) (-1937 . 483188) (-1938 . 483010) (-1939 . 482771) (-1940 . 482678) (-1941 . 481628) (-1942 . 481153) (-1943 . 481072) (-1944 . 481017) (-1945 . 480919) (-1946 . 478253) (-1947 . 478200) (-1948 . 477650) (-1949 . 477552) (-1950 . 477439) (-1951 . 477322) (-1952 . 477188) (-1953 . 476719) (-1954 . 476557) (-1955 . 476419) (-1956 . 476385) (-1957 . 476172) (-1958 . 476003) (-1959 . 475505) (-1960 . 475452) (-1961 . 475349) (-1962 . 475089) (-1963 . 475025) (-1964 . 474823) (-1965 . 474771) (-1966 . 474048) (-1967 . 473476) (-1968 . 473402) (-1969 . 473167) (-1970 . 473092) (-1971 . 472923) (-1972 . 472665) (-1973 . 472394) (-1974 . 472212) (-1975 . 472079) (-1976 . 471873) (-1977 . 471709) (-1978 . 471626) (-1979 . 471267) (-1980 . 471197) (-1981 . 470983) (-1982 . 470908) (-1983 . 469943) (-1984 . 469738) (-1985 . 469665) (-1986 . 469597) (-1987 . 469524) (-1988 . 469331) (-1989 . 469197) (-1990 . 469095) (-1991 . 469040) (-1992 . 468951) (-1993 . 468884) (-1994 . 468810) (-1995 . 468731) (-1996 . 468540) (-1997 . 468506) (-1998 . 468137) (-1999 . 468029) (-2000 . 467950) (-2001 . 467685) (-2002 . 467399) (-2003 . 467242) (-2004 . 467154) (-2005 . 466663) (-2006 . 466255) (-2007 . 466181) (-2008 . 466126) (-2009 . 465979) (-2010 . 465732) (-2011 . 465666) (-2012 . 465484) (-2013 . 465433) (-2014 . 465402) (-2015 . 465233) (-2016 . 464830) (-2017 . 464757) (-2018 . 464537) (-2019 . 464435) (-2020 . 464346) (-2021 . 464293) (-2022 . 464223) (-2023 . 464099) (-2024 . 463859) (-2025 . 463740) (-2026 . 463594) (-2027 . 463506) (-2028 . 463450) (-2029 . 463159) (-2030 . 463107) (-2031 . 462896) (-2032 . 462336) (-2033 . 461876) (-2034 . 461679) (-2035 . 461397) (-2036 . 461308) (-2037 . 461170) (-2038 . 461102) (-2039 . 460944) (-2040 . 460640) (-2041 . 460511) (-2042 . 460440) (-2043 . 460105) (-2044 . 459922) (-2045 . 459870) (-2046 . 459762) (-2047 . 458574) (-2048 . 458455) (-2049 . 458327) (-2050 . 458244) (-2051 . 454440) (-2052 . 453870) (-2053 . 453761) (-2054 . 453643) (-2055 . 453569) (-2056 . 453421) (-2057 . 453344) (-2058 . 453128) (-2059 . 452767) (-2060 . 452536) (-2061 . 451980) (-2062 . 451910) (-2063 . 451778) (-2064 . 451712) (-2065 . 451638) (-2066 . 451397) (-2067 . 451326) (-2068 . 451018) (-2069 . 450819) (-2070 . 450728) (-2071 . 449768) (-2072 . 449667) (-2073 . 449402) (-2074 . 449272) (-2075 . 449066) (-2076 . 448892) (-2077 . 448434) (-2078 . 448351) (-2079 . 448232) (-2080 . 448151) (-2081 . 447857) (-2082 . 447348) (-2083 . 447216) (-2084 . 447148) (-2085 . 447074) (-2086 . 446345) (-2087 . 446255) (-2088 . 445933) (-2089 . 445905) (-2090 . 445792) (-2091 . 445590) (-2092 . 445509) (-2093 . 445450) (-2094 . 445398) (-2095 . 445234) (-2096 . 445139) (-2097 . 445006) (-2098 . 444954) (-2099 . 444448) (-2100 . 444213) (-2101 . 443914) (-2102 . 443863) (-2103 . 443782) (-2104 . 442885) (-2105 . 442832) (-2106 . 442780) (-2107 . 442541) (-2108 . 442293) (-2109 . 441959) (-2110 . 440742) (-2111 . 440652) (-2112 . 440424) (-2113 . 440375) (-2114 . 440205) (-2115 . 440115) (-2116 . 439724) (-2117 . 439585) (-2118 . 439221) (-2119 . 439085) (-2120 . 439033) (-2121 . 438690) (-2122 . 438580) (-2123 . 438497) (-2124 . 438447) (-2125 . 438171) (-2126 . 437953) (-2127 . 437870) (-2128 . 437750) (-2129 . 437552) (-2130 . 437376) (-2131 . 437225) (-2132 . 435743) (-2133 . 435631) (-2134 . 435199) (-2135 . 434725) (-2136 . 434653) (-2137 . 434551) (-2138 . 434462) (-2139 . 434410) (-2140 . 434358) (-2141 . 434262) (-2142 . 434050) (-2143 . 433948) (-2144 . 433848) (-2145 . 433728) (-2146 . 433654) (-2147 . 433582) (-2148 . 433395) (-2149 . 433287) (-2150 . 433064) (-2151 . 432963) (-2152 . 432914) (-2153 . 432817) (-2154 . 432664) (-2155 . 432470) (-2156 . 432231) (-2157 . 432178) (-2158 . 432060) (-2159 . 431926) (-2160 . 431845) (-2161 . 431640) (-2162 . 431321) (-2163 . 431269) (-2164 . 431210) (-2165 . 431012) (-2166 . 430960) (-2167 . 430812) (-2168 . 430710) (-2169 . 430571) (-2170 . 430413) (-2171 . 430113) (-2172 . 430054) (-2173 . 430001) (-2174 . 429915) (-2175 . 429817) (-2176 . 429733) (-2177 . 429186) (-2178 . 429115) (-2179 . 429025) (-2180 . 428932) (-2181 . 428844) (-2182 . 428748) (-2183 . 428378) (-2184 . 428195) (-2185 . 428023) (-2186 . 427955) (-2187 . 427751) (-2188 . 427585) (-2189 . 427489) (-2190 . 427415) (-2191 . 427319) (-2192 . 427210) (-2193 . 427006) (-2194 . 426928) (-2195 . 426278) (-2196 . 426163) (-2197 . 425755) (-2198 . 425672) (-2199 . 425185) (-2200 . 425111) (-2201 . 425040) (-2202 . 424969) (-2203 . 424893) (-2204 . 424812) (-2205 . 424734) (-2206 . 424490) (-2207 . 424222) (-2208 . 423688) (-2209 . 423479) (-2210 . 423401) (-2211 . 422786) (-2212 . 422648) (-2213 . 422595) (-2214 . 422521) (-2215 . 422472) (-2216 . 421554) (-2217 . 421468) (-2218 . 421319) (-2219 . 421288) (-2220 . 421229) (-2221 . 421142) (-2222 . 421089) (-2223 . 420727) (-2224 . 420591) (-2225 . 420473) (-2226 . 420407) (-2227 . 420352) (-2228 . 420300) (-2229 . 420115) (-2230 . 420025) (-2231 . 419911) (-2232 . 419639) (-2233 . 419608) (-2234 . 419533) (-2235 . 419424) (-2236 . 419277) (-2237 . 418440) (-2238 . 418084) (-2239 . 417962) (-2240 . 417803) (-2241 . 417729) (-2242 . 417616) (-2243 . 417295) (-2244 . 417157) (-2245 . 416734) (-2246 . 416632) (-2247 . 416544) (-2248 . 416469) (-2249 . 416362) (-2250 . 416305) (-2251 . 416253) (-2252 . 416074) (-2253 . 415989) (-2254 . 415623) (-2255 . 415546) (-2256 . 394211) (-2257 . 393853) (-2258 . 393803) (-2259 . 393593) (-2260 . 393490) (-2261 . 392306) (-2262 . 392033) (-2263 . 392002) (-2264 . 391912) (-2265 . 391730) (-2266 . 391635) (-2267 . 391540) (-2268 . 391440) (-2269 . 391384) (-2270 . 391294) (-2271 . 390981) (-2272 . 390893) (-2273 . 390535) (-2274 . 390012) (-2275 . 389874) (-2276 . 387336) (-2277 . 387141) (-2278 . 386505) (-2279 . 386449) (-2280 . 386397) (-2281 . 386332) (-2282 . 386279) (-2283 . 386224) (-2284 . 386073) (-2285 . 385910) (-2286 . 385794) (-2287 . 385713) (-2288 . 385622) (-2289 . 384929) (-2290 . 384759) (-2291 . 384678) (-2292 . 384597) (-2293 . 384371) (-2294 . 384253) (-2295 . 384204) (-2296 . 383900) (-2297 . 383872) (-2298 . 383717) (-2299 . 383662) (-2300 . 383300) (-2301 . 383186) (-2302 . 382912) (-2303 . 382793) (-2304 . 382468) (-2305 . 382375) (-2306 . 382246) (-2307 . 382034) (-2308 . 381953) (-2309 . 381804) (-2310 . 381705) (-2311 . 381526) (-2312 . 381401) (-2313 . 381326) (-2314 . 381124) (-2315 . 380809) (-2316 . 380411) (-2317 . 380232) (-2318 . 380130) (-2319 . 378095) (-2320 . 378067) (-2321 . 377895) (-2322 . 377614) (-2323 . 377583) (-2324 . 377328) (-2325 . 377192) (-2326 . 376894) (-2327 . 376795) (-2328 . 376739) (-2329 . 376637) (-2330 . 376437) (-2331 . 376364) (-2332 . 375998) (-2333 . 375924) (-2334 . 375825) (-2335 . 375750) (-2336 . 375633) (-2337 . 375450) (-2338 . 375422) (-2339 . 375367) (-2340 . 375215) (-2341 . 375162) (-2342 . 374937) (-2343 . 374875) (-2344 . 374769) (-2345 . 374546) (-2346 . 374512) (-2347 . 374364) (-2348 . 374292) (-2349 . 373848) (-2350 . 373510) (-2351 . 373437) (-2352 . 372122) (-2353 . 372047) (-2354 . 371959) (-2355 . 371743) (-2356 . 371684) (-2357 . 371217) (-2358 . 371031) (-2359 . 370942) (-2360 . 370803) (-2361 . 370774) (-2362 . 370622) (-2363 . 370436) (-2364 . 370276) (-2365 . 370192) (-2366 . 370164) (-2367 . 370068) (-2368 . 369744) (-2369 . 369670) (-2370 . 369568) (-2371 . 369414) (-2372 . 369174) (-2373 . 368706) (-2374 . 368632) (-2375 . 368601) (-2376 . 368493) (-2377 . 368425) (-2378 . 368342) (-2379 . 368232) (-2380 . 368180) (-2381 . 368096) (-2382 . 368030) (-2383 . 367831) (-2384 . 367701) (-2385 . 367505) (-2386 . 367477) (-2387 . 367394) (-2388 . 367293) (-2389 . 367265) (-2390 . 367123) (-2391 . 367057) (-2392 . 366974) (-2393 . 366630) (-2394 . 366602) (-2395 . 366102) (-2396 . 365934) (-2397 . 365868) (-2398 . 365809) (-2399 . 365580) (-2400 . 365504) (-2401 . 365398) (-2402 . 365034) (-2403 . 364769) (-2404 . 364706) (-2405 . 364602) (-2406 . 364477) (-2407 . 364382) (-2408 . 364301) (-2409 . 364058) (-2410 . 363849) (-2411 . 362612) (-2412 . 362395) (-2413 . 362257) (-2414 . 362105) (-2415 . 362034) (-2416 . 361909) (-2417 . 361820) (-2418 . 361425) (-2419 . 361373) (-2420 . 360543) (-2421 . 360434) (-2422 . 360379) (-2423 . 360241) (-2424 . 360094) (-2425 . 360011) (-2426 . 359492) (-2427 . 359440) (-2428 . 359348) (-2429 . 359295) (-2430 . 359099) (-2431 . 358861) (-2432 . 358753) (-2433 . 358436) (-2434 . 358179) (-2435 . 357997) (-2436 . 357635) (-2437 . 357513) (-2438 . 357444) (-2439 . 357371) (-2440 . 357201) (-2441 . 356931) (-2442 . 356810) (-2443 . 356730) (-2444 . 356493) (-2445 . 356396) (-2446 . 356257) (-2447 . 356174) (-2448 . 356087) (-2449 . 355905) (-2450 . 355850) (-2451 . 355759) (-2452 . 355149) (-2453 . 354996) (-2454 . 354944) (-2455 . 354741) (-2456 . 354661) (-2457 . 354627) (-2458 . 354555) (-2459 . 354481) (-2460 . 354415) (-2461 . 354322) (-2462 . 354211) (-2463 . 354136) (-2464 . 353894) (-2465 . 353695) (-2466 . 353646) (-2467 . 353381) (-2468 . 352607) (-2469 . 352500) (-2470 . 352340) (-2471 . 352288) (-2472 . 352024) (-2473 . 351645) (-2474 . 351022) (-2475 . 350784) (-2476 . 349973) (-2477 . 349885) (-2478 . 349783) (-2479 . 349667) (-2480 . 349432) (-2481 . 348989) (-2482 . 348218) (-2483 . 348124) (-2484 . 347966) (-2485 . 347450) (-2486 . 347296) (-2487 . 347090) (-2488 . 346990) (-2489 . 346802) (-2490 . 346709) (-2491 . 346587) (-2492 . 346503) (-2493 . 346447) (-2494 . 346058) (-2495 . 345972) (-2496 . 345857) (-2497 . 345761) (-2498 . 345623) (-2499 . 345395) (-2500 . 345334) (-2501 . 344117) (-2502 . 344059) (-2503 . 343990) (-2504 . 343898) (-2505 . 343825) (-2506 . 343575) (-2507 . 342933) (-2508 . 342850) (-2509 . 342790) (-2510 . 342690) (-2511 . 342588) (-2512 . 342437) (-2513 . 341495) (-2514 . 341373) (-2515 . 341189) (-2516 . 341087) (-2517 . 341014) (-2518 . 340918) (-2519 . 340766) (-2520 . 340666) (-2521 . 340359) (-2522 . 340255) (-2523 . 340115) (-2524 . 339963) (-2525 . 339870) (-2526 . 339753) (-2527 . 339678) (-2528 . 339578) (-2529 . 339488) (-2530 . 339353) (-2531 . 339322) (-2532 . 339247) (-2533 . 339084) (-2534 . 338762) (-2535 . 338342) (-2536 . 338127) (-2537 . 338048) (-2538 . 337964) (-2539 . 337912) (-2540 . 337842) (-2541 . 336455) (-2542 . 336124) (-2543 . 336035) (-2544 . 335876) (-2545 . 335759) (-2546 . 335683) (-2547 . 335435) (-2548 . 335283) (-2549 . 335147) (-2550 . 334991) (-2551 . 334939) (-2552 . 334882) (-2553 . 334808) (-2554 . 334737) (-2555 . 334587) (-2556 . 334392) (-2557 . 334286) (-2558 . 334209) (-2559 . 334107) (-2560 . 333940) (-2561 . 333858) (-2562 . 333679) (-2563 . 333603) (-2564 . 333493) (-2565 . 333296) (-2566 . 333221) (-2567 . 331628) (-2568 . 331277) (-2569 . 331225) (-2570 . 330990) (-2571 . 330897) (-2572 . 330790) (-2573 . 330501) (-2574 . 330156) (-2575 . 329993) (-2576 . 329940) (-2577 . 329805) (-2578 . 329749) (-2579 . 329578) (-2580 . 329507) (-2581 . 329454) (-2582 . 329319) (-2583 . 329223) (-2584 . 329069) (-2585 . 328960) (-2586 . 328904) (-2587 . 328683) (-2588 . 328333) (-2589 . 328113) (-2590 . 328009) (-2591 . 327725) (-2592 . 327563) (-2593 . 327513) (-2594 . 327292) (-2595 . 327105) (-2596 . 326943) (-2597 . 326845) (-2598 . 326700) (-2599 . 326622) (-2600 . 326459) (-2601 . 326409) (-2602 . 326266) (-2603 . 326157) (-2604 . 326045) (-2605 . 325974) (-2606 . 325666) (-2607 . 325166) (-2608 . 325095) (-2609 . 324991) (-2610 . 324866) (-2611 . 324752) (-2612 . 324424) (-2613 . 324337) (-2614 . 324200) (-2615 . 324009) (-2616 . 323953) (-2617 . 323856) (-2618 . 323744) (-2619 . 323497) (-2620 . 323346) (-2621 . 323141) (-2622 . 323039) (-2623 . 322956) (-2624 . 321809) (-2625 . 321632) (-2626 . 321559) (-2627 . 321439) (-2628 . 320872) (-2629 . 320794) (-2630 . 320678) (-2631 . 320313) (-2632 . 320173) (-2633 . 319984) (-2634 . 319902) (-2635 . 319868) (-2636 . 319720) (-2637 . 319155) (-2638 . 319127) (-2639 . 319040) (-2640 . 318959) (-2641 . 318901) (-2642 . 318848) (-2643 . 318773) (-2644 . 318705) (-2645 . 318452) (-2646 . 318363) (-2647 . 318173) (-2648 . 318092) (-2649 . 317992) (-2650 . 317921) (-2651 . 317865) (-2652 . 317806) (-2653 . 317693) (-2654 . 317604) (-2655 . 317464) (-2656 . 317112) (-2657 . 316936) (-2658 . 316809) (-2659 . 316690) (-2660 . 316493) (-2661 . 316410) (-2662 . 316157) (-2663 . 316105) (-2664 . 316025) (-2665 . 315997) (-2666 . 315756) (-2667 . 315257) (-2668 . 315034) (-2669 . 314546) (-2670 . 314399) (-2671 . 314136) (-2672 . 314078) (-2673 . 313984) (-2674 . 313886) (-2675 . 313834) (-2676 . 313728) (-2677 . 313699) (-2678 . 313584) (-2679 . 313045) (-2680 . 312993) (-2681 . 312922) (-2682 . 312832) (-2683 . 312746) (-2684 . 312482) (-2685 . 312421) (-2686 . 312314) (-2687 . 312162) (-2688 . 311960) (-2689 . 311524) (-2690 . 311345) (-2691 . 311273) (-2692 . 311086) (-2693 . 311013) (-2694 . 310880) (-2695 . 310439) (-2696 . 310291) (-2697 . 310094) (-2698 . 310041) (-2699 . 309935) (-2700 . 309882) (-2701 . 309556) (-2702 . 309333) (-2703 . 309185) (-2704 . 309126) (-2705 . 308993) (-2706 . 308856) (-2707 . 308735) (-2708 . 308631) (-2709 . 308549) (-2710 . 308333) (-2711 . 308094) (-2712 . 308031) (-2713 . 307956) (-2714 . 307883) (-2715 . 307808) (-2716 . 307595) (-2717 . 307521) (-2718 . 307288) (-2719 . 307233) (-2720 . 305728) (-2721 . 305654) (-2722 . 305548) (-2723 . 305455) (-2724 . 305222) (-2725 . 305108) (-2726 . 304959) (-2727 . 304906) (-2728 . 304684) (-2729 . 304496) (-2730 . 304212) (-2731 . 303419) (-2732 . 303329) (-2733 . 303258) (-2734 . 303131) (-2735 . 302675) (-2736 . 302615) (-2737 . 302449) (-2738 . 302393) (-2739 . 301884) (-2740 . 301682) (-2741 . 301586) (-2742 . 301512) (-2743 . 301035) (-2744 . 300865) (-2745 . 300732) (-2746 . 300677) (-2747 . 300327) (-2748 . 300257) (-2749 . 300184) (-2750 . 300130) (-2751 . 299996) (-2752 . 299877) (-2753 . 299756) (-2754 . 299604) (-2755 . 299551) (-2756 . 299499) (-2757 . 299121) (-2758 . 299052) (-2759 . 297841) (-2760 . 297767) (-2761 . 297623) (-2762 . 297554) (-2763 . 297502) (-2764 . 297396) (-2765 . 297179) (-2766 . 297037) (-2767 . 296964) (-2768 . 296882) (-2769 . 296317) (-2770 . 296228) (-2771 . 296175) (-2772 . 296094) (-2773 . 295962) (-2774 . 295825) (-2775 . 295728) (-2776 . 295655) (-2777 . 295559) (-2778 . 295441) (-2779 . 295243) (-2780 . 295109) (-2781 . 294946) (-2782 . 294638) (-2783 . 294345) (-2784 . 294086) (-2785 . 293981) (-2786 . 293824) (-2787 . 293525) (-2788 . 293398) (-2789 . 293367) (-2790 . 293268) (-2791 . 293149) (-2792 . 293075) (-2793 . 292982) (-2794 . 292880) (-2795 . 292495) (-2796 . 292329) (-2797 . 292115) (-2798 . 292066) (-2799 . 292000) (-2800 . 291767) (-2801 . 291670) (-2802 . 291606) (-2803 . 291499) (-2804 . 291410) (-2805 . 291327) (-2806 . 291275) (-2807 . 291194) (-2808 . 291076) (-2809 . 290978) (-2810 . 290864) (-2811 . 290788) (-2812 . 290716) (-2813 . 290483) (-2814 . 290197) (-2815 . 290125) (-2816 . 290033) (-2817 . 290005) (-2818 . 289772) (-2819 . 289378) (-2820 . 289194) (-2821 . 289081) (-2822 . 289008) (-2823 . 288933) (-2824 . 288848) (-2825 . 288425) (-2826 . 288286) (-2827 . 288209) (-2828 . 288143) (-2829 . 288014) (-2830 . 287929) (-2831 . 287816) (-2832 . 287655) (-2833 . 287572) (-2834 . 287421) (-2835 . 287310) (-2836 . 287193) (-2837 . 287117) (-2838 . 286929) (-2839 . 286820) (-2840 . 286651) (-2841 . 286500) (-2842 . 286415) (-2843 . 286060) (-2844 . 285897) (-2845 . 285806) (-2846 . 285265) (-2847 . 284858) (-2848 . 284593) (-2849 . 284303) (-2850 . 284209) (-2851 . 284038) (-2852 . 283924) (-2853 . 283822) (-2854 . 283709) (-2855 . 283656) (-2856 . 283386) (-2857 . 283215) (-2858 . 282907) (-2859 . 282684) (-2860 . 282510) (-2861 . 282294) (-2862 . 282104) (-2863 . 282040) (-2864 . 281851) (-2865 . 281386) (-2866 . 281267) (-2867 . 281124) (-2868 . 281029) (-2869 . 280456) (-2870 . 280221) (-2871 . 279639) (-2872 . 279611) (-2873 . 279472) (-2874 . 279402) (-2875 . 279296) (-2876 . 279105) (-2877 . 279015) (-2878 . 278920) (-2879 . 278491) (-2880 . 278289) (-2881 . 278117) (-2882 . 278043) (-2883 . 277638) (-2884 . 277585) (-2885 . 276989) (-2886 . 276929) (-2887 . 276837) (-2888 . 276286) (-2889 . 275678) (-2890 . 275580) (-2891 . 275295) (-2892 . 274977) (-2893 . 274888) (-2894 . 274711) (-2895 . 274645) (-2896 . 274568) (-2897 . 274495) (-2898 . 274316) (-2899 . 274114) (-2900 . 274013) (-2901 . 273837) (-2902 . 273745) (-2903 . 273647) (-2904 . 273519) (-2905 . 273468) (-2906 . 272872) (-2907 . 272789) (-2908 . 272582) (-2909 . 272511) (-2910 . 272411) (-2911 . 272291) (-2912 . 272190) (-2913 . 272078) (-2914 . 271930) (-2915 . 271618) (-2916 . 271320) (-2917 . 271158) (-2918 . 270788) (-2919 . 270652) (-2920 . 270244) (-2921 . 270051) (-2922 . 269926) (-2923 . 269808) (-2924 . 269688) (-2925 . 266939) (-2926 . 266849) (-2927 . 266768) (-2928 . 266580) (-2929 . 266510) (-2930 . 266199) (-2931 . 266105) (-2932 . 265683) (-2933 . 265515) (-2934 . 265279) (-2935 . 265168) (-2936 . 264868) (-2937 . 264745) (-2938 . 264629) (-2939 . 264574) (-2940 . 264308) (-2941 . 264238) (-2942 . 264137) (-2943 . 263781) (-2944 . 263715) (-2945 . 263517) (-2946 . 263415) (-2947 . 263289) (-2948 . 263161) (-2949 . 263099) (-2950 . 263009) (-2951 . 262853) (-2952 . 262785) (-2953 . 262716) (-2954 . 262366) (-2955 . 262293) (-2956 . 262008) (-2957 . 261913) (-2958 . 261842) (-2959 . 261763) (-2960 . 261690) (-2961 . 260874) (-2962 . 260485) (-2963 . 260328) (-2964 . 260178) (-2965 . 259936) (-2966 . 259747) (-2967 . 259476) (-2968 . 259381) (-2969 . 259280) (-2970 . 259129) (-2971 . 259007) (-2972 . 258936) (-2973 . 258860) (-2974 . 258760) (-2975 . 258677) (-2976 . 258570) (-2977 . 258472) (-2978 . 258357) (-2979 . 258290) (-2980 . 258241) (-2981 . 257988) (-2982 . 257861) (-2983 . 257759) (-2984 . 257594) (-2985 . 257445) (-2986 . 257126) (-2987 . 256679) (-2988 . 256581) (-2989 . 256479) (-2990 . 256415) (-2991 . 256307) (-2992 . 256066) (-2993 . 256009) (-2994 . 255928) (-2995 . 255806) (-2996 . 255091) (-2997 . 254846) (-2998 . 254793) (-2999 . 254686) (-3000 . 254529) (-3001 . 254474) (-3002 . 254395) (-3003 . 254253) (-3004 . 254155) (-3005 . 254098) (-3006 . 254066) (-3007 . 253978) (-3008 . 253770) (-3009 . 253695) (-3010 . 253023) (-3011 . 252866) (-3012 . 252733) (-3013 . 252659) (-3014 . 252559) (-3015 . 252502) (-3016 . 252446) (-3017 . 252364) (-3018 . 252247) (-3019 . 252194) (-3020 . 251796) (-3021 . 251611) (-3022 . 251528) (-3023 . 251430) (-3024 . 251305) (-3025 . 251252) (-3026 . 251196) (-3027 . 250786) (-3028 . 250371) (-3029 . 249997) (-3030 . 249939) (-3031 . 249883) (-3032 . 249726) (-3033 . 249644) (-3034 . 249543) (-3035 . 249211) (-3036 . 248888) (-3037 . 248830) (-3038 . 248739) (-3039 . 248441) (-3040 . 248345) (-3041 . 248296) (-3042 . 248214) (-3043 . 248055) (-3044 . 247958) (-3045 . 247854) (-3046 . 247360) (-3047 . 246621) (-3048 . 246018) (-3049 . 245932) (-3050 . 245603) (-3051 . 245476) (-3052 . 245263) (-3053 . 244958) (-3054 . 244796) (-3055 . 244480) (-3056 . 244373) (-3057 . 243874) (-3058 . 243766) (-3059 . 243622) (-3060 . 243424) (-3061 . 243077) (-3062 . 242987) (-3063 . 242913) (-3064 . 242757) (-3065 . 242544) (-3066 . 242446) (-3067 . 242385) (-3068 . 242170) (-3069 . 242009) (-3070 . 241896) (-3071 . 240939) (-3072 . 239944) (-3073 . 239866) (-3074 . 239760) (-3075 . 239604) (-3076 . 239500) (-3077 . 239348) (-3078 . 238804) (-3079 . 238590) (-3080 . 238387) (-3081 . 238130) (-3082 . 238004) (-3083 . 237970) (-3084 . 237873) (-3085 . 237582) (-3086 . 237478) (-3087 . 237353) (-3088 . 237276) (-3089 . 237152) (-3090 . 237097) (-3091 . 236896) (-3092 . 236707) (-3093 . 236492) (-3094 . 236382) (-3095 . 236311) (-3096 . 236154) (-3097 . 236102) (-3098 . 236046) (-3099 . 235775) (-3100 . 235719) (-3101 . 235634) (-3102 . 235581) (-3103 . 235342) (-3104 . 235232) (-3105 . 235059) (** . 232101) (-3107 . 231997) (-3108 . 231879) (-3109 . 231666) (-3110 . 231358) (-3111 . 231216) (-3112 . 231112) (-3113 . 231046) (-3114 . 230936) (-3115 . 230808) (-3116 . 230612) (-3117 . 230498) (-3118 . 230423) (-3119 . 230370) (-3120 . 230176) (-3121 . 230148) (-3122 . 230056) (-3123 . 229966) (-3124 . 229841) (-3125 . 229774) (-3126 . 229718) (-3127 . 227664) (-3128 . 227509) (-3129 . 227453) (-3130 . 227150) (-3131 . 227025) (-3132 . 226940) (-3133 . 226702) (-3134 . 226559) (-3135 . 226390) (-3136 . 226312) (-3137 . 226160) (-3138 . 225994) (-3139 . 225856) (-3140 . 225720) (-3141 . 225017) (-3142 . 224504) (-3143 . 224295) (-3144 . 224159) (-3145 . 223985) (-3146 . 223933) (-3147 . 223850) (-3148 . 223644) (-3149 . 223254) (-3150 . 223198) (-3151 . 223103) (-3152 . 222966) (-3153 . 222481) (-3154 . 221532) (-3155 . 221421) (-3156 . 221300) (-3157 . 221182) (-3158 . 221000) (-3159 . 220856) (-3160 . 220469) (-3161 . 220363) (-3162 . 220297) (-3163 . 220245) (-3164 . 220067) (-3165 . 219963) (-3166 . 219552) (-3167 . 219342) (-3168 . 219225) (-3169 . 219100) (-3170 . 218983) (-3171 . 218902) (-3172 . 218871) (-3173 . 218767) (-3174 . 217809) (-3175 . 217709) (-3176 . 217406) (-3177 . 217305) (-3178 . 217220) (-3179 . 216767) (-3180 . 216699) (-3181 . 216644) (-3182 . 216496) (-3183 . 216283) (-3184 . 216182) (-3185 . 215827) (-3186 . 215771) (-3187 . 215656) (-3188 . 215559) (-3189 . 210712) (-3190 . 210612) (-3191 . 210375) (-3192 . 210292) (-3193 . 210188) (-3194 . 210081) (-3195 . 209926) (-3196 . 209787) (-3197 . 209697) (-3198 . 209575) (-3199 . 209323) (-3200 . 209191) (-3201 . 209018) (-3202 . 208947) (-3203 . 208742) (-3204 . 208412) (-3205 . 208333) (-3206 . 208138) (-3207 . 208007) (-3208 . 207887) (-3209 . 207265) (-3210 . 206990) (-3211 . 206886) (-3212 . 206175) (-3213 . 205942) (-3214 . 205790) (-3215 . 205712) (-3216 . 204916) (-3217 . 204688) (-3218 . 204611) (-3219 . 204537) (-3220 . 203962) (-3221 . 203837) (-3222 . 202600) (-3223 . 202548) (-3224 . 202265) (-3225 . 198828) (-3226 . 198776) (-3227 . 198623) (-3228 . 198495) (-3229 . 198399) (-3230 . 198249) (-3231 . 198177) (-3232 . 197912) (-3233 . 197677) (-3234 . 197607) (-3235 . 197424) (-3236 . 196242) (-3237 . 195725) (-3238 . 195464) (-3239 . 195349) (-3240 . 194774) (-3241 . 194650) (-3242 . 194591) (-3243 . 194501) (-3244 . 194399) (-3245 . 194339) (-3246 . 194198) (-3247 . 194146) (-3248 . 193998) (-3249 . 193890) (-3250 . 193737) (-3251 . 193706) (-3252 . 193616) (-3253 . 193464) (-3254 . 193376) (-3255 . 193182) (-3256 . 193061) (-3257 . 192840) (-3258 . 192784) (-3259 . 192426) (-3260 . 192347) (-3261 . 192276) (-3262 . 192207) (-3263 . 192154) (-3264 . 192056) (-3265 . 192004) (-3266 . 191643) (-3267 . 190901) (-3268 . 190698) (-3269 . 190136) (-3270 . 190083) (-3271 . 189804) (-3272 . 189747) (-3273 . 189599) (-3274 . 189510) (-3275 . 189376) (-3276 . 189274) (-3277 . 189140) (-3278 . 189069) (-3279 . 188941) (-3280 . 188839) (-3281 . 188665) (-3282 . 188150) (-3283 . 187754) (-3284 . 187640) (-3285 . 187407) (-3286 . 187355) (-3287 . 187262) (-3288 . 187189) (-3289 . 187091) (-3290 . 186852) (-3291 . 186486) (-3292 . 186388) (-3293 . 186265) (-3294 . 185969) (-3295 . 185784) (-3296 . 185650) (-3297 . 185543) (-3298 . 185409) (-3299 . 185317) (-3300 . 185200) (-3301 . 185166) (-3302 . 185074) (-3303 . 184999) (-3304 . 184891) (-3305 . 184679) (-3306 . 184575) (-3307 . 184195) (-3308 . 184112) (-3309 . 184056) (-3310 . 184000) (-3311 . 183927) (-3312 . 183704) (-3313 . 183612) (-3314 . 183527) (-3315 . 183446) (-3316 . 181690) (-3317 . 181590) (-3318 . 181506) (-3319 . 181368) (-3320 . 181297) (-3321 . 181229) (-3322 . 181201) (-3323 . 181116) (-3324 . 181041) (-3325 . 180963) (-3326 . 180901) (-3327 . 180585) (-3328 . 180490) (-3329 . 180435) (-3330 . 180379) (-3331 . 180264) (-3332 . 180162) (-3333 . 180077) (-3334 . 179794) (-3335 . 179705) (-3336 . 179623) (-3337 . 179595) (-3338 . 179467) (-3339 . 179230) (-3340 . 179175) (-3341 . 179079) (-3342 . 178884) (-3343 . 178719) (-3344 . 178539) (-3345 . 178454) (-3346 . 178345) (-3347 . 178156) (-3348 . 177921) (-3349 . 177783) (-3350 . 177673) (-3351 . 177585) (-3352 . 177286) (-3353 . 177233) (-3354 . 177172) (-3355 . 176931) (-3356 . 176879) (-3357 . 176745) (-3358 . 176660) (-3359 . 176551) (-3360 . 176452) (-3361 . 176081) (-3362 . 175943) (-3363 . 175877) (-3364 . 175205) (-3365 . 175125) (-3366 . 175047) (-3367 . 174959) (-3368 . 174868) (-3369 . 174773) (-3370 . 174551) (-3371 . 174450) (-3372 . 174152) (-3373 . 174055) (-3374 . 173888) (-3375 . 173818) (-3376 . 173702) (-3377 . 173617) (-3378 . 173564) (-3379 . 173490) (-3380 . 173383) (-3381 . 173307) (-3382 . 173091) (-3383 . 172452) (-3384 . 172178) (-3385 . 172054) (-3386 . 171965) (-3387 . 171880) (-3388 . 171514) (-3389 . 171271) (-3390 . 171077) (-3391 . 170939) (-3392 . 170881) (-3393 . 170779) (-3394 . 170714) (-3395 . 170606) (-3396 . 170521) (-3397 . 170451) (-3398 . 170373) (-3399 . 170239) (-3400 . 170034) (-3401 . 169500) (-3402 . 169444) (-3403 . 169359) (-3404 . 169255) (-3405 . 169170) (-3406 . 169091) (-3407 . 168794) (-3408 . 168632) (-3409 . 168525) (-3410 . 168404) (-3411 . 167798) (-3412 . 167702) (-3413 . 167636) (-3414 . 167484) (-3415 . 167399) (-3416 . 167331) (-3417 . 167243) (-3418 . 167092) (-3419 . 166833) (-3420 . 166480) (-3421 . 166084) (-3422 . 165888) (-3423 . 165741) (-3424 . 165626) (-3425 . 165387) (-3426 . 165302) (-3427 . 164912) (-3428 . 164838) (-3429 . 164652) (-3430 . 164411) (-3431 . 164323) (-3432 . 163567) (-3433 . 163355) (-3434 . 163005) (-3435 . 162853) (-3436 . 162772) (-3437 . 161767) (-3438 . 161689) (-3439 . 161604) (-3440 . 161495) (-3441 . 161354) (-3442 . 160288) (-3443 . 160197) (-3444 . 159629) (-3445 . 159471) (-3446 . 159417) (-3447 . 159253) (-3448 . 158947) (-3449 . 158866) (-3450 . 158770) (-3451 . 158616) (-3452 . 158478) (-3453 . 158393) (-3454 . 158264) (-3455 . 158065) (-3456 . 157994) (-3457 . 157671) (-3458 . 157546) (-3459 . 157416) (-3460 . 157269) (-3461 . 156897) (-3462 . 156293) (-3463 . 155511) (-3464 . 155205) (-3465 . 155007) (-3466 . 154530) (-3467 . 154445) (-3468 . 154389) (-3469 . 154121) (-3470 . 154066) (-3471 . 153736) (-3472 . 153677) (-3473 . 153626) (-3474 . 153441) (-3475 . 153299) (-3476 . 153199) (-3477 . 153062) (-3478 . 152785) (-3479 . 152718) (-3480 . 152633) (-3481 . 152551) (-3482 . 152461) (-3483 . 152336) (-3484 . 151937) (-3485 . 151357) (-3486 . 151072) (-3487 . 150853) (-3488 . 150767) (-3489 . 150393) (-3490 . 150338) (-3491 . 150263) (-3492 . 150111) (-3493 . 149979) (-3494 . 149807) (-3495 . 149715) (-3496 . 149666) (-3497 . 149386) (-3498 . 149264) (-3499 . 148571) (-3500 . 148496) (-3501 . 148192) (-3502 . 147240) (-3503 . 147071) (-3504 . 146987) (-3505 . 146855) (-3506 . 146489) (-3507 . 146374) (-3508 . 146321) (-3509 . 146236) (-3510 . 146185) (-3511 . 146083) (-3512 . 145912) (-3513 . 145750) (-3514 . 145660) (-3515 . 145497) (-3516 . 145383) (-3517 . 145251) (-3518 . 145185) (-3519 . 145114) (-3520 . 144715) (-3521 . 144659) (-3522 . 144446) (-3523 . 144344) (-3524 . 144240) (-3525 . 144078) (-3526 . 143880) (-3527 . 143807) (-3528 . 143653) (-3529 . 142841) (-3530 . 142727) (-3531 . 142693) (-3532 . 142420) (-3533 . 141760) (-3534 . 141199) (-3535 . 141095) (-3536 . 140632) (-3537 . 140545) (-3538 . 140409) (-3539 . 140271) (-3540 . 140136) (-3541 . 139965) (-3542 . 139892) (-3543 . 139840) (-3544 . 139742) (-3545 . 139651) (-3546 . 139418) (-3547 . 139344) (-3548 . 139307) (-3549 . 139222) (-3550 . 138864) (-3551 . 138594) (-3552 . 138501) (-3553 . 138357) (-3554 . 138142) (-3555 . 138051) (-3556 . 137813) (-3557 . 137738) (-3558 . 137658) (-3559 . 137524) (-3560 . 137398) (-3561 . 137342) (-3562 . 137148) (-3563 . 137063) (-3564 . 136957) (-3565 . 136836) (-3566 . 136741) (-3567 . 136593) (-3568 . 136417) (-3569 . 136267) (-3570 . 136218) (-3571 . 136165) (-3572 . 135947) (-3573 . 135787) (-3574 . 135735) (-3575 . 135565) (-3576 . 135235) (-3577 . 135130) (-3578 . 135077) (-3579 . 134979) (-3580 . 134850) (-3581 . 134622) (-3582 . 134479) (-3583 . 134427) (-3584 . 134284) (-3585 . 134184) (-3586 . 134036) (-3587 . 133787) (-3588 . 133661) (-3589 . 133391) (-3590 . 133184) (-3591 . 133029) (-3592 . 132178) (-3593 . 131975) (-3594 . 131850) (-3595 . 131711) (-3596 . 131128) (-3597 . 131039) (-3598 . 130939) (-3599 . 130516) (-3600 . 130424) (-3601 . 130298) (-3602 . 130187) (-3603 . 129893) (-3604 . 129789) (-3605 . 129372) (-3606 . 129220) (-3607 . 129084) (-3608 . 129018) (-3609 . 128900) (-3610 . 128833) (-3611 . 128709) (-3612 . 128587) (-3613 . 128311) (-3614 . 128223) (-3615 . 127903) (-3616 . 127609) (-3617 . 127500) (-3618 . 127406) (-3619 . 127113) (-3620 . 127029) (-3621 . 125895) (-3622 . 125789) (-3623 . 125612) (-3624 . 125470) (-3625 . 125380) (-3626 . 125245) (-3627 . 125151) (-3628 . 125073) (-3629 . 124889) (-3630 . 124738) (-3631 . 124636) (-3632 . 124472) (-3633 . 124406) (-3634 . 124114) (-3635 . 123983) (-3636 . 123807) (-3637 . 123779) (-3638 . 123677) (-3639 . 123350) (-3640 . 123214) (-3641 . 123101) (-3642 . 122949) (-3643 . 122878) (-3644 . 122806) (-3645 . 118122) (-3646 . 118094) (-3647 . 117916) (-3648 . 117835) (-3649 . 117683) (-3650 . 117536) (-3651 . 117384) (-3652 . 117057) (-3653 . 116573) (-3654 . 116500) (-3655 . 116256) (-3656 . 116203) (-3657 . 116145) (-3658 . 116092) (-3659 . 115970) (-3660 . 115899) (-3661 . 115808) (-3662 . 115642) (-3663 . 115473) (-3664 . 115332) (-3665 . 115178) (-3666 . 115060) (-3667 . 114960) (-3668 . 114789) (-3669 . 113760) (-3670 . 113440) (-3671 . 113316) (-3672 . 113207) (-3673 . 113100) (-3674 . 112799) (-3675 . 112680) (-3676 . 112602) (-3677 . 112498) (-3678 . 112363) (-3679 . 112203) (-3680 . 112053) (-3681 . 111436) (-3682 . 111239) (-3683 . 110695) (-3684 . 110602) (-3685 . 110428) (-3686 . 110319) (-3687 . 110266) (-3688 . 108257) (-3689 . 107975) (-3690 . 107098) (-3691 . 107004) (-3692 . 106816) (-3693 . 106683) (-3694 . 106353) (-3695 . 105809) (-3696 . 105683) (-3697 . 105655) (-3698 . 105416) (-3699 . 105385) (-3700 . 105246) (-3701 . 105134) (-3702 . 104971) (-3703 . 104435) (-3704 . 104152) (-3705 . 104079) (-3706 . 103242) (-3707 . 102698) (-3708 . 102495) (-3709 . 101230) (-3710 . 100749) (-3711 . 100658) (-3712 . 100554) (-3713 . 100392) (-3714 . 100277) (-3715 . 100224) (-3716 . 100009) (-3717 . 99928) (-3718 . 99865) (-3719 . 99321) (-3720 . 99131) (-3721 . 99053) (-3722 . 98931) (-3723 . 98781) (-3724 . 98698) (-3725 . 98646) (-3726 . 98584) (-3727 . 98503) (-3728 . 98264) (-3729 . 98166) (-3730 . 98093) (-3731 . 97549) (-3732 . 97449) (-3733 . 97371) (-3734 . 97220) (-3735 . 97103) (-3736 . 96848) (-3737 . 96796) (-3738 . 96725) (-3739 . 96607) (-3740 . 96430) (-3741 . 96371) (-3742 . 96273) (-3743 . 96142) (-3744 . 96042) (-3745 . 95908) (-3746 . 95626) (-3747 . 95495) (-3748 . 95414) (-3749 . 95331) (-3750 . 95178) (-3751 . 95030) (-3752 . 94936) (-3753 . 94838) (-3754 . 94680) (-3755 . 89490) (-3756 . 89391) (-3757 . 89310) (-3758 . 89039) (-3759 . 88918) (-3760 . 88524) (-3761 . 88435) (-3762 . 88231) (-3763 . 88143) (-3764 . 88115) (-3765 . 88054) (-3766 . 87677) (-3767 . 87496) (-3768 . 87351) (-3769 . 87233) (-3770 . 86865) (-3771 . 86775) (-3772 . 86673) (-3773 . 86639) (-3774 . 86583) (-3775 . 86144) (-3776 . 85973) (-3777 . 85616) (-3778 . 85563) (-3779 . 85416) (-3780 . 85229) (-3781 . 85147) (-3782 . 84943) (-3783 . 84573) (-3784 . 84500) (-3785 . 84165) (-3786 . 83832) (-3787 . 83583) (-3788 . 83384) (-3789 . 83269) (-3790 . 83158) (-3791 . 82624) (-3792 . 82570) (-3793 . 82316) (-3794 . 82238) (-3795 . 82136) (-3796 . 82017) (-3797 . 81836) (-3798 . 81718) (-3799 . 81666) (-3800 . 81263) (-3801 . 81172) (-3802 . 80864) (-3803 . 80714) (-3804 . 80509) (-3805 . 80428) (-3806 . 79649) (-3807 . 79494) (-3808 . 79416) (-3809 . 79256) (-3810 . 79099) (-3811 . 79027) (-3812 . 78917) (-3813 . 77590) (-3814 . 77312) (-3815 . 77238) (-3816 . 77186) (-12 . 77031) (-3818 . 76956) (-3819 . 76713) (-3820 . 75614) (-3821 . 75451) (-3822 . 75335) (-3823 . 75084) (-3824 . 74867) (-3825 . 74522) (-3826 . 74189) (-3827 . 73881) (-3828 . 73782) (-3829 . 73716) (-3830 . 73239) (-3831 . 73149) (-3832 . 73026) (-3833 . 72920) (-3834 . 72749) (-3835 . 72681) (-3836 . 72380) (-3837 . 72304) (-3838 . 72245) (-3839 . 72154) (-3840 . 72016) (-3841 . 71418) (-3842 . 71328) (-3843 . 71202) (-3844 . 71091) (-3845 . 70951) (-3846 . 70899) (-3847 . 70647) (-3848 . 70416) (-3849 . 70050) (-3850 . 69925) (-3851 . 69897) (-3852 . 69399) (-3853 . 69323) (-3854 . 69071) (-3855 . 68728) (-3856 . 68597) (-3857 . 68511) (-3858 . 68459) (-3859 . 68409) (-3860 . 67966) (-3861 . 67910) (-3862 . 67829) (-3863 . 67622) (-3864 . 67466) (-3865 . 67411) (-3866 . 67356) (-3867 . 67045) (-3868 . 66956) (-3869 . 66632) (-3870 . 66452) (-3871 . 66342) (-3872 . 66212) (-3873 . 66103) (-3874 . 65958) (-3875 . 65760) (-3876 . 65612) (-3877 . 65477) (-3878 . 65406) (-3879 . 65250) (-3880 . 65218) (-3881 . 65085) (-3882 . 64737) (-3883 . 64557) (-3884 . 64491) (-3885 . 64425) (-3886 . 64391) (-3887 . 64310) (-3888 . 64261) (-3889 . 64087) (-3890 . 63825) (-3891 . 63752) (-3892 . 63681) (-3893 . 63609) (-3894 . 63536) (-3895 . 63469) (-3896 . 63193) (-3897 . 63073) (-3898 . 62925) (-3899 . 62664) (-3900 . 62611) (* . 58280) (-3902 . 58228) (-3903 . 58088) (-3904 . 57972) (-3905 . 56841) (-3906 . 56578) (-3907 . 56529) (-3908 . 56478) (-3909 . 56342) (-3910 . 56268) (-3911 . 55568) (-3912 . 55365) (-3913 . 55310) (-3914 . 55145) (-3915 . 55079) (-3916 . 55001) (-3917 . 54964) (-3918 . 54759) (-3919 . 54693) (-3920 . 54562) (-3921 . 54426) (-3922 . 54322) (-3923 . 53959) (-3924 . 53608) (-3925 . 53457) (-3926 . 53252) (-3927 . 53128) (-3928 . 53062) (-3929 . 52873) (-3930 . 52807) (-3931 . 52715) (-3932 . 52514) (-3933 . 52432) (-3934 . 52127) (-3935 . 52075) (-3936 . 51992) (-3937 . 51891) (-3938 . 51700) (-3939 . 51432) (-3940 . 51342) (-3941 . 51176) (-3942 . 51078) (-3943 . 50912) (-3944 . 50750) (-3945 . 50679) (-3946 . 50474) (-3947 . 50403) (-3948 . 50300) (-3949 . 50230) (-3950 . 50087) (-3951 . 49893) (-3952 . 49811) (-3953 . 49720) (-3954 . 49608) (-3955 . 49458) (-3956 . 49405) (-3957 . 49251) (-3958 . 49000) (-3959 . 48860) (-3960 . 48748) (-3961 . 48720) (-3962 . 48653) (-3963 . 48600) (-3964 . 48487) (-3965 . 48368) (-3966 . 48313) (-3967 . 48224) (-3968 . 48165) (-3969 . 48061) (-3970 . 48008) (-3971 . 47793) (-3972 . 45654) (-3973 . 45605) (-3974 . 45556) (-3975 . 45493) (-3976 . 45412) (-3977 . 45220) (-3978 . 44939) (-3979 . 44679) (-3980 . 44608) (-3981 . 44463) (-3982 . 43356) (-3983 . 43204) (-3984 . 42954) (-3985 . 42900) (-3986 . 42847) (-3987 . 42698) (-3988 . 42403) (-3989 . 42344) (-3990 . 42142) (-3991 . 41695) (-3992 . 41621) (-3993 . 41548) (-3994 . 41240) (-3995 . 40679) (-3996 . 40565) (-3997 . 40416) (-3998 . 40225) (-3999 . 40197) (-4000 . 40047) (-4001 . 39988) (-4002 . 39893) (-4003 . 39784) (-4004 . 39687) (-4005 . 39432) (-4006 . 39376) (-4007 . 39321) (-4008 . 39224) (-4009 . 39069) (-4010 . 38934) (-4011 . 38832) (-4012 . 38774) (-4013 . 37937) (-4014 . 37483) (-4015 . 37257) (-4016 . 37049) (-4017 . 36997) (-4018 . 36941) (-4019 . 36783) (-4020 . 36567) (-4021 . 36222) (-4022 . 36034) (-4023 . 35975) (-4024 . 35854) (-4025 . 35758) (-4026 . 35616) (-4027 . 35345) (-4028 . 35265) (-4029 . 33412) (-4030 . 33316) (-4031 . 32816) (-4032 . 32627) (-4033 . 32554) (-4034 . 32234) (-4035 . 32138) (-4036 . 32039) (-4037 . 31866) (-4038 . 31822) (-4039 . 31687) (-4040 . 31588) (-4041 . 31217) (-4042 . 31086) (-4043 . 31013) (-4044 . 30936) (-4045 . 30784) (-4046 . 30616) (-4047 . 30512) (-4048 . 29938) (-4049 . 29816) (-4050 . 29764) (-4051 . 29593) (-4052 . 29456) (-4053 . 29213) (-4054 . 29102) (-4055 . 28985) (-4056 . 28841) (-4057 . 26702) (-4058 . 26330) (-4059 . 26219) (-4060 . 26083) (-4061 . 26012) (-4062 . 25815) (-4063 . 25679) (-4064 . 24875) (-4065 . 24613) (-4066 . 24358) (-4067 . 24199) (-4068 . 24115) (-4069 . 23922) (-4070 . 23870) (-4071 . 23787) (-4072 . 23610) (-4073 . 23506) (-4074 . 22641) (-4075 . 22560) (-4076 . 22137) (-4077 . 22047) (-4078 . 21981) (-4079 . 21826) (-4080 . 21752) (-4081 . 21664) (-4082 . 21566) (-4083 . 21460) (-4084 . 21319) (-4085 . 21240) (-4086 . 21129) (-4087 . 21011) (-4088 . 20918) (-4089 . 20763) (-4090 . 20498) (-4091 . 20424) (-4092 . 20249) (-4093 . 19906) (-4094 . 19610) (-4095 . 19508) (-4096 . 19321) (-4097 . 19250) (-4098 . 19165) (-4099 . 19002) (-4100 . 18847) (-4101 . 18785) (-4102 . 18636) (-4103 . 18343) (-4104 . 18219) (-4105 . 18126) (-4106 . 18052) (-4107 . 17955) (-4108 . 17874) (-4109 . 17789) (-4110 . 17736) (-4111 . 17581) (-4112 . 16762) (-4113 . 16725) (-4114 . 15592) (-4115 . 15494) (-4116 . 13765) (-4117 . 13615) (-4118 . 12909) (-4119 . 12833) (-4120 . 12748) (-4121 . 12659) (-4122 . 12583) (-4123 . 12490) (-4124 . 12356) (-4125 . 12322) (-4126 . 12224) (-4127 . 12069) (-4128 . 12019) (-4129 . 11945) (-4130 . 11794) (-4131 . 11662) (-4132 . 11329) (-4133 . 11196) (-4134 . 11105) (-4135 . 11013) (-4136 . 10961) (-4137 . 10911) (-4138 . 10774) (-4139 . 10717) (-4140 . 9912) (-4141 . 9787) (-4142 . 9732) (-4143 . 9600) (-4144 . 9545) (-4145 . 9285) (-4146 . 9167) (-4147 . 9114) (-4148 . 9003) (-4149 . 8798) (-4150 . 8530) (-4151 . 1988) (-4152 . 1387) (-4153 . 1255) (-4154 . 1144) (-4155 . 604) (-4156 . 409) (-4157 . 338) (-4158 . 253) (-4159 . 120) (-4160 . 30)) \ No newline at end of file -- cgit v1.2.3